
1

DetServ: Network Models for Real-Time QoS
Provisioning in SDN-based Industrial Environments

Jochen W. Guck, Amaury Van Bemten, and Wolfgang Kellerer

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Industrial networks require real-time guarantees for
the flows they carry. That is, flows have hard end-to-end delay
requirements that have to be deterministically guaranteed. While
proprietary extensions of Ethernet have provided solutions, these
often require expensive forwarding devices. The rise of Software-
Defined Networking (SDN) opens the door to the design of
centralized traffic engineering frameworks for providing such
real-time guarantees. As part of such a framework, a network
model is needed for the computation of worst-case delays and for
access control. In this article, we propose two network models
based on network calculus theory for providing deterministic
services (DetServ). While our first model, the multi-hop model
(MHM), assigns a rate and a buffer budget to each queue in the
network, our second model, the threshold-based model (TBM),
simply fixes a maximum delay for each queue. Via a packet-level
simulation, we confirm that the delay bounds guaranteed by both
models are never exceeded and that no packet loss occurs. We
further show that the TBM provides more flexibility with respect
to the characteristics of the flows to be embedded and that it has
the potential of accepting more flows in a given network. Finally,
we show that the runtime cost for this increase in flexibility stays
reasonable for online request processing in industrial scenarios.

Index Terms—access control, real-time, industrial network,
network modeling, network calculus, Quality of Service (QoS),
Software-Defined Networking (SDN)

I. INTRODUCTION

A. Motivation: Industrial Networking Quality of Service

Industrial communications (e.g., machine-to-machine
(M2M) communications or production facilities networks)
have strict Quality of Service (QoS) requirements, mainly
in terms of end-to-end delay [1]. This means that flows
have end-to-end delay bounds that must not be exceeded.
In this article, such flows are referred to as real-time flows.
A wide range of proprietary solutions [2] and extensions of
Ethernet [3] have been developed for providing this strict
QoS. However, these solutions typically require changes
within the network protocol stack or impose restrictions on
the topology that can be deployed, which leads to expensive
forwarding devices.

B. Basis: Centralized Frameworks based on Software-Defined
Networking

Software-Defined Networking (SDN) is a new networking
paradigm that runs control functions on a centralized controller
which is then able to program the Ethernet forwarding ele-
ments in the network using a standardized interface such as
OpenFlow [4]. This central view offered by SDN allows to
perform traffic engineering based on the global knowledge of
the network. Because it only requires simple commodity SDN

J. W. Guck, A. Van Bemten, and W. Kellerer are with the Lehrstuhl
für Kommunikationsnetze, Technical University of Munich, Munich, 80290,
Germany (email: {guck, amaury.van-bemten, wolfgang.kellerer}@tum.de).

forwarding elements that can be changed and updated inde-
pendently [5], SDN is considered as an inexpensive solution.
Therefore, as elaborated in Sec. II, a plethora of work has been
considering the usage of SDN for the provisioning of QoS [6]–
[18]. However, the QoS control provided by these approaches
is either too inaccurate or slow for industrial applications [18].

As initiated by Jasperneite et al. [19], Guck et al. [16]–
[18] propose to overcome the two above-mentioned short-
comings by using network calculus, a mathematical modeling
framework (introduced in Sec. III), to maintain a deterministic
model of the network state in the control plane. First, network
calculus being a deterministic framework, accurate bounds can
be computed on a per-flow basis. Second, keeping a determin-
istic model in the centralized control plane allows to avoid the
QoS control loop to go through the forwarding plane, thereby
allowing to quickly provision new flow requests [17]. As such,
the two drawbacks of existing approaches are overcome.

C. Contribution: DetServ: Network Models for Deterministic
Worst-Case Delay Computation and Access Control

As elaborated in Sec. IV, a centralized industrial QoS
framework requires a network model for the computation of
worst-case delays and for access control. The core contribution
of this article consists of two network models that can be used
as part of such QoS frameworks for providing deterministic
services (DetServ). The first model, the multi-hop model
(MHM – Sec. V-D), assigns a rate and a buffer budget to
each queue in the network. This allows to compute worst-case
delays for any path in the network. This model corresponds to
an updated version of a previously proposed model [16], [18]
which was not considering buffer consumption and, hence, was
potentially leading to packet loss. We show that the MHM
requires an a priori choice regarding the characteristics of
flows that are to be embedded based on the trade-off between
rate, buffer capacity and delay. R1-4The second model, the
threshold-based model (TBM – Sec. V-E), is the main contri-
bution of this article. It simplifies this trade-off by only fixing
a maximum delay for each queue in the network, thereby
avoiding the a priori assignment of rate and buffer budgets.
We show that the TBM automatically adapts the allocation of
rate and buffer capacity based on the type of traffic (bandwidth
or buffer demanding) and we find that this gives it the potential
to outperform the MHM, i.e., to accept more flows and
hence increase network utilization. However, this increase in
flexibility leads to an increase in the request processing time
by a factor corresponding to the number of priority levels in
the network. Further, we propose an extension to both models
that considers the shaping introduced by the limited capacity
of the links in the network (Sec. V-G). While beneficial for
both models, we show that it has a higher impact on the TBM,



2

both in terms of increased runtime and performance. We find
that this runtime increase is reasonable for industrial scenarios.
Indeed, in our simulations, the total request processing time
of the TBM remains lower than 350 ms in 99% of the cases
and never exceeds 620 ms.

The power of the proposed models resides in the fact
that they can be used with off-the-shelf switches supporting
priority scheduling and any SDN protocol providing standard
enqueuing and forwarding primitives, e.g., OpenFlow 1.0 [20].

II. RELATED WORK

A. Legacy Industrial Networking Solutions
Initially, proprietary solutions (e.g., Profibus, Interbus or

CAN) have been specifically developed for real-time industrial
communications [2], [21]. These solutions often come with
a complete proprietary communication stack which requires
specialized and expensive hardware.

Later, Ethernet data transfer rates increased and Ethernet
became ubiquitous in local area networks (LANs) and the
Internet. Therefore, it attracted a lot of attention for indus-
trial deployments. However, because of its non-deterministic
medium access control (MAC) scheme, Ethernet was ini-
tially not considered as a suitable solution. The usage of
full duplex point-to-point links along with Ethernet switches
instead of shared buses and hubs allowed to avoid collisions
and hence the negative impact of the Ethernet MAC proto-
col [3]. Nevertheless, this introduces buffering and possibly
overflows, which were still considered to be a source of non-
determinism [3]. Despite this, using Ethernet in industrial
environments has major benefits, including simple and cheap
deployment, easy connectivity towards office networks, the
Internet or more generally any IP traffic, and usage of off-
the-shelf communication hardware. Hence, many industrial
control systems manufacturers decided to develop proprietary
extensions of Ethernet to achieve determinism [21], [22].
A broad overview of Ethernet-based real-time technologies,
including deterministic Ethernet standards, was provided by
Decotignie [3]. Unfortunately, these solutions require changes
within the network protocol stack or impose topology re-
strictions or both, which leads to more expensive forwarding
devices than with standard Ethernet.

B. SDN-based QoS Networking Frameworks
The emergence of SDN as a new networking paradigm

providing a global view of the network in a centralized control
entity provided a new opportunity for traffic engineering.
Hence, a wide range of work has been considering the usage
of SDN for QoS networking. In this section, we present an
overview of the state-of-the-art in QoS provisioning using
SDN and highlight the contributions of this article with respect
to the existing literature. We classify the existing approaches in
six categories for which we list a few representative examples.

1) High-Level Architectural Proposals: Several proposals
mainly focus on architectural issues such as interface design
and requirements analysis [23]–[26]. These approaches men-
tion that a method for access control and resource reservation
is needed but do not tackle the problem. The models we
propose in this article can be used as part of such frameworks.

2) OpenFlow Extensions: Other approaches consider the
enhancement of the OpenFlow protocol with QoS-related
features [10], [25], [27]. Because of the lack of standard-
ization, this potentially leads to higher cost and/or effort. In
contrast, we propose new models which can be used with any
SDN protocol providing standard enqueuing and forwarding
programming primitives, e.g., OpenFlow 1.0 [20].

3) TDMA Solutions: Systems using time division multiple
access (TDMA) on top of Ethernet have also been proposed
[28], [29]. These solutions can potentially lead to an optimal
utilization of resources. However, because of the need for
synchronization, changes in the protocol stack of endpoints
might be needed, thereby leading to expensive solutions in
terms of cost and effort. In comparison, our models do not
require any change at the endpoints.

4) QoS Frameworks based on Data Rate Allocation:
Another class of proposals, mainly tailored for Internet QoS,
maps QoS requirements to equivalent minimum data rates
[6]–[9]. Such systems typically do not consider the limited
capacity of buffers and hence packet loss and queuing delay.
These approaches provide the scalability and QoS level needed
for wide-area networks but are not sufficient for industrial
scenarios, which require strict buffer management as provided
by our proposed models.

5) Measurement-based Frameworks: A wide range of pro-
posals build the network state by retrieving it from the data
plane [9]–[15]. This step adds a non-negligible delay to the
flow request processing. Besides, these approaches suffer from
possible measurement errors. Thus, they can only provide soft
guarantees. While this is an efficient solution for multimedia
traffic, it does not fulfill the requirements of industrial commu-
nications. On the other hand, the determinism of our models
allow to provide hard, i.e., real-time, guarantees.

6) Model-based Frameworks: The present article falls into
the category of model-based frameworks where a model of the
resources usage is kept in the control plane [6], [8], [17], [30].
The state of the network can then be retrieved from the model
itself, avoiding the request processing loop to go through the
data plane, thereby reducing the request processing time. The
model only has to communicate with the data plane at topology
change events. While stochastic modeling could be used for
soft QoS requirements, a deterministic model is needed for
providing real-time guarantees. Duan [6] and Tomovic et
al. [8] proposed models based on data rate allocation which,
as elaborated in Sec. II-B4, are not suitable for industrial
applications. For their part, Guck et al. [17] mentioned the
need of a model but did not present one and King et al. [30]
detailed a deterministic model but which requires a flow
embedding procedure that can lead to high request processing
time. The new DetServ models we propose in this article are
deterministic models that can be used as part of a model-
based QoS framework for fast request processing in industrial
scenarios. One of the models was already partially described
by Guck et al. [16], [18] but the limited capacity of buffers was
not considered. In this article, we present an updated and more
detailed version of this original model and further introduce a
new second model providing more flexibility with respect to
the characteristics of the flows to be embedded.



3

time

data β = βR,T

∇
=
R α∗ = γr,b+rT

∇ = r α = γr,b

∇ = r

T + b/R

b + rT
b+ rT

b

T

Fig. 1: Example of graphical computation of delay, backlog and output bounds
using network calculus concepts. The delay and backlog bounds respectively
correspond to the horizontal and vertical deviations between the arrival and
service curves. In the particular case of an arrival curve γr,b and a service
curve βR,T , the output bound α∗ is obtained by shifting the initial arrival
curve α up by rT .

It is worth mentioning that model-based approaches, and
hence our proposed models, can be used as part of the
path computation unit of Time-Sensitive Networking (TSN)
approaches, the emerging real-time networking standards.

III. MODELING BACKGROUND: NETWORK CALCULUS

A. Basics: Theory Principles

In order to provide a deterministic model of the network,
we propose to use network calculus. Network calculus [31] is
a system theory for communication networks. From models
of a considered flow and of the service a so-called system
can offer, bounds on (i) the delay the flow will experience
traversing the system, (ii) the backlog the flow will generate
in the system, and (iii) the new model for the flow after it has
passed the system can be computed. A system can range from
a simple queue to a complete network. The theory is divided
in two parts: deterministic network calculus, providing deter-
ministic bounds, and stochastic network calculus, providing
bounds following probabilistic distributions. Since we strive
for deterministic modeling, we will only consider the former.

The modeling of a flow is done using a so-called arrival
curve α(t). α(τ) gives an upper bound on the amount of data
a flow will send during any time interval of length τ . The α
curve in Fig. 1 represents a token bucket flow: it is allowed to
send bursts of up to b bytes but its sustainable rate is limited
to r B/s. This type of arrival curve is denoted by γr,b.

