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Abstract

This work presents a parallel finite element solver of incompressible two-phase flow targeting large-scale simulations of
three-dimensional dynamics in high-throughput microfluidic separation devices. The method relies on a conservative
level set formulation for representing the fluid-fluid interface and uses adaptive mesh refinement on forests of octrees.
An implicit time stepping with efficient block solvers for the incompressible Navier—Stokes equations discretized with
Taylor—Hood and augmented Taylor—-Hood finite elements is presented. A matrix-free implementation is used that
reduces the solution time for the Navier—Stokes system by a factor of approximately three compared to the best
matrix-based algorithms. Scalability of the chosen algorithms up to 32,768 cores and a billion degrees of freedom is

shown.
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I Introduction

Numerical simulations are often the only available tool
to understand flow in microfluidic devices. Three-
dimensional effects of various flow configurations must
be captured by highly resolved computational studies
that in turn require large-scale computational facilities.
In this work, we present a solver framework for soft
inertial microfluidics involving particles with deform-
able surfaces (Wu et al., 2009). Simulations detailing
the flow patterns in these devices are still rare but prom-
ise to reveal novel physics and to give better control
over device design. This includes the ability to find flow
configurations to sort particles of various sizes and
material parameters as well as to monitor surface stres-
ses. As a means for representing deformable surfaces,
this work uses a model of immiscible incompressible
two-phase flow with surface tension.

Detailed multi-phase flow simulations require a very
high numerical resolution to track the evolution of free
surfaces with a sudden jump in stresses and material
parameters between the different fluid phases. Several
competing methods exist for indicating the interface
location between fluids, which can either be interface
tracking methods (Peskin, 1977) such as front tracking
(Unverdi and Tryggvason, 1992), or interface capturing

methods such as level set methods (Osher and Sethian,
1988), the volume—of—fluid method (Hirt and Nichols,
1981), or phase field methods (Jacqmin, 2000). Two
strains of developments can be distinguished for the
representation of the interface forces in the incompres-
sible Navier—Stokes equations. In so-called extended
finite element methods (XFEM), the interface is repre-
sented in a sharp way. Suitable jump and kink enrich-
ments are added to the pressure and velocity,
respectively (GroB3 and Reusken, 2007; Fries and
Belytschko, 2010; Rasthofer et al., 2011), as a means to
exactly include jump conditions in the finite element
spaces. In order to obtain stable and robust schemes,
suitable jump penalty terms are added that avoid the
otherwise deteriorating effect of small cut regions on
condition numbers. The second strain of methods is
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given by continuous surface tension models in the spirit
of the original work by Brackbill et al. (1992), where
the surface tension forces and changes in material para-
meters are smoothly applied in a narrow band of width
proportional to the mesh size. XFEM-based methods
are generally more accurate for a given element size,
but at the cost of an almost continuous change in maps
of degrees of freedom as the interface passes through
the domain. Besides the increased cost of integration in
cut elements, the difficulty of efficiently implementing
changing maps has confined most XFEM methods to
serial and relatively modest parallel computations.

The contribution of this work is a highly efficient
and massively parallel realization of a continuous sur-
face tension model using a conservative level set repre-
sentation of the interface (Olsson and Kreiss, 2005;
Olsson et al., 2007). Parallel adaptive mesh refinement
and coarsening is used to dynamically apply high reso-
lution close to the interface. The algorithm is based on
unstructured coarse meshes that are refined in a struc-
tured way using a forest-of-trees concept with hanging
nodes (Burstedde et al., 2011). In many complex three-
dimensional flows, choosing two additional levels of
refinement around the interface merely doubles the
number of elements. For a range of flow configura-
tions, continuous surface tension models on such a
mesh provide solutions of similar quality to those pro-
duced by state-of-the-art XFEM techniques; thus, our
solver is expected to be competitive with good XFEM
implementations in the present context. For time dis-
cretization, second-order accurate time stepping based
on BDF-2 is used. In space, we choose inf—sup stable
Taylor-Hood elements Q,9Q; for the representation of
fluid velocity and pressure. These choices result in a
considerably more accurate velocity representation as
compared to the linear stabilized finite element case
often used in the literature. Furthermore, we also con-
sider so-called augmented Taylor-Hood elements
Qfo , where an element-wise constant is added in
order to guarantee element-wise mass conservation in
the discretization of the incompressible Navier—Stokes
equations (Boffi et al., 2012). These elements can pro-
vide additional accuracy, in particular with respect to
the pressure representation, as compared to plain
Taylor—Hood elements. Since these elements have not
been studied in detail yet, we also present suitable itera-
tive solvers for these elements.

On parallel architectures, many unstructured finite
element solvers rely on (distributed) sparse matrix data
structures, with sparse matrix-vector products dominat-
ing the run time. Unfortunately, these kernels are a
poor fit for modern hardware due to the overwhelming
memory bandwidth limit. Instead, our work replaces
most matrix-vector products by fast matrix-free kernels
based on cell-wise integration as proposed in
Kronbichler and Kormann (2012). Fast computation

of integrals on the fly is realized by tensorial evaluation
for hexahedra (sum factorization) that has its origin in
the spectral element community (Karniadakis and
Sherwin, 2005; Cantwell et al., 2011; Basini et al.,
2012). For element degree 2, however, integration still
increases the number of arithmetic operations by about
a factor of three over sparse matrix-vector products on
the scalar Laplacian (Kronbichler and Kormann,
2012). Nonetheless, performance can be gained if the
increase in computations does not outweigh the reduc-
tion of memory access. For systems of equations such
as the incompressible Navier-Stokes equations with
coupling between all velocity components (as they
appear for variable material parameters and Newton
linearization), fast integration has an additional advan-
tage because the coupling occurs only on quadrature
points. This enables matrix-free matrix-vector products
that are up to an order of magnitude faster already on
9, elements (Kronbichler and Kormann, 2012). These
techniques are used in a fully implicit Navier—Stokes
solver with a block-triangular preconditioner and a
selection of algebraic multigrid and incomplete factori-
zations for the individual blocks as appropriate. This
work will demonstrate that these components give a
solver that features:

massively parallel dynamic mesh adaptation;
matrix-free solvers with good scalability and 24 X
faster solvers compared to matrix-based alternatives;
e oood memory efficiency, allowing one to fit larger
problems into a given memory configuration.

We want to point out that many algorithms for the
incompressible Navier—Stokes equations presented in
the context of two-phase flow in microfluidic devices
are also applicable in other contexts. Moreover, the sol-
vers extend straight-forwardly to cubic and even
higher-order polynomials, where the advantage over
matrix-based algorithms is even more impressive.
Finally, the higher arithmetic intensity and regular
access structure makes these algorithms a promising
development for future exascale hardware. The algo-
rithms described in this manuscript are available as
open source software on https://github.com/kronbich-
ler/adaflo, building on top of the deal.Il finite element
library (Bangerth et al., 2016) and the p4est parallel
mesh management (Burstedde et al., 2011).

The remainder of the paper is as follows. Section 2
presents the numerical model and discretization and
Section 3 discusses the selected linear solvers and details
of the fast matrix-free implementation. In Section 4, the
microfluidic problem setting is introduced. Section 5
shows the performance results including strong and
weak scalability tests. Section 6 gives a characterization
of the algorithms for performance prediction on other
systems, and Section 7 summarizes our findings.
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2 Numerical model

We model the separation of species in a microfluidic
device by the flow of two immiscible incompressible
fluids as proposed in Wu et al. (2009). Surface tension
at the fluid-fluid interface stabilizes the shape of the
interface.

2.1 Incompressible Navier—Stokes equations

The motion of each fluid is given by the incompressible
Navier—Stokes equations for velocity u and pressure p
in non-dimensional form

ou 1
pro T Vu Vp ReV(,uVu)
L. 1 1)
+ P ge, + %Knﬁr (
V-u=0

Here, Viu = %(Vu + Vu’) denotes the rate of defor-
mation tensor. The parameter Re denotes the Reynolds
number, Fr the Froude number, and We the Weber
number, which control the magnitude of viscous stres-
ses, gravitational forces, and surface tension, respec-
tively. The parameters p* and w* denote the density
and viscosity measured relative to the parameters of
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2.2 Level set description of two-phase flow

in fluid 1
in fluid 2

in fluid 1
in fluid 2

We denote by Q, the domain occupied by fluid 1, by Q,
the domain of fluid 2, and by T" the interface between
Q; and Q, as sketched in Figure 1. The computational
domain Q is the union of the two subdomains and the
interface, Q = Q; UI' UQ;,. The interface I" is captured
by the conservative level set method from Olsson and
Kreiss (2005), i.e. by the zero contour of a regularized

characteristic function ®. Across the interface, &
smoothly switches from —1 to + 1 as depicted in
Figure 1.

The evolution of I in time is via transport of the
level set function ® with the local fluid velocity u

0P +u-Vob =0, d(-,0) = tanh<@> (2)

At the initial time, the profile ® is computed from a
signed distance function d(x,y) around the interface,
where ¢ is a parameter that controls the thickness of
the transition region.

