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II Abstract 

Abstract 

The totally from scratch developed robotic electric vehicular research platform of the German 

Aerospace Center (DLR), called ROboMObil, enables completely new approaches for future 

energy management systems. Its x-by-wire technology and robotic inspired centralized control 

architecture offers the freedom for intelligent algorithms to design future economical individual 

transport solutions. By means of these technologies the disbandment between the driver motion 

demands and the actual commanded values at the wheels of ROboMObil, the so called wheel 

robots, is accomplished. In the first part of this doctoral thesis an innovative energy manage-

ment framework – focusing on the spatial vehicle motion – is developed and simulatively eval-

uated by means of a multiphysical Modelica model of ROboMObil with several realistic test 

scenarios. It is itemized in three levels: The first one describes the path optimization within the 

road-boundaries and the generation of a feasible velocity profile. The second level is an iterative 

search based path following component and the third an actuating energy minimizing control 

allocation approach. In the second part of this thesis a novel model based Kalman filter frame-

work is outlined, which enables to automatically incorporate multiphysical Modelica models in 

discrete-time estimation algorithms extended with constraint handling and real-time capable 

nonlinear moving horizon estimation. To conclude the connection to the energy manager 

framework the necessary quantities for the controller are estimated in two application examples 

of the framework which are successfully tested with data from real ROboMObil experiments. 

First, a hybrid modeled state of charge battery observer with constraints incorporation for the 

calculation of the state of charge and current power availability is developed. Second, a con-

strained vehicle position, orientation and velocity observer with time delayed position meas-

urements from a global navigation satellite system using an extended real-time capable moving 

horizon estimation approach is investigated. 
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12 Introduction 

1. Introduction 

Growing emissions of CO2 and other greenhouse gases of the world’s industry nations are a 

major concern of today’s and future generations. Due to the increasing demands of the rapid 

industrialization in highly populated countries like China and India, the number of users of indi-

vidual transport has been increasing dramatically in the last decade. Therefore, reducing con-

sumption of fossil resources for future generations and releasing congested areas from exhaust 

gases is a necessity. One-step towards this is the exchange of the propulsion systems of vehicles 

from internal combustion engines to electric drives. That’s why the German government formu-

lated the aim to register one million electric vehicles (EV) by 2020, and up to six millions by 

2030. This regulation is followed also by other industry nations; the USA defined a goal of one 

million EVs by 2015 and China six millions by 20203. 

Thanks to this technology, it is possible to shift the local exhaust gas emission away from the 

world’s mega cities to power plants outside these areas. Despite the fact that the worldwide 

production of renewable energy is still low4, the Well-to-Wheel CO2 efficiency of electric vehi-

cles5 – also when considering the higher effort for production, transportation and storage losses 

– outperforms the one of conventional cars. Studies conducted by [Jrc13] have shown a theoret-

ical improvement of 20% in comparison to vehicles powered by an internal combustion engine. 

In contrast to conventional cars, the range of EVs is still limited (for most series EVs it is up to 

five times lower6). This limitation is strongly connected to the high acquisition costs of the bat-

tery systems. Moreover, extreme temperature up- and downturns and excessive power demands 

may reduce the range and even the battery life time7. This amongst other factors, e.g. the limited 

heating comfort and the actual low gasoline costs, may have contributed to the fact that the ad-

mission statistic aims for the USA were mistaken in 20158. 

In the last decade many researches engaged in optimal powertrain configuration, storage opti-

mization or drivetrain and engine optimization. Besides, management strategies of the power-

train components and intelligent load management of comfort components with focus on energy 

efficiency were developed (see Chapter 3.1 for references and details). As a consequent step in 

this thesis the possibilities for future energy management strategies of complete x-by-wire elec-

tric vehicles with autonomous functionalities are investigated. The here proposed solution is 

inspired by a robotic centralized control architecture, which is hierarchically organized and re-

fines the motion demands over the different abstraction layers with focus on the minimization of 

                                                      
3
http://www.wiwo.de/unternehmen/auto/elektroautos-deutschland-verliert-den-anschluss-an-china-und-

die-usa/12883950.html – Retrieved 03, 2017 
4
 https://en.wikipedia.org/wiki/World_energy_consumption#By_fuel – Retrieved 03, 2017 

5
 https://de.wikipedia.org/wiki/Well-to-Wheel – Retrieved 03, 2017 

6
 https://en.wikipedia.org/wiki/Energy_density – Retrieved 03, 2017 

7
 https://de.wikipedia.org/wiki/Elektroauto#Energiespeicher – Retrieved 03, 2017 

8
 https://en.wikipedia.org/wiki/Plug-in_electric_vehicles_in_the_United_States#Markets_and_sales –

Retrieved 03, 2017 
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the necessary power demand for solving the driving task. By means of these additional degrees 

of freedom for an energy management system a contribution for reaching the aim of reducing 

the propulsion’s power consumption is imaginable. 

1.1 Motivation and Objectives  

The entirely newly developed robotic electric vehicular research platform of the German Aero-

space Center (DLR) called ROboMObil, short ROMO, enables completely new approaches for 

future energy management systems. Its x-by-wire technology and a centralized control architec-

ture inspired by robotics open up the freedom for intelligent algorithms to design future eco-

nomical individual transport solutions. By means of these technologies the disbandment be-

tween the driver motion demands and the actual commanded values at the wheels of ROboMO-

bil is accomplished. That way the driver gives either only rough commands which are refined 

by an autonomous arbiter module or ROMO can drive fully autonomously. A future scenario 

can be that many ROMOs are stored in a depot, which are called via a smartphone application 

by the user to drive to his location. After having finalized the driving task ROMO automatically 

returns back to its depot. 

Within the ROboMObil project context different researches have focused on partial aspects 

such as fault detection and isolation [Ho16] or artificial intelligence agents [Sca16]. The goal of 

this doctoral thesis is, on the one hand, to develop an innovative energy management system 

(EM), focusing on the spatial motion. On the other hand, in the second part of the thesis a novel 

Modelica [Mod17] model based state estimation framework for the accurate control of the ro-

botic electromobility research platform ROMO is developed. Its design pattern enables a flexi-

ble continuous-time prediction model formulation in Modelica without the need of hand dis-

cretization, linearization or event handling (e.g. vehicle standstill) by the user. Moreover, a rele-

vant quantity of discrete estimation algorithms, extended with state constraints and delayed 

measurement handling, constitutes the need for a powerful tool to enhance complex control 

applications. These highly accurate state estimates stand out with exceptional time savings in 

implementation and reduction of errors in numerical efficient and correct implementations. It is 

worth mentioning that these technologies can also help to improve energy efficiency, since 

complex and accurate model knowledge is crucial (e.g. in [Arn12] 4 % fuel saving could be 

achieved by means of model based injection control for internal combustion engines). 

1.2 Thesis Outline and Overview 

The thesis is divided into six chapters, which are structured as follows: 

In Chapter 2, the design patterns and system architecture of the robotic electric vehicular re-

search platform ROMO is outlined. In addition the interfaces and system structures which are 

the basis for the energy manager and observer framework are described. 
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Chapter 3 presents the model based energy manager framework with its different layers of ener-

gy optimal control refinement. By means of a multiphysical Modelica model of ROMO the 

complete control framework is tested in closed loop with several test scenarios, which show the 

capability of the energy manager approach. 

In Chapter 4, the theory of a novel model based Kalman filter framework, which is able to au-

tomatically incorporate multiphysical Modelica models in discrete-time estimation algorithms 

extended with constraint handling and real-time capable nonlinear moving horizon estimation, 

is outlined. 

In Chapter 5, two applications of the proposed estimation framework are presented. A hybrid 

modeled state of charge battery observer and a constrained vehicle position, orientation and 

velocity observer for the EM framework are discussed. 

The thesis is concluded by Chapter 6, in which a brief summary and a global overview about the 

work is elaborated and directions of future and ongoing research are mentioned. 
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2. Analysis and Design of the Robotic Electric Vehicle ROMO 

This chapter is an extended version of [Bre11]. 

ROboMObil, short ROMO, is an electromobility concept based on intelligent central control of 

four wheel robots, which integrate the drivetrain, brakes, steering and semi-active dampers. This 

section outlines the conceptual design and development of DLR’s robotic electromobility test-

ing platform ROboMObil, which was part of the work during this doctoral thesis project. The 

motivation behind ROMO’s wheel robot concept and the implementation details together with 

the suspension design are described in the following. Additionally, the electric power system, 

consisting of a lithium-ion battery storage system, providing a high voltage power for propul-

sion and a low voltage supply for vehicle control, is discussed. Finally, an overview of the cen-

tral control architecture, inspired by the one which is used in today’s modern robotic applica-

tions is provided. This architecture, both from constructive and cyber-physical system perspec-

tive, will be the basis for the proposed model based design of innovative operation strategies for 

ROMO in the upcoming chapters. 

 

Figure 2.1: ROMO – the robotic electric vehicle in front of DLR’s TechLab 

2.1 State of the Art 

The integration of the vehicle dynamic actuation systems in the wheel itself is a relatively new 

development, and in recent years, several concepts and prototypes of this idea have emerged. 

Examples include the Brembo In-Wheel [Brm15], the Schaeffler E-Wheel Drive [Sch14], 

Michelin Active Wheel [Gas08], Siemens VDO eCorner [Bry06], MIT Wheel Robot [Scm07], 

Volvo ACM [Jon07] and the Nissan Metamo system [Aso08]. In case of Michelin (Heuliez Will 

and Venturi Volage in [Dlr09]) and Schaeffler (Ford Fiesta E-Wheel-Drive), full size electrical-

ly powered vehicle prototypes with integrated wheel units have been demonstrated. Some de-

velopments focussed on extending the vehicle with the ability to rotate about its central axis or 

even to drive sideways, requiring extended steering angle ranges on all four wheels (e.g. Toyota 

Fine-X, Nissan Pivo II, or the MIT prototype with its wheel robot). 
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2.2 The Mechatronic System Architecture of ROMO 

ROMO was designed completely new from a clean sheet, which enabled the conception of an 

innovative robotic research platform. This made it possible to layout the future of mobility 

without the constraints applied by the modification of a conventional vehicle, making use of 

advancements in intelligent systems from the field of robotics. The constraints for its develop-

ment were to design an innovative mobility concept which is mainly operated in unstructured 

environment, with high maneuverability and a high level of autonomous control to cope with 

today’s and future requirements of mega cities. Therefore, the decision was made to design a 

vehicle with four mechanically independent modules, the wheel robots, which do not have a 

physical linkage between the driver inputs and the commanded actuating variables. This design 

has a strong analogy to today’s robots which also have separate integrated drivetrains in each 

joint, and all of them are controlled by a centralized architecture. 

1

2

3

45

Path of a conventional car

 

Figure 2.2: ROMO’s high maneuverability enables simplified parking 

2.2.1 The Wheel Robots Concept 

The requirement of high maneuverability (compare Figure 2.2) on driven wheels spurs the use 

of wheel-mounted drive systems, capable of overcoming the wheel steering angle limitation that 

is typically present in conventional cardan shaft mechanisms. This fact leads to the development 

of the so called wheel robot concept (Figure 2.3). 

 

Figure 2.3: The wheel robot with in-wheel actuators and suspension (left);  

The wheel carrier mounted steering mechanism (right) 

The wheel robots approach is derived from robotics and Mars rovers [Mic08], with all the ac-

tuators integrated in-wheel. With the integrated in-wheel steering mechanism and in-hub trac-
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tion motors (Figure 2.3), an extended steering angle of 95° to −25° degrees is realized. As a 

result, ROboMObil is able to rotate around its own vertical axis (centrically and eccentrically) 

and move sideways. Such a degree of steering freedom would be difficult to achieve with a 

chassis mounted drive motor and drive shafts. 

The Wheel Robot Actuators 

The permanent magnet synchronous motor (PMSM) in-wheel direct drive architecture provides 

a nominal motor speed of 1000 rpm without field weakening, which is equivalent to a maxi-

mum vehicle velocity of 100 km/h with tires of the dimension 165/35 R17 installed on ROMO. 

Each motor can deliver a peak torque of 160 Nm which is reduced to 40 Nm during continuous 

operation. The motors have an air-cooled inner-rotor design, with the aluminum stator housing 

simultaneously acting as the heat sink and carrier for the steering mechanism. Analyses have 

shown air-cooling to be sufficient due to the high efficiency factor of the electric drive, leading 

to a significantly simpler and lighter design compared to liquid-cooling. The stator housing also 

plays the role of the wheel carrier with its connections to the ball joints at the end of the upper 

and lower wishbones (see Figure 2.6 – steering axis). 

The individual wheel steering consists of a rotary electric actuator mounted on the traction mo-

tor housing (compare Figure 2.3 – right). The pinion gear rotates around a larger gearwheel, 

which is rotationally constrained to the upper wishbone, while remaining coaxial with the king 

pin axis (Figure 2.4). Compared to steering actuation via a conventional tie-rod, this direct rota-

tional actuation of the steering axis allows a very large steering angle range limited only by the 

physical contact between the wheel and the wishbones. This rotational constraint on the large 

gear wheel presents a mechanical challenge as it must be effectively connected to the upper 

wishbone via a cardan joint. This is solved by the use of a novel “sliding-block” mechanism 

(see Figure 2.3 – right and Figure 2.4 – top) that showed profound reliability during testing. 

PMSM

Resolver

Sliding block 

mechanism

Harmonic Drive

gear box

Spur gear

Resolver

 

Figure 2.4: Cutaway view of the wheel hub integrated steering mechanism 
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The steering actuator uses a 370 W permanent magnet synchronous machine (PMSM) with a 

strain wave gearing from Harmonic Drive AG. The system is specified to achieve similar road 

wheel steering speeds to that of a human driver in extreme situations, which is accepted to be 

approximately 80 °/s. This corresponds to 1200 °/s at the steering wheel for a sportive steering 

ratio of 15:1 in a conventional car, well above the 500 °/s specified in test procedures [Iso88] 

and the 1000 °/s used in industrial circles. For the control of the steering angle two angular 

sensors are used. The first, a resolver, is used to measure the rotation between upper wishbone 

and the wheel carrier. The second sensor is located at the electric drive side and is also used for 

field-oriented control of the motor. The use of the second wheel mounted resolver compensates 

motor oscillations due to elasticity in gears and guarantees stationary exactness. 

Spindle drive

Hydraulic 

cylinder

PMSM

Power electronics 

connectors

Sling spring 

mechanism

Resolver

 

Figure 2.5: Cutaway view of the electro hydraulic brake actuator  

The hydraulic friction disc brakes are based on go-kart calipers produced by Magura GmbH. 

They were selected due the similar weight per brake ratio between go-karts and ROMO. The 

master cylinder is driven by an electro mechanical linear actuator comprising a spindle drive 

and a PMSM motor (see Figure 2.5). This system allows braking with a deceleration of 

8.8 m/s2, exceeding the ECE R13 service braking requirement of 6.4 m/s2. This additional 

friction brake system, lockable via a sling spring mechanism and powered by redundant low 

volt batteries, is necessary on ROMO for three main reasons: First, to provide a parking brake 

function, and to hold the vehicle on an incline during standstill. Second, to provide an emergen-

cy brake system in case of loss of the high voltage power supply for the traction motors (see 

energy system Chapter 2.3.1). Third, to assist the traction motors, working in generator mode, 

for providing a higher deceleration potential. 
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The Wheel Robot Suspension Design 

The demanding requirements of the wheel steering mechanism, such as a steering lock angle of 

90°, and a strut capacity of 1000 kg total mass in maximum lateral accelerations of 1 g, pre-

sented a challenge for the suspension design. The considerations of stiffness, simplicity for pro-

totyping and availability of proven design methods for high load vehicle dynamics led to the 

adaption of the well proven double wishbone layout. Other designs with movable linkages or 

top-hinged wheel carriers (like on a shopping trolley) [Aso08] suffer from high complexity, 

significant design effort and stiffness issues, which could not be overcome within the scope of 

this project. 

In terms of mechanical component design, the large steering angle range demand a shaped, slim 

wishbones construction (cf. Figure 2.6). Since this wishbone also had to carry the steering mo-

ments (the steering actuator lies on the wheel end of the wishbone), the loads led to a challeng-

ing task. An analysis with modelling of the lower wishbone as a flexible body using Modelica 

demonstrated the sufficient stiffness and strength of the design in a vehicle driving simulation, 

with the deflections having minimal effects on the vehicle driving behavior [Har10]. 

Chassis 

mounting plate

Push rod and bell crank 

suspension mechanism

Wishbones

Twin-tube coil 

over shock 

damper

Steering / 

king pin axis

Electro mechanical actuated 

hydraulic disc brake

 

Figure 2.6: Suspension design in CAD (wheel hub motor housing is faded out) 

In order to verify these challenging requirements before the construction of physical prototypes, 

the design of the suspension geometry was preliminary validated using a 3D multi-body simula-

tion. The detailed suspension was modelled with rigid links in Modelica (see Figure 2.7), and 

the static geometric relationships were evaluated. The first designs of the wheel robots were 

carried out with identically long wishbones, which resulted in the lack of pitch angles and a 

wheel contact point in line with the wheel axle. Although this makes it easy to integrate the 

steering mechanism, the mechanical advantages of a state of the art vehicle suspension [Trz08] 

would not have been utilized. 
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Figure 2.7: Modelica multi-body suspension model of one wheel robot 

By use of the Modelica DLR Vehicle Control Library (multi-body simulation) and the DLR 

Optimization Library (optimization of the hard points within the constructed space) the suspen-

sion was optimized to meet the criteria of vehicle stability, drivability, energy efficiency and 

self-stabilization in case of malfunction of the by-wire steering. As tuner variables the length of 

the wishbones, the height position of the hardpoints on the chassis and wheel carrier side, the 

relative pitch angle between the upper and the lower wishbone, as well as the expansion axis 

inclination and offset were chosen. In Table 2.1 a complete list of the static characteristic values 

in 𝑘0 (vehicle height at static compression stroke) of ROMO’s axles, after an iterative optimiza-

tion process, is given and will be discussed in the following. For more information regarding the 

influence of the single characteristics please refer to [Trz08]. 

Table 2.1: ROMO’s kinematic characteristics in static compression stroke 

Characteristic Front axle Rear axle 

Camber angle −0.5° −0.5° 

Toe angle 0.0° 0.0° 

Caster angle 4.00° 4.00° 

Inclination 8.01° 8.01° 

Steering offset 2.29 mm 2.29 mm 

Caster trail 25.16 mm 25.16 mm 

Roll center height 72.53 mm 81.31 mm 

Spring ratio 0.81 0.81 

Anti-dive / Anti-squat effect  55.38 % 54.55 % 
  

The requirement of a high operating speed (up to 100 km/h) demands automotive specifica-

tions regarding the steering axis design, such as the wheels being self-stabilizing in the absence 
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of actuator moment. In short, this requires a positive trail value and caster angle. This construc-

tive measure supports the energy efficiency of the by-wire steering due to reduction of the nec-

essary energy in case of straight-on running (wheel self-centering) and steering back from cor-

nering (wheel self-recirculation). Additionally, the steering offset is designed to a minimum 

value to minimize the necessary holding steering torque during acceleration and deceleration; 

thereby the loads on the steering actuators are reduced. The in-wheel motor design offers ad-

vantages in anti-dive and anti-squat design because the same lever for both drive and braking is 

effective. Here a good trade-off between vehicle body movement and wheel-load fluctuation 

was chosen, which is necessary to maximize the energy recuperation during braking. The low 

center of mass (the high voltage battery pack and other components are positioned close to the 

bottom of ROMO – see Figure 2.13) in combination with a good value of the geometric roll 

center height enabled an axle design that does not need the presence of an anti-roll bar. This 

simplifies the construction and gives a stable cornering and transient vehicle dynamics behavior 

to the vehicle. Whereas in the first suspension design the coil over shock damper could be 

placed between the two wishbones, a constructed space analysis made it necessary to move the 

damper to the chassis side transmitted by a narrow push rod and bell crank suspension mecha-

nism (cf. Figure 2.7.). Beside the constructive benefit, this enabled to design a progressive 

spring ratio, which gives advantages to the road holding with limited available shock travel of 

about 160 mm (see trajectories in Figure 2.8). The resulting vehicle trajectories characteristics 

are given in the following plot. The symmetrical camber gradients at front and rear axle lead to 

a good support in lateral direction and help to reduce the tire friction during cornering. The toe-

in trajectory (especially at the rear axle) is designed to self-stabilize the vehicle during emergen-

cy brakes and the progressive spring rate (by use of the push rod and bell crank mechanism – 

see Figure 2.6) assists to reduce the vehicle body movement and harsh collisions with the 

damper bump stops. 
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Figure 2.8: ROMO’s wheel trajectories after optimization 

To cope with the mass ratio of one (wheel) to four (body), the twin tube dampers (passive) are 

equipped with an elastomer bump stop in compression and a hydraulic rebound stop. These 
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measures in combination with an optimized compression and rebound damping setup guarantee 

secure wheel ground contact and mechanical stability even in critical situation, when the wheel 

loses ground contact. 

Another usage of the simulation model (cf. Figure 2.7) has been the evaluation of wheel camber 

variation as the wheels steered through the angle range from 0° to 90°, as shown in Figure 2.9. 

The front wheels take on positive camber values of 3.4°, and the rear wheels values of 11°. By 

reason of the limited time of operation in the sideward driving mode, these values can be seen 

as acceptable for the investigation on ROMO’s high maneuverability features. 

 

Figure 2.9: Suspension geometry during driving sidewards 

Additionally it is worth mentioning that in nominal operation mode (−25° to +25° steering 

angle) the camber trajectories stay in optimal boundaries to support the vehicle dynamics with 

the benefit for self-steering behavior (compare Figure 2.10). 
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Figure 2.10: The wheel robots camber angles trajectories 

Moreover, the loads acting on the vehicle axles are important criteria for the design of the me-

chanical components and mechatronic vehicle dynamic systems. They define, together with the 

above explained kinematics, constraints for the CAD construction regarding the strength of the 

components. These are evaluated through dynamic simulations of the complete vehicle model, 

for example in virtual prints from the curb maneuvers or maximum bump-stop force evaluation 

in case a wheel loses contact to the road. 
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2.2.2 The Four Modules Concept 

The four wheel robots are pairwise condensed in two axle modules, which have identical elec-

trical systems of electric drive inverters, backup batteries and step-down DC/DC converters 

(compare Figure 2.13). Thereby ROMO’s architecture allows modifications to the chassis with-

out affecting the powertrain, which is located completely in the two axle modules, with the ac-

tuators fully integrated within the wheel robots. The other modules are the driving module 

(body), which forms the structure of the vehicle and carries the cockpit, and the energy module 

mounted beneath the cockpit floor (see arrangement in Figure 2.11).  

Axle module

front

Axle module

rear

Energy module

(HV pack)

Driving module

 

Figure 2.11: ROMO’s four module concept 

This four module concept (two axle modules, body and battery) enables an interchangeable 

design for other mobility concepts. For instance the exchange or extension of the battery module 

with an internal combustion engine range extender would be possible. Another option could be 

a body module that offers space for more than two persons or a pure transport module with 

more than two axles. 

The fourth vehicle module is the energy unit – in the ROMO application it is based on a lithi-

um-ion battery storage (see also Chapter 2.3.1). It is inserted and removed from the bottom side 

(see Figure 2.11 – left) of the vehicle, which corresponds to the design proposed in [Wik17]. 

This concept was proposed to allow exchanging the battery instead of charging it at the service 

station to shorten waiting times, and in the context of the ROMO prototype this allows the pos-

sibility of using alternative electrical energy sources in future developments, such as hydrogen 

fuel cells or the DLR-developed free-piston linear alternator [Poh05]. 

This interchangeability is achieved through local intelligent control units for each actuator (in-

tegrated into an axle module). A central control computer (part of the driving module) is com-

municating with these local units to coordinate the vehicle’s motion. 

With the independent control of four wheel steering actuators, four electric wheel hub motors 

and two friction brake actuators, the vehicle dynamics variables of yaw rate 𝜓̇, side slip angle 𝛽 

and vehicle velocity 𝒗 = {𝑣𝑥, 𝑣𝑦} can be decoupled and independently controlled. In Chapter 3 

this property will be used to design an energy optimal control for ROMO’s actuators. 
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2.3 ROMO’s Electrical System and Control Architecture 

In this chapter the electrical system, which enables the x-by-wire architecture of ROboMObil is 

discussed. It supplies the central control architecture and mechatronic infrastructure with energy 

in a complex multi-voltage network in combination with safe fallback strategies in case of a 

malfunction. 

2.3.1 The Vehicle Electrical System Design 
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Figure 2.12: Electrical architecture scheme of ROMO – high voltage System (left) – low voltage 

system of one axle module with identical composition for front and rear (right) 

The electrical architecture consists of a high voltage (HV) battery as the main power source (see 

Figure 2.12). It is directly connected to the inverters of the four traction motors (TM), and also 

to the two step-down DC/DC converters to supply the low voltage (LV) system. A connection 

with an external high voltage DC power supply allows on-board electrical system investiga-

tions, like hardware-in-the-loop (HIL) controlled external sink and source simulations, as well 

as fast charging of the vehicle. The operation modes of the electrical system are controlled by 

the on-board network control unit (BNCU) which is implemented on an embedded rapid proto-

typing central controller of ROMO, one of the components of the hierarchical controller archi-

tecture.  
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Figure 2.13: CAD detail views of ROMO’s electrical systems 

The air-cooled HV battery unit consists of 90 pouch type cells divided into nine stacks, provid-

ing a nominal capacity of 14 kWh at 350 V (cf. Figure 2.13). Simulations using DLR’s Modeli-

ca PowerTrain Library [Tob07] showed that ROMO has a range of approximately 100 km. To 

ensure operational safety, the HV electrical system is designed in accordance to the ECE R100 

regulations for electric and hybrid vehicles. An isolation monitor is implemented, as safety 

measure for the high voltage system, alongside a HV-interlock signal wire, which ensures that 

all HV components are connected and secured. Any breach of these security measures leads to a 

release of the battery main relays. In this case the LV network in the axle modules prevent the 

car from an uncontrolled behavior and guarantees sufficient energy to bring the vehicle to a safe 

state by use of the steering and mechanical brake actuators. 

The development of operating strategies to optimize the energy management requires high-

fidelity models of the energy sources and sinks. In the case of the HV system, these are the lith-

ium-ion battery pack and the in-wheel drive motors respectively. The information from system-

atic battery cell testing was used to configure and parametrize a real-time capable battery model. 

Accordingly, a model based state observation concept was developed to predict the states within 

the battery, including state of charge (SOC) and power availability, see Chapter 5.1. 
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Figure 2.14: Test results of ROMO’s longitudinal dynamics on DLR’s roller test rig 

Longitudinal dynamics tests with the ROMO prototype were performed on DLR’s chassis dy-

namometer in Stuttgart. Amongst other tests, driving cycle investigations were performed using 

an automatic controller on rollers simulating the velocity dependent resistances on the vehicle. 

The data was then validated with the results from a driving cycle simulation to check the accu-

racy of the models. In Figure 2.14 the vehicle drove the so-called “Stuttgart suburban” cycle, a 

DLR driving cycle based on a speed profile recorded in a real-life drive in suburban traffic of 

Stuttgart. The collected data during the tests were also used to identify ROMO’s powertrain and 

electric propulsion behavior for ROMO’s multiphysical Modelica model used in Chapter 3.7. 

2.3.2 The Central Control Architecture 

ROMO’s central control architecture is driven by modern robot applications with a hierarchical 

structure feeding high level commands (from perception, cognition or autonomy) to a general 

motion demand calculation layer. This layer is a controller that uses the feedback of the vehicle 

dynamics sensor system and calculates a triple of plane movement requests (e.g. 𝑣𝑥
C, 𝑣𝑦

C, 𝜓̇C) of 

the vehicle body in the ℝ3 space for the actual high level command. An underlying control allo-

cation algorithm determines, by use of intelligent optimization methods, a feasible set of com-

manded actuator values. Finally, these set-points are applied by the local controllers of the intel-

ligent wheel robot units and commanded by the power electronics to the distinguished drive. 
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Figure 2.15: ROMO’s pyramidal control architecture 

The presented pyramidal control architecture in Figure 2.15 has the main advantage that the 

complexity is reduced by defined responsibilities, interfaces and intra-system communication 

between the different levels. In comparison to this approach, today’s vehicle architectures are 

mostly based on function grouping of mechatronic components and the associated microcontrol-

lers. Nowadays, there is a slight change in upcoming vehicle systems by grouping different 

functionalities on one microcontroller [Scu15], but nevertheless they do not have an overall 

integrated chassis management. 

In detail, the flow of commands in ROMO begins with environmental sensing and recognition 

of a motion demand, which can be set by the in-vehicle human machine interface (HMI), by a 

driver in a teleoperation station, or by a path planner for autonomous driving – the artificial 

intelligence agent (AIA). The vehicle is equipped with a 360° 3D-stereo camera system to ori-

entate e.g. in today’s mega cities. With the raw camera data different algorithms, developed at 

DLR for computer vision in robot application [Hir08], can be applied to detect obstacles and 

road users. Beyond that, information from car2x networks or low distance ultrasound sensors 

can improve the data mining [Sca11]. This sensor data is then processed in the vehicle applica-

tion layer (VAL). In this level different algorithms can be integrated and investigated – e.g. a 

conventional human control interface for performance comparison studies up to algorithms for 

autonomous driving. One main research focus of the ROMO project is to implement algorithms 

in this shared autonomy layer in which the human operator expresses a raw motion demand that 

is subsequently refined on its own by the subordinate system, using the available information 

about the environment and the vehicle’s system states. Consequently, the vehicle can refuse to 

cause an accident, by preventing the driver from leaving the road. In the underlying motion 

demand calculation layer the planar vehicle motion demand is calculated by use of the VAL 

trajectory information. This layer feeds back the kinematic and driving dynamics constraints to 

the VAL to incorporate them in the trajectory generation module. The motion request is then (as 

mentioned above) refined within the control allocation module that generates the set-points for 
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the local intelligent controllers. For this purpose the motion information – gathered by a global 

navigation satellite system (GNSS) and an inertial measurement system in combination with a 

vision based ego motion estimation – and the actual performance capacity of the wheel robots 

are taken into account. Finally, the high fidelity wheel robot controllers adjust precisely the 

demanded set-points of the ten mechatronic driving dynamics actuators. 

2.3.3 The Vehicle Dynamics Sensors and Actuators Network Architecture 

As a motivation for the following chapters, where the focus is mainly on ROMO’s vehicle dy-

namics sensors and actuators, in Figure 2.16 the – for these task relevant – connections and 

components are given. The arrangement is designed to meet the central control architecture 

introduced in Chapter 2.3.2 with two synchronized rapid prototyping controllers (dSPACE 

MABX2 and ABX) which represent ROMO’s central control unit. The wheel robots with the 

traction and steering drive torques 𝜏(ST),𝐖 , angular velocities 𝜔(ST),𝐖 and steering angles 𝛿𝐖 

quantities, as well as the Correvit optical measurement unit (used to measure the vehicle’s lon-

gitudinal and lateral speed 𝒗act
C = {𝑣act𝑥

C , 𝑣act𝑦
C }), are connected via high-speed CAN busses. 

The inertial measurement system with a differential corrected global navigation satellite system 

(GNSS) to measure the vehicle states such as the positon 𝒑Cact
I , yaw angle 𝜓Cact

I  and yaw rate 

𝜓̇Cact
I , or the velocity 𝒗act

C  is wired by an Ethernet bus to the central control. Additionally, the 

wheel 𝒂𝐖 and chassis body 𝒂body accelerations as well as wheel travel sensors 𝑠𝐖are tethered 

via analog inputs. Both, the OxTS measurement unit and the optical odometry sensor are suited 

for the experimental evaluation of driving experiments. 
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Figure 2.16: ROMO’s vehicle dynamics sensors and actuators architecture 
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The design of ROboMObil has been a joint research project of the ROboMObil team (consisting 

of eight core team members), where the author has been the project leader and his contributions 

can be summarized as follows: 

 Simulative dimensioning of the high voltage battery system of ROMO by means of 

multiphysical simulation models, as well as the specification for security measures, heat 

management and vehicle package integration. 

 Design, parameterization, and validation of Modelica based (electrical) component 

models for ROMO’s powertrain dimensioning and assessment of different concepts. 

 HIL testing of the high voltage battery system by means of a high performance and 

freely programmable high voltage source and sink power supply. 

 Significant co-development of ROMO’s electrical system and central control architec-

ture with the focus on vehicle dynamic control and sensor systems. 

 Overall vehicle packaging concept development including interior, HMI, as well as 

electrical and mechanical components namely the four module concept consisting of a 

chassis, two axle modules and a battery module. 

 Design and optimization of ROMO’s suspension geometry and characteristics under the 

restriction of available constructive space in the axle modules and the avoidance of col-

lision with the sliding block mechanism of the steering strut. 
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3. The Model Based Energy Manager Framework 

This chapter is an extended and enhanced version of [Bre12], [Bre14]. The deployed path inter-

polation algorithm from [Rit15] is a modified development to match the here developed trajec-

tory controller (Chapter 3.4.2) and its outputs to the energy optimal control allocation problem 

formulation (Chapter 3.5). 

3.1 State of the Art 

In today’s conventional vehicle architectures there are a large number of electrical loads, many 

of them related with comfort aspects, like seat heating but also safety critical ones like advanced 

driver assistance functionalities. Therefore, in the last two decades a lot of effort was spent to 

protect the conventional 12 V − 14 V on-board electrical system from under/over voltage states 

or exceeding power requests. Strategies to avoid these flaws are on the one hand topology modi-

fication of the on-board electrical system through the application systems like a voltage-

stabilization-unit, by means of a buck converter during motor starting, or a decoupled on-board 

electrical system, i.e. a second battery [Fro08]. On the other hand, control interventions during 

dynamic performance requests through measures like increasing the engine idle speed, soft 

switching of the loads or reducing the power request of the loads during performance peak sit-

uation may also alter the on-board electrical system stability [Buc08]. 

To further reduce the CO2 emissions hybrid powertrain configurations like parallel hybrid elec-

tric vehicle (PHEV) or serial hybrid electric vehicle (SHEV) have been developed. They have 

different types of power sources – e.g. internal combustion engines (ICEs) – and energy storage 

– e.g. high voltage (HV) lithium-ion battery packs – and open up a manifold of optimization 

possibilities for the energy management control. A good overview and detailing of the most 

convenient architectures is given in [Kam11]. 

Especially in the above mentioned hybrid powertrain configurations, on-board electrical system 

management techniques achieve profound reliability in stability and energy efficiency. For ex-

ample in [The07] an energy management approach with pre-allocated table based prioritization 

of the loads, classified in safety critical classes and preferred comfort assignments in a real-time 

management system is proposed. Defining the on-board electrical system as a market model, 

according to theory from economy science, showed good results for vehicle applications in 

[Ens08], [Buc08] and was recently also successfully applied in an improved form to an aviation 

application [Scl15]. The here used market theory employs the optimal allocation of limited re-

sources from providers to allocators. The actual market demand and offer of energy yields a 

market price and every component has a certain cost function in dependency of it. An auc-

tioneer module supervises permanently the excess demand and recalculates at every sample 

time instance the market price to achieve a balanced equilibrium. To ensure reliable system 

operation safety critical functions do not have a price limitation for their power demand. 
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Other strategies for energy management aim on the efficient propulsion source distribution (es-

pecially for PHEV), energy recovery during deceleration and traction battery charging man-

agement. By means of on-board sensors, map data systems with virtual horizon, actual drive 

style classification algorithms, wireless communication, and efficient energy management sys-

tems for the longitudinal powertrain could be developed in the past decades. Appreciable re-

search studies for these kinds of energy management strategies can be found in [Won03], 

[Wid08], [Toe08] and most recent refined in [Kno16]. 

3.2 A Motion Request Approach for Future Energy Management 

As presented in Chapter 2.3.1, ROMO has a complex electrical on-board architecture with only 

one central power source for propulsion controlled by the on-board network control unit. The 

conception of this doctoral thesis project is not to optimize the energy flow between the compo-

nents or to influence the power distribution between a combustion engine and electric motor 

(for details see Chapter 3.1). Instead here it is investigated how energy flows can be optimized 

on the level of the motion demand – in other words, how energy can be saved by travelling a 

route under the utilization of the complete road width and model based knowledge for intelli-

gent control algorithms. 

The research aims for the motion demand driven energy manager approach are: 

 Utilizing the full road space for the vehicle movement, 

 integrating the vehicles physical limits and road incline in the planning and 

 commanding the wheel robots actuators of ROMO in sense of energy efficiency. 

In [Ros07] it is proposed to apply today’s common pyramidal organized management structure 

to energy management systems for multi-propulsion vehicle architectures (as described in Chap-

ter 3.1). Inspired by this approach an inverse pyramid for energy optimal driving strategy man-

agement is proposed on the left side of Figure 3.1.  
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Figure 3.1: ROMO’s energy manager scheme 
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The width of the inverse pyramid levels donates a proportion for the average cycle-time of one 

hierarchical control level. Moreover, a mapping of these levels to the control strategy of ROMO 

(compare also Figure 2.15) is given. On the top of the inverse pyramid – with the longest possi-

ble calculation time – the global energy optimization module is present. Its task is to define an 

energy optimal path, with corresponding vehicle velocity, for a given route. It should also be 

able to integrate information like road obstacles and other vehicles. On the level of optimal ac-

tuator control the task is to generate the set-points for the wheel robots intelligent actuators in an 

energy optimal manner, trying to keep the vehicle on the precalculated path and velocity prede-

termined by the top management level. The lowest level of the pyramid, the power electronics 

and the corresponding local current control loops for the actuators’ electric drives, are not part 

of this dissertation project. Their development and optimization was part of the 

BayStMWIVT “Radroboter – eCorner” EMO-1002-0002 public funded project.  

The development of the complete control strategy is divided into three chapters. In Chapter 3.3 

a real-time capable path planning module is developed which optimizes the spatial path, com-

bined with constrained vehicle speed profile generation, in an energy optimal way. In addition, 

investigations on efficient real-time capable problem solving formulations are carried out. Sub-

sequently in Chapter 3.4 the extraction of the actual controller set-point for the vehicle motion 

control from time independent path and velocity representation and the design of the error com-

pensating controllers for the planar vehicle movement are discussed. As a last step in Chap-

ter 3.5 an energy optimal control allocation algorithm distributes the change in the demanded 

movement to ROMO’s over-actuated wheel robots. The complete control flow diagram with 

their interfaces to other modules is explained in Chapter 3.6 and a comprehensive simulation 

study together with a high-fidelity Modelica model of ROboMObil is assessed. 

3.3 The Real-Time Capable Path Planning Module 

The main task of the proposed algorithm is to calculate an energy optimal parametric path in a 

real-time capable way to be able to incorporate data from actual traffic situations (e.g. oncoming 

traffic) or changed road conditions. 
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Figure 3.2: A simplified vehicle model – its width and orientation define the valid area of the 

roadway (the graphic is based on [Dan11]). 
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The resulting trajectory is then fed forward to a path following controller (Chapter 3.4) that 

calculates the motion demands for the energy optimal control allocation (Chapter 3.5). This in 

turn distributes the demand to the actuators of the over-actuated vehicle and a numerical reliable 

way is shown to formulate the energy optimal path planning optimization objective. Besides 

this, different types of optimization methods are evaluated for their computational effort and the 

influence of the path horizon assessed. Based on the optimized spatial path a velocity profile is 

calculated that considers the drag forces and the physical limitations of ROMO. 

3.3.1 The Real-Time Capable Path Planning Approach 

In this chapter an optimization problem formulation for a real-time capable path planning algo-

rithm is introduced that combines the benefits of two approaches, which are a small scale non-

linear optimization problem and linear inequality constraints which represent the driveway 

boundary accurately. In this approach a situation as shown in Figure 3.2 is assumed. A vehicle 

is travelling along a predefined road with defined roadway boundaries (here the navigation in a 

road network is not considered) and it is able to use the available lateral space 𝑤res on the street 

to minimize an optimization criteria (e.g. the path curvature) over the considered road segment. 

Preceding Works in Vehicle Path Planning 

In the recent publication [Pad16] a comprehensive overview of different numerical methods for 

path planning strategies appropriate for semi-autonomous vehicles, like DLR’s ROboMObil, is 

given. The authors group the methods shortly described as follows [Pad16]: 

 Variational methods represent the path as a function parameterized vector and the (lo-

cally) optimized path is obtained by optimizing these parameters with a (non-)linear op-

timization method. 

 Graph-search methods discretize the configuration space of a vehicle as a graph, in 

which vertices are the finite collection of vehicle configurations and the edges are tran-

sitions between the vertices. The minimal cost path in such a graph represents the 

searched optimal solution. 

 Incremental search methods sample the configuration space and build incrementally a 

reachability path that maintains the discrete set of reachable configurations and feasible 

transitions between them. 

This thesis focuses on the first type, the variational methods, since ROMO is a non-holonomic 

vehicle and therefore the parameterized path representation, e.g. with a spline, is a natural de-

scription formulation for a feasible path with a continuous curvature. An approach is the path 

representation with clothoids segments which are iteratively optimized to achieve a path with 

minimal curvature [Fun12] or the representation as Bézier curves (e.g. [Ma12]) which can also 

be transformed to a spline representation. Within this work it is decided to focus on spline rep-

resentations of the vehicle path, since modification in Bézier curves control points do always 

influence the whole path and clothoids approaches are only analytically solvable under special 

assumptions [Wid09] or in an iteratively manner [Fun12]. A literature research for the here de-
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fined goals (normally shaped roadway with boundaries) led to the promising approaches in 

[Dan11] and [Bra08] which are examined in detail in the following. The first approach in 

[Dan11] is based on the idea that every road boundary as well as the vehicle path itself can be 

represented as set of two dimensional cubic splines with the spline parameter 𝑞 (Figure 3.2)): 

 𝒐𝑖(𝑞) = {
𝑜𝑥,𝑖(𝑞) = 𝑎𝑥,𝑖(𝜃𝑖)

3 + 𝑏𝑥,𝑖(𝜃𝑖)
2 + 𝑐𝑥,𝑖(𝜃𝑖) + 𝑑𝑥,𝑖

𝑜𝑦,𝑖(𝑞) = 𝑎𝑦,𝑖(𝜃𝑖)
3 + 𝑏𝑦,𝑖(𝜃𝑖)

2 + 𝑐𝑦,𝑖(𝜃𝑖) + 𝑑𝑦,𝑖
} ; 𝜃𝑖 = 𝑞 − 𝑞𝑖 (3.1) 

Each spline consists of 𝑛 − 1 polynomial functions 𝒐𝑖(𝑞) between the 𝑛 interpolation points 𝑞𝑖 

{𝑖 ∈ ℕ: 1 ≤ 𝑖 ≤ 𝑛 − 1}, this implies that for every spline segment {𝜃𝑖 ∈ ℝ: 0 ≤  𝜃𝑖 ≤ 1} holds. 

The authors of [Dan11] derived a linearized quadratic program (QP) (see also eq. (3.42)) with 

inequality constraints which is based on a polynomial coefficient comparison of the boundaries 

and the optimized path. As the minimization criteria they defined a linearized criteria function 𝐸̃ 

of the nonlinear curvature 𝜅 along the path: 

 𝐸̃ = ∑ ∑ (𝑞𝑖+1 − 𝑞𝑖)(𝑏𝑝,𝑖
2 + 𝑏𝑝,𝑖𝑏𝑝,𝑖+1 + 𝑏𝑝,𝑖+1

2 )

𝑝∈{𝑥,𝑦}

𝑛−1

𝑖=1

 (3.2) 

The QP enables good real-time capability due to the availability of powerful solvers e.g. QL 

[Sch05]. However, experimental implementations of this approach showed only unsatisfactory 

results. This can be constituted as follows: if the path changes a quadrant, it is necessary to rede-

fine the inequality constraints, to be consistent with the left and right street boundary. Therefore, 

it is necessary to place an extra interpolation point at the transition of the quadrants, which leads 

to a poor weighting of the spline segments, since some of them may be very small. Due to the 

choice of the polynomial coefficients as optimization variables and their weak coupling between 

each other, the quadratic matrix of the QP gets sparse. The linearization of the curvature objec-

tive – which is only valid for very small distances – in combination with an increasing number 

of decision variables, depending on the route length and number of quadrant changes, makes it 

difficult for the QP solver to find a valid solution. An attempt to cope with this disutility by 

introducing weighting in the objective function did not lead to a numerical robust solution. 

The second algorithm under evaluation [Bra08] simplifies the optimization approach, in the way 

that only the scalars 𝛼𝑖 ∈ [0,1] at the junction points 𝑞𝑖 of the polynomial sections can be tuned 

by the optimizer. These scalars 𝛼𝑖 define the point on the connection line between the right 

𝒓𝑖(𝑞) and the left 𝒍𝑖(𝑞) roadway boundaries at the point 𝑞 = 𝑞𝑖 (see Figure 3.3); 𝛼𝑖 = 0 states 

that the path is located on the left and 𝛼𝑖 = 1 denotes it is located on the right side. In this way 

the optimization problem has a dense formulation and numerically reliable results are achieva-

ble. Nevertheless, with this approach the authors cannot guarantee that the calculated path will 

stay within the boundaries between two control points 𝑞𝑖 → 𝑞𝑖+1. 

