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number on the performance of the  kdpF  promoter is mainly 
by dilution by growth and (2) potassium uptake is regulated 
not only by the activity of the KdpD/KdpE two-component 
system (in turn influenced by PtsN). An additional controller 
with integrative behavior is predicted by the model struc-
ture. This suggests the presence of a novel physiological 
mechanism during regulation of potassium uptake with the 
KdpFABC transporter and may serve as a starting point for 
further investigations.  © 2015 S. Karger AG, Basel 

 Introduction 

 Mathematical descriptions of complex interactions 
between the various components of a biochemical reac-
tion network allow a quantitative understanding of net-
work properties. With the advent of systems biology, 
which has led to the availability of high-dimensional da-
tasets for metabolites, transcripts and proteins, a mathe-
matical representation of such interactions becomes pos-
sible. Moreover, recent advances in experimental and 
theoretical methods now allow researchers to tightly in-
tegrate various types of data into the mathematical de-
scription of cellular processes. One of the key regulatory 
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 Abstract 

 The nitrogen phosphotransferase system (PTS Ntr ) of  Pseudo-
monas putida  is a key regulatory device that participates in 
controlling many physiological processes in a posttranscrip-
tional fashion. One of the target functions of the PTS Ntr  is the 
regulation of potassium transport. This is mediated by the 
direct interaction of one of its components with the sensor 
kinase KdpD of the two-component system controlling tran-
scription of the  kdpFABC  genes. From a detailed experimen-
tal analysis of the activity of the  kdpF  promoter in  P. putida  
wild-type and  pts  mutant strains with varying potassium 
concentrations, we had highly time-resolved data at hand, 
describing the influence of the PTS Ntr  on the transcription of 
the KdpFABC potassium transporter. Here, this data was 
used to construct a mathematical model based on a black 
box approach. The model was able to describe the data 
quantitatively with convincing accuracy. The qualitative in-
terpretation of the model allowed the prediction of two gen-
eral points describing the interplay between the PTS Ntr  and 
the KdpFABC potassium transporter: (1) the influence of cell 
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devices in bacteria is the phosphotransferase system 
(PTS). This term describes a set of enzymes that transfer 
phosphate moieties derived from phosphoenolpyruvate 
(PEP) from one component to the other in a given order 
[Deutscher et al., 2006; Postma et al., 1993]. In general, 
two different types of PTS are found in bacteria: the sug-
ar-PTS, responsible for the phosphorylation and uptake 
of carbohydrates into the cell, and the ‘nitrogen-PTS’ or 
PTS Ntr , which fulfills exclusively regulatory functions 
[Pflüger-Grau and Goerke, 2010; Powell et al., 1995]. 
 Pseudomonas putida  possesses minimalistic PTS equip-
ment with only one sugar-PTS responsible for fructose 
uptake (PTS Fru ) and the PTS Ntr . Both PTS branches can 
communicate with each other by the exchange of phos-
phoryl groups [Pflüger and de Lorenzo, 2008].

  Probably the best understood regulatory function of 
the PTS Ntr  is the control of the K +  metabolism in  Esche-
richia coli  by direct interaction with both the TrkA sub-
unit of the Trk transporter complex [Lee et al., 2007] and 
the KdpD sensor kinase of the two-component system 
(TCS) regulating the transcription of the  kdpFABC  genes 
[Lüttmann et al., 2009].

The KdpFABC P-type ATPase is a high-affinity K +  
transport system that ensures K +  uptake when it becomes 
limiting and the cellular supply can no longer be served 
by the constitutive low-affinity K +  transporting systems 
(Trk and Kup) [Altendorf et al., 1992; Ballal et al., 2007; 
Epstein, 2003; Schlosser et al., 1995]. The regulatory effect 
is brought about by the EIIA Ntr  (PtsN) component by di-
rect physical interaction of nonphosphorylated PtsN with 
the sensor kinase KdpD of the KdpD/KdpE TCS in  E. coli . 
The binding of P-free PtsN stimulates the autophosphor-
ylation activity of KdpD, resulting in increased transcrip-
tion of  kdpFABC  [Lüttmann et al., 2009].

  Recently, we carried out a genome-wide survey in  P. 
putida  to analyze the effects of the loss of PtsN on tran-
scription. This revealed a strong impact on the transcript 
levels of the genes encoding the KdpFABC potassium 
transporter and the KdpD/KdpE TCS. Here, we present a 
theoretical approach based on linear system identifica-
tion to analyze the influence of PtsN on  kdpFABC  tran-
scription based on experimental data from  P. putida . 
Therefore, we explored datasets with high temporal reso-
lution of the wild-type strain and two PTS mutant strains 
grown with different K +  concentrations. The data used 
included the optical density (OD), representing biomass 
growth, and luminescence (LUM), serving as an approx-
imation for the expression of the  kdpFABC  genes. As little 
is known about the influence of biomass, the transcrip-
tion and translation apparatus, and regulatory proteins 

on the expression of the  kdpFABC  genes, we started with 
a black box description. That is, a simple linear dynamical 
input/output description of the process, to set up a math-
ematical model. This model helps interpreting some of 
the complex processes taking place during regulatory 
events. Therefore it may serve as a starting point to fur-
ther understand the molecular mechanism behind. Anal-
ysis of the dynamics uncovered expected and unexpected 
relations between the two variables measured, biomass 
and KdpFABC transporter production.

  The Minimalistic PTS of P. putida 
 The Gram-negative soil bacterium  P. putida  is a per-