2.2.1 Reinitialization procedure. To preserve the profile
thickness and shape of ® during the simulation despite
the non-uniform velocity fields and discretization
errors, a conservative reinitialization step is performed
according to Olsson et al. (2007). The reinitialization
seeks the steady state to the equation

9, + %v (=) - V- (VD -mn) =0 (3)

starting from the interface given by the advection equa-
tion (2), where 7 is an artificial time. Using two to five
pseudo time steps of equation (3) provides a good
approximation of the steady state and ensures stable
simulations.

2.2.2 Computation of surface tension. The evaluation of the
surface tension in (1) requires the normal vector n of
the interface as well as the interface curvature k. These
quantities are computed in terms of the level set func-
tion @

Vo

" v

and k= —V-n (4)

M1
P:

Figure I. Left: The domain Q occupied by two immiscible fluids separated by an interface I'. p; and u; denote respectively the
density and viscosity in €;. Right: A 2D snapshot of the level set function ® and an adaptive mesh is depicted.
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The surface tension force is defined by a slight modifi-
cation of the continuous surface tension force according
to Brackbill et al. (1992)

1
F= —«kVH 5
Wequ) (3)

where Hg denotes a Heaviside function constructed
from @, with the gradient VHg replacing the term néq
in the original work (Brackbill et al., 1992; Olsson and
Kreiss, 2005). The gradient form of surface tension has
the advantage that the surface tension force for con-
stant curvature, i.e. circular shapes, can be represented
exactly by the pressure gradient without spurious velo-
cities (Zahedi et al., 2012). The simple choice Hp = ®/2
as proposed in Olsson and Kreiss (2005)" is undesirable,
though, because V® has support on the whole domain,
albeit exponentially decaying for smooth ®. For the
adaptive meshes with a higher level of refinement
around the interface according to Section 2.4 below,
small distortions in the level set profile at faces with dif-
ferent refinement give rise to large non-physical curva-
tures and, thus, to spurious force contributions. To
localize surface tension, we instead use the definition

1+ CI>(x)> ©)

ﬁﬁmmm,ﬂﬂ=mﬁ—@w

where d(x) denotes a signed distance function recon-
structed from &, supplemented with suitable limit val-
ues for the regions where numerical errors in ® yield
values slightly outside the open interval (— 1,1). The
function H, denotes a one-dimensional smoothed
Heaviside function that changes from 0 to 1 over a
length scale proportional to ¢. We choose the primitive
function of the discrete delta function with vanishing
first order moments derived in (Peskin, 2002, Section 6)
for H,, scaled such that the transition occurs in a band
of width 2¢ around the interface. Note that this region
approximately corresponds to a band between the
—0.76 and +0.76 contours of ®.

To improve robustness, the equations for the normal
vector field and the curvature (4) are each solved by a
projection step of the level set gradient and normal vec-
tor divergence to the space of continuous finite elements,
respectively, with mesh-dependent diffusion 44> added
according to the discussion in Zahedi et al. (2012).
Likewise, a projected normal vector n is computed
before the pseudo time stepping of (3). We emphasize
that these projection steps are essential for the robust-
ness of the method on unstructured and 3D meshes.
Slightly distorted normals, in particular the ones deter-
mining the curvature, can spoil the simulation.

2.3 Time discretization

For time stepping, an implicit/explicit variant of the
BDF-2 scheme is used. In order to avoid an expensive

monolithic coupling between the Navier—Stokes part
(1) and the level set transport step (2) via the variables u
and &, an explicit (time lag) scheme between the two
equations is introduced. In each time step, we first pro-
pagate the level set function with the local fluid velocity,
run the reinitialization algorithm, and then perform the
time step of the incompressible Navier—Stokes equa-
tions with surface tension evaluated at the new time.
Each of the two fields is propagated fully implicitly
using BDF-2. To maintain second order of accuracy in
time, the velocity field for the level set advection is
extrapolated from time levels » — 1 and n — 2 to the
new time level n

un,O — 2un71 - un72 (7)

or with suitable modifications when using variable time
step sizes. Note that the splitting between the level set
and Navier—Stokes parts corresponds to an explicit
treatment of surface tension, which gives rise to a time
step limit

We We \?
AtSC] Rieh + \/(C] l{eh> + CQWeh3 (8)

where ¢; and ¢, are constants that do not depend on
the mesh size & and the material parameters, see
Galusinski and Vigneaux (2008). There exist methods
to overcome this stability limit (Hysing, 2006; Sussman
and Ohta, 2009). For the examples considered in this
work, however, this only imposes a mild restriction
with the first term dominating.

2.4 Space discretization and mesh adaptivity

We discretize all solution variables in space using the
finite element method. To this end, the computational
domain is partitioned into a set of elements. On each
element, polynomial solutions of the variables are
assumed, and continuity is enforced over the element
boundaries. In each time step, the approximations for
@7, uf, pj are of the form

Ng
Dix) = Y Dol (x),

j=1

N,
Pix) = > Plof(x)

j=1

Nu
wi(x) = Y U2j4(x),

j=1

©)

where the coefficient values CIDI", U, P} are to be deter-
mined. When choosing the finite element ansatz spaces,
i.e. the spaces spanned by the shape functions ¢®, ¢*
and ¢, respectively, we consider the following factors.

1. The function represented by @ is a smoothed
Heaviside function according to Section 2.2 the
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width of which needs to be kept small for accurate
pointwise mass conservation and interface posi-
tions. This sets high resolution requirements.
Continuous linear functions on hexahedra, 9,
defined by a tensor product of 1D functions, are
used for ¢®. With this choice sharp transitions are
represented better than with higher order functions
for the same number of degrees of freedom,
because linears avoid over- and undershoots.

2.  For the incompressible Navier—Stokes equations,
the element selections for velocity and pressure
need to fulfill the Babuska—Brezzi (inf-sup) condi-
tion (Girault and Raviart, 1986) unless stabilized
formulations are used. We consider the following
two inf—sup stable options:

e Taylor-Hood (TH): Shape functions of tensor
degree ¢ for each component of velocity and shape
functions of degree ¢ — 1 for the pressure, denoted
by Q,9,-1, with g > 2 are used. The shape func-
tions are constructed as a tensor-product of one-
dimensional shape functions.

o Augmented Taylor-Hood (ATH): These elements
use the same velocity space as TH elements but an

extended space thl for the pressure where an
element-wise constant function is added for ¢?. The
additional constant function forces the velocity
field to be element-wise conservative (divergence-
free) (Boffi et al., 2012) and is consistent because
no spatial derivatives on pressure variables appear
in the weak form of the Navier—Stokes equations.

We use a mesh consisting of hexahedra that can be
dynamically adapted by local refinement and coarsen-
ing (adaptive mesh refinement). This allows us to
increase the mesh resolution close to the fluid-fluid
interface where rapid changes in pressure as well as
material parameters need to be captured. Moreover, a
fine mesh around the interface keeps the approximation
error in normals and curvatures from the level set vari-
able ® small. In order to meet the different resolution
requirements for the Navier—Stokes variables on the
one hand and the indicator-like level set function on
the other hand, a finer mesh is used for the latter. We
choose the level set mesh to be a factor of three to four
finer than the Navier-Stokes mesh, depending on the
desired balance between costs in the level set part and
the Navier—Stokes part. In order to avoid a mismatch
in pressure space and the term Hg according to Zahedi
et al. (2012), we apply an interpolation of Hy onto the
pressure space Q; on the Navier—Stokes mesh before
evaluating the surface tension. Note that the level set
mesh could be coarser away from the interface in the
spirit of narrow-band level set methods (Sethian, 2000);
however, this is not done in the present work due to
additional expensive data communication requirements
between different Navier—Stokes and level set meshes.

As a mesh refinement criterion, we mark cell K for
refinement if

log(m[?xv<b|a)>4 or
(10)
10g<m[z<1x|V<I>8> + 4Atl;vv(lzlr> -7

where the last term is evaluated in the center of the cell.
Recall that ¢ controls the width of the transition region
of the conservative level set function. In these formulas,
the terms involving logarithms approximate the num-
ber of cells between cell K and the interface, with 0
indicating a cell cut by the interface and negative num-
bers the respective distance. Thus, the first criterion
specifies that cells up to four layers away from the
interface should be refined. The second formula makes
the refinement biased towards the direction of the local
flow field. A distance-only approach would adjust the
mesh optimally to the current interface position and
soon be outdated again. The second term heuristically
adds a layer of approximately three mesh cells in down-
stream direction, which approximately doubles the time
span over which the mesh remains viable and thus
reduces the re-meshing frequency.

In the case where the distance to the interface is
larger than the above values, cells are marked for coar-
sening. The mesh smoothing algorithms from p4est
(Burstedde et al., 2011) ensure that the levels of neigh-
boring cells in the adapted mesh differ at most by a fac-
tor 2:1 both over faces, edges, and vertices. In each
time step, we check the cheap (and less strict) criterion
of whether log(maxg |[V®|e)> — 3.5, and in case there
is at least one such cell, criterion (10) is evaluated for
each cell and the mesh adaptation algorithm is called,
including an interpolation of all solution variables to
the new mesh. The frequency of mesh updates is typi-
cally between five and a few hundreds of time steps,
depending on the flow field and the time step size.

