Framework for using real driving data in automotive
feature development and validation

Jacob Langner, Johannes Bach, Stefan Otten, Eric Sax

FZI Research Center for Information Technology
Email: {langner, bach, otten, sax } @fzi.de

Abstract—The increasing complexity and interconnectivity of
automotive features raises the significance of comprehensive Ver-
ification and Validation (V&YV) activities. High-level automotive
features use the information provided by complex environmental
perception sensors and systems. Due to the rising number of
these sensors and the usage of enhanced digital maps, System
level V&V for high-level features has become a challenge, that is
often tackled by a combination of real world tests and simulation
approaches. In this contribution we present a method, that
combines the realism of real world tests with the scalability of
simulation approaches. In the presented framework a feature
under development is executed in a Software-in-the-loop (SIL)
environment with the help of recorded real world driving data.
With the steadily growing pool of recorded test drives from test
campaigns and country approvals, large scale simulations have
been facilitated. This enables statistically significant assertions,
continuous maturity tracking as well as geolocation-dependent
evaluation of the feature under test. The framework makes these
large scale simulations feasible during automotive feature devel-
opment by utilizing parallelization concepts to achieve simulation
speeds of thousands of kilometers within minutes and by reducing
adaptation overhead for changes in the feature’s software code
to a minimum.

Keywords—Automotive Systems Engineering; Verification and
Validation; Large scale simulations; Continuous Maturity Tracking;
Geolocation-Dependent Testing; MATLAB

I. INTRODUCTION

The current and upcoming trends electrification, automa-
tion and connectivity in the automotive industry [1] affect the
Automotive Systems Engineering (ASE) process. Exemplary
changes are the increasing size, complexity and interconnec-
tions of functional components [2], the integration of back-
end and mobile services, the introduction of car-to-x commu-
nications and changes in the deployment process from linear-
stage gated releases to circular update-over-the-air releases [3].
The increasing vehicle’s sphere of perception also raises the
system complexity. Precise, high definition digital maps [4],
advanced sensor systems [5] and internet services [6] open up
system boundaries, which further challenges the established
V&V approaches. All development activities, starting from
early concept work and extending through to V&V activities,
are affected by these changes. Tools, methods and principles
for ASE have to be adopted to overcome these new challenges.

In order to reduce system complexity, a common solution
in systems engineering is the decomposition of the system,
in this case the feature under development, into smaller parts
[7]. For automotive features the system, component and unit
level are distinguished. Units are independent software blocks,

Carl Esselborn, Marc Holzipfel, Michael Eckert
Dr. Ing. h.c. F. Porsche AG
Email: {carl.esselbornl, marc.holzaepfel,
michael.eckert} @porsche.de

implementing functionality defined by their specifications.
Components integrate several related units, which in turn can
be composed to the system [8].

V&V tasks during development are broken down respec-
tively to the system decomposition. For each of the three
abstraction layers, different V&V activities and goals are
specified [9]. During unit tests a single software unit is tested
to ensure specification compliance and failure-free operation.
After each unit has been examined, integration tests on compo-
nent level verify the unit-integration as well as the interface’s
specification compliance. V&V on system level reviews the
system from an external and holistic point of view. Tests
aim at verifying the correct integration and interaction of all
components and at validating the feature against the expected
user experience.

While the breakdown of V&V activities into unit, compo-
nent and system level helps to structure the process, many
challenges for the different levels remain. On system level
sufficient test coverage as well as cost and time factors are
critical for the feasibility of the test concept. Especially during
preliminary development, new and innovative features require
peculiar testing to ensure specification compliance. Prototypes
enable a preview of the feature in it’s future environment. How-
ever, recent analyses [10] of the current V&V requirements for
upcoming autonomous features have shown that the increased
complexity and higher automation levels entail a tremendous
growth in V&V efforts. The necessary, sufficient test coverage
can not be achieved by real world tests or any other real-time
testing methods alone. Faster and better scaling virtual tests
have to extend real world test coverage. Current simulation
approaches still require a lot of manual work, e.g. for providing
detailed models and parametrization [11]. They are often not
suited for complex and connected features, e.g. features using
back-end or car-to-car communication, features heavily relying
on realistic environmental sensor data or features utilizing
geolocation-dependent digital map information.

