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Abstract—The virtualization of Software-Defined Networks
(SDN) allows multiple tenants to share the same physical infras-
tructure and to use their own SDN controllers. SDN virtualization
is achieved through an SDN network hypervisor that operates
between the tenants’ controllers and the SDN infrastructure. In
order to provide performance guarantees, resource mapping is re-
quired for both data plane as well as control plane for each virtual
SDN network. In the context of SDN virtualization, the control
plane resources include the network hypervisor, which needs to
be assigned to guarantee the performance for each tenant. In pre-
vious work, the hypervisor resource mapping is based on offline
benchmarks that measure the hypervisor resource consumption
against the control plane work load, e.g., control plane message
rate. These offline benchmarks vary across different hypervisor
implementations, e.g., single or multi-threaded, and depend on
the capabilities of the deployed hardware platform, e.g., the used
CPU. We propose an online approach based on machine learning
techniques to determine the mapping of hypervisor resources
to the control workload at runtime. This concept is already
successfully applied in the context of self-configuring networks.
We propose three models to estimate hypervisor resources and
compare them for two SDN hypervisor implementations, namely
FlowVisor and OpenVirteX. We show through measurements on
a real virtualized SDN infrastructure that resource mappings can
be learned on runtime with insignificant error margins.

I. INTRODUCTION

A. Motivation

Software-Defined Networking (SDN) decouples the control
plane from the data plane leading to better programmability.
Virtualizing SDN networks does not only reveal the power of
resource sharing among different tenants, it also enables the
tenants to deploy their own network operating systems, i.e.,
SDN controller. Thus, tenants can specifically program the
networking behavior of their virtual networks through their
controller according to their own demands.

The most used concept to virtualize SDN networks that are
based on OpenFlow (OF) is to apply SDN network hypervi-
sors [1]. For SDN networks, they run as intermediate software
layers between the tenant controllers and the virtual resources
of the data plane. They are responsible for connecting the
SDN controllers of the tenants to their virtual networks.
Furthermore, SDN network hypervisors control and manage
the allocation of physical data plane resources, e.g. network
bandwidth, among the different tenants.

In non-virtualized SDN networks, the performance of the
control plane can have severe impact on the performance of
the data plane [2], [3]. This also holds true when virtualizing
SDN networks. For instance, in case a network hypervisor
instance is overloaded, the overload impacts the processing
of the control plane messages of the tenants. This can result
in a negative impact on the data plane performance of the
tenants, e.g., an increase in web page loading time [4], [5].
Therefore, when requesting virtual SDN networks, tenants
should not only demand for data plane resources, they should
be able to request control plane resources such as a specific
control message rates. The network hypervisor, accordingly,
is not only responsible to assure the performance for each
tenant on the data plane, but also on the shared control plane.
As the hypervisor processes the control traffic of all tenants,
a sophisticated resource mapping of hypervisor processing
resources to virtual network demands is needed.

B. Related Work and Contribution

In order to allocate hypervisor processing resources to
virtual network demands, a mapping between the hypervisor
processing resources and the control plane workload, e.g., con-
trol message rate is required. Such mapping guarantees that,
e.g., enough CPU resources are assigned for the control plane
of each virtual SDN network in order to provide the requested
performance. The importance of such a mapping has already
been shown in [4]. However, the former investigation is based
only on an offline performance benchmark of one particular
hypervisor. Other existing work on SDN network hypervisors
has also only provided offline benchmarks proofing their
implementation [6], [7], [1]. Due to the heterogeneity of
existing hardware and software solutions, an offline benchmark
is generally not feasible in practice.

