
c©IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Online learning and adaptation of network
hypervisor performance models

Christian Sieber, Andreas Obermair, Wolfgang Kellerer
Chair of Communication Networks

Department of Electrical and Computer Engineering
Technical University of Munich, Germany

Email: {c.sieber, wolfgang.kellerer}@tum.de

Abstract—Software Defined Networking (SDN) paved the way
for a logically centralized entity, the SDN controller, to excerpt
near real-time control over the forwarding state of a network.
Network hypervisors are an in-between layer to allow multiple
SDN controllers to share this control by slicing the network and
giving each controller the power over a part of the network.
This makes network hypervisors a critical component in terms
of reliability and performance. At the same time, compute
virtualization is ubiquitous and may not guarantee statically
assigned resources to the network hypervisors. It is therefore
important to understand the performance of network hypervisors
in environments with varying compute resources.

In this paper we propose an online machine learning pipeline to
synthesize a performance model of a running hypervisor instance
in the face of varying resources. The performance model allows
precise estimations of the current capacity in terms of control
message throughput without time-intensive offline benchmarks.
We evaluate the pipeline in a virtual testbed with a popular
network hypervisor implementation. The results show that the
proposed pipeline is able to estimate the capacity of a hypervisor
instance with a low error and furthermore is able to quickly
detect and adapt to a change in available resources. By exploring
the parameter space of the learning pipeline, we discuss its
characteristics in terms of estimation accuracy and convergence
time for different parameter choices and use cases. Although we
evaluate the approach with network hypervisors, our work can
be generalized to other latency-sensitive applications with similar
characteristics and requirements as network hypervisors.

I. INTRODUCTION

Software Defined Networking (SDN) is transforming the
way we think about networking. While traditional networks
consist mostly of proprietary devices of a single vendor,
SDN promises network devices with open and programmable
interfaces. The networking devices are reduced to simple
forwarding devices and, ideally, this allows a network operator
to choose freely between interchangeable devices of differ-
ent vendors. Furthermore, this programmability enables the
separation of the control and data plane of the network by
moving control decisions to a logically centralized controller.
The literature refers to the controller as SDN controller or
Network Operating System (NOS) [1]. By pushing forwarding
rules to the devices and polling statistic counters, a NOS can
monitor and reconfigure the network as a whole. OpenFlow
[2] is a wide-spread SDN protocol for pushing rules to devices
and retrieving statistics.

Network virtualization in SDN is the idea of introducing a
virtualization layer between the NOS and the network devices
through network hypervisors (NHV). A NHV is a piece of
software which allows several tenants to share the control over
one physical data plane. To do so, the operator of a tenant’s
NOS first requests a slice of the network, which for example
can be a subset of the traffic defined by a VLAN header,
and afterwards provides the NHV with the IP address of his
controller. The NOS will be able to push forwarding rules
which apply to its slice of the traffic. But the NOS will not
be aware of other traffic in the network, as the NHV isolates
the control decisions from the different tenants.

The network virtualization layer intercepts and translates
all control decisions and statistic messages in the network,
which makes it a critical part of the infrastructure with high
requirements on availability and delay. Therefore, understand-
ing the performance of NHVs in different environments is of
importance. The central questions of this paper are: Which
model describes the performance of a NHV best? How can
this model be trained at runtime? And if there is a change in
available resources, how can this be detected and the model
consequently be adapted to the new environment? This is
important, as an overloaded NHV will increase the delay for
network reconfigurations and network statistic updates. One
way to solve this are offline benchmarks of every NHV in-
stance in every deployed environment. However, this approach
is not scalable to a larger number of platforms and hypervisors.

In [3], we introduce the concept of learning performance
models of network hypervisors at runtime based on measured
utilization and message counters. In this paper we go a
step further and extend our approach to environments with
fluctuating resource availability. There are multiple reasons for
dynamic resource assignments in virtualized environments. For
example, a dynamic resource increase can happen with vertical
auto-scaling. There, the infrastructure increases the assigned
resources when an application hits a predefined threshold.
A temporary decrease in assigned resources can happen for
example when higher priority tasks are scheduled. Virtual
machine migration techniques are also known for decreasing
resources to speed up the incremental state transfer between
two physical machines.

The contribution of this work is described as follows.
First, we fine-tune a previously proposed network hypervisor

performance model and introduce a novel model which allows
more detailed estimations. Second, we propose an online
machine learning pipeline to train the performance models and
adapt the models in case of resource fluctuations. Third, we
evaluate the pipeline by exploring the parameter space and
give guidelines for different use cases.

The proposed pipeline can be deployed as part of an
autonomous orchestration layer which keeps track of current
usage and capacity of running NHV instances. This allows
load-balancing of network tenants based on their control
message rate and that way prevent over- and underutilization
of the NHV instances.

This paper is structured as follows. We first give the back-
ground and related work of this area of research in Section II.
In Section III we present a formalized model of the discussed
scenario. In Section IV we introduce the proposed learning
pipeline, the performance models and the chosen machine
learning techniques. In Section V we discuss the experimental
evaluation methodology and in Section VI we present the
results of the evaluation. In Section VII and VIII we conclude
by deducing deployment guidelines from the findings and give
an outlook on future work in this area.

II. BACKGROUND & RELATED WORK

Next, we discuss the state of the art in the area of net-
work hypervisors and application resource demand predic-
tion/estimation in cloud environments.