fect choice for studying the regulatory duties of the
PTS Ntr  as it is equipped with the very low number of only 
five PTS proteins. Two proteins build the sugar-PTS 
(PTS Fru ) responsible for the uptake of fructose, and the 
other three are the components of the PTS Ntr . PTS Fru  is 
encoded by  fruA  and  fruB . The FruB protein combines the 
EI, HPr, and EIIA domain in one protein, and FruA builds 
the transporter consisting of the domains EIIB and EIIC, 
through which fructose is transported [Velazquez et al., 
2007]. The alternative PTS Ntr  is formed by the proteins 
PtsP (EI Ntr ), PtsO (NPr), and PtsN (EIIA Ntr ) [Velazquez 
et al., 2007]. It is a multicomponent regulatory device that 
participates in controlling a variety of physiological pro-
cesses in a posttranslational fashion. PtsP differs from the 
EI of the sugar-PTS by the presence of a GAF domain in 
its N-terminal part [Kundig et al., 1964; Pflüger-Grau and 
Görke, 2010; Reizer et al., 1996]. Recently, we published a 
mathematical model that describes the available data of 
the state of phosphorylation of PtsN in different environ-
mental conditions and different strain variants [Kremling 
et al., 2012]. In  P. putida  the PTS Ntr  is quite well studied 
and several features are already known. In summary, it 
was shown that the phosphorylated form of PtsN is pres-
ent at all growth stages and that it accumulates in the sta-
tionary phase. Therefore, the nonphosphorylated PtsN 
appears to be associated with rapid growth. The complete 
lack of PtsN leads to changes in the metabolic fluxes of the 
central carbon metabolism, and PtsN decreases the activ-
ity of pyruvate dehydrogenase by direct protein interac-
tion [Chavarria et al., 2012; Pflüger and de Lorenzo, 2007, 
2008; Pflüger-Grau et al., 2011]. All these findings give rise 
to a complex regulatory device in which diverse physio-
logical inputs are integrated and result in a specific degree 
of phosphorylation of the PtsN protein, which, in turn, is 
involved in controlling the activity of a variety of physio-
logical and metabolic processes.

http://dx.doi.org/10.1159%2F000381214
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  The KdpFABC Potassium Transport Complex 
 Probably the best understood regulatory function of 

the PTS Ntr  is the control of K +  metabolism in  E. coli  [Lee 
et al., 2007; Lüttmann et al., 2009]. Recently, we con-
firmed this interplay between PtsN and the KdpFABC 
transporter in  P. putida , but the mechanism by which it 
is accomplished is different from what is known in  E. coli . 
A genome-wide transcriptional survey to identify genes 
that are differentially expressed in the absence of PtsN in 
 P. putida  revealed that transcription of the entire  kdp-
FABC  operon as well as the  kdpDE  operon is strongly in-
duced when PtsN is missing. The chromosomal organiza-
tion of the  kdpFABC  and  kdpDE  genes in two operons 
adjacent to each other resembles the situation in  E. coli , 
in which the KdpFABC P-type ATPase is well studied 
[Altendorf et al., 1992; Ballal et al., 2007]. It is a high-af-
finity K +  transport system that ensures K +  uptake under 
limiting conditions [Altendorf et al., 1992; Ballal et al., 
2007; Epstein, 2003; Schlosser et al., 1995]. The KdpFABC 
K +  transport complex is composed of four subunits: 
KdpA, the K +  translocating channel; KdpB, which drives 
the K +  translocation, and KdpF and KdpC, both involved 
in the assembly and stabilization of the transport complex 
[Buurman et al., 1995; Gassel et al., 1998, 1999; Haupt et 
al., 2005]. The KdpD/KdpE TCS controls transcription of 

 kdpFABC  [Polarek et al., 1992]. KdpD, the membrane-
bound histidine kinase, autophosphorylates upon stimu-
lus perception and subsequently hands over the phospho-
ryl group to the response regulator KdpE, which in turn 
binds to a specific site directly upstream of the  kdpFABC  
promoter  (kdpFp)  [Laermann et al., 2013; Narayanan et 
al., 2012]. This strongly induces  kdpFABC  transcription 
[Ballal et al., 2007].   KdpD itself can act as a kinase as well 
as phosphatase, dephosphorylating KdpE in the absence 
of the stimulus [Jung et al., 1997], thereby shutting down 
transcription from  kdpFp . The organization of the two 
operons  kdpFABC  and  kdpDE  adjacent to each other al-
lows autoamplification of  kdpDE  transcription by the 
TCS [Polarek et al., 1992]. As already mentioned, in  P. 
putida  as well as in  E. coli  the activity of the KdpD/KdpE 
TCS is further regulated by direct binding of the PtsN 
protein, but in a different fashion. Whereas in  E. coli  only 
the nonphosphorylated form of PtsN interacts with 
KdpD, increasing the kinase activity and thereby stimu-
lating transcription of the  kdpFABC  genes, in  P. putida  
the mechanism is more complex in that both forms ac-
tively bind the KdpD sensor kinase, which results in op-
posite effects on the performance of  kdpFp .  Figure 1  il-
lustrates the interplay between the PTS and the KdpD/
KdpE TCS.

  Fig. 1.  Interplay of the Kdp potassium 
transport system and the PTS Ntr  in  P. pu-
tida . The alternative PTS Ntr  is composed of 
three proteins: PtsP, PtsO, and PtsN, which 
transfer phosphate moieties derived from 
PEP from one enzyme to the other. Tran-
scription of the KdpFABC potassium 
transporter encoding genes in  P. putida  is 
induced at low potassium concentrations 
(<1 m M  extracellular K + ) by the activity of 
the KdpD/KdpE TCS. Direct interaction of 
PtsN with KdpD leads to altered  kdpFp  ac-
tivities in that the presence of nonphos-
phorylated PtsN coincides with higher 
transcription rates, whereas the phosphor-
ylated form of PtsN seems to have a nega-
tive effect on  kdpFABC  transcription. 

http://dx.doi.org/10.1159%2F000381214
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  Results 

 Time-Course Data 
 The experimental data used in this study came from 

measurements of OD and LUM of  P. putida  cells grown 
in minimal medium with varying K +  concentrations (end 
concentrations: 0.22, 0.27, 0.32, 0.71, 1.21, 2.2, 5.17, 10.12, 
and 22 m M ). LUM represents the amount of KdpFABC 
complexes produced as confirmed by Western blots and 
the OD serves as an approximation of the cell number. To 
determine the specific growth rate  μ , the OD curve was 
smoothed to avoid fluctuations during calculation of the 
derivative ΔOD/Δt. This smoothing was done by the 
 spaps  function of Matlab, which is based on an approach 
published by Reinsch [1967] to calculate smoothing 
splines. The maxima of the LUM/OD values of all strains 
and potassium concentrations, representing the maximal 
amount of KdpFABC complexes produced, are given in 
 table 1 .

  For parameter estimation the time-course values were 
normalized by the maximum average LUM/OD value at 
a K +  concentration of 0.22 m M . In  figure 2 , a representa-
tive dataset of the  ΔptsN  strain consisting of OD, specific 
growth rate  μ  and the LUM/OD ratio as an approxima-
tion of the intracellular concentration of the KdpFABC 
complexes is shown. The potassium concentration pro-
vided at the beginning of the experiment was 10.12 mM.