In the following subsection a new approach is proposed that combines the polynomial represen-

tation of [Dan11] with the simplification of the representation of [Bra08] and is moreover ex-

tended with an efficient boundary control mechanism. 
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The New Computational Efficient Approach 

The aim of this approach is to give a small scale, well posed optimization problem and a reliable 

formulation of the boundaries inequality constraints, that guarantee the vehicle to stay within 

the roadway also between the interpolation points. The new approach uses polynomials for the 

path representation (similar to [Dan11]), but bounds the interpolation nodes on a line with a 

scaling parameter 𝛼𝑖 ∈ [0,1] (inspired by [Bra08]) between the left 𝒍𝑖(𝑞) and the right 𝒓𝑖(𝑞) 

road boundaries (compare Figure 3.3). The benefit of this representation is that the number of 

optimization variables reduces from eight (compare eq. (3.1)) to only three per segment. The 

reduced set of variables for one spline segment 𝒐𝑖(𝑞) are the polynomial coefficients 𝒃𝑖 =

{𝑏𝑖,𝑥 𝑏𝑖,𝑦} and the scalar scaling factor 𝛼𝑖. 

𝛼𝑖−1 
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𝛼𝑖  

𝛼𝑖+1 

𝒐𝑖−1(𝑞) 

𝒍𝑖+1(𝑞) 

𝒍𝑖(𝑞) 

𝒓𝑖+1(𝑞) 

𝒓𝑖−1(𝑞) 𝒍𝑖−1(𝑞) 

𝒓𝑖(𝑞) 

 

Figure 3.3: The new spline representation with reduced number of parameters 

All other spline parameters can be expressed as functions of 𝒃𝑖 and 𝛼𝑖. This representation can 

be derived from the constraint that a 𝒞2 continuous transition between the spline segments is 

guaranteed. This demand can be expressed in a set of equality constraints: the position and its 

first and second derivative between two spline segments have to be equal at each junction point. 

This leads to the following equality constraints 

 ℎ𝑖
3𝒂𝑖 + ℎ𝑖

2𝒃𝑖 + ℎ𝑖𝒄𝑖 + 𝒅𝑖 = 𝒅𝑖+1 (3.3) 

 3ℎ𝑖
2𝒂𝑖 + 2ℎ𝑖𝒃𝑖 + 𝒄𝑖 = 𝒄𝑖+1 (3.4) 

 3ℎ𝑖𝒂𝑖 + 𝒃𝑖 = 𝒃𝑖+1 (3.5) 

wherein 𝑖 = 1…𝑛 − 2 and ℎ𝑖 = 𝑞𝑖+1 − 𝑞𝑖. Eq. (3.3) and eq. (3.5) contain the four unknown 

spline coefficients 𝒂𝑖 , 𝒄𝑖 , 𝒅𝑖 and 𝒅𝑖+1. To obtain a determined system of linear equations an 

additional eq. (3.6) is added to the set. It denotes the shifting of the interpolation points between 

the left 𝒍𝑖 and the right 𝒓𝑖 side of the street boundaries via the scalar scaling factor 𝛼: 

 𝒅𝑖 = 𝒍𝑖 + (𝒓𝑖 − 𝒍𝑖) ⋅ 𝛼𝑖   ∀𝑖 = 1…𝑛 (3.6) 

Solving the system of linear equations (3.3), (3.5) and (3.6) and substituting the results into 

eq. (3.1) yields the compact path representation with 3𝑛 optimization variables in 𝒃𝑖 and 𝛼𝑖. 



36 The Model Based Energy Manager Framework 

This compact formulation is used for the new equality constraint, which results from substitut-

ing the derived dependencies from 𝒂𝑖 , 𝒄𝑖 and 𝒅𝑖 on 𝒃𝑖 and 𝛼𝑖 into the remaining original con-

straint (3.4). Equation (3.7) evaluates the reduced equality constraint for ℎ𝑖 = 1 and 𝑖 =

2…𝑛 − 1 

 

𝒃𝑖−1 + 4𝒃𝑖 + 𝒃𝑖+1 = 

3(𝒍𝑖−1 + (𝒓𝑖−1 − 𝒍𝑖−1)𝛼𝑖−1) − 6(𝒍𝑖 + (𝒓𝑖 − 𝒍𝑖)𝛼𝑖) + 

+3(𝒍𝑖+1 + (𝒓𝑖+1 − 𝒍𝑖+1)𝛼𝑖+1)  

(3.7) 

As a result, the number of equality constraints can be decreased, since they are partly contained 

in the new path representation. Beyond that, the inequality constraints at the nodes can be more 

simply described with the introduced optimization variable 𝛼𝑖: 

 0 ≤ 𝛼𝑖 ≤ 1;     𝑖 = 1…𝑛  (3.8) 

In the next section it is shown that with this approach it can be ensured that the optimized path 

also lies in the constrained area of the roadway between two nodes. The simplest method to 

achieve this is to put the interpolated points closer together, with the major disadvantage to un-

necessarily increasing the number of optimization variables. Therefore, the orientation inde-

pendent inequality constraints are extended by additional control points, without adding optimi-

zation variables. The same principle as for 𝛼𝑖 is used at control points between the spline sam-

pling points. The 𝑖-th optimized path segment 𝒐𝑖(𝑞) evaluated at 𝑘 linearly spaced points 

𝜌𝑗 = 𝑞𝑖 + 𝑗 ⋅
1

𝑘+1
 for 𝑗 = 1…𝑘 must be located between the left boundary 𝒍𝑖(𝑞) and the right 

boundary 𝒓𝑖(𝑞) at the same points. This leads to the inequality formulation: 

 0 ≤
𝒓𝑖(𝜌𝑗) − 𝒍𝑖(𝜌𝑗)

‖𝒓𝑖(𝜌𝑗) − 𝒍𝑖(𝜌𝑗)‖
2 (𝒐𝑖(𝜌𝑗) − 𝒍𝑖(𝜌𝑗)) ≤ 1 (3.9) 

The introduced inequality control constraints of eq. (3.9) are visualized in Figure 3.4. 
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𝒐𝑖(𝜌𝑗) − 𝒍𝑖(𝜌𝑗 ) 
 

 

Figure 3.4: Sample spline segment with an additional control point at 𝑞 = 𝜌𝑗 

In words, the vector between the left boundary and the optimized path 𝒐𝑖(𝜌𝑗) − 𝒍𝑖(𝜌𝑗) in direc-

tion of the vector between the left and right boundary 𝒓𝑖(𝜌𝑗) − 𝒍𝑖(𝜌𝑗) must be longer than zero 

and shorter than 𝒓𝑖(𝜌𝑗) − 𝒍𝑖(𝜌𝑗). The frequency of these constraints can be defined inde-

pendently by the number of interpolated points. Here it is worth to mention that in exceptional 

cases despite valid inequality constraints the optimized path lies outside of the boundaries, but 
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due to the curvature minimization it is very unlikely that a violating path is computed (e.g. loops 

between two control points may cause a large value in the curvature cost function eq. (3.10)). 

It has been decided to formulate the optimization objective only in terms of the spline coeffi-

cients 𝒃𝑖 and the control points 𝛼𝑖 to be able to make benefit from the problem structure in the 

real-time capable implementation (see the later Chapter 3.3.2). Other optimization objective 

approaches that make use of the energy loss in the powertrain 𝐸loss(𝑣) (as it is discussed later in 

Chapter 3.5.3) or do incorporate the traveled time 𝑡 or distance 𝑠 result in a more complex opti-

mization problem with 𝑣(𝑠) as a decision variable. E.g. incorporating the vehicle’s lateral accel-

eration limit 𝜅(𝑠) ⋅ (d𝑠 d𝑡⁄ )2 < 𝑎𝑦max
C  leads to nonlinear inequality constraints. Justified by the 

aim of being real-time capable the spatial path optimization is separated from the velocity pro-

file generation (see details in Chapter 3.3.2). 

The here considered optimization objective is now formulated as a linear problem in terms of 

the constraints (equalities = junctions; inequalities = path boundaries and extra control points) 

and a nonlinear cost function (curvature quadrat of the path [Hor83]). This objective has been 

already successfully used in publications for energy optimal path generation in [Dan10] and 

[Car10]. The assumption is that with a smaller curvature 𝜅 of the path, a turn can be passed with 

a higher velocity according to the relation 𝑣2 ≤ 𝑎𝑦max
C /𝜅 and thus with less energy consumption 

caused by acceleration (braking and reaccelerating) of the vehicle. Furthermore, the necessary 

steering angles will stay small and therefore the tire losses due to cornering. The optimization 

problem with the spline coefficients 𝒙 = {𝑏1,𝑥, 𝑏1,𝑦, 𝛼1, … , 𝑏𝑛,𝑥 , 𝑏𝑛,𝑦, 𝛼𝑛} is given as follows: 

 

𝒙∗ = argmin∫ 𝜅2(𝒙, 𝑞)d𝑞
𝑞𝑛

0
𝒙

 

s. t.  𝑨𝒙 = 𝒃 

𝑪𝒙 ≤ 𝒅 

(3.10) 

Since eq. (3.7) is linear in the optimization variables 𝒃𝑖 and 𝛼𝑖 it can be symbolically trans-

formed to the form 𝑨𝒙 = 𝒃. The inequality constraints are expressed via the control points at 

the spline knots eq. (3.8), which lead to 2𝑛 equations in 𝑪𝒙 ≤ 𝒅. Additionally, the control 

points inequality constraints in eq. (3.9) are expanded with cubic splines. Their coefficients are 

represented in the dependency of the decision variables and finally transformed to the linear 

inequality equation form 𝑪𝒙 ≤ 𝒅. Moreover, all derivatives of the polynomials in the integral 

over the quadratic path curvature (cf. eq. (3.10)) can be calculated analytically 

 
𝜅(𝒙, 𝑞) =

𝑜𝑦
′′(𝑞)𝑜𝑥

′ (𝑞) − 𝑜𝑥
′′(𝑞)𝑜𝑦

′ (𝑞)

(𝑜𝑥
′ 2(𝑞) + 𝑜𝑦

′ 2(𝑞))

3
2

  
(3.11) 

with 𝑜𝑝
′ (𝑞) = 𝑜𝑝(𝑞)d/d𝑞. With this combined approach the dimensions of the constraint matri-

ces are reduced to 𝑨 ∈ ℝ[2(𝑛−2)+4]×[3𝑛] and 𝑪 ∈ ℝ[2𝑘⋅(𝑛−1)+2𝑛]×[3𝑛] compared to 

𝑨 ∈ ℝ[6(𝑛−2)]×[8(𝑛−1)] and 𝑪 ∈ ℝ[16(𝑛−1)]×[8(𝑛−1)] in [Dan11]. Summarizing all beneficial 

properties of this new approach the improvements, compared to [Dan11], [Bra08] are: 

 The dimension of the optimization variables reduce from 8(𝑛 − 1) to only 3𝑛, 
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 the nonlinear objective function can be analytically calculated from the spline itself, 

 all constraints are linear and the inequality constraints are orientation independent, 

 the number of equality constraints shrink to one third compared to [Dan11] and 

 the number of inequality constraints could be reduced to one eighth (without extra con-

trol points). 

By these achievements the computational performance gain can be estimated as follows: a quad-

ratic program e.g. QL [Sch05] solver makes it necessary to calculate the Cholesky decomposi-

tion (O(𝑛3 3⁄ ) floating operations [Gol13]) of the quadratic matrix 𝑯 in eq. (3.42). When using 

the nonlinear gradient method [Ros07] it is necessary to calculate the pseudo invers for project-

ing the gradient on the linear constraints by means of a singular value decomposition which is 

extremely costly (O(12𝑛3), cf. [Gol13]). This gives a good rule of thumb that an increase of 

optimization variables or number of extra constraint equation raises the computational effort at 

least to the power of three of floating point operations. 

3.3.2 Implementation and Testing 

In this section an efficient solution of the optimization task is analyzed and experimental results 

in offline simulations with different path horizons are given. 

Problem Structure Exploiting Optimization Methods and Testing 

In order to calculate in real-time a solution for the constraint optimization problem of eq. (3.10), 

an optimization method needs to be chosen that can exploit the problem structure. For the as-

sessment of the appropriate optimizer algorithms a 2 km long rural road segment of the Vires 

virtual landscape [Vir17b] is used. The same road segment (see Figure 3.29), but with a length 

of 3 km, is investigated later in Chapter 3.7.3 to evaluate the overall energy manager. The here 

considered track with 2 km length is formulated with the proposed new optimization approach 

according to eq. (3.10). It consists of 88 interpolation knots of the spline, i.e. 264 optimization 

variables have to be determined by the algorithm and the roadway boundaries have to be ex-

tracted from the Vires track description. The number of spline segments is chosen by a heuristic 

procedure which showed good results in a manifold of experiments. The courses of the road 

boundaries as well as the initial guess (the road middle) lane are checked in before to not have 

any oscillations or loops within them. With this setup a case study with different appropriate 

optimization algorithms has been performed, listed in Table 3.1. 

Table 3.1: Optimizer performance comparison for constrained path curvature minimization 

Algorithm Time Iterations 
Cost Function 

𝒄𝒊 

Relative Increase 

(𝒄𝒊 − 𝒄min)/𝒄min 

QP 0.09 s 1 3.490 ⋅ 10−2 38.7 % 

NG 2.67 s 73 2.549 ⋅ 10−2 1.31 % 

fmincon 7.13 s 201 2.568 ⋅ 10−2 2.07 % 

SQP 38.6 s 481 2.516 ⋅ 10−2 Reference 
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The table shows the performance index of a (linearized) quadratic program (QP), a nonlinear 

gradient descent (NG) search, fmincon (the built-in solver in MATLAB) and a sequential 

quadratic program (SQP) solver. The solution of the SQP showed the best result with respect to 

the minimization of the cost function. But it also is the most computational demanding and 

therefore acts as reference for the other solvers. The best tradeoff between calculation time and 

accuracy showed the nonlinear gradient descent method (NG), in a similar implementation as 

proposed in [Ros60], and is hence selected as method of choice.   

The reason for its good performance in this optimization task (eq. (3.10)) can be explained as 

follows: first, the gradient function can be efficiently calculated when approximating the curva-

ture integral with a Riemann sum of the quadrat of the analytical curvature function (eq. (3.11): 

 𝐸𝑖 = ∫ 𝜅2(𝒙𝑖, 𝑞)d𝑞

𝑞𝑖+1

𝑞𝑖

≈ 𝐸̂𝑖 =∑𝜅𝑖
2(𝒙𝑖, 𝑞𝑗) ⋅ Δ𝑞𝑗

𝑗

 (3.12) 

It is assumed that the constant interval size Δ𝑞𝑗 is chosen to be small. This approximation is 

necessary since no analytic integral solution of the quadratic curvature term eq. (3.12) can be 

found. The NG minimization objective writes therefore as follows: 

 

𝒙∗ = argmin
𝒙

 𝑓(𝒙) = ∑ 𝐸̂𝑖(𝒙𝑖)

𝑛−1

𝑖=1

 

s. t.  𝑨𝒙 = 𝒃 

𝑪𝒙 ≤ 𝒅 

(3.13) 

Through this method, the gradient computation can be divided into sub problems due to the 

piecewise polynomial representation of the spline functions. Second, the linear equality and 

inequality constraints enable projection methods to determine a feasible descent search direc-

tion. The negative gradient −𝛁𝑓(𝒙), i.e. the search direction, is projected onto the equality con-

straints 𝑨 by computing a Moore-Penrose pseudoinverse 𝑷† [Gol13]. This results in the project-

ed descent direction 𝒓pro as described in [Ros60] and shown in eq. (3.14) 

 𝒓pro = −𝑷
†(𝐀) ⋅ 𝛁𝑓(𝒙)  (3.14) 

The resulting projected descent direction 𝒓pro lies in the null space of the linear equality con-

straints 𝑨𝒙 = 𝒃, which means it is ensured that no component of the descent direction point out 

of the admissible space. The pseudo inverse 𝑷†(𝑨) calculation has to be performed only once 

per optimization run, since the equality constraints do not change during the descent search, and 

can be kept in storage for solving the linear equation system 𝒓 = 𝑷†(𝑨) ⋅ −𝛁𝑓(𝒙) during the 

iterations. However, the calculation of the pseudo inverse by means of a singular value decom-

position is very computational demanding (O(12𝑛3), cf. [Gol13]) it is proposed to transform eq. 

(3.14) into an equivalent least squares problem: 

 
𝒓pro = argmin

𝒙
 ‖𝑨𝒙 − (−𝛁𝑓(𝒙))‖2 

(3.15) 
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This minimization task can be solved by the LAPACK function DGELSX [And99] which uses 

a more efficient QR decomposition with O(2𝑛3 3⁄ ) floating operations [Gol13]. Unfortunately, 

the QR decomposition would be necessary in every iteration step of the NG descent search. To 

overcome this issue the solution of 𝒓proj can be calculated in the same way as it is explained in 

Chapter A.3.1 (cf. eq. (A.7) to eq. (A.11)): 

 
𝒓pro = −𝑷𝒁

𝑇𝑼−1𝑸1
𝑇⏟      

constant

𝛁𝑓(𝒙)  
(3.16) 

Through this measure it is possible to calculate the matrices 𝑷, 𝒁,𝑼−𝟏, 𝑸1 only once per optimi-

zation call and keep them in memory for the subsequent iterations of the descent projection on 

the equality constraints. For the inequality constraints a more complex Gram-Schmidt procedure 

is chosen, which projects the search direction into the null space of the active inequality con-

straints. This avoids computational expensive matrix inversions if the set of active inequality 

constraints changes, which is an advantage especially with large scale problems that can occur 

in the case of paths with long distances (for algorithm details please see Chapter 4.4.1). In Fig-

ure 3.5 the outcome of the curvature minimization by optimization with the NG algorithm com-

pared to the non-optimized is depicted for the above mentioned test track segment. The quadrat-

ic characteristic of the cost criterion causes a higher weighting on high curvatures. Thus, the 

peak curvature of sharp turns is reduced more than the curvature of wide turns. 
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Figure 3.5: Objective function comparison of the track middle lane and the optimized path 

Additionally, smoother transitions between the turns are realized by the optimization, which 

gives a gentler handling to the vehicle’s passengers. 

Figure 3.6 shows a detail cut of the optimized path of the test track. It can be seen that the con-

sideration of the road boundaries in the inequality constraints is effective for path planning and 

the smooth transition is similar to the one race car drivers choose to keep the speed while cor-

nering [Bra08]. 
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Figure 3.6: Detail view of optimized path in a road section 

So far, the complete length of a track segement has been considered for the spatial path 

optimization. However, for a potential application in a real-time environment, like 

ROboMObil’s central control (cf. Figure 2.16), the planning horizon must be limited to stay 

within the time constraints due limited calculation power. In Table 3.2 the outcome of a quanti-

tative study of the influence of the optimization horizon length Δ𝑠, by hands of the above men-

tioned test segment, is given. 

Table 3.2: Cost function (eq. 3.10) assessment in dependency of the optimization horizon Δ𝑠 

Algorithm Cost Function Cost Reduction 

Track middle lane 626.8 ⋅ 10−3 Reference 

Δ𝑠 = 100 m 554.4 ⋅ 10−3 11.5 % 

Δs = 200 m 510.9 ⋅ 10−3 18.5 % 

Δs = 2000 m (global opt.) 509.2 ⋅ 10−3 18.8 % 
  

The comparison shows that the global optimization reduces the objective cost eq. (3.10) by al-

most 19 % in comparison to the curvature of the middle lane of the road. On the one hand, the 

cost function reduction is limited, since a road width of 7 m gives a limited space for finding 

smoother paths. On the other hand, Table 3.2 depicts the dependency of the cost function on the 

chosen optimization horizon size. The longer the optimization horizon is, the more the cost 

function can be reduced. With a length of Δ𝑠 = 200 m no major difference in the cost function 

compared to the global optimization is realized. 

The Velocity Profile Generation 

Besides this spatial optimization it is necessary to generate the temporal movement along the 

optimized path. In this work a velocity profile generation is chosen according to [Bue11b] and 

is subsequently executed to the path optimization. In order to have a real-time capable path and 

velocity profile generation, both tasks are separated: First, a desired velocity profile is defined 

considering the maximum vehicle velocity (constrained by technical limits, e.g. the maximum 
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wheel robot rotational speed – compare App. Table C.3) and the road speed limits. In the second 

step this desired profile is modified to satisfy a lateral acceleration limit with the given path 

curvature regarding the following equation: 𝑣2 ≤ 𝑎𝑦max
C /𝜅. Note that the velocity profile itself 

is not energy optimal since it is not part of the minimization (compare Chapter 3.3.1); it only 

guarantees a feasible velocity demand in dependency of the physical and technical limits. 

𝑓air 

𝑣𝑥
C  

𝑓roll 

𝑓g  
𝑓roll 

𝛾 

𝝉W 3,4  

𝝉W 1,2  

Road incline
 

Figure 3.7: Acting forces on ROboMObil in longitudinal direction 

This lateral acceleration limit 𝑎𝑦max
C  is mainly based on comfort requirements. The last step is a 

forward and backward filtering of the velocity profile to satisfy the longitudinal acceleration 

limits. These acceleration constraints are due to the forces acting on the vehicle, which are the 

available motor torques 𝝉𝐖 and the counteracting driving resistances: the air resistance 𝑓air, 

downhill-slope force 𝑓g(𝛾), and the tire rolling resistance 𝑓roll as depicted in Figure 3.7. Details 

of the algorithm and the mathematical velocity profile description can be found in [Bue11b]. 

The Parametric Path Description 

The interface to the underlying path following control (explicated in Chapter 3.4) is a time in-

dependent motion demand 𝝀(𝑠) ∈ ℝ5 presentation with respect to the path arc length 𝑠. It con-

sists of the following five quantities: the absolute position 𝒑P
I = {𝑥P

I (𝑠), 𝑦P
I (𝑠)} of the reference 

path, the corresponding path orientation  𝜓P
I (𝑠), its curvature 𝜅P(𝑠) and the generated longitu-

dinal velocity 𝑣𝑥
P(𝑠). 

𝒑P
I (𝑠𝑖)

= {𝑥P
I (𝑠𝑖), 𝑦P

I (𝑠𝑖)} 

 

𝜓P
I (𝑠𝑖) 

~

1

𝜅P(𝑠𝑖)
 

𝑣𝑥
P(𝑠𝑖) 𝒏P  

𝒕P  

𝒙I 

𝒚I 

𝛌(𝑠) 

 

Figure 3.8: Graphical interpretation of the parametric path 𝝀(𝑠) at point 𝑠𝑖 
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In Figure 3.8 all quantities are spanned at a certain point 𝑠𝑖 along the parametric path 𝝀(𝑠). The 

desired vehicle longitudinal velocity 𝑣𝑥
P(𝑠𝑖) is parallel to the tangent vector 𝒕P = 𝒙P at 𝒑P

I (𝑠𝑖) 

and the reciprocal curvature 1/𝜅P(𝑠𝑖). 

3.4 The Path Following Control 

In this chapter a path following controller is developed that generates the vehicle motion de-

mand in the horizontal plane – details on the energy optimal distribution of the motion demand 

between ROMO’s actuators are given in Chapter 3.5. In comparison to a classic trajectory track-

ing controller, which tracks the scheduled time depended velocity commands, the path follow-

ing controller compensates errors between the actual vehicle states and the corresponding de-

mands on the parametric path 𝝀(𝑠). 

3.4.1 The Time Independent Path Interpolation 

For the energy optimal control allocation of ROMO’s wheel robots (compare Chapter 3.5.3) the 

values of 𝝀(𝑠) (see Chapter 3.3.1 – Figure 3.8) cannot be used directly since the allocator inputs 

are, as described later, defined by Δ𝑣̇𝑥, Δ𝑣̇𝑦, Δ𝜓̇. In order to generate these magnitudes by a con-

troller an online derivation of the set-points and their derivatives is developed that does not use 

the time explicitly. With this time independent path interpolation (TIPI) [Rit15] and the tracking 

controller (Chapter 3.4.2) a dynamical state dependent vehicle motion demand trajectory can be 

generated. Ideally, the actual path positon and the position of the car coincide 𝒑P(𝑠
∗) = 𝒑C. To 

approximate this condition it is necessary to minimize the displacement 𝒆(𝑠) between vehicle 

and reference path as depicted in Figure 3.9: 

 𝑠∗ = argmin
𝑠

‖𝒑P(𝑠) − 𝒑C⏟      
𝒆(𝑠)

‖

𝟐

  (3.17) 

The geometrical interpretation of this minimization objective is that 𝒑P(𝑠
∗) can be determined 

by projecting 𝒑C orthogonally on the path 𝒑P(𝑠). For this issue it is proofed in [Mor08] that 

𝒑P(𝑠
∗) exists and is unique if ‖𝒆(𝑠∗)‖2 is smaller than the lower bound of the curve radius. For 

the TIPI this condition implies that the inverse of the maximal curvature of the demanded vehi-

cle path defines the maximum lateral displacement for which 𝑠∗ exists: 𝑒𝑦
P(𝑠∗) ≤ 1/𝜅P(𝑠

∗) . 

The solution of the optimization problem eq. (3.17) is illustrated in Figure 3.9. Investigating this 

figure it can be seen that ‖𝒆(𝑠)‖2 is minimal if the vectors 𝒆(𝑠) and 𝒙P(𝑠) are orthogonal to 

each other. This condition implies that the tangential displacement component 𝑒𝑥
P(𝑠) is zero. 

Hence, the actual parameter value 𝑠∗ can be determined by the following scalar root finding 

problem: 

 𝑒𝑥
P(𝑠∗) =

!
0  (3.18) 
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Figure 3.9: Graphical representation of the dynamic root finding to determine 𝑠∗ 

The derivation of this root finding by means of an iteration free error minimization problem is 

given in detail in [Rit15]. It is designed – as depicted in Figure 3.10 – as a feedback control loop 

which minimizes the longitudinal displacement 𝑠̇ = −𝐾P ⋅ 𝑒𝑥
P combined with an estimated curve 

parameter rate 𝑠̂̇ in the feed forward path of the control loop. 
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Figure 3.10: Block diagram of the dynamic root finding control loop 

3.4.2 The Path Tracking Controller 

In this subsection a path tracking control law is developed that calculates references inputs for 

an underlying control allocation algorithm (cf. Chapter 3.5). Its task is to compensate the track-

ing error between the actual vehicle states 𝒑Cact
I , 𝒗act

C  and the demands of the parametric 

curve 𝝀(𝑠) at the actual path arc length 𝑠𝑘, determined by the method introduced in Chapter 

3.4.2. 

Preceding Works in Path Tracking Control 

The authors in [Pad16] group current tracking controller methods (for self-driving urban vehi-

cles) into path stabilization and trajectory stabilization approaches. This is done in dependency 

of the reference provided by motion planner. In the previous chapter a parametric path descrip-

tion has been developed and therefore only previous work is addressed, which copes with path 

stabilization. The authors in [Pad16] group the methods shortly described as follows: 
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 Path stabilization for kinematic models without consideration of the wheel slip. An ex-

ample for this is the pure pursuit controller. It determines a semi-circle cutting the vehi-

cle’s current position and a point on the reference path. This lays ahead of the vehicle 

with a predefined look ahead distance 𝐿. In this way an additional yaw angle can be cal-

culated to control the vehicle’s steering. Other methods are front or rear wheel position 

based feedback laws which minimize the distance error along the normal vector from 

the reference path to the front respectively the rear wheel of the vehicle. 

 Model predictive control approaches solve an optimization problem to track the path 

under the restriction of constraints (e.g. limited wheel slip) and incorporate the vehicle 

dynamics. 

 Linear parameter varying controllers take system varying states, as the vehicle speed, 

into account. This improves the control performance and stability in comparison to the 

approaches in the first bullet. These may be inaccurate in case of large position errors, 

caused by the linearization error. 

In contrast to these methods, here a path stabilization controller which compensates the spatial 

errors between ROMO and the reference track is designed. Since ROboMObil has an over actu-

ated drivetrain configuration, this controller calculates the set-points for an underlying nonlinear 

control allocator which distributes the demands to the steering and traction drives of ROMO. 

Parametric Path Stabilization Based on Three Separated PD Controllers 

To track the motion request of the path planning and the corresponding velocity three separate 

controllers are incorporated by use of the time independent path interpolation and the actual 

vehicle states. The necessary information for this controller setup are the actual vehicle position 

in the inertial coordinate system 𝒑Cact
I = {𝑥Cact

I , 𝑦Cact
I , 𝜓Cact

I }, as well as the longitudinal and 

lateral vehicle velocity 𝒗act
C = {𝑣𝑥act

C  , 𝑣𝑦act
C } with respect to the vehicle frame itself. The follow-

ing algorithm is described in a discrete-time representation where 𝑠𝑘 denotes the arc length val-

ue at time-discrete instance 𝑘. 
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Figure 3.11: Vehicle state quantities for the path tracking controller 

In the first step it is necessary to evaluate the demanded control values 𝝀 in dependency of the 

current path parameter 𝑠. It is calculated in the path interpolation module, in dependency of the 
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actual vehicle states 𝒑Cact
I , 𝜓Cact

I  and 𝒗𝑎𝑐𝑡
𝐶  with the discrete algorithm explained in the follow-

ing. The values of 𝝀(𝑠) are stored in a varying buffer matrix that can be updated, consistent and 

state dependent, by the path planning module (see Chapter 3.3) if it is used in a real-time appli-

cation. Values between the discrete sampling points 𝑠𝑘 are gathered by interpolation. 

𝜆𝜓(𝑠𝑘−1) 
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Figure 3.12: Schematic representation of discrete-time path interpolation 

For the following calculation steps it is useful to comprehend Figure 3.12. To calculate the error 

vector 𝒆 = {𝑒𝑥, 𝑒𝑦}  the vehicle velocity state 𝒗act
C  must be transformed with a rotation matrix 𝑹 

into the inertial coordinate system.  

 𝒗C =

[
 
 
 cos(𝜓Cact) − sin(𝜓Cact)

sin(𝜓Cact) cos (𝜓Cact)⏟                
𝑹 ]

 
 
 

⋅ 𝒗act
C  (3.19) 

In the next step the longitudinal and lateral displacement error 𝒆 between the path and the vehi-

cle is decomposed into a tangential and normal part along the path: 

 

𝒕P = {cos (𝜆𝜓(𝑠𝑘−1)) , sin (𝜆𝜓(𝑠𝑘−1))} 

𝒏P = [
0 −1
1 0

] ⋅ 𝒕P 

𝒆 =  𝑥Cact − 𝜆𝑥(𝑠𝑘−1),  𝑦Cact − 𝜆𝑦(𝑠𝑘−1) ⋅ [𝒕𝑃 𝒏𝑃] 

(3.20) 

Finally in combination with the estimated arc length rate 𝑠 ̇   [Rit15] the control law for the itera-

tion free root finding of 𝑠̇ (compare Figure 3.10) can be written as: 
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𝑠̇ = −𝐾P𝑥 ⋅ 𝒆𝑥
P . +𝑠 ̇ 

⇒ 𝑠̇ = 𝐾P𝑥 ⋅ 𝑒𝑥 +
𝒗act
C ⋅ 𝒕Δ𝜓

1 − 𝑒𝑦 ⋅ 𝜆𝜅(𝑠𝑘−1)
  

 𝒕Δ𝜓 = {cos(Δ𝜓) , sin(Δ𝜓)} 

Δ𝜓 =  𝜆𝜓(𝑠𝑘−1) − 𝜓Cact 

(3.21) 

and the actual arc length parameter 𝑠𝑘 is determined by a discrete-time integration: 

 𝑠𝑘|𝑘−1 = 𝑠𝑘−1 +∫ 𝑠̇(𝑠𝑘−1, . . . ) d𝑡
𝑡𝑘

𝑡𝑘−1

 (3.22) 

Since the value for 𝝀(𝑠𝑘) is now available, in a second step a longitudinal PD-controller, which 

minimizes the error between the actual vehicle velocity 𝑣𝑥act
C  and the reference vehicle velocity 

𝑣𝑥ref
P , can be formulated as follows: 

 
Δ𝑣𝑥

C = 𝐾P𝑥 ⋅ (𝜆𝑣𝑥(𝑠𝑘) − 𝑣𝑥act
C ) + 𝐾D𝑥 ⋅

d(𝜆𝑣𝑥(𝑠𝑘) − 𝑣𝑥act
C )

d𝑡
 

with [𝐾P𝑥 ] = 1 , [𝐾D𝑥] =  
1
𝑠⁄  

(3.23) 

In the last step the two lateral controllers, which minimize the displacement 𝑒𝑦 and the orienta-

tion offset 𝑒𝜓 of the vehicle, can be designed as two separated PD-controllers in a similar way: 

 

𝒏C =  −sin(𝜓Cact) , cos(𝜓Cact)  

𝑒𝑦 = (𝜆𝑥(𝑠𝑘) − 𝑥Cact , 𝜆𝑦(𝑠𝑘) − 𝑦Cact) ⋅ 𝒏C 

𝑒𝜓 = 𝜆𝜓(𝑠𝑘) − 𝜓Cact 

Δ𝑣𝑦
C = 𝐾P𝑦 ⋅ 𝑒𝑦 + 𝐾D𝑦 ⋅

d𝑒𝑦

d𝑡
 

Δ𝜓̇𝐶 = 𝐾P𝜓̇ ⋅ 𝑒𝜓 + 𝐾D𝜓̇ ⋅
d𝑒𝜓

d𝑡
;  

[𝐾P𝑦 ] =  [𝐾P𝜓̇ ] =
1
s2⁄
 ;  [𝐾D𝑦] = [𝐾D𝜓̇] =  

1
s⁄  

(3.24) 

Assessment of the Controller Tracking Stability 

The here proposed controller is a linear controller applied to a nonlinear system. A simulative 

case study in Chapter 3.7 showed a reliable and robust control behavior of this approach. This 

can be reasoned since the nonlinearity of the vehicle is considered in the underlying nonlinear 

control allocator (cf. Chapter 3.5). In Figure 3.13 the error tracking is shown for the three PD 

path tracking controllers used for the experiment in Chapter 3.7.3. The vehicle starts in the mid-

dle of the road, whereas the planned path is located on the right roadway (cf. error 𝑒𝑦 = 2 m at 

𝑡 = 0 s in Figure 3.13). The initial vehicle velocity is close to the reference velocity of the par-

ametric path. The tracking error of the lateral displacement 𝑒𝑦 is fast and without an overshoot 

compensated, as well as the yaw error 𝑒𝜓 is robustly compensated to zero during the half lane-

change  
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Figure 3.13: Robust error tracking of the vehicle’s initial displacement 

Nevertheless, this controller will get unstable, when the tracking error gets too large. E.g. the 

road friction changes strongly and the tracking error gains strongly. By this reason an improved 

path tracking controller for real world tests has been developed in [Rit15]. It is based on nonlin-

ear I/O linearization and successfully tested in an interactive driving experiment with ROMO in 

[Rit16b]. 

3.5 The Energy Optimal Actuator Control 

In this chapter a new control allocation based approach for energy optimal motion demand dis-

tribution for the over-actuated electric robotic vehicle ROMO is proposed. The focus of the 

control strategy lies on the model based minimization of the actuator losses and power con-

sumption for driving along a trajectory to optimize the overall efficiency. The approach is based 

on a real-time capable nonlinear control allocation (CA) algorithm, using quadratic program-

ming, implemented in the object oriented modeling language Modelica. Different optimization 

objectives are analyzed and the performance is presented in simulation results. 

In vehicle dynamics control theory one can find a couple of approaches focusing on vehicle 

control by force allocation methods [And07], [Jon09], [Kno08]. The main emphasis of their 

research was on the centralized controlled vehicle stabilization. The objective here is to drive 

ROboMObil along the predetermined path 𝝀(𝑠) (compare Chapter 3.4) with the lowest possible 

power demand and losses so that the range is maximized and simultaneously sufficient vehicle 

dynamics are retained. So the focus in this section is to reduce energy consumption in the 

drivetrain actuators; the four wheel hub motors, the four in-wheel electric steerings and the two 

electro hydraulic brakes. In contrast to [Lai07], the energy management presented in this work 

is a preceding mechanism and not part of the control allocation optimization itself. 

3.5.1 The Robotic Approach 

Since ROMO’s development is inspired from robotic technology its control strategy should be 

closely connected to it. The task for the control strategy of an industrial 6-degree of freedom 
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(DOF) robot is to calculate the joint angles for a given 6-DOF end effector trajectory (the robot 

manipulator) of a high level planner. One algorithm for doing this is the selective damped least 

squares algorithm proposed in [Bus05]. It calculates the null space solution along a given trajec-

tory, trying to prevent kinematic singularities. Based on this analogy an energy optimal control 

for ROboMObil is developed in the following.  

𝑣𝑦
C  

𝑣𝑥
C  𝜓̇C  

𝑦C  

𝑥C  

𝜏W 1  
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𝐽𝑍
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Figure 3.14: Mapping of planar movement requests to the over-actuated ROMO 

3.5.2 The ROboMObil Approach 

The proposed control allocation method considers the planar movement of ROboMObil, depict-

ed in Figure 3.14. Compared with the robotic approach, the end effector can be seen as a 3-DOF 

flat movement of ROMO at the center of gravity (CoG). These degrees of freedom are two 

translational velocities and one rotational velocity: 

 𝝂C =  𝑣𝑥
C, 𝑣𝑦

C, 𝜓̇C  (3.25) 

In contrast to an industrial robot, ROMO has 10 actuators in total in its joints. In the following 

only eight actuators, four steering angles and four drive torques are considered. It is not distin-

guished between the two electro mechanical brakes (one per axle) and the recuperative feature 

of the electric drives. It is assumed that there is an underlying control mechanism that maximiz-

es the recuperation even in wheel slip situation controlled by an algorithm as proposed in 

[Sat16]. In addition, this investigation focuses on vehicle operation modes in which the maxi-

mum recuperation torque of the traction motors is sufficient to achieve the motion demands. 

The actuation control vector with respect to the wheels is: 

 𝒖𝐖 = {𝛿W1 , 𝛿W2 , 𝛿W3 , 𝛿W4 , 𝜏W1 , 𝜏W2 , 𝜏W3 , 𝜏W4} (3.26) 

Now it is clear that the control of ROMO is an underdetermined optimization problem, in con-

trast to the robotic approach. Hence, it is possible to exploit the null space to find an optimal 

solution which minimizes a cost function. This technique is well known as control allocation 

and it is used for example in avionic applications where the amount of actuators is also greater 

than the degrees of freedoms of the body movement [Hae03].  
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3.5.3 The Concept of Energy Optimal Control Allocation 

The technique of control allocation can be used in a wide range of over-actuated control prob-

lems. In comparison to conventional feedback control without optimization the main advantage 

is that it is easier to take actuator limits into account. Due to the control variable independent 

design it is possible to adapt the controller online without reconfiguring it. For example in case 

of an actuator fault the distribution mechanism can be easily modified to no longer comprising 

the defective actuating variable. Moreover, one can design secondary objectives within the 

problem formulation. This opens up the possibility to exploit the actuator redundancy for an 

energy optimal actuating variable determination. 

Control Allocation Problem Formulation 

In Figure 3.15 a typical closed loop control allocator scheme is shown. A higher-ranking con-

troller calculates the demanded virtual control variables 𝒗 based on the desired command varia-

ble reference 𝒚ref (this equates to the procedure described in Chapter 3.4). These are fed for-

ward to the CA where they are mapped to the actuating variables and then commanded (input 𝒖) 

to the over-actuated plant. 

Controller
Control

allocator

Over-actuated

plant

𝒚ref  𝝂 𝒖 𝒚act  

𝒖act  

 

Figure 3.15: Control scheme of a closed loop control allocator 

The mapping between the virtual control variables and the actuating variables is concatenated 

with the so called control actuating variables efficiency function 𝒃. Mathematically, the general 

problem formulation of the control allocator writes as follows: 

 

𝒖 = 𝒃−1(𝝂) 

𝒖 ≤ 𝒖 ≤ 𝒖 

𝝂 ∈ 𝜱 ⊆ ℝ𝑘, 𝒖 ∈ 𝛺 ⊆ ℝ𝑚;  𝑘 < 𝑚 

𝛺 = [𝑢1; 𝑢1] × ⋯× [𝑢𝑚; 𝑢𝑚] 

[𝝂] demanded virtual control variable 

[𝒖, 𝒖] min/max (rate) actuator limits 

(3.27) 

There are several methods to solve the CA problem. Many of them are only appropriate for 

linear systems. The most common ones are the daisy chain method or a solution via a cascaded 

generalized inverse solution [Bec02], [Bus04]. As sketched in the beginning of this section, the 

goal is to select a technique for handling two objectives. For this reason an optimization based 
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CA is chosen [Hae03]. The principle is to minimize a cost function while handling the CA prob-

lem and the limits within the constraints. Formulated for the linear case, this leads to [Bec02]: 

 

       min
𝒖
(𝐽(𝒖)) 

s. t.  𝑩 ⋅ 𝒖 = 𝝂 

𝒖 ≤ 𝒖 ≤ 𝒖 

𝒃(𝒖) ≡ 𝑩 ⋅ 𝒖;  𝑩 ∈ ℝ𝑘×𝑚 

(3.28) 

If several solutions for the equality constraints 𝑩 ⋅ 𝒖 = 𝝂 exist, the one that minimizes the cost 

function 𝐽(𝒖) is chosen. In case there is no solution of the equation system, the optimization 

would fail and therefore a second step becomes necessary. Two of the most common solutions 

are “preserve direction”, not discussed here, or to “minimize the objective error” [Bec02]: 

 

min
𝒖
‖𝑾𝜈(𝑩𝒖− 𝝂)‖ 

    s. t.  𝒖 ≤ 𝒖 ≤ 𝒖 
(3.29) 

In eq. (3.29) 𝑾𝜈 denotes the user tuneable weighting of the virtual control variable 𝝂. Instead of 

this sequential optimization approach it can be transformed to a weighted one-step optimization 

problem: 

 
min
𝒖
(𝐽(𝒖) + 𝛾‖𝑾𝜈(𝑩𝒖− 𝝂)‖) 

             s. t.  𝒖 ≤ 𝒖 ≤ 𝒖 
(3.30) 

The tuning parameter 𝛾 allows the prioritization between the primary 𝑩 ⋅ 𝒖 = 𝝂 and the second-

ary min 𝐽(𝒖) optimization objective. By means of the analysis of the controlled plant (compare 

Figure 3.14) there are severe nonlinearities between the actuating variables and the virtual con-

trol variables. Therefore, the proposed method – eq. (3.28) & eq. (3.29) – has to be extended to 

handle a nonlinear control efficiency matrix [Hae03]. For this purpose the nonlinear CA prob-

lem is locally approximated by means of a Taylor series expansion of the control efficiency 

function 𝒃(𝒖) cropped after the first term: 

 
𝒃(𝒖) ≈ 𝒃(𝒖0) +

𝝏𝒃

𝝏𝒖
(𝒖0)⏟    

𝑩(𝒖0)

⋅ (𝒖 − 𝒖0)⏟      
Δ𝒖

 
(3.31) 

In this way a linear complementary problem for the nonlinear control efficiency function can be 

formulated: 

 

Δ𝝂 = 𝑩(𝒖0) ⋅ Δ𝒖 

𝒖 − 𝒖0 ≤ Δ𝝂 ≤ 𝒖 − 𝒖0 

Δ𝝂 = 𝝂 − 𝝂0 , Δ𝒖 = 𝒖 − 𝒖0 

(3.32) 

The solution of eq. (3.32) is a change of the variables – Δ𝒖 follows now the commanded control 

variable variation  Δ𝒗. The approximated solution 𝒖̃ of eq. (3.27) can be calculated 

as 𝒖̃ =  𝒖𝑜 +  Δ𝒖. In addition to the linearization of the actuating efficiency function also the 

boundary conditions are substituted to correspond to the actuating variable variation Δ𝒖. Since 
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the CA is used within a discrete-time system, the rate of change  d𝒖 d𝑡⁄  can be expressed 

as Δ𝒖 𝑇𝑠⁄ , where 𝑇𝑠 constitutes the sample time of the discrete control system. 

The optimization procedure which minimizes a certain objective 𝐽(Δ𝒖) (e.g. the minimum actu-

ator energy effort) can be divided in two steps. In step one, a set of possible solutions 𝛺 is found 

that respects the boundaries Δ𝒖, Δ𝒖 and incorporates the prioritization 𝑾𝜈 of the virtual control 

variable Δ𝝂. If the solution is not unique, the second step of the optimization process performs a 

search for a solution in 𝛺 that minimizes the objective function 𝐽(Δ𝒖): 

 

Step 1:  𝛺 = argmin
𝒖

‖𝑾𝜈 − (𝑩 ⋅ Δ𝒖 − Δ𝝂)‖2 

                               s. t.  Δ𝒖(𝑇𝑠) ≤ 𝒖 ≤ Δ𝒖(𝑇𝑠) 

Step 2:  Δ𝒖 = argmin
𝛺

𝐽(Δ𝒖) 

(3.33) 

In terms of computational effort solving the one-step optimization problem (eq. (3.30)) may be 

more efficient, but more difficult to tune. So it is decided to apply the two step approach, 

eq. (3.33), for controlling ROboMObil as described in the following chapters. 