The modeling of a network system is, for its part, done
using a so-called service curve β(t). Its general interpretation
is less trivial than for an arrival curve [32]. The particular
service curve β shown in Fig. 1 can be interpreted as follows.
Data might have to wait up to T seconds before being served
at a rate of at least R B/s. This type of service curve is denoted
by βR,T and is referred to as a rate-latency service curve.

From these two curves, the three above mentioned bounds
can be computed (Fig. 1). The delay and backlog bounds re-
spectively correspond to the horizontal and vertical deviations
between the arrival and service curves [32]. In the general
case, the way to compute α∗, the arrival curve of the flow after
having traversed the system, is not straightforward [32]. In the
particular case where the arrival and service curves are γr,b and
βR,T , we have α∗ = γr,b+rT [32] (Fig. 1). This formula can
be interpreted as follows. Since the flow can possibly wait up
to T seconds before being served at a potentially infinite rate,
its burst size can increase by up to rT bytes – the maximum

amount of data that, by definition of the arrival curve of the
flow, will arrive during these T seconds of potential waiting
time.

B. Selected Results: Priority Scheduling

In the particular case of a non-preemptive strict priority
scheduler with n queues traversed by token bucket flows [33],
the service curve for priority queue i is given by [32]

βi(t) =

Ct− t i−1∑
j=1

rj −
i−1∑
j=1

bj − max
i+1≤j≤n

{lmaxj } − lmaxi

+

,

(1)
where queue i = 1 is the highest priority queue, C is the
capacity of the output link, and rj , bj and lmaxj are the rate,
burst size and maximum packet size of the token bucket flow
traversing queue j. This formula can be interpreted as follows.
The service offered to a given queue i corresponds to the
whole link capacity (first term) from which the capacity used
by higher priority flows is deducted (second and third terms).
Since we assume a non-preemptive priority scheduler, data in a
high priority queue might have to wait for a packet of a lower
priority queue to be transmitted before being served (fourth
term). The fifth term models the store-and-forward behavior
of switches. Indeed, the scheduler must wait for each packet
to be completely received before serving it. Note that for cut-
through switches, only the header length should be used here.
Because the scheduler cannot provide negative service, the
negative part of the resulting curve is reduced to zero ((.)+

notation).
Eqn. 1 corresponds to a βRi,Ti curve where

Ti =

∑i−1
j=1 bj + max

i+1≤j≤n
{lmaxj }+ lmaxi

C −∑i−1
j=1 rj

(2)

and

Ri = C −
i−1∑
j=1

rj . (3)

From Fig. 1, the delay and backlog experienced by the flow
traversing queue i are respectively bounded by

di =

∑i
j=1 bj + max

i+1≤j≤n
{lmaxj }+ lmaxi

C −∑i−1
j=1 rj

(4)

and
xi = bi + riTi, (5)

and the new burst of the flow after the system is given by

b∗i = xi, (6)

while its rate remains unchanged.

IV. CONTEXT: MODEL-BASED QOS FRAMEWORK

We present the model-based framework proposed by Guck
et al. [16]–[18] (Sec. IV-A to IV-E). However, as mentioned
in Sec. II, the models can be used with any model-based
framework. This leads to the definition of an interface that the
DetServ models have to implement (Sec. IV-F). Sec. V then
describes how this interface is implemented for both models.



4

A. Parameter Considered: End-to-End Delay

There are numerous different QoS parameters that can be
considered in industrial environments, e.g., resilience, packet
loss, maximum jitter, average and maximum delay [34]–[36].
However, in most industrial cases, the most critical metric for
applications is the response time [1], [36]. Though response
time is also influenced by the processing time of the end
hosts, we here only deal with the influence of the network and
hence focus on guaranteeing maximum unidirectional end-to-
end delay requirements of flows without packet loss. We refer
to traffic requiring such guarantees as real-time traffic.

Along its path, a packet suffers from different types of
delays: processing, queuing, transmission and propagation
delays. Since the link characteristics are assumed to be known,
the propagation delay for each link is known. The processing
delay can usually be neglected. However, any assumption on
the worst-case behavior of the hardware would allow to bound
it at each node. Upper bounds on the queuing and transmission
delays can, for their part, be computed using the network
calculus results presented in Sec. III. The sum of all these
components along the route of a flow makes up the total
deterministic end-to-end worst-case delay bound for the flow.

B. Queue Link Network Topology

Obviously, the (queuing) delay a packet experiences on its
way to its destination does not only depend on the path the
packet follows but also on how the packet is scheduled at each
output link. Because of its simplicity and ubiquity, we assume
that non-preemptive strict priority scheduling is used.

From this, the route selection process for a flow must
consider both the physical links the flow will traverse and the
queues at which the flow will be buffered at each output link.
As a consequence, Guck et al. [17], [18] introduced a queue
link network topology. From the physical network topology,
each directed physical link (u, v) is replaced by Qu,v queue
links, where u and v are the source and destination nodes
of the link and Qu,v is the number of priority queues at the
scheduler of the link. Each link in the queue link network
topology hence represents a physical link and a given queue
at the ingress of this physical link, i.e., a different QoS level
of transmission over this physical link. Route selection on this
queue link network thus determines both the path that a flow
takes through the physical network as well as the queue in
which the flow will be buffered at each physical link.

Performing route selection on the queue link topology
allows a flow to be assigned different priorities at each node,
thereby increasing flexibility compared to other legacy [1]
and SDN [7], [8], [13] approaches which usually assign fixed
priorities to flows along their complete path. However, route
selection is performed on a graph with a greater amount of
edges, thereby increasing the routing procedure complexity.

C. Consideration of Best-Effort Traffic

One benefit of using Ethernet for guaranteeing real-time
QoS is the interoperability with other IP networks such as
a company’s office network or the Internet itself. The traffic
exchanged with these networks might not have such QoS

requirements as the industrial traffic. The lowest priority queue
of each link can be used for serving this so-called best-effort
traffic. In this manner, the real-time traffic, which is only
flowing through the higher priority queues, is not influenced
by the best-effort traffic which is then only allowed to use
resources which are left unused by the real-time flows.

Since best-effort traffic is allocated a single queue at each
link, it can be routed using traditional SDN controller modules
for routing (e.g., layer-two learning switch).

D. Problem Formulation

From a set of flows and the paths they follow in the queue
link topology, the network calculus results presented in Sec. III
allow to compute end-to-end delay bounds for each flow. Our
initial problem is the following.

Problem 1: For a set of real-time flows F , find a route through
the queue link topology for each flow f ∈ F such that the end-
to-end delay requirement tf of each flow is satisfied.

As a result of the complexity increase due to the high
number of edges in the graph on which route selection is
performed, solving the problem using a mixed integer pro-
gramming (MIP) formulation leads to intractable runtimes.
Already hundreds of seconds or more are needed to solve
the problem for small networks [17], [18]. Therefore, Guck
et al. [17] proposed an online approach to solve the problem.
Flows are taken one by one and embedded one at a time. They
show that this approach can lead to results close to those of
the MIP formulation in terms of number of embeddable flows,
however having a much lower runtime. In such an approach,
since the global goal of Problem 1 is to be able to embed all
the candidate flows, each flow has to be embedded such that
its consumption of resources is minimized, so as to maximize
the probability of acceptance of forthcoming flow requests. As
such, the following problem has to be solved.

Problem 2: For a given flow f , find a route through the queue
link topology such that (i) the end-to-end delay requirement tf
of the flow is satisfied, (ii) the end-to-end guarantees provided
to previously embedded flows are still guaranteed, and (iii) the
probability of future flow requests acceptance is maximized.

Compared to the overall approach, this online approach has
the additional advantage of being able to deal with scenarios
for which the requests are not known a priori but are rather
received at different points in time.

E. Interplay between Routing and Resource Allocation

As a result of this online approach, QoS routing is initiated
by a query of the data plane. This can be done by contacting
the northbound interface (NBI) of the SDN controller or by
means of a PACKET IN OpenFlow message [20]. The query
should at least contain the flow characteristics (e.g., in our
case, source, destination(s), burst, rate and maximum packet
size) and QoS requirements (e.g., in our case, maximum
delay). In case of queries coming from PACKET IN messages,
these parameters can be inferred from the packet header (port
numbers, transport protocol, etc.). Based on this input and on
the current state of the network, routing can then be performed.



5

DetServ
Network
Model

QoS
Routing

flow request flow termination

deregisterPath
hasAccess

getDelay

registerPath

Fig. 2: Operation and interface of the DetServ network models. A flow request
is handled by the QoS routing procedure whose task is to find a suitable route
in the queue link topology for the corresponding flow (i.e., to solve Problem
2). While routing, the GETDELAY and HASACCESS methods of the network
model are used for the computation of worst-case delays and for access
control. The REGISTERPATH and DEREGISTERPATH functions are for their
part used to update the state of the network model to reflect the embedding
or removal of a flow.

When this is done, the corresponding forwarding rules are
pushed to the data plane.

The embedding of a new flow must not violate the delay
guarantees provided to previously embedded flows. Indeed,
as shown by Eqn. 1, embedding a new flow updates the
service offered to other flows, which in turn updates the delay
bounds for these flows (Eqn. 4), which might potentially in
turn cause the violation of the end-to-end delay guarantees
already provided to these flows.

As a result, resources usage has to be taken into account
while routing. The approach proposed by Guck et al. [18] is
to split the problem into two subproblems that can be solved
separately.

• The resource allocation problem, which consists in find-
ing the amount of resources to allocate to all the different
queues at each link of the network, and

• the routing problem, which consists in finding a path
in the queue link topology for which the delay of the
new flow is guaranteed and that only uses resources that
are still available, thereby ensuring that the guarantees of
previously embedded flows are not violated.

F. Interface of a Generic DetServ Network Model

In this article, we consider that the resource allocation
algorithm has allocated resources to the different queues in
the network and that we have a routing algorithm able to look
for a delay-constrained path in the network ((i) in Problem 2)
using only resources that are still available ((ii) in Problem 2)
and in a way that consumes the least amount of resources ((iii)
in Problem 2). For (iii), an option is for the routing algorithm
to use a cost function whose minimization maximizes the
probability of future requests acceptance. A delay-constrained
least-cost (DCLC) routing algorithm is then needed. For (i)
and (ii), the network model has to provide an interface to the
routing algorithm. This interface consists of the following four
so-called model functions.

• GETDELAY: computes the worst-case delay of a given
queue link edge.

• HASACCESS: checks whether or not there are still enough
resources available for a given flow at a given queue link
edge.

• REGISTERPATH: updates the model state to reflect the
embedding of a new flow.

• DEREGISTERPATH: updates the model state to reflect the
removal of a previously embedded flow.

The processing of a flow request is then illustrated in Fig. 2.
Upon receipt of a flow request, the QoS routing algorithm
searches for a solution to Problem 2. While searching, the
algorithm uses the GETDELAY and HASACCESS methods to
obtain the delay of an edge and to check if enough resources
are available at an edge. Once a path has been found, the
REGISTERPATH method is used to update the state of the
model in order to reflect the embedding of the new flow.
Similarly, the DEREGISTERPATH method is used upon the
receipt of a flow termination notification in order to reflect
the removal of the corresponding flow.

How these methods are implemented depends on how and
which resources are allocated and managed at each queue. In
the next section, we present our two DetServ models imple-
menting these four model functions for providing deterministic
guarantees.

V. DETSERV: NETWORK MODELS

A. Notations

The physical and queue link graphs are respectively denoted
by P and G. The indices E and N are used to refer to
the set of edges and nodes of the graphs. For example, PE
corresponds to the set of edges of the physical graph. The
capacity of a physical link (u, v) ∈ PE is denoted by Ru,v .
We assume a non-preemptive strict priority scheduler with
Qu,v queues at the physical link (u, v) ∈ PE . Edges in the
queue link network are denoted by (u, v, p), where (u, v) is
the corresponding physical link and p ∈ {1, . . . , Qu,v} is the
priority of the corresponding queue at the physical link, Qu,v
being the lowest priority.

The set of active (i.e., embedded) flows in the network is
denoted by F . For a given embedded flow f ∈ F or for a
given flow f requesting an embedding,
• rf denotes the rate (as defined in Sec. III-A) of the flow,
• bf [u, v, p] denotes the burst size (as defined in Sec. III-A)

of the flow at queue link (u, v, p) (as we have seen in
Sec. III-B that the burst of a flow changes at each hop),

• tf denotes the end-to-end delay requirement of the flow,
• lmaxf denotes the maximum packet size of the flow, and
• Pf ⊆ GE denotes the set of queue link edges through

which the flow is routed (empty set if the flow is not
embedded yet).