  Interestingly, our data reveal that the growth rate is not 
constant during the exponential growth phase but chang-
es from the very beginning of the experiment until the 
end. We assume that this behavior became visible, as we 
have collected 272 data points that were all used to calcu-

late the growth rate, which results in highly resolved data 
for the specific growth rate  μ . This allows us a more pre-
cise parameter identification, as the specific growth rate 
is known for each single time point.

  Generalized Modeling Approach 
 Several approaches exist to deriving a mathematical 

model from experimental data ( fig. 3 ). In recent years, the 
development of detailed mechanistic models has become 
quite common as more and more quantitative data of 
proteins and metabolites have become available. These 
mechanistic models are generally set up based on infor-
mation derived from the literature and – in most cases – 
result in time-resolved simulation studies, which allow us 
the comparison of model outputs with measured data 
( fig. 3 a). However, for the development of detailed mech-
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 Table 1. Unscaled maximal average values of LUM/OD for strains 
and external potassium concentrations

K+/strain, mM ΔptsN ptsNHA Wild-type

0.22 7.60 ∙ 106 7.23 ∙ 106 5.91 ∙ 106

0.27 9.61 ∙ 106 8.89 ∙ 106 3.90 ∙ 106

0.32 8.71 ∙ 106 8.87 ∙ 106 3.79 ∙ 106

0.71 10.75 ∙ 106 10.66 ∙ 106 2.15 ∙ 106

1.21 11.62 ∙ 106 11.99 ∙ 106 9.35 ∙ 105

2.20 13.40 ∙ 106 11.53 ∙ 106 1.49 ∙ 105

5.17 12.13 ∙ 106 8.50 ∙ 106 3.44 ∙ 104

10.12 8.85 ∙ 106 4.87 ∙ 106 3.41 ∙ 104

22 5.10 ∙ 106 1.14 ∙ 106 3.21 ∙ 104

  Fig. 2.  Splined OD ( a ), specific growth rate  μ  ( b ) and the ratio 
LUM/OD ( c ) for a standard experiment with a potassium concen-
tration of 10.12 m M . Four biological replicates are shown. The rel-

ative LUM/OD values are obtained by dividing the LUM data by 
the OD, and the normalization by the maximum of the LUM/OD 
values for an external potassium concentration of 0.22 m M . 
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anistic models it is necessary to have profound hypothe-
ses on the involved partners and ways of interaction that 
can be translated into mathematical model equations. If 
the information on the network structure was uncertain 
or even unknown, an alternative approach that can be 
chosen to generate a mathematical model is ensemble 
modeling [Kuepfer et al., 2007]. This approach allows us 
to infer the model structure together with the kinetic
parameters (the question marks in  fig. 3 b point to the 
uncertainty in the network structure). The main disad-
vantage of this approach is that measured data for all 
components in the network is required to develop a 
mathematical model.

  A third approach that can be chosen when informa-
tion is very limited is generalized modeling. This ap-
proach was chosen here as experimental data were avail-
able only for the OD and one intracellular component, 
the KdpFABC complex. No information on possible in-
teractions between other intracellular components was 
accessible. In such a generalized modeling approach the 
system under investigation is considered as a black box 
( fig. 3 c) and in a first step only the input/output behavior 
is described with a special type of equation. These equa-
tions are chosen in a way that they are as simple as pos-
sible but still able to describe the data with high accuracy. 
Thus, the advantage of the generalized modeling ap-
proach is that no a priori information on the network 

structure is necessary and parameters for the equations 
can be estimated using standard software tools. The big-
gest challenge of this approach is finding a meaningful 
biological interpretation of the equations.

  For this work, experimental data representing the 
growth and intracellular KdpFABC complex concentra-
tion of three  P. putida  strains (wild-type,  ΔptsN  mutant 
and  ptsNHA  strain) grown at different potassium condi-
tions were available. To set up a generalized model, we 
first divided the system under consideration into two 
submodules: the Kdp module, which describes the syn-
thesis of the KdpFABC transporter and the PTS module 
representing the components of the PTS Ntr  ( fig. 4 ). Ad-
ditionally, a reference strain has to be chosen, which in 
this case was the  ΔptsN  mutant, as we expected that in this 
strain both modules exist separated from each other (ref-
erence situation) as no regulatory input from the PTS Ntr  
on the Kdp module is present. The interconnection be-
tween the PTS module and the Kdp module by PtsN as 
present in the other two strains is represented by two dif-
ferent intervention strategies: strategy 1 involves distor-
tion of the Kdp module only by P-free PtsN (data from 
the  ptsNHA  strain), whereas strategy 2 reflects the influ-
ence of both forms of PtsN (wild-type situation).

  As can be seen in  figure 4 , two system inputs are con-
sidered: the growth rate (which influences both modules) 
and the external potassium concentration (which influ-
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  Fig. 3.  Three model setup approaches.  a  If enough knowledge is 
available, a mechanistic model can be set up, parameters can be 
estimated, and the model can be used for prediction.  b  Ensemble 
modeling: model structure and kinetic parameters are determined 

from experimental data.  c  If not enough knowledge is available, an 
intermediate step is necessary to generate a first model from the 
data (generalized model) that serves as a basis for further model 
development.           
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ences only the Kdp module). Time-resolved data for the 
growth rate was determined as described in Methods. The 
external potassium concentration at the beginning of the 
experiment is transformed into dynamic data by convert-
ing it into a step function, scaling the values between 0 
and 1, i.e. the step size is taken as 1 for the highest potas-
sium concentration of 22 m M  and as 0.0091 for the lowest 
concentration of 0.22 m M .

  Two different possibilities can be chosen as system 
output: the  kpdF  promoter activity or the concentration 
of the KdpFABC protein complex. Here, we decided to 
focus on the KdpFABC protein concentration as an out-
put. This allows us to consider several processes, which 
can be divided roughly into ‘positive’ terms, reflecting 
processes that increase the concentration of the protein, 
like transcription and translation, and ‘negative’ terms, 
describing events that decrease the concentration of the 
component, like degradation, proteolysis or dilution. 
Dilution by growth is an often overlooked process that 
plays an important role when the temporal dynamics of 
a component are considered. It describes the alteration 
of the concentration of a component in the cell during 
cell division if no net synthesis of this component is 
present. Taking into account that directly before cell di-
vision the cell mass has doubled, the concentration 
(number of molecules per gram of dry weight) of the 
component has halved as the number of molecules has 
not changed.