The Actuating Variables Efficiency Matrix of ROMO 

The correlation between the demanded virtual control variable 𝝂C (eq. (3.25)) and the actuation 

control variable 𝒖𝐖 (eq.(3.26)) is described by a nonlinear actuating variable efficiency function 

𝒃(𝒖𝐖). In a subsequent step the function is linearized so that algorithm eq. (3.33) can be uti-

lized. The planar vehicle movement (compare Figure 3.14) is described by two linear momen-

tum equations and one angular momentum equation. The first two specify the longitudinal 

(eq. (3.34)) and lateral (eq. (3.35)) movement, the third the rotation around the vertical axis with 

respect to the car coordinate system C (𝑥C, 𝑦C in Figure 3.14). 

 
𝑣̇𝑥
C =

1

𝑚
⋅∑(𝐹𝑥

W𝑖)

𝑖

+ 𝜓̇C ⋅ 𝑣𝑦
C  

(3.34) 

 
𝑣̇𝑦
C =

1

𝑚
⋅∑(𝐹𝑦

W𝑖)

𝑖

− 𝜓̇C ⋅ 𝑣𝑥
C 

(3.35) 

 

𝜓̈C =
1

𝐽𝑧
C
⋅ [−(𝐹𝑥

W1 + 𝐹𝑥
W3) ⋅ 𝑤l + (𝐹𝑥

W2 + 𝐹𝑥
W4) ⋅ 𝑤r 

+(𝐹𝑦
W1 + 𝐹𝑦

W2) ⋅ 𝑙f − (𝐹𝑦
W3 + 𝐹𝑦

W4) ⋅ 𝑙r] 
(3.36) 

Here 𝑚 indicates the vehicle mass, 𝐽𝑧
C is the vehicle yaw inertia and 𝑤𝑖, 𝑙𝑖 are the distances be-

tween the wheel robots and the CoG. The unknown forces 𝐹𝑥
W𝑖 , 𝐹𝑦

W𝑖 are calculated by the linear 

continuity of the wheel slip 𝑠𝐖, respectively the side slip angle 𝛼𝐖, and constant longitudinal 

respectively cornering tire stiffness factors. A complex tire model like Pacejka’s magic formula 

[Ril01] is not considered here, since in this work the main focus of the investigation lies on 

moderate driving within the linear range of vehicle dynamics. By means of rearranging all equa-
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tions for the virtual control variables 𝝂C = (𝑣𝑥
C, 𝑣𝑦

C, 𝜓̇C) it is possible to obtain the solution of 

the actuating variable efficiency function  𝒃(𝒖𝐖, 𝝂C): 

 𝒃(𝒖𝐖, 𝝂C) =  

[
 
 
 
1
𝑚⁄

1
𝑚⁄

1
𝐽𝑧
C⁄ ]
 
 
 

⋅

(

  
 

∑
𝑖
𝐹𝑥
W𝑖

∑
𝑖
 𝐹𝑦
W𝑖

∑
𝑖
𝑀𝑧
W𝑖

)

  
 
− (

0
0
𝜓̇C
) × (

𝑣𝑥
C

𝑣𝑦
C

0

) (3.37) 

The function linearization, using eq. (3.31), yields a nonlinear actuating variables efficiency 

matrix: 

 𝑩(Δ𝒖𝐖, Δ𝝂C) =  

[
 
 
 
   
𝜕𝑏1
𝜕𝑢1

⋯
𝜕𝑏𝑚
𝜕𝑢1

⋮ ⋱ ⋮
𝜕𝑏1
𝜕𝑢𝑘

⋯
𝜕𝑏𝑚
𝜕𝑢𝑘 ]

 
 
 
 

∈ ℝ3x8 (3.38) 

Note that the nonlinearities are stated by the trigonometric functions of the vehicle kinematics 

and the velocity vectors in their corresponding coordinate systems. In the following sections 

two optimization cost functions for the second step of the proposed optimization problem for-

mulation (eq. (3.33)) are investigated. 

The Physically Motivated Cost Function 

The first approach considers a physically motivated cost function design which is based on mul-

tiphysical models of the electric drives and their drivetrains. For this reason ROMO’s field-

oriented controlled permanent magnet synchronous motor (PMSM) models (see Chapter C.2) 

and steering actuator models (compare Chapter 2.2.1), have been developed. The modeling 

depth is determined on the level of real-time capability, quasi-stationary behavior and linear loss 

factors. The models use a dq-frame approach [Ong98], which neglects the inverter switching. 

This leads to a good value in terms of simulation performance. The modeled energy losses, with 

respect to the flow from electric (input) to mechanic power (output), in a PMSM can be outlined 

as follows: 

 inverter losses (switching and basic load) 

 copper losses (coil resistance) 

 iron losses (reversal of magnetism) 

 mechanical losses (friction effects e.g. bearings) 

 inverter losses (efficiency dependent) 

Note that the field weakening operation mode is neglected here, since it’s not implemented in 

the field-oriented control of ROMO’s traction drives. That means solely the 𝐼q phase current is 

commanded. The electric losses of the wheel robots traction motor 𝐸loss
TM can be formulated as a 

second order polynomial function with respect to the actual wheel speeds 𝜔𝐖and the wheel 

torques 𝜏𝐖(𝐼q): 
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𝐸loss
TM (𝜔𝐖, 𝜏𝐖) = ∫ ∑ (𝑃inv,const

W𝑖 + (𝜏𝑓𝑟𝑖𝑐
W𝑖,TM + 𝑘hyst) ⋅ |𝜔

W𝑖,TM|
4

𝑖=1

𝑡+𝑇𝑠

𝑡

 

+ 𝑘eddy ⋅ 𝜔
2W𝑖,TM + 𝑎 ⋅ |𝜏W𝑖| + 𝑏 ⋅ 𝜏2W𝑖,TM) d𝑡  

𝑎 =
𝑘inv ⋅ 2

3 ⋅ 𝑧p ⋅ 𝜓PM
  ; 𝑏 =

2 ⋅ 𝑅s

3 ⋅ 𝑧p
2 ⋅ 𝜓PM

2  

𝜏𝐖,TM = 𝐼q
𝐖,TM ⋅ 3 2⁄ ⋅ 𝑧p ⋅ 𝜓PM 

(3.39) 

The parameter significances of ROMO’s traction motors loss function are stated as follows: 

Table 3.3: Explanation of the PMSM model parameters  

Parameter Unit Description 

𝑃inv,const [W] Inverter losses constant 

𝑘hyst [Ws rad⁄ ] Hysteresis losses constant 

𝜏fric [Ws rad⁄ ] Motor friction constant 

𝑘eddy [Ws
2

rad2
⁄ ] Eddy current losses constant 

𝑘inv [W I⁄ ] Current dependent inverter losses 

𝑅s [Ω] Warm resistance per phase 

𝑧p [-] Pole pair number 

𝜓PM [Wb] Magnetic flux of permanent magnets 
  

The electric machine parameter values for the implemented drives (traction and steering) can be 

found in App. Table C.4. The steering actuators are mounted on the wheel carriers and transfer 

their torque to the upper wishbone of the chassis (compare Figure 2.4). Their drivetrain consists 

of a low torque, high speed PMSM and a cycloidal gear box connected to a spur gear which 

meshes with a larger gear-wheel that is mounted on the upper wishbone. 
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Figure 3.16: Schematic steering drivetrain and PMSM model in Modelica 
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In addition to the losses of the PMSM itself, the following effects are taken into account: 

 the acceleration work 𝜏acc
ST,𝐖

, due to the wheel hub inertia and the steering drivetrain, 

 the gearboxes losses 𝜏gearloss
ST,𝐖

 and 

 the work to overcome tire bore torque 𝜏bore 
ST,𝐖

 and the speed dependent self-aligning 

torque 𝜏align
ST,𝐖

. 

The upper index ST, denotes that it refers to the designated steering actuator W𝑖. In total the 

mechanical losses of the steering driveline can be written as: 

 𝑃mech
𝐖,ST = (𝜏acc

𝐖,ST + 𝜏gearloss
𝐖,ST + 𝜏bore 

𝐖,ST + 𝜏align
𝐖,ST) ⋅ 𝜔𝐖,ST (3.40) 

Adding the mechanical losses from eq. (3.40) to the formulation of the electrical losses the total 

losses of the steering drivelines 𝐸𝑙𝑜𝑠
ST  results in: 

 

𝐸loss
ST (𝜔𝐖,ST, 𝜏𝐖,ST) = ∫ ∑ ( 𝑃mech

W𝑖,ST
4

𝑖=1

𝑡+𝑇𝑠

𝑡

 +  𝑃inv,const
W𝑖,ST +  

+(𝜏fric
W𝑖,ST + 𝑘hyst) ⋅ |𝜔

W𝑖,ST| + 𝑘eddy ⋅ 𝜔
2W𝑖,ST + 𝑎 ⋅ |𝜏W𝑖,ST| 

+𝑏 ⋅ 𝜏2W𝑖,ST) d𝑡  

(3.41) 

To avoid the evaluation of the integral, especially when linearizing the cost function (see QP 

solver interface in eq. (3.42)), it is presupposed, when minimizing the overall power consump-

tion also the energetic effort is minimized. This assumption is valid by reasons that the power 

function is monotonic during one sample optimization step 𝑇𝑠. In Figure 3.17 two possible 

trends (colored lines) for the electric power consumption within one discrete optimization step 

𝑇𝑠 are shown. The area enclosed between two time steps (i.e. [𝑡  𝑡 + 𝑇𝑠]) underneath the electric 

power function curves equates the integral and therefore the expended energy. 
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Figure 3.17: Schematic motivation for energy minimization through power minimization 

Through this simplification the power consumption also minimizes the energetic effort, which is 

the integral over the power consumption function. I.e. the integrals in eq. (3.39) and eq. (3.41) 

can be neglected and for the latter only the sum of all power losses is considered 

(𝐸los𝑠
ST (𝜔𝐖,ST, 𝜏𝐖,ST) and 𝐸loss

TM (𝜔𝐖, 𝜏𝐖)). 
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The Heuristic Motivated Cost Function 

Complementary to the complex physically motivated cost function, an alternative simple cost 

function is formulated in this section, which bases on heuristic considerations. It is assumed that 

for minimizing the vehicle’s energy consumption the actuating variables should be controlled 

by these rules: 

 The steering rate 𝛿̇𝐖 should be minimized (tending to zero) to avoid mechanical losses 

(compare eq. (3.40)) and 

 the traction motor torque 𝜏𝐖 should be chosen in a way that recuperation is maximized. 

These regulations can be realized by a simple cost function, which can be tuned offline. As 

pointed out in the beginning of this section, this method results in a slim function expression 

and is therefore very appropriate for real-time applications. Details of the mathematical formu-

lation are given in the next section. 

3.5.4 Control Allocator Implementation in Modelica 

Since ROMO’s simulation model is implemented in Modelica [Mod17] (for details see Chapter 

C.2), also the discrete-time controllers for the evaluation are implemented in the Modelica lan-

guage (compare Figure 3.18). For the solution of the CA optimization problem a quadratic pro-

gram solver (QP), that can handle equality and inequality constraints, is interfaced to the Model-

ica simulator Dymola (compare eq. (3.42)). In this particular case the QL solver [Sch05] 

showed best performance and reliability and was therefore chosen for the further work. 

 

𝒙∗ = argmin
𝒙

(
1

2
𝒙𝑇𝑯𝒙+ 𝒇𝑇𝒙) 

s. t.  𝒙min ≤ 𝒙 ≤ 𝒙max 

𝑨 ⋅ 𝒙 = 𝒃 ;  𝑳 ⋅ 𝒙 ≤ 𝒌 

(3.42) 

The optimization problem from eq. (3.33) is stated as a constrained least squares minimization 

problem and must be transformed by matrix calculus to a QP compliant one. In this way the first 

step of the optimization is calculated by: 

 

min

Δ𝒖𝐖

(
1

2
Δ𝒖𝐖

𝑇
𝑯Δ𝒖𝐖 + 𝒇𝑇Δ𝒖𝐖)  

𝐻 = 2 ⋅ 𝑩𝑇𝑾𝜈
𝑇𝑾𝜈𝑩  ;   𝒇 = −2 ⋅ 𝑩

𝑇𝑾𝜈
𝑇𝑾𝜈Δ𝝂

𝐶  

𝑾𝜈 = tuning matrix 

(3.43) 

In the second step, if there is a null space solution for eq. (3.43) – this can be assumed, due to 

finite machine precision, if 𝑩 ⋅ Δ𝒖𝑾 < ~100 ⋅ 𝜖 holds – the cost function needs to be reformu-

lated as follows. 

 
𝐽(Δ𝒖𝐖) =

1

2
Δ𝒖𝐖

𝑇
𝑬Δ𝒖𝐖 + 𝒆𝑇Δ𝒖𝐖 

s. t.  𝑩 ⋅ Δ𝒖𝐖 = Δ𝝂 
(3.44) 
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Derivation of 𝐽phys(Δ𝒖
𝐖) 

The physically motivated cost function, proposed in Chapter 3.5.3, has to be linearized via a 

second order Taylor series expansion to meet the QP interface of eq. (3.41). The operating point 

needs to be selected separately for the steering and the traction motor power. The steering actua-

tor power demand depends on the change of the steering angle, i.e. its rate. Therefore the expan-

sion is chosen around the operating point from the last sample time step Δ𝜹𝐖(𝑡 − 𝑇𝑠) (𝑫𝟏, 𝒇𝟏 in 

eq. (3.45)). On the contrary, the drive torques 𝝉𝐖 operation point is set to the current time step 𝑡 

(𝑫𝟐, 𝒇𝟐 in eq. (3.45)). 

 

𝑷quad =
1

2
⋅ 𝒚 

𝑇
⋅ (
𝑫1 0
0 𝑫2

) ⋅ 𝒚 + (𝒇1, 𝒇2)
𝑇 ⋅ 𝒚 

𝒚 = (
𝛥𝜹𝑡

𝐖 − 𝛥𝜹𝑡−𝑇𝑠
𝐖

𝝉𝑡+𝑇𝑠
𝐖 − 𝝉𝑡

𝐖 ) 
(3.45) 

For the desired formulation as an optimization objective applicable to eq. (3.44), the quadratic 

function 𝑷quad of eq. (3.45) is symbolically manipulated to obatain 𝑬, 𝒆 in dependency of Δ𝒖𝐖. 

Derivation of 𝐽heur(Δ𝒖
𝐖) 

The heuristic cost function (see Chapter 3.5.3) is considered as a weighted minimization prob-

lem of the distance between the actuating variable Δ𝒖𝐖 and the demand  Δ𝒖d
𝐖. The entries of 

the weighting matrix 𝑾u are the outcome of an offline closed loop optimization with the DLR 

optimization software MOPS [Joo08].  

 

𝐽(𝛥𝒖𝐖) =∥ 𝑾u(𝛥𝒖
𝐖 − 𝛥𝒖d

𝐖) ∥2 

yields
→   𝑬 = 2 ⋅ 𝑾u

𝑇𝑾u ;  𝒆 = −2 ⋅ 𝑾u
𝑇𝑾u𝛥𝒖d 

(3.46) 

The heuristic optimization objective of Chapter 3.5.3 is expressed in dependency of the actuat-

ing variation vector Δ𝒖d. The steering rates are set to zero and the drive torque rates are affected 

to maximum available recuperation dependent on the current vehicle state. 

 

𝛥𝒖d
𝐖(𝑡) = (0,0,0,0, 𝜏d

W1(𝑡), 𝜏d
W2(𝑡), 𝜏d

W𝟑(𝑡), 𝜏d
W4(𝑡)) 

 𝝉d
𝐖(𝑡) = sgn (𝝎𝐖(𝑡)) ⋅ 𝝉mot,max

𝐖 − 𝝉𝐖(𝑡) 
(3.47) 

3.5.5 Evaluation of the Energy Manager Control Allocator Performance 

In this chapter an experimental setup with the proposed energy manager control allocator is 

investigated. Figure 3.18 shows the simulation control setup implemented in Modelica. A path 

interpolation module generates the parameterized spatial path 𝝀(𝑠) for the path following con-

troller (compare Chapter 3.4). By hands of the path following PD controllers, incorporating 

𝝀, 𝒑act
C , 𝑣𝑥act

 C , the commanded change of the virtual control variables Δ𝝂C is calculated. 
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Figure 3.18: Scheme for the vehicle control by means of a control allocator 

The CA block is composed of three parts: the linearization of the actuating variables efficiency 

matrix, the calculation of the dynamic cost function and the solution of the linear complemen-

tary problem. ROMO’s vehicle model is based on a parameterized skate board vehicle model 

(compare Chapter 3.7) which gives a good tradeoff between accuracy and simulation speed. 

Besides longitudinal and lateral movement it also reflects vertical dynamics, like wheel-load 

fluctuations (cf. Chapter 3.7 and Chapter C.2). 

Simulative Evaluation of the Control Allocation Algorithm 

For the comparison of the different control strategies an ISO double lane-change driving ma-

neuver with a predefined velocity profile is used (cf. Figure 3.19). The focus of the investiga-

tions is on reproducibility. To achieve this, a lateral acceleration range is stated to the vehicle 

reference speed generation (compare Chapter 3.3.1) which does not reach the threshold of the 

linear region of the tire and vehicle dynamics. 
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Figure 3.19: ISO 3888-1 similar double lane change maneuver 

The maneuver has a total simulation time of 𝑡 = 8 s. The initial car velocity 𝑣𝑥0
C  is 3 m s⁄  and 

from the beginning the car accelerates with 2 𝑚 𝑠2⁄  up to time 𝑡 = 5 s and then changes vola-

tile to −2 m/s2. This guarantees a considerable demand change especially to the traction mo-

tors to gain the potential of the CA optimization strategy. The conclusion of the investigations is 

that both simulations with the physically motivated and the heuristic (cf. Chapter 3.5.3) cost 

function show similar results in the overall energy consumption (see Table 3.4). This observa-

tion will be discussed in more detail in the following Chapter 3.7. 
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Table 3.4: Overall energy consumption for exemplary lane-change maneuver 

Variant Energy consumption 

Physically motivated cost function 59.875 kJ 

Heuristic cost function 59.882 kJ 
  

Moreover, the characteristics of the actuator variable commands differ only negligibly from 

each other and both of them generate feasible commands: 

0 2 4 6 8
-0.1

0

0.1

Steering angle [rad] front right

0 2 4 6 8

-5

0

5

x 10
-3

Steering angle [rad] rear right

0 2 4 6 8

-100

0

100

200
Drive torque [Nm] front right

0 2 4 6 8

-100

0

100

200
Drive troque [Nm] rear right

 

 

Time [s]Time [s]  

Figure 3.20: Actuating variables trajectories (solid = physical, dotted = heuristic) 

3.6 The Interconnectivity of the Energy Manager Controller Levels 

In this final section of the EM framework derivation the complete signal flow diagram of the 

multi-layer control structure is given in Figure 3.21. The background colors are matched to the 

one of the EM concept in Figure 3.1, the hatched colored modules are not part of this thesis. For 

further understanding following points are assumed for the controller implementation. The spa-

tial description of the road and the navigation between two points are given by a system like 

ADAS RP (Advanced Driver Assistance System Research Platform by HERE Inc.) with an 

electric horizon or in case of an simulation a system like the DLR Vehicle Controls Library 

(VCL) using the Open DRIVE standard (compare Chapter C.2). Information about upcoming 

cars or other road narrows must be accomplished by vehicle perception or car2x technologies. 

Vehicle states 𝒑Cact
I , 𝜓Cact

I , 𝒗act
C ,  𝜓̇𝑎ct

C  , denoted with red arrows, are assumed to be available and 

precise – in Chapter 5.2 a model based method for estimating these values is given. In addition, 

it is assumed that the power source of ROMO is sufficiently capable to fulfill the motion re-

quest. A model based battery state observer able to estimate the state of charge 𝑙HV and the cur-

rent battery power availability 𝑃HVmax  (cf. Chapter 5.1) feeds additional information into the 

control structure (orange arrows). Potential degradation or switches in control strategy are dis-

cussed in Chapter 5.1.3. The controller is implemented in a discrete-time rapid prototyping con-

troller that is capable to fulfill the calculation within one deterministic calculation step (i.e. a 

hard real-time system). 
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Figure 3.21: Overall control concept of the spatial energy manager 
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3.7 Evaluation of the Proposed Energy Manager for ROMO 

For the assessment of the EM algorithm a detailed multiphysical Modelica model of ROboMO-

bil was designed providing a good tradeoff between level of detail and computational complexi-

ty (Chapter C.2). The simulation environment (cf. Figure 3.22) is composed by electrical mod-

els i.e. the high voltage (HV) battery (for details see Chapter 5.1.2) the powertrain of ROMO’s 

axle modules with its in-wheel motors, wheel carrier mounted by-wire steering systems, DC/DC 

buck converter, a low voltage (LV) backup battery supply, ROMO’s  chassis composed of a 

multi-body dynamics suspension system with a Pacejka tire model [Pac12] and the discrete-time 

EM algorithm implementation according to the flow diagram in Figure 3.21. 
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Figure 3.22: ROMO’s multiphysical Modelica model and EM controller 

In the following subsections different driving scenarios are analyzed. In all cases the parametric 

path description 𝝀(𝐬) is computed offline with a horizon length lasting across the whole test 

track. 

In total three different virtual test tracks have been simulated, all of them with a path description 

that in the non-optimized case relies on the right lane of the road (non-opt.) and in the optimized 

case being able to use the full width of the driveway (opt.). To generate comparable results, the 

maximum longitudinal acceleration and velocity are reduced in the optimized case so that the 

planned journey time is identical to the one of the non-optimized path. The reason is that the 

optimized path has larger and smoother arc radii and therefore higher velocities are possible 

(compare Chapter 3.3.1), but that would lead to a shorter travelling time raised from higher en-

ergy demands from the propulsion.  
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3.7.1 Flat Test Track from DLR’s TechLab to S-Bahn Station Weßling 

This first experiment track is generated with DLR’s interactive path planning GUI, a MATLAB 

tool that makes use of Google Maps satellite pictures and enables the user to design routes and 

road boundaries in the real world (Figure 3.23). The so designed routes are then forwarded to 

the here proposed path optimization and velocity profile generation algorithms. 

 

Figure 3.23: Excerpt from DLR’s interactive path planning GUI 

The above picture details show the route between DLR’s TechLab (Figure 3.23 – right), where 

the ROboMObil laboratory is located, to the next public train station S-Bahn in Weßling (Figure 

3.23 – left). The length of the track is about 2.5 km, it is assumed to be completely plane, and a 

common commuter way for DLR’s co-worker who use public transportion from and to the inner 

city of Munich. The motivation of this experiment is that ROMO, as a semi-autonomous vehi-

cle, could overcome this flaw, at least here in the simulation case study. The track begins with 

three sharp curves and then leaves the DLR facilities to the rural road. In the middle of the way 

to Weßling a roundabout is located, followed by another rural road segment. Just before the 

railway station a s-curve leads to the end of the track. 
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Figure 3.24: Trajectories from DLR TechLab to the railroad station (blue non-opt. – red opt.) 
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In Figure 3.24 the temporal path description of the vehicle dynamics quantities 𝑣𝑥
P, 𝑎𝑥

P, 𝑎𝑦
P, 𝜅P is 

given. The demanded longitudinal velocity gradient as well as the acceleration is considerably 

reduced in the optimized case compared to the non-optimized case. The curvature is most sig-

nificantly reduced which partly yields a reduced lateral acceleration which is more comfortable 

to the passenger. Table 3.5 summarizes the necessary energy for the realization of the path de-

mands by the path-following controller and the energy optimal control allocator. 

Table 3.5: Energy manager effectiveness assessment – test track DLR to S-Bahn Weßling 

Experiment 𝑬𝐜𝐨𝐧 𝚫𝑬 Difference 

Non-opt. – Heuristic 0.3348 kWh Reference − 

Non-opt. – Physical  0.3386 kWh +0.0038 kWh +1.135 % 

Opt. – Heuristic 0.2968 kWh −0.0380 kWh −11.350 % 

Opt. – Physical 0.3006 kWh −0.0342 kWh −10.215 % 
  

In this test scenario the approach yields a saving of about 10 % in comparison to the non-

optimized case. Furthermore, the difference between the heuristic and the physically motivated 

cost function is small, with the heuristic cost function performing a little better. The justification 

can be found in the analysis of the torque and steering demands, which show jittering during 

constant driving phases. A reason for this is the aggressive tuning of the overlaying path follow-

ing controller, as well as the control allocation approach, which only concerns a very small step 

𝑇𝑠 = 4 ms without consideration of future or past demand trajectories (compare Figure 3.17). 

3.7.2 Rural Road Test Track Vires Road Segment 2501 

After the first promising test scenario a second one is chosen using the Vires landscape and road 

modelling (Figure 3.25) [Vir17b]. In this virtual world also the road height profile can be con-

sidered in the vehicle velocity profile generation (see drag force consideration in Figure 3.7). 

 

Figure 3.25: ROboMObil on Vires 2501 rural road 
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In Figure 3.26 the selected 3 km  open circuit track and its height profile is depicted. Besides 

long bend curves there are two sharp bends at crossings. 
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Figure 3.26: Path and height profile of Vires 2501 road segment 

As before, the demanded values are given in Figure 3.27. It is eye-catching that the trajectories 

do not differ too much from each other, meaning that the lateral acceleration and the longitudi-

nal velocity are very similar in both cases. The longitudinal acceleration is kept longer on a high 

level in the optimized case in comparison to the non-optimized case although the maximum 

level is reduced to meet the constraint that both versions should have the same travel time for 

the route. This leads in the optimized case to shorter phases of negative acceleration demands in 

which the traction motors are able to recuperate. Additionally, the path curvature could only be 

slightly reduced by the optimizer in the crossing segments. 
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Figure 3.27: Vires 2501 experiment trajectories (blue non-opt. – red opt.) 

These observations are reflected in the comparison of the energy consumption of the different 

path and control allocator configurations in Table 3.6. The maximum energy saving is reduced 

to only ~4 % and as before, the trend of the physical motivated cost function is the same. 
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Table 3.6: Energy manager effectiveness assessment – Vires road segment 2501 – 3000 m 

Experiment 𝑬𝐜𝐨𝐧 𝚫𝑬 Difference 

Non-opt. – Heuristic 0.4110 kWh Reference − 

Non-opt. – Physical 0.4173 kWh +0.0063 kWh +1.532 % 

Opt. – Heuristic 0.3955 kWh −0.0155 kWh −3.771 % 

Opt. – Physical 0.4009 kWh −0.0101 kWh −2.457 % 
  

3.7.3 Mountain road descent test track Vires road segment 2716 

The last test track is a descent rural road segment of 3 km length (Figure 3.28). ROboMObil 

starts from the top of the mountain and then drives downhill for 120 m of height (Figure 3.29).  

 

Figure 3.28: ROMO descending Vires 2716 mountain road 

The intention here is to evaluate whether the EM framework can optimize the recuperation dur-

ing downhill driving scenarios. The track itself has several long and smooth curves and in the 

middle a follow up of two sharp serpentine segments (see Figure 3.28 and Figure 3.29). 
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Figure 3.29: Path and height profile of Vires 2716 road segment 

In comparison to the previous plot (Figure 3.28) of the demanded trajectories the difference 

between the both version – optimized and non-optimized – is even smaller. 
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Figure 3.30: Vires 2716 experiment trajectories (blue non-opt. – red opt.) 

The curvature as well as the lateral acceleration course is smoothened through the optimization 

which can be seen as an advantage for the riding comfort for the passenger. Already from the 

beginning of the course the velocity profiles of both versions are very close to each other 

whereas the longitudinal acceleration shows a little bit jitter in the two s-curve segments be-

tween driving and recuperating demands. 

Table 3.7: Energy manager effectiveness assessment – Vires road segment 2716 – 3000 m 

Experiment 𝑬𝐜𝐨𝐧 𝚫𝑬 Difference 

Non opt. – Heuristic 0.0182 kWh Reference − 

Non-opt. – Physical 0.0242 kWh + 0.006 kWh +32.967 % 

Opt. – Heuristic 0.0122 kWh − 0.006 kWh −32.970 % 

Opt. – Physical 0.0185 kWh + 0.0003 kWh +1.648 % 
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As can be seen, ROboMObil consumes nearly no energy and therefore the nominal difference 

between the different control allocations and path variants is small in absolute values, although 

the relative difference may appear high.  

3.7.4 Conclusion of the Energy Manager’s Simulative Assessment  

The comprehensive conclusion of the simulation case study has shown, that with the here pro-

posed energy manager approach a reduction of the necessary energy for travelling a particular 

route can be achieved through the optimization based curvature minimization of the path. How-

ever, the improvement may vary, depending on the geometry and the slope of the particular 

road. In the first test scenario the roundabout and other sharp turns led to respectable energy 

saving. On the other hand, in the second and third scenario the long smooth turns reduced this 

effect. As already mentioned in Chapter 3.3.1 the quadratic characteristic of the cost criterion 

(eq. (3.10)) causes that the peak curvature of sharp turns is reduced more than the curvature of 

wide turns. Moreover, in case of the descending road the saving tended to be marginal. Since 

the geometric path planning and velocity profile generation should be able to be executed in 

real-time, the subsequent velocity profile generation leads not to a global optimum of the trajec-

tory 𝝀(𝑠). This matter will be further investigated in research activities based on the results of 

this thesis. The energy optimal control allocation approach as well as the path following control-

ler showed in total good and stable results. The physically motivated cost function did not bring 

considerable advantage to the overall energy consumption. An approach for further investiga-

tions is a model predictive control (MPC) based control allocation approach that does also take 

the future demanded actuating variable into account (see outlook in Chapter 6.3). Another point 

worth mentioning is that performance and energy consumption is dependent on the tuning of the 

three linear controllers of the path tracking controller. For the studies here the parameters were 

kept constant throughout the case studies, but time-varying gains might reduce the energy con-

sumption. 
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4. The Model Based Observer Framework 

Many demanding mechatronic systems, like the DLR ROboMObil, employ state dependent 

nonlinear optimization based control (compare control scheme Figure 3.21), which need an 

accurate knowledge of the system states. Frequently, these states cannot be gathered directly 

through sensors, since an appropriate measurement principle for the searched quantity is not 

available (e.g. determination of the state of charge 𝑙 of a battery) or the sensor is expensive and 

therefore desirable to be economized (e.g. vehicle over ground velocity sensing 𝒗𝐶). The goal of 

this research is to develop a complete toolchain to assist the control systems engineer in the 

development of complex, continuous-time formulated prediction models. These should be ap-

plied to discrete-time state estimation algorithms and the automatically generated code should 

be afterwards easily downloadable to an embedded microcontroller target. In this chapter a nov-

el framework for state estimation using detailed multiphysical continuous-time models designed 

in Modelica [Mod17] is developed. It employs an intelligent separation of the model and the 

estimation algorithm by utilizing modern computer technologies and recent developments in the 

Modelica language, which enable automated discretization, integration, and derivative calcula-

tion of an object oriented, equation based prediction model. Beyond this a direct usage of the 

state estimator on a cross platform embedded microcontroller target is also enabled. In addition 

to the implementation of the well-proven Kalman filter algorithms (for details see Chapter A.3 

& A.4), theory extensions for constraints handling and numerically efficient moving horizon 

estimation are given in Chapter 4.3 & 4.4. In Chapter 5, examples which make use of this 

framework, where both of them are directly connected to state estimation tasks in the EM 

framework, are discussed. This chapter is an extended and improved version of the publications 

[Bre14b] and [Bre11c]. 

4.1 State of the Art 

The textbooks [Gre15], [Sim06], [Hay01] are excellent starting points for the theoretical back-

ground and algorithm extensions on Kalman filtering and optimal state estimation. In addition 

to these textbooks a very comprehensive and condensed chapter of the most relevant algorithms, 

their derivation and comprehensible relationships for discrete-time state estimation is given in 

Chapter A of the appendix. For this reason only the most important steps of discrete estimation 

and their interface to the estimation framework are given in Chapter 4.2.1 to guarantee readabil-

ity and comprehension. 

To the best of the author’s knowledge, the MATLAB toolbox EKF/UKF [Har11] and the 

ACADO toolkit [Hou10] can be seen as the most advanced publicly available toolboxes for 

state estimation problems. Both require an analytically derived, by hand or via symbolic prepro-

cessing, (time-discrete) prediction model provided by the user. This is nontrivial, error-prone 

and time-consuming to utilize for a concrete estimation application with a complex nonlinear 
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model. In contrast, a Modelica simulator e.g. Dymola is able to analyze the structure of an 

acausal interconnected multiphysical model, to inline the discretization method, and finally to 

transform it to an order reduced ordinary differential equation representation with analytic de-

rivative calculation features [Mod17]. Another issue is that, in case of the first toolbox, no func-

tionality is provided to directly cross compile, i.e. compile for an execution system different to 

the one of the development system, and download the result to a real-time target. 

In this work a formulation and code generation framework is proposed that makes use of a for 

estimation problems specific, extended FMU 2.0 co-simulation interface [Mod13], giving the 

possibility to formulate the prediction model equations in continuous-time by means of the 

Modelica language. 

In [Bon14] an approach is given that makes use of the older FMI 1.0 standard [Mod10], which 

is not able to directly handle inline integration or model state events. This is similar to the ap-

proach in [Bre11c], besides that the authors in [Bon14] use Python with PyFMI [Mab17] and 

not a Modelica environment, which facilitates the integration of the observer in combination 

with model based nonlinear inverse controllers [Thu05] or the Modelica Synchronous Control 

System Library [Ott12] in a single development environment. 

4.2 Design of a Modelica Kalman Filter Estimation Framework 

In this chapter a method is developed to automatically generate nonlinear state estimators based 

on continuous-time Modelica models. The approach is based on an extended FMI 2.0 co-

simulation interface [Mod13] that interacts with the state estimation algorithms implemented in 

the DLR Kalman Filter Library [Bre14b]. 

With the raise of computational power in the last decades the possibilities to implement com-

plex control strategies in real world applications has been enhanced tremendously. For most of 

them a good knowledge of the actual states is necessary. Often these are not directly measurable 

due to cost limitations or missing sensors (for example, it is not practical to measure in-tire 

forces in an automotive application). In the ITEA2 project MODRIO [Ite12] one aim has been 

to develop state estimation technologies for plants that use the knowledge of complex models of 

the controlled system itself. These models are often designed, parameterized and optimized as 

multi-domain models in Modelica [Mod17]. To reuse these models for estimation and control 

purposes the functional mockup interface [Mod13] turns out to be very helpful. At the begin-

ning of this Ph.D. project a first concept for the state estimation framework was developed using 

FMI 1.0 for model exchange [Mod10]. It was implemented by handwritten discretization and 

integration algorithms and Modelica function pointers to separate the prediction model from the 

observer algorithms with the aim to create an easy to reconfigure framework for state estimation 

purposes [Bre11c]. This approach had several limitations and difficulties (e.g. no event han-

dling) and therefore an extended version based on the FMI 2.0 co-simulation interface [Mod13] 

has been developed afterwards. 

In Chapter 4.2.1 a brief introduction to the most import estimation algorithms, the extended 

Kalman filter and unscented Kalman filter, are given and the steps are identified where the 
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model evaluations are necessary by means of the FMI. For time-discrete Kalman filter theory 

details, derivative-free methods and numerical robust filter design using matrix decomposition 

and propagation, please inspect Chapter A in the appendix.  

4.2.1 Model Evaluations in State Estimation Algorithms 

For many control system tasks the plant model to be used in state estimation is naturally de-

scribed as a nonlinear continuous-time state-space system: 

 𝒙̇ = 𝒇(𝒙, 𝒖), 

𝒚 = 𝒉(𝒙), 

𝒖(𝑡) ∈ ℝ𝑛𝑢 , 𝒙(𝑡) ∈ ℝ𝑛𝑥 , 𝒚(𝑡) ∈ ℝ𝑛𝑦 , 𝑡 ∈ ℝ 

(4.1) 

Where 𝑡 is the time, 𝒖(𝑡) is the vector of inputs, 𝒙(𝑡) is the vector of states and 𝒚(𝑡) is the vec-

tor of outputs. Besides of manual, time consuming and error prone derivation of this representa-

tion, in this work the plant models are defined in Modelica and exported as a functional mockup 

unit (FMU) [Mod13] using the Modelica simulator Dymola. Note that all the research results 

presented here are also valid if FMUs are generated by other tools and/or non-Modelica envi-

ronments, as long as the FMU supports the extended FMI 2.0 co-simulation interface according 

to Table 4.3. 

In a sampled data system (e.g. a microcontroller) the continuous-time model representation in 

eq. (4.1) cannot be used directly. Instead a time-discrete representation is needed and therefore 

the time-discrete transformation of eq. (4.1) with additive Gaussian noise is used in the sequel: 

 

𝒙𝑘  =   𝒇𝑘|𝑘−1(𝒙𝑘−1, 𝒖𝑘−1) + 𝒘𝑘−1, 

𝒚𝑘  =   𝒉(𝒙𝑘) + 𝒗𝑘 , 

𝒘𝑘  ~ 𝑁(0, 𝑸𝑘), 

𝒗𝑘  ~ 𝑁(0,𝑹𝑘). 

(4.2) 

Here 𝑡𝑘 is the 𝑘-th sample time instant of a periodically sampled data system, 𝒖𝑘  =  𝒖(𝑡𝑘), 

𝒙𝑘  =  𝒙(𝑡𝑘), 𝒚𝑘  =  𝒚(𝑡𝑘). The vectors 𝒘𝑘 and 𝒗𝑘 represent zero biased Gaussian white noise. 

The following eq. (4.3) describes the discrete-time integration rule, like a Runge-Kutta or Euler 

integration method, and therefore must be integrated into the framework.  

 𝒇𝑘|𝑘−1  = 𝒙𝑘−1 + ∫ 𝒇(𝒙𝑘−1, 𝒖𝑘−1) d𝑡

𝑡𝑘

𝑡𝑘−1

. (4.3) 

The Extended Kalman Filter Calculation Steps 

In this section the steps of Kalman filter based state estimation are briefly summarized and the 

prediction step of the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) are 

examined. At this stage of the estimation algorithm the need for an efficient and reliable way for 

the prediction simulation model raises tremendously, which can be handled by the proposed 

approach. 
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In Figure 4.1 the cycle flow diagram of a recursive Kalman filter algorithm is depicted. The 

filter is initialized with the initial state vector guess 𝒙̂0
+ and the initial guess of the state covari-

ance matrix 𝑷0
+. These can be seen as a stochastic expectation for the trust in the first guess of 

the estimation procedure. 

Time update 

(predict)

Measurement

 update 

(correct)

𝒙̂𝑘
+, 𝑷𝑘

+ 

𝒙̂𝑘
−, 𝑷𝑘

− 

𝒙̂0
+, 𝑷0

+ 

𝒚𝑘
m  

 

Figure 4.1: Principle of a Kalman filter based estimation algorithm 

After the initialization process the cycle of the two calculation steps (predict) and (correct) be-

gins and is executed with a predetermined static sample time 𝑇𝑠. The additive Gaussian noise 

assumption in eq. (4.2) is handled by the user defined covariance matrices 𝑸, 𝑹. These enable 

the user to tune the filter to the specific task requirements (e.g. trust in the accuracy of the 

measurements 𝒚𝑘
m). For nonlinear model state estimation the widely used EKF algorithm is 

given as pseudo code in Table 4.1. The operand E(∙) calculates the expectation value of a ran-

dom variable [Sim06]. 

Table 4.1: The extended Kalman filter algorithm in context with FMU evaluations 

 

Initialization: 

𝒙̂0
+ = E(𝒙0) 

𝑷0
+ = E((𝒙0 − 𝒙̂0

+)(𝒙0 − 𝒙̂0
+)𝑇) 

for 𝑘 = 1,2, … (𝑘 ∈ ℕ+): 

Predict:                               𝒙̂𝑘
− = 𝒇𝑘|𝑘−1(𝒙̂𝑘−1

+ , 𝒖𝑘−1) 

𝑷𝑘
− = 𝑭𝑘−1𝑷𝑘−1

+ 𝑭𝑘−1
𝑇 +𝑸 

 with 𝑭𝑘−1 = 𝑒
(
𝜕𝒇
𝜕𝒙
|
𝒙̂𝑘−1
+

⋅𝑇𝑠)

 

Correct:                              𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇 ⋅ (𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹)
−1

 

with 𝑯𝑘 =
𝜕𝒉

𝜕𝒙
|
𝒙̂𝑘
−

 

𝒙̂𝑘
+ = 𝒙̂𝑘

− +𝑲𝑘 ⋅ (𝒚𝑘
m − 𝒉(𝒙̂𝑘

−)) 

 𝑷𝑘
+ = (𝑰 − 𝑲𝐾 ⋅ 𝑯𝑘) ⋅ 𝑷𝑘

− 

 

 

The red marked sections – this holds for Chapter 4 & 5 – indicate where the evaluation of the 

underlying system model equations, compare eq. (4.2), are necessary. The calculation of 𝒙̂𝑘
− is 
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performed by integrating the prediction model eq. (4.1) from 𝑡𝑘−1 to 𝑡𝑘. 𝑭𝑘−1 is the state-

transitions matrix of 𝒇 with respect to 𝒙 at 𝒙̂𝑘−1
+  and 𝑯𝑘 is the partial derivative matrix of 𝒉 

with respect to 𝒙 at 𝒙̂𝑘
−. The Jacobians 𝑱𝑘−1 and 𝑯𝑘 must either be provided directly (according 

to the FMI 2.0 specification, this feature is optional), or they can be determined numerically, for 

example with a forward difference quotient – note ϵ is the machine precision of the particular 

computer architecture and 𝑛𝑥 is the number of system states: 

 

for  𝑖 = 1,2, … , 𝑛𝑥;  Δ ≅ √ϵ 

        (𝑱𝑘−1)𝑖 =
𝒇(𝒙̂𝑘−1 + Δ 𝒆𝑖, 𝒖𝑘−1) − 𝒇(𝒙̂𝑘−1, 𝒖𝑘−1)

Δ
 

(4.4) 

The UKF Sigma Point Prediction Step 

The so called sigma point transformation (SPT) is based on the idea that it is easier to approxi-

mate a Gaussian distribution, than it is to approximate an arbitrary nonlinear function or trans-

formation; see [Jul04], [Sim06], and Chapter A.4. The parts of the UKF algorithm, in which 

model evaluations are necessary, are given in Table 4.2. The selection of the sigma points in 

matrix 𝑿 is performed via a static scaling factor 𝛾(𝑛, 𝛼, 𝜅) and the matrix square-root of the a 

posteriori covariance matrix. The number of states is denoted by 𝑛 = 𝑛𝑥, 𝛼 is the spread around 

the last state value 𝒙̂𝑘−1
+  and 𝜅 is a parameter for the stochastic distribution assumption. In total 

2𝑛 + 1 points must be created and then used as initial values for 2𝑛 + 1 simulations from 𝑡𝑘−1 

to 𝑡𝑘 to compute 𝑿𝑘|𝑘−1. 

Table 4.2: The unscented Kalman filter prediction step in context with FMU evaluations 

 

𝜲𝑘−1 = [𝒙̂𝑘−1, 𝑿̂𝑘−1 + 𝛾√𝑷𝑘−1
+ , 𝑿̂𝑘−1 − 𝛾 √𝑷𝑘−1

+ ] 

𝜲𝑘|𝑘−1 = 𝒇𝑘|𝑘−1(𝜲𝑘−1, 𝒖𝑘−1) 

𝒙̂𝑘
− = ∑𝒘𝑖

m ⋅

2⋅𝑛

𝑖=0

𝜲 𝑘|𝑘−1,𝑖 

𝑷𝑘
− =∑𝒘𝑖

c ⋅

2⋅𝑛

𝑖=0

(𝜲 𝑘|𝑘−1,𝑖 − 𝒙̂𝑘
−)(𝜲𝑘|𝑘−1,𝑖 − 𝒙̂𝑘

−)
𝑇
+𝑸 

𝜲𝑘
′ = [𝒙̂𝑘

−, 𝑿̂𝑘
− + 𝛾√𝑷𝑘

−, 𝑿̂𝑘
− − 𝛾√𝑷𝑘

−] 

𝒀𝑘 = 𝒉(𝑿𝑘
′ ) 

𝒚̂𝑘
− =∑𝒘𝑖

m ⋅

2⋅𝑛

𝑖=0

𝒀𝑘,𝑖 

 

 

The predicted values 𝒙̂𝑘
−,  𝒚̂𝑘

−,  𝑷𝑘
− are calculated via weighted sums with the predetermined 

weights 𝒘𝑖
c,m(𝑛, 𝛼, 𝜅). It is defined 𝑿 ̂:= [𝒙̂, 𝒙̂, … , 𝒙̂] ∈ ℝ𝑛×2𝑛+1 and in the notation here a vec-

tor depending function (e.g. 𝒇𝑘|𝑘−1 or 𝒉) with a matrix argument returns a matrix with columns 

that are equal to the evaluated columns of the matrix argument. 
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It can be shown that the nonlinear approximation accuracy of the UKF is at least twice higher as 

the EKF. This becomes an important feature in case of strong nonlinearities in the prediction 

model (for a detailed proof see [Hay01] – appendix A). 

4.2.2 Modelica Estimation Framework Integration 

The goal of the estimation framework is to provide an automated workbench for nonlinear esti-

mation based on the model equations of a Modelica model. In Table 4.3 all needed evaluations 

of the prediction model (compare eq. (4.1) & eq. (4.2)) for state estimation applications are 

summarized. A toolchain has to provide these model evaluations. In the right column the name 

of the Modelica function is listed to trigger the corresponding evaluation in the toolchain pro-

posed by this work, for details see the following explanations. 