We denote the maximum packet size in the network by
Lmax. If it is not known, the maximum Ethernet frame size
can be used.

For a given queue link edge (u, v, p) ∈ GE ,
• Fu,v,p ⊆ F denotes the set of flows routed through the

queue link edge,
• UR[u, v, p] denotes the sum of the rates of the flows

routed through the queue link edge, i.e.,

UR[u, v, p] ,
∑

f∈Fu,v,p

rf , (7)

• UB [u, v, p] denotes the sum of the bursts of the flows
routed through the queue link edge, i.e.,

UB [u, v, p] ,
∑

f∈Fu,v,p

bf [u, v, p], (8)



6

• lmaxu,v,p denotes the maximum packet size of the aggregate
flow traversing the queue link edge, i.e.,

lmaxu,v,p , max
f∈Fu,v,p

{lmaxf }, (9)

• T[u, v, p] denotes the worst-case delay of the queue link
edge,

• Bmax(u, v, p) denotes the worst-case backlog at the
queue link edge, and

• AB [u, v, p] denotes the buffer capacity of the queue
corresponding to the queue link edge.

Using these notations, Eqn. 2, 3, 4 and 5 can be respectively
rewritten as

Tu,v,p =

∑p−1
j=1 UB [u, v, j] + max

p+1≤j≤Qu,v

{lmaxu,v,j}+ lmaxu,v,p

Ru,v −
∑p−1
j=1 UR[u, v, j]

,

(10)

Ru,v,p = Ru,v −
p−1∑
j=1

UR[u, v, j], (11)

T[u, v, p] =

∑p
j=1 UB [u, v, j] + max

p+1≤j≤Qu,v

{lmaxu,v,j}+ lmaxu,v,p

Ru,v −
∑p−1
j=1 UR[u, v, j]

,

(12)
and

Bmax(u, v, p) = UB [u, v, p] +UR[u, v, p]Tu,v,p, (13)

where βRu,v,p,Tu,v,p
is the rate-latency service curve offered

by a queue link edge (u, v, p) ∈ GE .

B. Flows Requirements: Mathematical Formulation

First, in order to respect the QoS requirements of embedded
flows, we must have,∑

(u,v,p)∈Pf

T[u, v, p] ≤ tf ∀f ∈ F . (14)

Second, in order to avoid any buffer overflow (and hence
any packet loss), we must have

Bmax(u, v, p) ≤ AB [u, v, p] ∀ (u, v, p) ∈ GE . (15)

C. Requirement for the Models: Fixed Per-Queue Delay

Both bounds in Eqn. 12 and 13 depend on UB [u, v, j],
UR[u, v, j] and lmaxu,v,j for some j, i.e., on the burst size, rate
and maximum packet size of other flows embedded on the
same physical link. This means that, if a new flow is embedded
on a link (u, v) ∈ PE , the worst-case delay (Eqn. 12) and
buffer consumption (Eqn. 13) of some of the queues at the
link will be updated, thereby possibly violating requirements
of some previously embedded flows (Eqn. 14 and 15). As
explained in Sec. IV-E, we do not want to check that the
delay requirements of the already embedded flows are still
satisfied (i.e., check Eqn. 14) after a new flow embedding.
That means that the worst-case bounds T[u, v, p] have to be
bounded independently of the status of the network. In such a
way, if Eqn. 14 for a given flow f was satisfied when the flow
was embedded, it will be kept satisfied for the whole runtime
of the network.

The two different models we present in the next sections
differ in the way they fix the T[u, v, p] bounds. While the
multi-hop model upper-bounds the variable parts of Eqn. 12,
the threshold-based model fixes T[u, v, p] itself and lets the
variables vary until the fixed threshold is reached.

D. Multi-Hop Model (MHM)

Our first model, the multi-hop model (MHM), extends the
access control scheme proposed by Schmitt et al. [33] for one
aggregation node in order to consider multi-hop paths and
physical buffer limits. This extension was already partially
described by Guck et al. [18] but the limited capacity of buffers
was not considered. We here present an updated version.

1) Network Calculus Developments: The model finds an
upper bound for T[u, v, p] by replacing the variable compo-
nents in Eqn. 12 with upper bounds for them.

Firstly, the packet size of a flow cannot be greater than the
maximum packet size in the network. That is,

lmaxf ≤ Lmax ∀f ∈ F . (16)

Secondly, the model assumes that the resource allocation
algorithm allocates a data rate AR[u, v, p] to each queue link
edge. The rate of the aggregate flow traversing a queue is then
limited by the access control scheme to the rate allocated to
this queue. That is,

UR[u, v, p] ≤ AR[u, v, p] ∀ (u, v, p) ∈ GE . (17)

From Eqn. 12 and 13, Eqn. 16 and 17 allow to compute the
following upper bounds for the worst-case delay and backlog
at a queue link edge.

T[u, v, p] ≤
∑p
j=1 UB [u, v, j] + 2Lmax

Ru,v −
∑p−1
j=1 AR[u, v, j]

(18)

Bmax(u, v, p) ≤ UB [u, v, p] +

AR[u, v, p]

∑p−1
j=1 UB [u, v, j] + 2Lmax

Ru,v −
∑p−1
j=1 AR[u, v, j]

(19)

Finally, the burst of the aggregate flow traversing a queue
has to be limited such that it does not generate any buffer
overflow. Mathematically, combining Eqn. 15 and 19, we have

UB [u, v, p] +AR[u, v, p]

∑p−1
j=1 UB [u, v, j] + 2Lmax

Ru,v −
∑p−1
j=1 AR[u, v, j]

≤ AB [u, v, p].
(20)

If we refer to the maximum allowed burst at a queue as
MB [u, v, p], i.e.,

UB [u, v, p] ≤MB [u, v, p] ∀(u, v, p) ∈ GE , (21)

these MB [u, v, p] bounds must be computed such that

MB [u, v, p] +AR[u, v, p]

∑p−1
j=1 MB [u, v, j] + 2Lmax

Ru,v −
∑p−1
j=1 AR[u, v, j]

≤ AB [u, v, p].
(22)

Eqn. 22 allows to recursively compute the MB [u, v, p] values
independently of the state of the network. γMB [u,v,p],AR[u,v,p]



7

corresponds to the maximum arrival curve allowed to traverse
a given queue link (u, v, p). We will denote it as Mα[u, v, p].

As a result, Eqn. 18, can be rewritten as

T[u, v, p] ≤
∑p
j=1 MB [u, v, j] + 2Lmax

Ru,v −
∑p−1
j=1 AR[u, v, j]

, TMHM [u, v, p],

(23)

where TMHM [u, v, p] is the upper bound of the worst-case
delay T[u, v, p] of a queue link (u, v, p) ∈ GE used by the
MHM and that is independent of the state of the network.

2) Model Operations: From these developments, the four
model functions of the MHM are defined in Fig. 3.

1: function GETDELAY((u, v, p))
2: return TMHM [u, v, p] (Eqn. 23)
3:
4: function HASACCESS(f , (u, v, p))
5: if UB [u, v, p] + bf [u, v, p] ≤ MB [u, v, p] and

UR[u, v, p] + rf ≤ AR[u, v, p] then
6: return true
7: else
8: return false
9:

10: function REGISTERPATH(f , P )
11: for (u, v, p) ∈ P do
12: UB [u, v, p]← UB [u, v, p] + bf [u, v, p]
13: UR[u, v, p]← UR[u, v, p] + rf

14:
15: function DEREGISTERPATH(f , P )
16: for (u, v, p) ∈ P do
17: UB [u, v, p]← UB [u, v, p]− bf [u, v, p]
18: UR[u, v, p]← UR[u, v, p]− rf
Fig. 3: The four model functions for the multi-hop model. The model uses
UB [u, v, p] and UR[u, v, p] as state variables for each queue (u, v, p) ∈ GE .
The registration and deregistration of a path in the network simply consists
in updating these variables. For its part, the access control simply consists in
checking that the state variables never exceed their respective limits, which
are defined is such a way that, if the variables stay below these limits, (i) the
maximum backlog at a queue will never exceed the buffer size of the queue,
thereby avoiding any buffer overflow, and (ii) the maximum delay for a queue
will never exceed the delay returned by GETDELAY for this queue.

The model uses UB [u, v, p] and UR[u, v, p] as state vari-
ables for each queue (u, v, p) ∈ GE . The registration and
deregistration methods simply consist in updating these vari-
ables. The access control for a new flow simply consists in
checking that Eqn. 17 and 21 are always satisfied. Based on
the rate allocated by the resource allocation algorithm to each
queue in the network, the MB [u, v, p] and TMHM [u, v, p]
bounds can be computed once for each queue link edge
(u, v, p) ∈ GE and the four model functions then require low
computation overhead.

An example of the detailed operation of the model at a given
physical link (u, v) ∈ PE is given as supplementary material.
Basically, once the Mα[u, v, p] curves have been recursively
computed, flows will be accepted at a queue p of the link
as long as the resulting aggregate arrival curve traversing the
queue stays below the Mα[u, v, p] limit curve.

3) Limitations of the Multi-Hop Model: The MHM requires
a data rate to be allocated to each queue. These allocated data
rates then define the maximum rate and burst allowed at each
queue, as well as the maximum delay of each queue. The
access control checks the availability of two resources: burst
and rate. Hence, it can happen that the access to a queue is
blocked because its rate budget is exhausted, while its burst
limit is not reached. In such a situation, it would be beneficial
to artificially reduce the buffer size AB [u, v, p] of the queue.
Indeed, this would, by Eqn. 22, reduce MB [u, v, p] (which is
not a problem since the remaining burst budget will never be
used because of the data rate bottleneck) and lower priority
queues could then either (i) see their maximum delay reduced
(by Eqn. 23) or (ii) see their maximum allowed burst or rate
increased (by Eqn. 22).

From this observation, the resource allocation algorithm
should also assign a buffer capacity to each queue, thereby
being allowed to artificially reduce the capacity of a buffer in
order to trade it against lower delay or more rate or buffer
for other queues. Note that the opposite situation could also
happen. That is, the buffer capacity could be the bottleneck, in
which case it would be beneficial to trade off rate in order to
increase the maximum allowed bursts or reduce the maximum
delays at other queues. In other words, the MHM requires the
resource allocation algorithm to be responsible for adjusting
the trade-off between the resources, that is, to make an a priori
choice between buffer space, data rate and delay. However,
adjusting this trade-off requires to know what is the bottleneck
in the network or at a given link. Will flows be rejected because
there is no buffer capacity available anymore, no data rate
available anymore, or because their delay cannot be satisfied?
Unfortunately, answering this question requires to know the
traffic demand, which is, because of our online approach (see
Sec. IV-D), not the case.

E. Threshold-Based Model (TBM)

The threshold-based model (TBM) solves the shortcoming
of the MHM by choosing between buffer capacity and data rate
as flows are added to the network, thereby allocating the rate
and buffer capacity resources only when needed rather than
pre-allocating them without knowing future flow requests.

1) Model Operations: In the TBM, the worst-case delay of
each queue (Eqn. 12) is simply fixed by defining a threshold
TTBM [u, v, p]. Then, flows are accepted in a queue as long
as the worst-case delay of the queues at the same link do not
exceed their respective thresholds.

This approach has two main benefits. First, as mentioned,
the data rate and buffer space resources are allocated only
when needed, rather than a priori, thereby leading to a better
utilization of the resources. Second, the resource allocation
algorithm is now simplified since it only has to optimize with
respect to one variable (the time) rather than two (buffer space
and data rate). In other words, the TBM replaces the three data
rate, buffer space and delay resources by a single one: delay.