Based on the mesh and the finite element shape
functions, weak forms of the equations (1) and (2) are
derived. In the usual finite element fashion, the equa-
tions are multiplied by test functions, divergence terms
are integrated by parts and boundary conditions are
inserted. For the discrete version of the incompressible
Navier-Stokes equations (1), we implement the skew-
symmetric  form  of the  convective term
p'u-Vu + ”%uV -u in order to guarantee discrete
energy conservation (Tadmor, 1984). Finite element
discretizations of equations of transport type, such as
the level set equation or the Navier—Stokes equations
at higher Reynolds numbers, typically need to be stabi-
lized. Here however, no stabilization is used since
Reynolds numbers are moderate and the reinitializa-
tion will take care of possible oscillations in the level
set field. Dirichlet boundary conditions, such as no-slip



6 The International Journal of High Performance Computing Applications

conditions on velocities or the prescribed level set at
inflow boundaries, are imposed strongly by setting the
respective values of U/ and @/ to the given values. For
Neumann boundary conditions, e.g. for imposing non-
zero pressure levels on outflow boundaries, boundary
integrals are added to the equations.

2.5 Summary of solution algorithm

One time step of our solver consists of computing the
coefficient values CIDI’.’, ur and Py in the finite element
expansion (9) by performing the following steps.

1. Extrapolate all fields to the new time level using
second order extrapolation according to (7), result-
ing in ®"° w0 p"° and apply boundary condi-
tions at the new time step. The successive steps can
then compute increments in time to these fields
with homogeneous boundary conditions.

2. Compute increment §$" by solving the weak form
of the advection equation (2) with velocity «™° and
BDF-2 discretization in ®. Then, we set
D" = "0 + 50",

3. Project V®" onto the space of linear finite ele-
ments, including diffusion of size 4h%, and evaluate
n” = V®"/[V®"| on each node of the level set
mesh.

4. Perform npinit_sieps reinitialization steps according
to (3), based on the normal vector approximation
n”. The nonlinear compression term
1V ((1 - ®*)n") is treated in an explicit Euler
fashion and the diffusion term V - (¢(V® - n")n")
in an implicit Euler fashion. The result of this pro-
cedure is the final level set field ®”.

5. Project V®" onto the space of linear elements,
including diffusion of size 44?, and evaluate n" on
each node of the level set mesh.

6. Compute curvature k by projecting —V -n” onto
the space of linear elements, including diffusion of
size 4h?.

7. Compute the discrete Heaviside function Hj from
d" by evaluating (6) on each node of the finite ele-
ment mesh. Interpolate Hj to the pressure finite
element space.

8. Evaluate all forcing for the momentum equation,
including surface tension according to (5).
Evaluate the relative density p* and viscosity u*
based on the Heaviside function Hj at each quad-
rature point and store them for use in the Navier—
Stokes solver.

9. Newton iteration for velocity and pressure, itera-
tion index k£ > 1:

(a) Compute nonlinear residuals of momentum
and continuity equations.

(b) Solve for increment [Su™*,5p™*] and add to
un,kfl,pn,kfl'

At convergence, we obtain the fields u” and p” at the
new time level.

3 Solution of linear systems

After time discretization and linearization in the algo-
rithm from Section 2.5, linear systems for the level set
equations and for the Navier—Stokes equations need to
be solved. The solution of linear systems represents the
main computational effort in our solver and is therefore
discussed in more detail. For the level set advection
equation in step 2, the system matrix is

(iM+ C(u”’o))'o‘fb = Rg (11)

2At
where M denotes the level set mass matrix and C(u™?)
the convection matrix depending on the current velo-
city. The vector Rg denotes the discrete residual of the
level set equation, evaluated using "', "2, and u"™°.
Since the time step A¢ is typically on the order 4/|u|
(constant CFL number), the condition number of the
system matrix behaves as O(1) (Elman et al., 2005) and
simple iterative solvers can be employed. Due to the
non-symmetry, we choose a BiCGStab solver (Saad,
2003), preconditioned by the diagonal of the mass
matrix M to account for the different scaling due to the
non-uniform mesh. Typical iteration counts for the
advection equation are between 5 and 20 for a relative
tolerance of 1078,
The projection systems for the normal vector n and
the curvature k, steps 3, 5, 6 in the algorithm, are all
schematically of the form

(M + yK)X = Ry (12)

where X denotes a selected component of the nodal val-
ues of m or the scalar field k, K denotes the stiffness
matrix, and vy is the amount of smoothing in the projec-
tion. The vector Ry contains the evaluated weak forms
Jo (p(D%CDdX for the i-th component of the projected
level set gradient and [, Ve®ndx for the curvature
computation, respectively. The magnitude of vy is set to
4h%, where h; denotes the maximum element size
around the interface. With this choice, the final condi-
tion number of the matrix behaves similarly to that of
a mass matrix, O(1). Thus, a conjugate gradient
method preconditioned by diag(M) is viable. Step 3
uses a comparably coarse relative tolerance of 107*
since it only enters in the interface “stabilization” part,
whereas a more stringent tolerance of 1077 is selected
for steps 5 and 6. Mesh sizes in our complex applica-
tions are not exactly uniform around the interface, such
that the smallest element size determining the condition
number for stiffness matrices can be up to a factor of
three smaller than /;. Thus, the local conditioning is
affected and iteration numbers between 20 and 100 are
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observed, about two to four times more than for plain
mass matrices.

Finally, the equation system for the level set reinitia-
lization, step 4 in the algorithm, is of the form

(M + AreK(@"))8P = Ry (13)

where K (n") denotes the (degenerate) stiffness matrix
with diffusion along the direction n” only and Ry is the
residual of the reinitialization. We set the pseudo time
step to AT = dl—zhmin,Ls, where d = 2,3 is the spatial
dimension and /iy 1s 1s the minimum mesh size in the
level set mesh. For this case, the matrix is dominated
by the mass matrix and a conjugate gradient method,
preconditioned by diag(M), is suitable. Typical itera-
tion counts are between 8 and 35.

Turning to the Navier—Stokes equations, after time
discretization and linearization, the following block sys-
tem in velocity and pressure arises

A B\ [(8U\ _(R.

(%) () (&)
where 4 = 2AtM + Cp(u) + %K, is a sum of a mass
matrix, a convection mdtrlx dnd a stiffness matrix.
Matrix B results from the term [, ¢V - ¢dx.
According to equation (1), the mass and convection
matrices depend on the density contrast and the stiff-
ness matrix on the viscosity contrast between the two
fluids. The particular form of the convection matrix
depends on the selected linearization method. For the

fully implicit Newton method which is used in this
work, it is the result of the following weak form

(14)

Cp(w); ; =

y 1
/Qp (pi~[u-V(pj+(pj-Vu+ Equpj-i-(ij'u dx

The block system (14) is of saddle point structure and
solved by an iterative GMRES solver (Saad, 2003). For
preconditioning, a block-triangular operator P~! is
applied from the right (Elman et al., 2005), defined by

= <g i) ept= <A(;1 1) (15)

where S = BA~'BT denotes the Schur complement of
the block system (14). If the inverse matrices A~' and
S~ were formed exactly, the matrix underlying the
GMRES iteration would be a block-triangular matrix
with unit matrices on the diagonal. Thus, all eigenva-
lues would be of unit value with a minimum polyno-
mial of degree two, for which GMRES can be shown
to converge in at most two iterations (Elman et al.,
2005; Benzi et al., 2005).

Approximations to 4~! and S~! are used in our rea-
lization. The condition number of the velocity matrix 4

A 'BTS-
—S§-1

depends on the size of the time step relative to the size
of the velocity and the strength of the viscous term.
The time step size At is of order 4/|u| and Reynolds
numbers are moderate Re <50, such that either the
mass matrix term or the viscous term dominates. For
the former case, we use an incomplete LU decomposi-
tion (ILU) (Saad, 2003) as an approximation of 47!,
whereas one V-cycle of an algebraic multigrid precondi-
tioner (AMG) based on the software package ML
(Tuminaro and Tong, 2000; Gee et al., 20006) is used for
the latter case, both provided through the Trilinos
library (Heroux et al., 2005). This choice will be evalu-
ated in Section 6 below. For the Schur complement
approximation, discretized differential operators on the
pressure space are utilized (Elman et al., 2005). For the
time-dependent incompressible Navier-Stokes equa-
tions, the action of ™! is approximated by the sum

R

-1
At PP Mp,u

(16)
where

V¢! LVe'dx (pressure Laplace matrix)
Q ip J
( P T fQ f(ijdX

(pressure mass matrix)

The pressure Laplace and mass matrices are scaled by
the inverse density and viscosity, respectively, in order
to take up the action of the velocity mass and stiffness
operators (Cahouet and Chabard, 1988; Benzi et al.,
2005). As boundary conditions for the pressure
Laplacian, Neumann boundary conditions are imposed
on Dirichlet boundaries for the velocity, and homoge-
neous Dirichlet conditions are imposed on velocity
Neumann boundaries (e.g. outflow) (Turek, 1999). For
the augmented pressure elements Q,", the discontinu-
ous ansatz space necessitates the inclusion of face inte-
grals for a consistent discrete Laplace operator. We
realize this by a symmetric interior penalty discretiza-
tion (Arnold et al., 2002), again weighted by the inverse
density values. In the implementation of (16), approxi-
mations to Mp . and K are used instead of exact
inverses. For the Ldpldcun we choose a V-cycle of the
ML-AMG preconditioner with Chebyshev smoothing
of degree three (Gee et al., 2006). For the mass matrix
inverse, two different strategies are necessary for the
Taylor—Hood and augmented Taylor—Hood cases,
respectively, in order to guarantee convergence that is
independent of the mesh size yet cheap to apply. For
the former, an ILU is sufficient, whereas the condition
number of the mass matrix in the ATH case scales as
h~% which is adequately approximated by a V-cycle of
ML-AMG. For Q;’ , a near-null space of two vectors is
specified for ML (Gee et al., 2006), including the con-
tinuous Q; and discontinuous Q, parts as separate
components.
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The linear solver for the Navier—Stokes system is ter-
minated once a relative tolerance of 10* is reached.
The nonlinear Newton iteration makes sure the final
nonlinear residual reaches a value of 10~ in absolute
terms, which represents a similar accuracy as the rela-
tive residual of 10~® on the level set part in the applica-
tions shown below.