Table 4.3: Model evaluations by means of the FMI for nonlinear state estimation 

Required model evaluation Modelica function 

Integration between 

two sample points: 
𝒇𝑘|𝑘−1 = 𝒙𝑘−1 + ∫ 𝒇(𝒙, 𝒖𝑘−1) d𝑡

𝑡𝑘

𝑡𝑘−1

 integrator 

Derivative evaluation: 𝒙̇ = 𝒇(𝒙, 𝒖) f 

Output evaluation: 𝒚 = 𝒉(𝒙) h 

Optional model evaluations   

(if not provided by tool, computed numerically by difference quotients – eq. (4.4)) 

State Jacobian matrix: 
𝜕𝒇

𝜕𝒙
(𝒙, 𝒖) fx 

Output Jacobian matrix: 
𝜕𝒉

𝜕𝒙
(𝒙) hx 

  

In the following a novel and automated procedure is introduced for incorporating Modelica 

based models in nonlinear observer algorithms. The aim is to start from a given (continuous, 

usually nonlinear) Modelica model and automatically deduce a nonlinear observer for this mod-

el in form of a sampled data system. This task cannot be performed directly, because Modelica 

has no means to discretize a continuous model and to solve this discretized model with a user-

defined method (that means integration and model update of the next state according to the ob-

server equations). Note that it is insufficient to simply integrate the nonlinear models from the 

last to the new sample instant (which could be achieved by using the “mapping” annotation 

introduced in Modelica 3.1 [Mod17]). Instead, the extended Kalman filter algorithm (compare 

Table 4.1) requires linearizing the model around 𝒙̂𝑘−1
+  for the state Jacobian matrix and around 

𝒙̂𝑘
− for the output Jacobian matrix. On the contrary, the unscented Kalman filter (compare Table 

4.2) requires integrating the model several times with disturbed states from the last to the new 

sample instant. Therefore, the basic approach is to export the Modelica model in the FMI-
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format, import it again in Modelica and during import, call the FMI-functions in such a way that 

the model is discretized and utilized in a nonlinear observer algorithm. 

The goal of the FMI technology is to describe input/output blocks of dynamic systems defined 

by differential, algebraic and discrete equations and to provide an interface to evaluate these 

equations as needed in different simulation environments, as well as in embedded control sys-

tems, with explicit or implicit integrators and fixed or variable step size. The FMI interface con-

sists of a small set of standardized “C-functions” to evaluate the model equations and a XML-

file that contains all information that is not needed during execution, such as the variable defini-

tions. Every variable has a handle (a 32 bit Integer) that is used to identify the variable in the C-

function calls. The source and/or object code of the C-functions, as well as the XML-file and 

optionally other files, are stored in a zip-file with the extension “.fmu” for “Functional Mockup 

Unit”. 

Utilizing an FMU in an Estimation Algorithm 

In Figure 4.2 the extended FMU 2.0 co-simulation interface embedded in the estimation frame-

work is shown (in the style of [Mod13] – Figure 10). It provides the necessary interfaces for the 

discrete estimation algorithms to calculate the quantities described in Table 4.3. All non-

standard FMU interfaces are indicated by dotted lines. Note that currently this is not standard-

ized but available in a prototype extension for the Modelica Simulator Dymola. 

(Inline-) solver

     time

    discrete states (constant between events)

    parameters of type Real, Integer, Boolean, String

    inputs of type Real, Integer, Boolean, String

    all exposed variables

    continuous states (continuous between events)

    outputs of type Real, Integer, Boolean, String

    event indicators

Discrete estimation algorithm

Advanced FMU 2.0 for co-simulation instance

𝒖𝑘−1 

𝑡0 , 𝒙0 , 𝒑 initial values 

𝒙 𝒙̇, 𝒛 𝑡 

𝑡𝑘  

𝒙𝑘−1 𝒙̇𝑘  

𝒚𝑘  

𝜕𝒇/𝜕𝒙 

𝜕𝒉/𝜕𝒙 

𝑡 
𝒎 
𝒑 
𝒖 
𝒗 
𝒙 
𝒚 
𝒛 

 

𝒙𝑘  

 

Figure 4.2: The extended FMI 2.0 for model co-simulation 

Besides the already explained variables 𝑡, 𝒖, 𝒙, 𝒚 and the set of model parameters 𝒑 (e.g. the 

mass of a vehicle) the FMU has the internal variables 𝒎,𝒗, 𝒛, which are now explained briefly. 

The discrete states 𝒎 are discrete-time variables with two values: the value of the variable from 

the previous event instant, and the value of the variable at the actual event instant [Mod13]. 
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Since this work focuses on continuous-time formulated prediction models, these are not used in 

the prediction model FMUs. The vector 𝒗 denotes all model variables, i.e. states or sub-system 

variables, which are defined in the element “<ModelVariables>” of the corresponding XML 

description. The event indicator vector 𝒛 contains internal variables such as state events which 

give the (inline-) solver the information that an event (e.g. the fulfillment of another branch in a 

“if-else” statement – see for instance the vehicle’s standstill condition in Chapter 5.2.2) oc-

curred between the last model evaluation and the current integration step. Internally this is han-

dled by the (inline-) solver to guarantee a correct integration and output of the model variables. 

More information of this methodology can be found in Chapter 3 of [Mod13]. 

The overall process of designing a state estimator in Modelica and (cross-) compiling it for em-

bedded targets is illustrated in Figure 4.3. The workflow follows the red arrow and the notation 

of the dependencies is adopted from UML representation for class diagrams [Mil08]. 
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Figure 4.3: Workflow to generate an estimator setup for a (cross-) platform target 

The process can be described as follows: an FMU (usually exported from a Modelica model) is 

imported into the Modelica environment by extending the package “FMU Modelica package”. 

The imported package can be included in an “FMU container package” to collect several FMUs 

for easy access. For such an FMU package an “Individual (Kalman) filter model” is generated, 

by a user invoked “Modelica function”, which provides variable names on buses and user con-
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venient parameter menus. The algorithmic part of the state estimator is provided by a “Generic 

filter model” (e.g. an UKF). Finally, the individual filter model can be instantiated in the user’s 

application model or can be cross compiled for an embedded target platform using the C-code 

sources from the FMU and a target dependent cross compiled numerical library of LAPACK 

[And99], which is used for the matrix calculus operations. 

For details on the implementation of the DLR Kalman Filter Library in the Modelica language 

please refer to Chapter B – Implementation of the DLR Kalman Filter Library in the appendix. 

Notes on Detectability and Observability 

The designed prediction model is normally nonlinear and in this thesis there is no deeper discus-

sion of the determination of the observability of the system. In practical applications it is mostly 

sufficient if the model is detectable rather than completely observable, i.e. all not observable 

modes/states are stable. An analysis of these properties can be performed with the DLR Modeli-

ca LinearSystems2 library. As a good rule of thumb it is helpful to make a detectability and 

observability analysis at the nominal operation points or in a grid of potential operation modes 

(e.g. the vehicle velocity operation range for the later example in Chapter 5.2).  

4.3 Kalman Filter Theory Extension with Inequality Constraints 

The so far presented estimation algorithms, based on the Kalman approach, are very well suited 

for a large bandwidth of observer problems. Besides the stochastic assumption of zero mean, 

Gaussian white noise processes, there are neither system state constraints nor delays in the data 

acquisition chain considered. In [Sim10] a good and comprehensive overview of existing meth-

ods is given for incorporating (linear) constraints to Kalman filtering for linear and nonlinear 

systems. For linear systems with linear constraints the most relevant methods [Sim10] are brief-

ly summarized in the following table: 

Table 4.4: Overview of linear constraint handling methods for linear Kalman filters 

Method Approach description 

Model reduction Substitute the equality constraints 𝑫 ⋅ 𝒙̂𝑘 = 𝒅 in the system 

equations to preserve an unconstrained filtering problem. 

Perfect  

measurements  

Extend the measurement vector with the state equality con-

straints as perfect measurements with zero measurement noise: 

[
𝒚𝑘
𝒅
] = [

𝑯𝑘
𝑫
]𝒙𝑘 + [

𝒗𝑘
0
] 

Probability density 

function (PDF) trun-

cation 

Truncate the PDF calculated in the Kalman filter to the edges of 

the constraint surface. The mean of the new PDF is identical to 

the constraint estimate. 
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Estimate projection 

for equality 

constraints 

Project the a posteriori state estimate on the constraint surface: 

min
𝒙
‖𝒙 − 𝒙̂𝑘

+‖𝑾   s. t.  𝑫 ⋅ 𝒙 = 𝒅 

The solution of the projected constraint estimation is: 

𝒙̅𝑘
+ = 𝒙̂𝑘

+ + 𝑷𝑘
+𝑫𝑇(𝑫𝑷𝑘

+𝑫𝑇)−1(𝑫𝒙̂𝑘
+ − 𝒅) 

Estimate projection 

for inequality  

constraints 

Find a solution for the optimization problem: 

min
𝒙
‖𝒙 − 𝒙̂𝑘

+‖𝑾     s. t.  𝑫 ⋅ 𝒙 ≤ 𝒅 

It can be solved via a quadratic program (QP). 

Gain projection Incorporate the constraints to the original optimization problem 

formulation of the standard Kalman filter [Sim06]: 

min
𝑲
 Tr((𝑰 − 𝑲𝑯)𝑷𝑘

−(𝑰 − 𝑲𝑯)𝑇 +𝑲𝑹𝑲)   s. t.  𝑫 ⋅ 𝒙̂𝒌
+ = 𝒅 

System projection Project the process noise covariance 𝑸 on a modified covari-

ance 𝑸̃ by means of a singular value decomposition of 𝑫 such 

that 

𝑫𝑸̃𝑫𝑇 = 0 holds. 

Soft constraints Do only approximately fulfill the constraints; this can be 

achieved by e.g. adding measurement noise to perfect measure-

ments or adding an additional regulation term to the Kalman 

filter. 

Moving horizon 

estimation 

Reformulate the general Kalman optimization problem 

eq. (A.36) to a fixed moving estimation window eq. (A.39) with 

equality and inequality constraints. It can be solved via a QP as 

explained in Chapter A.5. 
 

Some of these methods are not only applicable for linear constraints. Especially the estimation 

projection methods can be used for nonlinear constraints through a first or second order Taylor 

series expansion around the a priori state estimation 𝒙̂𝑘
−. For the approach of perfect measure-

ments constraint handling, this linearization is repeatedly applied to the measurements to 

smoothly improve the estimation. 

This thesis focuses on the class of nonlinear inequality constraints for nonlinear state estimation, 

since for many estimation tasks the control design engineer needs to incorporate inequality con-

straints to the states, e.g. the slider position state 𝑝 of an inverted pendulum is limited to the 

interval 𝑝 ∈ [𝑝min, 𝑝max]. Moreover, the constraints should be formulated (non-)linear by 

means of the Modelica language within the prediction model or in a separate FMU (see Chapter 

5.2 for the detailed practical realization). Additionally, by reason of exchangeability and flexi-

bility, the state constraint handling algorithms should be separable from the particular uncon-

strained Kalman filter algorithm. I.e. the user can configure the estimation task with constraint 

handling features and then examine different Kalman filters (e.g. EKF or UKF) without the 
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need to adopt the constraints to the particular estimation algorithm. By these reasons it has been 

decided to extend the a posteriori estimation projection approach with an inequality constraints 

algorithm in a computational efficient way to guarantee real-time capability. This is explained 

in the following subchapters of Chapter 4.3. To the best knowledge of the author new methods 

for nonlinear estimation with nonlinear inequality constraints are given in the next chapters that 

are different to the algorithms in literature (see Table 4.5).  

Table 4.5: Overview of nonlinear constraint handling methods for nonlinear Kalman filters 

Method Approach description 

Nonlinear soft  

constraints 

Nonlinear soft constraints by means of perfect measurements 

[Sim10] are shown in the application example of a battery state 

estimator in Chapter 5.1. 

Nonlinear optimization 

based estimation  

projection 

Project the states on the constraint surface by solving the restrictive 

optimization problem 

min
𝒙
‖𝒙 − 𝒙̂𝑘

+‖𝑾     s. t.  𝒅(𝒙) = 𝟎, 𝒄(𝒙) ≤ 𝟎 

which can be solved by means of a nonlinear interior point solver or 

a sequential quadratic program (SQP) [Scn11]. 

Sigma point projection This is a special approach for UKF algorithms (compare Chapter 

A.4). The sigma points are projected on the borders of the constraint 

region and with these projected points the covariance update is cal-

culated [Kan08]. In [Scn11] additionally the sigma point weights 

are scaled to improve the constraint covariance confidence. Similar 

methods are the two-step UKF and the unscented recursive nonline-

ar dynamic data reconciliation (URNDDR) which performs a MHE 

with a horizon size of one to the a posteriori sigma points [Sim10]. 

Nonlinear moving 

horizon estimation 

A nonlinear moving horizon estimator with a nonlinear gradient 

descent optimization which can handle equality and inequality con-

straints as well as delayed measurements is formulated in Chapter 

4.4. Besides this, various other formulations, like the URNDDR, the 

constrained UKF [Sim10] or the constrained real-time approach 

[Bog14] using the ACADO toolbox [Hou10] can be found as ex-

amples for nonlinear moving horizon estimation. 
 

The following proposed estimation projection methods are appropriate for nonlinear inequality 

constraints of the form 𝒄(𝒙) ≤ 𝟎, with limits to the distinguished approximation. First, in Chap-

ter 4.3.1 an efficient root-finding algorithm determines a linear scaling factor between the vector 

distance 𝒙̂𝑘
+ 𝒙̂𝑘−1

+̅̅ ̅̅ ̅̅ ̅̅ ̅̅  to the point where the constraint gets active 𝑐(𝒙) = 0. Afterwards, two differ-

ent methods are proposed, one based on statistical linear regression (compare Chapter A.4) and 

one with a Lagrange multiplier. These methods determine a constraint estimate that lays closer 

to the border of the constrained surface 𝑐(𝒙) = 0. 
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4.3.1 The Formulation of State Constraints 𝒄(𝒙) ≤ 𝟎 

In the most common cases there exist a lot of known constraints to estimated states, e.g. a limi-

tation of the position due to physical stops in a mechanical system. These can be formulated as 

restrictions that fulfill a set of inequalities 𝒄(𝒙) ≤ 𝟎. The main principal of the proposed algo-

rithms is to change the state vector after the correction step 𝒙̂𝑘
+ of the Kalman filter such that all 

restrictions are fulfilled. The optimization problem is defined as: 

 
𝒙̂𝑘
0 = argmin

𝒙
‖𝒙 − 𝒙̂𝑘

+‖ 

s. t.  𝒄(𝒙) ≤ 𝟎 
(4.5) 

It is assumed that the constraints 𝒄(𝒙) ≤ 𝟎 are neither contradictory nor redundant and only one 

constraint is active at the same time. In many cases this is valid, since the estimation step size is 

small. Examples are given in Chapter 5.1.5 and Chapter 5.2.3. In case of large step sizes and/or 

if multiple constraints are likely to be active, it is possible to handle these situations by an SQP 

formulation (see Table 4.5) or with a moving horizon estimator formulation as proposed in 

Chapter 4.4. 

𝒙̂𝑘−1
+    

𝑐(𝒙) = 0   

𝒙̂𝑘
0    

𝒙̂𝑘
+   𝑐(𝒙) <  0  

𝑐(𝒙) > 0   

 

Figure 4.4: Barrier violation in constraint state estimation 

The obvious way to handle the active constraint is to find the point 𝒙̂𝑘
0  in the vector 𝒙̂𝑘

+ 𝒙̂𝑘−1
+̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

where the violated constraint 𝑐(𝒙) > 0 is no longer fulfilled (see Figure 4.4). This means the 

root 𝛼 of 𝑐(𝒙(𝛼)) = 0 has to be determined, such that  

 𝒙̂𝑘
0 = 𝒙̂𝑘−1

+ + 𝛼 ⋅ (𝒙̂𝑘
+ − 𝒙̂𝑘−1

+ ) ,   𝛼 ∈ [0,1] (4.6) 

This problem is solved with the derivative free root finding method of Brent [Brn73]. This algo-

rithm is available in the Modelica Standard Library (“Modelica.Math.Nonlinear. 

solveOneNonlinearEquation”). Once 𝛼 is known, the Cholesky decomposition 𝐶𝑷𝑘
0  of the co-

variance matrix can be calculated as: 

 𝐶𝑷𝑘
0 = (1 − 𝛼) ⋅ 𝐶𝑷𝑘

− + 𝛼 ⋅ 𝐶𝑷𝑘
+ (4.7) 
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The rudimentary way would be to use this solution for the estimation projection, but one can 

easily see in Figure 4.4 that it is not the closest estimate to the unconstrained solution 𝒙̂𝑘
+. 

Therefore, below two approaches are discussed that are intended to find a better approximation 

of the solution. 

4.3.2 A Statistical Linear Regression Approach for Unscented Kalman Filters 

The first method is based on an advanced system approximation to transfer the nonlinear re-

stricted problem in eq. (4.8) into an equivalent linear formulation. This proposed algorithm 

makes use of the weighted statistical linear regression (WSLR) method, described in Chapter 

A.4, applicable for inequality constraints in unscented Kalman filters (UKF). To solve the opti-

mization objective eq. (4.5) with this method two assumptions have to hold. First, a state vector 

𝒙̂𝑘
0  can be found such that the active constraint 𝑐(𝒙̂𝑘

0) =  0  is exactly fulfilled (compare 

eq. (4.6)) and therefore the objectives rewrites as follows: 

 
𝒙̂𝑘
SLR = argmin

𝒙
‖𝒙 − 𝒙̂𝑘

+‖𝑾
2  

s. t.  𝑐(𝒙) = 0 

(4.8) 

Second, it is possible to linearize 𝑐(𝒙) in an efficient way. The linearization of the equality con-

straint could be generally performed e.g. via a Taylor series approximation [Sim10]. A more 

reliable way is to linearize the constraint via the WSLR method: 

 

𝑦 = 𝑐(𝒙) 

𝑦̂ = 𝑪𝒙 + 𝑏 

𝜖 = 𝑦 − 𝑪𝒙 + 𝑏⏟    
𝑦̂

  
(4.9) 

The performance gain is graphically analyzed in App. Figure A.4. With the results of the deriva-

tion sketched in eq. (A.28) through eq. (A.31) and the use of the Cholesky factors of 𝑷𝑘
0 , 𝑪 can 

be directly calculated: 

 

𝑪 = 𝑷𝒙𝒄0 ⋅ 𝑷𝑘
0−1 = 𝑷𝒙𝒄0 ⋅ 𝐶𝑷𝑘

0−𝑇 ⋅ 𝐶𝑷𝑘
0−1 

with 𝑷𝒙𝒄0 =∑𝒘𝑖
c ⋅

2⋅𝑛

𝑖=0

[𝜲𝑖,𝑘
0 − 𝒙̂𝑘

0][𝑐(𝜲𝑖,𝑘
0 ) −  0]

𝑇
 

and  𝜲𝑘
0 = [𝒙̂𝑘

0 , 𝒙̂𝑘
0 + 𝛾 ⋅ 𝐶𝑷𝑘

0 , 𝒙̂𝑘
0 − 𝛾 ⋅ 𝐶𝑷𝑘

0] 

(4.10) 

In eq. (4.10) 𝛾 denotes the weighting of the covariance and can be calculated according to App. 

Table A.5 With the WSLR linearization method, eq. (4.8) can be approximated by a linear 

equality constrained least squares problem 
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𝑾 = 𝑹𝑇𝑹 = 𝑷𝑘
0−1 → 𝑹 = 𝐶𝑷𝑘

0−1 

𝒙̂𝑘
SLR = argmin

𝒙
‖𝑹⏟
𝑨

𝒙 − 𝑹𝒙̂𝑘
+

⏟
𝒂

‖ 

s. t.  𝑪⏟
𝑩

⋅ 𝒙 = 𝑪 𝒙̂𝑘
0

⏟
𝑏

 

(4.11) 

that can be solved for example with DGGLSE [And99]. As the result a new constraint estimate 

𝒙̂𝑘
SLR (see Figure 4.5) is obtained that is closer to the unconstrained estimate 𝒙̂𝑘

+, than the con-

strained states 𝒙̂𝑘
0  computed with the root finding algorithm presented in Chapter 4.3.1. 

𝑐(𝒙) > 0   

𝑐(𝒙) < 0   

𝒙̂𝑘−1
+    

𝑐(𝒙) = 0   

𝒙̂𝑘
0    

𝒙̂𝑘
+   

𝒙̂𝑘
SLR    

 

Figure 4.5: Principle of the SLR approach for state constraint handling 

The complete algorithm, which exploits the structure of the given matrices, writes as follows: 

Table 4.6: Algorithm for estimation projection based on the SLR technique 

 

1. Find 𝛼 ∈ [0,1] such that 𝑐(𝒙̂𝑘
0) =  0  with: 

𝒙̂𝑘
0 = 𝒙̂𝑘−1

+ + 𝛼 ⋅ (𝒙̂𝑘
+ − 𝒙̂𝑘−1

+ ) 

𝐶𝑷𝑘
0 = (1 − 𝛼) ⋅ 𝐶𝑷𝑘

− + 𝛼 ⋅ 𝐶𝑷𝑘
+ 

3. Calculate 𝑪: 

𝑪 = 𝑷𝒙𝒄0 ⋅ 𝑷𝑘
0−1 = 𝑷𝒙𝒄0 ⋅ 𝐶𝑷𝑘

0−𝑇 ⋅ 𝐶𝑷𝑘
0−1 

with 𝑷𝒙𝒄0 =∑𝒘𝑖
c ⋅

2⋅𝑛

𝑖=0

[𝜲𝑖,𝑘
0 − 𝒙̂𝑘

0][𝑐(𝜲𝑖,𝑘
0 ) −  0]

𝑇
 

4. Least squares minimization →  𝒙̂𝑘
SLR:  

𝑾 = 𝑹𝑇𝑹 = 𝑷𝑘
0−1 → 𝑹 = 𝐶𝑷𝑘

0−1 

𝒙̂𝑘
SLR = argmin

𝒙
‖𝑹𝒙 − 𝑹𝒙̂𝑘

+‖ 

s. t.  𝑪 ⋅ 𝒙 = 𝑪 𝒙̂𝑘
0  
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In [Scn09] another methodology for handling inequality constraints has been developed by 

means of the WSLR. The difference to the here discussed approach is, that the root finding is 

performed by a computational costly bisection method. Additionally, a direct projection meth-

od, to eliminate the equality constraints from the optimization objective, is applied. 

4.3.3 A General Approach – The Simplified Newton Descent Search  

As a third approach a more general method for incorporating inequality constraints is presented. 

The WSLR based algorithm of Chapter 4.3.2 works fine with the SR-UKF as well as the SR-

EKF algorithm, because in these cases the algorithm can directly use the Cholesky factorization 

of the a priori covariance matrix. For other algorithms, that do not rely on square-root filtering 

(compare Chapter A.4.2), a computational costly Cholesky decomposition of the covariance 

matrix would have to be computed in every time instance when a constraint gets active. The 

here proposed algorithm is based on a simplified Newton descent search (i.e. without consider-

ing the second order derivative), that projects the a posteriori estimation on the constraint sur-

face. This opens up a more general use. The optimization objective is formulated as follows: 

 
𝒙̂𝑘
P = argmin

𝒙
‖𝒙 − 𝒙̂𝑘

+‖ 

s. t.  𝑐(𝒙) = 0 
(4.12) 

The idea behind this algorithm is to perform a descent search along the gradient 𝛁𝑐(𝒙̂𝑘
+) calcu-

lated at the point 𝒙̂𝑘
+ until the constraint equation 𝑐(𝒙̂𝑘

P) ≤ 0 holds again. Graphically this can 

be interpreted as shown in Figure 4.6 

𝑐(𝒙) < 0   

𝒙̂𝒌−𝟏
+    

𝑐(𝒙) = 0   

𝒙̂𝒌
𝟎   

𝒙̂𝒌
+   

𝒙̂𝒌
P    

𝑐(𝒙) > 0   

Contour line

 

Figure 4.6: Principle of the simplified Newton descent search for state constraint handling 

This optimization task can be formulated with the method of Lagrange multipliers [Boy04]. 

Eq. (4.13) denotes the above formulated optimization objective in a general description: 

 min𝑓(𝒙)    s. t.  𝑔(𝒙) = 𝑑 (4.13) 
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It is assumed that both functions 𝑓, 𝑔 have continuous first partial derivatives around the solu-

tion. With the introduction of the Lagrange multiplier 𝜇 the optimization task can be reformulat-

ed as an unconstrained minimization problem: 

 min𝓛(𝒙, 𝜇) =𝑓(𝒙) − 𝜇 ⋅ (𝑔(𝒙) − 𝑑) (4.14) 

Therefore, the optimal solution of this unrestricted minimization problem is denoted as follows: 

 𝛁𝒙,𝜇𝓛(𝒙, 𝜇) = 0   (4.15) 

This approach is now applied to the estimation projection optimization problem eq. (4.12) and 

the searched restricted estimate 𝒙̂𝑘
P is calculated using the Lagrange multiplier 𝜇 and the gradi-

ent of the active constraint 𝑐(𝒙): 

 
 𝒙̂𝑘
𝑃 = 𝒙̂𝑘

+ + 𝜇 ⋅ 𝛁𝑐(𝒙)   s. t.  𝑐(𝒙) = 0 

𝑐(𝒙̂𝑘
+ + 𝜇 ⋅ 𝛁𝑐(𝒙)) = 0 

(4.16) 

To fulfill eq. (4.15) the approach is formulated with a simplified Newton descent search algo-

rithm by means of a scalar zero search Ϝ(𝜇) = 0 with respect to the Lagrange variable 𝜇: 

 

𝛁𝑐(𝒙) ≈ 𝛁𝑐(𝒙̂𝑘
+) 

yields
→   Ϝ(𝜇) = 𝑐(𝒙̂𝑘

+ + 𝜇 ⋅ 𝛁𝑐(𝒙̂𝑘
+)) =

!
0 

𝜕Ϝ

𝜕𝜇
= 𝛁𝑐(𝒙̂𝑘

+ + 𝜇 ⋅ 𝛁𝒄)𝑇 ⋅ 𝛁𝑐(𝒙̂𝑘
+) 

 
𝜕Ϝ

𝜕𝜇
|
𝜇=0

= 𝛁𝑐(𝒙̂𝑘
+)𝑇𝛁c(𝒙̂𝑘

+) 

(4.17) 

This can be implemented as an iterative search algorithm, which determines 𝜇 such that the 

condition Ϝ(𝜇) = 0 holds within a predefined maximum number of calculation steps. The pseu-

do code for the algorithm is given in Table 4.7. 

Table 4.7: Simplified Newton descent search algorithm for constrained estimation projection 

 

Initialization: 

𝜇𝑜 = 0 

𝛼 = (𝛁𝑐(𝒙̂𝑘
+)𝑇 ⋅ 𝛁𝑐(𝒙̂𝑘

+))
−1

 

𝑘 =  −1 

While |α ⋅ c(𝒙̂𝑘
+ + μk+1 ⋅ 𝛁c(𝒙̂𝑘

+))| ≥ ϵNewton: 

𝑘 = 𝑘 + 1 

𝛥𝜇𝑘+1 = −𝛼 ⋅ 𝑐(𝒙̂𝑘
+ + 𝜇𝑘 ⋅ 𝛁𝑐(𝒙̂𝑘

+)) 

𝜇𝑘+1 = 𝜇𝑘 + Δ𝜇𝑘+1 

Solution: 

                                                𝒙̂𝑘
P = 𝒙̂𝑘

+ + 𝜇𝑘+1 ⋅ 𝛁𝑐(𝒙̂𝑘
+) 
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4.4 Real-time Nonlinear Moving Horizon Estimation 

In this section the recursive one-step Kalman filter approaches sketched in Chapters 4.2.1, A.3, 

and A.4 are extended to a nonlinear moving horizon estimator (MHE), which utilizes multiple 

past measurements to estimate state at the current time instance. In addition to state constraints 

(cf. Chapter 4.4.1), delayed measurements (cf. Chapter 4.4.2) can be directly incorporated in the 

problem formulation. As an outlook for ongoing and future observer framework extensions, the 

connection of moving horizon estimation, and nonlinear model predictive control (NMPC) is 

discussed in Chapter 6.4.2. 

Referring to [Sim10], the approach of moving horizon estimation is the reformulation of the 

general optimization objective of the Kalman filter theory, also known as the full-information 

filter. In the nonlinear case the minimization problem can be written as follows: 

 
min
𝝃𝑘
∥ 𝒙0 − 𝒙̂0 ∥𝑰0+

2 +∑ ∥ 𝒚𝑖
m − 𝒉(𝒙𝑖) ∥𝑹−1

2

𝑁

𝑖=1

+∑ ∥ 𝒙𝑖+1 − 𝒇(𝒙𝑖) ∥𝑸−1
2

𝑁−1

𝑖=0

 

𝝃𝑘 = (𝒙0
𝑇 , 𝒙1

𝑇 , … , 𝒙𝑁
𝑇 )𝑇 

(4.18) 

The discussed recursive Kalman filter algorithms in Chapter 4.2.1 are  special cases of this op-

timization objective in the case that only the measurements at the current time instance 𝑡𝑘 are 

available. Since the dimension 𝑁 of the optimization problem would grow tremendously with 

proceeding time, in MHE theory the time span is limited to a predefined length of previous time 

instances and shifted in every sample step. 

As mentioned above the moving horizon estimator (MHE) is very closely connected to model 

predictive control (MPC) – this matter of fact will be discussed further in Chapter 6.4.2. Instead 

of predicting future control inputs, a sliding window with 𝑀 steps back from the actual time 

instance 𝑡𝑘 , is considered to smooth the state estimation. In every sample step 𝑇𝑠 this window is 

shifted one-step ahead – in Figure 4.7 this is illustrated for one measurement variable 𝑦m. At the 

filter initialization 𝑡0 only one measurement is available and therefore the measurement storage 

must be filled with 𝑟 < 𝑀 steps before the window is starting to move. Afterwards the window 

length is kept constant and all past 𝑀 measurements are taken into account (the window with 𝑀 

measurements is colored in green in the subsequent figures). In other words, the MHE can be 

seen as a real-time calculable approximation of the full-information filter.  
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𝑡𝑘−𝑀  
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𝑦
m

 

Time [s]  

Figure 4.7: Schematic representation of a moving measurement window 
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In this way the estimate gets more robust against external disturbances, delayed measurements 

can be incorporated (see Chapter 4.4.2) and also constraints can be imposed directly [Sim10]. 

The linear case for MHE state estimation and its formulation as a quadratic optimization prob-

lem is stated in Chapter A.5. 

By means of the proposed estimation framework presented in Chapter 4.2.2 it is also possible to 

incorporate complex nonlinear Modelica based prediction models to moving horizon estimation. 

In the context of toolchains for observer code generation (compare Chapter 4.1) and nonlinear 

constraint MHE, different research studies were recently published that utilize the ACADO 

toolbox for embedded [Vuk15] and real-time moving horizon estimation [Bog14], [Fer12]. 

They make use of the real-time iteration (RTI) scheme originally developed in [Die01] and later 

transferred to the MHE approach in [Kue11]. The basic strategy is to discretize the estimation 

problem with a multiple shooting discretization using numerical integration. Then the main idea 

of the RTI scheme is to use the shifted state variables of the previous optimization run as the 

new linearization point and perform only one SQP step per sample time [Vuk15]. 

In this work the problem formulation in eq. (4.19) is extended for nonlinear systems incorporat-

ing linear state constraints, tailored to meet real-time application restrictions by means of a non-

linear gradient descent search. Details on the reasons for this approach are given in the follow-

ing chapter. 

 

min
𝝃𝑘
  𝑔 (𝝃𝑘 = (𝒙𝑘−𝑀

𝑇 , 𝒙𝑘−𝑀+1
𝑇 , … , 𝒙𝑘

𝑇)
𝑇
) 

s. t.  𝑨 ⋅ 𝝃𝑘 = 𝒃 

𝑪 ⋅ 𝝃𝑘 ≤ 𝒅 

(4.19) 

 

𝑔(𝝃𝑘) = ∥ 𝒙𝑘−𝑀 − 𝒙̂𝑘−𝑀
+ ∥

𝑰𝑘−𝑀
+
2  

+ ∑ ∥ 𝒚𝑖
m − 𝒉(𝒙𝑖) ∥𝑹−1

2

𝑘

𝑖=𝑘−𝑀

+ ∑ ∥ 𝒙𝑖 − 𝒙int,𝑖 ∥𝑸−1
2

𝑘

𝑖=𝑘−𝑀+1

 
(4.20) 

 
𝒙int,𝑘−𝑀 = 𝒙̂𝑘−𝑀

+  

𝒙int,𝑖 = 𝒇𝑖|𝑖−1(𝒙int,𝑖−1, 𝒖𝑖−1)   (𝑖 = 𝑘 −𝑀 + 1,… , 𝑘) 
(4.21) 

The optimization vector 𝝃𝑘 is assembled with 𝑀 subsequent discrete state vectors within the 

current estimation window. The optimization cost function 𝑔(𝝃𝑘)  in eq. (4.20) is composed of 

the following three parts. 

The first argument ‖⋅‖𝑰𝑘−𝑀
+  is the arrival cost, which summarizes all available information prior 

to the estimation window; this can also be seen as a regulation term on the states at 𝑡𝑘−𝑀 

[Bog14]. It is introduced to guarantee that the oldest estimation 𝒙𝑘−𝑀 is coincident with the 

corrected Kalman Filter state estimation 𝒙̂𝑘−𝑀
+  weighted with the information matrix 𝑰𝑘−𝑀

+ . Note 

that in every moving horizon estimation step a Kalman filter step from 𝑘 −𝑀 − 1 to 𝑘 −𝑀 is 

performed to fulfill the Kalman state estimation theory – eq. (4.18). The information matrix 

 𝑰𝑘−𝑀
+  is calculated via the inverse of the covariance matrix(𝑷𝑘−𝑀

+ )−1. Since direct matrix inver-

sion should be avoided, due to numerical stability and accuracy, the author proposes to use a 

SR-UKF or a SR-EKF Kalman filter algorithm that uses square-root decomposition and rank 

1 – updates to propagate the covariance matrix in lower triangular form 𝑷 = 𝑳 ⋅ 𝑼 (compare 
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Chapter A.4.2). The inverse of the lower triangular 𝑳 can be efficiently calculated by the 

LAPACK routine DTRTRI [And07] and therefore the propagated information matrix results in 

 𝑰𝑘−𝑀
+ = 𝑳−𝟏 ⋅ 𝑳. 

The second argument ‖⋅‖𝑹−1 is the, over the time instances (𝑘 −𝑀 to 𝑀) summarized and with 

𝑹−1 weighted, difference between the available measurements 𝒚𝑖
m and the output equations of 

the underlying prediction model 𝒉(𝒙𝑖) as function of the states of the current optimization vec-

tor 𝝃𝑘. 

Finally, the third argument ‖⋅‖𝑸−1 denotes the, over the time instances (𝑘 −𝑀 to 𝑀) summa-

rized and with 𝑸−1 weighted, difference between the optimized states 𝒙𝑖 and the open loop in-

tegrated prediction model states 𝒙int in eq. (4.21). 𝒙int is calculated only once per optimization 

step by a simulation using 𝒙̂𝑘−𝑀
+  as start vector and 𝒖𝑖 as input vector.  

In Figure 4.8 a qualitative graphical interpretation of the optimization problem for a scalar prob-

lem with 𝑛𝑥 = 𝑛𝑦 = 1 is shown. The circle points of the quantities denote the particular value at 

a discrete-time instance, which is evaluated in the objective function eq. (4.20).  

𝑡𝑘−𝑀  𝑡𝑘−𝑀−1 𝑡𝑘  

𝒚m  

𝝃𝑘  

𝑡/𝑇𝑠  

𝒉(𝝃𝑘) 

𝒙int  

𝒙̂𝑘−𝑀
+  

KF 

Step

 

Figure 4.8: Graphical interpretation of a moving horizon estimator 

The complete algorithm is summarized in Table 4.8. In the first step all past measurements are 

stored in a first in first out (FIFO) ring buffer. As long as not enough measurements for the 

complete window 𝑀 are available, the measurements and the model inputs are appended to the 

buffer.  
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Table 4.8: Algorithm for a nonlinear moving horizon estimator  

 

1. Set 𝑘 = 0 (𝑘 ∈ ℕ+) and set 𝒙𝑘 = 𝒙0 

2. Fill ring buffer with measurements and system inputs: 

if 𝑘 < 𝑀  append 𝒖𝑘 to 𝒖 and 𝒚𝑘
m to 𝒚m 

else  left shift one entry of 𝒖 and 𝒚m and append 𝒖𝑘 resp. 𝒚𝑘
m  

3. Optimize over stored measurement window: 

min
𝝃𝑘
  𝑔(𝝃𝑘) 

s. t.  𝑨 ⋅ 𝝃𝑘 = 𝒃 

𝑮 ⋅ 𝝃𝑘 ≤ 𝒅 

4. if 𝑘 ≥ 𝑀 (ring buffer is completely filled) 

a. Propagate 𝒙̂𝑘−𝑀−1
+   via a Kalman Filter step 

𝒙̂𝑘−𝑀
+ ,  𝑰𝑘−𝑀

+  

b. Project states on the constrained area (see Chapter 4.3) 

min
𝒙
‖𝒙 − 𝒙̂𝑘−𝑀

+ ‖   s. t.  𝒄(𝒙) ≤ 0 

5. Repeat 𝑘 = 𝑘 + 1 

 

 

4.4.1 A Nonlinear Gradient Descent Optimization Algorithm for MHE 

For the solution of the proposed MHE problem formulation, eq. (4.19) to eq. (4.21), a nonlinear 

gradient descent search algorithm (NG) is chosen, because for this solver only the first deriva-

tives of the system functions are needed, which is an important constraint for the available inter-

faces of the extended FMI 2.0 co-simulation interface (see Chapter 4.2.2). Furthermore, linear 

equality and inequality constraints can be incorporated easily and the method can be stopped 

after every optimization step, still offering a reliable sub-optimal solution. The latter is im-

portant if the optimization is not finalized at the next sample instant. The algorithm of the con-

strained NG is given in Table 4.9, for more details see [Ros60], [Win13]. The here implemented 

NG algorithm for the observer framework is tailored for the nonlinear moving horizon estimator 

to meet maximum flexibility in calculation of the gradient and the objective function calcula-

tion. I.e. it is possible for the user to modify the calculation in Modelica with replaceable func-

tion pointers, without modifying the optimization algorithm itself. This will be shown later in an 

example in Chapter 5.2.4. 
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Table 4.9: Nonlinear gradient descent search algorithm for moving horizon estimation 

 

1. Set 𝑗 = 0 (𝑗 ∈ ℕ+) and define 𝝃𝑘
0 = (𝒙int,𝑘−𝑀

𝑇 , … , 𝒙int,𝑘
𝑇 )

𝑇
 

2. Descent direction: 

a. unconstrained case 

𝒓𝑗 = −𝛁𝑔(𝝃𝑘
𝑗
) 

b. constrained case 

𝒓pro,𝑗 = −𝑷
†(𝐀) ⋅ 𝛁𝑔(𝝃𝑘

𝑗
) 

𝒓f,𝑗 = 𝒓pro,𝑗 − (𝑮pa,𝑖𝒓pro,𝑗)𝑮pa,𝑖
𝑇  

3. Line search to determine the step size: 

𝜂𝑗 = argmin
0≤𝜂

 𝑔(𝝃𝑘
𝑗
+ 𝜂 ⋅ 𝒓𝑗) 

4. Optimization step: 

𝝃𝑘
𝑗+1

= 𝝃𝑘
𝑗
+ 𝜂𝑗𝒓𝑗 

5. If stop criterion not reached: 

𝑗 = 𝑗 + 1 and go to step 2; 

 

 

In step 1 an initial solution 𝝃𝒌
0 is needed. Well-proven strategies for its calculation is an open 

loop integration of the prediction model from 𝒙𝑘−𝑀 to 𝒙𝑘 or a left shift of the last optimization 

vector 𝝃𝒌−𝟏 and appending an open loop integration from 𝒙𝑘−1 to 𝒙𝑘. In the unconstrained case 

of the second step the gradient 𝛁𝑔(𝝃𝑘
𝑗
) of the descent direction can be directly calculated as 

shown in Table 4.10 (remark, all FMI evaluations shown in Table 4.3 are marked in red).  

Table 4.10: Calculation of the MHE gradient by means of FMU evaluations 

 

𝑹∗ = (𝑹 ⋅ 𝑹𝑇)−1 ;  𝑸∗ = (𝑸 ⋅ 𝑸𝑇)−1 

𝜵𝑔1:𝑛 = (𝑰𝑘−𝑀
+ + (𝑰𝑘−𝑀

+ )𝑇)(𝒙𝑘−𝑀 − 𝒙̂𝑘−𝑀
+ ) 

            −2
𝜕𝒉(𝒙𝑘−𝑀)

𝜕𝒙𝑘−𝑀

𝑇

𝑹∗(𝒚𝑘−𝑀
𝑚 − 𝒉(𝒙𝑘−𝑀)) 

for 𝑖 =  𝑘 − 𝑀 + 1,… , 𝑘: 

𝛁𝑔1+(𝑖−𝑘+𝑀)⋅𝑛:(𝑖−𝑘+𝑀+1)⋅𝑛 =
𝜕𝑔(𝝃𝑘)

𝜕𝒙𝑖

= 2𝑸∗(𝒙𝑖 − 𝒙int,𝑖) − 2
𝜕𝒉(𝒙𝑖)

𝑇

𝜕𝒙𝑖
𝑹∗(𝒚𝑖

m − 𝒉(𝒙𝑖)) 

 

 

If also equality constraints should be incorporated 𝑨 ⋅ 𝝃 = 𝒃, the descent direction must be pro-

jected on these by means of the Moore-Penrose pseudoinverse [Gol13] 𝒓pro,𝑗 = 𝑷
†(𝐀) ⋅ 𝛁𝑔(𝝃𝑘

𝑗
). 

In most of the MHE applications this step can be neglected, i.e. 𝑷†(𝐀) = 𝑰, since only inequali-
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ty constraints are of mayor interest to limit the boundaries of the states. To guarantee that the 

descent direction does not violate the inequality constraints, a set of possible active 

straints 𝑮pa,𝑖 in the null space of the linear constraints must be determined. The descent direc-

tion is projected on the active constraints (𝑮pa,𝑖𝒓pro,𝑗)𝑮pa,𝑖
𝑇 . 

In step 3 an iterative free line search via quadratic approximation by a second order Taylor se-

ries polynomial is performed (Table 4.11). Unfortunately, the derivatives of 𝑔(𝝃𝑘
𝑗
) must be 

calculated via numerical differences similar to eq. (4.4) since the extended FMU 2.0 co-

simulation interface only supports directional derivatives with respect to the system states and 

inputs, see [Mod13] – Chapter 2.1.9. Note that the necessary determination of 𝑔(𝝃𝑘
𝑗
+ Δ𝑠) in 

the differential quotient causes only evaluations of the algebraic output equations of the FMI 

(compare eq. (4.20)) since the calculation of the initial guess 𝒙int,𝑖 is only performed once in 

this approach. 

Table 4.11: Descent step size determination via quadratic approximation 

 

𝑔(𝝃𝑘
𝑗
+ 𝜂 ⋅ 𝒓𝑗) ≈ 𝐺(𝜂) ≔ 𝑔(𝝃𝑘

𝑗
) + 𝑔′(𝝃𝑘

𝑗
)𝜂 +

1

2
𝑔′′(𝝃𝑘

𝑗
)𝜂2  

∂𝐺(𝜂)

∂𝜂
=
!
0 = 𝑔′(𝝃𝑘

𝑗
) + 𝑔′′(𝝃𝑘

𝑗
)𝜂 , 

 𝜂𝑗 = −
𝑔′(𝝃𝑘

𝑗
)

𝑔′′(𝝃𝑘
𝑗
)
  

 

 

In step 4 the actual optimization step 𝝃𝑘
𝑗+1

 is computed. Finally, in the last step it is checked if 

the stop criterion is reached. This can be, on the one hand, with a criterion that controls whether 

the change in the last iteration 𝑗 is small |𝑔(𝝃𝑘
𝑗
) − 𝑔(𝝃𝑘

𝑗+1
)| < 10 ⋅ ϵ and, on the other hand, a 

real-time constraint that stops the search to guarantee the cycle-time of the real-time system. In 

this case it is assumed that the initial guess 𝝃𝑘
0 , calculated by the high fidelity Modelica model, 

has been already a valid suboptimal solution and the iterations of the NG did further improve it 

(cf. Table 4.9), before the stop 𝝃𝑘
𝑗
. 

4.4.2 Theory Extension to Delayed and Multi-rate or Triggered Measurements 

State of the Art: Delayed Measurements in Kalman Filters 

In many applications there are different kinds of sensors that are connected through a field bus 

system to the sensor fusion computer, e.g. ROboMObil’s central control (see Figure 2.16). In 

most of the cases these sensors are not synchronized with each other and also have different 

time delays in the acquisition chain. In [Mer04] a brief and comprehensive overview of relevant 

methods for time delayed measurement incorporation for recursive Kalman filtering is given 

and referred to in the following. The simplest method is to neglect the fact, that the measure-

ment at time instance 𝑡𝑘 is delayed. An improved approach is to incorporate the delayed meas-

urement with the past states from the time instance 𝑡𝑘−𝑁: 
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𝒙̂𝑘
+ = 𝒙̂𝑘

− +𝑲𝑘−𝑁 ⋅ (𝒚𝑘−𝑁
m − 𝒉𝑘−𝑁(𝒙̂𝑘−𝑁

− )) (4.22) 

With this formulation still the wrong output equation is fused with the current state prediction. 