Unfortunately, this comes at the cost of a higher computa-
tional complexity for access control. Indeed, as UR[u, v, p] is
not bounded anymore, it is not anymore possible to compute
a bound on the service curves offered to the different queues



8

(i.e., on the Tu,v,p and Ru,v,p parameters). Adding a flow
in a queue will update the service curve offered to lower
priority queues (by Eqn. 10 and 11). Hence, when adding a
flow in a queue (u, v, p), besides checking that T[u, v, p] ≤
TTBM [u, v, p] for this queue, the access control mechanism
has to check that the thresholds of lower priority queues are
also not exceeded. That is, the access control mechanism has
to check that

T[u, v, j] ≤ TTBM [u, v, j] ∀ j : p ≤ j ≤ Qu,v. (24)

Besides, the access control scheme has to make sure that no
buffer overflow can be caused by the embedding of the new
flow, i.e.,

Bmax(u, v, j) ≤ AB [u, v, j] ∀ j : p ≤ j ≤ Qu,v. (25)

Note that Eqn. 12 and 13 require the knowledge of the
maximum packet size in lower priority queues. This means
that, when embedding a flow in a queue, higher priority
queues also have to be checked since the maximum packet
size might have changed. However, because best-effort traffic
flows through the lowest priority queue, we cannot keep track
of this value and we hence replace it by Lmax. From this, we
have

T[u, v, p] ≤
∑p
j=1 UB [u, v, j] + Lmax + lmaxu,v,p

Ru,v −
∑p−1
j=1 UR[u, v, j]

, (26)

and

Bmax(u, v, p) ≤ UB [u, v, p] +

UR[u, v, p]

∑p−1
j=1 UB [u, v, j] + Lmax + lmaxu,v,p

Ru,v −
∑p−1
j=1 UR[u, v, j]

, (27)

which only depend on the state of higher priority queues. As
a result, it is sufficient to only check lower priority queues
when embedding a new flow.

The four model functions of the TBM are given in Fig. 4.
As for the MHM, the registration and deregistration methods
simply consist in updating the state variables. However, we
here have one additional state variable: the maximum packet
size at each queue. The delay of a queue link edge is now the
one fixed by the resource allocation algorithm and the access
control scheme simply verifies that Eqn. 24 and 25 are still
verified for the subject queue and the lower priority queues if
the flow is embedded.

An example of the detailed operation of the model at a given
physical link is given as supplementary material.

2) Shortcomings of the TBM: The TBM, though having ma-
jor advantages, presents two drawbacks. First, the complexity
of the HASACCESS model function is increased by a factor
of up to Qu,v . Because the HASACCESS function is called
each time the routing algorithm visits an edge, this might
have a considerable influence on the overall request processing
time. However, we will show in Sec. VI-B4 that the increase
in runtime is acceptable for industrial scenarios. Second, the
model presents an inherent blocking problem. Indeed, if a low
priority queue is close to its delay threshold, it will block
further embeddings in higher priority queues, even if these
are still far from their own delay threshold. Consequently,

1: function GETDELAY((u, v, p))
2: return TTBM [u, v, p]

3:
4: function HASACCESS(f , (u, v, p))
5: for i ∈ {p, . . . , Qu,v} do
6: T[u, v, i]← Eqn. 26 including new flow
7: Bmax(u, v, i)← Eqn. 27 including new flow
8: if T[u, v, i] > TTBM [u, v, i] or Bmax(u, v, i) >

AB [u, v, i] then
9: return false

10: return true
11:
12: function REGISTERPATH(f , P )
13: for (u, v, p) ∈ P do
14: UB [u, v, p]← UB [u, v, p] + bf [u, v, p]
15: UR[u, v, p]← UR[u, v, p] + rf
16: Update lmaxu,v,p

17:
18: function DEREGISTERPATH(f , P )
19: for (u, v, p) ∈ P do
20: UB [u, v, p]← UB [u, v, p]− bf [u, v, p]
21: UR[u, v, p]← UR[u, v, p]− rf
22: Update lmaxu,v,p

Fig. 4: The four model functions for the threshold-based model. The threshold
for the delay of a queue is chosen by the resource allocation algorithm. Access
to a queue link edge (u, v, p) ∈ GE is then checked by checking that the new
worst-case bound does not exceed its threshold value. Besides, as the state
of a queue influences the state of lower priority queues, the access control
mechanism also has to check that the worst-case bounds of lower priority
queues do not exceed their respective thresholds. Finally, the buffer capacity
also has to be checked for the different queues.

the routing algorithm has now to operate cautiously when
embedding flows in order to avoid such a blocking situation
which would inevitably cause resource waste.

F. Computation of the Burst Increase

1) Per-Flow Worst-Case Increase: Though we mentioned
that the burst of a flow changes at each hop, we did not explain
how these changes can be computed on a per-flow basis and
how this impacts delay computations. From Sec. III, we know
that an aggregate flow with arrival curve γUR[u,v,p],UB [u,v,p]

traversing a queue offering a service curve βRu,v,p,Tu,v,p
will

see its burst UB [u, v, p] increased by UR[u, v, p]Tu,v,p, i.e.,

U∗B [u, v, p] = UB [u, v, p] +UR[u, v, p]Tu,v,p. (28)

U∗B [u, v, p] is the new burst of the entire aggregate. Never-
theless, the flows composing this aggregate might take differ-
ent routes at the next hop and the individual burst increases
of the individual flows composing the aggregate must be
computed. From Eqn. 7 and 8, Eqn. 28 can be rewritten as

U∗B [u, v, p] =
∑

f∈Fu,v,p

(bf [u, v, p] + rfTu,v,p) , (29)

which highlights the contribution of each individual flow to
the burst increase. Therefore, the burst of a flow f ∈ Fu,v,p
when entering a queue (s, t, q) ∈ GE after having traversed
queue (u, v, p) ∈ GE is given by

bf [s, t, q] = bf [u, v, p] + rfTu,v,p, (30)



9

time

data

∇
=
Ru

,v
,p

∇
=
R

∇ = UR[u
, v, p

]

UB [u, v, p]

lmax
u,v,p

Tu,v,p

Fig. 5: Shaped arrival curve of an aggregate flow traversing a queue
(u, v, p) ∈ GE coming from an input link with rate R. The knowledge of
the physical properties of the input link of the flow allows to limit the burst
and rate of the aggregate respectively to the maximum packet size lmax

u,v,p of
the flow and to the maximum rate R of the link. Graphically, we can easily
see that such a shaping reduces the values of the backlog and delay bounds.

which depends, through Tu,v,p, on other flows traversing the
same physical link. This dependency of the burst increase on
other embedded flows is problematic. Indeed, this means that,
when a flow is embedded in a queue, the burst increases of
other flows traversing the same link might change, possibly vi-
olating already performed access control checks. As explained
in Sec. IV-E, such a situation must be avoided and the burst
increase of a flow must therefore be, as the worst-case delay
of a queue, independent of the network state. From Eqn. 10
and 12, it is straightforward that

Tu,v,p ≤ T[u, v, p] ∀(u, v, p) ∈ GE . (31)

Therefore, the burst increase of a flow f is such that

bf [s, t, q] ≤ bf [u, v, p] + rfT[u, v, p], (32)

and the MHM and TBM can compute bf [s, t, q]
using bf [u, v, p] + rfT

MHM [u, v, p] and bf [u, v, p] +
rfT

TBM [u, v, p], respectively, which are independent of the
network state.

2) Exception: We note that, if the cycle time (or inter-
arrival time of packets) of a flow is greater than its delay
bound, then the burst increase can be neglected. Indeed, in
such a case, a packet is ensured to reach its destination before
the following packet is sent. As a result, packets of the same
flow will not queue up at any queue and the burst of the flow
will never increase.

G. Input Link Shaping (ILS)

1) Towards Lower Bounds: So far, we considered that
the arrival curve of the aggregate flow entering a queue
(u, v, p) ∈ GE is γUR[u,v,p],UB [u,v,p], that is, that the burst
of the aggregate flow entering a queue is given by the sum
of all the bursts of all the flows composing the aggregate
(see Eqn. 8). Nevertheless, the individual flows come from
physical links of finite capacity. Hence, the amount of traffic
entering a given queue is further limited by the capacity of the
links it is coming from. Considering this new bound on the
traffic entering a queue, we can lower the corresponding arrival
curves, yielding lower bound values and thereby potentially
accepting more flows in the network.

The idea, to which we refer to as input link shaping (ILS),
is illustrated in Fig. 5 for a given queue (u, v, p) traversed by
a set of flows coming from a common input link of capacity
R. From the knowledge of the physical properties of the input
link, besides its traditional arrival curve, the aggregate flow

is additionally constrained by a token bucket arrival curve
with rate R and burst lmaxu,v,p. A better arrival curve for a flow
constrained by two different token bucket arrival curves being
the minimum of these curves [32], the new arrival curve of
the aggregate flow is of the form shown in Fig. 5. We can see
that the backlog and delay bounds will always be smaller than
if shaping was not taken into account, highlighting the benefit
of ILS.

2) ILS Does Not Contradict Network Calculus: In Sec. III,
we have presented network calculus results for computing the
output arrival curve of a flow after it has traversed a network
node characterized by a given service curve. We now propose
to cut off a part of this arrival curve by shaping it with the
input link rate. Though this is intuitive, it might seem to
contradict the network calculus results which say that a big
burst could happen. The justification is the following. The
results of network calculus theory are solely based on the
arrival and service curve concepts. While the service curve
gives a lower bound on the service a network node will offer
to a flow, it does not specify anything regarding the maximum
service the node could offer, hence potentially allowing infinite
service, i.e., infinite rate. Taking this into account, network
calculus results consider that an infinite service could instantly
output the current backlog as a single burst, which is why, in
Eqn. 6, the output burst corresponds to the worst-case backlog.
As a matter of fact, we know more than what the service curve
concept provides to network calculus theory. Indeed, we know
that the service provided by the network node can never be
higher than the link rate. The shaping we introduce is hence
augmenting network calculus results, rather than contradicting
them.

3) Adapting the Multi-Hop Model: In the MHM, the worst-
case delay of a queue is made independent of the network
state by statically defining the maximum arrival curves allowed
at each queue. Therefore, to keep the worst-case delay of a
queue static, ILS must be introduced in a way that is also
independent of the network state. For a given queue-link edge
(u, v, p) ∈ GE , the worst-case burst that could ever enter the
queue is nLmax where n is the number of links entering node
u. The worst-case rate is for its part given by the sum of the
rates of the individual incoming links. Therefore, the arrival
curve Mα[u, v, p] considered so far can be replaced by

MILS
α [u, v, p] = min

 ∑
x:(x,u)∈PE

(
γRx,u,Lmax

)
,Mα[u, v, p]

 .

(33)
Two options are then possible.

First, one can compute the maximum allowed bursts
MB [u, v, p] without considering ILS and then shaping the
obtained Mα[u, v, p] curves according to Eqn. 33 in order to
reduce the worst-case delay at each queue.

Second, one can compute the maximum allowed bursts
MB [u, v, p] using the already shaped curve. That is,
MB [u, v, p] is obtained as the maximum value such that the
worst-case burst generated by MILS

α [u, v, p] does not exceed
the allocated buffer capacity AB [u, v, p]. Because the shaped
arrival curve is lower or equal to the original arrival curve, the
obtained maximum allowed burst MB [u, v, p] will always be



10

time

data

∇
=
R
u
,v
,p

∇ = IR[m
,u, v, p

] + IR[o,
u, v, p

]

∇ = Rm,u +Ro,u

∇ = Rm,u + IR[o, u, v, p]

IB [m,u, v, p] + IB [o, u, v, p]

Ilmax [m,u, v, p] + Ilmax [o, u, v, p]

Tu,v,p

Fig. 6: Example of shaped arrival curve for the TBM. The aggregate flow
traversing queue (u, v, p) comes from two input links (m,u) and (o, u).
Each input link has shaped the traffic it carries as shown in Fig. 5 and the
resulting aggregate, corresponding to the sum of the two shaped arrival curves,
is composed of three segments with decreasing slopes. The backlog and delay
bounds can then be reached at any angular point of both curves. The bounds
will always be lower than if shaping was not taken into account.

greater than without considering ILS. The calculation of the
worst-case delay is then also done using the shaped arrival
curve MILS

α [u, v, p].
These two options once more highlight the trade-off be-

tween the different resources in the MHM. While the first
option reduces delay, the second increases the maximum
allowed bursts.

Whichever option is considered, once these computations
are done, the four model functions described in Fig. 3 are left
unchanged.

4) Adapting the Threshold-Based Model: While present,
the benefits of ILS for the MHM are limited. Indeed, since
we only keep track of worst-case arrival curves, ILS also has
to be done worst-case, i.e., considering the worst-case packet
size and rates coming from each input link.