In this paper, we introduce the concept of determining
resource allocation models at runtime. The concept applies
online machine learning to estimate the parameter setting for
different resource models. Our overall goal is to enable a
network hypervisor to work in a self-configuring manner. Self-
configuration is, for instance, used for the configuration of
virtual machines in cloud systems [8]. In [9], the authors
describe parametrized abstract models for the performance
of SDN controllers. The authors show in particular that the
performance of SDN controllers does not scale linearly with978-1-4673-9486-4/16/$31.00 c© 2016 IEEE



the available resources. SDN hypervisors are not considered
in the work. We demonstrate the feasibility of the concept
via measurements for network hypervisors in a real testbed.
Further, as existing benchmark tools do not allow the gener-
ation of specific control traffic mixes, we developed our own
benchmarking framework hvbench and make it available to the
public. Compared to existing solutions such as cbench [10],
ofcbenchmark [11], SDLoad [12], PktBlaster [13] and the
framework presented in [14], hvbench allows for flexible
traffic mixes and message inter-arrival times. Further data and
control plane benchmarks for SDN can be found in [15].
For measurement purpose, we emulate virtual network tenants
with specific control traffic mixes. The measurement results
demonstrate the feasibility of online learning of resource
allocation mappings with insignificant error margin.

The remainder of this paper is structured as follows. In
Section II, we describe the set-up, a novel benchmarking tool,
the proposed models, and the learning approach. Section III
shows the evaluation results. Section IV outlines conclusions.

II. METHODOLOGY

In the following, we first introduce the experimental set-
up, including a novel hypervisor benchmarking tool hvbench.
hvbench can generate control traffic mixes based on proba-
bility distributions. Afterwards, we discuss the control plane
arrival process of the tenants and the considered OF control
messages in detail. Finally, three learning models for the
hypervisor processing resources are proposed and evaluated.
The evaluation framework hvbench and the run traces are
available as open-source for download [16].

A. Setup
Figure 1 depicts the experimental setup. The setup consists

of an emulated SDN data plane based on mininet [17],
a network hypervisor instance, a resource monitor and the
benchmarking tool hvbench. One virtual network is config-
ured, where hvbench serves as the controller of this virtual
network. hvbench is based on libfluid [18], which is a library
that provides the basic features of an OpenFlow controller.
The experimental procedure is as follows. First, the switches
establish a connection to the hypervisor, which consequently
connects to hvbench. Next, the control plane arrival process
starts while the resource monitor records the resource usage
of the hypervisor instance. Note that hvbench uses only
one control plane connection and emulates the messages of
different tenants via this one connection.

The hypervisor resource monitor records key performance
indicators (PKI) of the hypervisor process. The PKIs are
recorded with a frequency of 1/s. In this work, we focus on
the CPU utilization ρ induced by the hypervisor process.

We synchronize the measurements of the control message
rate (measured by hvbench) and the resource monitor based
on the time of the underlying operating system.

B. Control Plane Arrival Process
Table I summarizes the nomenclature, constants and distri-

butions used in this work. The overall control plane process
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Figure 1. Experimental setup including hvbench, hypervisor instance, re-
source monitor and an emulated SDN network environment.

can be structured in two independent processes. First, there is
the tenant arrival process which describes when a new tenant
is admitted and with which average request rate. Second, each
tenant has a specific control message pattern which describes
the type of requests that are generated. Each request type
follows a random distribution, which describes the amount
of messages generated during the tenants lifetime and also
defines the arrival time of each request message.

Table I
NOMENCLATURE & VARIABLES

Nomenclature
l ∈ N Duration of the experiment in seconds.
t, t ∈ {0, 1, .., l}, l > 0 Experiment time.
O := {fr, er, sp, sf, po, fm} Types of OpenFlow requesst.
rto Requests per second of type o at t.
rtall

∑
o∈O rto.

rt Synonym for rto and rtall
ρtmeas ∈ [0, 1] Measured CPU utilization at t.
ρtlin(r

t
all) Single dimen. linear model for ρtmeas.

ρtlin2({r
t
o, ∀o ∈ O}) Multi dimen. linear model for ρtmeas.

ρexp(rtall) Exponential model for ρtmeas.

M := {lin, lin2, exp}) Investigated models.
T := {1, 2, 3, 4, 5, 6} Type of tenants (see Table II).

Constants & Distributions
ciat := 5: Constant tenant inter-arrival time (s).
Ravg ∼ N (200, 502): Average tenant message rate (req/s).
τx ∼ exp(Ravg): Tenant x message inter-arrival time.