Other approaches, e.g. Alexender’s method [Ale91], are of such high complexity that they are 

comparable to a complete recalculation of the Kalman filter over the horizon from 𝑡𝑘−𝑁 to 𝑡𝑘 

[Mer04]. For linear systems (see Chapter A.3.2) a more efficient method is Larsen’s method 

[Lar98], introducing an efficiently calculated correction term 𝛿𝒙̂𝑘
+ to the current observation 

fusion: 

𝛿𝒙̂𝑘
+ = 𝐌∗ ⋅ 𝑲𝑘−𝑁 ⋅ (𝒚𝑘−𝑁

m −𝑯𝑘−𝑁 ⋅ 𝒙̂𝑘−𝑁
− ) (4.23) 

𝐌∗ =∏(𝑰 −

𝑁−1

𝑖=0

𝑲𝑘−𝑖
𝑇 ⋅ 𝑯𝑘−𝑖) ⋅ 𝑭𝑘−𝑖−1  (4.24) 

In [Mer04] time delayed sensor fusioning for sigma point Kalman filters (SPKF) is presented. In 

this approach the system state is augmented (⋅)(a) and a cross correlation of the lagged meas-

urement with the covariance at 𝑡𝑘−𝑁 and with the covariance of the actual time instance 𝑡𝑘 is 

performed. The augmented state and measurement vectors are stated as follows: 

𝒙̂𝑘
(a)− = [

𝒙̂𝑘
−

 𝒙̂𝑘−𝑁
− ] 

𝒚̃𝑘
(a)
= [

𝒚𝑘 − 𝒚̂𝑘
−

𝒚𝑘−𝑁 − 𝒚̂𝑘−𝑁
− ] 

(4.25) 

In comparison to the UKF algorithm in App. Table A.6 the calculation of the a priori covariance 

𝑷𝑘
− is augmented to incorporate the delayed measurements in the filter prediction step: 

𝑷𝑘
(a)−

= [
𝑷𝒙𝑘
− 𝑷𝒙𝑘𝒙𝑘−𝑁

−

𝑷𝒙𝑘−𝑁𝒙𝑘
− 𝑷𝒙𝑘−𝑁

− ] (4.26) 

In a similar way the correction step of the unscented Kalman filter is modified: 

𝒙̂𝑘
(a)
= 𝒙̂𝑘

(a)− +𝑲𝑘−𝑁
(a) ⋅ 𝒚̃𝑘

(a)
 (4.27) 

The augmented Kalman gain 𝑲𝑘−𝑁
(a)

 in eq. (4.28) is calculated with the cross correlations 

𝑷
𝒙𝑘
(a)
𝒚𝑘−𝑁

 and 𝑷𝒚𝑘−𝑁
−1 . These are derived in the same way as in the original UKF algorithm via 

the propagation and weighting of the sigma points with the corresponding values at the time 

instances 𝑡𝑘−𝑁 and 𝑡𝑘. When the delayed measurement gets available, the Kalman gain is calcu-

lated. The pre-multiplied matrix 𝑴 controls the inclusion of the delayed measurement when it 

gets available to the observer in the current time instance. 
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𝑲𝑘−𝑁
(a) = 𝑴 ⋅ 𝑷

𝒙𝑘
(a)
𝒚𝑘−𝑁

⋅ 𝑷𝒚𝑘−𝑁
−1 = [

𝑷𝒙𝑘𝒚̃𝑘−𝑁 𝑷𝒚̃𝑘−𝑁
−1

𝑷𝒙𝑘−𝑁𝒚̃𝑘−𝑁 𝑷𝒚̃𝑘−𝑁
−1 ] 

𝑴 = {
[
𝐼 𝐼
𝐼 𝐼

] , 𝒚̂𝑘−𝑁 = active      

[
𝐼 0
0 0

] , 𝒚̂𝑘−𝑁 = inactive
 

(4.28) 

This method is useful in practical applications when a single sensor information is delayed in an 

estimation task, but gets computational very demanding if multiple sensors are delayed. Never-

theless, the proposed constraint handling algorithms in Chapter 4.3 can be used as well for the 

augmented case; however the scaling of the a posteriori covariance matrix can be only per-

formed to the non-lagged part in eq. (4.7). 

In the next section, the advantages of the moving horizon estimation technique incorporating 

reliable handling of delayed or multi-rate measurements are explained. 

Multi-rate or Triggered Measurements in MHE 

In many real-time control applications the control engineer has to cope with so called multi-rate 

systems which leads to the fact that signals are only available in an integer multiple to the base 

real-time clock. In case of ROboMObil this base clock is chosen to be 4 ms (compare illustra-

tion in App. Figure C.3). Moreover, it can be the case that some sensor information are only 

available at certain time instances 𝑡𝑘 invoked by an external trigger signal, as it is the case for a 

GPS low performance receiver, used in a navigation system. 

To handle these effects in moving horizon estimation (time-delayed and multi-rate or triggered 

measurements) the output eq. (4.18) needs to be modified, depending on the scheduling of the 

available sensor information. In [Val11] an approach for measurement delays compensation in a 

moving horizon estimator is proposed. It relies on linearization, similar to the linear MHE in 

Chapter A.5, but without considering the arrival cost propagation of the Kalman filter as it is 

formulated in eq. (4.20). For the nonlinear MHE approach of Chapter 4.4 it is proposed, to keep 

the lagged sensor data in a ring buffer, to interconnect them with past measurements of non-

lagged sensors, and to index the active sensors at the particular time instance. Comparing this 

with the formulation of eq. (4.20), all expressions that are connected with the measured output 

(the middle part) have to be calculated separately in each time step to incorporate the changing 

number of available sensor information at the dedicated time step.  

𝑔(𝝃𝑘) = ⋯ + ∑ ∥ 𝒚𝑖,a
m − 𝒉a(𝒙𝑖) ∥𝑹𝑘

−1
2

𝑘

𝑖=𝑘−𝑀

+⋯ 

𝝈̅𝑟a =  𝝈𝑟𝑖|𝑖 ∈ 𝒚𝑘    

𝑹𝑘 = diag(𝝈̅𝑟a) 

𝒉a = {𝒉𝑖|𝑖 ∈ 𝒚𝑘} 

𝒚a
m = [

𝑦𝑘−𝑀,1
m … 𝑦𝑘,1

m

⋮ … ⋮
𝑦𝑘−𝑀,𝑛𝑦
m … 𝑦𝑘,𝑛𝑦

m
] 

(4.29) 
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In eq. (4.29) all active measurements are denoted with an additional subscript (⋅)a for active 

sensors. In the construction of the active measurement matrix 𝒚a
m the time-delays of the single 

sensors are already considered. To cope with varying dimensions in the optimization problem 

the implementation could utilize the vector indexing feature in the Modelica language. The 

same technique is used in the Kalman filter propagation (Step 4 in Table 4.8) for the reduced 

indexed measurements. This procedure is valid according to the Kalman theory and can be seen 

in analogy to sequential Kalman filtering (see [Sim06] – Chapter 6.1). In these implementations 

the matrix vector notation of the Kalman filter algorithm (compare Chapter A.3.3) is replaced 

by sequentially solving a scalar problem for each measurement. Therefore, more sensor infor-

mation can improve the estimation in the sense of minimizing the covariance 𝑷𝑘−𝑀
+ . In the case 

that less sensor information is available, larger values of det (𝑷𝑘−𝑀
+ ) occur, but the validity of 

the Kalman theory still holds. In the same manner, also the dimension of the available meas-

urements at 𝑡𝑘−𝑀 for the calculation of the information matrix 𝑰𝑘−𝑀
+  and the initial guess 

𝒙̂𝑘−𝑀
+  needs to be considered in the Kalman step. In Chapter 5.2, a practical example of this 

approach is shown. 

  



Design and Evaluation of Model Based Observers 93 

5. Design and Evaluation of Model Based Observers 

In this chapter two state estimation applications are discussed. In the first example (Chapter 5.1) 

a hybrid table data and equation based prediction model approach for a battery state observer is 

developed. It benefits from automatic discretization with higher order solvers and symbolic 

transformation by means of the Modelica simulator, as well as from the derivative-free unscent-

ed Kalman filter (Chapter A.4) with inequality state constraints (Chapter 4.3). The estimated 

state of charge (SOC) is used within the energy manager control scheme to limit excessive pow-

er demands of the control allocator and to prevent running out-of-capacity during the journey 

(cf. Figure 3.21). The second application is a vehicle state observer with focus on the estimation 

of the quantities 𝒑Cact
I , 𝜓Cact

I , 𝒗act
C ,  𝜓̇act

C , which are necessary for the path following control of 

the EM (cf. Figure 3.21). The synthesis of the vehicle’s observer model is a trade-off between 

modelling complexity and performance. Through the efficient event handling mechanisms of 

the Modelica compiler it is possible to cope with the vehicle’s standstill case, which generally 

causes a division by zero error. Finally, an extended moving horizon state estimation algorithm 

enables the incorporation of delayed low bandwidth GPS measurements (cf. Chapter 4.4.2) and 

the possibility to limit the vehicle position change through the knowledge of the road bounda-

ries. 

5.1 A Constrained Nonlinear Battery Observer Application 

This subsection is an extended version of the publications [Bre11b] and [Bre11c] that addresses 

the modeling of a lithium-ion cell for online monitoring and offline benchmarking purposes. It 

combines physical modeling in an equivalent electric circuit representation with grid tables of 

cell characteristic information from laboratory tests. The model is fully parameterized and vali-

dated with the cell type used in the high voltage (HV) battery pack (cf. Figure 2.12) of RO-

boMObil. 

The development of reasonable, high performance and high capacity secondary chemical energy 

storages – mainly rechargeable lithium-ion cells – is one of the main tasks for today’s automo-

tive industry. In addition to the research of new cell chemistries for higher power density and 

durability, it is also necessary to develop new embedded systems and advanced algorithms for 

battery management systems. The aim of these systems is to give a good estimation of actual 

and future power availability and health monitoring. This requirement is very complex due to 

the nonlinear behavior, especially in the case of high performance lithium-ion cells. Currently, 

no direct measurement method is available to determine the cell characteristic parameters and 

states without destruction of the cell. 

All figures with cell characteristic trajectories are measured in conditioned test bench experi-

ments with the “Li-Tec HEI40” cell type used in the ROboMObil HV battery pack. After a brief 

summary of the state of the art models for lithium-ion cells in Chapter 5.1.1, a hybrid grid table 
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and physical equation mixed estimation model is derived and its quantities and parameterization 

are explained in Chapter 5.1.2. 

5.1.1 State of the Art – Lithium-Ion Cell Modelling 

To model the electric behavior of a cell, in literature often an equivalent electric circuit is used. 

As an example for this type of modeling, the approach from [Boe08] is presented: the cell be-

havior is separated into three time domains. The impedance determines the short-time range 

while the long-term behavior is incorporated by a voltage source. Finally, the transitional behav-

ior is captured by a number of exponential functions which are overlaid. 

Another possibility for cell modeling is based upon impedance spectroscopy measurements. An 

example for this class of models can be found in [Sti08] with its enhanced equivalent circuit. 

The level of detail is significantly higher compared to [Boe08] due to the continuous formula-

tion from low to high frequency effects. The following cell characteristics are considered: ohm-

ic resistances, parasitic inductances, charge transfer and double layer capacity, diffusion pro-

cesses and formation of solid electrical interface. 

For purposes of cell design, the Comsol “Batteries and Fuel Cells Module” [Com17] is an ad-

vanced modeling method. The model accuracy is sufficient to simulate the concentration of the 

electrolytes and therefore it enables battery engineers to test different combinations of materials 

and dimensions to optimize the cell behavior. 

The aforementioned offline models are not applicable to embedded control systems due to their 

complex modeling approaches and long simulation times. Available battery management sys-

tems (BMS), e.g. the system from Actia I+ME [Act17] that is installed in ROMO, use a prede-

termined cell characteristic table and a current counting method without considering the transi-

ent behavior of the cell.  

Another more advanced approach is the enhanced self-correcting model (ESC) by Plett pro-

posed in [Ple04], [Ple04b], [Ple04c] and [Ple04d]. The cell is considered as a system with cell 

current as input and the terminal voltage as the output variable. The SOC variable 𝑙 is included 

in the state vector and can therefore be estimated by means of an EKF algorithm. The basis of 

the model is the open circuit voltage (OCV) 𝑈OCV and the ohmic loss. This is represented in the 

equivalent circuit in Figure 5.1.  

UOCV ucell

icell
Ri

 

Figure 5.1: Simplified cell equivalent circuit representation of the ESC model 
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Also hysteresis effects are taken into account. The remaining cell dynamics are described by 

means of a current filter. These relations result in the following output equation: 

 𝑢cell = 𝑈OCV(𝑙) + ℎ − 𝑅i ⋅ 𝑖cell + 𝑓f (5.1) 

Here ℎ denotes the hysteresis voltage and 𝑓f represents the influence of the current filter. These 

factors are explained in detail in Chapter 5.1.2.  

The implementation of the ESC model shows significant optimization potential. There are sev-

eral superior discretization methods other than the applied simple explicit Euler1 integration. 

This helps in simulation stability, speed, and accuracy for online and offline purposes. The for-

mulation of the current filter also seems unnecessary complex. It is formulated as an infinite 

impulse response (IIR) low pass filter as follows:  LowPass = 1 − HighPass.   

Moreover, the computational costly online parameterization of the filter by use of a dual estima-

tion approach (see [Ple04d]) can be done more efficiently offline. In this way the system order 

can be reduced and therefore the online performance increases. First implementations of the 

ESC model have shown problems with the determination of the SOC. In addition, the effects of 

current and temperature on the actual cell capacity are not considered in the ESC model. These 

effects can have an enormous influence on the calculation of the SOC. This variation is dia-

gramed in Figure 5.2. Especially at low temperatures and high currents the loss of available cell 

capacity is amplified. 
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Figure 5.2: Cell capacity in dependency of temperature and current (𝐶Rate = 𝐶N/𝐼) 

5.1.2 Proposal of an Equations and Grid Table Combined Cell Model 

In the following section a modified and enhanced version of the ESC model is developed, here 

called the modified enhanced self-correcting model (MESC). In contrast to the original ap-

proach the prediction model of the single lithium-ion cell is formulated in acausal continuous-

time representation using Modelica. This mathematical description benefits from the automated 

discretization of the model, by means of a Modelica compiler. The generated prediction FMU 

can incorporate higher order real-time capable integrators e.g. a Runge-Kutta 4 method and 
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therefore the accuracy as well as stability for a larger sample time 𝑇𝑠 can be significantly im-

proved. 

The mathematical description of the MESC model in nonlinear state-space representation is 

formulated as follows: 
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 −

𝜂Ah ⋅ 𝑘i
𝐶N

⋅ 𝑖cell

|
𝛾 ⋅ 𝜂Ah ⋅ 𝑘i

𝐶N
⋅ 𝑖cell| ⋅ (𝑀 − ℎ)

−𝜔 ⋅ 𝑓f1 + 𝜔 ⋅ 𝑖cell
𝜔 ⋅ 𝑓f1 − 𝜔 ⋅ 𝑓f2
𝜔 ⋅ 𝑓f2 − 𝜔 ⋅ 𝑓f3
𝜔 ⋅ 𝑓f3 − 𝜔 ⋅ 𝑓f4 ]

 
 
 
 
 
 
 
 

 (5.2) 

The differential equation for the SOC 𝑙 depends on the cell current 𝑖cell, the nominal cell capaci-

ty 𝐶N, the coulombic efficiency 𝜂Ah and a correction factor 𝑘i. This factor takes the variation of 

the cell capacity into account due to the (dis)charging rate and the temperature, see Figure 5.2. 

Following [Gra02] the correction factor is determined by: 

 𝑘𝑖 = {
𝑐i ⋅ 𝑖cell + 𝑘0, ∀ 𝑖cell > 0 (chrg. )

𝑒𝑐i⋅𝑖cell + (𝑘0 − 1), ∀ 𝑖cell < 0 (dischrg. )
 (5.3) 

Wherein 𝑐𝑖 is a positive constant leading into a straight line for positive cell current, which in-

tersects the ordinate at 𝑘0. For a negative cell current the correction factor is described by an 

exponential function. The parameters 𝑐i and 𝑘0 are determined from capacity tests replacing the 

simple straight line with more accurate look-up tables. 

The hysteresis voltage ℎ (presented in the second differential equation in eq. (5.2)) is described 

by a more complex equation considering the additional factors 𝑀 (polarization voltage) and 𝛾 

(time constant). It describes the dynamic influence of charging and discharging of the cell as 

depicted in Figure 5.4. Herein 𝑀 is half of the difference between the charge (blue) and dis-

charge (red) line in dependency of the SOC, exemplified for 𝑙 = 0.2. Especially for lithium-ion 

cell types with a very flat SOC/OCV curve characteristic (e.g. LiFePO4 cell chemistry 

[Wik17b]) neglecting this dynamics may lead to a major model error. The remaining four dif-

ferential equations describe an optimized fourth order critical damping current filter with only 

one remaining parameter 𝜔 and its four states 𝒇𝐟 

 𝑢cell = 𝑈OCV(𝑙) + ℎ − 𝑅i ⋅ 𝑓f4 (5.4) 

The output eq. (5.4) is similar to the original ESC model’s output equation but aggregates the 

influence of the cell current (ohmic loss and current filter) into one summand. The internal re-

sistance 𝑅i(𝑙, 𝑖cell, 𝑇) of the cell is one of the most important descriptive variables. It depends on 

the SOC, the cell current and the temperature resulting in a three dimensional look-up table. 

This relationship is visualized for room temperature (𝑇 = 25 °C) in Figure 5.3. Considering 

eq. (5.4) it is obvious that the resulting cell voltage 𝑢cell varies highly in case of a low SOC and 

high current flow due to an internal resistance increase of the cell. In such cases the cell is in a 
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demanding situation and can be damaged irreversibly, since the higher resistance causes intense 

internal cell heating. 
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Figure 5.3: Grid table of internal cell resistance for 𝑇 = 25 °C 

Another important cell variable is the open circuit voltage (OCV) 𝑈OCV, whose characteristic 

curve incorporates the relationship between SOC and OCV, as shown in Figure 5.4. This figure 

also illustrates the hysteresis effects during charging and discharging of the cell. The blue and 

red curve are measured in a cell test bench experiment with very low currents applied to the cell 

terminals. This minimizes excitation of the cell dynamics so that the cell terminal voltage can be 

considered unloaded. In addition, the influence of the internal resistance is eliminated during the 

data analysis. The polarization voltage 𝑀 is defined as half of the difference between the two 

curves and therefore also depends on the OCV.  
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Figure 5.4: Characteristics of the cell open circuit voltage and hysteresis at 𝑇 = −10 °C 

Tests have shown that the polarization voltage depends on the actual cell temperature, whereas 

the highest effect of the considered lithium-ion cell type is for temperatures below 0 °C. This 

relation is presented graphically in Figure 5.5. 



98 Design and Evaluation of Model Based Observers 

P
o

la
ri

za
ti

o
n

 v
o

lt
ag

e 
M

 [
V

]

State of charge [-]Temperature [°C]
 

Figure 5.5: Cell polarization voltage 𝑀 in dependency of temperature and state of charge 

The discussed model is implemented in Modelica and included in the latest version of DLR’s 

PowerTrain Library [Tob07]. It is appropriate for offline simulations to optimize energy man-

agement strategies of the vehicle controllers and implemented for state of charge estimation in 

the central control unit of ROboMObil using a rapid prototyping environment.  

Cell Model Parameter Derivation and Validation 

In the context of the ROboMObil project it was possible to obtain a high performance cell from 

Li-Tec industries “Li-Tec HEi40”. It has a nominal capacity of 40 Ah and with its security fea-

tures it is fully capable for series production. All cell measurements for parameterization, test-

ing, and validations were done with a Vötsch “VT4011” environment simulator [Vöt17] and a 

BaSyTec cell testing system [Bas17]. In Figure 5.6 the Modelica implementation of the MESC 

model is shown. The stationary grid table data SOC/OCV, SOC correction, Polar Voltage, and 

𝑅i have been derived offline with this experiment setup. 
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Figure 5.6: Modelica model of the hybrid MESC based on grid tables and equations 

The free model parameters in eq. (5.2), by name 𝛾 (hysteresis voltage change rate) and 𝒇f1..4 

(input current filter parameters) were determined by optimization with DLR MOPS (see [Joo08] 
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for more information) on the Linux cluster of the DLR SR institute. The detailed procedure and 

the necessary test cycles are explained in [Wie10]. 

5.1.3 Kalman Filter Setup – Perfect Measurements and Power Availability 

The MESC model has one input, the cell current, and one output, the cell voltage. These two 

quantities can be measured directly with high accuracy even in embedded systems. The third 

quantity is the cell temperature. It is determined by the use of a thermocouple sensor on the cell 

surface. To achieve a better estimation performance, a second measurement equation is imple-

mented. The main idea is to take constraints into account with a recursive Kalman filter. For this 

purpose, an additional fictitious measurement is introduced. It can be weighted through the tun-

ing of the output covariance matrix of the Kalman filter. This method is known as perfect meas-

urement in the literature (compare Table 4.5). In this way the output equation of the MESC 

model is extended to: 

 𝒚 = [
𝑢cell
𝑙
] (5.5) 

The first equation is identical to eq. (5.4) and the second one can be derived as follows: 

 

𝑢cell ≈ 𝑈OCV(𝑙) − 𝑅i ⋅ 𝑖cell 

⇒ 𝑈OCV(𝑙) ≈ 𝑢cell + 𝑅i ⋅ 𝑖cell 

⇒  𝑙 ≈ 𝑙meas = 𝑈OCV
−1 (𝑢cell + 𝑅i ⋅ 𝑖cell) 

(5.6) 

The measured SOC is calculated through the inverse of the OCV 𝑈OCV
−1  look-up table in combi-

nation with a low pass filter to prevent peaks in the perfect measurement output due to rapid 

changes of the input current. This extension allows the Kalman filter to adjust the SOC directly 

and therefore to enforce a physically correct estimation. 
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Figure 5.7: Experimental cell observer setup in Modelica 
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SOC Dependent Power Availability Estimation  

Besides the knowledge of the current state of charge it is necessary to know the battery pack 

power availability for the energy manager (compare control scheme in Figure 3.21). With this 

information it is possible to limit the power demands of the traction motors, e.g. in case the ve-

hicle is on a descending road and the traction battery is fully charged, it is necessary to recon-

figure the actuator demands to use the mechanical brakes or to use the steering to command a 

slight plow configuration. Also in case of a close-to-minimum discharged battery the longitudi-

nal acceleration demand needs to be reduced or if necessary the vehicle needs to be traced back 

to standstill. Another scenario is when the battery’s SOC is tending to zero. In this case high 

current demands from the drivetrain may lead to on-bordnet voltage dropdowns caused by the 

cell SOC/OCV curve decline close to the boundary area (compare Figure 5.4) and the increasing 

inner resistance (Figure 5.3 upper left corner) correlation 𝑈OCV(𝑙) ≈ 𝑢cell + 𝑅i ⋅ 𝑖cell in 

eq. (5.6). Assuming the battery pack is well balanced and the cell health is equalized, the maxi-

mum and minimum power availability can be determined by the following formulas:  

 

𝑃max = min(
𝑙 − 𝑙min
𝜂Ah ⋅ Δ𝑡
𝐶N

; 𝑖cell
max) ⋅ 𝑢cell 

𝑃min = max(
𝑙 − 𝑙max
𝜂Ah ⋅ Δ𝑡
𝐶N

; 𝑖cell
min) ⋅ 𝑢cell  

(5.7) 

Both parameters 𝑖cell
max and 𝑖cell

min denote the technical limitation of the cell type given in the tech-

nical datasheet of the corresponding cell manufacture. With this information it is possible to 

impose a SOC state dependent – besides the technical limitations of the traction motors – con-

trol allocation constraint – compare control scheme in Figure 3.21. 

 𝑃𝑘,max ≥∑𝜔𝑘
W𝑖,TM ⋅ (𝜏𝑘

W𝑖,TM + Δ

4

𝑖=1

𝜏𝑘+1
W𝑖,TM) ⋅

1

𝜂el
𝑖
≥ 𝑃𝑘,min   (5.8) 

The lower index 𝑘 denotes the current time instance of the control allocation step. Moreover, 

the current SOC 𝑙𝑘 can be used in the velocity profile generation (Chapter 3.3.1) to determine 

whether or not the cell capacity is sufficient to fulfill the generated velocity profile. If not, the 

maximum allowed acceleration and vehicle velocity needs to be reduced iteratively. 

5.1.4 Parameterization and Model Validation  

In this chapter the experimental results with the unconstrained battery observer are discussed. 

For the generation of the experiment data a FTP-75 driving cycle is used as driving demand for 

ROboMObil’s longitudinal dynamics powertrain model which is based on the DLR PowerTrain 

Library [Tob07]. This model and its resulting power demand calculation have been validated on 

the DLR roller test rig in Stuttgart with the whole battery pack (cf. Figure 2.14). With this mul-

tiphysical model it is possible to convert the calculated electric power demand of the actuators 
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into the current demand of one cell. In a next step this current demand (Figure 5.8) is used as 

stimuli data for a single cell test bench in a climate regulated chamber (Chapter 5.1.2). 
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Figure 5.8: Calculated cell current demand based on FTP-75 drive cycle 

The voltage at the cell terminals, the surface temperature and the effective current flow are rec-

orded during this test. Finally, they are used as input and measurement data for the nonlinear 

battery observer experiment setup, shown in Figure 5.7. 

In Figure 5.9 the experimental and the corrected results of the proposed FMI model based real-

time observer are presented. The red curve shows the SOC characteristic calculated via the per-

fect measurement. 

 

0.0E0 2.0E3 4.0E3 6.0E3 8.0E3 1.0E4 1.2E4 
-0.2 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

Time [s] 

SOC (sim.) SOC (perf. meas.) SOC (SR-UKF) SOC (reference) 

 

Figure 5.9: Unconstrained observer based state of charge estimation 

It is very erratic and noisy, in spite of signal pre-filtering. This characteristic is qualitatively 

correct, especially in comparison to the green curve, which represents the output of a pure mod-

el simulation without observer correction. The pure simulation yields a SOC that is less than 

zero at the end of the simulation which is physically impossible (cf. Figure 5.9, bottom right). In 

a real world automotive application, this would cause the SOC display to show incorrect infor-

mation. In this case it would not be possible to drive on, although the battery is not yet exhaust-
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ed. Through the nonlinear estimation algorithm, a better and smoother estimation of the SOC 

can be achieved that converges to zero at the end (blue curve). These observations are quantified 

by normalized root mean square error criteria (FIT – eq. (C.7)) in the following table. 

Table 5.1: State of charge estimation assessment by means of the FIT criterion 

SOC reference compared to FIT 

SOC SR-UKF 90.3649 % 

SOC perf. measurement 83.3738 % 

SOC simulation 47.5859 % 
  

Due to the efficient code for the prediction model provided by the extended FMI 2.0 co-

simulation interface, this estimator runs with a real-time factor greater than 100 on standard 

desktop systems (Intel i7-4600U 2,7 GHz, 8 GB Ram, SSD). Thereby, it was possible to im-

plement the observer on an embedded rapid prototyping controller of ROboMObil. 

5.1.5 Extension to Inequality Constraint SOC Estimation 

In this subsection the application of the proposed constraint handling mechanisms (see Chap-

ter 4.3) for an one-step Kalman filter estimation algorithm is exemplified. Both approaches, the 

SLR based (Chapter 4.3.2) as well as the simplified Newton descent search (Chapter 4.3.3), can 

be used here since a SR-UKF filter has been selected as the most appropriate method, which is 

stable in case of this estimation task. A common problem in battery state of charge estimation is 

the limitation of the SOC to realistic values at least between zero and one. Misinterpreted values 

of the perfect measurement eq. (5.6) exceed the above mentioned boundary values (compare 

Figure 5.10 – 𝑡 = [0 103] red curve) and may cause wrong values of the available charge and 

therefore also of the power allocation budget. A simplified approach to handle this is to limit the 

output value of the estimation, but this causes wrong values for future SOC estimate since the 

state tends more and more in the inadmissible region. In Figure 5.10 the influence of the pro-

posed constraining methods is shown. 
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Figure 5.10: Constrained observer based state of charge estimation 
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Note that here the SOC is limited to [0.1 0.9] due to the lack of missing experimental data, 

where the aforementioned limits are exceeded. In addition it is worth mentioning that also val-

ues, e.g. the cell voltage, are affected by the constraining of the battery SOC value. This is espe-

cially important when the correct cell power availability eq. (5.7) should be calculated. 
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Figure 5.11: Constraint influence to cell voltage estimation 

Both state constraining methods have shown similar results in their temporal characteristics, the 

main difference could be found in the mean integration time 𝑡s̅im, where the SLR methods out-

performs the more general simplified Newton descent search approach. The experiment with a 

simulation period of 1.2 ⋅ 104 s has been executed on a 64-bit Windows based system (Intel i7-

4600U 2,7 GHz, 8 GB Ram, SSD). 

Table 5.2: Mean simulation time comparison of the constrained battery observer setups 

Setup Mean integration time 𝒕̅𝐬𝐢𝐦 

SR-UKF unconstrained 49,00 s 

SR-UKF w. simplified Newton descent search 71,20 s 

SR-UKF w. SLR constraints 62,30 s 
  

The results and benefits of the nonlinear constrained cell observer can be concluded as follows: 

 A continuous-time Modelica semi-physical cell model with state dependent characteris-

tic mapping correlation has been automatically symbolically manipulated and discre-

tized via Dymola and imported into the model based observer framework via the ex-

tended FMU 2.0 co-simulation interface. 

 This gives benefits in comparison to [Ple04], [Ple04b], [Ple04c], [Ple04d] in means of 

error-prone manual discretization, the capability to make use of higher order discretiza-

tion methods as well as in prediction model integrated efficient table interpolation. 

 The cell prediction model parameters and characteristics were derived from real world 

test bench experiments matching the cell type used in ROMO for the high voltage sys-

tem. 
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 An SR-UKF observer extended with two methods for state constraint handling has been 

designed and validated with experimental data from cell test bench investigations. 

5.2 A Vehicle Position Observer for Path Following Control 

The second application is a vehicle state observer for the vehicle dynamics quantities 

𝒑Cact
I , 𝜓Cact

I , 𝒗act
C ,  𝜓̇act

C  which are necessary for the path following control of the proposed spa-

tial energy management (cf. Figure 3.21). In Chapter 5.2.1 the motivation for the usage of an 

MHE algorithm with delayed global positioning system (GPS) measurements is given as well as 

the experimental setup is motivated. The observer synthesis vehicle model is explained in Chap-

ter 5.2.2 and the details of the mathematical description and parameter fitting matching the 

characteristics of ROMO is given in Chapter C.1. This extended single track model (ESTM) 

represents a tradeoff between complexity and accuracy for representing normal driving condi-

tions. Through the event handling mechanisms of Modelica it is possible to extend the model 

with vehicle standstill functionalities. An extended moving horizon state estimation algorithm 

(Chapter 5.2.4) enables the incorporation of the delayed low bandwidth GPS measurements 

(Chapter 4.4.2) and the possibility to limit the vehicle position change through the knowledge of 

the edges of the roadway (Chapter 5.2.3). Finally, different enhanced optimization objective 

functions, interconnecting the discrete optimization variables, and a heuristic “anti-freezing” 

feature are assessed for their effectiveness in a comprehensive observer study (Chapter 5.2.5.). 

5.2.1 Motivation and Experimental Setup 

In Chapter 2.3.3, ROboMObil’s sensors and actuators were introduced to show the signal run-

time through the different measuring feeders and local network busses. Chapter C.3 analyzes in 

detail the most important vehicle dynamics sensors of ROboMObil, focusing on their noise be-

havior and relative measurement delays. The outcome is visualized as a scheduling scheme in 

App. Figure C.3. The longest time-delay of 24 ms is caused by the Correvit optical velocity-

over-ground sensor followed by the OxTS inertial measurement platform. The quantities of the 

wheel robots are only delayed with one cycle step of 4 ms. In a realistic application with a con-

sumer quality GPS sensor a latency between 50 ms − 1000 ms [Mer04] is usually considered. 

This implies a drastic delay in comparison to other in-vehicle sensor systems as mentioned 

above. This fact motivates the here discussed observer example with highly delayed measure-

ments in a vehicle position estimation application. 

For the experimental evaluation of the constrained state estimation of ROboMObil, several test 

campaigns were carried out at the ADAC vehicle testing ground in Kempten. Here, tests of an 

advanced version of the interactive vehicle path following control (PFC) [Rit15] have been per-

formed. In the top left of Figure 5.12 a portrait of the testing track is shown. The green line de-

picts the preplanned vehicle path, while the road boundaries are delimited by the dotted-orange 

lines. 



Design and Evaluation of Model Based Observers 105 

-30 -20 -10 0 10 20 30 
-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

20 

25 

𝑥 [m] 

𝑦
 [

m
] 

 

Figure 5.12: PFC experiment with ROMO at ADAC’s test facilities in Kempten 

The ground-truth data was gathered with help of a differential GPS to guarantee high fidelity 

vehicle state measurements for the experimental validation. In Figure 5.13 (adopted from 

[Mer04b]) the situation of the here proposed MHE estimator with delayed measurements is 

depicted. At the current time instance 𝑡𝑘 the estimator receives measurements of the current 

vehicle yaw rate state  𝑦𝑘 = 𝜓̇IMU
C  and the delayed measurements 𝒚𝑘

∗ = 𝒑CGPS
I  which is delayed 

for 𝑛d samples and thus belong to the past vehicle state 𝒙𝑘−𝑛d. Later, it will be shown that the 

incorporation of these delayed measurements in a conventional one-step estimation approach 

(i.e. a Kalman filter) leads to poor performance or even instability.  
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Figure 5.13: Delayed GPS measurements incorporation in vehicle position estimation 
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5.2.2 The Extended Single Track Model 

Since the scope of the proposed observer (as implied in the introduction of this chapter) lies on 

the observation of the vehicle states 𝒑Cact
I , 𝜓Cact

I , 𝒗act
C ,  𝜓̇act

C  for the path following controller of 

the proposed EM (cf. Figure 3.21) and the vehicle is operated within limited lateral acceleration 

(𝑎𝑦
C  ≤ 5 m/s2 – compare simulations in Chapter 3.7), an observer synthesis model reproduc-

tion depth has been chosen that meets the requirements of computational efficiency and fidelity. 

It has been decided to use an extended single track model (ESTM) that incorporates vehicle 

standstill functionalities, rolling resistance, drag forces, and Pacejka’s Magic Formula [Pac12] 

lateral characteristics of the tires.  

𝑣𝑦
C  

𝑣𝑥
C  𝜓C , 𝜓̇C  

𝑦C  

𝑥C  

𝒗W r  

𝛽C  

𝒗C  
𝑀𝑧

C  

𝒗W f  

 

Figure 5.14: Quantities of the extended single track model  

The details of the extended single track model equation derivation are given in Chapter C.1. It is 

worth mentioning that with the Modelica modeling technology it was easily possible to integrate 

“if-else” constructs which are efficiently processed by the event handling features of the com-

piler and besides experimenting with varying discretization methods and sample rates since the 

model is in continuous-time formulation. The vehicle state vector is denoted as follows and 

graphically exemplified in Figure 5.14: 

𝒙C = {𝛽C, 𝑣C, 𝜓̇C , 𝜓C, 𝑥C, 𝑦C} (5.9) 

Preliminary observer case studies showed that with the here chosen modeling approach in com-

bination with a Runge-Kutta 4 integrator the vehicle position estimator can be run with a cycle 

time of 𝑇𝑠 = 200 ms. Moreover, the usage of the vehicle yaw rate  𝜓̇C can actively contribute to 

improve the measurement, whereas the incorporation of the vehicle lateral acceleration 𝑎𝑦
C 

downgrades the observer performance. The output equation 𝑎𝑦
C =  𝑣C ⋅  (𝜓̇C + 𝛽̇C) shows 

clearly, that the lateral acceleration is algebraically cross-coupled to the vehicle yaw rate 𝜓̇C. In 

fact, this causes the aforementioned observations since it is, by the best knowledge to the au-

thor, impossible to find a covariance configuration – even by optimization – which makes rea-

sonable use of both sensor information and overcomes the negative effects of e.g. minimal jit-

tering relative delays between both signals. 
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In Figure 5.15 different simulation results of the same vehicle position estimator are given. 

Again the road boundaries are marked in dotted-orange color. The vehicle completed three 

rounds through the circuit. The red trajectory denotes the open loop result – the ESTM model is 

simulated with the actual system inputs 𝒖 – and the position is strongly drifting away from the 

planned trajectory, caused by the evolving position integration error (compare equations for 

d𝑥C d𝑡⁄ , d𝑦C d𝑡⁄  – in eq. (C.1)). 
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Figure 5.15: Comparison of different measurement incorporations 

The green and the blue curves denote the results with a single step Kalman filter under the as-

sumption that no delays are in the measurements.  

The best observation results could be achieved by the use of an SR-EKF algorithm (see Chap-

ter A.3.3), whereas the SR-UKF (see Chapter A.4.2) was less robust. The reason is the sigma 

point propagation through the Pacejka tire model, which evidently leads to a wrong state propa-

gation caused by its high sensitivity around the actual state estimation point. 

5.2.3 Road Boundaries Constraint Formulation and Evaluation 

In this section a methodology is described for incorporating in advance-known street boundaries 

(e.g. from digital maps in combination with vision sensors) in the vehicle position estimation. It 

is assumed that the initial vehicle position 𝒑C
I  is sufficiently precisely known and the corre-

sponding path parameter 𝑠∗ (compare eq. (3.18)) can be determined by means of the path inter-

polation from Chapter 3.4.1. The parametric path 𝝀cstr(𝑠) contains the following quantities for 

the calculation of the road boundaries constraints: the position 𝑥P
I (𝑠) and 𝑦P

I (𝑠) of the road mid-
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dle lane, the positions of the left (𝑙𝑥
I (𝑠), 𝑙𝑦

I (𝑠)) and the right (𝑟𝑥
I(𝑠), 𝑟𝑦

I(𝑠)) border, the corre-

sponding path orientation 𝜓P
I (𝑠) and its curvature 𝜅P(𝑠). 

The extension of the vehicle prediction model (cf. eq. (C.1)) with the roadway boundaries inter-

polation yields an extra state 𝑠̇ (eq. (3.21) and eq. (3.22)), which is a non-physical state that 

belongs to the estimation task. Experimental tests considering 𝑠̇ as an estimated state showed, 

that this configuration leads to unsatisfactory results in the overall observer performance. There-

fore, this state is separated from the state correction step in the Kalman algorithms (cf. Chap-

ter A.3.3.). Further optimization regarding computational performance is given in the later 

Chapter 5.2.4.  

In Figure 5.16 the calculation of the roadway border constraints is graphically shown. By means 

of the above described algorithm a path parameter 𝑠𝑖 can be found for which the longitudinal 

derivation error of the vehicle actual position 𝒑C
I  tends to zero.  
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Figure 5.16: Graphical analysis of the street boundary calculation 

By means of the path normal vector 𝒏P
I (𝑠𝑖), represented in the inertial coordinate system 

(eq. (5.10)), an inequality functional 𝒄(𝒙) ≤ 0 is calculated that penalizes positions outside of 

the roadway borders (eq. (5.11)): 

 𝒏P
I (𝑠𝑖) = {−sin (𝜆𝜓(𝑠𝑖)) , cos (𝜆𝜓(𝑠𝑖))} (5.10) 

 𝒄(𝒙) = [
−𝑙𝑥
I (𝑠𝑖) + 𝑥Cact

I −𝑙𝑦
I (𝑠𝑖) + 𝑦C

I
act

𝑟𝑥
I(𝑠𝑖) − 𝑥Cact

I 𝑟𝑦
I(𝑠𝑖) − 𝑦Cact

I
] ⋅ 𝒏P

I (𝑠𝑖) (5.11) 

This nonlinear inequality function 𝒄(𝒙) can be handled directly by the proposed constraining 

algorithms in Chapter 4.3. For the moving horizon estimation algorithm in Chapter 4.4 it is nec-

essary to linearize 𝒄(𝒙) at all time instances 𝑡𝑘 where it is likely that a constraint may be violat-

ed by the estimator 𝒄(𝒙𝑘) > −ϵ: 

𝒄(𝒙) ≅ 𝒄(𝒙𝑘) +
𝜕𝒄

𝜕𝒙
|
𝒙𝒌

⋅ (𝒙 − 𝒙𝑘) (5.12) 

By rearranging eq. (5.12) the linearized inequality description in eq. (4.19) can be formulated: 
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𝑪𝑘 ⋅ 𝒙 ≤ 𝒅𝑘  
yields
→   

𝜕𝒄

𝜕𝒙
|
𝒙𝒌⏟  

𝑪𝑘

⋅ 𝒙 ≤
𝜕𝒄

𝜕𝒙
|
𝒙𝒌

⋅ 𝒙𝑘 − 𝒄(𝒙𝑘)
⏟            

𝒅𝑘

 
(5.13) 

Figure 5.17 shows an example for the calculation of the nonlinear constraint function. In the left 

plot a street is marked with the left 𝒍(𝑠) and the right 𝒓(𝑠) street boundaries while the car (red 

line with direction arrows) crosses the right boundary in the hairpin curve. This leads to a viola-

tion of the right border constraint condition 𝑐1(𝒙) > 0, ∀ 𝑡 ∈ [19.6 22.1]⋁[29.4 30] as it can be 

seen in the right plot of Figure 5.17. 
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Figure 5.17: Example path with boundary violation (left) and constraints evaluation (right) 

Assuming that only the vehicle yaw rate 𝜓̇act
C  is available to the Kalman filter, the position esti-

mate would drift away like shown in Figure 5.15 (dark green line). Making use of the here pro-

posed boundary estimation approach in combination with the inequality handling feature from 

Chapter 4.3, yields a bounded and valid result (light green line): 
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Figure 5.18: Observer behavior with and without taking the path constraints into account 
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5.2.4 Moving Horizon Estimation Algorithm Extensions 

For the here analyzed ESTM MHE observer different extensions are discussed, in comparison 

to the nominal MHE algorithm formulation in Chapter 4.4. First, a computationally reliable 

method is introduced for the calculation of the prediction model and the observer constraints, by 

means of two multi-rate extended FMUs 2.0 for co-simulation. Second, advanced methods for 

the coupling of discrete optimization variables are proposed. Third, a heuristic method is dis-

cussed to prevent optimization freezing through intelligent recalculation of the reference trajec-

tory 𝒙int in segments, where no measurements are available. 

Constraint Evaluation with a Multi-Rate FMU Model Splitting Concept 

First implementations of the constrained observer were based on a single prediction FMU that 

combined the ESTM prediction model (Chapter 5.2.2) as well as the boundary constraint evalu-

ation (Chapter 5.2.3). To separate the estimated states from the state of the constraint evaluation 

(the path parameter 𝑠) Modelica’s logical vector indexing feature has been used. However, a 

simulation experiment analysis showed that in this configuration it is necessary to run the whole 

estimator with a fast sampling rate of 𝑇𝑠 = 4 ms. This is due to the fast dynamics of the control 

loop to determine the current path parameter 𝑠 in the constraint calculation module (cf. Chapter 

5.2.3). To overcome this issue the ESTM and the boundary constraint (BC) model were split 

into two separate FMUs with different sample times (𝑇𝑠
ESTM =  200 ms,  𝑇𝑠

BC = 4 ms). In the 

style of Figure 4.2, the connection of the multi-rate FMUs and the estimation algorithm is 

sketched in Figure 5.19. Through model splitting, the states of the ESTM FMU 

(𝒙 =  {𝛽C, 𝑣C, 𝜓̇C, 𝜓C, 𝑥C, 𝑦C}) are the inputs of the boundary constraints FMU, which only has 

one state, the corresponding path parameter 𝑠. The sample time of the constrained FMU is 50 

times higher than the one of the ESTM, to guarantee numerical stability. 𝒁 denotes the permuta-

tion matrix between the inputs of the BC FMU and the states of the ESTM FMU. 
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Figure 5.19: Two encapsulated multi-rate FMUs as one prediction model 
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With this implementation all the necessary quantities for the constrained MHE are nested within 

the multi-rate FMU block, whose interfaces to the outside (denoted with blue arrows) are the 

same as if no inner model separation would have been performed. This gives a large benefit in 

the matter of computational effort, not only caused by the larger integration step, but it also 

enables the possibility to calculate the constraint only if it is necessary for the estimation algo-

rithm. This benefit is shown in the following simplified flow diagram of the here proposed ex-

tended MHE algorithm (see Figure 5.20). By means of a forward integration in step 1 from 

𝑡𝑘−𝑀 to 𝑡𝑘 it is checked whether any constraint may be potentially activated ca and if so the 

constraints are linearized along the open loop state trajectory. In step 2 the nonlinear gradient 

algorithm performs the optimization over the estimation window incorporating the linearized 

constraints if necessary. In the last step 3 the Kalman filter is updated with consideration of the 

system constraints to guarantee that the initial state of the moving window in the next iteration 

step lies within the feasible region. 