In this paper, we propose a framework that uses paral-
lelization and distributed computing concepts in order to solve
the above mentioned challenges for scalable, geolocation-
dependent, realistic simulations. We utilize the continuously
growing data pool of recorded prototype test drives and country
approval campaigns, which Original Equipment Manufacturer
(OEM) currently gather. Besides aggregated feature evaluation
over the complete data pool, the framework also supports
drill-down functionality for in-depth debugging of faulty sit-
uations utilizing the Reactive-Replay approach. In Section II
we outline the state of the art in V&V activities during the

ASE process and refer to previous work regarding this topic.
The concept of our framework is explained in Section III,
whereas details of the architecture are shown in Section IV.
Our prototypical implementation of the framework is evaluated
in Section V. A conclusion and an outlook on future work are
given in Section VI.

II. STATE OF THE ART IN ASE

The V-Model [12] [13] is an established process model
in the automotive domain, used to structure the development
activities. The Automotive SPICE' reference model adapts
the V-Model to ASE domain with it’s specific demands and
constraints [14]. It starts on the left-hand side with require-
ments elicitation and requirements analysis on system level.
Needs and requirements from all stakeholders are collected
and subsequently converted into a set of system requirements,
which serve as a baseline for future design decisions and
test evaluations. In the system architectural design phase a
system architecture is designed and previously formulated
requirements are mapped onto functional system elements.
During the software requirements analysis and software design
phases functional elements are mapped onto software com-
ponents, for which software requirements and the software
architecture are specified accordingly, resulting in several
software units per software component. These software units
are then implemented in the software construction phase.
Software unit verification ensures design and requirements
compliance of each unit. Integration and qualification on
component, subsystem and system level follow subsequently
during the software integration and qualification as well as the
system integration and qualification phases. These tests ensure
specification compliance and architecture consistency on the
different abstraction levels.

With each integration level the V&V activities become in-
creasingly realistic and resource intensive. Unit and component
tests can be done virtually but provide limited validity in regard
to overall system behavior, whereas subsystem and system tests
usually comprise extensive Hardware-in-the-loop (HIL) and
prototype tests, verifying and validating the functional behavior
of the system in the real world.

As postulated in ISO29119-1 [15] dynamic testing is
essential for validating the correct functional behavior. Boehm
described “a software program as a mapping from a space of
inputs into a space of outputs” [16]. Thereby, the functional
quality of the system can be ensured by evaluating the system
output while completely covering the input parameter space,
treating the software itself as a black-box. But, the number
and value ranges of input parameters alone span a wide
parameter space. Limiting the value ranges to plausible values
can reduce the parameter space significantly. Further reduction
can be achieved by defining equivalence classes for each
parameter’s value range and testing the corner cases. However,
due to the complexity and non-deterministic system behavior
of Advanced Driver Assistant Systems (ADAS) features with
internal states and time-dependencies, signal curves over time
have to be considered. This requires realistic signal curves
for all input parameters, which cover all significant parameter
combinations.

! Automotive Software Process Improvement and Capability Determination

S

—

-

- === egEEE —]

% =y
Maturity Tracking Geolocation-Dependenc

Fig. 1: Remaining challenges for feature V&V with our data-
driven approach

Thus, one approach for V&V is to test the test item in
the real world. In early development stages rapid prototyping
can give proof of concept and help with design decisions.
During the following development stages increasingly mature
hardware prototypes are deployed. For system level V&V large
HIL frameworks or complete prototype vehicles are used. In
so called test campaigns these heavily equipped prototype
vehicles are driven by test drivers and function developers over
thousands of kilometers. Usually data loggers record FlexRay
and CAN signals for debugging purposes. While these tests
are vital and valuable to the feature maturity, they are also
resource intensive and time consuming and therefore limitedly
available. Furthermore, the test drives are not reproducible and
the confined number of available prototype vehicles limits the
scalability of this approach for repeated testing.