  An alternative choice for the output of the system is to 
focus on  kpdF  promoter activity. However, this would 
limit us to describing only the regulation of protein syn-
thesis, including transcription and translation, and ne-

glecting regulation by negative terms. In order to find a 
mathematical description for the experimental data at 
hand, we performed system identification, which is out-
lined in detail in Methods.

  Parameter Estimation 
  ΔptsN  Strain  
 The final model for the reference strain  ΔptsN  is given 

in state-space representation as follows (vector   x   has four 
components and vector   u   two components):

11 12 11
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33 43 32

43

1 3 4

0 0 0
0 0 0 0 0

0 0 0
0 0 0 0 0

0                               

a a b
a

x x u
a a b
a

y c c c x .

 

(1)

  A clear block structure can be seen in the systems ma-
trix which reflects the separation of the two inputs (growth 
rate  u  1  and potassium concentration  u  2 ). States  x  1  and  x  2  
can be assigned to input  u  1  while states  x  3  and  x  4  are as-
signed to input  u  2 . Both blocks are only connected by the 
output vector   c   and not in the systems matrix.

  For parameter identification we chose the data ob-
tained at one potassium concentration (here 1.21 m M ) to 
fit the model structure and parameters (see Methods). 
Subsequently, data of the other potassium concentrations 
were fitted to the same model structure (parameter anal-
ysis was supported by the PottersWheel toolbox [Mai-
wald and Timmer, 2008] of Matlab). It turned out that 
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Growth rate
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  Fig. 4.  Dissection of the system into two modules: PTS (green box) and KdpFABC transporter synthesis (blue 
box). Labels (1) and (2) indicate intervention strategies to disturb the system of the reference situation (       ΔptsN  
mutant).         
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some, but not all, parameters were strongly dependent on 
the input values. These input-dependent parameters ( a  34 , 
 a  43 ,  b  11 ,  b  32 ) are highlighted by an  *  in equation 1.  Figure 
5  shows the quality of the parameter fit exemplarily for an 
external potassium concentration of 10.12 m M . The fig-
ure displays the mean of the experimental data with error 
bars based on four experiments (grey lines) and the mod-
el output (solid black line).

  An example of a parameter that strongly depends on 
the input is parameter  b  32  (see the equation above). In  fig-
ure 6 a, the changes of  b  32  with varying potassium concen-
trations are shown. This parameter reflects the influence 
of input  u  2  (potassium concentration) to the Kdp module. 
It is expected that this influence decreases at higher K +  
concentrations, which is confirmed by the decrease of pa-
rameter  b  32 . For comparison, in  figure 6 b, the result of a 
different parameter estimation which was based on initial 
values as parameters (see Methods) is shown. Here, for the 
initial value  x  20  no clear trend can be seen.

   ptsNHA  Strain  
 After having established a model for the reference 

strain with convincing accuracy and persuasive interpret-
ability, the model structure was adjusted to fit the data of 
the  ptsNHA  strain (with the same number of state vari-
ables). Searching for a minimal parameter set to simulate 
the data of the potassium concentrations of 0.22, 1.21 and 
10.12 m M  revealed that it was necessary to introduce two 
more parameters,  a  24  and  a  42 . These new parameters rep-
resent connections between the state variables  x  2  and  x  4 . 
Thereby, both submodules are now connected in a dy-
namic way and not only via the summation of the state 
variables in the output  y . Thus, the dynamics of the first 
input (OD) now also influence the dynamics of the Kdp 
module (TCS and protein synthesis). This makes sense as 
in the  ptsNHA  strain a variant of the PtsN protein is pres-
ent, which is supposed to influence KdpFABC transport-
er synthesis. The model for the  ptsNHA  strain is given in 
state space representation as follows:
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  Fig. 5.  Mean of the experimental data 
(LUM/OD) including error bars for a po-
tassium concentration of 10.12 m             M  (gray 
region) and time course of the simulation 
after parameter estimation (solid black 
line).   
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  Fig. 6.   a  Parameter      b  32  is plotted over the 
external potassium concentrations for the 
 ΔptsN  model.  b  Estimated initial values  x  20  
of the second state variable are plotted for 
different external potassium concentra-
tions (fits were performed with one dataset, 
estimated initial values and a ‘tfest’ model 
structure).       
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(2)

  The model parameters for all 9 external potassium 
concentrations were determined. Thereby, it turned out 
that the newly introduced parameters  a  24  and  a  42  are con-
stant over all potassium concentrations, whereas param-
eter  a  33  became potassium dependent and is therefore 
also highlighted with an  *  in equation 2.

  Wild-Type Strain  
 Finally, the model for the wild-type strain was devel-

oped. We searched for a minimal parameter set to simulate 
the data for the potassium concentrations of 0.22, 1.21 and 
10.12 m M . As was the case with the  ptsNHA  strain, the 
model for the wild-type strain also demanded the intro-
duction of parameter  a  42 , whereas parameter  a  24  was no 
longer necessary to describe the experimental data. Param-
eter c 2   *   is now different from zero and potassium depen-
dent, which leads to an influence of state variable  x  2  at low 
external potassium concentrations on the system. Further-
more, a potassium dependency was introduced in c1*, 
which resulted in similar quantitative levels of  x  1 ,  x  3  and  x  4 . 
Additionally, the whole system is damped compared to the 
two other strains, that is, that at higher potassium concen-
trations a lower response is observed. In order to make the 
parameter dependencies comparable, we introduced a fac-
tor c*corr that modifies all values of the   c   vector. The model 
structure for the wild-type is shown in state-space repre-
sentation as follows (parameters varying over the external 
potassium concentration are highlighted using  * ):

11 12 11

21

33 34 32

42 43

1 2 3 4

0 0 0
0 0 0 0 0

0 0 0
0 0 0 0

                         corr

a a b
a

x x u
a a b

a a

y c c c c c x .

 

(3)

  The values of equation 4 (Methods) which serve to 
quantify the quality of parameter identification for the 
three strains and all external potassium concentrations 
are summarized in  table 2 . The values range between 46 
and 85%.

