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Abstract—In Software Defined Networking (SDN), for per-
formance reasons the control plane consists of multiple SDN
controllers that provide a logically centralized network control.
To react to traffic changes, the control plane may adapt to
improve the performance of the whole network. This adapta-
tion includes the migration of controllers, i.e. the change of
their placement, as well as the change of switch to controller
assignments. We call such adaptive network control a dynamic
SDN control plane. Whereas most state of the art focuses on
an optimal placement of controllers considering static traffic
demands, we draw the attention to the need for a dynamic
control plane and the performance of the adaption process itself.
The involved controller migration and switch re-assignments
significantly affect the control plane performance. Moreover, in
this work we evaluate the flexibility of a dynamic SDN control
plane with respect to the number of controllers. In particular, we
refer to a flexibility metric that takes the time into account that
is needed for successful migrations to handle traffic changes. Our
evaluations are based on detailed models of controller placement
and migration time. The results confirm that the migration time
is a critical parameter and reveal that in case only a short
migration time is allowed, the number of controllers does not
bring more flexibility. For relaxed migration times, a larger
number of controllers leads to more flexibility as expected. The
results also show that a dynamic adaptation to traffic changes,
can provide an improvement of up to 60% over a non-dynamic
SDN control plane.

I. INTRODUCTION

Software Defined Networking (SDN) decouples the con-
trol plane from the data plane of forwarding devices such
as switches and routers. The control plane functionality is
provided by a new network entity the SDN controller. The
initial proposal of a single controller has shown several dis-
advantages. The most obvious is that it constitutes a single
point of failure. As an SDN network size increases, scalability
becomes an issue. First, the number flows that need to be
processed increases drastically, whereas, e.g., a single default
OpenDaylight controller implementation can only process
Packet-In messages at the rate of around 15000 pps [1], which
is not comparable with that of a backbone router. Second, the
propagation delay between a switch to its master controller
becomes a significant part of the control plane latency as the
network scales up [2].

To cope with robustness and scalability issues, a logically
centralized and physically distributed control plane has been
introduced. Several controller instances form a cluster and
each switch can be connected to one or more controllers. In

general, the design of the SDN control plane can be modeled
as a Controller Placement Problem [3].

For a distributed control plane, static controller locations
or static switch-to-controller mapping may lead to unbalanced
network resources and degraded flow processing performance
over time. As traffic pattern inside a network can change
dramatically due to unexpected events, adapting the number
of controllers and their placement is necessary. We call such
adaptive network control a Dynamic SDN Control Plane. If the
overall network load increases, adding more controllers can
balance controller load and guarantee an acceptable controller
response time. With respect to control plane latency, an
important network performance indicator is the average flow
setup time, i.e., the time it takes from a packet-in event until
the rules are established on all related switches. Such control
plane latency aspect suffers from temporal local traffic peaks
at some nodes. In this case, for performance improvement, it
is not needed to increase the number of controllers, but to
change the placement of the controllers for a better overall
resource utilization.

In this paper, we focus on the control plane latency scenario
and evaluate the migration of controllers to adapt to traffic
changes for fixed sets of controllers. Here, for a dynamic
SDN control plane, the current controller placement should be
adapted to traffic conditions to reach a global optimal config-
uration in terms of control plane performance such as control
plane latency. Yet, most state of the art address an optimal
controller placement considering only static traffic demands.
Moreover, they only deal with the placement optimization
problem and do not consider the adaptation process. Actually,
controller placement adaptation involves migrating controllers
and re-assigning switches to controllers, which introduces a
significant overhead.

In this work, we evaluate the flexibility of a dynamic SDN
control plane. In particular, we refer to a flexibility metric that
takes the time into account that is needed for successful migra-
tions to handle traffic changes. This flexibility metric is based
on our initial proposal for a flexibility measure of networks [4]
where we did not consider time constraints yet. By comparing
the quantitative values, we reach several conclusions about the
flexibility of certain control plane settings, i.e., the number of
controllers, as well as the gains of dynamic adaptations.

The main contributions of this paper are as follows.
• Introduction of a Dynamic SDN Control Plane taking

migration time and switch re-assignment time into



account as critical parameters for performance analysis;

• Analysis of the flexibility of a Dynamic SDN Control
Plane with respect to the number of controllers taking
migration time constraints into account;

• System performance analysis to show the gains that can
be achieved with a Dynamic Control Plane, which is in
the order of up to 60%.