3.1 Implementation

Our solver’ is implemented in C++ based on the
deal.Il finite element library (Bangerth et al., 2007,
2016). The code is fully parallelized by domain decom-
position with MPI using a framework that has been
shown to scale to tens of thousands of processors
(Bangerth et al., 2011), realizing adaptive mesh hierar-
chies on forests of octrees via the pdest library
(Burstedde et al., 2011). Distributed matrix algebra,
domain decomposition additive Schwarz methods for
the extension of ILU methods to the parallel case, as
well as the aforementioned ML-AMG are provided by
the Trilinos library (Heroux et al., 2005).

Most of the iterative solvers described above spend
the bulk of their computing time in matrix-vector prod-
ucts. A particular feature of our realization is the use of
fast matrix-free methods from Kormann and
Kronbichler (2011); Kronbichler and Kormann (2012)
for matrix-vector products. For quadratic finite ecle-
ments and systems of partial differential equations such
as the system matrix of the incompressible Navier—
Stokes equations linearized by a Newton method, the
matrix-free kernels can be up to ten times as fast as
matrix-based ones. Similar observations were made by
May et al. (2014) in the context of the Stokes equa-
tions. The framework also enables the computation of
the residual vectors R in the linear systems (11) to (14)
at a cost similar to one matrix-vector product. Due to
their small costs, all timings reported below include
residual computations in the solver time. Besides
increasing the performance of matrix-vector products,
the matrix-free approach obviates matrix assembly
(aside from the matrices needed for preconditioners),
enabling very efficient Newton—Krylov solvers (Brown,
2010; Kronbichler and Kormann, 2012). In particular,
for the variable-coefficient matrices of the Navier—
Stokes matrix and the level set reinitialization equation,
avoiding matrix assembly already saves up to one third
of the global run time.

Of course, matrix-free operator evaluation only
helps matrix-vector products and not other compo-
nents in linear solvers. For example, the ILU precondi-
tioners used for the approximations of the inverse of
the velocity matrix still require explicit knowledge of
matrix entries in order to build the factorization. To
limit the cost of the matrix-based velocity ILU, we
choose a simplified matrix that only contains the mass

matrix, the convective contribution of a Picard itera-
tion, and the velocity Laplacian. In this case, the velo-
city matrix is block-diagonal except for boundary
conditions that mix different velocity components as,
e.g. conditions that require the velocity to be tangential
or normal to boundaries not aligned with the coordi-
nate directions. In our solver, we use one and the same
matrix for representing all three velocity components,
increasing performance of the velocity ILU by a factor
of more than 2 because matrix-vector multiplications
are performed on three vectors at once through the
Epetra matrix interfaces (Heroux et al., 2005). Since
this matrix and the factorization are only used as pre-
conditioners, they need to be updated only infrequently
when the densities and viscosities have shifted too
much. For the case where an AMG operator is used
for the velocity, matrix-free evaluation can be used to a
greater extent. On the finest and most expensive level
of the multilevel hierarchy, a Chebyshev smoother
involving only matrix-vector products and vector
updates (Adams et al, 2003) can be realized. It only
needs matrix diagonals and is thus possible to realize
without explicitly forming a matrix. The matrix-free
evaluation is supplemented with a matrix representa-
tion for computing the coarser hierarchies of the
AMG, where the matrix drops coupling between velo-
city components. Similar techniques were also analyzed
in Kronbichler et al. (2012); May et al. (2014).

4 The test problem: Flow in a
microfluidic chip

In this article, we use a computational model to study
the dynamics of a microfluidic chip that enables high-
throughput separation of bacteria from human bloods
cells. The flow in these chips is characterized by low
Reynolds numbers, i.e. a laminar flow behavior, which
makes it possible to handle and analyze a single particle
at a time.

The device schematics are shown in Figure 2. Three
inlets including sample fluid as well as a protecting

Main channel

Acting flow

Figure 2. The microfluidic chip.
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Figure 3. Visualization of the geometric partitioning of the grid
on 6 processors. The computational domain in this example is
sliced at x = 0.5 along the x-direction.

sheath and acting flow are joined in the active area.
Three collectors for small particles, large particles, and
waste are connected to the main channel in the down-
stream direction. Through this configuration, large par-
ticles are deflected from the original streamline while
the path of small particles remains almost unchanged.
Experiments (Wu et al., 2009) successfully demon-
strated the separation of the bacteria (Escherichia coli)
from human red blood cells (erythrocytes) through this
robust and novel microfluidic process. As a result, a

fractionation of two differently sized particles into two
subgroups was obtained. The separated cells were pro-
ven to be viable. This sorting was based on the size of
these bio-particles with size ratio between 3 and 8.

In Figure 3, we show the partitioning of approxi-
mately one third of the computational domain for 6
cores (MPI ranks) where each contiguously colored
segment correspond to a core’s subdomain. The com-
putational domain is cut along the x-direction in order
to visualize the refined mesh around the interface (see
subsection 2.4). We emphasize that the aim of this
paper is not to investigate the effectiveness of our
method to predict the sorting between particles with
respect to their size but to rather present the parallel
performance of the selected algorithms. Therefore, we
only show results for one configuration. We consider a
particle  with radius »=0.25 centered at
(x¢> Yes ze) = (0.5, 0.5, 0.5). The viscosity and the den-
sity ratios are set to 20 and 10, respectively. The non-
dimensional Weber number is We =3 and the
Reynolds number is Re = 1.5 (measured by the sample
channel diameter and sample inflow velocity). Figure 4
shows snapshots of a particle moving through the
microfluidic device as well as the flow pattern. The par-
ticle position and shape are visualized by the level set
field with the particle colored in red. Streamlines pass-
ing from the sample inlet to the main channel are
included in the plots. As expected, the particle deflects
due to the strong acting flow and enters the main chan-
nel from the curved trajectory. In the main channel, the
bubble velocity is about a factor of 30 larger than at
the inlet. Figure 4(b) also shows how the velocity field

Vector
Var: velocity

- 28.61
21.46

1431

Min: 0.000

22.34
11.17

.0.000
Max: 44.68
Z Min: 0.000
7 x X
(@) (b)
Figure 4. Streamline, velocity field, and the moving particle in the device: (a) after a few time steps; (b) at t = 1.6 (range of large

acceleration forces).
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Table I. Relative error against reference result on h = 0.002 as a function of the vertical position y of center of mass of the particle.

909, 99/

h ex ey ey ex ey ey
0.0l16 5.09% 2.09% 7.58% 5.12% 2.11% 7.58%
0.008 1.68% 0.78% 2.15% 1.68% 0.78% 2.16%

0.004 0.45% 0.22% 0.40% — — —
e condition (8) regarding the capillary time step limit

120 Linear iterations 000018 must be fulfilled.
Linear its (avg 500) ——— 0.00016
o, 100 | Time step size (ths) ——
2 0.00014 Up to t=~1.55, the latter condition dominates, where
2 g0l 0.00012 the variations in the time step size are due to variations
é 0.0001 i in the local mesh size around the. bubble. At later times
£ oo} L 2 when the bubble reaches the main channel, the particle
g 8107 2 is strongly accelerated and the CFL condition forces
‘% 40 | 6x10° © the time step size to decrease to approximately
é 4107 2.5 1073 In total, more than 25,000 time steps have
= 20 P been performed. In the last phase, strong forces act on
1 =10 the particle, which lead to an increase in the number of
0 0‘.2 0‘.4 0..6 ()..8 1 1.42 1..4 l..6 1.80 linear iterations. ..

Time Due to the fine mesh, an AMG preconditioner for

Figure 5. Number of iterations per time step (including the
average over 500 time steps as a bold line) and time step size
over a complete cycle of the particle through the microfluidic
device using more than 25,000 time steps.

is modified by the rising particle in the main channel.
The trend of the predicted streamline and shape of the
particle show a good agreement with experimental
results in Wu et al. (2009).