  Comparison of Model Structures 
 The black box approach reveals dynamic connections 

between state variables, systems inputs and the output. For 
each strain variant considered here, the model structure 
had to be slightly refined in order to describe the experi-
mental data. These modifications can be explained by tak-
ing into account the differences in the biochemical net-
work structure of the reference strain and the other strains. 
The most prominent changes were the introduction of the 
connection between the PTS module and the Kdp module 
in the  ptsNHA  strain as well as in the wild-type strain. In 
these strains the PtsN protein is now present and therefore 
able to exert its regulatory functions on the Kdp module 
( fig. 4 ). Due to these connections it is expected that input 
1, the OD, has a more direct influence on the second mod-
ule in the  ptsNHA  strain and in the wild-type. The OD re-
flects the metabolic activity of carbon metabolism and is 
therefore directly related to the PTS.

  Before comparing the different models in detail, we an-
alyzed the dependence of the parameters on the external 
potassium concentration ( fig. 7 ). As can be seen, only some 
kinetic parameters depend strongly on the potassium con-
centration, whereas others show a constant value.

  In the next step we compared the model structures 
which were obtained from system identification. The in-
terpretation of the simulation results is focused on the 
time-course simulation of the state variables  x  1 – x  4  of the 
three model variants. As an example we discuss here the 
results for each strain of an external potassium concentra-
tion of 0.27 m M .

   ΔptsN  Strain  
  Figure 8 a shows the model structure for the reference 

strain  (ΔptsN) . Parameters that are potassium dependent 
are highlighted within boxes. In the lower part of the fig-
ure, time courses of states  x  1 – x  4  are displayed.

 Table 2.  Parameter estimation: values for different strains and po-
tassium concentrations according to equation 2

Concentration, mM ΔptsN, % ptsNHA, % Wild-type, %

0.22 46.72 65.60 71.26
0.27 64.70 68.42 83.29
0.32 66.89 72.01 77.02
0.71 74.89 77.36 81.77
1.21 84.56 79.64 79.04
2.20 84.99 74.79 76.22
5.17 85.53 80.11 73.34

10.12 83.83 63.83 71.05
22.00 72.84 62.70 47.32
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  As will be explained in detail in the following, the cen-
tral message of this model structure is that in the  ΔptsN  
strain the KdpFABC level (output) is influenced indepen-
dently by three factors: the first is dilution by growth, the 
second is a fast response of the TCS to a potassium down 

shock, and the third is an integrative regulatory behavior. 
This integrative regulator steadily increases its signal when 
the shock cannot be overcome by intracellular processes.

  As can be seen from the time-course data, only  x  1  from 
the PTS module (green box) contributes to the system 
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  Fig. 7.  Parameter dependencies on external potassium concentra-
tions for all strain variants.  a  Parameter      a  33  shows different values 
for each strain but varies only for the  ptsNHA  strain with the ex-
ternal potassium concentration.  b  Parameter  a  43  shows the same 
pattern for  ΔptsN  and  ptsNHA , but is constant for the wild-type.
 c  Parameter  a  34  only varies for the wild-type strain.  d ,  e  Parameters 

 b  11  and  b  32  show a behavior in the opposite direction for all strains. 
 f–h  Parameters  c  1 ,  c  2  and  c  corr  vary just for the wild-type strain and 
have the same constant value for the  ΔptsN  and  ptsNHA  strains. 
Potassium concentrations are plotted on logarithmic scales to the 
highlight variations at small potassium concentrations.     
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output, as the values of  x  2  are very small. Dynamics of  x  1  
together with  x  2  generate a negative influence on the sys-
tem output, as  x  1  is always negative. The behavior of  x  1  
together with  x  2  can be interpreted as the dilution term, a 
standard term in mass balance equations for intracellular 

metabolites. Dilution by growth takes into account the 
distribution of molecules to the daughter cells during cell 
division and is an important entity in the case that no flux 
of synthesis exists. Therefore, cells are able to reduce the 
number of molecules per cell just by dividing. Since in the 

a11

x1

Output
LUM/OD

x4x3

c3 c4

a12

a21
x2

u1
OD

u2
Potassium

u1
OD

Output
LUM/OD

x1
 *

 c
1

x2
 *

 c
2 

–3

1

2

3

4

c1

b32 (K+)

b11 (K+)

a33

a43 (K+)

a34 (K+)

u2
Potassium

x3
 *

 c
3

x4
 *

 c
4

Time (h)
4 8 12 16 18

Time (h)
4 8 12 16 18

Time (h)
4 8 12 16 18

Time (h)
4 8 12 16 18

+

a

b

  Fig. 8.   a  Model structure for the      ΔptsN  strain (reference strain); parameters varying over potassium are displayed 
in black boxes.      b  The time course of the internal state variables. The model was simulated with input data for an 
external potassium concentration of 0.27 m                                             M .   
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reference strain neither module is connected via PtsN, the 
influence of the growth rate is limited to the dilution ef-
fect. As can be seen in the figure, two parameters,  b  11  and 
 b  32 , connect the respective input  u  1  and  u  2  to the system 
variables, both of which depend on the potassium concen-

tration ( fig. 7 d, e). While parameter  b  11  shows an increas-
ing trend, parameter  b  32  shows a trend in the opposite di-
rection. This observation reflects that, for higher extracel-
lular potassium concentrations, the influence of potassium 
is reduced, while the OD becomes more prominent.

  Fig. 9.   a  Model structure for the      ptsNHA  strain; parameters varying with the external potassium concentration 
are surrounded by boxes.      b  The time course of internal state variables. The model was simulated with input data 
for an external potassium concentration of 0.27 m                                             M .   
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  Analysis of the time-course data for  x  3  and  x  4  revealed 
that the system’s response  x  3  increases strongly directly 
after the start of the experiment and persists on a high 
level. In contrast, state variable  x  4  increases steadily. State 
variable  x  3  can be interpreted as a fast response of the sys-
tem after a potassium down shift. Therefore, it might rep-
resent the dynamics of the TCS and the synthesis of the 
mRNA of the output protein. As signal  x  4  is increasing 
over the whole time period, it could serve as a controller 
with integrative behavior. When cells are grown at low 
extracellular potassium concentrations, it is expected that 
the internal potassium pool will be completely depleted. 
Therefore, the cellular machinery has to be activated in 
order to compensate for the lack of potassium. However, 
as the external potassium concentration is very low, the 
cell’s needs cannot be served by the activity of the Kdp-
FABC transporter. As a consequence, an integral control-
ler becomes active. This was already observed for bacte-
rial chemotaxis where adaptation precision could be ex-
plained using a mathematical model [Alon et al., 1999]. If 
cells are grown at higher extracellular potassium concen-
trations, the system is able to adapt, as more potassium 
can be taken up and the time course of  x  4  reaches a con-
stant value after 12 h (data not shown).

   ptsNHA  Strain  
 The model structure of the  ptsNHA  strain is shown in 

 figure 9 a. The parameters that depend on the external po-
tassium concentration are again marked with black box-
es. In the lower part of the figure, the time courses of states 
 x  1 – x  4  are depicted.