In our previous work [3], we introduce the concept of
learning performance models of NHV at runtime. For this, we
first developed the benchmarking framework hvbench [4] and
setup two different NHV (FlowVisor [1] and OpenVirteX [5])
in our testbed in different physical environments, e.g. with
different number of CPU cores. Afterwards, we emulated a
Poisson message arrival process with increasing message rates
and applied an online machine learning approach to compare
the learning performance of three different models. The results
show that a negative exponential model is able to learn the
performance of the network hypervisors fast and with a low
prediction error.

In [6], [7], [8], [9], the authors discuss and survey SDN
network virtualization in general and the network hypervisor
placement problem (HPP) specifically. HPP targets the amount
of needed hypervisor instances and the placement of the
hypervisor instances inside the network. In [10], [11], the
control plane latency and monitoring overhead of different
SDN network hypervisor architectures is evaluated.

In [12], [13], [14], the authors show that machine learn-
ing techniques can accurately predict future database query
resource requirements based on previously monitored queries.
But these approaches are not applicable to our problem as
per-message resource consumption and hardware details are
not available.

A related area of research is the performance prediction and
classification of applications through online machine learning
from the perspective of the infrastructure provider. In [15],
the authors propose and compare different approaches for

D
ata

P
lan

e

Network
Hypervisor

Instance

NOSNOSNOSNOSNOS

λ

Physical
Network

Arrival
Process

CPUs

Physical Resources

Network
Reconfigurations

Compute
Virtualization

N
etw

o
rk

V
irtu

alizatio
n

C
o

n
tro

l
P

lan
e

Fixed / Dynamic
Resource
Allocation

Process
Scheduling

vCPUs

Message

Message

𝑅

Figure 1. System model overview. The figure illustrates the relationship
between compute and network virtualization. A process scheduler on the
physical machine assigns R resources to the network hypervisor instance
which uses the resources to process and, if necessary, forwards messages
from the network’s control and data plane.

per-application resource usage prediction. In [16], [17], [18],
the authors propose machine learning pipelines to provide
medium-term resource demand predictions and elastic re-
source scaling. [19] provides an extensive survey on anomaly
detection in cloud environments in general. But anomaly
detection on performance models is not considered in [19].

This work extends the state of the art by tackling the dy-
namic budget estimation problem from the point of view of an
NHV orchestrator with limited control and information about
the underlying virtual resources and the resources assigned to
the NHV. The challenge here is to not only learn an accurate
performance model, but also to recognize when the NHV
is subject to an increase or decrease in available resources.
Furthermore, false positives should be avoided while at the
same time be sensitive enough to adapt the model fast to the
new amount of resources.

III. SYSTEM MODEL

Next, we formalize the relationship between the physical
resources, the virtualized NHV instance and the control plane
messages. Figure 1 depicts the abstract system model. Table
I summarizes the nomenclature. The system model consists
of a compute- and a network control-centric part. The figure
shows that from the perspective of the compute on the left, the
network hypervisor instance is a process consisting of one or
multiple threads running inside a container, e.g. Docker, or a
virtual machine, e.g. KVM. The container or virtual machine
with the hypervisor inside is assigned resources R by the host’s
process scheduler based on a fixed or dynamic scheduling
strategy. For example, out of six physical CPUs, the scheduler
assigns the NHV two CPUs, so called virtual CPUs or vCPUs,
which the NHV is allowed to utilize each up to 50 %. In our
work, we assume a dynamic scheduling strategy where the
resource provider assigns resources dynamically between an
upper limit Rmax and a lower guaranteed limit of Rmin. ∆R

Table I
NOMENCLATURE & VARIABLES

Nomenclature
fm, ot(ot = {fr, er, sp, sf, po}) Message types.
λ Total arrival rate of messages.
λot = wot · λ Arrival rate of ot messages.
λfm = wfm · λ Arrival rate of fm messages.
wot, wfm, wot + wfm = 1 Message type distribution in λ.
R,Rmin, Rmax,∆R Resources assigned to NHV.
B Total message budget of the NHV.
ρ|0 ≤ ρ ≤ 1 Instantaneous resource utilization.
ρmax|ρmax ≤ 1 Max allowed system utilization.
ρ() or ρ(λ) = ρ Performance model.

denotes a change of resource allocation. This paper considers
compute resources (CPU) as the only limited resource.

From the perspective of the network control, the NHV
instance is part of a virtualization layer which consists of one
or multiple NHV instances in between the network’s control
and data plane. This virtualization layer allows multiple NOS
to share the control of the physical network. In OpenFlow,
a NOS can control the network by adding or updating for-
warding rules in the devices using flow modification messages.
Furthermore, it can request the current state of the network,
such as throughput, by sending statistic request messages.
Each of the reconfiguration or state requests has to pass
through a NHV instance, which uses its assigned resources
to process the messages. We assume a negative exponential
(Poisson) message arrival process with an average rate λ.

Some OpenFlow message types are computational more
complex than others, e.g. simple echo requests compared
to flow modifications. For our evaluation, we consider the
OpenFlow message types feature request (fr), echo request
(er), port stats request (sp), flow stats request (sf), packet out
(po) and flow modification (fm). During our experiments with
OpenVirteX and FlowVisor, we noticed that flow modifications
exhibit a much larger cost per message than each of the other
message types. Hence, for the remainder of this paper we
summarize {fr, er, sp, sf, po} as other (ot) and denote the
combined message rate as λot.