In the remainder of this paper, we present the necessary
background and a related work analysis in Section II. Sec-
tion III describes the models that we use in our study and the
respective flexibility metric definition. The evaluation setup
and our evaluation results are presented in Section IV.

II. BACKGROUND & RELATED WORK

In this section, we first introduce platform examples of a
distributed SDN control plane in general. We discuss state-of-
the-art models for dynamic controller placement that reacts to
traffic dynamics in the network. (Supportive) examples from
related work for controller and switch migration are presented.

Distributed SDN control plane. Onix [5], as one of
the first distributed SDN control plane platforms, provides
distribution primitives enabling efficient controller application
implementation. As its successor, ONOS [6] is an open source
project which focuses on improving performance in event
processing and message synchronization. OpenDaylight [7] is
another open source distributed SDN Platform that attracts the
attention of the industry. These distributed SDN control plat-
forms provide some adaption, e.g., as a reaction to controller
failures, however, they do not provide mechanisms to adapt
the location of the controllers in response to traffic change. We
consider these platforms as a basis to our proposed models.

Dynamic controller placement. Bari et al. [8] initiated
placing controllers and assigning switches to them dynam-
ically, based on the real time traffic condition, i.e. number
of flows and their origins. [9] considers only the switch
assignment update, as the controllers do not change their
locations, in the use case of data centers where aggregated
traffic increases in the daytime and falls at night. However,
these models give less attention to the migration process and
its cost on the network performance, which we model in detail
in our proposed models.

Controller migration. There are two approaches to migrate
a controller. First, the controller application can be installed on
a virtual machine (VM) that can be directly migrated between
servers. The capability to migrate live VMs across a wide
are network (WAN) has been discussed in [10]. [11] and [12]
evaluated the service downtime during the VM migration on
a server cluster, which ranged between tens and hundrends
of milliseconds. The other approach, which can be used
for stateless controller migration, involves booting up a new
VM with controller application and transferring only the data
store from the old controller application to the new one. In
ONOS, each controller instance has a local copy of the data
store saving switch membership and network topology. [13]
introduces HopSwap as a system example for upgrading SDN

TABLE I: List of input sets and parameters
Symbol Implication

V Set of nodes

E Set of links with E ⊆ V × V

G(V,E) Substrate network with node set V and link set E

C Set of possible controller locations with C ⊆ V

F Set of flows in the network (i.e. flow profile) with f [s]
and f [d] as source node and destination node for f ∈ F

pf Ordered set of node pairs from source to destination on
flow path of f ∈ F with pf ⊆ E

P Set of flow paths pf

K Number of controllers to be placed

Du,v Forwarding latency from node u to node v with u, v ∈ V

controllers without service disruption and the “network state”
is synchronized to the new controller through a consistent
update. We use the insights from the above approaches to build
our controller migration model.

SDN switch migration. ElastiCon [14] introduces a dy-
namic mapping between switches and controllers and thus
guarantees dynamic load adaptation and elasticity. They pro-
pose a switch migration protocol as a part of their elastic
distributed framework which enables load shifting between
controllers. The protocol ensures that no messages will get lost
or duplicated during the migration process. The work in [15]
proposed another protocol for switch migration, however, for
distributed SDN network hypervisors in the context of virtual
SDN networks. The switch re-assignment model is based on
the mechanisms proposed in the above protocols.

III. DYNAMIC CONTROLLER PLACEMENT PROBLEM

Given varying traffic input, a dynamic SDN control plane
adapts its controller placement to achieve better global re-
source utilization and network performance. However, the con-
troller migration and switch re-assigments have an influence on
the overall control plane performance. Therefore, we provide
a model for this dynamic controller placement problem. The
problem consists of two parts, i.e. controller placement model
and migration model. As the flow profile changes, the optimal
controller placement also updates accordingly, in case the con-
trol plane is flexible to support it. We provide a formulation for
the migration model of controllers and switches re-assignment,
which brings in the time constraint for supporting change
requests.

We also define a quantitative measure for flexibility con-
sidering the migration time constraint comparing different
number of controllers in a dynamic SDN control plane. A
distributed control plane is expected to be more flexible in
supporting dynamic traffic, however, a quantitative analysis of
how flexible it can be is missing in the state-of-the-art so far.