In addition, our numerical model characterizes the
flow mechanism in the device with much more detail
and predicts various features of the particles reasonably
well.

4.1 Evaluation of particle dynamics

In Figure 5, we show statistics related to the solver for
a realistic application—finding the complete particle
path through the microfluidic device. The results are
based on a mesh with two levels of global refinement
and three more levels of adaptive refinements around
the interface, using approximately 1.6 million elements
and 43 million degrees of freedom for the velocity. This
corresponds to a finest mesh size of around 0.004, span-
ning almost three orders of magnitude compared to the
global geometry of width 4, length 8, and height 1. For
the simulation, variable time step sizes have been used
with the step size set to meet the following two goals:

e the CFL number in the advection equation should
not exceed 0.5;

the velocity block has been selected. Overall, the mesh
was adapted 3500 times in order to follow the bubble
motion. The total simulation time on 1024 cores was 40
hours, with about 34% of time spent in the Navier—
Stokes solver and 24% in the AMG preconditioner
setup of both pressure and velocity (which was called
approximately every second time step). 21% of the
computational time was spent in the level set reinitiali-
zation, 16% in the other level set computations, 3% in
mesh refinement and solution transfer functions, and
the remaining 2% of time in solution analysis and
input/output routines.

A mesh convergence study considering the path,
velocity, and shape of the particle is given in Table 1.
Taking the solution on a mesh of size 0.002 in the
region around the interface with Q,Q; elements as a
reference, the relative numerical error e of the following
particle quantities is considered: the center of mass
x = (%,7,z) of the bubble, the average rise velocity
u = (u,v,w), and the sphericity ¥ as the ratio between
volume and surface area as compared to the data of a
ball (see definitions in Adelsberger et al. (2014)). The
time step has been set proportional to the mesh size
according to the CFL number and the capillary time
step limit as specified above. Due to the large variation
in the particle velocity, the errors are evaluated as a
function of the vertical position y of the center of mass
rather than time. We observe estimated convergence
orders close to two for all quantities. The augmented
Taylor-Hood element produces results very close to
the Taylor—Hood element, despite a 10-15% higher
overall cost.
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Figure 6. Blue line: Rising droplet quantities using the present two-phase solver. Red dashed line: Rising droplet quantities using the

NaStsDGPF code in Adelsberger et al. (2014).

4.2 Verification of two-phase flow solver

For verification of the physics underlying the microflui-
dic device simulator, a 3D benchmark problem consist-
ing of a two-phase flow representing a rising droplet
from Adelsberger et al. (2014) is considered. The prob-
lem consists of a cuboid tank Q = [0, 1] X [0,2] X [0, 1]
and a droplet Q, = Q,(¢) C Q which is lighter than the
surrounding fluid Q; = Q\Q,. The initial shape of the
droplet is a sphere of radius » = 0.25 and center point
x. = (0.5,0.5,0.5). The initial fluid velocity is pre-
scribed to zero and no slip boundary conditions are set
on all walls. Furthermore a gravitational force
g = (0, —0.98,0) is applied. During the simulation the
droplet rises and changes its shape due to buoyancy
effects. The densities and viscosities of the two fluids
are p; = 1000, p, = 100, u; = 10, u, = 1, and the sur-
face tension is 7 = 24.5.

We use an adaptively refined grid with 4 = % at the
finest level for the Navier—Stokes solver and a time step
of 0.0005. The level set mesh is a factor of three finer
than the Navier—Stokes mesh. To compare our results
with the data from Adelsberger et al. (2014), we again
measure the center of mass X = (¥, 7,z), the rise velocity
= (&,v,w), and the sphericity ¥ of the droplet. In
Figure 6 the quantities of interest are depicted both for
the simulation performed here and for the simulation
with the NaSt3DGPF code from Adelsberger et al
(2014). The results are in close agreement. In Adelsberger

et al. (2014) the diameter of the droplet had also been
considered. Calculations of the diameter have been per-
formed (using the high-order quadrature method for
implicitly defined surfaces in Saye (2015)) that agree well
with the reference data but are not presented here.

For further verification, a convergence study of the
rising droplet problem is performed. Five different grid
sizes (uniform refinement) are used for three sets of
simulations that differ in the elements used for the
Navier—Stokes equations. In the first set of simulations
the Taylor-Hood elements (Q,Q;) are used, in the sec-
ond set augmented Taylor—Hood elements (Q2Q1+ ),
and in the third set the higher order elements Q3 Q,.
The three quantities of interest mentioned above are
measured at the final time 7 =3 and displayed in
Table 2. Computing a reference solution (adaptive grid
refinement with 2 = 1/1280 at the finest grid level and
a time step of 1/3000) gives y = 1.4725483,
v = 0.34874503 and ¥ = 0.95932012. The rate of con-
vergence when measuring the error in the droplet quan-
tities against the reference solution is approximately
two for all finite element pairs. As mentioned above,
these results are in close agreement with the data
reported in Adelsberger et al. (2014). For example, the
vertical rise velocity at the final time 7 =3 is
v = 0.347298 for the simulation in Adelsberger et al.
(2014) (with the NaSt3DGPF code) which is between
the two results we obtain with grid sizes 2 = 0.025 and
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Table 2. Grid convergence study of the rising bubble test. Three set of simulations with different finite element pairs are
performed: 9,0, Qer, Q30Q,. Each set of simulations are performed on five different grid sizes h, where h is the size of the
Navier—Stokes mesh. The level set variables are represented by Q, elements on a mesh of size g

9,9 0,0/ 39,

h y v v y v v y v v

0.05 1.406608 0.335588 0.976708 1.407760 0.335774 0.975883 1.412677 0.341571 0.976707
0.025 1.454877 0.345656 0.965096 1.455008 0.345581 0.965125 1.455475 0.345868 0.965122
0.0125 1.466830 0.347560 0.960585 1.466885 0.347530 0.960603 1.467088 0.347640 0.960615
0.00625 1.470800 0.348375 0.959598 1.470829 0.348364 0.959608 1.470916 0.348400 0.959614
0.003125 1.472023 0.348636 0.959399 1.472038 0.348628 0.959402 1.472096 0.348647 0.959384
h = 0.0125, respectively. The convergence history of Tintin and the large-scale system SuperMUC.

our method thus confirms the correctness of our
implementation.

The results using the higher order finite element pair
930, are just slightly better than those with the quad-
ratic velocity elements. This is because the finite element
space for the level set part is still Q;, with a major error
contribution from the level set discretization. All simu-
lations use a level set mesh that is a factor of three finer
and thus shows the same error irrespective of using the
9309, or Q,Q; element pairs. For an alternative com-
parison, we relate the Q,Q; element pair and a Navier—
Stokes mesh size 2 = 0.00625 to the Q3 Q, element pair
on a mesh of size &7 = 0.0125, both using the same level
set mesh of size 0.003125. The error values for these
choices are similar. For example, the bubble center of
mass is y = 1.4692 for Q,Q; elements and y = 1.4689
for @3Q,. On the other hand, the overall computational
time is 5.5 hours for the former (3.9 hours in the
Navier-Stokes solver) compared to 4.3 hours for the
latter (3.1 hours for the Navier—Stokes solver). In terms
of solver cost per degree of freedom, the Q3 9, solver is
approximately 1.8 times as expensive as the 9,9 solver
on these simulations. Given sufficient accuracy in the
level set part, our results show that the higher order
method can reach better efficiency. However, sharp
interface (XFEM) techniques and higher order level set
techniques are necessary to get convergence rates larger
than two in the present context and thus to fully
unleash the potential of higher order elements.

With regard to the augmented Taylor-Hood ele-
ments ©,0Q,, the solution quality increases by 1-5%
on the bubble benchmark tests (also when using an even
finer level set mesh). However, the additional overall
solver cost of up to 30-50% of the overall run time
makes this element choice less efficient for the config-
urations considered here.

5 Performance results

5.1 Experimental setup

The tests
performance computers,

are performed on two parallel high-
the medium-sized cluster

Tintin is an AMD Bulldozer-based compute server at
the Uppsala Multidisciplinary Center for Advanced
Computational Science (UPPMAX). Each compute
server of Tintin consists of two octocore (four-module)
Opteron 6220 processors running at 3 GHz. Tintin pro-
vides a total of 2560 CPU cores (160 compute nodes
with dual CPUs) and the nodes are interconnected with
QDR Infiniband. The cluster is operated with Scientific
Linux, version 6.4, and GCC compiler version 4.8.0
has been used for compilation.

SuperMUC is operated by the Leibniz
Supercomputing Center and uses 147,456 cores of type
Intel Xeon Sandy Bridge-EP (Xeon E5-2680, 2.7 GHz).
This cluster has a peak performance of about 3
Petaflops. The nodes are interconnected with an
Infiniband FDR10 fabric and contain 16 cores each.
GCC compiler version 5.1 has been used for
compilation.

5.2 Strong (fixed-size) scalability tests

For a fixed problem size, we record the computational
time spent on up to N = 2048 cores. The grid details
are shown in Table 3. An adaptively refined mesh simi-
lar to the one in Figure 3 but with one more level of glo-
bal refinements is used.