IV. PROPOSED LEARNING PIPELINE

In the following we discuss the proposed learning pipeline.
The objective of the learning pipeline is to estimate the
maximum performance in terms of message rate λ the NHV
instance can process with the currently assigned resources R.
This maximum rate is also denoted as the message budget
B. Furthermore, it must detect and adapt the reported mes-
sage budget to resources fluctuations ∆R. The adaption can
be gradual, by decreasing the importance of older samples
compared to more recent samples. This approach does not
require to detect a ∆R. But the adaptation can also by rapid,
by implementing a ∆R-detection, which detects a ∆R and, if
necessary, discards the now invalid model.

We first give a general overview of the elements in the
pipeline, including the ∆R-detection based on a Support Vec-
tor Machine (SVM). Afterwards we discuss the performance

NHV
Resource Monitor

Tenant
Message Rates

ΔR Detection

Regression

Budget
Prediction

no
outlier Outlier

more than 10
outlier in a row?

Discard old
model,

create new from
queued samples

Queue samples

yes no

Interpolation

Figure 2. Proposed learning pipeline. Input parameters are the resource
utilization and tenant message rate counters. Output is the estimation of the
current message rate budget. Outlier detection is used to invalidate the current
model in case of large ∆R.

model based on the overall message rate λ from our previous
work and how we adapt it for this work. Subsequently we dis-
cuss the sample weighting function for the gradual adaptation.
At the end of this section we discuss an extended performance
model which distinguishes different message types (λfm, λot).

Figure 2 presents the proposed pipeline. There are two
input data sources. One is the NHV resource monitor which
measures the exact amount of cumulative CPU time used by
the NHV. The second one is the cumulative message counters
provided by the hypervisor which denote how many messages
are processed by the NHV per message type and per tenant.
Resource usage and message counter values are provided
unsynchronized with a frequency of 1 Hz each.

The samples are then processed as follows. The first step
is combining the asynchronously collected samples of cu-
mulative resource usage Σρ and message counters Σλ by
linear interpolation. For this, two cumulative resource usage
samples before and after the point in time t of a message
rate sample stΣλ are taken, s<tΣρ and s>tΣρ. Afterwards, the
cumulative resource usage sample stΣρ for the message rate
sample stΣλ is linearly interpolated. As a result, we have a
sample (stΣλ, s

t
Σρ) of the message counter with the approxi-

mate cumulative resource usage for those messages at time t.
Finally, the instantaneous resource usage sρ for the message
rate at t, i.e. sλ, is calculated by element-wise subtraction
(stΣλ, s

t
Σρ)− (st−1

Σλ , s
t−1
Σρ) = (sλ, sρ).

In the second step, the ∆R-detection checks if the current
performance model is still valid and not invalidated by a
change in resources ∆R. To do so, it calculates the difference
between the sample (sλ, sρ) and the current performance
model ρ() by ρ(sλ)− sρ. On this error, it applies a one-class
support vector machine (SVM) [20] for outlier detection. The
SVM is configured with a radial basis function kernel (RBF),
γ = 0.1 as kernel parameter and we consider 10 % of the
training data as outliers (ν = 0.1). Then, if none of the samples
in the last Tthres = 10 seconds fit to the current model, we
assume a big resource change ∆R and invalidate the current

model. If no resource change is detected, the sample is added
to the previous samples of the current model and the model
is re-trained with updated sample weights where old samples
become less important than the newer samples. A maximum
of 120 samples, equal to the last 120 s, are stored and older
samples are discarded. The idea behind this is, that if there is
a small ∆R which can not be detected by the ∆R-detection,
we instead adapt the model over time using the sample weight
function and the limited memory of 120 s. The training of the
model uses orthogonal distance regression (ODR) [21] which
considers errors in the data in both dimensions, i.e. in the
measurement of the resource usage and the message counters.

In the following we introduce the performance model p(),
the sample weighting function w(t), the extended performance
model pext() and the budget B in detail.

A. Performance Model

We define ρ(λ) as the (injective) relationship between the
message arrival rate λ and the induced utilization of the NHV
instance. For example, ρ(10000) = 1 describes a resource
usage of 100 % of the resources R assigned to the NHV by
the physical resource scheduler at message rate of 10000. We
denote ρ−1() as the inverse of ρ() which translates resource
usage to λ. The message rate an instance can process at
specific maximum utilization ρmax is denoted as budget B:

B = ρ−1(ρmax) (1)

We set ρmax = 0.90 for the evaluation. Accordingly, the
budget is defined as B = ρ−1(0.90).

In [3] we previously compared different NHV performance
models for ρ(). The results show that a negative exponential
performance model can describe the performance of a NHV
accurately. Hence, we choose the following negative exponen-
tial model from [3] for this work:

ρ(λ) := Θc · (1− e−Θa·λ) + Θb (2)

While in general the model yields good results, it exhibits
unstable behavior in cases where a majority of the samples
report a low utilization, e.g. ≤ 15 %. This comes from the
fact that there are many possible regression results for the
coefficients Θb and Θc which fit well to low utilization
samples but do not allow accurate estimation of the budget at
ρmax. Hence, based on training experiments, we fixed Θb = 0
and Θc = 1.6.