  The central message of the model structure of the 
 ptsNHA  strain is that here the KdpFABC level (output) 
is influenced by four effects. As in the  ΔptsN  strain mod-
el, dilution by growth, a fast reaction of the TCS and the 
integrative regulator play a role. Furthermore, the new 
connection between two state variables (by parameters 
 a  42  and  a  24 ) now results in a positive, growth-dependent 
influence on the Kdp module. We propose that this in-
fluence is a consequence of the presence of the unphos-
phorylated PtsN protein. This results in increased Kdp-
FABC production in a growth-dependent manner. In 
the following these statements will be explained in more 
detail.

  The construction of the model for the  ptsNHA  strain, 
while preserving the structure of the model of the  ΔptsN  
strain, required the inclusion of two new connections, 
 a  42  and  a  24 , between state variables  x  2  and  x  4 . While the 
time course of  x  3  and  x  4  are qualitatively similar in both 
model variants for the first 12 h, state variable  x  1  now 

shows positive values. We interpret this positive signal 
as the influence of the PTS Ntr  (included in the first mod-
ule) on the potassium uptake system KdpFABC. As the 
PTS module is basically represented by  x  1 , as x2 is again 
close to zero, it reflects both a positive activator of the 
KdpFABC synthesis and dilution by growth as already 
described for the reference strain. Again,  x  3  reacts with 
a sharp increase directly after the potassium down shock 
and a slow but steady increase afterwards. However, it 
does not reach the same steady state as in the  ΔptsN  
strain model. State variable  x  4  is again interpreted as a 
controller with integrative behavior, but for the  ptsNHA  
strain the signal is not as strong as for the reference 
strain. As already described for  E. coli , PtsN influences 
the activity of the KdpD/KdpE TCS by direct interaction 
with the sensor kinase KdpD, which in turn senses the 
potassium availability [Lüttmann et al., 2009]. In com-
parison to the  ΔptsN  strain model where the PTS and the 
Kdp modules existed separated from each other, in the 
model for the  ptsNHA  strain the influence of the PTS 
module on the output became more prominent. This re-
flects the influence of the growth rate and the PTS Ntr  on 
the synthesis of the KdpFABC transport complex.

  Wild-Type Strain  
 The final model structure of the wild-type strain is 

shown in  figure 10 a. Again, the parameters that change 
with variations in the external potassium concentration 
are marked with black boxes. The lower part of the figure 
displays the time courses of states  x  1 – x  4 .

  Analyzing the model structure and parameter depen-
dencies in the wild-type, it turned out that the KdpFABC 
level is regulated in a different way as compared to the 
other two strains. Dilution by growth, a fast reaction by 
the TCS and the integrative regulator exist as in the  ΔptsN  
and  ptsNHA  strains. However, a negative influence in late 
growth stages can now be observed that is derived from 
the phosphorylated PtsN molecule. The whole system is 
damped, that is, the expression rate is lower, and is deac-
tivated at external potassium concentrations higher than 
1 m M  due to the introduction of the phosphorylated PtsN 
protein.

  A closer inspection of the model structure revealed 
that the model for the wild-type strain is characterized by 
major alterations. State variable  x  2  becomes relevant for 
the output at low potassium concentrations and the com-
plex building parameter  a  24  is no longer necessary. Fur-
thermore, in contrast to the other strains, output param-
eter  c  now partly depends on the external potassium con-
centration (see  fig. 7 h). As in the reference strain  (ΔptsN) , 
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state variables  x  1  negatively contributes to the output and 
represent only dilution by growth. The positive influence 
seen in the  ptsNHA  strain is not observed in the wild-type. 
This can be explained by the fact that in the wild-type 
PtsN is present in both forms, phosphorylated and non-
phosphorylated, whereas in the  ptsNHA  strain it is locked 
in the P-free form.

  The time course of state variable  x  3  shows the biggest 
difference in comparison to the other two strains. After a 
fast increase a slow decrease is observed. This can be in-
terpreted as a fast adaptation to the new environmental 
conditions. A reduction of the TCS activity results due to 
additional potassium uptake by the KdpFABC transport 
complex. The time course for all external potassium con-
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 Fig. 10.   a   Model structure for the wild type strain; parameters varying with the external potassium concentration 
are highlighted by boxes.  b  The time course of internal state variables. The model was simulated with input data 
for an external potassium concentration of 0.27 m                                                       M .   
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centrations is very similar, but differs in the output vector 
 c . As can be seen in  figure 7 , values for parameter  c  corr , 
which is a weight for the overall output of the states, de-
creases with increasing potassium concentration. This re-
flects a superimposed control scheme balancing the dy-
namics influenced by the growth rate and the external 
potassium concentration which is valid only in the wild-
type strain.

  In summary, all experimental data for the three strain 
variants could be described using a model that is com-
posed of four state variables. State variables  x  1  and  x  2  
could be assigned to input  u  1  (growth rate, PTS module), 
while state variables  x  3  and  x  4  were assigned to input  u  2  
(external potassium concentration, Kdp module).

  Interpretation and Biological Meaning 

 The PTS is one of the most prominent signal transduc-
tion units in bacteria and quite well studied, especially in 
 E. coli  and  P. putida  [Deutscher et al., 2006]. It measures 
the flux through glycolysis and gluconeogenesis by map-
ping the ratio of intracellular PEP and pyruvate to the 
degree of phosphorylation of the PTS proteins [Deutscher 
et al., 2006; Kremling et al., 2007]. For the carbohydrate 
branch in  E. coli , the degree of phosphorylation is linked 
to the activation of the global transcription factor Crp. 
The TF which positively and/or negatively influences 
more than 260 operons (for example, see database Eco-
cyc) and is the most important regulator for carbohydrate 
metabolism. Mathematical models for carbohydrate up-
take and control are already available [Baldazzi et al., 
2010; Bettenbrock et al., 2006; Kotte et al., 2010] and pro-
vide a quantitative approach for the understanding of the 
complex interaction scheme between metabolism, signal-
ing and gene expression.