These real world tests can be complemented by virtual
simulations to tackle the above mentioned challenges. The term
X-in-the-loop (XiL) [17] [18] refers to a group of test methods,
where a test item, e.g. the system, subsystem or component,
is tested in a reproducible and controllable test environment.
This is achieved by modeling system externals like the driver
and the environment as well as other parts of the vehicle,
the test item depends on or interacts with. Depending on the
choice of the test item the XiLL harness provides a reproducible
and controllable test environment for every development phase.
The key benefit is, that the test harness is provided once and
then reused in every phase, enabling a consistent simulation
environment. However, constructing a valid test harness with
detailed models for all system externals remains a challenge.
E.g. modeling the non-deterministic driver behavior or sup-
plying an accurate street topology are resource intensive tasks
and proving their validity is difficult. Geolocation-dependent
features require environment models for different countries and
sensors with increasingly extensive environmental perception
pose immense modeling efforts.

Referring to Boehm, the complete space of inputs has to
be covered to achieve sufficient test coverage during system
level V&V. Since time and resources for testing are limited,
a generic approach to cover the complete input space for
complex ADAS features is not suitable. A common solution
to this problem is the definition of test scenarios. Virtual
test environments allow the detailed modeling of test scenes.
However, reaching sufficient test coverage by specifying sce-
narios manually is still very resource intensive. Approaches
to reduce scenario definition overhead by standardizing test

b) Distribution and file

c) Feature

ata Conversion .
execution

loading

Local CPU / Workstation / Cluster / Cloud Infrastructure

MATLAB Parallel Pool

Execution

d) File-based
evaluation

Evaluation

e) Global

evaluation f) Visualization

Desktop System

MATLAB Client

TLAB Visualization

Microsoft Power BI

o

T

Evaluation
Results

Global
Evaluation

Visualization

Fig. 2: The framework’s concept and architecture

specifications and scenario definitions? have been made. Still,
the lack of realism in virtual test scenarios is often criticized.

In other domains, video based acquisition is a common
approach to collect test data. This automatic gathering method
provides a simple way to collect large amounts of test data.
It can be adapted to the automotive domain by recording the
FlexRay and CAN-bus messages during test campaigns and
prototype drives.

In previous work we suggested the use of this recorded
real world driving data throughout the whole development
process [19]. Bach et al. [20] have introduced the Reactive-
Replay approach, that uses recorded real world driving data to
virtually execute a closed-loop control feature on system level.
The data is recorded during real world system level tests. The
driven routes can then virtually and repeatedly be replayed
and reviewed. Furthermore, in [21] we extended this approach
by selecting carefully chosen test sets from the recorded data
to reduce redundancy and therefore simulation time without
loosing test coverage.

However, some challenges remain as shown in Fig. 1.
The approach lacks scalability, since it is primarily tailored
for manual, in-depth debugging of a few selected test drives.
During the transition from software construction to software
integration and qualification the need for statistically signif-
icant evaluations arises. Large scale simulations over thou-
sands of kilometers have to be aggregated to track continu-
ous feature maturity and qualitative feature progression on a
daily, weekly or monthly basis. Especially before upcoming
release approvals and test campaigns, exhaustive test coverage
is valuable, e.g. simulating the feature with 10.000 km of
country-specific test data and fixing all virtually occurring
bugs and problems before traveling there elevates the ben-
efits drawn from the test campaign. The risk of invalid or
inoperable features during the test campaign is minimized
and the focus can e.g. be set on the feature’s perception-
based user experience. The parametrization of the feature is
another unsolved challenge. It is often used for last minute
tweaks of the feature’s performance before upcoming release
approvals. These adjustments, even for seemingly small param-
eter changes, can have unforeseen effects, which might only
occur in a specific test scenario. Therefore, parametrization
has to be accompanied by exhaustive testing over as many
scenarios as feasible.

III. CONCEPT FOR THE FRAMEWORK

Our goal was to create a framework, which enables large-
scale virtual simulations of open-loop as well as closed-loop

2e.g.: OpenScenario, http:/www.openscenario.org/

control features based on real world driving data. For a given
feature an easy integration method for it’s proprietary software
code shall be given to enable it’s simulation with the real world
driving data in order to compute assessment metrics for large
scale, statistically significant feature evaluation and maturity
tracking. For our prototypical implementation of the proposed
framework, we adapted the Reactive-Replay approach to an
open-loop feature, that predicts future vehicle and driver states.
Recorded real world driving data is used to execute the feature
and to derive a ground truth, the feature’s predictions are
validated against.