B. Gradual Adaptation & Weight Function

If the resources R assigned to the NHV instance do change,
but the ∆R-detection does not detect it, the performance
model has to gradually adapt over time. We perform the
gradual adaptation of the model by reducing the importance
of each sample in the regression based on its age. In Eq. 3 we
define a function w(t) which describes a negative exponential
decay process. t denotes the age of the sample in seconds.
The negative exponential decay process was chosen based on
preliminary experiments.

0 20 40 60 80 100 120

t

0.0

0.2

0.4

0.6

0.8

1.0

w
β

(t
)

β = 0

β = 0.01

β = 0.04

β = 0.2

Figure 3. Sample weight function w(t) (Eq. 3) describes the important of each
sample in the regression depending on the age t of the sample in seconds.
Parameter β describes how fast the weights of the samples decrease. The
figure illustrates w for β = [0.0, 0.2, 0.04, 0.01]..

wβ(t) := e−t·β (3)

Figure 3 illustrates w for four different values of β. For
β = 0, w becomes w(t) = 1, which makes the weight of a
sample independent of its age and all 120 samples are equally
important in the regression. For β = 0.2, the importance of a
sample decreases fast so that after approximatively 5 seconds,
a sample has half of the weight of a new sample. In this
paper, we evaluate the impact of the weight function on the
adaptation for 15 different values between 0.0 and 0.2 (β =
[0.0, 0.015, .., 0.2]).

C. Extended Performance Model

The performance model discussed so far only considers the
relationship between the total message rate λ and the resulting
utilization ρ. Hence, in cases when it is desired to differentiate
the cost between fm and ot message rates, the simple model
is not sufficient. Next, we introduce an extended model which
considers λfm and λot separately.

The following equations define the extended performance
model. The model is made up of separate equations for λfm
(Eq. 4) and λot (Eq. 5) with each consisting of two parts, a
linear part and a negative exponential part. The two parts are
added together using the parameters A, B, C and D:

ρext,fm(λfm) = A·(ΘA ·λfm)+B ·ΘB ·(1−e−ΘC ·λfm) (4)

ρext,ot(λot) = C · (ΘD · λot) +D ·ΘE · (1− e−ΘF ·λot) (5)

Eq. 6 describes the total utilization as sum of the utilization
induced by fm and ot message rates:

ρext(λfm, λot) = ρext,fm(λfm) + ρext,ot(λot) (6)

The parameters A, B, C and D allow for fine-tuning the
performance model between linear and negative exponential
behavior. From preliminary experiments for this work we
concluded, that this gives the best possible result, as depending
on the platform, hypervisor and message type (fm or ot),

the performance behavior varies between linear and negative
exponential behavior. B = 0.7 and D = 0.7 provided the
best balance between linear and negative exponential model
in our experimental environments. Therefor we set B = 0.7
and D = 0.7 in the evaluation. Following the constrains
A+B = 1 and C +D = 1 we set A = 0.3 and C = 0.3.

To learn the parameters ΘA, ΘB , ΘC and ΘD from the
samples, we use the following two equations (Eq. 7) and (Eq.
8). Two independent ODR regressions are used to learn the
coefficients of both equations.

ρext,lin(λfm, λot) = (ΘA · λfm) + (ΘD · λot) (7)

ρext,exp(λfm, λot) = ΘB ·(1−e−ΘC ·λfm)+ΘE ·(1−e−ΘF ·λot)
(8)

V. EVALUATION METHODOLOGY

In the following we present the methodology used for the
evaluation of our proposed architecture. We first present a
general overview of our experimental set-up. Afterwards we
discuss how we evaluate the accuracy of the budget estimation.
At the end of this section we show the message arrival process
we use to emulate virtual tenant networks and their messages.

A. Experimental Set-up

Figure 4 describes the experimental set-up consisting of the
benchmark hvbench [22], a simple emulated network, the NHV
resource monitor hvmonitor [22] and a message bus which
distributes the measurement samples to the learning pipeline
(implemented with kafka [23]). The pipeline in turn outputs the
model for the budget estimation. A control component adjusts
the overall tenant message rates and message type mixes based
on a random walk process (upper left corner). Furthermore,
it adjusts the assignment of R to the NHV process. For our
set-up we choose to implement the resource R assignment by
scaling the CPU frequency of the NHV host through the Linux
CPU governor. For example, the experiment is started with
assigning the maximum possible resources Rmax = 3.2 GHz
to the NHV process. After 60 s, R is reduced to Rmax

2 =
1.6 GHz. For this, the performance CPU governor has to be
activated so that the Linux kernel always scales the CPU to
the maximum configured CPU frequency.

During the experiment, hvmonitor queries the total time
the process used the CPU (stΣρ) with an accuracy of 10 ms
and sends it to the message bus. Furthermore, the simple
emulated network answers all OpenFlow messages it receives
from the NHV with static, preconfigured, responses. Addi-
tionally, hvbench reports the message counters (stΣλ) to kafka.
The following hardware and software set-up is used for the
evaluation presented in this paper: Intel(R) Core(TM) i5-3470
CPU with a maximum frequency of 3.20 GHz, 8 Gb RAM
and Ubuntu 14.04.4 LTS. FlowVisor is used as hypervisor in
version 1.4.0, hvbench and hvmonitor in version 0.1.0.