We model a gradual admission of tenants with a constant
inter-arrival time of ciat := 5s. The first tenant arrives at t := 0
and marks the start of an experiment run. Ravg describes
the average control message rate of all message types per
tenant. It follows a normal distribution with µ := 200 and
σ := 50. For each tenant, the average request rate is chosen
upon tenant’s arrival. Ravg is restricted to the interval [10, 2·µ].
The inter-arrival time of the requests generated by each tenant
is exponentially distributed with an average rate of Ravg . Each
tenant is assigned a set of weights, which describes the discrete
distribution of the request type. Table II shows the weights of
each tenant type as well as the weights for each request type
per tenant type. We illustrate the whole process by example.
When at ciat · 1 = 5s the second tenant is admitted, first, the
process chooses a normal distributed request rate Ravg for the



Table II
TENANT CONTROL PLANE ARRIVAL WEIGHTS

T Weight {rfr, rer, rsp, rsf , rpo, tfm}
T1 0.1 {0.5, 0.1, 0.2, 0.1, 0.1, 0.1}
T2 0.1 {0.1, 0.3, 0.4, 0.1, 0.1, 0.1}
T3 0.2 {0.3, 0.3, 0.2, 0.1, 0.1, 0.1}
T4 0.2 {0.05, 0.04, 0.45, 0.45, 0.1, 0.1}
T5 0.2 {0, 0, 0, 0, 1, 0}
T6 0.2 {0.1, 0.1, 0.1, 0.1, 0.1, 0.5}

Table III
HARDWARE CONFIGURATIONS

C1 Virtual, 2 x i7-4770 CPU 3.40GHz
C2 Virtual, 1 x i7-4770 CPU 3.40GHz
C3 Physical, 2 x i7-4790 CPU 3.60GHz

tenant, e.g., 180 requests per second. Afterwards, the tenant
is assigned a tenant type T based on a discrete distribution
with the weights as given in Table II, e.g., T5. Here, the tenant
generates only packet out messages. The tenant now generates
exponentially distributed packet out messages with an average
rate of 180 messages per second until the experiment finishes.

C. Hypervisor Processing Learning Models

This work defines three learning models for the hypervisor
CPU utilization ρ. Equation 1 defines a linear model where ρ
depends on the total average requests per second rall and on
the model coefficients β1 and β2. β1 represents the processing
cost per one request and assumes that the processing cost for
all request types is equal. Equation 2 describes a model where
ρ depends on the request rate ro and cost βo for each of the
request types (∀o ∈ O). The third cost function in Equation 3
assumes an exponential relationship between the request rate
rall and ρ. β2, βI , βb are constant offsets.

ρlin(rall) := β1 · rall + β2 (1)

ρlin2(r) := (
∑
o∈O

βo · ro) + βI (2)

ρexp(rall) := βc · (1− e−βa·rall) + βb (3)

Next, we describe the iterative fitting process to estimate the
model coefficients β0, β1, βo, βa, βb and βc during the gradual
tenant admission process. Subsequently, we denote the CPU
utilization estimated by the models at point in time t as ρt and
ρtmeas as the measured CPU utilization at time t. βt describes
the value of β at time t in the learning process. Based on
an initial training, we define the following initial state for the
model coefficients β. For ρlin, β1 = 0.000029 and β2 = 0.1.
For ρlin2, βo := 0.00001,∀o ∈ O and βI := 0.1. For ρexp,
βa = 0.000026, βb = 0.201, and βc = 1.004103.

D. Online Learning Method

The online learning is an iterative process structured in
three phases. In the first phase, new samples are collected.
The resource monitor continuously gathers a new sample each

second (l = l + 1). Second, fitting the model function(s) to
the collected samples. Third, the models are updated based on
the fitting results. The process is continuously repeated when
a new measured sample is available.