We identified the following core concepts as critical for the
achievement of these goals:

a) Data Accessibility: The framework shall be able to
handle automotive full-log files from different vehicles, car
types and feature versions. Missing signals shall be substituted,
if possible, to secure the utilization of the full data basis for
any target or source vehicle. If necessary, matching vehicle
models shall be loaded for the feature execution based on the
source vehicle.

b) Parallelization: The simulation needs to be paral-
lelizable to enable scalable feature execution over the contin-
uously growing data basis. Parallelization is the core concept
for this approach, since analyses need to be fast but also need
to cover a wide parameter range with as much test data as
possible.

c) Scalability: The framework needs to scale beyond
the computational power of a desktop computer. Parallel exe-
cution ensures multi-core CPU usage. With cluster and cloud
computing concepts, further scalability shall be secured. The
framework must be able to keep up with the steadily growing
data pool in order to utilize all available data to maximize
validity and statistic significance of evaluations and continuous
maturity tracking.

d) Modularization: The framework shall support easy
extensibility and exchangeability of the evaluation metrics,
visualization options and especially the feature under test to
allow maturity tracking and functional comparison of different
release or working versions. Therefore, a modular design shall
be pursued. Clear interfaces and data structures shall further
enhance the modularization. The feature under test shall be
directly linked from the production source code. Signals from
the real world driving data shall be passed to and from the
feature via the bus interfaces.

e) Data Management: Executed analyses of different
feature versions shall be comparable without re-execution of
the feature simulation or evaluation. Aggregation and global

metrics shall give a summarized overview over multiple test
drives. Problems, errors and faulty situations shall be high-
lighted and in-depth breakdowns shall be provided. Persistent
and scalable storage systems need to be supported.

f) Visualization: A flexible set of visualization options
shall be provided. Selecting and adjusting evaluation contents
shall require minimal effort. For the included metrics an
easily understandable visualization must be provided. The
implementation of new visualizations and the integration of
external visualization tools must be possible.

We selected MATLAB as our main tool, because it en-
ables easy parallelization, dynamic linking of C-code and has
many visualization capabilities. Furthermore, MATLAB is an
established tool in the automotive industry.

Parallelization is achieved with the help of MATLAB’s
Parallel Computing Toolbox. Each physical CPU core can
host one MATLAB worker. The prototype framework’s target
is a 16 core workstation. Further performance increases can
be achieved with MATLAB’s Distributed Computing Server,
which extends the parallel pool of workers to clusters and
cloud computing services. For now, we achieved satisfactory
results on the workstation.

Converter scripts for common data logger formats ensure
data accessibility in MATLAB. Due to comparatively long
conversion times, the conversion is done in batches after each
test campaign. The converted files are stored persistently and
can then be loaded by MATLAB’s parallel workers, which
simulate the dynamically linked feature with the measured
input signals from the real world driving data. Existing vehicle
and environment models, specified in proprietary C-code, are
reused in the framework. The necessary digital maps are
rebuild with the information from the real world driving
data. The feature’s output interface is returned to MATLAB,
where assessment metrics evaluate the feature execution. Each
recorded test drive is evaluated locally on the MATLAB
worker, which also computed the simulation, saving further
computation time. Only the global evaluation is done on the
client computer after gathering the results. For visualization
purposes we used maps with metric highlighting and other
MATLAB plots as well as third-party visualization tools for
more interactive dashboards.

IV. THE FRAMEWORK’S ARCHITECTURE

Fig. 2 depicts our framework’s architecture. We ignored
hardware aspects and solely focused on creating a SIL test
environment, which of course is scheduled correctly, but with-
out the real-time constraints. This allows functional evaluation
of the feature under test on the developers desktop computer
instead of the target hardware, but simultaneously limits it’s
utility for integration testing. Our parallelization concept re-
gards each test drive as an atomic unit. The parallelization
of a single test drive is not provided, since slicing up time-
dependent data is not a trivial task and the massive overhead
for correct slicing bears no proportion to the relative small
computation times for each single test drive, which supersede
the parallelization of single test drives in the first place. We
focused on an easy to use, modular and extendable framework,
which allows for fast functional evaluation of an integrated C-
code feature with recorded real world driving data.