For the TBM, the arrival curves are computed live. There-
fore, the maximum packet size and rate for each incoming link
can also be computed on the fly. This can be done by introduc-
ing three new state variables IR[m,u, v, p], IB [m,u, v, p] and
Ilmax [m,u, v, p] keeping track respectively of the rate, burst
and maximum packet size of the aggregate flow coming from
the physical edge (m,u) and traversing the queue-link edge
(u, v, p). Instead of considering the arrival curve consisting
of the sum of all the arrival curves of the flows entering the
queue, the contribution of each input link can now be shaped
individually. That is, the arrival curve considered at a queue
(u, v, p) is now∑
x:(x,u)∈PE

(
min

{
γRx,u,Ilmax [x,u,v,p], γIR[x,u,v,p],IB [x,u,v,p]

})
,

(34)
i.e., a sum of shaped arrival curves.

An example for two input links is shown in Fig. 6. One can
see that the summed up arrival curve can have up to n knee
points, where n is the number of physical input links.

For the same reasons as for the MHM, but with increased
impact since shaping is done with the current real values, the
computed worst-case delay and backlog values will be lower.
As a consequence, the limits TTBM [u, v, p] and AB [u, v, p]
will be reached later, thereby potentially allowing more flows
to be accepted.

Obviously, the GETDELAY method in Fig. 3 does not
change. The REGISTERPATH and DEREGISTERPATH methods

have to be updated to keep track of the new state variables.
For its part, the HASACCESS method only has to be changed
at lines 6-7. Since the arrival curves are not token buckets
anymore, the formulas for computing the worst-case delay
T[u, v, p] and backlog Bmax(u, v, p) are not valid anymore
and these values have now to be computed geometrically (see
Parag. V-G7).

5) Burst Increase with Shaped Arrival Curves: Unfortu-
nately, when the arrival curve is shaped, the computation
of the burst increase becomes mathematically much more
complex [32]. In particular, its decomposition into the con-
tributions by the different flows as in Sec. V-F becomes then
much less trivial. For simplicity, we will therefore consider
that the burst increase is still computed using Eqn. 32.

6) Impact on the Performance of the MHM: As mentioned,
because the MHM performs shaping based on worst-case
values, we expect the impact on the amount of flows that can
be embedded to be quite low. Nevertheless, as everything is
computed during initialization, the request processing time of
the MHM should not be affected by ILS. Hence, for the MHM,
ILS has only benefits, though limited.

7) Impact on the Performance of the TBM: On the contrary,
the TBM performs shaping based on the current traffic. Hence,
the impact of ILS on the amount of flows that can be accepted
in the network is expected to be greater than for the MHM.
While ILS does not slow down the MHM, the runtime of the
TBM should be much more affected. Indeed, the increased
amount of knee points in the arrival curves does not allow
anymore the computation of the worst-case delay and burst
with formulas. From the convexity of the region between
the curves (see Fig. 6), the delay (resp. backlog) bound can
be computed by comparing the horizontal (resp. vertical)
deviation at each knee point of the two curves. This inevitably
slows down the HASACCESS method. Hence, ILS is expected
to have a major impact on the TBM, both in terms of increased
performance and increased runtime.

VI. EVALUATION

The evaluation of the proposed models is separated in two
parts. First, in Sec. VI-A, we run a packet-level simulation
of one physical link managed by the different models and
observe the amount of flows that can be accepted at the
link and the delay experienced by the individual packets.
The goal is to confirm that the models respect the delay
guarantees provided to the different flows and to observe
the higher flexibility of the TBM. Although the simulation
is performed only at a single link, this also confirms that
the models are valid for end-to-end delays. Indeed, if the
worst-case delay of each queue is guaranteed, the end-to-end
delay of each flow, corresponding to the sum of the individual
worst-case delays of each queue visited by the flow, is also
guaranteed. Second, in Sec. VI-B, we run a network-wide
simulation by generating series of flow requests for different
network settings and observe the request processing time for
the different models, along with the amount of flows they can
accept. The goal is to quantify the additional runtime required
by the TBM and hence to determine whether or not it is



11

viable for online request processing in industrial environments.
Besides, we want to observe the impact of ILS and confirm
our expectations formulated in Sec. V-G6 and V-G7. Note that,
for the MHM with ILS, we used the first option described in
Sec. V-G3.

A. Packet-level Simulation: Confirming Correctness

1) Setup: Saturated Link Simulation: We simulate the ac-
cess control of a single 1 Gbps link with four priority queues
and varying amount of input links (1, 2, 3, 5 and 10). For each
model and amount of input links, we generate flow registration
and termination requests during 100 seconds. We generate
requests at a rate high enough for saturating the link (250
requests per second) and hence for experiencing rejections of
requests.

2) Resource Allocation Algorithms: As we have seen in
Sec. V-D and V-E, the two models require different types
of resource allocation algorithms. We define two algorithms
which lead to the same delays for the different queues. These
delay values are chosen so that they lead to a nice distribution
of QoS levels among the queues in both models. The algorithm
for the TBM assigns the delays 0.487 ms (high priority),
1.437 ms, 3.035 ms, and 4.709 ms (low priority) to the
different queues. The algorithm for the MHM assigns the
rates 51.2 MB/s (high priority), 24.622 MB/s, 8.349 MB/s,
and 3.953 MB/s (low priority) to these same queues and the
buffer capacity of 60 KB to all of them.

3) First Configuration: The TBM Performs Better:
a) Request Types: In a first configuration, each request

is defined by a data rate (between 50 KB/s and 150 KB/s), a
burst size (between 70 B and 150 B), a maximum packet size
(between 64 B and the burst of the flow) and a delay constraint
(between 10 ms and 100 ms) which are uniformly randomly
distributed in their respective ranges. These are values in line
with traffic traces observed in an operational industrial wind
park network in the context of the VirtuWind H2020 European
Project [37]. We consider Lmax as the maximum Ethernet
frame size including preamble, VLAN tag and inter-frame
gap, i.e., Lmax = 1542 B. Because the delay constraint is
always greater than the delay of any queue, the delay will not
influence the rejection or acceptance of requests. The reason
for this is that, since we are fully saturating the considered
link, having requests rejected because of their delay constraint
will not affect the amount of flows that can be embedded.
The generated flow requests are evenly distributed among
the different combinations of input link and queue of the
considered link. Flow requests are characterized by a duration
which is randomly generated from an exponential distribution
with an average duration of 100 seconds, representing the
long-duration characteristic of industrial flows.

b) Results: For each run, the amount of flows embedded
at the link was sampled every second. The left diagram of
Fig. 7 shows, for each amount of input link, the average and
the standard deviation of these sampled values. We observe
that the TBM considerably increases the amount of flows in
the system – by around 50%. This shows the flexibility of
the TBM. While it automatically adapted to the rate and burst
characteristics of the requests, the MHM did not because of

2 4 6 8 10

600

700

800

900

number of input links

n
u

m
b

er
of

fl
ow

s

2 4 6 8 10
220

230

240

250

260

270

number of input links

MHM MHM + ILS TBM TBM + ILS

Fig. 7: On the left diagram, results of the packet-level simulation when flows
are evenly distributed among the combinations of input link and queue. The
TBM performs 50% better than the MHM and the ILS has no influence on
the performance of both models. On the right diagram, one priority queue
received more traffic from a given input link and the traffic was more bursty.
The TBM still performs better than the MHM but the ILS now increases the
performance of the TBM when the amount of input link is low. No packet
loss nor deadline violation was observed in both scenarios.

the a priori choice on the rate, buffer and delay trade-off. We
observe that ILS does not provide any benefit for both models.
For the MHM, since we use the first option mentioned in
Sec. V-G3, ILS only reduces the delay of the queues. Since the
delay does not influence the access control in our simulation,
ILS has no impact on the MHM. For the TBM, ILS reduces
both the delay and the maximum burst computation. However,
as shown in Fig. 6, the maximum burst computation will be
reduced only if one knee point of the arrival curve is after
the knee point of the service curve. In our particular setup of
requests distributed evenly among the combinations of input
link and queue, the knee points of the arrival curves are always
before the knee point of the service curve, thereby explaining
why ILS has no impact in this configuration. During all the
simulations, out of 909,267,506 transmitted packets, no packet
loss was observed and the highest packet delay to deadline
ratio was 1.07%.

4) Second Configuration: Impact of ILS:
a) Request Types: In a second configuration, we change

the requests generation. The data rate and burst size are now
varying between 7.086 KB/s and 8.086 KB/s and 879 B
and 889 B, respectively. That is, the traffic is more bursty.
Additionally, the requests are not anymore distributed evenly
among the combinations of input link and queue but we
generate 10 times more requests from the first input link for
the highest priority queue than for all other combinations of
input link and queue. In such a way, because more flows will
be embedded in the high priority queue, the knee point of
the corresponding shaped arrival curve will be shifted towards
the right, thereby potentially reducing the maximum burst
computation. Besides, since ILS shapes bursts, having more
bursty traffic should increase the effect of ILS.

b) Results: The right diagram of Fig. 7 shows the result
of the simulation for the second configuration. We can see that
the TBM still behaves better than the MHM, confirming its
higher flexibility: it adapted to the new characteristics of the
requests. For the same reason as for the previous simulation,
ILS has no impact on the MHM. On the other hand, ILS
improves the performance of the TBM when the amount of
input links is low. This is due to the fact that, when the
amount of input link increases, the ratio of requests from



12

the first input link for the high priority queue to the total
of requests decreases. Therefore, as increasing the amount
of input links leads to a more even distribution of requests
among the combinations of input link and queue (as in the
first simulation), the performance of ILS decreases. This
shows that ILS behaves better when the flows at one link are
not distributed evenly among the input links. During all the
simulations, out of 36,747,129 transmitted packets, no packet
loss was observed and the highest packet delay to deadline
ratio was 0.47%.

B. Monte Carlo Simulation

The first part of our evaluation confirmed that our models
are correct and showed that the TBM has the potential to
outperform the MHM. Further, it has shown that the benefit
of ILS grows when the traffic entering a link is not distributed
evenly among the incoming links. However, we only observed
the impact of ILS on the allowed bursts. In order to observe
the impact of ILS on both the allowed bursts and the delay
computation, a global network simulation is required. As part
of a global QoS framework, the performance of a network
model depends on the associated components (resource allo-
cation and routing algorithms) and on the scenario (topology
and type of flow requests). As such, with the aim of observing
the influence of the network model only, we run a Monte
Carlo simulation varying the different components (defined
in Sec. VI-B1) and scenarios (defined in Sec. VI-B2) around
the two models. In other words, we randomly vary the context
in which the models are used in order to isolate their impact
on the overall performance of the QoS framework.

1) Other Components: Resource Allocation and Routing
Algorithms:

a) Resource Allocation Algorithms: For simplicity, re-
sources are allocated among the queues identically for each
link and following the resource allocation algorithms used in
the first evaluation (Sec. VI-A).

b) Routing Algorithms: As proposed in Sec. IV-E, we
use a DCLC algorithm. Among the plethora of such algorithms
available in the literature, we consider constrained Bellman-
Ford (CBF) [38] for its optimality, LARAC [39] for its good
average performance [40] and Dijkstra computing the least-
delay path (LDP) for its simplicity. We use different cost
functions based on the priority of a queue link, the amount of
average flows that can still be embedded in it or a combination
of those.

2) Scenario:
a) Topologies: We define two network topologies based

on lines and rings, which are typical structures for industrial
networks. The first topology consists of a ring of size m+1 to
which one programmable logic controller (PLC) and m lines
composed of n remotes I/Os are attached. The second topology
extends the first one by connecting another ring of size m+1 to
the former loose ends of the remotes I/Os lines. The (m+1)th
switch not connected to the lines is then connected to the PLC.
Communication is only considered from the remote I/Os to the
PLC. Both topologies can be scaled along the two n and m
dimensions (4 ≤ n ≤ 10, 4 ≤ m ≤ 10).