We restrict the adaptation of β per iteration to 10 %
(βt+1 ∈ [βt · 0.9, βt · 1.1]) to make the process more robust
against short term fluctuations or fitting errors. For fitting
the models, we use weighted orthogonal distance regression
(ODR) as introduced by Boogs et al. in [19]. ODR considers
measurement errors in the input, e.g. clock drift or inaccuracy
in the sending process of hvbench or in the resource monitor,
and output dimension, e.g. model discrepancy.

III. RESULTS

We evaluate the processing learning models for two pop-
ular OpenFlow-based SDN hypervisors, FlowVisor (FV) [6]
and OpenVirteX (OVX) [20]. We compare the results to a
scenario without a hypervisor. For this we establish a direct
connection between the switch in the emulated network and
hvbench. Three configurations of hardware platforms as shown
in Table III are evaluated. C1 is a virtual environment with two
virtual CPU cores, C2 is a virtual environment with one core
and C3 is a physical platform with two physical CPU cores.

First, we evaluate the performance of the proposed process-
ing learning models given a specific hardware configuration,
namely C1. The learning models performance is computed in
terms of the mean squared estimation error, which is the dif-
ference between estimated CPU utilization ρt over experiment
time t compared to the real measured values ρtmeas.
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Figure 2. Snapshot of the state of the three models at two points in time
(t = 200, 370) during experiment run. ρexp at t = 370 can predict the CPU
utilization accurately. Horizontal red lines estimate t based on rt and ciat.

A configuration with OpenVirteX running on a virtual
machine, i.e., OVX C1, is taken as a show case. The ex-
periment duration is 800 s. Figure 2 illustrates the iterative
fitting process of estimating the CPU utilization for the three
proposed learning models ρtlin, ρtlin2 and ρtexp. The figure
shows a snapshot of the estimation at two points in time,
namely at t = 200 s and t = 370 s.

The vertical lines indicate the approximate translation of
rt to t, extrapolated from the constant tenant arrival rate.
The semi-transparent area in the background visualizes the
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Figure 3. Mean squared error (MSE) between the model ρt at time t and
the true CPU usage ρmeas for all t ∈ T . Horizontal red line marks an error
of 0.05. ρexp stays underneath threshold starting from t = 120.

measured CPU utilization ρtmeas. The lines and curves depict
ρtlin, ρtlin2 and ρtexp for t ∈ {200, 370}. We see that ρ200exp

slightly underestimates the real utilization by about 10 %, but
at t = 370, the model stays close to the real CPU utilization.
The linear models ρlin and ρlin2 are not able to predict
the future CPU state accurately, as they overfit to the slope
between r := [0, 6000] and therefore overestimate the future
utilization.

Figure 3 depicts the mean squared errors
MSE(ρtm, ρ

t
meas),∀t ∈ {0, 1, .., l},m ∈ M between

the model ρtm at time t and the real CPU utilization ρtmeas
for all t ∈ T for configuration OVS C2, excluding the
first and last 10 % of collected samples. Hence, the figure
shows the fitting quality in terms of MSE of all iterative
steps during the experiment run. The horizontal line marks
an error threshold of 0.05. The results show that the three
models require different run time in order to obtain an
estimation with a MSE lower than the threshold of 0.05. For
instance, the exponential model can reach the MSE threshold
for t > 180s, while the linear model can only reach it at
t > 270s. This shows the difference in convergence time
to reach an estimation quality between the three evaluated
processing models.

Next, we summarize the results of all experiment runs
among the three configurations and the two considered hy-
pervisors in terms of convergence time over 20 experiment
runs for each hypervisor and configuration. Convergence time
is defined here as the experiment time at which the fitting
quality in terms of MSE reaches the threshold of 0.05 and
stays under the threshold for the remaining run time, i.e,
(∃!t : ∀x ∈ {t, t+ 1, .., l},MSE(ρx, ρmeas) ≤ 0.05).