Fig. 2 shows the 6 steps, the framework is comprised of:

a) Data Conversion: The real world driving data is
recorded in either MDF? or DAT* format, which both can
not be accessed by MATLAB directly and therefore have to
be converted to MAT files first. Since MATLAB’s built-in
converter is only able to convert 8-bit values, which are not
feasible for FlexRay or CAN signals due to their bandwidth
and size limitations, the CANAPE 14° converter library was
used. A MATLAB script batch-processes any number of MDF
files. For DAT files there is no direct conversion to MAT files
yet and therefore they are converted to MDF and then to MAT.
Signal selection, data format options and further settings can
be specified by INI files and label-lists.

b) Distribution and file loading: As long as a local or
remote computer is used, the test data can be accessed directly
via the local or remote file system. When computing in cluster
or cloud environments, distributed file systems should be put
in place to ensure execution of tasks on cluster nodes with ex-
isting local files. HDFS [22] and Amazon’s EMRFS [23] offer
distributed file system services. Combined with a scheduler
like Hadoop’s MapReduce or Tez [22], Amazon’s EMR [23]
or MATLAB’s MJS [24] efficient parallel computations can be
assured. For flexibility reasons the complete automotive full-
logs are converted in the conversion step. The execution of a
single feature however only requires a small subset of signals.
Each parallel MATLAB worker extracts this subset from it’s
current test file. Some signals may have to be interpolated or
regrouped into their original message format in order to meet
the feature’s input interface requirements, e.g. the feature’s
cycle time.

¢) Feature execution: During feature execution the fea-
ture’s software functions are executed. Since the feature is
usually implemented in C-code, integration into MATLAB
has to be provided. For each feature a DLL® file has to
be written, where signals are passed into and out of the
feature interfaces. The feature itself is considered a black
box. Therefore, the DLL file has to be changed only, when
the interfaces are changed. An early commitment to interface
definitions reduces manual changes in the DLL file to a
minimum. The DLL file also has an internal memory structure
mimicking the ECU’s internal storage, where loaded vehicle
and environmental models are stored as well. The DLL file is
dynamically linked to MATLAB with the help of a MEX-
function. This wrapper function enables the forwarding of
data from MATLAB to the C-code and back. For the feature
execution each MATLAB worker dynamically links to a local
copy of the feature DLL. After initializing the internal memory
structures of the feature, the feature’s input interface is served
with the input signals from the recorded data and the included
functionality is executed. Input signals from the recorded test
file are sampled in the original feature execution cycle time
until the complete file is processed. Asynchronous messages,
like digital map data, are loaded when they occur in the

3Measurement Data Format, Vector Informatik GmbH, https://vector.com/
vi_mdf_en.html

4ADTF’s logging format, Elektrobit, https://www.elektrobit.com/products/
eb-assist/adtf/

SCANAPE, Vector Informatik GmbH, https://vector.com/vi_canape_en.html

SWhat is a DLL?, Microsoft Corporation, https:/support.microsoft.com/
en-us/help/815065/what-is-a-dll

snippet of a country app! —_—
nvali

Shawinigan

g

Trois:
w-/'\ Rivieres. = Ugly

<\f" % o4s)
A Rawdon “Joliette Victoriavill

e Very Bad
<] g
§
—458
= E
2456 £ oy e S @ Bad g
e g 9 ms;w —0 2
;
45.4 ol ava (A Granby Sherbrooke, H
4] lengarry. Richelieu. Farnham ©
pisigen el e e s, oess [l Good
452 & Valleytield
Costicook
45 et e e
Tayvalley S Excellent
448 sthans
Sidoey Plattsburgh.
446 &, . cocor Perfect
76.5 76 755 75 745 74 735 73 72,5 72

Longitude [°]

(a) Feature evaluation based on a calculated metric

Signal Visualization

- - e
466 et shavinigan ©)

Troiss
Z5 \ (Rivieres
ouiseville

5458 s
§ R Cookshir
—454 North Granby Sherbrooke, Eaton
it SRl /a-/{ Fornham ok g
g2 N e B
45 N{ s ok T
@
g
pes Statbans
) Potsdam plrshuran
446 JL Champlsin, Essex | e
77 75 e e _72
Longitude []
I 7]
Path Street District Road Highway Federal Highway ey

Street type

(c) Measured signal visualization

Tl from the sif ion snippet of a country —_—
[Invali

shawinigan =
(]

Trojs=
3 (Rivieres =

St-Hyacinthe Bl Ugly

Granby Sherbrooke,

Feature performance

Farmham e
yyyyyyy

Magog

St
Ay

-76.5 -76 -75.5 -75 -74.5 -74 -73.5 -73 -725 -72
Longitude [*]