  In contrast, the role of the PTS Ntr  is less well under-
stood and mathematical models are scarce [Kremling et 
al., 2012]. From studies with  E. coli  an interrelation of the 
components of the PTS Ntr  with potassium metabolism 
was described. In this study, we analyzed the interaction 
of PtsN with the sensor kinase KdpD in  P. putida  by mon-
itoring the effect of different extracellular potassium con-
centrations on the production of the KdpFABC potassi-
um transport complex of the wild-type and two  pts  mu-
tant strains. Potassium is a major cation and involved in 
the regulation of cell turgor and pH homeostasis. In the 
study at hand we focused on the interplay between the 
PTS Ntr  and the expression of the  kdpFABC  operon in  P. 
putida . Based on time-course data for three strain vari-

ants in combination with nine different initial potassium 
concentrations, a broad range of conditions was covered.

  In contrast to a recently published mathematical mod-
el, which describes gene expression dynamics for  E. coli  
in the absence of potassium [Heermann et al., 2014], here 
only the time course for the KdpFABC protein was deter-
mined and measurements for other intracellular compo-
nents like mRNA or intracellular potassium were not per-
formed. Therefore, we chose a different modeling strat-
egy: the system was considered as a black box and 
generalized models for each strain variant were identi-
fied. The criteria that were applied to choosing the final 
model were the quality of the parameter estimation (a 
quantitative measure) and the interpretation of the re-
sults in a physiologically meaningful way (a qualitative 
measure). Bearing in mind that the behavior of cellular 
systems is strongly nonlinear, the results of parameter es-
timation was satisfactory as the fit values were between 46 
and 85%.

  In our study the  ΔptsN  mutant was chosen as the refer-
ence strain, as the interaction of potassium metabolism 
with PTS Ntr  should be disabled in this strain due to the 
lack of the PtsN protein. The  ptsNHA  strain produces a 
variant of the PtsN protein that carries an amino acid ex-
change at the phosphorylation site from histidine to ala-
nine, which results in a protein that is blocked in the non-
phosphorylated form. In contrast, in the wild-type both 
forms of PtsN are present at the same time, although in 
varying ratios.

  In the reference strain both modules act independent-
ly of each other, as there is no internal connection be-
tween the PTS Ntr  and KdpFABC protein synthesis be-
cause the PtsN protein is not produced in this strain. The 
time course of the KdpFABC protein could be described 
using a linear superposition of the output of both mod-
ules, reflecting the influence of dilution by growth and the 
influence of the external potassium concentration. While 
the dynamics of the first module could clearly be assigned 
to the dilution effect, the second module is more difficult 
to interpret. The simulation shows a typical behavior for 
signaling and mRNA synthesis, which consists of a rapid 
first response and a subsequent adaptation. This has also 
been described for the regulation of potassium homeosta-
sis in  E. coli , where signaling processes like TCSs and 
feedback control elements are known to play an impor-
tant role [Heermann et al., 2014]. Interestingly, this was 
not sufficient to completely explain the measured data. It 
turned out that an additional element had to be incorpo-
rated which later on could be interpreted as an intracel-
lular controller. At low potassium concentrations, cells 
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are not able to reach potassium homeostasis and, there-
fore, the state variable representing the intracellular con-
troller increases over time, displaying the cell’s increasing 
need for potassium. At higher potassium concentrations 
the state variable of the controller is constant over a lon-
ger time period. In this strain, in which no PtsN protein 
is present and therefore no additional influence on the 
KdpD sensor kinase is expected, a higher expression of 
 kdpFABC  is observed than in the wild-type, where both 
forms of PtsN are present. This indicates a strong inhibi-
tory effect of either phosphorylated or the P-free PtsN on 
the activity of the  kdpFp  via KdpD.

  In the  ptsNHA  strain only unphosphorylated PtsN is 
present and during model identification it became obvi-
ous that now an internal connection between the two 
modules had to be incorporated. In comparison to the 
reference strain, the dynamics obtained show striking dif-
ferences: the output of the PTS module shows positive 
values and the Kdp module output has lower values. This 
indicates a stronger influence of the growth rate/PTS Ntr  
on  kdpFABC  gene expression in the presence of P-free 
PtsN than in its absence (reference strain). In the wild-
type strain, however, in which both forms of the PtsN 
protein are present, KdpFABC production is lower than 
in the other two strains. This effect is pronounced at high-
er potassium concentrations. We attributed the lower 
KdpFABC production to the presence of the phosphory-
lated form of PtsN, which seems to have a strong negative 
effect and to slow down gene expression at already low 
external potassium concentrations. The potassium de-
pendency of the system is also reflected by the course of 
the output parameter  c  corr , which enhances the output at 
low potassium concentrations and approaches zero at po-
tassium concentrations around 2 m M .

  Based on linear system identification, we were able to 
generate model variants which successfully describe high 
resolution time-course data for the potassium transport-
er KdpFABC. These models present a promising starting 
point for the development of mechanistic models for the 
interaction of the PTS Ntr  with the potassium subnetwork 
in  P. putida . The absence of the PtsN protein leads to 
strong KdpFABC production even in the presence of high 
extracellular potassium concentrations. This should re-
sult in unnaturally high intracellular potassium concen-
trations, which could be an explanation for the reduced 
growth rate observed in this strain. It is tempting to spec-
ulate that PtsN is a potent regulator of the KdpD activity, 
especially at high extracellular potassium concentrations, 
downregulating the amount of KdpFABC complexes 
produced. As no downregulatory activity was observed in 

the  ptsNHA  strain, we attributed the repressive effect to 
the phosphorylated form of PtsN. In such a mechanistic 
model the interaction between the proteins KdpD, KdpE 
and PtsN will play a major role and we speculate that this 
‘three-component system’ can integrate signals from car-
bohydrate metabolism (transferred by the phosphoryla-
tion state of PtsN) and potassium metabolism (sensed by 
KdpD). From bacterial two-hybrid experiments we have 
strong indications that the influence of PtsN on transcrip-
tion of the  kdpFABC  operon is mediated through direct 
interaction between PtsN and KdpD [unpubl. data]. To-
gether, these studies pave the way towards a detailed 
modeling of the influences of the PTS Ntr  on potassium 
homeostasis and, therefore, may lay the foundation for 
more thorough understanding of the interaction between 
carbohydrate and potassium metabolism. 