MHE algorithm

2. MHE NG optimization

min
𝝃𝑘

  𝑔(𝝃𝑘 = (𝒙𝑘−𝑀
𝑇 , 𝒙𝑘−𝑀+1

𝑇 , … , 𝒙𝑘
𝑇)𝑇) 

if cstr. active 

        s. t.  𝑪 ⋅ 𝝃𝑘 ≤ 𝒅 − Table 4.8 

3. Kalman filter update & constraints

𝒙̂𝑘−𝑀−1
+  

KF
→ 𝒙̂𝑘−𝑀

+ , 𝑰𝑘−𝑀
+  

if any 𝒄(𝒙̂𝑘−𝑀
+ ) > 0 

     calc.  𝒙̂𝑘−𝑀
+cstr − Chapter (4.3) 

𝒙int ,𝑖 =  𝒇𝑖|𝑖−1(𝒙int ,𝑖−1, 𝒖𝑖−1) (𝑖 = 𝑘−𝑀+ 1,… ,𝑘) 

if any 𝒄(𝒙int ) > 0  

      calc.  𝑪(𝒙int ), 𝒅(𝒙int ) − eq. (5.13) 

                𝒙int
cstr − Chapter (4.3) 

else  𝑪 = 0, 𝒅 = 0 

1. Estimation window boundary constraints control

𝒙int , 𝑪, 𝒅  

𝒙𝑘 = 𝝃
𝑘,𝑘

  

𝒙int ,𝑘−𝑀 = 𝒙̂𝑘−𝑀
+  

Start

New

estimate

 

Figure 5.20: Flowchart of the extended moving horizon estimator 
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Qualitatively the incorporation of the constraints is depicted in Figure 5.21. The feasible region 

of the constraint is limited through the function 𝑐1 and 𝑐2 (orange-dotted). In this example the 

state propagation of the Kalman filter (step 3) causes a violation of 𝑐2 and therefore the a poste-

riori propagated state must be constrained by the method proposed in Chapter 4.3.3. The bound-

ary constraints control (step 1) starts now with the corrected a posteriori estimate 𝒙̂𝑘−𝑀
+cstr and 

detects a constraint violation between the third and fourth sample point. This is only possible 

since the BC model is integrated fifty times between every ESTM evaluation and correction 

step. To guarantee that the initial solution of the NG solver lies in the feasible region the 𝒙int
cstr is 

limited via the simplified Newton descent search given in Table 4.7. 

𝑡𝑘−𝑀  𝑡𝑘−𝑀−1 𝑡𝑘  

𝑐1(𝒙int ) ≤ 0 
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𝒙̂𝑘−𝑀
+cstr  KF 

step

𝑐1(𝒙int ) > 𝟎 

𝑐2(𝒙int ) ≤ 0 

𝒙̂𝑘−𝑀−1
−  

𝒙̂𝑘−𝑀
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𝒄(𝒙̂𝑘−𝑀−1
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Figure 5.21: Constraint violation detection and handling within a moving horizon window 
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For the sake of completeness the whole extended MHE algorithm with references is summa-

rized in the following table: 

Table 5.3: A MHE algorithm for the ESTM with multi-rate and constraint incorporation 

 

1. Set 𝑘 = 0 (𝑘 ∈ ℕ+) and set 𝒙𝑘 = 𝒙0 

2. Fill the ring buffer with measurements and system inputs: 

if 𝑘 < 𝑀  append 𝒖𝑘 to 𝒖 and 𝒚𝑘
m to 𝒚m 

else  left shift on entry of 𝒖 and 𝒚m and append 𝒖𝑘 resp. 𝒚𝑘
m 

3. Perform boundary constraint control in estimation window: 

a. Integrate ESTM within horizon & evaluate constraints: 

𝒙int,𝑘−𝑀 = 𝒙̂𝑘−𝑀
+  

𝒙int,𝑖
ESTM = 𝒇𝑖|𝑖−1

ESTM(𝒙int,𝑖−1
ESTM , 𝒖𝑖−1)   (𝑖 = 𝑘 −𝑀 + 1,… , 𝑘) 

for j = 1: upSample 

    𝒙int,𝑗
BC = 𝒇𝑗|𝑗−1

BC (𝒙int,𝑖−1
BC , 𝒁 ⋅ 𝒙int,𝑖

ESTM) 

𝒄𝑖 = 𝒉(𝒙int,𝑗
BC ) 

b. Probe constraint fulfillment: 

if any 𝒄𝑖 > 0 − (cf. Figure 5.21) 

    Linearize constraints for NG optimizer: 

    𝑪𝒊 =
𝜕𝒄

𝜕𝒙ESTM
|
𝒙int,𝑖
ESTM

= 𝒁−1 ⋅ 𝜕𝒉𝑗
BC  𝜕𝒖𝑗

BC⁄  

    𝒅𝑖 = 𝑪𝑖 ⋅ 𝒙int,𝑖
ESTM − 𝒄𝑖  

    Project initial NG guess to feasible region: 

     min
𝒙
‖𝒙 − 𝒙int

ESTM‖   s. t.  𝒄𝑖 ≤ 0 −  Table 4.7  

else 𝑪 = 0, 𝒅 = 0 

4. Optimize over stored measurements with NG algorithm: 

min
𝝃𝑘
  𝑔(𝝃𝑘) 

if cstr.  active 

       s. t.  𝑪 ⋅ 𝝃𝑘 ≤ 𝒅 

5. if 𝑘 ≥ 𝑀 (ring buffer is completely filled) 

a. Propagate 𝒙̂𝑘−𝑀
−   via a Kalman filter step: 

𝒙̂𝑘−𝑀
+ ,  𝑰𝑘−𝑀

+  

b. Project states on the constrained area (cf. Chapter 4.3): 

min
𝒙
‖𝒙 − 𝒙̂𝑘−𝑀

+ ‖ 

6. Repeat 𝑘 = 𝑘 + 1 
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Multiple Shooting Inspired Optimization Objective Extension 

In the original MHE problem formulation (eq. (4.19) to eq. (4.21)) the discrete system states 

within the moving window 𝝃𝑘 = (𝒙𝑘−𝑀
𝑇 , 𝒙𝑘−𝑀+1

𝑇 , … , 𝒙𝑘
𝑇)
𝑇

 are not coupled with each other be-

tween the sample points 𝑡𝑘. This implies that the optimizer algorithm does not have any infor-

mation about the dynamic behavior of the ESTM prediction model between the sample points 

within the estimation window. In the case of the ESTM, with a large sample time 𝑇𝑠 = 200 ms, 

this may lead to a physically unfeasible set 𝝃𝑘 which however minimizes the optimization crite-

ria. A consideration to overcome this weak point is the introduction of coupling penalty terms 

between the time instances in the minimization criterion in eq. (4.20) and eq. (4.21). Figure 5.22 

exemplifies the here developed approach: the initial open loop integration from time instance 

𝑡𝑘−𝑀 to the current time instance 𝑡𝑘 is denoted as 𝒙int
0 . The set of optimized state vectors 𝝃𝑘

𝑗
 in 

the 𝑗-th NG descent step (compare algorithm in Table 4.9) is marked with green circles.  

𝑡𝑘−𝑀  𝑡𝑘−𝑀−1 𝑡𝑘  

𝝃𝑘
𝑗

 

𝑡/𝑇𝑠  

𝒙int
0  

𝒙̂𝑘−𝑀
+  

𝒙𝑝  (𝑝 = 𝑘 −𝑀,… , 𝑘) 

𝒙int ,𝑖
L  (𝑖 = 𝑘 −𝑀 + 1,… , 𝑘) 

 

Figure 5.22: Coupling of discrete optimization variables in the moving horizon window 

The temporal evolution from these discrete states by means of the FMU yields a set of system 

states 𝒙int,𝑖
L  denoted with a red circle: 

 𝒙int,𝑖
L = 𝒇𝑖|𝑖−1(𝒙𝑖−1, 𝒖𝑖−1),   (𝑖 = 𝑘 −𝑀,… , 𝑘) (5.14) 

In the depicted qualitative example (cf. Figure 5.22) one can see, that through the evolution of 

the optimization process a displacement 𝒙int,𝑖
L ≠ 𝒙𝑝 is caused in the j-th iteration step of the NG 

algorithm (see Table 4.9) . To minimize this gap, the MHE optimization objective is changed to: 
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𝑔(𝝃𝑘) = ∥ 𝒙𝑘−𝑀 − 𝒙̂𝑘−𝑀
+ ∥

𝑰𝑘−𝑀
+
2  

+ ∑ ∥ 𝒚𝑖
m − 𝒉(𝒙𝑖) ∥𝑹−1

2

𝑘

𝑖=𝑘−𝑀

+ ∑ ∥ 𝒙𝑖 − 𝒙int,𝑖 ∥𝑸−1
2

𝑘

𝑖=𝑘−𝑀+1

 

+ ∑ ∥ 𝒙𝑖 − 𝒙int,𝑖
L ∥𝑸MS

2

𝑘

𝑖=𝑘−𝑀⏟              
Additional penalty

 

(5.15) 

In comparison to the original formulation, the quality functional is extended with an additional 

weighted least squares expression to enforce a stronger coupling of the piecewise integration 

𝒙int,𝑖
L  and the optimized stated vector 𝒙𝑖 by means of the user tunable weighting matrix 𝑸MS. 

Besides performing the integration 𝒙int,𝑖
L  by means of the FMU (eq. (5.14)) it is necessary to 

approximate the integration rule for the gradient 𝑔(𝝃𝑘) calculation. It is proposed that, it is more 

important to generate a good approximated descent direction for the optimizer than the exact 

reproduction of the integration method 𝒙int,𝑖
L  used in the FMU.  

In the simplest case this is achieved by the consideration of the directional derivative at the past 

instance (later called V1). In the second version (V2) the integrator is approximated as an Euler 

1 integration rule. The last optimization variable coupling approximation is formulated by a 

trapezoid integration rule (V3): 

 

V2 → 𝒙E1,𝑖
L = 𝒇𝑖|𝑖−1(𝒙𝑖−1, 𝒖𝑖−1) ≈  𝒙𝑖−1 + 𝒇𝑖−1 ⋅ 𝑇𝑠 

V3 → 𝒙Tr,𝑖
L = 𝒇𝑖|𝑖−1(𝒙𝑖−1, 𝒖𝑖−1) ≈  𝒙𝑖−1 +

1

2
⋅ (𝒇𝑖−1 + 𝒇𝑖) ⋅ 𝑇𝑠 

(5.16) 

With these three versions the complete extended MHE gradient computation is given in Table 

5.4. The new additive terms are marked by "V# → " and are exchanged dependent on which 

approximation should be used for the particular observer setup. Comparing this gradient calcu-

lation to the original formulation in Table 4.10, the main difference is the additional “for loop” 

with the index 𝑗 in which the operator += denotes that all values are additively added to the 

existing entries from the earlier loop. 
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Table 5.4: Multiple shooting extension for the MHE gradient calculation 

 

𝑹∗ = (𝑹 ⋅ 𝑹)−1 ;  𝑸∗ = (𝑸 ⋅ 𝑸)−1 

𝜵𝑔1:𝑛 = (𝑰𝑘−𝑀
+ + (𝑰𝑘−𝑀

+ )𝑇)(𝒙𝑘−𝑀 − 𝒙̂𝑘−𝑀
+ ) 

            −2
𝜕𝒉(𝒙𝑘−𝑀)

𝜕𝒙𝑘−𝑀

𝑇

𝑹∗(𝒚𝑘−𝑀
𝑚 − 𝒉(𝒙𝑘−𝑀)) 

for 𝑖 =  𝑘 − 𝑀 + 1,… , 𝑘: 

𝜵𝑔1+(𝑖−𝑘+𝑀)⋅𝑛:(𝑖−𝑘+𝑀+1)⋅𝑛 =
𝜕𝒈(𝝃𝑘)

𝜕𝒙𝑖
 

= 2𝑸∗(𝒙𝑖 − 𝒙int,𝑖) − 2
𝜕𝒉(𝒙𝑖)

𝑇

𝜕𝒙𝑖
𝑹∗(𝒚𝑖

m − 𝒉(𝒙𝑖)) 

V3 → += −(
1

2
⋅ 𝑇𝑠 ⋅

𝜕𝒇𝑖
𝜕𝒙𝑖
)
𝑇

⏟          
𝜕𝒙Tr,𝑖
𝜕𝒙𝑖

⋅ 2 ⋅ 𝑸MS ⋅ (𝒙𝑖 − 𝒙int,𝑖
L )  

for 𝑗 =  𝑘 − 𝑀,… , 𝑘 − 1: 

𝜵𝑔1+(𝑗−𝑘+𝑀)⋅𝑛:(𝑗−𝑘+𝑀+1)⋅𝑛+=
𝜕𝒈(𝝃𝑘)

𝜕𝒙𝑗
 

V1 → += −
𝜕𝒇𝑗

𝜕𝒙𝑗
⋅ 2 ⋅ 𝑸MS ⋅ (𝒙𝑗+1 − 𝒙int,𝑗+1

L ) 

V2 → += −(
1

2
⋅ 𝑇𝑠 ⋅

𝜕𝒇𝑗

𝜕𝒙𝑗
)

𝑇

⏟          
𝜕𝒙𝐸1,𝑗+1
𝜕𝒙𝑗

⋅ 2 ⋅ 𝑸MS ⋅ (𝒙𝑗+1 − 𝒙int,𝑗+1
L ) 

V3 → += −(𝑬 +
1

2
⋅ 𝑇𝑠 ⋅

𝜕𝒇𝑗

𝜕𝒙𝑗
)

𝑇

⏟            
𝜕𝒙Tr,𝑗+1
𝜕𝒙𝑗

⋅ 2 ⋅ 𝑸MS ⋅ (𝒙𝑗+1 − 𝒙int,𝑗+1
L ) 

 

 

Adaptive Initial Reference Refreshing for Delayed Measurements 

In Chapter 4.4.2 a theory extension to MHE is given that enables, the assignment of measure-

ments to their particular time instance by intelligent measurement storage and temporal activa-

tion indexing. In Figure 5.23 a measurement signal 𝒚a
m is schematically sketched, which is only 

available at time instances highlighted with a yellow flash. For example between time instances 

𝑡𝑘−𝑀+1 and 𝑡𝑘−𝑀+3 no new measurement information is available. Different algorithm experi-

ments have shown that this may force the NG optimizer to tune the variable 𝝃𝑘,3 towards to the 

initial guess of the open loop state trajectory 𝒙int. To overcome this very conservative solution, 

a heuristic method is introduced in eq. (5.17) to refresh 𝒙int
𝑗+1

 after step 4 in algorithm Table 4.9. 
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𝑡𝑘−𝑀  𝑡𝑘−𝑀−1 𝑡𝑘  

𝒚a
m  

𝝃𝑘
𝑗

 

𝑡/𝑇𝑠  

𝒉(𝝃𝑘) 

𝒙int
0  

𝒙̂𝑘−𝑀
+  

KF 

step

𝒙int
𝑗+1

 

 

Figure 5.23: Moving horizon window with fragmentary measurements 

It determines gaps in the logical vector indexing matrix of the active measurements 𝒚indexa
m  and 

integrates from the last time instance where all measurements are available: 

5.2.5 Experimental Evaluation of the ESTM MHE Observer 

In this last subchapter the complete MHE ESTM algorithm with its extensions to couple the 

optimization variables (cf. Chapter 5.2.4), refreshment of the initial guess and efficient road 

boundary constraint handling is demonstrated (compare Figure 5.18). In Table 5.5 the outcome 

of a comprehensive simulation case study is summarized. The window length has been set to 

𝑀 = 4 and the GPS time delay varies between 𝑛d = 0. . .3 steps. All parameters for the respec-

tive observer configuration have been optimized with the DLR MOPS optimizer framework 

[Joo08] to guarantee comparable results. 

The results in Table 5.5 are sorted with respect to the number of delayed intervals 𝑛d. Results 

that differ tremendously good or bad in a group of the same number of delays are highlighted in 

green or respectively in red. The first column denotes the used observer setup in which the ac-

ronyms for SS = single shooting (standard formulation), MS = multiple shooting, fix = constant 

initial guess, and up = anti optimization freezing are used. The second column lists the number 

of delayed samples 𝑛d of the GPS signal. The third column gives the mean simulation time 

𝑡s̅im of the experiment executed on a standard 64-bit Windows based system (Intel i7-4600U 2,7 

GHz, 8 GB Ram, SSD) and can be interpreted as a measure for the increase of computational 

complexity in comparison to the improvement of the estimation. In the fourth to ninth column 

 𝒙int,𝑖
𝑗+1

= {

𝒙int,𝑖
0 , ∀ {𝑖|(𝑖 ∈ 𝒚a

m)⋀(𝑖 + 1 ∈ 𝒚a
m)}

𝒇𝑖|𝑖−1(𝝃𝑘,𝑖−1
𝑗

, 𝒖𝑖−1), ∀ {𝑖|(𝑖 ∈ 𝒚a
m)⋀(𝑖 + 1 ∉ 𝒚a

m)} 

𝒇𝑖|𝑖−1(𝒙int,𝑖−1
𝑗+1

, 𝒖𝑖−1), ∀ {𝑖|(𝑖 ∉ 𝒚a
m)⋀(𝑖 + 1 ∉ 𝒚a

m)}

, (𝑖 = 𝑘 −𝑀,… , 𝑘)  (5.17) 
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the percentage goodness of fit (see Chapter C.5) in comparison to the reference measures of the 

experiment (cf. Chapter 5.2.1) is summarized. In the last column the square-root maximum dis-

tance of the estimation in comparison to the true vehicle position is given. 

The first two rows in Table 5.5 give a reference of the ESTM without any observer correction 

but in the second row with the roadway constraint incorporation. The next two rows are the first 

results using an observer which only incorporates the measured vehicle yaw rate 𝜓̇act
C . Both still 

have a large positional deviation albeit the estimation of the vehicle yaw rate and angle as well 

as the side slip angle are improved in comparison to the open loop tests. The next section high-

lights three versions of the ESTM observer with all measurements  𝜓̇act
C ,  𝒑Cact

I  available and not 

delayed. The best results can be achieved with the multiple shooting objective V1. The follow-

ing two experiments incorporate a delay of one sample step. Unfortunately, the SR-EKF algo-

rithm could not be stabilized to give a feasible estimate for all measures; especially the side slip 

angle 𝛽C is heavily oscillating (cf. Figure 5.24 – bottom left). Here, the first time the delayed 

measurement compensation in the MHE formulation can show its advantage in the single shoot-

ing as well as in the multiple shooting objective formulations. 

0 50

-20

0

20

40  

0 50

-20

0

20

 

 

0 50

-8

-6

-4
-2  

0 50

-5

0

5

 

 

0 50

0

2

4

6

 

 

0 50

-0.4

-0.2

0

0.2

 

 

𝑥 [m] 𝑦 [m] 𝜓 [rad]  

𝑣 [m s⁄ ]  𝛽 [rad]  𝜓̇ [rad/s]  

Time [s] Time [s] Time [s] 
 

Figure 5.24: ESTM SR-EKF (𝑛d = 1) setup – state estimations (red) vs. reference (black) 

The section with 𝑛d = 2 is the largest section which correlates to a delay of 400 ms. All the 

modifications introduced in Chapter 5.2.4 are tested here for their performance. Even though all 

results are very close to each other, the multiple shooting V1 with reference updating gives the 

best performance in positioning accuracy and computational reliability (compare state plots in 

Figure 5.25), only beaten with respect to the mean squared root distance of the V2 version. 
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Figure 5.25: ESTM MHE MS up V1 (𝑛d = 2) state estimations (blue) vs. reference (black) 
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In the last two rows of the simulation study two configurations with 𝑛d = 3 are assessed. The 

single shooting (see Figure 5.26) as well as the multiple shooting do benefit from the proposed 

update mechanism, even if the GPS signal is delayed with 600 ms the results are still reliable. 
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Figure 5.26: ESTM MHE SS up (𝑛d = 3) – x-y position estimations results 

In total it can be stated, that the time delay incorporation in a MHE is very effective and gives 

good stability especially when the sample steps are large. The competitive SR-EKF algorithm 

failed already with a delay of 𝑛d = 1 although its computational time is up to 20 times lower. 

The influence of the extension of the objective function with multiple shooting penalties needs 

to be analyzed from case to case. Whereas the anti-freezing feature in the optimizer can be seen 

as a good improvement to the solution at time instance 𝑡𝑘 (compare Figure 5.27). Future inves-

tigations will be performed with other than the NG solver methods, as recently proposed in 

[Kou16], that are capable to handle nonlinear (in-)equality constraints in real-time. With this 

extension it is likely that the multiple shooting approaches might be even more effective. 
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Figure 5.27: Effectiveness of the anti-freezing heuristic within the optimization window 
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Table 5.5: Comparison of the vehicle position observer performance indicators 

Algorithm 𝒏𝐝 𝒕̅𝐬𝐢𝐦 𝒙𝐂𝐅𝐢𝐭 𝒚𝐂𝐅𝐢𝐭 𝝍𝐂𝐅𝐢𝐭 𝝍̇𝐅𝐢𝐭
𝐂  𝒗𝐅𝐢𝐭

𝐂  𝜷𝐅𝐢𝐭
𝐂  √𝒓 

̅̅ ̅̅  

Open Loop - 1.6 s 75.55 % 62.21 % 96.47 % 80.21 % 77.72 % 81.03 % 21.26 m 

Open Loop Cstr. - 1.6 s 87.75 % 87.57 % 96.47 % 80.21 % 77.72 % 81.05 % 8.20 m 

SR-EKF 𝜓̇act
C  0 1.1 s 78.94 % 95.26 % 99.18 % 95.46 % 77.30 % 87.40 % 11.29 m 

SR-EKF 𝜓̇act
C  Cstr. 0 1.2 s 88.21 % 89.26 % 99.17 % 95.47 % 77.31 % 87.40 % 8.27 m 

SR-EKF 0 1.6 s 97.97 % 97.26 % 99.21 % 93.33 % 82.42 % 85.26 % 2.26 m 

MHE SS  0 16.8 s 97.30 % 96.56 % 99.47 % 95.50 % 83.10 % 81.37 % 2.62 m 

MHE MS V1 0 11.6 s 98.56 % 97.82 % 99.36 % 86.90 % 86.42 % 80.46 % 1.42 m 

MHE SS up 1 19.7 s 98.29 % 97.80 % 99.45 % 98.35 % 84.63 % 80.94 % 2.05 m 

MHE MS up V1 1 23.4 s 98.36 % 97.86 % 99.47 % 86.81 % 85.32 % 81.04 % 2.02 m 

MHE SS fix 2 19.4 s 98.49 % 97.85 % 99.25 % 98.93 % 85.99 % 80.10 % 1.49 m 

MHE SS up 2 18.8 s 98.70 % 98.13 % 99.25 % 98.22 % 85.99 % 80.36 % 1.31 m 

MHE MS up V1 2 15.4 s 98.84 % 98.23 % 99.36 % 86.92 % 86.42 % 80.46 % 1.14 m 

MHE MS fix V2 2 16.2 s 98.50 % 98.13 % 99.27 % 86.25 % 86.75 % 80.07 % 1.42 m 

MHE MS up V2 2 27.5 s 98.72 % 98.23 % 99.27 % 86.86 % 86.75 % 80.07 % 1.11 m 

MHE MS fix V3 2 16.8 s 98.51 % 98.07 % 99.29 % 86.51 % 86.69 % 80.33 % 1.45 m 

MHE MS up V3 2 34.2 s 98.70 % 98.30 % 99.29 % 86.66 % 86.69 % 80.35 % 1.20 m 

MHE SS up 3 14.2 s 97.79 % 97.13 % 98.95 % 97.28 % 86.85 % 79.66 % 1.96 m 

MHE MS up V1 3 19.9 s 97.75 % 97.10 % 99.11 % 86.98 % 87.30 % 80.19 % 2.15 m 
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The outcome of the ESTM MHE observer can be summarized as follows: 

 A continuous-time Modelica vehicle model with event handling for vehicle standstill 

could be derived (see estimation experiment in Figure 5.28 starting from standstill and 

coming back to standstill for about 20 s) and automatically discretized via Dymola, the 

extended FMU 2.0 for co-simulation technology and the model based observer frame-

work. 
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Figure 5.28: Experiment with vehicle standstill – estimation (red) vs. reference (black) 

 The derivation of the roadway limit constraint has been designed by extending the prin-

ciple of the path interpolation introduced in Chapter 3.4.1 

 The nominal MHE algorithm of Chapter 4.4 was augmented with a multiple shooting 

formulation in the objective function, a heuristic optimization freezing prevention, a 

multi-rate model and a constraint calculation splitting methodology. 

 For the experimental investigations real test data from ROMO was selected and addi-

tionally the GPS position measures were delayed for the experimental setup. 

 All together with the technique for delayed measurements in MHE application (Chap-

ter  4.4.2) a comprehensive simulative assessment with the different objective configu-

ration and anti-freezing features as well as varying delays in comparison to a standard 

Kalman filter have been given. 

 The proposed estimation approach could achieve a position 𝑥C, 𝑦C estimate fit of about 

98 % and by mean of the delay compensation technique this value is, even with a delay 

of 𝑛d = 3, only reduced to about 97 %. The estimate of the vehicle velocity is even 

4 % improved by the use of the MHE technique in comparison to the EKF. The yaw 

angle estimate 𝜓C quality is for all configurations very high, whereas the yaw rate 𝜓̇C 

and side slip angle 𝛽C do vary about 5 % but still have reasonable estimates. Finally, 

the mean square-root distance from the reference could be improved to about 1 m in the 

𝑛d = 2 MHE configuration in comparison to the reference SR-EKF filter. 
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6. Summary 

In this last chapter of the doctoral thesis, the outcome of the investigations is discussed, poten-

tial and planned developments of the achievements are addressed and the contributions are 

summarized. 

6.1 Conclusion and Discussion 

In this thesis a novel, clean sheet designed, robotic electric vehicle development – the DLR 

ROboMObil – has been shown. Its complete x-by-wire technology with no direct mechanical 

connection between the driver wish and the actuator control realization in the wheel robots ena-

bles a completely new conceptual design of an energy management framework. In comparison 

to the state of the art, it focuses on the spatial movement and its optimization, empowered by the 

disruptive ROboMObil concept. From the control design in the different levels of the motion 

demand abstraction, a control strategy has been successfully designed to minimize the energy 

consumption (which is crucial for electric vehicles) for executing the driving task. During its 

development the focus has always been on a later real-time capable in-vehicle realization. Final-

ly, the effectiveness could be assessed via a high-fidelity Modelica full vehicle and mechatronic 

drivetrain model of ROboMObil.    

The approach showed its potential for future investigations on efficient real-time capable trajec-

tory optimization algorithms.  

In the second part of the work, a novel approach for automatically generated model based ob-

servers has been introduced. It makes use of the extended FMI 2.0 for co-simulation technology 

to enable a reliable and efficient modeling of the prediction models in continuous-time without 

the need to care about error-prone manual discretization or system event handling. The frame-

work is designed as flexible as possible so new estimation algorithms can be integrated (i.e. 

independent from the estimation task) to increase maximal reusability. Besides state of the art 

state estimation algorithms, different extensions to constraint handling, and real-time capable 

nonlinear moving horizon estimation have been developed in this thesis. They were applied in 

two ROboMObil applications: a battery state of charge and a vehicle position estimator. Moreo-

ver, the framework was further extended to multi-rate systems and in simulation studies suc-

cessfully tested with real world measurements. 
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6.2 Contributions 

The contribution and achievements of this doctoral thesis project are summarized below: 

 Systematic development of the robotic electric vehicle ROboMObil, by use of model 

based simulation techniques with the Modelica Language, awarded with the eCarTec 

2012 and ESNC 2011 award: 

o Design and optimization of the wheel robot kinematics and suspension design, 

according to the requirements of a by-wire driven in-wheel motor vehicle with 

focus on reliability, stability and self-stabilizing mechanic features. 

o Derivation of a hierarchical control mechanism according to the electrical and 

information technical framework of ROMO. 

 Concept of a model based energy manager framework: 

o Design derived from a management pyramid with three levels of abstraction in 

transformation from the planned route down to actuator commands in the wheel 

robots. 

o Development of a real-time capable path planning module that reduces the path 

curvature by means of an efficient nonlinear gradient optimization followed by 

a vehicle velocity profile generation bounded to the vehicle’s physical limits. 

o Realization of a parametric path description through a path tracking controller. 

o Distribution of the planar movement demand to the actuators by means of a 

nonlinear control allocator whose minimization objective is the reduction of 

control energy. 

o Simulative evaluation and assessment in different simulation scenarios. 

 Design of a Kalman filter estimator framework with constraints, time delay and MHE: 

o Implementation tailored for embedded systems using FMI technology to incor-

porate complex Modelica multiphysical models in state estimation problems. 

o Derivation of two Kalman Filter theory extensions to incorporate inequality 

constraints in one-step recursive state estimation algorithms. 

o Development of a real-time capable moving horizon estimation formulation us-

ing a nonlinear gradient descent search algorithm. 

o Introduction of time delayed measurements to moving horizon formulation. 

o Practical application of the framework in a constraint battery estimator using 

square-root unscented Kalman filter techniques in combination with perfect 

measurements, as well as a 

o Vehicle position estimator with a multi-rate FMU approach for reliable con-

straint evaluation combined with delayed GPS measurements compensation in a 

moving horizon estimator with extended descent search update algorithm and 

objective functions. 
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6.3 Outlook: Extensions to the Proposed EM Framework 

As aforementioned, one improvement aspect is the further development of the trajectory optimi-

zation. A promising approach for the optimal velocity profile generation using dynamic pro-

gramming is published in [Win17]. Besides improvements in the path tracking controller, there 

is potential in the level of energy optimal control allocation. As in the simulative assessment of 

Chapter 3.7.4 already analyzed, the one-step control allocation approach may lead to jittering in 

the actuator demands. This behavior could be improved by an MPC formulation (eq. (6.3)) that 

makes use of the knowledge of the future demanded vehicle trajectory: 

min
𝒖
(𝐽criteria(Δ𝒖) + 𝛾 ∥ 𝑾𝜈(𝑩(𝒖

𝐖, 𝝂C)Δ𝒖 − Δ𝝂) ∥) 

Δ𝐮 ≤ Δ𝐮 ≤ Δ𝐮 
(6.1) 

For a real-time application the proposed nonlinear moving horizon estimator, utilizing the non-

linear gradient descent search algorithm in Chapter 6.4.2, could be an appropriate solution. 

6.4 Outlook: Extensions to the FMI Based Estimation Framework 

In the ITEA 3 project EMPHYSIS, started in October 2017, it is planned to further develop the 

FMI technology towards the requirements of embedded systems. This leads to a major increase 

of the technology readiness level for the here developed FMI based estimation framework, since 

it can be assumed that the new standard will be computationally more efficient and with a 

smaller memory footprint. Recently, research at DLR institute SR started to reimplement nu-

merical routines, that are used within the estimation algorithms and are classically taken from 

the well proofed FORTRAN based matrix computation library Lapack [And99]. The aim is to 

bring them in standard C-code capable of being certified according to automotive standards for 

embedded microcontrollers such as ISO 26262 or Misra-C. A second development direction is 

the newly developed language Modia [Elm17], which can be seen as a potential candidate for 

Modelica 4.0. It is based on the Julia scientific programming language providing powerful fea-

tures such as multiple dispatch and meta-programming [Bez17] which enables completely new 

possibilities in processing the equation manipulated models in discrete-time estimation algo-

rithms. So it is planned, together with the Modelica synchronous features, to bring a model di-

rectly into an observer, without having the need to export the prediction in advance to an ex-

tended FMU 2.0 for co-simulation and then reimport it. 

Besides these technical implementation aspects, there are also additional features planned for 

upcoming releases of the DLR Kalman Filter Library: FMI based parameter estimation and 

nonlinear model predictive control as explained in the following subchapters. 

6.4.1 Parameter Estimation Using Kalman Filter Techniques and FMI 

Beside the estimation of the system state it is also possible to estimate (slow) time variant sys-

tem parameters. One can imagine a use case e.g. the wearing of the sliding mechanism in a ve-
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hicle’s electric window, where it is necessary to calculate the correct maximum motor current 

for the anti-clamping protection algorithm. The fundamental idea of this technique is the exten-

sion of the estimation state vector by introducing the parameter vector 𝒘 (see eq. (A.17)), this 

yielding the following system description: 

 

[
𝒙
𝒘̇
̇
] = [

𝒇(𝒙,𝒘, 𝒖)
𝟎

] , 

𝒚 = 𝒉(𝒙,𝒘), 

𝑡 ∈ ℝ,𝒖(𝑡) ∈ ℝ𝑛𝑢 , 𝒙(𝑡) ∈ ℝ𝑛𝑥 , 𝒘(𝑡) ∈ ℝ𝑛𝑤 , 𝒚(𝑡) ∈ ℝ𝑛𝑦 

(6.2) 

With the later introduction of the variability “tunable” for scalar variables in the FMI 2.0 stand-

ard, i.e. parameters, these can be made tunable during the simulation. Unfortunately the special 

version of the Modelica simulator Dymola with the extended FMU 2.0 for co-simulation neces-

sary for the state manipulation – which was available to the author – is based on the FMI 2.0 

RC1 release, which did not have these features [Mod13].  

Moreover, it is worth mentioning that the parameter estimation algorithm can be connected with 

the constraint handling algorithms introduced in Chapter 4.3. In this way the bounds of possible 

parameter values can be set 𝒘𝑘
low ≤ 𝒘̂𝑘 ≤ 𝒘𝑘

up
 as well as the dependency between individual 

parameters can be bounded |𝛼 ⋅ 𝒘𝑘
𝑖 | − |𝛽 ⋅ 𝒘𝑘

𝑖 | ≤ ϵ. 

6.4.2 MHE Algorithm Reformulation to Nonlinear Model Predictive Control 

In this section the close interaction between moving horizon estimation and nonlinear model 

predictive control (NMPC) is sketched. It is shown that also for this type of model based control 

problems the proposed Modelica and FMI based framework (see Chapter 4.2) is appropriate.  

0

1

2

3

4

5

𝑡𝑘−1 𝑡𝑘  𝑡𝑘−1 𝑡𝑘+𝑁1
 𝑡𝑘+𝑁2

 𝑡𝑘  

𝝊𝑘  

𝒚ref  

𝒉(𝒙int ) 
𝝊̃𝑁2

 

𝑡/𝑇𝑠   

Figure 6.1: Schematic diagram of nonlinear model predictive control 

By shifting the time horizon to the future, the proposed MHE algorithm (compare Figure 4.8) 

can be reformulated to a real-time capable nonlinear model predictive control (NMPC) objec-
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tive that can cope with constraints in its optimization variables 𝝊𝑘 (i.e. the discrete model inputs 

over the horizon) – cf. Figure 6.1. 

A finite horizon input constrained NMPC without terminal cost but constraints making use from 

the solver structure of the NG optimizer (Chapter 4.4.1) is formulized in eq. (6.3). This setup is 

only valid for dissipative systems and the necessary horizon sizes must be chosen carefully to 

guarantee closed loop stability [Gru17]. The cost function eq. (6.4) is only dependent on the set 

of chosen input variables 𝝊𝑘 and the state estimate at the current time instance 𝒙𝑘.  

 

min
𝝊𝑘
  𝑐 (𝒙𝑘 , 𝝊𝑘 = (𝒖𝑘

𝑇 , 𝒖𝑘+1
𝑇 , … , 𝒖𝑘+𝑁2

𝑇 )
𝑇
) 

s. t.  𝑨 ⋅ 𝝊𝑘 = 𝒃 

𝑪 ⋅ 𝝊𝑘 ≤ 𝒅 

(6.3) 

 
𝑐(𝒙𝑘 , 𝝊𝑘) =  ∑ ∥ 𝒚𝑖

ref − 𝒉(𝒙int,𝑖) ∥𝑸̃
2

𝑁2

𝑖=𝑁1

+∑ ∥ 𝝊̃i ∥𝑹̃
2

𝑁2

𝑖=0

 

𝝊̃i = 𝝊𝑖−1 − 𝝊𝑖 

(6.4) 

 
𝒙int,𝑘−1 = 𝒙𝑘 

𝒙int,𝑖 = 𝒇𝑖|𝑖−1(𝒙int,𝑖−1, 𝝊𝑖−1)   
(6.5) 

The first term of the cost functions penalizes the difference between the desired trajectory of the 

plant 𝒚refand the model output function 𝒉(𝒙int), which is calculated by a forward model inte-

gration (here again the FMI interface is used) with the set of 𝝊𝑘 determined by the optimizer. 

The second term penalizes too steep gradients of system input variables 𝝊𝑘 sets to meet the ac-

tuator limitations. 

Recently, the proposed methodology of incorporating FMUs in discrete-time algorithms was 

extended to be used with the DLR Optimization Library [Pfe12] for multi-criteria single shoot-

ing nonlinear model predictive control applications [See16]. 
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Appendix 

A Discrete-Time State Estimation Theory 

For many of today’s control tasks like model predictive or state feedback control, the 

knowledge of the actual full state vector of the controller’s synthesis model is necessary. In 

most of the control applications not all states can be measured directly via sensors. This might 

be reducible to the unavailability (e.g. no sensor method for direct state of charge measurement 

of a lithium-ion cell) or cost considerations (e.g. force-momentum sensors in each axis of an 

industrial robot). Therefore, the missing states must be reconstructed from the available meas-

urement (e.g. motor current and angular velocity of a robot axis) in combination with the 

knowledge of the system dynamics of the controlled plant. Since nowadays nearly all control-

lers are executed on real-time capable microcontrollers, the estimation algorithms must be per-

formed in discrete-time. Thus the next chapters focus on methods for discrete-time state estima-

tion; the continuous-time theory of state estimation is not considered here. Moreover, the outline 

focuses on Kalman filter based algorithms which are widely used in applications and have 

shown good results for causal systems in the last decades e.g. [Sim06]. 

A.1 Content of this Appendix Chapter 

Beginning from the principal need of state estimation and the sketch of the configuration on real 

world microcontrollers in Chapter A.2, the appendix is organized as follows: In Chapter A.3 an 

introduction to recursive estimation techniques is given. Recursive means, in every time step 

only the information from the last one is taken into account for the estimation algorithm. This 

technique is frequently used due to limited memory and computing capacity of most common 

microcontrollers. Here the connection between (recursive) weighted least squares estimation of 

a constant quantity and the (linear) Kalman filter technique for state estimation is explained. In 

the later chapters this interconnection becomes very interesting for more complex methods like 

the moving horizon estimation (see Chapter A.5). This linear Kalman filter is then extended for 

nonlinear applications with two different types of approaches: on the one hand algorithms that 

need Jacobians and on the other hand derivative-free methods are explained.  

A.2 Basic Structure of an Estimation Setup 

In App. Figure A.1 a signal flow diagram in Modelica style is sketched that shows the configu-

ration of a state estimator in a discrete-time system (e.g. on a microcontroller). The controller’s 

system input 𝒖𝑘 is commanded to the real system (by help of a digital to analog (D/A) convert-

er) and also directed to the inputs of the prediction model of the state estimator. Note that it is 

always assumed that the inputs have no direct feed through to the outputs; this is a valid premise 
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for real physical systems and controlled plants. Due to the input signal and the system dynamics 

an output 𝒚 of the real system can be measured that may be disturbed by a measurement noise 𝒛. 

To estimate the states of the real system, the error between measurement and prediction needs to 

be minimized. This is coped via a calculation of the gain 𝑲 in the estimator algorithm. It is de-

termined in a way that the error between 𝒙̂ − 𝒙 is minimized, under statistical assumption con-

sideration of the prediction model and the measured values. 

Real system (continuous-time)

Measurement

noise

State estimator (discrete-time)

Discretized continuous-time

model of real system

Estimation error

Gain matrix 

Estimated state

System input from controller

States feed

to controller

𝒙̂𝑘 = 𝒇̂𝑘(𝒙̂𝑘−1 , 𝒖𝑘) 

+𝑲(𝒚̂𝑘 − 𝒉̂(𝒙̂𝑘−1)) 

𝒙̇ = 𝒇(𝒙, 𝒖𝑘) 

𝒚 = 𝒉(𝒙) 

𝒛 

𝒚̂𝑘  

𝑲 
(computed to minimize 𝒙̂ − 𝒙) 

𝒖̂𝑘  𝒚 

 

App. Figure A.1: State estimator in a discrete-time environment 

A.3 Recursive State Estimation Algorithms 

In this chapter, the principle ideas of recursive state estimation are summarized and its (histori-

cal) development leading to the Kalman filter is outlined. Background information, alternative 

formulations, and recent developments are provided in the standard textbook [Sim06] that is 

also the starting point for the following explanations. Parts of the Chapter A.3.1 to Chapter 

A.3.3 have also been published in [Bre11c] and [Bre13]. 

A.3.1 Weighted Least Squares Estimation 

First, an estimation of a constant quantity based on several noisy measurements is considered. 

This weighted least squares estimation (WLS) problem is well-known in system identification 

tasks (see, e.g. [Lju98]). Through the weighted formulation, the control engineer can assign 

different levels of confidence to certain measurements (or observations). This feature is crucial 

for the tuning of Kalman filters. The corresponding minimization problem is formulated as fol-

lows: 

 

[
𝑦1
m

⋮
𝑦𝑘
m
] = [

𝐻11 … 𝐻1𝑛
⋮ ⋱ ⋮
𝐻𝑘𝑛 ⋯ 𝐻𝑘𝑛

] ⋅ [

𝑥1
⋮
𝑥𝑛
] + [

𝑣1
⋮
𝑣𝑘
] 

𝐸(𝒗𝑖
2) = 𝜎𝑖

2   (𝑖 = 1,… , 𝑘) 

𝒙 𝜖 ℝ𝑛, 𝒚 𝜖 ℝ𝑘 , 𝒗 𝜖 ℝ𝑘 

(A.1) 
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The unknown vector 𝒙 is constant and consists of 𝑛 elements, 𝒚m is a 𝑘-element noisy meas-

urement vector and usually 𝑘 ≫ 𝑛. Each element 𝑦𝑖
m of 𝒚m is a linear combination (𝑯𝑘∗) with 

the unknown vector 𝒙 and the variance of the measurement noise of the i-th measurement 𝑣𝑖. 

The noise of each measurement is zero-mean and independent from each other, therefore the 

measurement covariance matrix is  

 𝑹 = E(𝒗𝒗𝑇) = diag(𝝈1
2, … , 𝝈𝑘

2) (A.2) 

The residual 

 
𝝐𝒚 = (𝑯𝒙 + 𝒗)⏟      

=𝒚m

−𝑯𝒙̂⏟
𝒚̂

 
(A.3) 

is the difference of all measured values 𝒚m to the (unknown) 𝒙-vector minus the estimated vec-

tor 𝒚̂ that is computed from the estimated vector 𝒙̂. The goal is to compute the estimated vector 

𝒙̂ such that the weighted residual is as small as possible, i.e. to minimize the cost function 𝐽: 

 𝐽 =
𝜖𝑦1
2

𝜎1
2 +⋯+

𝜖𝑦𝑘
2

𝜎𝑘
2  (A.4) 

To minimize 𝐽, it is useful to compute the partial derivative with respect to the estimated 𝒙̂-

vector which is afterwards set equal to zero. In this way, an optimal solution for 𝒙̂ can be calcu-

lated:  

 

𝜕𝐽

𝜕𝒙̂
= 2 ⋅ (−(𝒚m)𝑇𝑹−1𝑯+ 𝒙̂𝑇𝑯𝑇𝑹−1𝑯) = 0 

 𝒙̂ = (𝑯𝑇𝑹−1𝑯)−1𝑯𝑇𝑹−1𝒚m 
(A.5) 

Eq. (A.5) requires that 𝑹 is non-singular and 𝑯 has full rank. This is the “textbook” version of 

the algorithm. It is inefficient and numerically not reliable. Alternatively, eq. (A.4) can be for-

mulated as: 

 𝐽 =  [
𝜖𝑦1

𝜎1
…

𝜖𝑦𝑘

𝜎𝑘
] ∙

[
 
 
 
 
𝜖𝑦1

𝜎1
⋮
𝜖𝑦𝑘

𝜎𝑘 ]
 
 
 
 

 (A.6) 

To solve it more efficiently, the problem is transformed to a standard linear least squares prob-

lem that minimizes the 2-norm of the weighted residue vector: 

 

min
𝒙̂
 ‖[
𝜖𝑦1

𝜎1
…

𝜖𝑦𝑘

𝜎𝑘
] ‖

2

 

=  min 
𝒙̂
‖𝑾(𝒚 − 𝑯𝒙̂)‖2 

=  min 
𝒙̂
‖𝑾𝑯𝒙̂ −𝑾𝒚m‖2 

=  min
𝒙̂
 ‖𝑨𝒙̂ − 𝒃‖2 

𝑾 = diag(1/𝜎1, … , 1/𝜎𝑘)  

(A.7) 
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This minimization problem has a unique solution, if A=WH has full rank. If A is rank deficient, 

an infinite number of 𝒙̂ solutions exists. The usual approach is to select from the infinite number 

of solutions the unique one that additionally minimizes the norm of the solution vector: 

min‖𝒙̂‖2. Given 𝑨 = 𝑾𝑯 and 𝒃 = 𝑾𝒚m, this solution vector can be computed with a least 

squares solver like the LAPACK function DGELSX [And99]. This function uses a QR-

decomposition of 𝑨 with column pivoting together with right multiplication of an orthogonal 

matrix 𝒁 to arrive at: 

 min
𝒙̂
 ‖[𝑸1 𝑸2] [

𝑼 0
0 0

] 𝒁𝑷𝒙̂ − 𝒃‖
2

 (A.8) 

where 𝑸 and 𝒁 are orthogonal matrices, 𝑷 is a permutation matrix, 𝑼 is a regular, upper triangu-

lar matrix and the dimension of the quadratic matrix 𝑼 is identical to the rank of 𝑨. Since the 

norm of a vector is invariant against orthogonal transformations, this equation can be trans-

formed to: 

 min
𝒙̂
 ‖[
𝑼 0
0 0

]𝒁𝑷𝒙̂ − [
𝑸1
𝑇𝒃

𝑸2
𝑇𝒃
]‖

2

 (A.9) 

This is equivalent to 

 min
𝒙̂
  ‖[
𝑼
0
 ] 𝒙̅̂1  − [

𝑸1
𝑇𝒃

𝑸2
𝑇𝒃
]‖ , 𝒙 ̂ =  𝒁𝑷𝒙̂2 (A.10) 

from which the solution can be directly computed as (taking into account 𝒃 = 𝑾𝒚m): 

 𝒙̂ = 𝑷𝒁𝑇𝑼−1𝑸1
𝑇𝑾𝒚m (A.11) 

In the following, only “textbook-style” versions of algorithms will be shown, such as eq. (A.5). 