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

Runtime [x in s]

E
C

D
F

(x
)

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Traffic Intensity [x]

MHM MHM + ILS TBM TBM + ILS

Fig. 8: Results of the evaluation. The left plot shows the empirical cumulative
distribution function (ECDF) of the average runtime of one complete request
life cycle (routing, embedding, deregistration) for the different models and
their corresponding variations with input link shaping (ILS). The right plot
shows the ECDF of the traffic intensity that the different models were able
to reach. As expected, ILS has a greater impact on the TBM, both in terms
of runtime and traffic intensity. We can observe that the TBM with ILS has
the potential of reaching a high traffic intensity, but at the cost of a higher
runtime.

b) Flow Requests: In order to generate a request for a
given topology, a random remote I/O is selected to communi-
cate with the PLC. Requests are defined as in Par. VI-A3a.

3) Evaluation Metrics: For a given iteration of the Monte
Carlo simulation, i.e., for a given network model (and asso-
ciated resource allocation algorithm), cost function, routing
algorithm and topology, a binary search is started in order to
find, for this scenario, the greatest traffic intensity for which
every request can be embedded. Traffic intensity is defined as
the arrival rate of flows multiplied by their average duration
(100 s, see Par. VI-A3a), which also corresponds to the amount
of active flows in the network (when the system converges).
The traffic intensity associated to an iteration then corresponds
to the maximum traffic intensity that could be reached. The
runtime associated to an iteration corresponds to the average
runtime of a request routing plus the average runtime of a path
registration plus the average runtime of a path deregistration,
i.e., to the average runtime of a request processing life cycle,
that was observed during the complete binary search. The
runtime was measured on a machine equipped with an Intel
Xeon E5 2690v2 @ 3.00GHz processor.

4) Results: Fig. 8 shows the results of the Monte Carlo sim-
ulation. The left and right plot show the empirical cumulative
distribution functions (ECDF) of, respectively, the runtime and
the traffic intensity for the different models.

a) Runtime: As expected, the runtime of the MHM is
not much affected by the introduction of ILS. Indeed, as we
have seen in Sec. V-G6, the access control complexity of the
MHM is the same with or without ILS. The small runtime
difference in Fig. 8 is due to routing. As the delay values are
changed by ILS, the routing algorithm will behave differently
while searching for a path, hence possibly leading to slightly
different running times.

We also observe that the TBM exhibits a higher runtime
than the MHM. As mentioned in Sec. V-E2, this was expected
and is due to the increased complexity of the access control
method. More precisely, the TBM leads to an increase in the
runtime by a factor of 2 to 4. This is consistent with the fact
that the access control of the MHM checks only one queue,
while the TBM checks up to Qu,v queues, which is 4 in our



13

evaluation.
Contrary to the MHM, the runtime of the TBM is highly

affected by the introduction of ILS (slowed down by a factor of
around 2). As elaborated in Sec. V-G7, this was expected and
is due to the increased complexity for computing horizontal
and vertical deviations when introducing ILS to the TBM.
However, the runtime stays lower than 350 ms in 99% of
the cases and never exceeds 620 ms, which corresponds
to a single-threaded worst-case performance of 1.6 requests
per second, which is a reasonable performance for industrial
applications.

Furthermore, because the runtime shift between the models
stays roughly equal, Fig. 8 clearly shows that the network
model is the main driver for the runtime of the system.

b) Traffic Intensity: We observe that the introduction of
ILS brings a performance increase to both models, however
more significant for the TBM. As elaborated in Sec. V-G4,
this is due to the fact that the MHM performs ILS with worst-
case values while the TBM performs ILS with the current
flow values, which are inevitably lower. Because ILS does not
affect the runtime of the MHM and sometimes improves its
performance, this confirms that ILS is always beneficial for
the MHM.

While Fig. 8 shows that the runtime is mostly influenced
by the network model, we observe that this is not true for the
traffic intensity. Indeed, the traffic intensity ECDFs present
crossover points, which means that other components used in
the Monte Carlo simulation have a significant impact on the
performance of the models. This contrasts with the simulation
in Sec. VI-A and shows that the MHM is able to outperform
the TBM in some circumstances and hence that further study
is required in order to identify which set of components
(including the network model) is the most suitable for a
specific scenario.

VII. CONCLUSIONS

In this article, we provided a detailed description of two
network models (DetServ) for the provisioning of real-time
QoS (e.g., for machine-to-machine (M2M) communications
or production facilities) with SDN. The first model, the multi-
hop model (MHM), assigns a rate and a buffer budget to
each queue in the network. This model corresponds to an
updated version of the model previously presented in [16],
[18], which was not considering the buffer consumption of
flows, i.e., not preventing packet loss. The second model, the
main contribution of this article, simply fixes a maximum
delay for each queue. We refer to this new network model
as the threshold-based model (TBM). We have shown that, by
avoiding an a priori choice on the trade-off between data rate
and buffer capacity, the TBM is more flexible with respect
to the characteristics of flows that are to be embedded in the
network but that this comes at the price of an increase in
the request processing time by a factor corresponding to the
amount of priority levels in the network. We also gave an
insight on how this increase in flexibility has the potential of
reaching higher network utilization.

One major benefit of the proposed models is that they
can be used with simple commodity switches supporting

priority scheduling and any SDN protocol providing standard
enqueuing and forwarding primitives, e.g., OpenFlow 1.0 [20].

We further introduced input link shaping (ILS), an extension
to the two proposed models which takes into account the
shaping of the traffic by the limited capacity of the links in the
network. Our evaluations have shown that, while beneficial for
both models, this extension has a much higher impact on the
performance and runtime of the TBM. Our evaluations have
additionally shown that the runtime cost of the higher flexi-
bility and performance of the TBM with ILS stays reasonable
for industrial scenarios. Indeed, the total request processing
time never exceeds 620 ms.

In order to be part of a QoS framework, these models have
to be combined with a routing procedure. This procedure was
however not considered in this article and is a future research
direction.

ACKNOWLEDGMENTS

This work was supported by the European Unions Hori-
zon 2020 Research and Innovation Programme under Grant
671648 (VirtuWind) and ERC Grant 647158 (FlexNets). We
are grateful to Onur Ayan, Nemanja Deric, Murat Gürsu,
Mu He, Alberto Martı́nez Alba, Petra Stojsavljevic, Samuele
Zoppi, and the reviewers for their useful feedback and com-
ments.

REFERENCES

[1] “Communication delivery time performance requirements for electric
power substation automation,” IEEE Std 1646-2004, pp. 1–24, 2005.

[2] T. Sauter, “The three generations of field-level networks – evolution
and compatibility issues,” IEEE Transactions on Industrial Electronics,
vol. 57, no. 11, pp. 3585–3595, 2010.

[3] J.-D. Decotignie, “Ethernet-based real-time and industrial communica-
tions,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1102–1117, 2005.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” in SIGCOMM Computer Communication Review,
vol. 38, no. 2. ACM, 2008, pp. 69–74.

[5] D. Henneke, L. Wisniewski, and J. Jasperneite, “Analysis of realizing
a future industrial network by means of software-defined networking
(SDN),” in IEEE World Conference on Factory Communication Systems
(WFCS). IEEE, 2016, pp. 1–4.

[6] Q. Duan, “Network-as-a-service in software-defined networks for end-
to-end QoS provisioning,” in 23rd Wireless and Optical Communication
Conference (WOCC). IEEE, 2014, pp. 1–5.

[7] S. Sharma, D. Staessens, D. Colle, D. Palma, J. Goncalves,
R. Figueiredo, D. Morris, M. Pickavet, and P. Demeester, “Implementing
quality of service for the software defined networking enabled future
Internet,” in Third European Workshop on Software Defined Networks.
IEEE, 2014, pp. 49–54.

[8] S. Tomovic, N. Prasad, and I. Radusinovic, “SDN control frame-
work for QoS provisioning,” in 22nd Telecommunications Forum Telfor
(TELFOR). IEEE, 2014, pp. 111–114.

[9] M. Shen, L. Zhu, M. Wei, Q. Zhang, M. Wang, and F. Li, “Joint
optimization of flow latency in routing and scheduling for software
defined networks,” in 25th International Conference on Computer Com-
munication and Networks (ICCCN). IEEE, 2016, pp. 1–8.

[10] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and
P. Yalagandula, “Automated and scalable QoS control for network
convergence.” in Internet Network Management Workshop/ Workshop
on Research on Enterprise Networking (INM/WREN), vol. 10, no. 1,
pp. 1–1, 2010.

[11] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An openflow controller design for multimedia delivery with end-to-end
quality of service over software-defined networks,” in Asia-Pacific Signal
& Information Processing Association Annual Summit and Conference
(APSIPA ASC). IEEE, 2012, pp. 1–8.



14

[12] M. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba et al., “Policycop:
An autonomic QoS policy enforcement framework for software defined
networks,” in SDN for Future Networks and Services (SDN4FNS).
IEEE, 2013, pp. 1–7.

[13] A. V. Akella and K. Xiong, “Quality of service (QoS)-guaranteed
network resource allocation via software defined networking (SDN),” in
12th International Conference on Dependable, Autonomic and Secure
Computing (DASC). IEEE, 2014, pp. 7–13.

[14] D. Adami, L. Donatini, S. Giordano, and M. Pagano, “A network
control application enabling software-defined quality of service,” in
IEEE International Conference on Communications (ICC), 2015, pp.
6074–6079.

[15] N. An, T. Ha, K.-J. Park, and H. Lim, “Dynamic priority-adjustment
for real-time flows in software-defined networks,” in 17th International
Telecommunications Network Strategy and Planning Symposium (Net-
works). IEEE, 2016, pp. 144–149.

[16] J. W. Guck and W. Kellerer, “Achieving end-to-end real-time quality
of service with software defined networking,” in 3rd International
Conference on Cloud Networking (CloudNet). IEEE, 2014, pp. 70–
76.

[17] J. W. Guck, M. Reisslein, and W. Kellerer, “Model-based control
plane for fast routing in industrial QoS network,” in 23rd International
Symposium on Quality of Service (IWQoS). IEEE, 2015, pp. 65–66.

[18] ——, “Function split between delay-constrained routing and resource
allocation for centrally managed QoS in industrial networks,” IEEE
Transactions on Industrial Informatics, vol. 12, no. 6, pp. 2050–2061,
Dec 2016.

[19] J. Jasperneite, P. Neumann, M. Theis, and K. Watson, “Deterministic
real-time communication with switched Ethernet,” in 4th International
Workshop on Factory Communication Systems. IEEE, 2002, pp. 11–18.

[20] O. S. Consortium et al., “Openflow switch specification version 1.0.0,”
2009.

[21] P. Gaj, J. Jasperneite, and M. Felser, “Computer communication within
industrial distributed environment - A survey,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 182–189, 2013.

[22] J. Jasperneite and P. Neumann, “How to guarantee realtime behavior
using Ethernet,” in Information Control Problems in Manufacturing
(INCOM): A Proceedings Volume from the 11th IFAC Symposium,
Salvador, Brazil, 5-7 April 2004, vol. 1. Gulf Professional Publishing.

[23] A. Kassler, L. Skorin-Kapov, O. Dobrijevic, M. Matijasevic, and P. Dely,
“Towards QoE-driven multimedia service negotiation and path optimiza-
tion with software defined networking,” in 20th International Conference
on Software, Telecommunications and Computer Networks (SoftCOM),
2012, pp. 1–5.

[24] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and D. Pin-
heiro, “Enhancing network management frameworks with SDN-like con-
trol,” in International Symposium on Integrated Network Management
(IM). IFIP/IEEE, 2013, pp. 688–691.

[25] I. Owens, A. Durresi et al., “Video over software-defined networking
(VSDN),” in 16th International Conference on Network-Based Informa-
tion Systems (NBiS). IEEE, 2013, pp. 44–51.

[26] S. Gorlatch, T. Humernbrum, and F. Glinka, “Improving QoS in real-
time internet applications: from best-effort to software-defined net-
works,” in International Conference on Computing, Networking and
Communications (ICNC). IEEE, 2014, pp. 189–193.

[27] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, “Control of multiple
packet schedulers for improving QoS on OpenFlow/SDN networking,”
in Second European Workshop on Software Defined Networks. IEEE,
2013, pp. 81–86.

[28] E. Schweissguth, P. Danielis, C. Niemann, and D. Timmermann,
“Application-aware industrial ethernet based on an SDN-supported
TDMA approach,” in World Conference on Factory Communication
Systems (WFCS). IEEE, 2016, pp. 1–8.