The input sets and parameters for our models are presented
in Table I. The problem variables are listed in Table II.

A. Controller Placement Model

The linear optimization model, which is presented in our
previous work [16], takes flow profiles as input and minimizes



TABLE II: List of Variables

Variables Implication

pc Binary variable representing whether a controller is placed
on c ∈ C

av,c Binary variable representing whether a switch v ∈ V is
assigned to a controller c ∈ C

clv Non-negative variable representing the control latency of
a switch v ∈ V

ddu,v Binary variable representing whether two switches u ∈ V
and v ∈ V are in different control domains

nru,v Non-negative variable representing the necessary control
latency if the flow goes from u to v

Fig. 1: Example of controller migration and switch re-
assignment upon a traffic profile change.

the average flow setup time. We define the objective function
as Eq. (1), subject to constraints Eq. (2) - (7).

min Tafs =
1

|F |
∑
f∈F

(2 · clf [s] + 2 ·
∑

(u,v)∈pf

nru,v +Df [s],f [d])

(1)

∑
c∈C

pc = K (2)

∑
c∈C

av,c = 1,∀v ∈ V (3)

∑
v∈V

av,c ≤ |V | · pc,∀c ∈ C (4)

clv =
∑
c∈C

av,c ·Dv,c,∀v ∈ V (5)

ddu,v = 1−
∑
c∈C

au,c · av,c,∀u, v ∈ V (6)

nru,v = clv · ddu,v,∀(u, v) ∈ pf (7)

Eq. (2) ensures that K controllers need to be placed. Each
switch being assigned by one controller that is placed in a
location is ensured by Eq. (3) and (4). Eq. (5), (6), (7) help
to build up variables clv , ddu,v and nru,v .

Algorithm 1 Total Migration Time Calculation

Input: last controller set Cold, current controller set Cnew,
switch set V , size of data store in controller Size, link
bandwidth Bw, shortest path latency D(u, v)

Output: Total migration time Tmig
1: set of propagation latencies of the controllers to be mi-

grated Tctr prop = ∅
2: Tctr prop = 0, Tctr tran = 0
3: for each cnew in Cnew do
4: if cnew /∈ Cold then
5: find the cold ∈ Cold such that the latency D(cold, cnew)

is minimal.
6: insert D(cold, cnew) into Tctr prop
7: end if
8: end for
9: Tctr prop = max(Tctr prop)

10: Tctr tran = Size/Bw
11: set of reassignment times of switches Tsw = ∅
12: for each sw ∈ V do
13: if sw is assigned to a different controller instance then
14: get the master controller c of sw
15: insert D(sw, c) into Tsw
16: end if
17: end for
18: Tsw = max(Tsw)
19: Tmig = Tctr prop + Tctr tran + Tsw

B. Controller and Switch Migration Model

Fig. 1 illustrate a typical migration of controllers and switch
re-assignment. As new flow profile is present, the placement
model results in a different optimal controller placement and
switch assignment, hence, migration is necessary. As shown in
the figure, controller A moves from node 1 to node 3, while
switch 2 is re-assigned to controller B. In this section, we
illustrate the model of migration that defines associated migra-
tion time (Tmig). Generally, a migration consists of controller
migration and switch re-assignment. Controller migration time
contains a transmission part (Tctr tran), as data needs to be trans-
mitted from old location to new location, and a forwarding part
(Tctr prop), as in large area networks the forwarding latency is
normally non-negligible. Switch re-assignment takes place as
soon as controller migration finishes, and it involves several
rounds of control information exchange, in which forwarding
latency plays the major role. And the time for re-assignment
is represented as Tsw. Alg. 1 describes the detailed process
in which the total amount of time for migration is calculated.
Note that D(u, v) is a function returning the shortest path
latency between any two nodes.