Their implementation is performed in an efficient and numerically reliable way, such as 

eq. (A.11), where matrices 𝑹 and 𝑯 can be rank deficient. In the sketched approach, both 

eq. (A.5) and eq. (A.11), can be used for offline estimation with a predetermined number of 

measurements 𝑘. In real-time applications, new measurements arrive at each sample period to 

improve the estimation. Using eq. (A.11) would require a complete recalculation with O(𝑘3)-

flops. One approach could be to use a moving horizon and dismiss older measurements (still 

computational extensive – discussed in Chapter A.5). Another option is to recursively reformu-

late the problem into a form that is updated at every sample instant with the new measurements. 

It follows that a linear recursive estimator can be written in the subsequent representation: 

 
𝒚𝑘  =   𝑯𝑘𝒙 + 𝒗𝑘 

𝒙̂𝑘  =   𝒙̂𝑘−1 +𝑲𝑘 ⋅ (𝒚𝑘
m −𝑯𝑘𝒙̂𝑘−1) 

(A.12) 

The estimate 𝒙̂𝑘 is computed based on the estimation from the last time step 𝒙̂𝑘−1 and the in-

formation from the new measurement 𝒚𝑘
m. 𝑲𝑘 is the estimator gain vector that weights the cor-

rection term 𝒚𝑘
m −𝑯𝑘𝒙̂𝑘−1. Hence, the optimal gain 𝑲𝑘 needs to be computed in a recursive 

way. To achieve this, it is necessary to formulate another cost function that minimizes the co-

variance in a recursive way. 
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 𝜕𝐽𝑘
𝜕𝑲𝑘

= 
 𝜕Tr𝑷𝑘
𝜕𝑲𝑘

= 0 

 𝑷𝑘   =  (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘−1(𝑰 − 𝑲𝑘𝑯𝐾)
𝑇 

             +𝑲𝑘𝑹𝑘𝑲𝑘
𝑇 

𝑲𝑘   = 𝑷 𝑘−1𝑯𝑘
𝑇 ⋅ (𝑯𝑘𝑷𝑘−1𝑯𝑘

𝑇 + 𝑹𝑘)
−1

 

(A.13) 

 (A.14) 

 (A.15) 

This results in a recursive formula to update the estimation in every sample of the unknown, but 

constant, vector 𝒙 with the latest measurements, based only on the estimation from the last sam-

ple. App. Table A.1 summarizes the whole algorithm. The operand E(∙) calculates the expecta-

tion value of a random variable [Sim06]. 

App. Table A.1: The recursive weighted least squares algorithm 

 

Initialization: 

𝒙̂0 = E(𝒙) 

𝑷0 = E((𝒙 − 𝒙̂0)(𝒙 − 𝒙̂0)
𝑇) 

For 𝑘 = 1,2, … (𝑘 ∈ ℕ+): 

𝑲𝑘 = 𝑷 𝑘−1𝑯𝑘
𝑇 ⋅ (𝑯𝑘𝑷𝑘−1𝑯𝑘

𝑇 + 𝑹𝑘)
−1

 

𝒙̂𝑘 = 𝒙̂𝑘−1 +𝑲𝑘 ⋅ (𝒚𝑘
m −𝑯𝑘𝒙̂𝑘−1) 

𝑷𝑘   =  (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘−1(𝑰 − 𝑲𝑘𝑯𝐾)
𝑇 +𝑲𝑘𝑹𝑘𝑲𝑘

𝑇 

 

 

A.3.2 Recursive Linear Kalman Filter 

For many real-time control problems, it is more interesting to estimate the system states rather 

than the plant’s parameters. Therefore, the linear Kalman filter was developed in the 1960’s 

[Sim06]. It enables the efficient estimation of system states of a linear discrete-time model in a 

recursive way. The fundamental assumption of this approach is that the system 

E(𝒘𝑘𝒘𝑘
𝑇) =  𝑸𝑘𝛿𝑘−𝑗 and the output E(𝒗𝑘𝒗𝑘

𝑇)  = 𝑹𝑘𝛿𝑘−𝑗 equations are disturbed by Gaussian 

white noise. Both of these noise processes are regarded to be uncorrelated with zero mean 

E(𝒘𝑘𝒗𝑘
𝑇) = 0. This results in the following equations: 

 
𝒙𝑘  =   𝑭𝑘−1 𝒙𝑘−1 + 𝑮𝑘−1𝒖𝑘−1 +𝒘𝑘−1 

𝒚𝑘  =   𝑯𝑘𝒙𝑘 + 𝒗𝑘 
(A.16) 

Here 𝑭𝑘−1 is the state transition matrix, 𝑮𝑘−1 denotes the input coupling and 𝒘𝑘−1 the process 

Gaussian white noise; 𝑯𝑘 is the system output matrix and 𝒗𝑘 the corresponding noise. At this 

point, the principle of every Kalman filter derivation (compare [Sim06]) is introduced in App. 

Figure A.2. Subsequent to the filter initialization, the first step in every sample step is the a pri-

ori estimation of the mean (system states) and the covariance (a scale for the confidence in 

them). This is called the prediction step and all of the equations that are related with it contain a 

“−“ in the superscript. 
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Time update 

(predict)

Measurement 

update

 (correct)

𝒙̂0
+, 𝑷0

+ 

𝒙̂𝑘
−, 𝑷𝑘

− 

𝒚𝑘
m  

𝒙̂𝑘
+, 𝑷𝑘

+ 

 

App. Figure A.2: Principle of Kalman filter based estimation, 

𝒚𝑘
m denotes the vector of measured outputs 

This step forms the basis for the calculation of the optimal Kalman gain that is used to correct 

the estimated state vector with the information from the actual measurements 𝒚𝑘
m. Finally, the 

covariance matrix is updated. This is called the correction step and all of the equations that are 

related with it contain a “ + “ in the superscript. In the next sample, these values are used to 

restart at the subsequent prediction step. The algorithm can be formulated as follows: 

App. Table A.2: The linear discrete Kalman filter algorithm 

 

Initialization: 

𝒙̂0
+ = E(𝒙0)  

𝑷0
+ = E((𝒙 − 𝒙̂0

+)(𝒙 − 𝒙̂0
+)𝑇) 

for 𝑘 = 1,2,… (𝑘 ∈ ℕ+): 

                                      𝒙̂𝑘
− = 𝑭𝑘−1𝒙̂𝑘−1

 + + 𝑮𝑘−1𝒖𝑘−1 

𝑷𝑘
− = 𝑭𝑘−1𝑷𝑘−1

+ 𝑭𝑘−1
𝑇 +𝑸 

𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇 ⋅ (𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹)
−1

 

𝒙̂𝑘
+ = 𝒙̂𝑘

− +𝑲𝑘 ⋅ (𝒚𝑘
m −𝑯𝑘𝒙𝑘) 

 𝑷𝑘
+ = (𝑰 − 𝑲𝐾 ⋅ 𝑯𝑘) ⋅ 𝑷𝑘

−   

 

 

To determine the connection between the Kalman filter and the recursive weighted least squares 

parameter estimation, one should have a closer look at App. Table A.2. The matrix 𝑸(𝒘𝒘𝑇) =

diag(𝜎𝑤1
2 , … , 𝜎𝑤𝑛

2 ) represents the covariance of the system states (𝒘 denotes the variance of the 

system states). Its entries represent the confidence in the a priori estimation and can be tuned by 

the application engineer. Large values represent high uncertainty (probably due to an imprecise 

model), whereas small values indicate a good trust. The second tuning matrix 𝑹 represents the 

confidence in the actual measurements. Its effect resembles the first estimation problem 

(eq. (A.1) to eq. (A.5)). Moreover, it can be shown that if 𝒙𝑘 is a constant vector then it follows 

that 𝑭𝑘 = 𝑰, 𝑸𝑘 = 0 and 𝒖𝑘 = 0. 

In this case, the linear discrete Kalman filter algorithm (cf. App. Table A.2) reduces to the re-

cursive weighted least squares algorithm (cf. App. Table A.1). This property is often exploited 
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in the formulation of parameter estimation problems using Kalman filter algorithms (for more 

details see e.g. [Hay01] or Chapter 6.4.1).  

A.3.3 Nonlinear Extended Kalman Filter 

This section is nearly identical to Chapter 4.2.1. It is assumed that the plant model to be used in 

state estimation is naturally described as a nonlinear continuous-time state-space system: 

 

𝒙̇ = 𝒇(𝒙, 𝒖), 

𝒚 = 𝒉(𝒙), 

𝑡 ∈ ℝ, 𝒖(𝑡) ∈ ℝ𝑛𝑢 , 𝒙(𝑡) ∈ ℝ𝑛𝑥 , 𝒚(𝑡) ∈ ℝ𝑛𝑦 

(A.17) 

where 𝑡 is time, 𝒖(𝑡) is the vector of inputs, 𝒙(𝑡) is the vector of states and 𝒚(𝑡) is the vector of 

outputs. The model eq. (A.17) cannot be utilized directly in a sampled data system. Instead, a 

discrete-time representation is necessary in a discrete-time state estimator. Therefore, the dis-

crete-time version of eq. (A.17) with additive Gaussian noise is used in the sequel: 

 

𝒙𝑘  =   𝒇𝑘|𝑘−1(𝒙𝑘−1, 𝒖𝑘−1) + 𝒘𝑘−1, 

𝒚𝑘  =   𝒉(𝒙𝑘) + 𝒗𝑘 , 

𝒘𝑘  ~ 𝑁(0, 𝑸𝑘), 

𝒗𝑘  ~ 𝑁(0, 𝑹𝑘). 

(A.18) 

Here 𝑡𝑘 is the 𝑘-th sample time instant of a periodically sampled data system, 

𝒖𝑘  =  𝒖(𝑡𝑘), 𝒙𝑘  = 𝒙(𝑡𝑘), 𝒚𝑘 = 𝒚(𝑡𝑘), 𝒘𝑘, 𝒗𝑘 are Gaussian noise, and 

 𝒇𝑘|𝑘−1  = 𝒙𝑘−1 + ∫ 𝒇(𝒙, 𝒖𝑘−1) d𝑡

𝑡𝑘

𝑡𝑘−1

. (A.19) 

is the time integration of the prediction model between two time instances. The extended Kal-

man filter (EKF) algorithm is very similar to the linear Kalman filter presented before. To han-

dle the nonlinearity, the system is linearized around the last estimation point using a Taylor 

series truncated after the first term. This can be performed for example numerically by use of a 

forward difference quotient (cf. eq. (A.20)).  
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App. Table A.3: The extended Kalman filter algorithm 

 

Initialization: 

𝒙̂0
+ = E(𝒙0) 

𝑷0
+ = E((𝒙0 − 𝒙̂0

+)(𝒙0 − 𝒙̂0
+)𝑇) 

for 𝑘 = 1,2, … (𝑘 ∈ ℕ+): 

Predict:                               𝒙̂𝑘
− = 𝒇𝑘|𝑘−1(𝒙̂𝑘−1

+ , 𝒖𝑘−1) 

𝑷𝑘
− = 𝑭𝑘−1𝑷𝑘−1

+ 𝑭𝑘−1
𝑇 + 𝑸 

with 𝑭𝑘−1 = 𝑒
(
𝜕𝒇
𝜕𝒙
|
𝒙̂𝑘−1
+

⋅𝑇𝑠)

 

Correct:                              𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇 ⋅ (𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑹)
−1

 

with 𝑯𝑘 =
𝜕𝒉

𝜕𝒙
|
𝒙̂𝑘
−

 

𝒙̂𝑘
+ = 𝒙̂𝑘

− +𝑲𝑘 ⋅ (𝒚𝑘
m − 𝒉(𝒙̂𝑘

−)) 

 𝑷𝑘
+ = (𝑰 − 𝑲𝐾 ⋅ 𝑯𝑘) ⋅ 𝑷𝑘

− 

 

 

The calculation of  𝒙̂𝑘
− is performed by integrating model eq. (A.17) from 𝑡𝑘−1 to 𝑡𝑘 by means 

of eq. (A.19). 𝑭𝑘−1 is the state-transitions matrix of 𝒇 with respect to 𝒙 at 𝒙̂𝑘−1
+  and 𝑯𝑘 is the 

partial derivative matrix of 𝒉 with respect to 𝒙 at 𝒙̂𝑘
−. The Jacobians 𝑱𝑘−1 and 𝑯𝑘 must either be 

provided directly, or they can be determined numerically, for example with a forward difference 

quotient (note that ϵ denotes the machine precision of the particular computer architecture and 

𝑛𝑥 the number of system states): 

 

for  𝑖 = 1,2,… , 𝑛𝑥;  Δ ≅ √ϵ 

(𝑱𝑘−1)𝑖 =
𝒇(𝒙̂𝑘−1 + Δ 𝒆𝑖, 𝒖𝑘−1) − 𝒇(𝒙̂𝑘−1, 𝒖𝑘−1)

Δ
 

(A.20) 

The sketched EKF algorithm in App. Table A.3 has several practical difficulties when it should 

be implemented on microcontrollers with a limited word length of the data types (i.e. a double 

float). So the numerical approximation of the Jacobian matrix can cause inaccuracies due to 

cancelling effects and therefore a wrong approximation of the nonlinearity in the surrounding of 

the working point in the actual step might occur. Another problem is the calculation of the prop-

agated covariance matrix via the difference 𝐏k
+ = 𝐏k

− − 𝐏k
−𝐊k𝐇k  (compare App. Table A.3). 

The so called divergence phenomenon [Hay01] may cause the loss of positive definiteness of 

the propagated matrix 𝑷𝑘
+ (a necessary condition for a covariance matrix). To cope with this 

problem there are different approaches that enhance the numeric accuracy of the standard EKF 

algorithm. The most common one is the square-root (SR) filtering technique by means of 

a Cholesky or U-D decomposition [Gol13]. 
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In SR filtering algorithms the square-root of the covariance matrix 

 𝑷𝑘 = 𝑺𝑘
𝑇 ⋅ 𝑺𝑘 (A.21) 

is propagated in the recursive formulation. Defining the condition number of a matrix as 

 𝜅(𝑷𝑘) =
𝜎max(𝑷𝑘)

𝜎min(𝑷𝑘)
≥ 1 (A.22) 

wherein σmax/min  are the largest and smallest singular value, it can be shown that the condition 

number of the square-root 𝐒k is the square-root of the condition number of matrix 𝐏k 

(see [Gre15] for more details): 

 

𝜎2(𝑷𝑘) = [𝜎
2(𝑺𝑘)]

2 

𝜎max(𝑷𝑘)

𝜎min(𝑷𝑘)
=
𝜎max
2 (𝑺𝑘)

𝜎min
2 (𝑺𝑘)

 

𝜅(𝑷𝑘) = 𝜅
2(𝑺𝑘) 

(A.23) 

At this point no further detail on the implementation is given. The most common publications 

regarding the numerically efficient and reliable implementation of the different approaches are 

given in [Gre15]. Especially the SR implementation is important for complex state estimation 

algorithms as proposed in Chapter A.4.2. 
 

A.4 Recursive Nonlinear Derivative-Free Estimation Methods 

In this chapter estimation algorithms are examined that do not need the calculation of the Jaco-

bians of the nonlinear prediction model. Besides the unscented transformation (UT) based algo-

rithm, the central difference filter (e.g. [Nor04]) and the Gaussian quadrature Kalman filter 

[Ara07] exist. It has been shown that both methods are strongly connected with the UT [Hay01] 

and are therefore not considered here separately. The so called sigma point transformation 

(SPT) is based on the idea that it is easier to approximate a Gaussian distribution than it is to 

approximate an arbitrary nonlinear function or transformation (see [Jul04], [Sim06]). In other 

words it is difficult to find a nonlinear transformation of a probability density function (PDF), 

but it is easy to perform a nonlinear transformation of a vector. Therefore, this algorithm selects 

a set of points around the actual operation point in a heuristic manner and then transforms them 

through the underlying nonlinear function. With the help of weighting factors and a transformed 

set of points in the state-space a sampled PDF can be approximated [Sim10]. In this way, a 

more appropriate solution, in comparison to the EKF, of the estimate mean and the covariance 

can be calculated. In general, this approximation (for Gaussian assumption) is accurate to the 

third term of the Taylor series expansion. For a non-Gaussian assumption it is still valid to the 

second order [Mer01]. For a proof, see for example [Hay01] – appendix A. One can easily see 

the advantage of UT in App. Figure A.3 where a comparison between a Monte Carlo simula-

tion, the unscented approach, and the extended Kalman filter is shown. It is quite clear that the 

truncation of the Taylor series expansion after the first term (EKF) leads to the most inaccurate 

results. 
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App. Figure A.3: Advantages of the unscented transformation [Mer04] 

In the following more details are given regarding the principles of the UT and its implicit con-

text with the weighted statistical linear regression (WSLR) method [Mer04b]. The aim of the 

WSLR is to find a linear regression  

 𝒚 = 𝒈(𝒙) ≈ 𝑨𝒙 + 𝒃 (A.24) 

for the nonlinear function 𝒚 = 𝒈(𝒙) through the evaluation of it in 𝑁 points (𝛘𝑖 , 𝑖 = 1. . 𝑁). 

The set of 𝛘𝑖 is chosen such that it can represent the statistical properties of 𝒙 like mean 𝒙̅ and 

covariance 𝑷𝒙: 

 

𝒙̅ = 𝛴𝑖=1
𝑁 𝒘𝑖𝝌𝑖 

𝑷𝒙 = 𝛴𝑖=1
𝑁 𝒘𝑖(𝝌𝑖 − 𝒙̅)(𝝌𝑖 − 𝒙̅)

𝑇 

𝛴𝑖=1
𝑁 𝒘𝑖 = 1 (regression weights) 

(A.25) 

The optimization objective is to find a solution for eq. (A.24), 

 
𝑨, 𝒃 = min(E(𝝐𝑇𝑾𝝐) ⏟      )

𝐽

 ≈ min (𝛴𝑖=1
𝑁 𝒘𝑖𝝐𝑖

𝑇𝝐𝑖) (A.26) 

 𝝐𝑖 = 𝒈(𝝌𝑖) − (𝑨𝝌𝑖 + 𝒃) (A.27) 

where 𝝐𝑖 denotes the point-wise linearization error and it is assumed that the selected regression 

points 𝛘𝑖 gather the prior mean and covariance of 𝒙. According to [Mer04b], 𝑨, 𝒃 can be derived 

through statistical linearization. For calculating 𝝐, the optimization objective 𝐽 in eq. (A.26) is 

substituted with the expression in eq. (A.27): 

 𝐽 = E((𝒈(𝝌𝑖) − (𝑨𝝌𝑖 + 𝒃))
𝑇𝑾(𝒈(𝝌𝑖) − (𝑨𝝌𝑖 + 𝒃))) (A.28) 
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To derive the unknown vector 𝒃 the partial derivative of 𝐽 with respect to 𝒃 needs to be calcu-

lated and set equal to zero: 

 

𝜕𝐽

𝜕𝒃
= −2 ⋅ E(𝑾(𝒈(𝝌𝑖) − 𝑨𝝌𝑖 − 𝒃)) =

!
0 

⇒ 𝒃 = E(𝒈(𝝌𝑖)) − 𝑨E(𝝌𝑖) = 

= 𝒚̅ − 𝑨𝒙̅ 

(A.29) 

In a second step 𝑨 can be derived by substituting 𝒃 in eq. (A.29), afterwards the partial deriva-

tive is calculated with respect to 𝑨 which is set equal to zero: 

𝐽 =  𝝐𝑇𝑾𝝐,   𝝐𝑖 =  𝒈(𝝌𝑖) − (𝑨𝝌𝑖 + 𝒚̅ − 𝑨𝒙̅) = 𝒈(𝝌𝑖) − 𝑨(𝝌𝑖 − 𝒙̅) − 𝒚̅ 

𝜕𝐽

𝜕𝑨
= −2 ⋅ E(𝑾(𝑨𝒙̃𝒙̃𝑇 + 𝒚̃𝒙̃𝑇)) =

!
0,   𝒙̃ = 𝝌𝑖 − 𝒙 ̅, 𝒚̃ = 𝒈(𝝌𝑖) − 𝒚̅ = 𝜸𝑖 − 𝒚̅ 

⇒𝑨 = E(𝒚̃𝒙̃𝑇) ⋅ E(𝒙̃𝒙̃𝑇)−1  

= E(𝒙̃𝒚̃𝑇)𝑇 E(𝒙̃𝒙̃𝑇)−1 

= 𝑷𝒙𝒚
𝑇 𝑷𝒙

𝑇 

(A.30) 

To calculate the unknown a posteriori Gaussian statistics – the covariance 𝑷𝒙𝒚, 𝑷𝒚 and the mean 

value  𝒚̅ – the following approximations of the propagated regression point  𝜸𝑖 = 𝒈(𝝌𝑖) are 

assumed (compare eq. (A.25)): 

 

𝒚̅ ≈ 𝒚̂ = 𝛴𝑖=1
𝑁 𝒘𝑖𝜸𝑖 

𝑷𝒚 ≈ 𝑷̂𝒚 = 𝛴𝑖=1
𝑁 𝒘𝑖(𝜸𝑖 − 𝒚̂)(𝜸𝑖 − 𝒚̂)

𝑇 

𝑷𝒙𝒚 ≈ 𝑷̂𝒙𝒚 = 𝛴𝑖=1
𝑁 𝒘𝑖(𝝌𝑖 − 𝒙̅)(𝜸𝑖 − 𝒚̂)

𝑇 

 𝑷𝝐 ≈ 𝛴𝑖=1
𝑁 𝒘𝑖𝝐𝑖

𝑇𝝐𝑖 = 𝑷̂𝒚 − 𝑨𝑷𝒙𝑨
𝑇 

(A.31) 

Where 𝝐𝑖 is defined as the point-wise linearization error: 

 𝝐𝑖 = 𝒈(𝝌𝑖) − (𝑨𝝌𝑖 + 𝒃) (A.32) 

By the help of these assumptions the statistics of 𝒚 can be expressed as follows: 

 
𝒚̂SLR = 𝑨𝒙̅ + 𝒃 

𝑷̂𝒚
SLR = 𝑨𝑷𝒙𝑨

𝑇 +𝑷𝝐 
(A.33) 

The following graphic repeats the above sketch for the interconnection of statistical properties 

by means of a simple example.  
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App. Figure A.4. WSLR vs. first order Taylor approximation [Mer04b] 

In App. Figure A.4 a one dimensional Gaussian random variable (GRV) 𝑥 with a certain distri-

bution (green line) and a mean 𝑥̅ is transformed through a nonlinear function 𝑦 = 𝑔(𝑥) 

(blue line) in order to reproduce the a posteriori random variable 𝑦. The green line on the 𝑦-axis 

indicates the true mean and covariance of the distribution after the transformation. Considering 

the two different approximations of the transformation (lin = first order Taylor approximation 

(red), sp = sigma point transformation (magenta)) one can see instantaneously the difference in 

the accuracy of the approaches. The linearization 𝑦lin = ∇𝑔𝑥̅(𝑥 − 𝑥̅) + 𝑔(𝑥̅) of the nonlinear 

function results in a strongly biased mean (red dotted) and a totally different distribution of 𝑃𝑦 

(red line). On the one hand, this is reasoned to the fact that the WSLR calculates an approximate 

expected Jacobian whereas the EKF simply calculates the Jacobian at the prior mean 𝑥̅. On the 

other hand, the WSLR considers a non-zero bias 𝑏, whereas the first order Taylor series approx-

imation of the EKF Jacobian drops this term [Mer04b]. 

A.4.1 Unscented Kalman Filter Algorithm 

In order to achieve higher accuracy, the unscented Kalman filter (UKF) calculates the mean and 

the covariance from a set of disturbed state vectors, by use of the unscented transformation of 

the sigma points (SP) (for more details see Chapter A.4). Thereby, the Jacobians of 𝒇(𝒙) and 

𝒉(𝒙) are not needed for the approximation of the nonlinear prediction model. The structure of 

the equation set, containing prediction and update step, is similar to the one of the EKF (App. 

Table A.3). However, the calculation of the covariance matrix requires 2𝑛 + 1 operations to 

integrate the nonlinear system from the last to the actual time instant (𝑿(𝑘|𝑘−1) calculation step 

in App. Table A.6) and is therefore computationally costly. The symmetry of all the involved 

matrices is fully exploited to reduce computational costs. 

All square-root matrix operations are done by the use of a Cholesky decomposition [And99]. 

This decomposition is possible due to the fact that the covariance matrix is symmetric positive 

definite. For all calculus with the decomposed matrix only the lower triangular part of the solu-
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tion is used. 𝑿(𝑘|𝑘−1) denotes the propagation from time step 𝑘 − 1 to 𝑘 through the continuous 

nonlinear model by the application of a discrete integration method (e.g. Runge-Kutta 4). In the 

following App. Table A.4 and App. Table A.5 a list of the tuning parameters with typical de-

fault values for the UKF is given. The algorithm itself with additive Gaussian white noise 𝑸,𝑹 

is sketched in the pseudo code in App. Table A.6. 

App. Table A.4: List of UKF parameters 

Parameter  Description 

𝑛 Number of states 

𝛼 Spread of sigma points around the actual mean (e.g. 10−4 ≤ 𝛼 ≤ 1) 

𝜅 Scaling kurtosis of sigma points (Default = 0, or 3 − 𝑛) 

𝛽 Characteristic of the distribution of noise process (For Gaussian 2 is optimal) 

 

App. Table A.5: List of pre-calculated UKF weightings 

Weight Description 

𝜆 = 𝛼2 ⋅ (𝑛 + 𝜅) − 𝑛 Scaling parameter 

𝑎 =  𝛼2 ⋅ (𝑛 + 𝜅) Denominator argument of weightings 

𝑤0
m =

𝜆

𝑎
 Weighting of unmodified mean prediction 

𝑤0
c =

𝜆

𝛼 + 1 − 𝛼2 + 𝛽
 Weighting of unmodified output mean prediction 

𝑤𝑖
m = 𝑤𝑖

c =
1

2 ⋅ 𝑎
 ; 𝑖 = 1,… ,2𝑛 Weighting of sigma points of states and outputs 

𝛾 = √𝛼2 ⋅ (𝑛 + 𝜅) Weighting of square-root of covariance from 𝑘 − 1 
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App. Table A.6: The unscented Kalman filter algorithm 

 

Initialization: 

𝒙̂0
+ = E(𝒙0)  

𝑷0
+ = E((𝒙0 − 𝒙̂0

+)(𝒙0 − 𝒙̂0
+)𝑇) 

for 𝑘 = 1,2, … (𝑘 ∈ ℕ+): 

Predict:                           𝜲𝑘−1 = [𝒙̂𝑘−1, 𝒙̂𝑘−1 + 𝛾 ⋅ √𝑷𝑘−1
+ , 𝒙̂𝑘−1 − 𝛾 ⋅  √𝑷𝑘−1

+ ]  

𝜲𝑘|𝑘−1 = 𝒇𝑘|𝑘−1(𝜲𝑘−1, 𝒖𝑘−1) 

𝒙̂𝑘
− = ∑𝑤𝑖

m ⋅

2⋅𝑛

𝑖=0

𝜲𝑖,𝑘|𝑘−1 

𝑷𝑘
− =∑𝑤𝑖

c ⋅

2⋅𝑛

𝑖=0

[𝜲𝑖,𝑘|𝑘−1 − 𝒙̂𝑘
−][𝜲𝑖,𝑘|𝑘−1 − 𝒙̂𝑘

−]
𝑇
+ 𝑸  

𝜲′𝑘 = [𝒙̂𝑘
−, 𝒙̂𝑘

− + 𝛾 ⋅ √𝑷𝑘
−, 𝒙̂𝑘

− − 𝛾 ⋅ √𝑷𝑘
−] 

𝒀𝑘 = 𝒉(𝑿′𝑘) 

𝒚̂𝑘
− =∑𝑤𝑖

m ⋅

2⋅𝑛

𝑖=0

𝒀𝑖,𝑘 

Correct:                              𝑷𝒚𝑘 =∑𝑤𝑖
c ⋅

2⋅𝑛

𝑖=0

[𝒀𝑖,𝑘 − 𝒚̂𝑘
−][𝒀𝑖,𝑘 − 𝒚̂𝑘

−]
𝑇
+ 𝑹 

𝑷𝒙𝑘𝒚𝑘 =∑𝑤𝑖
c ⋅

2⋅𝑛

𝑖=0

[𝜲𝑖,𝑘|𝑘−1 − 𝒙̂𝑘
−][𝒀𝑖,𝑘 − 𝒚̂𝑘

−]
𝑇

 

𝑲𝑘 = 𝑷𝒙𝑘𝒚𝑘 ⋅ 𝑷𝒚𝑘
−1 

𝒙̂𝑘
+ = 𝒙̂𝑘

− +𝑲𝑘 ⋅ (𝒚𝑘
m − 𝒚̂𝑘

−) 

𝑷𝑘
+ = 𝑷𝑘

− −𝑲𝑘 ⋅ 𝑷𝑦𝑘 ⋅ 𝑲𝑘
𝑇 

 

 

At this point the UKF algorithm (see App. Table A.6) is compared with the WSLR method, to 

show up its implicit context to the WSLR as mentioned in the last section. The calculation of 

the covariances 𝑷𝒌
−, 𝑷𝒚𝑘 , 𝑷𝒙𝑘𝒚𝑘 is performed in a similar way, besides adding additive uncertain-

ties 𝑸,𝑹, like in eq. (A.25) and eq. (A.31). Another interesting point is the calculation of the 

Kalman gain 𝑲𝑘 = 𝑷𝒙𝑘𝒚𝑘 ⋅ 𝑷𝒚𝑘
−1 . It optimally propagates the new information of the measure-

ment reversely in the state-space. Comparing it with the WSLR gain 𝑨 (eq. (A.30)), this can be 

interpreted as propagating the innovation information downwards (from 𝑦-space to the 𝑥-space) 

using a statistically linearized inverse observation function [Mer04b]. 
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A.4.2 Square-Root Unscented Kalman Filter Algorithm 

The equations of the square-root unscented Kalman filter (SR-UKF) are identical to the UKF, 

with the distinction, that the postitive defintites of the covariance matrices are guaranteed to be 

compututionaly efficient. In the SR-UKF implementation, the Cholesky factors 𝐶𝑷𝑘
−, 𝐶𝑷𝑘

+ are 

propagated directly and the refactorization of the covariance matrices is avoided through rank-

one updates of the Cholesky matrix [Mer01]. In this way, it is ensured that the Cholesky factor 

is always regular, which retains numerical robustnes of the algorithm. Moreover, the gain 

matrix 𝑲𝑘 is determined as the solution of the linear equation system  

 𝑲𝑘 ⋅ 𝑷𝒚𝑘 = 𝑷𝒙𝑘𝒚𝑘 (A.34) 

that can be more efficiently solved by utilizing the Cholesky factorization: 

 𝑲𝑘 = 𝑷𝒙𝑘𝒚𝑘 ⋅ (𝐶𝑷𝒚𝑘
′ 𝐶𝑷𝒚𝑘)

−1
 (A.35) 

In App. Table A.7 the algorithm of the SR-UKF is given and the most important numerical 

operators are explained in the following section. LQ denotes the transpose of the QR-

decomposition in order to be consistent with the other lower triangular operations 

(e.g. Cholesky decomposition). The matrix 𝑸 is not computed directly to minimize the number 

of necessary operations and only 𝑹 is calculated (𝑨 = 𝑸𝑹 ∈ ℝm×n). The operation 

cholupd(𝐶𝑷, 𝑣, ±1) denotes a rank one update of a Cholesky factorized matrix 𝐀 = 𝐋T ⋅ 𝐋, see 

[Seg07], [Don79]. It computes the lower triangular matrix 𝑳∗ = 𝑳 ± 𝒗𝒗𝑇 that ensures the posi-

tive definiteness of matrix  𝑨∗ = 𝑳𝑇∗ ⋅ 𝑳∗ and makes the SR-UKF algorithm more robust against 

numerical instability than the original UKF algorithm (see App. Table A.6). The parameters and 

pre-calculated weights are the same as in the case of the UKF algorithm (see App. Table A.4 & 

App. Table A.5). 
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App. Table A.7: The square-root unscented Kalman filter algorithm 

 

Initialization: 

𝒙̂0
+ = E(𝒙0)  

𝐶𝑷0
+ = chol (E((𝒙0 − 𝒙̂0

+)(𝒙0 − 𝒙̂0
+)𝑇)) 

for 𝑘 = 1,2, … (𝑘 ∈ ℕ+): 

Predict:                              𝜲𝑘−1 = [𝒙̂𝑘−1, 𝒙̂𝑘−1 + 𝛾 ⋅ 𝐶𝑷𝑘−1
+ , 𝒙̂𝑘−1 − 𝛾 ⋅ 𝐶𝑷𝑘−1

+ ] 

𝜲𝑘|𝑘−1 = 𝒇𝑘|𝑘−1(𝜲𝑘−1, 𝒖𝑘−1) 

𝒙̂𝑘
− = ∑𝑤𝑖

m ⋅

2⋅𝑛

𝑖=0

𝜲𝑖,𝑘|𝑘−1 

𝐶𝑷𝑘
− = LQ ([√𝑤1

c ⋅ (𝜲1:2⋅𝑛,𝑘|𝑘−1 − 𝒙̂𝑘
−),√𝑸 ])    

𝐶𝑷𝑘
− = cholupd(𝐶𝑷𝑘

−, 𝜲𝑘|𝑘−1 − 𝒙̂𝑘
−, 𝒘0

c) 

𝜲′𝑘 = [𝒙̂𝑘
−, 𝒙̂𝑘

− + 𝛾 ⋅ 𝐶𝑷𝑘
−, 𝒙̂𝑘

− − 𝛾 ⋅ 𝐶𝑷𝑘
−] 

𝒀𝑘 = 𝒉(𝑿′𝑘) 

𝒚̂𝑘
− =∑𝑤𝑖

m ⋅

2⋅𝑛

𝑖=0

𝒀𝑖,𝑘 

Correct:                             𝐶𝑷𝑦𝑘 = LQ ([√𝑤1
c ⋅ (𝒀1:2⋅𝑛,𝑘 − 𝐲̂𝑘

−), √𝑹 ]) 

𝐶𝑷𝑦𝑘 = cholupd(𝑺𝑦𝑘 , 𝒀0,𝑘 − 𝐲̂𝑘
−, 𝒘0

c) 

𝑷𝒙𝑘𝒚𝑘 =∑𝑤𝑖
c ⋅

2⋅𝑛

𝑖=0

[𝜲𝑖,𝑘|𝑘−1 − 𝒙̂𝑘
−] [𝒀𝑖,𝑘 − 𝐲̂𝑘

−]
𝑇

 

𝑲𝑘 = 𝑷𝒙𝑘𝒚𝑘 ⋅ (𝐶𝑷𝒚𝑘
′ 𝐶𝑷𝒚𝑘)

−1
 

𝒙̂𝑘
+ = 𝒙̂𝑘

− +𝑲𝑘 ⋅ (𝒚𝑘
m − 𝒚̂𝑘

−) 

𝑼 = 𝑲𝑘 ⋅ 𝐶𝑷𝑦𝑘  

𝐶𝑷𝑘
+ =  cholupd(𝐶𝑷𝑘

−, 𝑼,−1) 
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A.5 Linear Moving Horizon Estimation 

This special estimation algorithm makes use of several past measurements in a static moving 

window to improve the state estimate at the current time instance 𝑡𝑘. Referring to [Sim10], the 

idea of the moving horizon estimator (MHE) is the reformulation of the fundamental optimiza-

tion objective of the Kalman filter. For the general nonlinear case the minimization problem can 

be defined as: 

min
𝝃𝑘
∥ 𝒙0 − 𝒙̂0 ∥𝑰0+

2 +∑ ∥ 𝒚𝑖
m − 𝒉(𝒙𝑖) ∥𝑹−1

2

𝑁

𝑖=1

+∑ ∥ 𝒙𝑖+1 − 𝒇(𝒙𝑖) ∥𝑸−1
2

𝑁−1

𝑘=0

 

𝝃𝑘 = (𝒙0
𝑇 , 𝒙1

𝑇 , … , 𝒙𝑁
𝑇 )𝑇 

(A.36) 

   s. t.  𝐠(𝝃𝑘) = 0 (A.37) 

            𝐜(𝝃𝑘) ≤  0 (A.38) 

The two additional equations (A.37) and (A.38) incorporate constraints to the states at the time 

instances 𝑘 = 1,… ,𝑁. Since the number of measurements would increase with every time 

step 𝑘, also the dimension of the optimization problem would grow tremendously and by this 

the necessary calculation time. In order to reduce it, a moving window (with 𝑀 steps) is defined 

that gives a good tradeoff between accuracy and efficiency: 

min
𝝃𝑘
∥ 𝒙𝑘−𝑀 − 𝒙̂𝑘−𝑀

+ ∥
𝑰𝑘−𝑀
+
2 + ∑ ∥ 𝒚𝑖

m − 𝒉(𝒙𝑖) ∥𝑹−1
2

𝑘

𝑖=𝑘−𝑀

+ ∑ ∥ 𝒙𝑖 − 𝒇(𝒙𝑖−1) ∥𝑸−1
2

𝑘

𝑖=𝑘−𝑀+1

 

(A.39) 

The dimension of the optimization problem is thereby reduced to (𝑁 −𝑀 + 1). For the initiali-

zation of the MHE filter the information matrix 𝑰𝑘−𝑀
+  , which is the inverse of the a posteriori 

covariance matrix 𝑷𝑘−𝑀
+ , needs to be calculated e.g. by the use of the standard EKF algorithm 

(compare App. Table A.3), wherein 𝑰𝑘−𝑀
+ = (𝑷𝑘−𝑀

+ )−1. 

In the following, the solution of the optimization problem eq. (A.39) with respect to eq. (A.37) 

and eq. (A.38) for a linear prediction model is sketched. The aim is to have a representation that 

can be solved by a QP solver (such as QL [Sch05]). For this, it is necessary to bring eq. (A.40) 

to the QP standard form: 

 

𝝃𝑘
∗ = argmin

𝝃𝑘

(
1

2
𝝃𝑘
𝑇𝑮𝝃𝑘 + 𝒄

𝑇𝝃𝑘) 

s. t.  𝝃𝑘min ≤ 𝝃𝑘 ≤ 𝝃𝑘max 

       𝑨 ⋅ 𝝃𝑘 = 𝒃 ;  𝑳 ⋅ 𝝃𝑘 ≥ 𝒌 

(A.40) 

Starting with the first term of the minimization problem in eq. (A.39) the following expression 

can be derived: 
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∥ 𝒙𝑘−𝑀 − 𝒙̂𝑘−𝑀
+ ∥

𝐼𝑘−𝑀
+
2 = ∥ 𝑰𝑘−𝑀

+ ⋅ (𝒙𝑘−𝑀 − 𝒙̂𝑘−𝑀) ∥2 

= (𝒙𝑘−𝑀 − 𝒙̂𝑘−𝑀
+ )𝑇𝑰𝑘−𝑀

𝑇 𝑰𝑘−𝑀(𝒙𝑘−𝑀 − 𝒙𝑘−𝑀
+ ) 

= 𝒙𝑘
𝑇 ⋅ 𝑰𝑘−𝑀 ⋅ 𝒙𝑘−𝑀 − 2𝒙𝑘−𝑀

+𝑇 𝑰𝑘−𝑀 ⋅ 𝒙𝑘−𝑀 

(A.41) 

The second term is expanded as follows: 

∥ 𝒚𝑖
m − 𝒉(𝒙𝑖) ∥𝑹−1

2 = ∥ 𝑹−1 ⋅ (𝒚𝑖
m − 𝒉(𝒙𝑖)) ∥2 

= (𝒚𝑖
m − 𝒉(𝒙𝑖))

𝑇
𝑹−𝑇𝑹−1(𝒚𝑖

m − 𝒉(𝒙𝑖)) 

= 𝒉𝑇(𝒙𝑖) ⋅ 𝑹
−𝑇𝑹−1 ⋅ 𝒉(𝒙𝑖) − 2𝒉

𝑇(𝒙𝑖)𝑹
−𝑇𝑹−1 ⋅ 𝒚𝑖 

 𝑯𝑖 =
𝜕𝒉

𝜕𝒙
|
𝒙𝑖

,    𝒉(𝒙𝑖) = 𝑯𝑖 ⋅ 𝒙𝑖 

𝑹inv = 𝑹
−𝑇𝑹−1 

 = 𝒙𝑖
𝑇 ⋅ 𝑯𝑖

𝑇𝑹inv𝑯𝑖 ⋅ 𝒙𝑖 − 𝒙𝑖
𝑇 ⋅ 2𝑯𝑇𝑹inv ⋅ 𝐲𝑖

m 

= 𝒙𝑖
𝑇 ⋅ 𝑯𝑖

𝑇𝑹inv𝑯𝑖 ⋅ 𝒙𝑖 − 2 𝒚𝑖
𝑇𝑹inv

𝑇 𝑯 ⋅ 𝒙𝑖 

(A.42) 

Finally, the third part of the optimization objective can be reformulated in this way: 

∥ 𝒙𝑖 − 𝒇(𝒙𝑖) ∥𝑸−1
2 = (𝒙𝑖 − 𝒇(𝒙𝑖−1))

𝑇
𝑸−𝑇𝑸−1(𝒙𝑖 − 𝒇(𝒙𝑖−1)) 

= 𝒇𝑇(𝒙𝑖−1) ⋅ 𝑸
−𝑇𝑸−1 ⋅ 𝒇(𝒙𝑖−1) − 𝒇

𝑇(𝒙𝑖−1) ⋅ 𝑸
−𝑇𝑸−1 ⋅ 𝒙𝑖 

 −𝒙𝑖𝑸
−𝑇𝑸−1𝒇(𝒙𝑖−1) 

𝑭𝑖−1 =
𝜕𝒇

𝜕𝒙
|
𝒙𝑖−1

,𝜱𝑖−1 = exp(𝑭𝑖−1 ⋅ 𝑇𝑠) , 𝒇(𝒙𝑖−1) = 𝜱𝑖−1 ⋅ 𝒙𝑖−1 

𝑸inv = 𝑸
−𝑇𝑸−1 

 =  𝒙𝑖−1
𝑇 ⋅ 𝜱𝑖−1

𝑇 𝑸inv𝜱𝑖−1 ⋅ 𝒙𝑖−1 

−𝒙𝑖−1
𝑇 ⋅ 𝜱𝑖−1

𝑇 𝑸inv ⋅ 𝒙𝑖 − 𝒙𝑖−1
𝑇 ⋅ 𝑸inv𝜱𝑖−1 ⋅ 𝒙𝑖−1 

(A.43) 

To achieve the QP interface eq. (A.40), eq. (A.41), eq. (A.42), and eq. (A.43) are rearranged in a 

matrix formulation 𝑮 and vector 𝒄𝑇 formulation: 

𝝃𝑘 = (

𝒙𝑘−𝑀
𝒙𝑘−𝑀+1
⋮
𝒙𝑘

) ;  𝜱𝑖
𝑄𝑄 = 𝜱𝑖

𝑇𝑸𝑖𝑛𝑣𝜱𝑖 ;  𝑯𝑖
𝑅𝑅 = 𝑯𝑖

𝑇𝑹𝑖𝑛𝑣𝑯𝑖 

𝑮 = 

[
 
 
 
 
 
 
 𝑰𝑘−𝑀 +𝜱𝑘−𝑀

QQ −𝜱𝑘−𝑀
𝑇 𝑸inv 0 ⋯ 0 0

−𝑸inv𝜱𝑘−𝑀 𝑯𝑘−𝑀
𝑅𝑅 +𝜱𝑘−𝑀+1

𝑄𝑄 −𝜱𝑘−𝑀+1
𝑇 𝑸inv 0 ⋮ 0

0 −𝑸inv𝜱𝑘−𝑀+1 𝑯𝑘−𝑀+1
𝑅𝑅 +𝜱𝑘−𝑀+2

𝑄𝑄 ⋱ 0 ⋮

⋮ 0 ⋱ ⋱ −𝜱𝑘−1
𝑇 𝑸inv 0

0 ⋮ 0 −𝑸inv𝜱𝑘−1 𝑯𝑘−1
𝑅𝑅 +𝜱𝑘−1

𝑄𝑄 −𝜱𝑘−1
𝑇 𝑸inv

0 0 ⋯ 0 −𝑸inv𝜱𝑘−1 𝑯𝑘
𝑅𝑅

 

]
 
 
 
 
 
 
 

 

𝒄𝑇 = (−2𝒙𝑘−𝑀
𝑇 𝑰𝑘−𝑀 −2𝑯𝑇𝑹inv𝒚𝑘−𝑀+1 ⋯ −2𝑯𝑇𝑹inv𝒚𝑘) 

(A.44) 
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A.6 Kalman Filter based Parameter Estimation 

In this brief chapter a description of the most important parameter estimation approach is given. 