“lvery Bad

(b) Debug facilitation with highlighted sequences of bad feature
performance

° 600 |

!‘ |
[e 'ulv-!,nll Wi " |
il

(d) Global performance overview via interactive dashboards

Fig. 3: Exemplary visualization of a feature evaluation simulated with data from a country approval

recorded test file and are handled in a second function binding,
which processes these messages accordingly. After each cycle
step, the output signals from the feature’s output interface are
extracted and passed back to MATLAB, where they are stored
for evaluation. Furthermore, the dynamic linking allows the
readout of internal memory states, which may be used for
evaluation or debugging purposes.

d) File-based evaluation: In the feature evaluation
block assessment metrics can be included, which may use
input, output and other measurement signals for evaluation.
The modular nature of the framework enables a flexible, on-
demand metric selection and adding of new metrics. The
feature evaluation block is executed in parallel, which means,
each MATLAB worker only has access to it’s own feature
execution results. Therefore, the evaluation is limited to the
one test file in this step. After gathering all evaluation results,
global analyses can be performed in the next step.

e) Global evaluation: The global evaluation is trig-
gered, when all test drives have been simulated. MATLAB
automatically gathers the results from each MATLAB worker,
allowing analyses over the complete test set. Locally computed
metrics are aggregated to achieve a summarized overview with
drill-down functionality for selected cases. Additionally, an
export script is provided for further usage of the evaluation

results in third-party visualization tools. Any kind of storage
system, e.g. a database or data warehouse, can be integrated to
store execution results and analyses persistently. This allows
downstream comparison of different versions and reuse of
execution results for different analyses. It also opens up the
data for data analytics or usage in other tools.

f) Visualization: The visualization part is built modu-
larly to best suit the needs of the current user. We supplied
map visualization scripts as well as aggregated and in-depth
MATLAB plots for specific metrics or selected measurement
signals. Fig. 3a shows a map snippet of a feature specific
metric, computed for a simulation over a complete country
approval campaign. The used metric is displayed via coloring
on the map, parts, where the feature performed poorly, are
highlighted on the map to ensure discoverability. Additionally,
thresholds provide a method for sequence selection based on
the current needs, which further facilitates the visualization,
as shown in Fig. 3b. The automated slicing of test drives
into sequences based on thresholds will be linked to a debug
tool for the developer in the future. This enables a sequential
debugging of situations, where the feature performed substan-
dard. Interactive dashboards are used for a global overview
of the analysis. With little modeling effort, a concise general
evaluation of the feature’s performance can be displayed.
An abstracted, exemplary dashboard is shown in Fig. 3d.

Provided evaluation signals allow context-based filtering and
classification of the calculated metrics, e.g. an evaluation
metric segmented by street type or vehicle velocity. Fig. 3c
depicts a simple signal visualization, which may be used to
better understand the test data or to visually search for potential
relationships between metric results and measurement signals.

V. RESULTS AND EVALUATION

The framework was implemented for an open-loop feature.
We showed, that the usage of real world driving data is a valid
approach for virtual simulation. Thousands of test kilometers
can simply be derived from recorded country approvals and
prototype test drives. The integration of the feature’s source
code is a major advantage, since minimal adaptation efforts are
required, when moving from implementation to testing. Thus,
reducing the time for each iteration loop significantly. The
framework’s execution on a standard office laptop achieved a
simulation speed of 160 kilometers per minute with two CPU
cores for the integrated feature. This translates into 1.280
simulated test kilometers per minute on a 16 core workstation.

We identified the following use cases for the framework:

For one, the feature can be evaluated and debugged dur-
ing implementation phases. As long as the interfaces remain
the same, the new source code can be executed directly after
successful compilation. The persistent storage of evaluation
results enables maturity tracking and comparison of different
software releases and live versions. Aggregated metrics over
huge data sets deliver more reliable, statistically significant
evaluations in addition to single drive in-depth debugging.
Visually supported, direct comparison of the current version
with the last release version can reveal wanted and unwanted
changes in the feature’s functional behavior.

The framework can also be used to optimize parametriza-
tion of the feature. The feature can easily be executed with
different parameter sets, allowing comparison of different
parameter settings and manual parameter optimization with
the help of feature execution results. The utilization of huge
data sets prevents overfitting of parameters on specific test
drives. An automated parameter optimization approach will be
evaluated in the future.