Figure 7 plots the run time for 65 time steps over the
core count. This time frame includes at least one
dynamic adaptation in the mesh and is therefore repre-
sentative for the behavior of the solver over longer time
intervals. We have verified that the testing time is long
enough to keep run time variations negligible. The axes
are logarithmically scaled. The results show a consider-
able speedup if computational resources are increased
for both the TH and ATH solvers. We observe an
almost perfect linear scaling from 32 to 512 cores: The
global run time is reduced by a factor of 11.0 for the
TH discretization and 10.3 for ATH with parallel effi-
ciencies of 69% and 64%, respectively. Due to the
more involved linear system (more iterations, slightly
more unknowns), the computational cost is higher for
the ATH finite element pair.
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Table 3. Details of the 3D triangulation and number of degrees of freedom (dofs). TH and ATH designate the Taylor—Hood and the

augmented Taylor—Hood element pairs, respectively.

Active cells Velocity dofs Pressure dofs Level set max(h)/min(h)
607,104 TH 15,013,701 TH 642,178 16,726,994 0.0209/0.0117
ATH 15,013,701 ATH 1,249,282
: : : isolate the mathematical aspects from the scaling of the
TH = implementation, Table 4 lists the average number of
X, linear scaling linear iterations of the Navier—Stokes solver per time
_ 10000 : step (accumulated over the nonlinear iteration) and the
é average time per linear iteration. The data allows us to
i identify the increase in the number of linear iterations
—E '," as the main reason for suboptimal scaling up to 512
3 cores. This is due to the degradation of the domain
S Ii/ decomposition additive Schwarz realization of the velo-
1000 " NG city ILU that does not include overlap. On the other
hand, scalability issues beyond that level are due to
2 64 128 256 5i2 1024 2048 the overwhelming cost of communication, mainly in the
Number of cores pressure AMG operator. For the 1024 core case, the

Figure 7. Wall-clock time for constant total work on a 3D test
problem using the Taylor—Hood and the augmented Taylor—
Hood element pairs on Tintin.
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Figure 8. Parallel efficiency on 3D test problem using the
Taylor—Hood and the augmented Taylor—-Hood element pairs at
constant total work (strong scaling) on Tintin.

The parallel efficiency of these runs as compared to
the timings on 32 processors is presented in Figure 8.
An efficiency of 1 indicates perfect isogranular effi-
ciency, which is reached or even slightly exceeded at 64
cores (due to cache effects).

The main reason for saturation of scaling at 1024
and 2048 cores can be identified in Figure 9 which lists
the proportion of the main solver components in the
strong scaling study: The Navier—Stokes solver (NSSv)
behaves significantly worse than the level set compo-
nents and dominates at larger core counts. In order to

number of unknowns per core is only around 15,000.
More analysis on the communication cost is presented
in Section 5.5 below. Figure 9 also demonstrates that
the time spent in support of functionality such as the
adaptive mesh refinement, assembling the precondi-
tioner, or output analysis, remains below 20%.

5.3 Node-level performance

In this subsection we detail the computational behavior
within shared memory inside a node in order to quan-
tify the balance of computationally bound components
versus memory bandwidth bound parts. To this end,
we again consider strong scaling tests on Tintin and
SuperMUC. We use a mesh consisting of 83,588 cells
with one level of adaptive refinement and otherwise
similar to Table 3.

Table 5 collects the overall run time of both the TH
and ATH discretizations on Tintin and SuperMUC as
well as a breakdown into the major solver components.
On each system, we notice an improvement of more
than a factor of 10 in the global compute time when
going from 1 to 16 cores. Its worth pointing out that
each component runs at least three times as fast on
Super MUC than on Tintin, indicating the higher perfor-
mance of the Intel Sandy-Bridge processors as com-
pared to the AMD Bulldozer ones. Moreover, the
various components of the algorithm behave differ-
ently. The Navier-Stokes part takes 23% and 15% of
the global computational time on SuperMUC and
Tintin, respectively, when using the TH version of the
algorithm, and 40% and 30% of the time for ATH. The
share of level set computations is between 35% and
27% for the TH and ATH cases on both systems. On
Tintin, reinitialization uses around 35% of the compute
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Figure 9. Distribution of the computational time spent in various blocks of the algorithm on Tintin. LSC: Level set computations
(level set advance, normal, curvature, Heaviside, force calculations, i.e. steps 2, 3, 5-8 in the algorithm in Section 2.5), Reinit:
reinitialization (algorithm step 4), NSSv: Navier—Stokes solver including residual computation (algorithm step 9), NSSt: Navier—
Stokes setup (setup and assembly of matrices, computation of preconditioners). “Others” gathers the time for output, grid

adaptation, and solution interpolation between different grids.

Table 4. Linear Navier—Stokes solver in a strong scaling setting (on Tintin). Ve present the time in seconds required to perform a

single linear iteration.

Element Number of cores 32 64 128 256 512 1024 2048

TH Total time elapsed (s) 1570 825 595 412 246 637 612
Lin. iterations/time step 30.2 31.5 349 374 395 434 358
Time/linear iteration (s) 0.79 0.4 0.26 0.16 0.09 0.22 0.26

ATH Total time elapsed (s) 6200 3510 2030 1300 797 874 2820
Lin. iterations/time step 49.6 55.1 56.3 57.1 56.8 43.3 55.1
Time/linear iteration (s) 1.92 0.97 0.55 0.35 0.21 031 0.78

time while on Super M UC this percentage is reduced to
around 20%, illustrating the more effective vectoriza-
tion on the Intel processors.

Table 5 also shows that components which are dom-
inated by matrix-free evaluation such as the reinitializa-
tion algorithm scale considerably better within a node
than algorithms which involve sparse matrix kernels:
ILU methods are used within the Navier—Stokes pre-
conditioner and normal vector computation within the
LSC part. This is despite the fact that many operations
using sparse linear algebra (all but the pressure Poisson
solver) operate on three vectors simultaneously.

5.4 Weak scalability tests

In this subsection, we assess the weak scaling of our sol-
ver on the Tintin and Super MUC systems, respectively.
For the weak scaling study, we simultaneously increase
the problem size and the number of cores while keeping
the problem size per core constant. Except for possible
increases in solver iterations, the arithmetic load per

processor is constant. Table 6 lists the problem sizes
used in this test.

We increase the core count in steps of 8 from 4 to
2048 to reflect isotropic refinement of the base mesh,
going from 8800 cells to 4.5 million cells. Run times for
the two sets of tests are reported in Table 6 and
Figure 10, where a breakdown into different parts of
the solver is given.

We notice that the global run time increases slightly
as the mesh is refined, with the most pronounced
increase between 4 and 32 cores where memory band-
width limitations within the node contribute substan-
tially. The computing time for the level set parts
increases only mildly. On the other hand, the Navier—
Stokes solver scales considerably worse for both the
TH and ATH discretizations, partly due to the already
mentioned increase in linear iterations because of the
velocity ILU. The parallel efficiency of the Navier—
Stokes solver for the TH case drops to 20% on 256
cores of Tintin where all other parts achieve more than
40% parallel efficiency. On SuperMUC, the weak



Kronbichler et al. 15

Table 5. Comparison of run times in seconds within a node on both SuperMUC and Tintin systems for 83,588 cells and 65 time
steps. For each version of the solver, the table reports the total wall-clock time (Global) and the timing for the major components of
the solver such as, Level set computations (LSC), reinitialization (Reinit) and the Navier—Stokes solver (NSSv).

Element # cores SuperMUC Tintin
Global LSC Reinit NSSv Global LSC Reinit NSSv
TH | 4510 1451 1110 1034 13900 5433 4760 2281
2 2380 792 550 519 7620 2878 2490 1191
4 1280 446 282 287 3760 1379 1150 638
8 688 243 153 162 1770 650 492 299
12 563 215 123 135 1670 66| 514 277
16 420 161 88 101 1360 533 410 243
ATH | 5690 1455 1110 2202 16300 4641 4940 5133
2 2990 797 557 1103 8660 2403 2570 2461
4 1580 447 285 582 4020 1163 1130 1110
8 859 246 153 327 2340 635 674 650
12 717 217 124 285 1790 519 503 516
16 546 163 89 221 1840 478 54| 616

Table 6. Weak scaling experiments for Taylor—Hood (TH) and augmented Taylor—Hood (ATH) elements run over 65 time steps.