1) Controller Migration: We assume that the control plane
is fully distributed and each controller instance has access to
the same full network state, e.g., flows and network topology.
For example, in ONOS, each controller has a local copy
of the network state called data store. We consider stateless



Algorithm 2 Flexibility Measure Calculation

Input: migration time threshold T
Output: flexibility measure ϕplacement

T

1: randomly create an order of all flow profiles
2: total number of migration requests nreq = 0
3: total number of migration success nsuc = 0
4: for each flow profile in the order do
5: nreq = nreq + 1
6: get optimal controller set Cnew and switch assignment

set Anew
7: if this is the first flow profile then
8: Cold = Cnew, Aold = Anew
9: continue

10: end if
11: if Cnew = Cold and Anew = Aold then
12: nsuc = nsuc + 1
13: else
14: call Alg. 1 to calculate Tmig
15: if Tmig < T then
16: nsuc = nsuc + 1
17: Cold = Cnew, Aold = Anew
18: end if
19: end if
20: end for
21: ϕplacement

T = nsuc/nreq

controllers, which means that no state information is involved
in migration. Therefore, when the control plane calls for a new
controller location, only the data store needs to be copied from
whichever old location, that is closest to the new location. We
also assume that controllers can be migrated simultaneously.

When a new flow profile arises and the new optimal
controller locations differ from the old one, the time for con-
troller migration will be computed. First each new controller
finds an old controller that is closest to it and calculate the
corresponding propagation latency and put into a set Tctr prop.
Tctr prop is then the maximum of Tctr prop. As for Tctr tran, it is
the division of data store size and migration link bandwidth.
No matter how many controllers are deployed, the data store
size inside one controller is always the same, because the data
store is only related to the underlying topology. The above
procedure is shown in Alg. 1 from line 1 to line 10.

2) Switch Re-Assignment: After the controller starts run-
ning in the new location, switch also stops the old control
channel and establish a new one with the new controller.
However, the Openflow specification does not provide a native
mechanism in re-assigning SDN switch to different controller
instances and leaves it as an open question to network
providers. Nevertheless, during the re-assignment process of a
switch, the liveness and safety properties should be guaranteed
[14]. On one hand, a switch is always connected to at least
one active controller. A controller that has issued Packet-Out

TABLE III: Simulation parameter settings

Parameters Values

Number of controllers 1, 2, 3, 4

Number of flow S-D pairs 6 (Abilene), 14 (Germany)

Flow number distribution lnN with mean of 20

Total data store size of a controller 100 MB

Migration Link Bandwidth 10 Gbps

# RTTs of re-assigning a switch 6

Number of requests per run 100

Number of runs 50

and Flow-Mode messages as a response of Packet-In from a
switch should not be turned off before the switch finishes the
corresponding flow operation. On the other hand, a Packet-In
should only be responded exactly once and duplicate Flow-
Mod messages to a switch may cause the same entry being
pushed into the flow table repeatedly.

A switch re-assignment protocol typically consists of several
rounds of control message exchanges between switch and
controller. The new controller first initiates a TCP connection
with the switch, involving a three-way handshake. Then the
Hello and Openflow Handshake messages are issued from
the controller, in order to complete a standard configuration
procedure of the switch. The switch migration protocol in
ElastiCon [14] requires 6 round trip times from the switch
to the controller.

For each switch that need to be re-assigned, the propagation
latency between it and its new master controller is put into a
set Tsw, whose maximum is Tsw. Alg. 1 from line 11 to line
18 shows this process.

C. Flexibility Measure With Time Constraint

When facing dynamic input or requirements, a flexible
system is one that can adapt itself with a goal of better
performance. Our flexibility measure definition thus goes as
follows. Given a system S, its flexibility can be measured
with respect to a certain aspect, e.g. flow steering, function
placement and function operation [4], with a consideration of
time constraint. The number of change requests that can be
supported within a time constraint T is divided by the number
of change requests.

ϕT (S) =
|supported change requests within T|

|change requests|
(8)

Obviously ϕ(S) ∈ [0, 1]. When T → ∞, the denominator
becomes the absolute value of all supported requests without
any time constraint. Our previous work [4] performed a use
case study with regard to this flexibility measure definition
for the function placement in next generation mobile core
network. In order to capture the dynamics of system and
requests, we analyze the needed time T to support a system
change. In our use case study, which focuses on dynamic con-
troller placement, the denominator and nominator in Eq. (8)
are supported placement change requests within T and total
change requests respectively.



In one run, a consecutive order of flow profiles work as
the dynamic changing requests. Considering each new request,
we expect an optimal placement that leads to minimal average
flow setup time. If the new optimal placement is different from
the old one, the adaptation time, i.e. total migration time, will
be calculated and verified with the threshold T , so as to decide
whether it is a “supported” request. Flexibility is the fraction
of successful migrations achieved within T and total number
of migration requests. A detailed description of the process of
one simulation run is shown in Alg. 2.