B. Budget Estimation Error

The budget estimation error ε is defined as the difference
between the true budget, denoted as ground truth, and the
estimated budget. We use offline benchmarks to determine

Tenant

Network
Hypervisor

Tenanthvbench

CPU 𝑅CPUCPU

Physical Machine

hvmonitor

OpenFlow

h1 h2s1
Emulated
Network

Message
Bus

Learning
Pipeline

Budget
Calculation

Random
Walk /
𝑅 control

Figure 4. Experimental set-up consisting of the benchmark hvbench, a simple
emulated network (2 hosts, 1 switch), the NHV resource monitor hvmonitor
and a message bus which distributes the measurement samples to the learning
pipeline, which in turn outputs the model for the budget calculation.

an approximation of the true budget of a specific NHV on a
specific hardware platform. For this, we linearly increase the
message rate λ in small steps until the monitor component
reports an average utilization of ρmax. Based on the results of
the offline benchmark, we can define the relative estimation
error ε as: ε = |GroundTruth−B|

B

C. Message Arrival Process

We configure hvbench with a Poisson message arrival pro-
cess and we use two random walk processes to model the
change of λ and (wot, wfm) over time. At the beginning of the
experiment run we set λ to ρ−1(0.5) based on the ground truth.
Then, each 5 s we use random number generator to decide to
keep λ constant with a chance of 40 % or change it with a
chance 60 % according to the following rule:

λ =

{
λ · 0.9 if ρ(λ) > 0.5

λ · 1.1 if ρ(λ) < 0.5

When the message type distribution random walk process is
activated, we adjust (wot, wfm) also every 5 s. With a chance
of each 1

3 , we either decrease or increase wfm by 10 %.
With a chance of 1

3 , we keep wfm constant. wot is updated
accordingly (wot + wfm = 1).

VI. EVALUATION

Next we evaluate the estimation accuracy of the proposed
pipeline by using the methodology defined in the previous
section. The main performance metrics here are the relative
budget estimation error ε and the model convergence time after
a change in resources. If not otherwise stated, the experiments
were conducted in the described test-bed (Section V). For
space reasons we focus on the results for FlowVisor as network
hypervisor. The results for OpenVirtX do not considerable
differ from the presented ones.

A. Budget Estimation Error without ∆R

In the following we discuss the budget estimation error ε for
different combinations of β and constant available resources
R. We evaluate β in the range of [0, 0.2] with a step size
of 0.015 and R in the range of [1.6, 3.2] with a step size of
0.1. The result of a combination of β and R is presented as
median over 20 runs. For each run, after a warm-up phase
of 120 s, a sample is taken each second for a period of 180 s
and the error averaged over all samples. We use the random
walk described in Section V-C for λ. wot and wfm we keep
constant at wot = 0.5 and wfm = 0.5. Figure 5 illustrates
the mean estimation error over the evaluated parameter space
of β and R. The results show that on average the estimation
error is 5.8 % with a standard deviation of 2.5 %. Furthermore,
we conclude from the figure that the estimation error depends
on R. For example, while for R = 1.6 we observe ε to be
3.8 % on average, ε for R = 3.0 is on average 9.5 %. The
lowest error can be observed for R = 1.6 with ε = 2.6 %
Additionally, the figure suggests a minor correlation between
the estimation error and parameter β. However, the maximum
(Pearson) correlation we observe is for R = 2.6 with 0.18.

0.0 0.03 0.06 0.09 0.11 0.14 0.17 0.2

Weight β

1.6
1.7
1.8
1.9
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.9
3.0
3.1
3.2

R
es

ou
rc

es
R

3.2%
4.0%
4.8%
5.6%
6.4%
7.2%
8.0%
8.8%
9.6%

E
stim

ation
E

rrorε

Figure 5. Mean estimation error for R = [1.6, 3.2] and β = [0, 0.2] for
constant R. R = 1.6 exhibits the lowest error with ε = 2.6 %. R = 3.0 with
ε = 9.5 % the highest. No correlation between e and β.

Two main conclusions can be drawn from the figure. First,
we observe only an insignificant influence of β in the evaluated
parameter range. Therefore β can be chosen freely in the
evaluated range in cases when R is constant. Second, the error
depends on R and ranges between 2.6 % and 9.5 %. Next, we
discuss the influence of parameter β on the convergence time
in scenarios where R varies over time.

B. Convergence Time after ∆R

In compute environments with dynamic assigned resources
R, it is important for the learning pipeline to quickly adapt to
changes of R. We focus on the use case of a sudden decrease
of R and measure the time period between the decrease and
the point in time the model reaches a relative error of less
than 10 % again. First we illustrate the convergence time by
example for a gradual adaptation, afterwards we explore the
parameter space with and without ∆R-detection.

−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2

ε β = 0β = 0.2

150 200 250 300 350 400

Experiment time t (s)

1.5
2.0
2.5
3.0
3.5

R ∆R

Figure 6. Convergence time after a resource change ∆R = 1.5 for
β = [0.0, 0.0143, 0.0429, 0.2]. The horizontal (red) line marks an low error
threshold of ε = −0.1. Circles mark the time when the model adapted.