Refinement | Refinement 2 Refinement 3 Refinement 4
Active cells 8800 70,400 563,200 4,505,600
Velocity dofs 234,651 1,782 099 13,884,195 109,598,787
Pressure dofs (ATH) 19,609 148,617 1,157,233 9,133,665
Pressure dofs (TH) 10,809 78,217 549,033 4,628,065
Level-set dofs 255,025 1,969,849 15,481,297 122,748,193
Time (s), TH, Tintin 469 828 1210 2770
Time (s), ATH, Tintin 414 817 1400 5030
Time (s), TH, SuperMUC 156 206 238 305
Time (s), ATH, SuperMUC 177 247 343 709
10* : ; 10t : : ,
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Figure 10. Weak scaling of the major solver components on Tintin: (a) Taylor Hood; (b) Augmented Taylor Hood. LSC: Level set
computation (computing Heaviside, curvature, force, normal and advance the level set); Reinit: Reinitialization step; NSSv: Navier—
Stokes solver.

scalability appears more favorable and can be attrib- Figure 11 shows a combined strong and weak scal-
uted to a considerably better communication network ability study, starting from refinement level 2 and going
than the one of Tintin. to level 5 with approximately one billion degrees of
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Figure 11. Scaling results on SuperMUC (TH elements) for

At = 0.0001. Four different problem sizes at 70k, 563k, 4.5m,
and 36m elements are shown for 5 processor configurations
each (except for the largest size), involving between 232k and
14k Navier—Stokes dofs per core. The data points for strong
scaling are connected, with breaks for weak scaling. Two solver
variants for the Navier—Stokes solver (NSSv) are considered,
one using a simplified ILU on the velocity block and one with an
AMG.

freedom in the Navier-Stokes system. The level set
components (LSC, Reinit) scale almost perfectly up to
the largest size. Thus, level set components that domi-
nate the computational time at small problem sizes and
low processor counts become very modest as compared
to the Navier—Stokes part, see also Figure 9. Note that
the level set mesh was chosen to be a factor of three
finer than the Navier—Stokes mesh, giving the best over-
all accuracy in terms of computational input.

5.5 Analysis of Navier—Stokes solver

Now we consider the Navier-Stokes linear solver in
more detail. This is the most important aspect of this
work since the level set solver shows better scaling and
its cost can be adjusted as desired by choosing the level
of additional refinement beyond the Navier—Stokes
mesh.

Figure 12 shows weak (different lines in the same
color) and strong (along connected lines) scaling in the
components of the Navier—Stokes solver individually.
The matrix-vector products scale almost perfectly. For
weak scaling from 32 to 16,384 processors, the time for
a matrix-vector product goes from 5.3 ms to 5.65 ms,
i.e. about 94% parallel efficiency. In terms of arith-
metic performance, the matrix-vector product reaches
between 30% and 40% of the theoretical arithmetic
peak on SuperMUC. For instance, the matrix-vector
product reaches 191 TFlops out of 603 TFlops possible
at 32,768 cores. This number is based on the approxi-
mately 14,900 floating point operations that are done
per cell in the linearized Navier-Stokes operator for

10 - :
NS mat-vec —
Vel ILU - X
Div + pres mass
Pres AMG - &
Vector ops

—_

0.1

Wall-clock time per time step [s]

8 32 128 512
Number of cores

2048 8192 32768

Figure 12. Scaling results for Navier—Stokes solver
components according to the algorithm described in Section 3
on SuperMUC, where each set of lines is for problem sizes with
70k, 563k, 4.5m, and 36m elements, respectively. “NS mat-vec”
refers to matrix-vector products with the Navier—Stokes
Jacobian matrix, “Vel ILU” to multiplication with the ILU
approximation of the inverse velocity matrix, “Div + pres
mass” the multiplication by the transpose of the divergence
matrix BT and the inverse pressure mass matrix approximation
by an ILU, “Pres AMG” the inverse pressure Poisson matrix
approximation, and “Vector ops” the orthogonalization work
done for the GMRES iterative solver, including global
communication through inner products.

our implementation (or about 600 operations per
degree of freedom). The deviation from ideal scaling
observed in Figure 12 is due to an increase in the num-
ber of linear iterations for larger problem sizes and
larger processor counts. The ILU preconditioner time
per application scales even slightly better than matrix-
vector products because the no-overlap policy in the
additive Schwarz domain decomposition operation
removes coupling and thus operations once more pro-
cessors are used; on the other hand, this is the main
cause for the considerable increase in linear iterations
as shown in Table 4.

We emphasize that a scalar ILU matrix representa-
tion for the velocity preconditioner and appropriate
sparse matrix kernels are used in order to improve per-
formane by reducing memory transfer by almost a fac-
tor of three. Despite this optimization, the matrix-
vector product for the Navier—Stokes matrix is only
approximately 1.3 to 1.5 times as expensive. Note that
sparse matrix kernels for the Navier—Stokes Jacobian
matrix are 6 to 10 times as expensive than the chosen
matrix-free approach. Thus, the cost for the Navier—
Stokes solver would increase by a factor of between
two and three for moderate processor counts. Figure
13 shows a comparison of the proposed matrix-free sol-
ver with matrix-based variants for the problem with
144m and 114m degrees of freedom, respectively.
Figure 13 also adds the time to recompute the system
matrix in each Newton step as a metric of the total cost
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Figure 13. Scaling comparison of proposed matrix-free solver (MF) with matrix-based solvers (SpMV) on SuperMUC for

At = 0.0002 on two meshes. For the matrix-based solver, the cost of actually assembling the sparse matrices approximately twice
per time step is also included (data point “ + assem”). The matrix-based ILU preconditioners are shown in two variants, one
inverting the scalar convection operator and Laplacian (ILU scalar) as well as an ILU for the complete linearized velocity matrix

(ILU full). The AMG is based on the vector Laplacian plus vector convection—diffusion operator without coupling between velocities.

(a) velocity ILU preconditioner, (b) velocity AMG preconditioner.

of a matrix-based solver, using standard assembly rou-
tines from deal.Il (Bangerth et al., 2016). We see a
three- to fourfold improvement of the presented algo-
rithms to large scales despite the close-to-ideal parallel
scaling of matrix assembly. Moreover, the runs at 64 and
512 cores, respectively, did not complete for the matrix-
based solver because the matrices and factorizations did
not fit into the 2 GB memory per core available on
SuperMUC. Obviously, we observe better strong scaling
for the matrix-based solver because the component with
the worst scaling, the pressure AMG, is the same in both
cases.

The inverse pressure Poisson operator by ML-AMG
and the vector operations scales considerably worse
than the matrix-vector products since these involve glo-
bal communication. In particular the pressure Poisson
operator is affected by the small local problem size:
The strong scaling shown in Figure 12 goes from
approximately 9000 degrees of freedom per core down
to 550 degrees of freedom per core with obvious impli-
cations on the communication cost. As also observed
in Sundar et al. (2012), scaling algebraic multilevel pre-
conditioners to the largest core counts represents a seri-
ous difficulty. Note that the re-partitioning settings of
the AMG lead to slight deviations from expected scal-
ing in some cases (e.g. the data point at 512 cores on
the finer mesh in Figure 13(b)), but are essential for
scaling to core counts beyond 2000. The assembly and
setup times of preconditioners for the Navier—Stokes
system, labeled “NSSt” in Figure 11, are very moderate
because they need not be done every time step.

We note that the numbers presented here are
summed separately on each core (without

synchronization that would disturb the time measure-
ments at that scale) and averaged over all processors
afterwards. Operations that only involve nearest-
neighbor communication can advance asymmetri-
cally, leading to waiting times in later stages. This is
partly responsible for the superlinear scaling in vector
operations in the ecarly stages of strong scaling
(another factor is cache effects in the Gram—Schmidt
orthogonalization of GMRES).

6 Performance prediction

The results collected in Section 5 allow us to generalize
the behavior to other configurations. Due to the com-
plex structure of the solver, we distinguish algorithmic
reasons (iteration counts) and code execution reasons
in the following two subsections. We concentrate on
the linear solver for the Navier—Stokes part because it
shows the most peculiar behavior. For the other com-
ponents, the number of linear iterations and thus the
cost per time step is almost proportional to the prob-
lem size and inversely proportional to the number of
cores, as can be seen from Figures 10 and 11.

6.1 Characterization of Navier—Stokes linear solver

Besides the time step limit imposed by the two-phase
flow solver (8), the time step size in the Navier—Stokes
can not become too large for the Cahouet—Chabard
Schur complement approximation to feature optimal
iteration counts. For moderate Reynolds numbers,
0.1 <Re<100, the CFL number in terms of
At=CFL-h/lul needs to be smaller than
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Figure 14. Average number of linear iterations per time step (accumulated over the nonlinear iteration) as a function of the CFL
number on a serial computation (left) and as a function of the number of cores (right) for a typical run on unstructured meshes. (a)

Serial computation, h = I_I6‘ (b) Re = I, element size h = ﬁ in outlet cross section.
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Figure 15. Average number of linear iterations per time step (lines) including the minimum and maximum number of iterations
(vertical bars) in a weak scaling setting. Results are shown for Taylor—-Hood element with velocity ILU and velocity AMG as well as
the augmented Taylor—Hood element (ATH ILU). (a) Constant time step At = 0.0001. (b) Constant CFL = 0.45,

At =0.0016...0.0001.

approximately 0.5, see Figure 14. This is an expected
result because the Schur complement approximation
does not take the convective term that dominates at
larger CFL numbers into account. A viscous term that
dominates over convection also results in a good Schur
complement approximation, see the AMG results for
Re = 0.1 and Re = 10, respectively. For finer meshes,
the performance of the ILU degrades as the viscous
term increases in strength. Nonetheless, the results in
Figure 14 reveal that an ILU applied to the velocity
block yields very competitive iteration counts as com-
pared to an AMG over a wide range of time steps.
Similar behavior was observed on other examples with
large adaptive and unstructured meshes. This is

because one linear iteration with the velocity AMG
preconditioner is more than twice as expensive as with
the velocity ILU. Compare also the two panels of
Figure 13.