A.6.1 SR-UKF Parameter Estimation 

The SR-UKF parameter estimation algorithm is a computationally efficient version O(𝑀𝐿2) and 

can be found in [Mer01]. It makes use of an exponential weighting of past data. The forgetting 

factor γ ≈ 0.9995 is similar to the WSLR approach (see Chapter A.3.1) and therefore avoids 

the costly O(𝐿3) QR and Cholesky operations which are necessary in the state estimation filter 

algorithm [Mer01]. The algorithm is given in App. Table A.8. 

App. Table A.8: The square-root unscented Kalman filter parameter estimation algorithm 

 

Initialization: 

𝒘̂0
+ = E(𝒘0) 

𝐶𝑷𝑤0
+ = chol (E((𝒘0 − 𝒘̂0

+)(𝒘0 − 𝒘̂0
+)𝑇)) 

for 𝑘 = 1,2, … (𝑘 ∈ ℕ+): 

Predict:                                   𝒘̂𝑘
− = 𝒘̂𝑘−1

+  

𝐶𝑷𝒘𝑘
+ = 𝛾−1 2⁄ ⋅ 𝐶𝑷𝑤𝑘

+  

𝑾𝑘−1 = [𝒘̂𝑘 , 𝒘̂𝑘 + 𝛾 ⋅ 𝐶𝑷𝒘𝑘
+ , 𝒘̂𝑘 − 𝛾 ⋅ 𝐶𝑷𝒘𝑘

+ ] 

𝑫𝑘|𝑘−1 = 𝒉(𝒇𝑘|𝑘−1(𝒙𝑘−1, 𝒖𝑘−1,𝑾𝑘−1)) 

𝒅̂𝑘
− = ∑𝒘𝑖

m ⋅

2⋅𝑛

𝑖=0

𝑫𝑖,𝑘|𝑘−1 

Correct:                              𝐶𝑷𝒅𝑘 = LQ([√𝒘1
c ⋅ (𝑫1:2⋅𝑛,𝑘 − 𝐰̂𝑘

−),√𝑹𝑤  ]) 

𝐶𝑷𝒅𝑘 = cholupd(𝐶𝑷𝒅𝑘 , 𝑫0,𝑘 − 𝐝̂𝑘
−, 𝒘0

c) 

𝑷𝒘𝑘𝒅𝑘 =∑𝒘𝑖
c ⋅

2⋅𝑛

𝑖=0

[𝑾𝑖,𝑘|𝑘−1 − 𝒘̂𝑘
−] [𝑫𝑖,𝑘|𝑘−1 − 𝐝̂𝑘

−]
𝑇

 

𝑲𝑘 = 𝑷𝒘𝑘𝒅𝑘 ⋅ (𝐶𝑷𝒅𝑘
′ ⋅ 𝐶𝑷𝒅𝑘)

−1
 

𝒘̂𝑘
+ = 𝒘̂𝑘

− +𝑲𝑘 ⋅ (𝒚𝑘
m − 𝒅̂𝑘

−) 

𝑼 = 𝑲𝑘 ⋅ 𝐶𝑷𝒅𝑘  

𝐶𝑷𝒘𝑘
+ =  cholupd(𝐶𝑷𝒘𝑘

− , 𝑼, −1) 

 

 

  



158 Appendix - B 

B Implementation of the DLR Kalman Filter Library 

This chapter is an extended version of [Bre11c] and [Bre14b]. The implementation is based on 

an extended FMI 2.0 RC1 implementation [Mod13] an international standard for the exchange 

of models between different simulation tools e.g. multi-body or electric circuit simulation. 

Through the standardized interface consisting of C-code and/or binary model files and the mod-

el description in a defined XML scheme it is possible to use these models also for extended 

applications, besides simulation, as it is done in the DLR Kalman Filter Library. 

B.1 FMI for State Estimation with Dymola/Modelica 

The standard FMI co-simulation interface allows integrating eq. (A.17) from sample instant 

𝑡𝑘−1 to 𝑡𝑘 with function fmiDoStep(..) and therefore computing eq. (A.18). In standard co-

simulation the continuous-time states of a model are hidden in the co-simulation slave 

(see Chapter 4 in [Mod13]). However, for state estimation the states need to be explicit and it 

must be possible to reset the states at sample instants, see Chapter 4.2.2. In order to achieve this, 

Dymola 2014 FD01 and later versions which have support for FMI 2.0 co-simulation according 

to [Mod13], have been extended with the needed features. Especially,  

 the continuous-time states are reported in the modelDescription.xml file under ele-

ment ModelStructure,  

 it is possible to explicitly set the continuous-time states with fmiSetReal(..) before 

fmiDoStep(..) is called, 

 it is possible to inquire the actual values of all variables with fmiGetReal(..) after 

fmiSetReal(..) was called, without an fmiDoStep(..) in between, 

 when importing an FMU for co-simulation into Modelica, Dymola optionally generates 

the Modelica code according to the FMUImportTemplate package shown in the next 

section. This package serves as interface to access the needed FMI functionality from a 

Modelica model or function. 

B.2 The FMU Import Template Package 

Importing an FMU means to generate a package that contains all the functionality needed to 

simulate the FMU or use it in a state estimator. For this the template package FMUImportTem-

plate is provided, see the code excerpt and the figure below. The imported FMU extends from 

the FMUImportTemplate and redeclares all elements. 

 

partial package FMUImportTemplate  

  constant Integer nx=1; 

  …   

  constant Integer id_x[nx]; 

  … 

  constant String stateNames[nx]; 

  … 

  replaceable model SimulationModel 

  end SimulationModel; 

 

  replaceable model InitializationModel 
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    fmiModel fmi; 

    parameter Real fmiInitOk(fixed=false); 

  end InitializationModel; 

  

 

 

  replaceable partial class fmiModel 

    extends ExternalObject; 

    function constructor 

      … 

    end constructor; 

  … 

  end fmiModel; 

 

  replaceable function fmiDoStep 

      input fmiModel fmi; 

      … 

  end fmiDoStep;     

  … 

end FMUImportTemplate; 

Important dimensions of the FMU such as the number of continu-

ous states nx, inputs nu and outputs ny are set in the imported 

FMU package. Moreover, the FMI references are available by the 

vectors id_x, id_dx, id_u and id_y for state, state derivative, 

input and output variables. It is also important to get variable 

names for states, inputs and outputs. Otherwise the order of the 

components in the vectors x, u, y would be only visible by user-

unfriendly reference values instead of variable names. The names 

are used in the parameter GUIs of the filter model in the next sub-

section and in the input and output bus of a filter model. 

The imported FMU package contains two models: Simula-

tionModel and InitializationModel. The model Simula-

tionModel is a fully operating Modelica model (with inputs and 

outputs) that wraps the extended FMU 2.0 for co-simulation 

whereas in InitializationModel only the FMU is instantiated 

by the external object fmiModel and the FMI initialization phase 

is executed. The InitializationModel is used in a Kalman 

filter model; the SimulationModel is contained for completeness 

to use the imported FMU package also for other applications like a 

“real” FMU for co-simulation in the Modelica simulation environment. 

The FMU package provides interface functions to all (or at least 

most) of the functions defined in the FMI co-simulation stand-

ard 2.0. For a user-convenient handling of the FMU import 

process, it is desirable to import an FMU as a sub-package into 

an existing Modelica package. The default package is the package FMUContainer that hosts 

several imported FMUs, see figure on the right side.  
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B.3 Model Functions for State Estimators 

The state estimator algorithms are implemented with Modelica functions that provide the need-

ed model evaluations. In partial package BaseFunctions the interfaces of these functions are 

defined and in package SystemFunctions the function prototypes are collected. The latter are 

replaceable functions that provide the needed functionality of Table 4.3 (the right column of this 

table lists the name of the function). 

For example, partial function fBase is defined as: 

 

partial function fBase "Base class of the 

          state equation dx/dt = f(x,u,t)" 

  input Integer nx "Number of states"; 

  input Integer nu "Number of inputs"; 

  input Real x[nx] "States"; 

  input Real u[nu] "Inputs"; 

  input Modelica.SIunits.Time t "Time"; 

  output Real dxdt[nx] "Derivatives"; 

end fBase; 

 

The dimensions nx, nu are conceptually not necessary, because the dimensions could be de-

termined by the size of the vectors x and u. The function prototypes are collected in package 

SystemFunctions: 

 

partial package SystemFunctions 

  replaceable function f 

    extends fBase; 

  end f; 

  … 

  replaceable function integrator 

     extends integratorBase; 

  end integrator; 

end SystemFunctions; 

 

For a particular model, an implementation of the SystemFunctions functions has to be provid-

ed. For FMUs, this is performed with the generic package FMISystemFunctions. The imple-

mentation is based on the FMUImportTemplate package and holds therefore for every FMU 

that extends from this template package. 

 

package FMISystemFunctions 

  extends SystemFunctions; 

  replaceable package FMU  

           constrainedby FMUImportTemplate; 

  redeclare function extends f 

   input FMU.fmiModel fmi; 

  algorithm  

    FMU.fmiSetReal(fmi, FMU.id_u, u); 

    FMU.fmiSetReal(fmi, FMU.id_x, x); 

    dxdt := FMU.fmiGetReal(fmi, FMU.id_dx); 

  end f;… 

  redeclare function extends integrator 

    input FMU.fmiModel fmi; 

  algorithm  

    FMU.fmiSaveFMUState(fmi); 

    FMU.fmiSetReal(fmi, FMU.id_u, u); 

    FMU.fmiSetReal(fmi, FMU.id_x, x); 

    FMU.fmiDoStep(fmi, t, dt, 0); 

    xNew := FMU.fmiGetReal(fmi, FMU.id_x); 

    FMU.fmiRestoreFMUState(fmi); 

  end integrator; 

end FMISystemFunctions; 
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The system functions f, h, integrator can be directly implemented with functions provided in 

FMUImportTemplate. The Jacobians fx and hx are implemented by computing them numeri-

cally with finite difference quotients or directional function fmiGetDirectionalDerivatives 

(if the tool supports this for co-simulation), then this function can be directly called and will 

provide a more efficient and reliable evaluation of the Jacobians. 

Dymola supports two techniques for the FMI function fmiDoStep. Either the Sundials solvers 

[Hin05] are used (that are integrators with variable step size and error control) to numerically 

integrate the model equations, or inline integration [Elm95] is applied, which means fixed step 

solvers are embedded in the model equations. The DLR Kalman Filter Library works with both 

techniques. For real-time applications, fixed-step methods have to be used and therefore a Kal-

man filter will usually utilize inline integration. 

The functions fmiSave/RestoreFMUState in the above code fragments are auxiliary functions 

that call the FMI functions fmiGet/Set/FreeFMUstate to enable several calls of fmiDoStep 

starting at the same time instant, as needed, for example, for the UKF algorithm (compare Table 

4.2). 

B.4 Tailored Kalman Filter Models in Modelica 

Based on the imported FMU package an individual Kalman filter model has to be generated. In 

the DLR Kalman Filter Library this can be performed automatically by use of a Modeli-

ca/Dymola scripting function. The idea is to define an input bus InBus and an output bus Out-

Bus for exchanging variables between the filter model and higher level models. The names of 

the bus variables correspond to the variable names of the imported FMU – only “.”, “,”, “[”, “]” 

and “ ” are replaced by “_” due to the Modelica syntax. The bus definitions for the use case 

example in Chapter B.5.1 are listed below: 

 

encapsulated expandable connector InBus 

  import Modelica; 

  extends Modelica.Icons.SignalBus; 

  // Model Inputs 

  Real u; 

  // Measured Model Outputs 

  Real accBody; 

  Real sRel; 

  Real accArmUp; 

end InBus; 

 

 

encapsulated expandable connector OutBus 

  import Modelica; 

  extends Modelica.Icons.SignalBus; 

  // Estimated Model States 

  Real mass_wheel_s; 

  Real mass_wheel_v; 

  Real mass_body_s; 

  Real mass_body_v; 

  Real …FirstOrderShapingFilter_s; 

  // Estimated Model Outputs 

  Real accBody; 

  Real sRel; 

  Real accArmUp; 

end OutBus; 

 



162 Appendix - B 

The advantage of this approach is that not vectors of anonymous variables are defined, but bus 

variables with meaningful names are tailored to each individual FMU. The main state estima-

tion algorithms are implemented in sub-functions and in a partial filter model, e.g. for an UKF 

(see Chapter A.4.1). This model defines several variables and parameters for the filter algorithm 

that is called at each sample point of a sampled integration time interval. In the filter model also 

an instance of InitializationModel of the imported FMU package is included. Together with 

the package FMISystemFunction all necessary parts are put together to run FMI based Kalman 

filter algorithms within a Modelica model.  

 

App. Figure B.1: Parameter menu for output variances with names of output variables 

A further improvement of the user interface compared to the first version proposed in [Bre11c] 

are the filter parameters like state and output variances that are shown in lists with names of the 

respective variables – instead of indices of vectors, see App. Figure B.1. Basically, a matrix is 

defined and then via Dymola specific annotations row and column headings can be added to the 

parameter menu. For example the menu in App. Figure B.2 is defined in the following way: 

 

  parameter Real yData[FMUPackage.ny,1] 

    annotation(Dialog( 

      __Dymola_columnHeadings = 

        {"R[i,i] (outputVariance^2)"}, 

      __Dymola_rowHeadings =  

        {"accBody", "sRel", "accArmUp"})); 

 

In the parameter menu of the filter in App. Figure B.2 the user can press the button on the right 

side of yData to get the menu of App. Figure B.1. Also the model parameters of the FMU may 

be modified by clicking on the button on the right side of ModelParameters.  

 

App. Figure B.2: Menu of a SR-UKF Kalman Filter model 
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B.5 Additional Observer Examples 

In this chapter state estimator examples are discussed that make use of the DLR Kalman Filter 

Library and which are not directly connected to the work in this doctoral thesis. 

B.5.1 Vehicle Vertical Dynamics State Estimator 

As an example application an advanced state estimator for the vertical dynamics of ROboMObil 

by means of the state estimator framework is developed. A more detailed version of this appli-

cation case is available in [Fle13].  

In contrast to fully active suspension systems, semi-active dampers need far less energy 

[Wil94]. Therefore, a diversity of control strategies for semi-active dampers is presented in lit-

erature. An overview about these control strategies can be found in [Sav10] and [Gug08]. As 

most of these strategies need state feedback, but not all states can be measured, state estimation 

becomes an important topic during the design of semi-active suspension systems 𝒙g. 

 

App. Figure B.3: Left: ROMO wheel robot, right: nonlinear two mass system 

The DLR Kalman Filter Library offers an easy to use framework for the development of state 

estimators for nonlinear systems like this semi-active suspension system. Especially, a square-

root based UKF implementation (cf. Chapter A.4.2), named SR-UKF, is well suited for this 

highly nonlinear system, because of its higher order linearization accuracy of mean and covari-

ance. Moreover, the nonlinear parts can be easily taken into account and in comparison to an 

EKF algorithm (cf. Chapter A.3.3) no derivatives and Jacobians are needed. 

The Nonlinear Quarter Vehicle Model 

The suspension system of one wheel robot is modeled as a nonlinear two mass system (see App. 

Figure B.3 – right) as described in [Fle13]. The corresponding implementation in Modelica is 

shown in App. Figure B.4. The model consists of the two masses “mass_body” and 

“mass_wheel”, a linear spring damper component, which approximates the wheel behavior, a 

road model as explained in [Mit04] or [Koc10] and the “body_spring” and “body_damper”.  

𝒙b  

𝒙w  

𝒙g  
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App. Figure B.4: Nonlinear two mass system of a wheel robot in Modelica 

As the motion of these two components are connected to the wheel and body motion by a push 

rod-rocker kinematic (compare App. Figure B.3 – left), the motion and the force of these com-

ponents is scaled by a transmission ratio. Details on the nonlinear characteristics of the 

“body_damper” are shown in [Fle13]. 

The third nonlinearity of the two mass system, besides the transmission ratio and the damper 

characteristic, is the friction of the suspension system. It covers the friction of the damper and of 

all joints of the suspension system. For the state estimation the friction force 𝐹f is modeled 

without stiction by a smooth tanh-switching function: 

 𝐹f = 𝐹f,const ⋅ tanh(𝑣d 𝜖f⁄ ). (B.1) 

Here 𝐹f,const represents a constant sliding friction. The direction of the friction force is deter-

mined according to the current velocity difference 𝑣d between body and wheel. The parameter 

𝜖f is used to define the transitional behavior of the tanh-function.  

EKF

Damper map 

Wheel robot

𝒙̂ 

𝒙0  

𝒚m  

𝐹d (𝒙̂) 

𝐹d  

 

App. Figure B.5: State of the art EKF based vertical dynamics estimator 
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In [Koc10] the proposed Extended Kalman Filter is extended by an extra fictitious input to han-

dle the damper mapping, shown in App. Figure B.5. By using the FMI based DLR Kalman Fil-

ter Library the data table and its interpolation could be fully integrated into the prediction model 

(App. Figure B.7). 

Experimental Setup and Results 

The nonlinear two mass system described in the preceding section is integrated in an SR-UKF 

state estimator using the DLR Kalman Filter Library including the extended FMI 2.0 for co-

simulation interface and inline integration as described in Chapter 4.2. Subsequently the result-

ing estimators are applied to measurement data recorded with ROboMObil on a four-post test 

rig (App. Figure B.6). 

 

App. Figure B.6: ROMO on a four-post test rig 

App. Figure B.7 shows the Modelica model of the SR-UKF vehicle vertical dynamics estimator. 

On the left-hand side the measurement data is read by a “CombiTimeTable” and on the right-

hand side the estimator, called “Filter”, and its corresponding settings block “observerControl” 

can be found. The estimator uses three measurement inputs: the acceleration of the body above 

the wheel, the wheel acceleration and the damper deflection. 

 

App. Figure B.7: SR-UKF vertical dynamics estimator in Modelica 
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The parameters of the estimators, as well as the system covariances, are tuned according to the 

optimization procedure presented in [Fle13]. The measurement covariances are set according to 

the sensor noise. The experimental setup is shown in App. Figure B.8. 

The performance of the estimator, subject to a sine sweep excitation, is shown in App. Figure 

B.9 by comparing the measured and the estimated tire contact forces in the last plot. Please no-

tice that, the tire force 𝐹𝑧measure  is only available on the four-post test rig (App. Figure B.6). It is 

used for validating the estimator performance and not as a measurement output 𝒚m (compare 

experimental setup in App. Figure B.7). It can be seen that the estimator reproduces the meas-

urements and the tire contact force with a good accuracy. 

SR-UKF
Damper map 

Wheel robot

𝑥 𝒙0  

𝒚m  

𝐹d (𝒙) 

 

App. Figure B.8: Proposed vertical dynamics estimator setup  

As the body acceleration sensor has the largest noise level, the weighting of its measurements 

“accBody” was chosen in such a way that the estimator relies more on the damper deflection 

“sRel” and the wheel acceleration “accArmUp”. 
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App. Figure B.9: Comparison results to measurements – “sine sweep” excitation 

B.5.2 Railroad Disk Brake State Estimator 

Besides the already discussed observer example, the author contributed to the modelling and 

setup of a railroad disk brake observer [Hec15], which was part of the Modrio project [Ite12]. In 

App. Figure B.10 the prediction model for the brake disk observer is shown. Here, an axial tem-

perature field of the disk and the friction contacts are modeled in a nonlinear way [Hec15]. With 

real world experiments on the dynamometer rig of Knorr-Bremse it has been possible to identify 

the model parameters using the DLR Optimization Library [Pfe12]. 
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App. Figure B.10: Railroad brake disk prediction model 

An experimental brake disk observer setup using a square-root extended Kalman filter (accord-

ing to Chapter A.4.2) is depicted in App. Figure B.11. In this configuration the measurements 

for the observer were generated by a second brake disk model and disturbed through random 

Gaussian noise to simulate the behavior of real measuring feeders.  
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App. Figure B.11: Railroad brake observer setup 

The observer’s task is to estimate the unknown actual disk temperature and thereby the friction 

coefficient between the brake pads and the disk. This measure is necessary to optimize the brake 

control of modern train systems with the purpose of exact automated braking to standstill in a 

rail way station or to minimize the braking distance. In [Hec15] comprehensive information 

about the detailed modeling approach, the parameters and the optimization procedure are given. 

Since simulative studies with test bench data showed good results, this approach is currently 

further investigated for the possibility of online application capability. 
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C Miscellaneous 

In this chapter different topics are collected which were not suitable for the main part of this 

thesis. 

C.1 The Extended Single Track Observer Synthesis Model 

In this section the extended single track model (ESTM) used for the observer synthesis in Chap-

ter 5.2 is derived. To reduce the model complexity both the front and rear axle are reduced to 

one single wheel each.  
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App. Figure C.1: Vehicle dynamics quantities of the extended single track model 

C.1.1 The Nonlinear Single Track Model Equations 

A good description of the equations of motion is given in [Bue98] appendix A.1 resulting in the 

following set of ordinary differential equations: 

 

d𝛽C

d𝑡
=
−sin(𝛽C) 𝐹𝑥

C + cos(𝛽C) 𝐹𝑦
C

𝑚 ⋅ 𝑣mod
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d𝑡
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d𝑥C
d𝑡
= 𝑣C ⋅ cos (𝜓C + 𝛽

C) 

d𝑦C
d𝑡
= 𝑣C ⋅ sin (𝜓C + 𝛽

C) 

(C.1) 

The vehicle side slip 𝛽C is the angle between the vehicle origin coordinate system and the actual 

vehicle velocity vector 𝒗C. The yaw angle 𝜓C and yaw angle rate 𝜓̇C describe the orientation 
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with respect to a fixed inertial system, in which also the vehicle positions 𝑥C, 𝑦C are expressed. 

Additional quantities are the vehicle mass 𝑚, the yaw moment around the center of gravity 𝑀𝑍
C, 

as well as the corresponding vehicle yaw inertia 𝐽𝑍
C. To prevent division by zero the denomina-

tor of the vehicle side slip state 𝛽̇C is calculated by the use of eq. (C.2) which limits the mini-

mum velocity to 𝑣min
C . 

 𝑣mod
C =

√𝑣C ⋅ 𝑣C + 4 ⋅ 𝑣min
C ⋅ 𝑣min

C

2
 

(C.2) 

To enhance the model fidelity the STM is not linearized in contrast to [Bue98]. The forces 

(marked blue in App. Figure C.1) to the vehicle body center of gravity are calculated by consid-

ering the geometric dependencies to the instantaneous steering angles 𝛿(⋅): 
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(C.3) 

In this set of equations 𝐹s
(⋅)
 denotes the wheel side forces and 𝐹l

(⋅)
 the corresponding longitudi-

nal forces. The distances from the CoG to the rear and front wheels are given by 𝑙(⋅), and the 

external longitudinal 𝐹Air𝑥
C  and lateral 𝐹Air𝑦

C  air drag forces are applied to the vehicle body. The 

lateral forces of the tire are calculated by trigonometric functions based on Pacejka’s tire model 

[Pac12] whose input variable is the wheel’s side slip angle 𝛼W(⋅): 

 

𝐹s
Wf = 𝐷 ⋅ sin (𝐶 ⋅ atan (𝐵 ⋅ 𝛼Wf − 𝐸 ⋅ (𝐵 ⋅ 𝛼Wf − atan(𝐵 ⋅ 𝛼Wf)))) 

𝐹s
Wr = 𝐷 ⋅ sin (𝐶 ⋅ atan (𝐵 ⋅ 𝛼Wr − 𝐸 ⋅ (𝐵 ⋅ 𝛼Wr − atan(𝐵 ⋅ 𝛼Wr)))) 

𝛼Wf = (𝛿Wf) − atan(
𝑣mod
C ⋅ sin(𝛽C) + 𝑙f ⋅ 𝜓̇

C

𝑣mod
C

⋅ cos(𝛽C)) 

𝛼Wr = (𝛿Wr) − atan(
𝑣mod
C ⋅ sin(𝛽C) − 𝑙r ⋅ 𝜓̇

C

𝑣mod
C

⋅ cos(𝛽C)) 

(C.4) 

Herein the factor 𝐵 denotes the tire’s stiffness, 𝐶 is an aspect ratio for the calculated force, 𝐷 the 

maximum value of the curve, and 𝐸 is the modulus of bending rupture. For the longitudinal tire 

dynamics it has been decided to use a simplified modeling without the consideration of the ac-

tual wheel slip, since experiments in combination with observer algorithms yielded to poor as 
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well as unstable results and the vehicle’s acceleration range of the here considered maneuvers is 

limited: 

 

𝐹L
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𝜏W1

𝑅
+
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𝑅
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(C.5) 

Finally, the speed dependent rolling resistance 𝑓rv and the longitudinal air drag  𝐹Air𝑥
C are calcu-

lated according to eq. (C.4). By use of the “if-statement” it is prevented that the vehicle rolls 

backwards in case of standstill on a planar surface and no braking torque is applied: 

 

if 𝑣C > 𝑣min
C   

      𝑓rv = 𝑓R0 +
𝑓R1 ⋅ 𝑣mod

C

100
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𝑣mod
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      𝐹Air𝑥
C = 1 2⁄ ⋅ 𝑐w𝑥 ⋅ 𝜌 ⋅ 𝐴𝑥 ⋅ 𝑣Air

C
𝑥
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else 

         𝑓rv = 0 

      𝐹Air𝑥
C = 0 

end 

(C.6) 

C.1.2 ROboMObil’s Single Track Model Parameter Identification 

In the following the procedure of the STM parameter identification by means of a nonlinear 

model based optimization is described. The derived model is implemented in Modelica and later 

exported as an FMU for the observer, described in Chapter 4. For the optimization process the 

DLR Optimization Library [Pfe12] has been utilized. As a tuning algorithm the pattern search 

method was chosen. For training and validation data real world experiments on vehicle test 

tracks with ROboMObil have been used.  
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App. Figure C.2: ROMO’s ESTM optimization setup 
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In App. Figure C.2 the ESTM parameter optimization setup is shown. On the left side input 

demand data 𝒖 = {𝜏W1 , 𝜏W2 , 𝜏W3 , 𝜏W4 , 𝛿Wf , 𝛿Wr} to ROMO, recorded during real world exper-

iments, are commanded to the ESTM of ROMO. The integral squared deviation between the 

model outputs and the measured data of ROMO (compare Figure 2.16) and the squared position 

distance are taken as the minimization objectives. For identification, driving maneuvers e.g. sine 

sweep steering, sinusoidal steering or free driving were used. For validation, other data sets 

were utilized to guarantee the reliability of the optimization. The outcome of this procedure is 

given in the following table: 

App. Table C.1: ROMO’S ESTM optimized parameters 

Parameter Value Description 

𝑓R0 0.009 First parameter of roll resistance 

𝑓R1  0.2811588 Second parameter of roll resistance 

𝑓R4 0.44906 Fourth parameter of roll resistance 

𝐵 5.1088547 Parameter of Pacjeka’s magic formula 

𝐶 2.0280 Parameter of Pacjeka’s magic formula 

𝐷 724.70 Parameter of Pacjeka’s magic formula 

𝐸 0.8903703 Parameter of Pacjeka’s magic formula 

𝑐w𝑥 0.3 Longitudinal air drag coefficient 

𝜌 1.249512 [N m2⁄ ] Air density 

𝐴𝑥 1.2323485 [m2] Effective flow surface front 

𝑚 1013 [kg] ROboMObil mass 

𝑙f 1.218 [m] CoG to front wheel 

𝑙r 1.182 [m] CoG to rear wheel 

𝑅 0.3722 [m] Wheel radius 

𝐽𝑍
C 1130 [kgm2] Chassis moment of yaw inertia 

  

C.2 ROboMObil’s Multiphysical Modelica Component Models 

In this appendix chapter the most relevant components for ROMO’s multiphysical Modelica 

model are summarized. The focus of their development has been a real-time capable abstraction 

depth that enables the usage on a HIL environment [Rit16] or in complex optimization setups 

where a fast simulation execution is necessary. In this way, it was decided to model the electric 

components as quasi-stationary models with basic transient effects, which can reproduce the 

most relevant losses for the EM framework (cf. Chapter 3). The electric traction and electro-

mechanic steering motors and the electro hydraulic brake are modeled in a dq-frame approach 

(see [Eng10] or the manual of DLR PowerTrain Library [Tob07] – PowerTrain.ElectricDrives) 
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which include all the control loops of the real wheel robots, but do overcome the numerical 

demanding switching of the inverter. The modeled losses are the one in eq. (3.39) already used 

for the physically cost function of the control allocator (compare Chapter 3.5). The steering 

mechanism is depicted in Figure 3.16 and includes the additional losses according to eq. (3.40). 

The battery model applied for the simulative evaluation of the EM is described in Chapter 5.1 in 

detail and is the same as the prediction model for the battery observer. Besides this model, also 

a simplified version of a battery model was developed in the bachelor thesis [Enn13] – super-

vised by the author – for the low voltage backup battery in ROMO’s axle modules. Moreover, 

the models were extended by quasi-stationary thermal models to reproduce the cell heating. 

Further, electric components are the axle module DC/DC buck converters (see Figure 2.12) 

which are based on a power balance principle and reproduce the losses due to the inverter based 

transformation from HV to LV. This model can be found in the DLR PowerTrain Library. RO-

MO’s chassis is modelled as a skate board principle with components from Modelica multi-

body library and fitted with experimental data from real world experiments [Rit16]. The tires 

are described by Pacejka’s MF-Tire 5.2 extended with rolling resistance and losses [Tob16]. For 

these two sets of data, the original tires of ROMO a Nankang 165/35 R17 and the L&N Bridge-

stone 155/55 R18 tire are available. The road to tire contact is realized via a Modelica imple-

mentation of the OpenDRIVE [Vir17] interface which is connected to the VIRES virtual world 

description [Vir17b]. Furthermore, a high fidelity 3D visualization of ROMO and the virtual 

world (e.g. see Figure 3.29) is carried out by means of the DLR Visualization Library [Hel14]. 

C.3 Sensor Analysis of ROboMObil 

Within in the Bachelor thesis project of [Boe13] the latency and noise behavior of ROMO’s 

sensor system have been systematically analyzed. Please note that this is done by experimental 

tests and cross correlation since most of automotive suitable sensors are free running ones – that 

means they do not have an external trigger or synchronization interface and their acquisition 

system does not offer a unique synchronized time stamp. In App. Figure C.3 an improved ver-

sion of the outcome is graphically depicted in a scheduling table with respect to the base clock 

𝑇𝑠 = 4 ms of ROMO’s central control unit (compare Figure 2.16). 
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App. Figure C.3: Time delay scheduling of ROMO’s sensor system 

In the following table a list of the sensor information regarding sensor noise 𝜎𝑠, bias 𝑚 and la-

tency is summarized. The signals are assumed to be disturbed by additive Gaussian white noise. 

App. Table C.2: ROboMObil’s vehicle sensors noise, bias and latency 

OxTS Bias 𝒎 [−] Deviation 𝝈𝒔 [−] Delay [𝐦𝐬] 

𝑎𝑥  [m s2⁄ ] −2.724418224663677e−1 2.769240181700604e−2 16 

𝑎𝑦 [m s2⁄ ] −1.638013449871428e−4 3.138268966012002e−2 16 

𝑎𝑧 [m s2⁄ ] −3.466036054923634e−3 4.848351742705138e−2 16 

𝑣𝑥  [m s⁄ ] −1.183700305488312e−3 1.214962752669004e−2 16 

𝑣𝑦 [m s⁄ ] 4.671748052248540e−3 7.316319010707994e−3 16 

Correvit    

𝑣𝑥  [m s⁄ ] 3.877289277526296e−4 6.842614450089170e−2 24 

𝑣𝑦 [m s⁄ ] −1.942064312033667e−2 6.578393401372411e−2 24 

𝒂𝐖    

𝑎𝑥
W [m s2⁄ ] 1.379990943683445e0 4.937188165827279e−1 4 

𝑎𝑦
W [m s2⁄ ] −1.668700471533053e0 4.840309242271431e−1 4 

𝑎𝑧
W [m s2⁄ ] 9.064704725918237e0 4.546746182918726e−1 4 

 𝒔𝐖    

𝑠W [mm] 3.372870728583747e−1 6.585450722185397e−5 4 

WCU    

𝜔W [rad s⁄ ] −4.197454752096141e−3  3.718427530519079e−2 4 
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𝜔ST [rad s⁄ ] n.a. n.a. 4 

𝜏W [N/m] n.a. n.a. 4 

𝜏ST [N/m] n.a. n.a. 4 

𝛿W [rad] n.a. n.a. 4 
  

C.4 ROboMObil’s Performance Data 

In App. Table C.3 the most relevant performance measures of ROboMObil are listed. 

App. Table C.3: ROboMObil’s performance characteristics 

Performance 
 

Maximum velocity  100 [km h⁄ ] 

0-80 km h⁄  ~10 [s] 

Maximum torque  4 x 160 [Nm] 

Maximum brake-torque 4 x 690 (530 mech.+ 160 elec. ) [Nm]  

Power supply 
 

Battery type Li-Ion  

Number of cells 90s1p 

Traction battery nominal voltage (HV) 342 [V] 

Nominal capacity  13 [kWh] 

On-Board-voltage (LV) 26.8 [V] 

Powertrain 
 

Driving power 4 𝑥 16 [kWh] 

Recuperation power  4 𝑥 16 [kWh] 

Braking system Electro hydraulic by-wire disk brake  

Propulsion method 4 in-wheel permanent magnet synchronous machines 
  

 

In a second table the most relevant electric drive and converter data of ROMO are given: 

App. Table C.4: ROboMObil’s electric drives characteristics 

ROMO traction motor data Type: Proprietary 

𝑃inv,const 80.5 [W] 

𝑘hyst 0.0832 [Ws rad⁄ ] 

𝜏fric 0.1146 [Ws rad⁄ ] 

𝑘eddy 7.6151𝑒−5[Ws2 rad2⁄ ] 

𝑘inv 3.8 [W I⁄ ] 

𝑅s 0.099 [Ohm] 

𝑧p 19 [−] 

𝜓PM 0.0791339 [Wb] 
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ROMO steering motor data Type: Robodrive ILM 70x18 

𝑃inv,const n. a. [W] 

𝑘hyst 0.011 [Ws rad⁄ ] 

𝜏fric 0.2 [Ws rad⁄ ] 

𝑘eddy 4.9𝑒−6[Ws2 rad2⁄ ] 

𝑘inv 𝑛. 𝑎. [W I⁄ ] 

𝑅s 0.0819 [Ohm] 

𝑧p 10 [−] 

𝜓PM 0.0059524 [Wb] 
  

 

C.5 Percentage Goodness of Fit of Two Signals 

For the assessment of the consentaneity of two signals with 𝑛 sample points in the time domain, 

that is easy to interpret, it is necessary to have a significant quantity. For this reason, a normal-

ized root mean square error function is chosen in eq. (C.7) that gives a percentage value for the 

goodness of fit of a time series signal to another reference signal. Originally, this has been im-

plemented for the MATLAB ident toolbox [Lju98] for system identification purposes: 

 Fit [%] =

(

 
 
 

1−
√∑ (|(𝒚𝑖
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2
)𝑛
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1
𝑛
⋅ ∑ 𝒚𝑖

m𝑛
𝑖=1 |

2

)𝑛
𝑖=1
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⋅ 100 (C.7) 

In eq. (C.7) 𝒚m is the reference signal and 𝒚̂ the corresponding estimate (e.g. in a Kalman filter 

application).  

  



176 Appendix - D 

D Related Work 

D.1 List of Publications as Main Author 

The following list includes all peer-reviewed and published articles by the author that are con-

nected to his doctoral thesis project. They are sorted by the date of publication: 

 [Bre14b] Brembeck, J., Pfeiffer, A., Fleps-Dezasse, M., Otter, M., Wernersson, K., & 

Elmqvist, H. (2014). Nonlinear State Estimation with an Extended FMI 2.0 Co-

Simulation Interface. In H. Tummescheit, & K.-E. Arzen (Ed.), Proceedings of 10th 

International Modelica Conference. 96, pp. 53-62. Lund: Linköping University 

Electronic Press. 

 [Bre14]  Brembeck, J., & Winter, C. (2014). Real-Time Capable Path Planning for 

Energy Management Systems in Future Vehicle Architectures. Proceedings of the IEEE 

Intelligent Vehicles Symposium (pp. 599-604). Dearborn, MI, USA: IVS IEEE. 

 [Bre12]  Brembeck, J., & Ritzer, P. (2012). Energy optimal control of an over 

actuated Robotic Electric Vehicle using enhanced control allocation approaches. 

Proceedings of the IEEE Intelligent Vehicles Symposium (pp. 322-327). Alcala de 

Henares, Spain: IVS IEEE. 

 [Bre11c] Brembeck, J., Otter, M., & Zimmer, D. (2011). Nonlinear Observers based 

on the Functional Mockup Interface with Applications to Electric Vehicles. 

Proceedings of 8th International Modelica Conference (pp. 474-483). Dresden, 

Germany: Linköping Electronic Conference Proceedings. 

 [Bre11b] Brembeck, J., & Wielgos, S. (2011). A real time capable battery model for 

electric mobility applications using optimal estimation methods. Proceedings of 8th 

International Modelica Conference (pp. 398-405). Dresden, Germany: Linköping 

Electronic Conference Proceedings. 

 [Bre11]  Brembeck, J., Ho, L. M., Schaub, A., Satzger, C., Tobolar, J., Bals, J., et al. 

(2011). ROMO - The Robotic Electric Vehicle. 22nd IAVSD International Symposium 

on Dynamics of Vehicle on Roads and Tracks. Manchester Metropolitan University: 

IAVSD. 

  



Appendix - D 177 

D.2 List of Publications as Co-Author 

The following list includes all peer-reviewed and published articles on which the author of this 

thesis contributed as a co-author and that are connected to his doctoral thesis project. They are 

sorted by the date of publication: 

 [Rit16b] Ritzer, P., Winter, C., & Brembeck, J. (2016). Experimental Validation of 

Geometric Path Following Control with Demand Supervision on an Over-Actuated 

Robotic Vehicle. Proceedings of the IEEE Intelligent Vehicles Symposium (pp. 539-

545). Gothenburg, Sweden: IVS IEEE. 

 [Win16] Winter, C., Ritzer, P., & Brembeck, J. (2016). Experimental Investigation 

of Online Path Planning for Electric Vehicles. Proceedings of the IEEE International 

Conference on Intelligent Transportation Systems (ITSC) (pp. 1403-1409). Rio de 

Janeiro, Brasil: IEEE. 

 [Rit15]  Ritzer, P., Winter, C., & Brembeck, J. (2015). Advanced Path Following 

Control of an Overactuated Robotic Vehicle. Proceedings of the IEEE Intelligent 

Vehicles Symposium (pp. 1120-1125). Seoul, South Korea: IVS IEEE. 

 [Bue14] Bünte, T., Ho, L. M., Satzger, C., & Brembeck, J. (2014). Central Vehicle 

Dynamics Control of the Robotic Research Platform ROboMObil. ATZelektronik 

worldwide, 9 (3), 58-64. 

 [Fle13]  Fleps-Dezasse, M., & Brembeck, J. (2013). Model based vertical dynamics 

estimation with Modelica and FMI. In T. Kawabe (Ed.), Proceedings of the 7th IFAC 

Symposium on Advances in Automotive Control. 7, pp. 341-346. Tokyo, Japan: Elsevier. 

 [Sat13]  Satzger, C., Brembeck, J., & Otter, M. (2013). Framework for the 

Evaluation of Wheel Torque Blending Algorithms. In T. Kawabe (Ed.), Proceedings of 

the 7th IFAC Symposium on Advances in Automotive Control. 7, pp. 347-352. Tokyo, 

Japan: Elsevier. 

 [Bue11] Bünte, T., Brembeck, J., & Ho, L. M. (2011). Human Machine Interface 

Concept for Interactive Motion Control of a Highly Maneuverable Robotic Vehicle. 

Proceedings of the IEEE Intelligent Vehicles Symposium (pp. 1170-1175). Baden-

Baden, Germany: IVS IEEE. 

D.3 Articles and Reports 

Here all articles and (internal) technical reports are listed that are related to this work: 

 [Rit16]  Ritzer, P., Panzirsch, M., & Brembeck, J. (2016). Robotic Motion - 

Interactive motion simulation of vehicle dynamics. (B. Schäfers-Maiwald, Ed.) 

dSPACE Magazin, 01, 52-57. 

 [Bre13]  Brembeck, J. (2013). Method to extend models for system design to models 

for system operation. Mid-term report ITEA2 - MODRIO, DLR e.V., Weßling. 



178 Appendix - D 

 [Kre13]  Krenn, R., Köppern, J., Bünte, T., Brembeck, J., Gibbesch, A., & Bals, J. 

(2013). Modellbasierte Regelungsansätze für überaktuierte planetare Rover und roboti-

sche Elektromobile. at - Automatisierungstechnik , 61 (3), 183-194. 

 [Sca11]  Schaub, A., Brembeck, J., Burschka, D., & Hirzinger, G. (2011). Robotic 

Electric Vehicle with Camera-based Autonomy Approach. ATZelektronik , 2 (2), 10-16. 

D.4 Supervised Student Theses 

This list contains all student theses supervised by the author: 

 [Win13] Winter, C., Brembeck, J., & Kennel, R. (2013). Online Energy Optimal 

Path Planner for Advanced Electric Vehicles. Master's Thesis, Technische Universität 

München, Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik, Munich, 

Germany. 

 [Rit13]  Ritzer, P., Brembeck, J., & Kennel, R. (2013). Model Based Vehicle 

Dynamics Control for Modern Vehicle Architectures. Master's thesis, Technische 

Universität München, Lehrstuhl für Elektrische Antriebssysteme und 

Leistungselektronik, Munich, Germany. 

 [Boe13] Böck, S., Brembeck, J., & Parzhuber, O. (2013). Sensor-Analyse & -

Modellierung für die zeitliche Synchronisierung der Sensorfusion im 

Forschungsfahrzeug ROboMObil. Bachelor‘s thesis, Hochschule München. 

 [Win13b] Winter, C., & Brembeck, J. (2013). Quadratische Optimierungsprobleme in 

der energieoptimalen Bahnplanung. Intership report, Technische Universität München, 

Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik, Munich, Germany. 

 [Enn13] Ennifar, H., Brembeck, J., Otter, M., & Kennel, R. (2013). Integration of a 

Real-Time Battery Model in a RCP-System and its Implementation on a Research 

Platform. Bachelor's thesis, Technische Unvierstität München, Lehrstuhl für Elektrische 

Antriebssysteme und Leistungselektronik, Munich, Germany. 

 [Win12] Winter, C., Brembeck, J., & Kennel, R. (2012). Aktuelle Algorithmen & 

Methoden zur energieoptimalen Bahnplanung und Bewertung derer Einsetzbarkeit in 

Bezug auf das DLR-ROboMObil. Research practice report, Technische Universität 

München, Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik, Munich, 

Germany. 

 [Bau11] Baumgartner, D., Brembeck, J., Herzog, G., & Kennel, R. (2011). 

Konzeption eines Drive-By-Wire Lenkungsprüfstands mit flexibler Mutlibody-

Simulation im ROboMObil-Projekt. Diploma thesis, Technische Universität München, 

Fachgebiet Energiewandlungstechnik, Munich, Germany. 

  



Appendix - D 179 

 [Rit11]  Ritzer, P., Brembeck, J., & Kennel, R. (2011). Energieoptimale 

Bewegungssteuerung überaktuierter Elektrofahrzeuge. Bachelor's thesis, Technische 

Universität München, Lehrstuhl für Elektrische Antriebssysteme und 

Leistungselektronik, Munich, Germany. 

 [Rit11b] Ritzer, P., Brembeck, J., & Kennel, R. (2011). Energie- und 

Leistungsmanagement im Elektrofahrzeug. Research practice report, Technische 

Universität München, Lehrstuhl für Elektrische Antriebssysteme und 

Leistungselektronik, Munich, Germany. 

  [Eng10] Engst, C., Brembeck, J., & Kennel, R. (2010). Object-Oriented Modelling 

and Real-Time Simulation of an Electric Vehicle in Modelica. Master's thesis, 

Technische Universität München, Lehrstuhl für Elektrische Antriebssysteme und 

Leistungselektronik, Munich, Germany. 

 [Wie10] Wielgos, S., Brembeck, J., Otter, M., & Kennel, R. (2010). Development of 

an Energy Management System for Electric Vehicles Design and System Simulation. 

Master's thesis, Technische Universität München, Lehrstuhl für Elektrische 

Antriebssysteme und Leistungselektronik, Munich, Germany. 


	CoverDissertationBrembeckFinal
	DT_Brembeck17_Final051118