In Figure 4, the lower axis depicts all combinations of
configurations and hypervisors. The left axis gives the con-
vergence time in seconds. The whiskers indicate the range
of the values, the box indicates the 25 % and 75 % quartiles,
respectively, and the line the median of the values. From the
figure we conclude that ρexp can predict the CPU usage of
the hypervisors at about 200 s into the experiment for most
combinations. Furthermore, the linear model, which does not
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Figure 4. Experiment time t where the MSE between the model and the
measured CPU time is and stays lower than threshold 0.05. Lower values are
better. ρexp outperforms the ρlin and ρlin2 models for most configurations.

distinguish the request types, outperforms the second linear
model, which considers the type of the requests. The results
also show that there is a difference between the different con-
figurations. While the linear models are good in predicting the
usage for OVS in the virtual environments, for the hardware
environment C3, the prediction quality is significant lower. For
FlowVisor on the physical hardware, the exponential model
shows a highly varying convergence time compared to the
linear model.

Next, we take a closer look at whether the three models
under- or overestimate the CPU utilization and we quantify
the under- or overestimation for each model for one configu-
ration. Overestimating the future CPU utilization can result in
degrading the overall performance, e.g., slow tenant admission
or tenant request rejection, and it could also result in an
inefficient resource utilization due to over dimensioning. On
the other hand, underestimation can result in an overload of
the hypervisor instance by accepting tenant requests exceeding
the CPU capacity. The under- or overestimation are calculated
as follows:

Xt
m := {∀α ∈ {t, t+ 1, .., l}|ραmeas − ρtm(rα) > 0} (4)

φtm :=

∑
x∈Xt

m
(ραmeas − ρtm(rα))

|Xt
m|

(5)

Y tm := {∀α ∈ {t, t+ 1, .., l}|ραmeas − ρtm(rα) < 0} (6)

ψtm :=

∑
x∈Xt

m
(ραmeas − ρtm(rα))

|Xt
m|

(7)

Xt
m in Equation 4 defines the points in time where the

model ρtm,m ∈ M at experiment time t underestimates the
future CPU utilization ρxmeas,∀x : x > t. In Equation 5, φtm
defines the mean absolute underestimation of model m starting
from time t till the end of experiment time l. Y tm and ψtm in
Equations 6 and 7 define the mean absolute overestimation,
analogous to X and φ for underestimation.
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Figure 5 depicts φ and ψ for the SDN hypervisor Open-
VirteX on hardware configuration C1 over experiment time
t. Overestimation ψ is shown on the top of the figure, i.e.,
positive values > 0. Underestimation φ is shown on the lower
part of the figure, i.e., negative values < 0. From the figure we
conclude that ρlin and ρexp both underestimate the utilization
in this configuration. ρlin2 exhibits mostly overestimation. In
terms of convergence speed, both, ρlin and ρexp, decrease
the underestimation at a similar rate starting from experiment
time 100. For the overestimation case, the figure shows that
ρlin and ρlin2 exhibit high overestimation compared to ρexp.
In addition to high overestimation, ρlin2 shows an oscillating
behavior. ρexp can decrease the amount of overestimation soon
into the experiment and can keep it stable at a low level
starting from t > 130. Although the results of the figure can
not be generalized to all hardware configurations, the results
give important indications on the under- and overestimation
characteristics of the three models.

IV. CONCLUSION

Network hypervisors will become an essential part of
software-defined future communication networks. As they are
implemented in software and operated in virtual environments
with varying processing resources, it is important to under-
stand the relationship between control message rate and CPU
consumption in general and adapt that understanding online
to the current virtual environment. We use an iterative online-
learning approach to compare the prediction quality of three
different models in different environments with two popular
OpenFlow hypervisors and an OpenFlow switch implemen-
tation. The results show that linear models are inadequate to
predict the CPU consumption for increasing message rates. An
exponential model can predict future CPU consumption earlier
and with high accuracy. In particular, the exponential model
converges fast to a state with low over- and underestimation of
the resource usage. The results are a first step towards dynamic
and autonomous load-balancing of network hypervisors in
virtual environments with varying resources. In the future we

plan to extend the current approach to scenarios where the
available computing resources are not constant. Furthermore,
we will apply the methodology to a larger set of configurations
and hypervisors.
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