Figure 15 displays the number of Navier—Stokes sol-
ver iterations in a weak scaling experiment, illustrating
that the degradation of the ILU in a block-Jacobi man-
ner per processor subdomain seriously affects iteration
counts. This needs to be contrasted to a velocity AMG
preconditioner whose iteration count remains almost
constant as the mesh is refined. Due to the difference in
iteration counts, the AMG variant can surpass the sol-
ver time of the ILU variant on the largest mesh with
16,384 cores in Figure 15 at CFL = 0.45 and with 4192
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cores at CFL = 0.25 in Figure 14. This result is con-
firmed by Figure 11. Note that the often-used technique
to increase the quality of the velocity inverse by using
an inner BiCGStab solver preconditioned by ILU does
not lead to faster solver times. Even though the itera-
tion count of the outer GMRES solver goes down, the
increase in cost for the inner solver outweighs the gain.

Figure 15 also includes the minimum and maximum
number of linear iterations taken in a specific time step.
During the first time steps and whenever the mesh is
refined/coarsened, the quality of the extrapolation
according to the algorithm in Section 2.5 is reduced
and more linear iterations are necessary. Likewise, due
to the interface motion and the shift in material proper-
ties, the preconditioner quality degrades over time,
until a heuristic strategy forces the re-computation of
the preconditioner.

For the chosen preconditioner and implementa-
tion, one can expect iteration counts around 20-50 at
low CFL and Reynolds numbers. If the iteration
count exceeds approximately 70, replacing the velo-
city ILU by an AMG can restore optimal iteration
counts. We recommend switching to multigrid for the
velocity block in case the viscous term becomes strong
with respect to mesh size, i.e. Ar>1h?Re/max (1, £2)
and/or when the number of cores exceeds a few
thousand.

6.2 Prediction of run time

With respect to execution of the code, this section pro-
vides generalizations to other supercomputers with dif-
ferent machine properties than Tintin and Super MUC.
The most important ingredients are the memory band-
width and communication latency and, to a somewhat
lesser extent, the arithmetic throughput and suitability
for general finite element-related code patterns such as
fast indirect addressing. We distinguish three phases in
the algorithm, namely:

e arithmetically heavy components, which are the
matrix-free evaluation routines in matrix-vector
products in the Navier—Stokes solver (14,900 arith-
metic operations at 5800 bytes from main memory
per Q,0Q; element on general meshes, giving an
arithmetic balance of approximately 2.6 flops/byte)
and in most of the level set computations (approxi-
mately 1.6 flops/byte);

e primarily memory bound components, such as the
sparse-matrix based ILU or matrix-based solvers
for the level set normal computation as well as the
Gram—Schmidt orthogonalization in GMRES,
(0.15-0.5 flops/byte);

e primarily latency bound components, such as the
coarser levels of the algebraic multigrid preconditioner
used in the pressure and possibly for the velocity.

The matrix-free kernels from Kronbichler and
Kormann (2012) are mostly vectorized except for the
indirect addressing into vectors inherent to continuous
finite elements. Furthermore, additions and multiplica-
tions are not perfectly balanced and only approxi-
mately two thirds of the arithmetic operations are
amenable to fused multiply-add (FMA) instructions for
the given polynomial degrees. In absence of memory
bandwidth restrictions, 40 to 70% of peak represents
an upper limit. Depending on the machine balance in
terms of memory bandwidth to flops ratio (Hager and
Wellein, 2011), the algorithm ends up close to the ridge
between computation bound and memory bound
region according to the roofline performance model
(Patterson and Hennessy, 2009).

To perform 30 Navier—Stokes linear iterations per
time step on a mesh of 100k Q,Q,; elements, approxi-
mately 6 X 10'° floating point operations and 26 GB of
main memory transfer in the arithmetically heavy parts
(Navier—Stokes matrix-vector product, product by
divergence matrix) are necessary and 46 GB of memory
transfer in the memory bound parts (velocity and pres-
sure ILU, pressure AMG with 3 smoother steps and
operator complexity of 1.2, inner products and vector
updates). Thus, one step requires 72 GB of transfer
from main memory and about 7 X 10'* floating point
operations. This theoretical prediction, only taking
upper limits into account, is within a factor of 1.5 of
the actually observed performance of 1.04 seconds for
70k elements on one node of SuperMUC according to
Figure 11 (measured memory throughput 72 GB/s).

A similar calculation for the level set part using 2.7
million linear Q) elements, i.e. using 4/3 as compared
to the size h of the Navier-Stokes mesh, involves
approximately 125 GB of memory transfer. This num-
ber assumes 120 iterations on the normal vector, 50
iterations for the curvature calculation, 15 iterations
for the advection equation, and 40 iterations in the
reinitialization. Figure 11 reports 4.6 seconds for these
operations on a mesh with 1.9m elements. In this case
the model overestimates the actual performance by
about a factor of three.

Going from intra-node behavior to inter-node beha-
vior, the first two categories identified above show an
almost perfect speedup since the messages are mostly
nearest neighbor and of moderate size (up to a few tens
of kilobytes for one matrix-vector product in typical
settings). On the other hand, the communication net-
work becomes essential for the global communication
parts. This is particularly evident for the pressure
AMG operator as seen in Figure 12. Modeling the net-
work behavior is beyond the scope of this work; how-
ever, a general observation is that one AMG V-cycle
cannot reach less than approximately 0.02 seconds on
up to 500 nodes (point-to-point latency is 1-2 us on
SuperMUC, SpMV latency is around 250 us), no
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matter how small the local problem size. In other
words, strong scaling does not continue below 5k—20k
matrix rows per MPI rank. If the mesh becomes finer
and more levels in the multilevel hierarchy are neces-
sary, the latency grows respectively. Note that the con-
tribution of the pressure AMG to the memory traffic is
approximately one sixth of the whole solver, so satura-
tion in this component does not immediately stop scal-
ing of the overall solver. Furthermore, if there is more
work to do for the level set part (finer mesh on those
variables), its better scaling makes the overall scaling
more favorable.

7 Conclusions

In this work, a massively parallel finite element solver
for the simulation of multiphase flow in a microfluidic
device has been presented. Spatial discretizations of the
incompressible Navier—Stokes equations with inf-sup
stable Taylor—-Hood and augmented Taylor-Hood ele-
ments have been used, respectively. For time discretiza-
tion, the Navier—Stokes and the level set part have been
split into two systems by extrapolation. Within each
field, implicit BDF-2 time stepping has been used.
First, the level set is advanced by a second-order extra-
polated velocity field. The incompressible Navier—
Stokes equations are evaluated with surface tension
from the updated level set field and solved as one full
velocity—pressure system with a block-triangular pre-
conditioner. Scalability of the chosen algorithms up to
approximately one billion degrees of freedom in each
of the Navier—Stokes and the level system has been
demonstrated. For fixed problem sizes, almost linear
strong scaling has been observed as long as the local
problem size is larger than approximately 30,000
degrees of freedom. Weak scaling tests show very good
performance, with some degradation in the Navier—
Stokes solver due to the non-optimal ILU precondi-
tioner in the velocity. Better scaling is possible with
multigrid-based preconditioners. Our experiments show
that for low and moderate processor counts and small
to moderate CFL numbers, ILU is the better choice in
terms of computational time, in particular when the
ILU is only based on the scalar convection—diffusion
operator in velocity space. The picture only changes
when the number of MPI ranks exceeds several thou-
sands and the mesh size becomes small such that vis-
cous effects become more pronounced, when the better
algorithmic properties of the AMG encourage a switch.
Future work will include the derivation of geometric
multigrid components within the velocity and pressure
variables in order to reduce the bottleneck from AMG
at the largest core counts, using strategies similar to
Sundar et al. (2012). Furthermore, alternatives to ILU
for the velocity block that can leverage the matrix-free
kernels in the higher order case need to be explored.

The key ingredient to our solvers are fast matrix-free
implementations of matrix-vector products. Our results
show an improvement of more than a factor of two in
pure solver times over the best matrix-based algorithm.
Taking into account the cost of matrix assembly, the
advantage grows in favor of our algorithm. While this
improvement either decreases time to solution or allows
for larger problems on the same computational
resources, it reaches communication limits earlier when
used in a strong scaling setting. Detailed analysis of
run times of selected solver components shows that as
soon as the run time goes below approximately 0.5-1 s
per time step in the Navier—Stokes solver (or approxi-
mately 0.2-0.5 s for the solution of one linear system),
the communication cost in the algebraic multigrid pre-
conditioner for the pressure Poisson operator prevents
further scaling.
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Notes

1. The factor I accounts for the range [—1,1] of the
smoothed indicator-like function ® in this work as
opposed to the range [0, 1] in Olsson and Kreiss (2005).

2. The computations shown in this manuscript have been
performed on variations of the problem file applications/
micro_particle.cc available from https://github.com/kron-

bichler/adaflo. Retrieved on 2016-05-08.
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