Figure 6 illustrates the convergence time by example for
four different values of β, with a decrease in CPU frequency
of 1.4 GHz (∆R = 1.4) and a relative error threshold of
10 % (ε = 0.1). A training phase with a duration of 125 s
is omitted in the figure. At 175 s into the experiment, the
available resources are decreased from 3.0 GHz to 1.6 GHz.
Two observations can be made from the figure. First, up to
175 s into the experiment all four model instances can estimate
the available budget with a high accuracy of ε ≤ 0.04. Second,
the choice of β has a significant influence on the convergence
time. For β = 0.2, which only considers recent samples, the
model adapts rapidly (7 s) to the new resources. However, as
few samples have a strong influence on the regression, we
observe a higher variance in the figure. For β = 0.0 it takes
99 s to reach the low-error threshold and no variance is visible.

0.0 0.03 0.06 0.09 0.11 0.14 0.17 0.2

Weight β

0.1
0.2
0.3
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.3
1.4
1.5
1.6

R
es

ou
rc

e
C

ha
ng

e
∆R

0
6
12
18
24
30
36
42
48
54
≥ 60

C
onvergence

Tim
e

(s)

Figure 7. Evaluation of convergence time without ∆R-detection for different
∆R and β. β and ∆R are divided in 15 equally-spaced values. Convergence
times increases with decreasing values of β and increasing values for ∆R.

Next, we evaluate the convergence time without ∆R-
detection for different values of the sample weight parameter
β and the amplitude of resource change ∆R. Figure 7 depicts
the relationship between β = [0, 0.2] and ∆R = [0.1, 1.6] with
a step size of 0.015 and 0.1, respectively, and the convergence
time. Each value for a combination of ∆R and β is presented
as the median of 20 runs on a grey-scale. Note that all values
of a convergence time ≥ 60s are displayed in black. The figure
shows that with increasing β, i.e. with a faster decay of the

0.0 0.06 0.11 0.17
Weight β

0.1
0.2
0.3
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.3
1.4
1.5
1.6

R
es

ou
rc

e
C

ha
ng

e
∆R

0
6
12
18
24
30
36
42
48
54
60

C
onvergence

Tim
e

(s)

(a) Convergence Time

0.0 0.06 0.11 0.17
Weight β

0.1
0.2
0.3
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.3
1.4
1.5
1.6

R
es

ou
rc

e
C

ha
ng

e
∆R

−8

−4

0

4

8

12

16

≥ 20

Im
provem

ent(s)

(b) Improvement

Figure 8. Evaluation of convergence time with ∆R-detection for different
∆R and β. β and ∆R are divided in 15 equally-spaced values. Convergence
times are homogeneous with minor variations for almost all parameters.

weight of a sample, the model converges to a state of low
estimation error faster for most combinations of ∆R and β.
Furthermore, the figure illustrates that the model converges
slower if the amplitude of the resources change ∆R is larger.
For small ∆R, i.e. ∆R = {0.5, 0.6}, a low error threshold is
reached in less than 4 s, while a combination of large values of
∆R and small values of β can result in an average convergence
time of up to 95 s.

The findings of Figure 7 motivate the need for a sophisti-
cated ∆R-detection to accelerate convergence in cases of large
∆R and low β. With activated ∆R-detection, if a change
is detected, the sample buffer is flushed and the model re-
trained with the outlier samples and any subsequent samples
as described in Section IV. Figure 8(a) depicts the relationship
between β, ∆R and the convergence time with ∆R-detection.
Figure 8(b) illustrates the difference between Figure 7 and
8(a). Compared to the case without ∆R-detection, we observe
a decrease in convergence time for 46 % of the investigated
combinations of β and ∆R, mostly in the upper-left triangle
of the figure. On average, the decrease is 16.6 s. Furthermore,
the standard deviation over all combinations decreases from
21.2 s to 3.9 s From the figure we conclude, that with ∆R-
detection a wider range of values for β can be selected while
maintaining a low convergence time after ∆R.

However, the figure also illustrates that the convergence time
can increase, especially for high values of β and low ∆R
found in the lower-right triangle of the figure. On average, the
increase is 3 s. This is due to the way outliers are treated in
the pipeline. After an outlier is detected, the outlier sample
is stored in a separate buffer and not used for the regression.
When we observe ten outliers in a row, we signal a detected
∆R and discard the current performance model and use the
outlier buffer to learn a new model. But if we do not observe
ten outliers in a row, the samples in the outlier buffer are
discarded. Hence, there are less samples available to learn from
in cases where an undetected change in resources happened
and this increases the convergence time. This effect could be
mitigated by increasing the sensitivity of the SVM. However,
increasing the sensitivity increases the chance of falsely de-
tected resources changes and unnecessary re-learning.

C. Extended Performance Model

The extended performance model enables the estimation
of the message budget per message type. In the following
section we discuss the accuracy of the extended performance
model. For the evaluation of the extended model we use
two random walk processes for the message generator, one
random walk process which controls the overall mean message
rate (λ) and one which controls the allocation of how many
messages of each type are send (λfm and λot). The allocated
resources R are constant. Nevertheless, ∆R-detection is turned
on to simulate the full proposed pipeline. Each experiment run
consists of a warm-up phase of 400 s where no model training
was performed. After the warm-up phase, 600 samples are
collected at 1 Hz and used in the training of the model. Hence,
for the evaluation we take a snapshot of the extended model
coefficients at 1000 s into the experiment. Offline benchmarks
provide accurate ground truth. β is fixed to 0.0.