IV. EVALUATION

In this section, we show the evaluation of our proposed
dynamic controller placement problem considering different
number of controllers and network typologies. We also evalu-
ate the flexibility of the SDN control plane using our proposed
flexibility measure with different migration time constraints.

A. Simulation Setup and Parameters

In order to produce dynamic requests, we generate 100
flow profiles and optimize the controller placement model for
different number of controllers. The 100 flow profiles, i.e.
requests, are shuffled to further represent dynamics and then
fed into the migration model with migration time threshold
T . Since we assume seamless migration, T represents the
duration, in which response time of asynchronous messages
like Packet-In will be degraded. In order to convey the relation
between T and our flexibility measure, we choose T in a way
that it covers the range from almost no requests to nearly
all requests can be supported. Detailed parameter settings are
listed in Table III.

B. Results and Observations

Evaluation results of different topologies are shown in
Fig. 2. Each column of plots correspond to one topology, while
each row of plots show different observations, i.e., flexibility
measure, dynamic controller placement performance, and per-
formance ratio of dynamic compared to static placement.

A general trend can be observed in Fig. 2a and Fig. 2b
that the flexibility increases as the migration time constraint
T increases. This is because a larger T guarantees more
successful migrations. More controllers lead to less inter-
controller distance and less control latency of switch, which
provides higher flexibility. When T is small, the flexibility of
1-ctr is higher than that of all other cases. This is because the
single controller tends to stay in one optimal location even for
different flow profiles, which requires no migration time.

We use the average flow setup time as an indicator for the
placement performance. Note that it is the average of all flows
from all flow profiles. If the migration time threshold T is
not fulfilled, the new optimal placement, if exists, will not be
accepted and thus average flow setup time will be degraded.
In general, the performance improves as the control plane
becomes more flexible. Given a single controller, only large
T generates a marginal performance improvement. In Fig. 2c
and Fig. 2d, when T is small, the average flow setup time

of different number of controllers in most runs is close. 1-
ctr even outperforms 2-ctr in some cases, because under a
stringent T two controllers may remain in a placement for
the following flow profiles that degrades control latencies.
However, as T increases, average flow setup time of 4-ctr
outperforms the other three cases in every run. Comparing
with 1-ctr, 4-ctr leads to more than 35% performance increase
for both topologies, given a loose T .

Finally, we compare the average flow setup time of a
dynamic system, which is able to adapt but with a time
constraint, with that of a static system shown in Fig. 2e
and Fig. 2f. For the static placement, we keep the optimal
controller placement from the first flow profile for all new
flow profiles. It is clear that the more controllers are deployed,
the stronger need for system’s adaptation with respect to
changing input. The improvement in performance from being
dynamic can be as high as 60% for Abilene. Note that the
static placement can outperform the dynamic placement in
case it could not adapt under strict migration time T . This
happens if the initial static placement is by chance better than
the placement solutions that the dynamic problem remain at
without being able to adapt to change requests.

In general, the above observations show that 1-ctr provides
more flexibility when the migration time T is small. It proposes
not only a higher flexibility, but also a satisfying performance
in most cases. However, more controllers outperform the single
controller given a higher T , as they show a more flexible
control plane as well as a improved flow setup performance.

V. CONCLUSION

A Dynamic SDN Control Plane can adapt its performance
to changing traffic conditions via modifying the placement of
its controllers. For analysis of different control plane settings,
adaptive controller placement has to take controller migration
as well as switch to controller re-assignment into account.
In this paper, we model controller placement and migration
time and evaluate the flexibility of a Dynamic SDN Control
Plane with respect to the number of controllers. We refer to a
flexibility metric that takes the time into account that is needed
for successful migrations. Our evaluation results reveal that in
case only a short time is allowed for controller migrations and
switch re-assignments the number of controllers has almost
no influence on the flexibility. For longer times, we confirm
that, as expected, a higher number of controllers leads to more
flexibility. Our results also underline the need for a Dynamic
SDN Control Plane addressing changing traffic conditions and
show that gains of up to 60% in performance can be achieved
compared to the non-dynamic case. For future work, controller
migration will be modeled in a more elaborate manner which
takes controller’s load into account. Other possible flexibility
metrics for the SDN network design will be investigated.
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