[29] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized zero-queue datacenter network,” in SIGCOMM
Computer Communication Review, vol. 44, no. 4. ACM, 2014, pp.
307–318.

[30] A. L. King, S. Chen, and I. Lee, “The middleware assurance substrate:
Enabling strong real-time guarantees in open systems with openflow,”
in 17th International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC). IEEE, 2014, pp. 133–140.

[31] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer, April 2012.

[32] A. Van Bemten and W. Kellerer, “Network calculus: A comprehensive
guide,” Technical University of Munich, Chair of Communication Net-
works, Technical Report No. 201603, October 2016.

[33] J. Schmitt, P. Hurley, M. Hollick, and R. Steinmetz, “Per-flow guarantees
under class-based priority queueing,” in Global Telecommunications
Conference, vol. 7. IEEE, 2003, pp. 4169–4174.

[34] J. Åkerberg, M. Gidlund, and M. Björkman, “Future research challenges
in wireless sensor and actuator networks targeting industrial automa-
tion,” in 9th International Conference on Industrial Informatics. IEEE,
2011, pp. 410–415.

[35] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and
G. P. Hancke, “Smart grid technologies: communication technologies
and standards,” IEEE Transactions on Industrial Informatics, vol. 7,
no. 4, pp. 529–539, 2011.

[36] R. H. Khan and J. Y. Khan, “A comprehensive review of the application
characteristics and traffic requirements of a smart grid communications
network,” Computer Networks, vol. 57, no. 3, pp. 825–845, 2013.

[37] T. Mahmoodi, V. Kulkarni, W. Kellerer, P. Mangan, F. Zeiger, S. Spirou,
I. Askoxylakis, X. Vilajosana, H. J. Einsiedler, and J. Quittek, “Vir-
tuwind: virtual and programmable industrial network prototype deployed
in operational wind park,” Transactions on Emerging Telecommunica-
tions Technologies, vol. 27, no. 9, pp. 1281–1288, 2016.

[38] R. Widyono et al., The design and evaluation of routing algorithms for
real-time channels. International Computer Science Institute Berkeley,
1994.

[39] A. Jüttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relax-
ation based method for the QoS routing problem,” in 20th Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), vol. 2. IEEE, 2001, pp. 859–868.

[40] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, “Unicast QoS
routing algorithms for SDN: A comprehensive survey and performance
evaluation,” IEEE Communications Surveys Tutorials, vol. PP, no. 99,
pp. 1–1, 2017.

Jochen W. Guck received the Dipl.-Ing. degree in
Ingenieurinformatik from the University of Applied
Sciences Wuerzburg-Schweinfurt, Schweinfurt, Ger-
many, in 2009, and the M.Sc. degree in electrical en-
gineering from the Technical University of Munich,
Munich, Germany, in 2011. In September 2012, he
joined the Chair of Communication Networks at the
Technical University of Munich as a member of the
research and teaching staff. His research interests
include real-time communication, industrial commu-
nication, software-defined networking, and routing

algorithms.

Amaury Van Bemten was born in Liège, Belgium,
in 1993. He received the B.Sc. degree in Engineering
in June 2013 and the M.Sc. in Computer Science and
Engineering in June 2015, both from the University
of Liège (Belgium). In September 2015 he joined the
Chair of Communication Networks at the Technical
University of Munich (TUM), where he is currently
pursuing the Ph.D. degree as a member of the
research and teaching staff. His current research
focuses on routing algorithms and the application of
software-defined networking for resilient real-time

communications in industrial environments.

Wolfgang Kellerer (M’96-SM’11) is a Full Pro-
fessor with the Technical University of Munich,
heading the Chair of Communication Networks with
the Department of Electrical and Computer Engi-
neering. Before, he was for over ten years with NTT
DOCOMO’s European Research Laboratories. He
received his Dr.-Ing. degree (Ph.D.) and his Dipl.-
Ing. degree from Munich University of Technology,
Munich, Germany, in 1995 and 2002, respectively.
His research resulted in over 200 publications and
29 granted patents in the areas of mobile networking

and service platforms. He currently serves as an associate editor for IEEE
Transactions on Network and Service Management and on the Editorial Board
of the IEEE Communications Surveys and Tutorials. He is a member of ACM
and the VDE ITG.



S.1

DetServ: Network Models for Real-Time QoS
Provisioning in SDN-based Industrial Environments

Supplementary Material: Examples of the Models Operations
Jochen W. Guck, Amaury Van Bemten, Wolfgang Kellerer

S.I. INTRODUCTION

This supplementary material provides two examples of the
operations of the two DetServ network models proposed in the
main article. Note that references to figures, sections or equa-
tions of the main article use the latter’s numbering. Notations
also correspond to those introduced in the main article (see
Sec. III and V-A). Numbering for this supplementary material
is reinitialized and preceded by S.

For both models, we consider a given physical link (u, v) ∈
PE of capacity Ru,v = 1 Gb/s and with three priority queues
scheduled by a non-preemptive strict priority scheduler. We
assume Lmax = 1530 B. We do not consider input link
shaping (ILS) in these examples.

S.II. MULTI-HOP MODEL EXAMPLE

Before developing the example, we introduce two formulas
which will be helpful. With similar developments as for
obtaining Eqn. 23, Eqn. 10 and 11 yield the following upper
bounds.

Tu,v,p ≤
∑p−1
j=1 MB [u, v, j] + 2Lmax

Ru,v −
∑p−1
j=1 AR[u, v, j]

(S.1)

Ru,v,p ≤ Ru,v −
p−1∑
j=1

AR[u, v, j] (S.2)

The example for the multi-hop model (MHM) operation
is illustrated in Fig. S.1. Let us assume that the resource
allocation algorithm assigned half of the capacity to the high
priority queue, a quarter of the capacity to the middle priority
queue and an eighth of the capacity to the lowest priority
queue, i.e., AR[u, v, 1] = 500 Mb/s, AR[u, v, 2] = 250 Mb/s
and AR[u, v, 3] = 125 Mb/s. We further assume that the buffer
size at each queue is 300 KB, i.e., AB [u, v, p] = 300000 B
∀p ∈ {1, 2, 3}, and that the resource allocation algorithm did
not artificially reduce it.

For the highest priority queue (Fig. S.1a), the worst-case
service curve parameters Tu,v,1 and Ru,v,1 are directly given
by Eqn. S.1 and S.2. We have Tu,v,1 = 0.02448 ms and
Ru,v,1 = 1 Gb/s. Based on this, MB [u, v, 1] corresponds to
the maximum burst that can be allowed to enter the queue
such that the backlog bound stays smaller than the buffer
capacity AB [u, v, 1] at the queue, provided that the slope of
the arrival curve is fixed by the resource allocation algorithm to
AR[u, v, 1]. This corresponds to pushing the straight line with

J. Guck, A. Van Bemten, and W. Kellerer are with the Lehrstuhl für Kom-
munikationsnetze, Technical University of Munich, Munich, 80290, Germany
(email: {guck, amaury.van-bemten, wolfgang.kellerer}@tum.de).

slope AR[u, v, 1] up until its maximum distance to the service
curve reaches AB [u, v, 1]. We have MB [u, v, 1] = 298470 B
(computed with Eqn. 22). From the obtained maximum arrival
curve Mα[u, v, 1], the delay of the queue can be computed as
the horizontal deviation between Mα[u, v, 1] and βu,v,1, i.e.,
with Eqn. 23. We have T[u, v, 1] = 2.41224 ms.

For the middle priority queue (Fig. S.1b), the service curve
parameters Tu,v,2 and Ru,v,2 can now be computed with
Eqn. S.1 and S.2, since MB [u, v, 1] is now known. Note
that, graphically, Tu,v,2 corresponds to the abscissa at which
Mα[u, v, 1] and βu,v,1 intersect1. This can be intuitively un-
derstood. Indeed, the middle priority queue has to wait for the
high priority queue to empty its backlog before being served.
We will, hereafter, refer to this value as the finishing time
of the queue. The computations yield Tu,v,2 = 4.82448 ms
and Ru,v,2 = 500 Mb/s. MB [u, v, 2] and T[u, v, 2] can
then be computed as for the high priority queue. We have
MB [u, v, 2] = 149235 B and T[u, v, 2] = 7.21224 ms.

The process is then similar for the low priority queue, for
which we obtain Tu,v,3 = 14.42448 ms, Ru,v,3 = 250 Mb/s,
MB [u, v, 3] = 74617.5 B and Tu,v,3 = 16.81224 ms.

All the required values are now available for implementing
the four model functions in Fig. 3. Basically, flows will be
accepted at a queue p of the link as long as the resulting
aggregate arrival curve traversing the queue stays below the
Mα[u, v, p] limit curve. This is illustrated in Fig. S.2. Let
us assume that the current burst and rate utilization for
the middle priority queue are UB [u, v, 2] = 45000 B and
UR[u, v, 2] = 106.115 Mb/s. Let us consider that the routing
algorithm would like to add a flow f1 with rate and burst
given by rf1 = 100 Mb/s and bf1 [u, v, 2] = 150000 B to this
queue. In this case, access to the queue is refused because
UB [u, v, 2] + bf1 [u, v, 2] = 195000 B >MB [u, v, 2] (dashed
line in Fig. S.2). If the routing algorithm then requests access
to the queue for a flow f2 with rate and burst given by rf2 =
200 Mb/s and bf2 [u, v, 2] = 20000 B, access to the queue will
also be refused because UR[u, v, 2] + rf2 = 306.115 Mb/s
> AR[u, v, 2] (dotted line in Fig. S.2). If the routing algorithm
then requests access to the queue for a flow f3 with rate and
burst given by rf3 = 130 Mb/s and bf3 [u, v, 2] = 15000 B,
the access to the queue will this time be granted because
UB [u, v, 2] + bf3 [u, v, 2] = 60000 B < MB [u, v, 2] and

1Strictly speaking, this is only the case if we neglect the lmaxi term
in Eqn. 1, i.e., if the store-and-forward behavior of switches is neglected.
Nevertheless, this term only slightly shifts the Tu,v,p values, so we can
consider, for understanding purposes, that the statement is true. Note that,
in all the upcoming figures, the real values are shown. It can be seen that
Tu,v,p is always very close to the intersection of the two curves.



S.2

ti
m

e

da
ta

β
u
,v
,1

∇
=
R
u
,v
,1

=
R
u
,v

T
u
,v
,1

M
α
[u
,
v
,
1
]

∇
=

A
R
[u
,
v
,
1
]

M
B
[u
,
v
,
1
]

T
[u
,
v
,
1
]

A
B
[u
,
v
,
1
]

T
u
,v
,2

(a
)

H
ig

h
pr

io
ri

ty
qu

eu
e.

ti
m

e

da
ta

β
u
,v
,2

∇
=
R
u
,v
,2

=
R
u
,v
−A

R
[u
,v
,1
]

T
u
,v
,2

∇
=

A
R
[u
,v
,2
]

M
B
[u
,
v
,
2
]

M
α
[u
,
v
,
2
]

T
[u
,
v
,
2
]

A
B
[u
,
v
,
2
]

T
u
,v
,3

(b
)

M
id

dl
e

pr
io

ri
ty

qu
eu

e.

ti
m

e

da
ta

β
u
,v
,3

T
u
,v
,3

∇
=
R
u
,v
,3

=
R
u
,v
−

A
R
[u
,
v
,
1
]
−

A
R
[u
,
v
,
2
]

M
α
[u
,
v
,
3
]

∇
=

A
R
[u
,
v
,
3
]

M
B
[u
,
v
,
3
]

T
[u
,
v
,
3
]

A
B
[u
,
v
,
3
]

(c
)

L
ow

pr
io

ri
ty

qu
eu

e.

Fi
g.

S.
1:

E
xa

m
pl

e
of

se
rv

ic
e

an
d

m
ax

im
um

ar
riv

al
cu

rv
es

fo
r

a
no

n-
pr

ee
m

pt
iv

e
st

ri
ct

pr
io

ri
ty

sc
he

du
le

r
w

ith
th

re
e

qu
eu

es
us

in
g

th
e

m
ul

ti-
ho

p
m

od
el

.T
he

pr
oc

es
s

of
co

m
pu

tin
g

th
e

m
ax

im
um

al
lo

w
ed

ar
riv

al
cu

rv
es

is
ite

ra
tiv

e,
st

ar
tin

g
fr

om
th

e
hi

gh
pr

io
ri

ty
qu

eu
e

to
w

ar
ds

th
e

lo
w

er
pr

io
ri

ty
qu

eu
es

.
T

he
se

rv
ic

e
cu

rv
e

pa
ra

m
et

er
s
T
u
,v
,1

an
d
R
u
,v
,1

ar
e

di
re

ct
ly

gi
ve

n
by

E
qn

.
S.