0 5000 10000 15000 20000 25000 30000

Flow Modifications λ f m

0

20000

40000

60000

80000

100000

120000

O
th

er
M

es
sa

ge
Ty

pe
s

λ o
t

Ground truth

ρ = 0.9

Estimation

Figure 9. Budget estimation accuracy of different message type distributions
using the extended model. The blue dots depict the ground truth from offline
benchmarks. Red dots show the estimation results of 21 random experiment
runs. The two green stars highlight the 0.5 allocation, i.e. λfm = λot.

Figure 9 presents the results. The (blue) markers illustrate
offline benchmarks, i.e. the ground truth. For the offline
benchmark we selected 11 allocations of λfm and λot with
(λfm, λot) ∈ [(a · λ, (1 − a) · λ)|∀a ∈ [1, 0.9, .., 0]], denoted
as Υ. Each allocation is presented as a distinct marker.
For example, the upper left dot represents a composition of
λfm ≈ 1 · 115000 = 115000 and λot = (1− 1) · 115000 = 0.
The confidence intervals of the offline benchmarks are omitted
as they would not be visible on the presented scale. The links
between the (blue) markers are for better readability and do
not represent measurements.

The estimation result of 21 random experiment runs per
allocation are shown in red. For the estimation we use the
coefficients of the extended model at 1000 s into the ex-
periment run to approximate ρ−1

ext(0.9) for the allocations
of λfm and λot defined in Υ. The confidence intervals for
the estimations are indicated with error bars in the direction
of λfm and λot. For most evaluated allocations we observe
stable estimation results and therefore most of the confidence
intervals are hardly visible. From the figure we conclude,
that for allocations with a share of ≥ 0.5 in favor of λfm

Table II
DEPLOYMENT GUIDELINES

Use Cases Static R,
Stable distribution

Dynamic R and/or
unstable distribution

Overall budget
sufficient

Simple model,
β ≥ 0.1

Normal model with SVM
β ≤ 0.1

Budget estimation
per message type
required

Simple & ext. model,
accept cost per type
inaccuracy

If unstable distribution,
extended model.
If stable distribution,
simple & ext. model.

(λot ≤ 20.000 to λfm ≥ 20.000), the extended model can
accurately estimate the message budget. For shares ≥ 0.5
in favor of λot, it becomes less accurate and varies between
underestimating, e.g. at λot = 40.000 to λfm = 15.000, and
overestimating the utilization, e.g. where λfm is close to 0.
Confidence intervals increase if either λfm or λot dominates
λ, but in general are small.

VII. SUMMARY & DISCUSSION

The evaluation results show that the choice of model,
pipeline configuration and parameters can be optimized de-
pending on the use case. Next, we summarize the results and
discuss how to achieve optimal budget estimation results for
different use cases.

In Section VI-A we discuss the general budget estimation
error with constant resource assignment. The results show that
the sample weight parameter has no significant effect on the
estimation error in the evaluated parameter range and that the
error ranges between 2.6 % and 9.5 %.

In Section VI-B we evaluate the convergence time after a
change in assigned resource with and without ∆R-detection.
For this we measure the time it takes for the pipeline to
accurately estimate the current budget after ∆R. Without ∆R-
detection, for minor ∆R and a large value of β, we observe a
fast convergence, whereas large changes and a low value of β
show low convergence time. With ∆R-detection, the results
exhibit a homogeneous convergence time in the evaluated
parameter range. On the one side, we conclude that the ∆R-
detection speeds up the convergence time considerable after a
large change in resources assignment and low β. On the other
side, the ∆R-detection slows down the convergence time for
minor changes.

The evaluation of the extended model in Section VI-C shows
that accurate estimation of the resource consumption per mes-
sage type is possible. In particular, the results shows that the
asynchronously collected message counters and resource usage
samples are sufficient for the regression to learn the model
coefficients in scenarios where the message type distribution
is not constant.

Next, we discuss the following questions: When do I
choose the extended model and which values do I use for the
parameters? Based on the evaluation, we identify three criteria
which dictate the choice of model and parameters. First, is it
enough to know the overall budget or do I need the budget per
message type? Second, do I expect the available resources R
to be constant or are they likely to change frequently? Third, is

the message type distribution of the incoming messages mostly
stable or is it likely to be unstable? Table II gives guidelines
based on these three criteria.

If the overall budget is sufficient and R is mostly static with
a stable message type distribution, then the simple model with
β ≥ 0.1 is sufficient. However, note that a large value of β
increases the influence of measurement noise on the estimation
accuracy. If the overall budget is sufficient, but R is likely to
change and/or the distribution of message type is unstable, use
the normal model with SVM, but select β ≤ 0.1.

If you require budget estimation per message type and R is
either static or dynamic and you observe a stable message type
distribution, then deploying the simple and extended model in
parallel is the best choice. However, the stable message type
distribution will not contain enough information to accurately
learn the cost per message type.

If you require budget estimation per message type and R is
either static or dynamic and the message type distribution is
changing over time, then the extended model gives accurate
estimation results per message type. However, note that in
our experiments the extended models in general converged
slower than the simple model. Furthermore, note that for best
estimation results the trade-off parameters between linear and
negative exponential behavior might require adjustments to
the systems at hand. For example, during our experiments we
noticed that in environments with power saving settings turned
on, the relationship between λ and ρ tends to be less linear
and more negative exponential.