Furthermore, the feature’s geolocation-dependent behav-
ior in different countries and regions can be evaluated on
a desktop computer. Large scale simulations with complete
test campaigns from different countries allow statistically
significant prognoses for it’s performance in the field. The
influence of geolocation-dependent criteria like digital map
quality, left- and right-hand traffic, highly diverse traffic signs
as well as different weather conditions and road topologies
can be evaluated with the framework. This enhances feature
maturity and enables debugging before testing in the real
world.

And last but not least, the framework supports large scale
simulations over the complete data set or a relevant subset.
Keeping this set the same and executing the latest release in
a periodic schedule allows for overall continuous maturity
tracking, as shown in Fig. 4, supporting the lead developer
with test scheduling and release planning. In a calendric view
(see Fig. 4a) a single performance indicator can be displayed.

June 2017

Sun Mon Tue Wed Thu Fri Sat
1 2 3
5) 7| 8 10
9.26 29.02
12 13] 14 15 16| 17
22.84 57
18] 19 20 21 22| 23] 24
25 26) 27 28| 29 30

(a) Calendric view for a single performance indicator

 Aggregated Performance Indicator ®Performance Criteria 1 @ Performance Criteria 2@ Performance Criteria 3 ®Performance Criteria 4
80

(b) Maturity tracking for multiple performance criteria

Fig. 4: Continuous feature maturity tracking

For a more detailed analysis, multiple performance criteria can
be visualized over time in Fig. 4b. The dashed line shows the
aggregated performance indicator and the other lines single
performance criteria. These can be different metrics from the
functional system-level testing or external criteria from e.g.
static code analyses like code coverage or compliance to
coding guidelines. Even user experience ratings from prototype
test drives can be integrated into the aggregated performance
indicator.

VI. CONCLUSION AND FUTURE WORK

Our framework offers a parallel simulation environment,
which integrates a feature’s production source code and exe-
cutes it with the input from recorded real world driving data.
This opens up a large data pool of real world test drives and
driving scenarios for the use in the feature’s simulation and
evaluation as well as parameter and signal analyses. Feature-
specific assessment metrics are applied to evaluate the feature’s
performance globally across all test drives in the data pool
as well as locally with the help of additional drill-down
mechanics.

We have shown that the recorded real world driving data
can be used to execute a feature in a SIL test environment on a
common desktop computer. While established simulation ap-
proaches struggle with realism and test coverage and prototype
drives with scalability and reproducibility, the reuse of real

world driving data in the simulation environment combines the
benefits of both test methods while negating their downsides.
Furthermore, in many cases a ground truth, e.g. for predicted
vehicle states, can be derived from the recorded test data. This
ground truth can then be used to enhance the evaluation of the
feature’s performance.

The framework can be used for multiple purposes, such
as debugging and functional comparison of different soft-
ware versions, parameter optimization, analysis of geolocation-
dependent behavior as well as continuous maturity track-
ing. We implemented this framework prototypically for a
geolocation-dependent open-loop feature and are currently
working on the closed-loop adaptation of the framework.

With the basic framework in place, current and future work
focuses on improved visualization capabilities and automated
analyses. Due to the steadily growing data pool, data analytic
and machine learning concepts and methods will be used to ex-
tract assessment parameters, correlations and new knowledge
from the data, which then can be used for the feature eval-
uation. Assisting feature parametrization with an automated
optimization approach is planned as well. Further scalability
concepts will be implemented, e.g. migrating the framework
to a cluster or cloud infrastructure, if faster simulations prove
necessary.

REFERENCES

[1] K. Bengler, K. Dietmayer, B. Fiarber, M. Maurer, C. Stiller, and H. Win-
ner, “Three decades of driver assistance systems,” IEEE Intelligent
Transportation Systems Magazine, vol. 6, no. 4, pp. 6-22, 2014.

[2] J. Bach, S. Otten, and E. Sax, “A taxonomy and systematic approach for
automotive system architectures - from functional chains to functional
networks,” in 3rd International Conference on Vehicle Technology and
Intelligent Transport Systems (VEHITS), 2017.

[3] S. Vost and S. Wagner, “Towards continuous integration and continuous
delivery in the automotive industry,” arXiv preprint arXiv:1612.04139,
2016.