1
an

d
S.

2.
T

he
n,

ba
se

d
on

th
e

ra
te

A
R
[u
,v
,1

]
al

lo
ca

te
d

to
th

e
hi

gh
pr

io
ri

ty
qu

eu
e,

th
e

m
ax

im
um

al
lo

w
ed

bu
rs

t
M
B
[u
,v
,1

]
is

th
e

m
ax

im
um

bu
rs

t
su

ch
th

at
th

e
ba

ck
lo

g
at

th
at

qu
eu

e
st

ay
s

sm
al

le
r

th
an

th
e

bu
ff

er
ca

pa
ci

ty
A
B
[u
,v
,1

]
at

th
e

qu
eu

e.
T

hi
s

co
rr

es
po

nd
s

to
pu

sh
in

g
th

e
st

ra
ig

ht
lin

e
w

ith
sl

op
e
A
R
[u
,v
,1

]
up

un
til

its
m

ax
im

um
di

st
an

ce
to

th
e

se
rv

ic
e

cu
rv

e
re

ac
he

s
A
B
[u
,v
,1

].
Fr

om
th

e
ob

ta
in

ed
m

ax
im

um
ar

riv
al

cu
rv

e
M
α
[u
,v
,1

],
th

e
de

la
y

of
th

e
qu

eu
e

ca
n

be
co

m
pu

te
d

as
th

e
ho

ri
zo

nt
al

de
vi

at
io

n
be

tw
ee

n
M
α
[u
,v
,1

]
an

d
β
u
,v
,1

.N
ow

th
at

M
B
[u
,v
,1

]
is

kn
ow

n,
th

e
sa

m
e

pr
oc

ed
ur

e
ca

n
be

ap
pl

ie
d

to
th

e
m

id
dl

e
pr

io
ri

ty
qu

eu
e

to
ob

ta
in

th
e

se
rv

ic
e

cu
rv

e
pa

ra
m

et
er

s,
th

e
m

ax
im

um
al

lo
w

ed
bu

rs
t

an
d

th
e

w
or

st
-c

as
e

de
la

y
of

th
e

qu
eu

e.
T

he
pr

oc
ed

ur
e

th
en

co
nt

in
ue

s
on

ce
m

or
e

fo
r

th
e

lo
w

es
t

pr
io

ri
ty

qu
eu

e.
N

ot
e

th
at

th
e

se
rv

ic
e

cu
rv

e
pa

ra
m

et
er
T
u
,v
,p

fo
r

a
gi

ve
n

qu
eu

e
p

(a
pp

ro
xi

m
at

el
y)

co
rr

es
po

nd
s

to
th

e
tim

e
at

w
hi

ch
th

e
se

rv
ic

e
cu

rv
e

an
d

th
e

m
ax

im
um

ar
riv

al
cu

rv
e

in
te

rs
ec

t
fo

r
th

e
pr

io
ri

ty
qu

eu
e
p
−

1
.

time

data
βu,v,2

Mα[u, v, 2]

∇ = UR[u
, v, 2

]

Uα[u, v, 2]

UB [u, v, 2]

3 f3

7 f1

7 f2

Fig. S.2: Operation of the HASACCESS method of the multi-hop model for
the middle priority queue of Fig. S.1 (Fig. S.1b). The routing algorithm tries
to embed three flows in the queue. The first one, f1, is rejected because it
would cause the maximum allowed burst to be exceeded (dashed line). The
second one, f2, is also rejected because it would cause the allocated rate to
be exceeded (dotted line). The third one, f3, is accepted because none of the
two limits are exceeded when adding the flow to the queue.

UR[u, v, 2] + rf3 = 236.115 Mb/s < AR[u, v, 2] (thin full
line in Fig. S.2).

S.III. THRESHOLD-BASED MODEL EXAMPLE

The example for the threshold-based model (TBM) op-
eration is illustrated in Fig. S.3. Let us assume that the
resource allocation algorithm assigned AT [u, v, 1] = 1.74 ms,
AT [u, v, 2] = 6.6 ms and AT [u, v, 3] = 11.22 ms as limit
worst-case delays for the three queues and that these are in
the following state. The high priority queue is traversed by
an aggregate flow with parameters UB [u, v, 1] = 186 KB,
UR[u, v, 1] = 322 Mb/s and lmaxu,v,1 = 700 B. The middle
and low priority queues are traversed by aggregate flows with
parameters UB [u, v, 2] = 195 KB, UR[u, v, 2] = 275 Mb/s,
lmaxu,v,2 = 400 B and UB [u, v, 3] = 90 KB, UR[u, v, 3] =
93 Mb/s, lmaxu,v,3 = 1200 B, respectively. The corresponding
service and arrival curves for the three different priority queues
are shown in Fig. S.3. The current buffer and delay usage
Bmax(u, v, p) and T[u, v, p] are shown along with their limits
AB [u, v, p] and AT [u, v, p].

Let us consider that the routing algorithm then requests
access to the middle priority queue for a flow f1 with param-
eters bf [u, v, 2] = 5500 B and rf = 82 Mb/s. We assume
the maximum packet size of the flow is smaller than the
current maximum packet size of the aggregate, thereby leaving
lmaxu,v,2 unchanged. The high priority queue is not concerned
by this request. The updated arrival curve for the middle
priority queue is shown in Fig. S.3b (thin full line). The delay
and backlog thresholds of this queue are not exceeded. From
the point of view of the middle priority queue, the flow can
hence be embedded. Nevertheless, the low priority queue state
also has to be checked. The updated service curve offered
by the low priority queue is shown in Fig. S.3c (thin full
line). Unfortunately, we can see that the worst-case delay limit
AT [u, v, 3] would now be exceeded. As a result, f1 has to
be rejected from the middle priority queue because it would
violate the delay threshold of the low priority queue.

The routing algorithm then requests access to the middle pri-
ority queue for a flow f2 with parameters bf [u, v, 2] = 15 KB
and rf = 30 Mb/s. We once more assume that the maximum
packet size of the flow is smaller than the current maximum



S.3

ti
m

e

da
ta

β
u
,v
,1

∇=Ru
,v,

1

T
u
,v
,1

U
α
[u
,
v
,
1
]

∇
=
U
R
[u
,v
,1
]

U
B
[u
,
v
,
1
]

A
B
[u
,
v
,
1
] A
T
[u
,
v
,
1
]

T
u
,v
,2

T
[u
,
v
,
1
]

B
m
a
x
(u
,
v
,
1
)

(a
)

H
ig

h
pr

io
ri

ty
qu

eu
e.

ti
m

e

da
ta

β
u
,v
,2

∇=
R
u,
v,

2

T
u
,v
,2

U
α
[u
,
v
,
2
]

∇
=

U
R
[u
,v
,2
]

U
B
[u
,
v
,
2
]

A
B
[u
,
v
,
2
]

A
T
[u
,
v
,
2
]

T
u
,v
,3

T
[u
,
v
,
2
]

B
m
a
x
(u
,
v
,
2
)

f
1
f
2

(b
)

M
id

dl
e

pr
io

ri
ty

qu
eu

e.

ti
m

e

da
ta

β
u
,v
,3

∇
=
R
u
,v
,3

T
u
,v
,3

U
α
[u
,
v
,
3
]

∇
=

U
R
[u
,
v
,
3
]

U
B
[u
,
v
,
3
]

A
B
[u
,
v
,
3
]

A
T
[u
,
v
,
3
]

T
[u
,
v
,
3
]

B
m
a
x
(u
,
v
,
3
)

7
f
1

3
f
2

(c
)

L
ow

pr
io

ri
ty

qu
eu

e.

Fi
g.

S.
3:

E
xa

m
pl

e
of

se
rv

ic
e

an
d

ar
riv

al
cu

rv
es

fo
r

a
no

n-
pr

ee
m

pt
iv

e
st

ri
ct

pr
io

ri
ty

sc
he

du
le

r
w

ith
th

re
e

qu
eu

es
us

in
g

th
e

th
re

sh
ol

d-
ba

se
d

m
od

el
.

A
ll

th
e

qu
eu

es
ar

e
co

ns
tr

ai
ne

d
by

tw
o

pa
ra

m
et

er
s.

T
he

fir
st

on
e,

A
B
[u
,v
,p

],
co

rr
es

po
nd

s
to

th
e

bu
ff

er
sp

ac
e

at
th

e
qu

eu
e.

T
he

se
co

nd
on

e,
A
T
[u
,v
,p

],
as

si
gn

ed
by

th
e

re
so

ur
ce

al
lo

ca
tio

n
al

go
ri

th
m

,c
or

re
sp

on
ds

to
th

e
m

ax
im

um
w

or
st

-c
as

e
de

la
y

of
th

e
qu

eu
e.

T
he

qu
eu

e
ha

s
to

re
fu

se
an

y
tr

af
fic

th
at

m
ak

es
th

e
w

or
st

-c
as

e
ba

ck
lo

g
an

d
de

la
y

at
th

is
qu

eu
e

gr
ow

bi
gg

er
th

an
th

es
e

tw
o

bo
un

ds
.I

f
bo

un
ds

ar
e

st
ill

re
sp

ec
te

d,
bo

un
ds

of
lo

w
er

pr
io

ri
tie

s
qu

eu
es

al
so

ha
ve

to
be

ch
ec

ke
d.

A
flo

w
ca

n
th

en
be

em
be

dd
ed

on
ly

if
bo

un
ds

of
al

l
lo

w
er

pr
io

ri
ty

qu
eu

es
ar

e
st

ill
sa

tis
fie

d.
Fi

g.
S.

3b
an

d
S.

3c
sh

ow
th

e
up

da
te

d
ar

riv
al

an
d

se
rv

ic
es

cu
rv

es
if

a
flo

w
f
1

is
ad

de
d

to
th

e
m

id
dl

e
pr

io
ri

ty
qu

eu
e.

Fr
om

th
e

po
in

t
of

vi
ew

of
th

e
m

id
dl

e
pr

io
ri

ty
qu

eu
e,

no
ne

of
its

tw
o

bo
un

ds
w

ou
ld

be
vi

ol
at

ed
an

d
th

e
flo

w
ca

n
be

ad
de

d.
N

ev
er

th
el

es
s,
f
1

ca
nn

ot
be

ac
ce

pt
ed

be
ca

us
e

th
e

up
da

te
d

se
rv

ic
e

cu
rv

e
of

th
e

lo
w

er
pr

io
ri

ty
qu

eu
e

w
ou

ld
le

ad
to

th
e

vi
ol

at
io

n
of

its
w

or
st

-c
as

e
de

la
y

th
re

sh
ol

d.
In

da
sh

ed
lin

es
,F

ig
.S

.3
b

an
d

S.
3c

al
so

sh
ow

th
e

up
da

te
d

ar
riv

al
an

d
se

rv
ic

es
cu

rv
es

if
an

ot
he

r
flo

w
f
2

is
ad

de
d

to
th

e
m

id
dl

e
pr

io
ri

ty
qu

eu
e.

In
th

is
ca

se
,n

on
e

of
th

e
bo

un
ds

in
bo

th
qu

eu
es

w
ill

be
vi

ol
at

ed
an

d
th

e
flo

w
ca

n
he

nc
e

be
ac

ce
pt

ed
.

packet size of the aggregate. The high priority queue is still
not concerned by the request. The updated arrival curve for the
middle priority queue is shown in Fig. S.3b (thin dotted line).
As for f1, we can see that the delay and backlog thresholds of
this queue are not exceeded. Before allowing the embedding
of the flow to this queue, the updated state of the low priority
queue also has to be checked. The updated service curve
offered by the low priority queue is shown in Fig. S.3c (thin
dotted line). We can see that the the worst-case delay limit
AT [u, v, 3] would, in this case, not be exceeded. As a result,
since all the worst-case limits are still respected, f2 can be
embedded in the middle priority queue.