  Methods 

 Strain Construction 
 All  P. putida  strains used in this work are derived from  P. putida  

KT2440 [Nelson et al., 2002].  P. putida   ΔptsN  was constructed using 
the method described by Martínez-García and de Lorenzo [2011]. 
 P. putida   ptsNHA  was basically constructed as described in Pflüger-
Grau et al. [2011], with the only difference being that  P. putida  
KT2440 served as the recipient strain. In each case, the mutation was 
confirmed by sequencing the respective region. An overview of all 
strains used in this study is given in  table 3 . Plasmid pSEVA226_
kdp, bearing a transcriptional fusion of the  kdpFABC  promoter re-
gion with the  luxCDABE  genes, was constructed by ligating a frag-
ment spanning a sequence from 565 bp upstream of the start codon 
of  kdpF , containing the predicted  − 10 and  − 35 box of the  kdpFABC  
promoter  (kdpFp)  into the multiple cloning site of pSEVA226 [Sil-
va-Rocha et al., 2013]. This allowed the measurement of activity of 
 kdpFp  by monitoring luminescence (LUM) and optical density 
(OD) of growing cells directly in the automated microplate reader 
Infinite M200 Pro (Tecan, Männedorf, Switzerland). The ratio of 
LUM/OD served as a good approximation for the concentration of 
the KdpFABC protein in the cell as confirmed by Western blotting 
with a specific antiserum against the KdpFABC complex.

 Table 3. Strains used in this study

Strain Description

P. putida KT2440 Wild-type
P. putida ΔptsN Strain carrying a markerless deletion of the 

entire ptsN gene
P. putida ptsNHA Strain producing a variant of the PtsN 

protein bearing an amino acid exchange in 
position 68 from His to Ala (which locks 
PtsN in a nonphosphorylated state)
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  Data Generation 
 To determine the expression of the  kdpFABC  operon, cells car-

rying pSEVA226_kdp were directly grown in black 96-well plates 
with transparent bottoms and lids (Brand, Wertheim, Germany) 
in 200-μl potassium-free M9 medium with 0.2% citrate with vary-
ing potassium concentrations (0–22 m M ). Wells were inoculated 
with 2 μl of an overnight culture of the respective strain grown with 
22 m M  of potassium, and the plates were incubated in the auto-
mated microplate reader Infinite M200 Pro (Tecan) at 30   °   C with 
orbital shaking before every measurement. The OD at 600 nm and 
LUM were measured at least every 4 min. Each value used in pa-
rameter estimation represents the mean of at least 4 independent 
experiments.

  System Identification 
 System identification is a basic method in engineering sciences 

to find a mathematical description of a system. It is applied to de-
termine the structure of the model and to analyze and estimate the 
parameters of the model. Therefore, the following steps are usu-
ally performed: (i) fixing a model structure, (ii) setting the order of 
the model (that means the number of state variables that are used 
to characterize the system) and (iii) parameter identification, in-
cluding parameter analysis (which parameter can be estimated 
based on the experimental data) and parameter estimation itself.

  Here, generalized models were used that describe the connec-
tion between inputs and outputs of a system. Various types of such 
models are described in the literature and implemented in the soft-
ware package Matlab (www.mathworks.com). Models that are 
provided by the toolbox vary in the design of the model structure 
(Matlab functions ‘tfest’, ‘bj’, ‘arx’ and ‘ssest’ are used) and in the 
choice of the initial values for the state variables (initial values 
could be set at zero or can be regarded as additional parameters 
which must be estimated).

  The use of the toolbox requires a special data format, which 
consists of input data, output data and a time vector. The input and 
output data can represent multiple experiments. We tried two dif-
ferent approaches to convert the time-course data into datasets: in 
the first a single dataset was created using all 9 potassium concen-
trations (with 4 biological replicates each), whereas in the second 

approach the data for each potassium concentration (with 4 bio-
logical replicates each) was considered individually. This gener-
ated 9 datasets, one for each potassium concentration. First we 
fitted the data from the reference strain  (ΔptsN)  to find a suitable 
model structure. The best model structure found served as the ba-
sis for the other two strains ( ptsNHA  and wild-type). Furthermore, 
we analyzed the difference between using either potassium as the 
single input or potassium and OD as combined inputs. Altogether, 
this resulted in 16 different combinations of datasets for system 
identification, which are summarized in  table 2 . The final result of 
the whole process of system identification is a set of differential 
equations with corresponding parameters.

  The final result of system identification is described in detail in 
the Results section. Once a suitable system is identified, it is neces-
sary to evaluate the outcome. Here, two criteria come into play. 
The first criterion is the quality of the fit of the model. The toolbox 
provides a quantitative measure that was used to scale the differ-
ence between the model simulation and the experimental data. The 
numbers can range between 0 and 100, with 100 representing a 
perfect fit:

2

2100 1      
Data Model

fit
Data mean Model
|| ||

.
|| ||

 
(4)

  The second criterion is the interpretability of the model. This 
is crucial as it cannot be quantified but is based on the experience 
and intuition of the model developer. Interpretability in this con-
text is defined as the ability of the user to assign a biological func-
tion/meaning to the proposed model structure. The interpretabil-
ity of these structures depends greatly on the number of compo-
nents and the number of connections between these components. 
For example, a serial connection of 20 components having 19 con-
nections is easier to interpret than a spiderweb-like network of just 
6 components and 24 connections. Another point which influenc-
es the interpretability is the potential dependence of the parameter 
values on the potassium concentration. As described above, here 
two alternatives for parameter identification were analyzed. The 
first approach tried to find a single set of parameters for all condi-
tions, while the second one aimed to find a separate parameter set 
for each potassium concentration. After considering all the iden-
tification variants shown in  table 4 , the best model structure turned 
out to be the one based on 9 datasets, using two inputs, zero initial 
values and the ‘tfest’ function.   

 Table 4.  System identification overview:  initial value setting, used 
datasets, and chosen inputs for the black box system identification

Dataset one dataset one dataset
Input1 OD
Input2 potassium potassium
Output LUM/OD LUM/OD
Initials estimated estimated
Tool tfest bj arx ssest tfest bj arx ssest

Dataset nine datasets nine datasets
Input1 OD
Input2 potassium potassium
Output LUM/OD LUM/OD
Initials zero zero
Tool tfest bj arx ssest tfest bj arx ssest
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