In general, the estimation accuracy also depends on the
range of samples seen by the learning process. The estimation
becomes better if many samples close to 90 % utilization
exist. If the samples are dominated mostly by low utilization
samples, e.g. ρ ≤ 10 %, the estimation will be worse. This
can present a challenge where very large message budgets are
allocated to tenants at the same time. However, we expect that
in a realistic deployment the budget allocated to one tenant
is far less than the overall budget and as our previous study
shows [3], samples with an utilization of about 20 % − 25 %
are already well suited for estimation using the negative
exponential model.

VIII. CONCLUSION & OUTLOOK

In this paper we propose and evaluate an online machine
learning pipeline for the capacity estimation of network hy-
pervisor instances in dynamic cloud environments. The eval-
uation shows that the learned performance model provides
accurate estimations of the message rate budget at run-time.
Furthermore, a reduction or increase of available resources
assigned to the network hypervisor is detected by the pipeline
and the estimations are adapted accordingly. The proposed
pipeline is an important step towards autonomous scaling
and load-balancing of virtualized SDN control planes. Future
work in this area should investigate the convergence time of
the extended model and evaluate the trade-off between SVM
sensitivity and convergence time in more detail.

REFERENCES

[1] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. Mck-
eown, and G. Parulkar, “FlowVisor: A network virtualization layer,”
OpenFlow Consortium, Tech. Rep., 2009.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[3] C. Sieber, A. Basta, A. Blenk, and W. Kellerer, “Online resource
mapping for sdn network hypervisors using machine learning,” in 2nd
IEEE Conference on Network Softwarization (NetSoft 2016), June 2016.

[4] C. Sieber, A. Blenk, A. Basta, and W. Kellerer, “hvbench: An open and
scalable sdn network hypervisor benchmark,” in Workshop on Open-
Source Software Networking (OSSN), June 2016.

[5] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, W. Snow,
and G. Parulkar, “OpenVirteX: a network hypervisor,” in Proc. Open
Networking Summit (ONS), Santa Clara, CA, Mar. 2014.

[6] A. Blenk, A. Basta, J. Zerwas, and W. Kellerer, “Pairing sdn with
network virtualization: The network hypervisor placement problem,” in
Network Function Virtualization and Software Defined Network (NFV-
SDN), 2015 IEEE Conference on. IEEE, 2015.

[7] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualization:
A survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2,
pp. 909–928, 2013.

[8] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” IEEE Communications
Magazine, vol. 51, no. 11, pp. 24–31, 2013.

[9] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. J. Jackson et al., “Network
virtualization in multi-tenant datacenters.” in NSDI, 2014, pp. 203–216.

[10] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer, “Control
plane latency with sdn network hypervisors: The cost of virtualization,”
IEEE Transactions on Network and Service Management, 2016.

[11] G. Yang, K. Lee, W. Jeong, and C. Yoo, “Flo-v: Low overhead network
monitoring framework in virtualized software defined networks,” in
Proceedings of the 11th International Conference on Future Internet
Technologies. ACM, 2016.

[12] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan,
and D. Patterson, “Predicting multiple metrics for queries: Better deci-
sions enabled by machine learning,” in 2009 IEEE 25th International
Conference on Data Engineering. IEEE, 2009, pp. 592–603.

[13] K. Lee, A. C. König, V. Narasayya, B. Ding, S. Chaudhuri, B. Ellwein,
A. Eksarevskiy, M. Kohli, J. Wyant, P. Prakash et al., “Operator and
query progress estimation in microsoft sql server live query statistics,”
in Proceedings of the 2016 International Conference on Management of
Data. ACM, 2016, pp. 1753–1764.

[14] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and H. Hacgm,
“Smartsla: Cost-sensitive management of virtualized resources for cpu-
bound database services,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 5, May 2015.

[15] A. Matsunaga and J. A. Fortes, “On the use of machine learning to pre-
dict the time and resources consumed by applications,” in Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing. IEEE Computer Society, 2010.

[16] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile: Elastic
distributed resource scaling for infrastructure-as-a-service,” in Proceed-
ings of the 10th International Conference on Autonomic Computing
(ICAC 13), 2013, pp. 69–82.

[17] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic resource
scaling for multi-tenant cloud systems,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing. ACM, 2011, p. 5.

[18] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling
for cloud systems,” in 2010 International Conference on Network and
Service Management. IEEE, 2010, pp. 9–16.

[19] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, “Performance
anomaly detection and bottleneck identification,” ACM Computing Sur-
veys (CSUR), vol. 48, no. 1, p. 4, 2015.

[20] L. M. Manevitz and M. Yousef, “One-class svms for document classi-
fication,” Journal of Machine Learning Research, vol. 2, no. Dec, pp.
139–154, 2001.

[21] P. T. Boggs, R. H. Byrd, and R. B. Schnabel, “A stable and efficient
algorithm for nonlinear orthogonal distance regression,” SIAM Journal
on Scientific and Statistical Computing, vol. 8, no. 6, pp. 1052–1078,
1987.

[22] “hvbench & hvmonitor,” https://github.com/csieber/hvbench.
[23] “Apache Kafka,” http://kafka.apache.org/.