[4] J. T. Kessels and P. Van den Bosch, “Electronic horizon: Road informa-
tion used by energy management strategies,” International Journal of
Intelligent Information and Database Systems, vol. 2, no. 2, pp. 187-
203, 2008.

[5] M. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas,
Y. Pilat, F. Homm, W. Huber, and N. Kaempchen, “Experience, results
and lessons learned from automated driving on germany’s highways,”
IEEE Intelligent Transportation Systems Magazine, vol. 7, no. 1, pp.
42-57, 2015.

[6] C. Sun, S.J. Moura, X. Hu, J. K. Hedrick, and F. Sun, “Dynamic traffic
feedback data enabled energy management in plug-in hybrid electric

(71

(8]

(91

[10]

(1]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
(23]
[24]

vehicles,” IEEE Transactions on Control Systems Technology, vol. 23,
no. 3, pp. 1075-1086, 2015.

B. Lightsey, “Systems engineering fundamentals,” DTIC Document,
Tech. Rep., 2001.

ISO, “Road vehicles - functional safety - part4: Product development
at system level,” ISO 26262-4:2011(E), pp. 1-36, Nov 2011.

P. Bourque, R. E. Fairley et al., Guide to the software engineering body
of knowledge (SWEBOK (R)): Version 3.0. 1EEE Computer Society
Press, 2014.

J. Mazzega, F. Koster, K. Lemmer, and T. Form, “Testing of highly
automated driving functions,” ATZ worldwide, vol. 118, no. 10, pp. 44—
48, 2016.

T. Helmer, L. Wang, K. Kompass, and R. Kates, “Safety performance
assessment of assisted and automated driving by virtual experiments:
Stochastic microscopic traffic simulation as knowledge synthesis,” in In-
telligent Transportation Systems (ITSC), 2015 IEEE 18th International
Conference on. 1EEE, 2015, pp. 2019-2023.

E. Sax, Automatisiertes Testen Eingebetteter Systeme in der Automo-
bilindustrie. Miinchen: Hanser, Carl, 2008.

J. Weber, Automotive Development Processes.

Automotive SPICE Process Assessment / Reference Model, 3rd ed.,
VDA QMC Working Group 13 and Automotive SIG, Berlin, Germany,
7 2015. [Online]. Available: http://www.automotivespice.com/

Springer-Verlag, 2009.

ISO, “Software and systems engineering - software testing - part 1:
Concept and definitions,” ISO/IEC/IEEE 29119-1:2013(E), pp. 1-68,
Sept 2013.

B. W. Boehm, “Software engineering,” IEEE Transactions on
Computers, vol. 25, no. 12, pp. 1226-1241, Dec. 1976. [Online].
Available: http://dx.doi.org/10.1109/TC.1976.1674590

H. Shokry and M. Hinchey, “Model-based verification of embedded
software,” Computer, vol. 42, no. 4, pp. 53-59, 4 2009.

A. Albers, T. Diiser, O. Sander, C. Roth, and J. Henning, “X-in-the-loop-
framework fiir fahrzeuge, steuergerite und kommunikationssysteme,”
ATZ elektronik, vol. 5, pp. 60-65, Oct. 2010.

J. Bach, J. Langner, S. Otten, M. Holzépfel, and E. Sax, “Data-
driven development, a complementing approach for automotive systems
engineering,” in 2017 IEEE International Symposium on Systems Engi-
neering (ISSE), 2017.

J. Bach, K.-L. Bauer, M. Holzipfel, M. Hillenbrand, and E. Sax,
“Control based driving assistant functions test using recorded in field
data,” in 7. Tagung Fahrerassistenzsysteme, 2015. [Online]. Available:
https://mediatum.ub.tum.de/node?id=1285215

J. Bach, J. Langner, S. Otten, M. Holzipfel, and E. Sax, “Test scenario
selection for system-level verification and validation of geolocation-
dependent automotive control systems,” in 23rd International Confer-
ence on Engineering, Technology and Innovation (ICE/IEEE), 2017.
Apache, “Hadoop documentation,” http://hadoop.apache.org.

Amazon, “Amazon web services overview,” https://aws.amazon.com.

MathWorks, “Matlab documentation,”

https://de.mathworks.com/help/matlab.

