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Introduction

There are about 4800 known species of frogs that can be found all over the world. There is
also at least one species in mathematics. It can be found in probability theory. Here, frogs
appear as particles in a particle system known as the frog model that belongs to the family
of interacting random walks. This family also includes branching random walks. We will
study these two mathematical models in this thesis.
Let us first explain what interacting random walks are. A random walk on a graph is one of
the most fundamental objects in probability theory. A particle moves from vertex to vertex,
each time choosing its next destination randomly among the neighbouring vertices. To have
interaction, we need more than one particle. An interacting random walk is indeed a system
of finitely or infinitely many particles that simultaneously perform random walks on a graph
and obey rules that govern their coexistence. For example, it might be forbidden for a vertex
to be occupied by more than one particle at a time.
Both models, the frog model and the branching random walks, feature a growing set of
particles that perform nearest neighbour random walks on the d-dimensional lattice Zd.
Interaction between the particles arises whenever a new particle comes into existence. The
time and place of the birth of the new particle depends on the behaviour of the other
particles. Otherwise, the particles move independently in both models.
Though it does not have anything to do with the amphibians, in the frog model the particles
are thought of as frogs. They can be in one of two states, active or sleeping. The model
can informally be described as follows. Consider the d-dimensional lattice Zd and place one
active frog at the origin 0 and one sleeping frog at every other vertex. The active frog jumps
from vertex to vertex according to a nearest-neighbour random walk. Every time it visits
a vertex occupied by a sleeping frog, that frog wakes up by the loud croaking and becomes
active itself. It starts a random walk as well and can also activate sleeping frogs. Thus, we
get increasingly many active frogs leaping around the lattice.
The frog model was first studied in 1999 by Telcs and Wormald in [52] who called it “egg
model”. The term frog model was, according to [43], coined by Durrett. As mentioned, the
frog model is not suitable to describe the behaviour of natural frogs that rarely move in
the described fashion. However, it can be used to model the spread of information or of a
disease. Every active particle carries some information or illness, moves freely around, and
passes it to inactive particles upon meeting them. It can also be interpreted as a thermal
reaction process taking place during the combustion of a solid. Here, the active particles
play the role of diffusing heat, and the sleeping particles represent molecules that are not
yet ignited. See the introduction of [44] and references therein for more information.
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Introduction

The branching random walk that we study in the second part of this thesis also starts with
one particle at 0. At any point in time, every particle first moves randomly to a neighbouring
vertex and then generates offspring at that vertex according to some fixed reproduction
distribution before it dies. We assume that all particles move and reproduce independently
and independent of everything that happened in the past. A priori, it is possible that there
are eventually no more particles and the process dies out. However, we shall always assume
that particles reproduce in such a way that the process survives with positive probability.
Branching random walks are a natural extension of Galton-Watson processes. These only
take the evolution of the number of particles into account, not their locations.
As mentioned, in both models we have a growing set of particles. The aim of this thesis is
to describe the speed of the growth and movement of the cloud of particles. These questions
have so far mainly been studied if the particles perform simple random walks. In this case,
they move in every direction with equal probability. Yet it is also natural to assume that
the system has a drift in one direction. The frogs might, for example, spot a swarm of
juicy flies in the distance and prefer to leap towards it. The particles then move as biased
random walks, choosing to go in drift direction with higher probability than to go in any
other direction. The question how the drift effects the behaviour of the particle system will
accompany us throughout this thesis.
To describe the evolution of the cloud of particles in the frog model mathematically, we
use the concept of recurrence and transience. A particle system is called recurrent, if the
origin is visited infinitely many times by particles with probability one, otherwise it is called
transient. It is known that in the latter case the origin is in fact visited only finitely many
times with probability one. Thus, the cloud of particles moves away from the origin. If
the system is recurrent, then eventually every vertex in the lattice is visited by a particle.
Our results show that in dimension d ≥ 2 both cases can occur depending on the drift. In
contrast, it is shown in [22] that this is not true in dimension d = 1. In that case, the frog
model is transient if the frogs are exposed to a drift, no matter how small the drift may be.
We discuss the model and our findings in detail in Section 1.3.1. The results are stated in
Theorems 1.14, 1.15, 1.16, and 1.17. They also appear in the preprint [16] that is submitted
for publication. This article was written in collaboration with Döbler, Gantert, Höfelsauer
and Popov.
Further, we consider both models in the dimension d = 1 and discuss how fast the set
of occupied sites moves. For the frog model we assume without loss of generality that the
particles have a drift to the right. We derive a formula for the speed of the leftmost occupied
vertex that depends on the drift parameter. We also show that the speed of the rightmost
occupied vertex is a monotone function of the drift parameter and that it is strictly smaller
than 1. These results can be found in Section 1.3.2 in Theorems 1.21, 1.22, and 1.23,
respectively. The distribution of active frogs is of interest in this context as well. It turns
out that the frogs are spread out uniformly in between the leftmost and rightmost occupied
site. See Theorem 1.25. All these results are joint work with Höfelsauer and are published
in [27].
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For the branching random walk we study the speed of the rightmost occupied vertex in
two cases. In the first case, we assume that the particles are moving in an i.i.d. random
environment. This means that the drift experienced by the particles is not the same at
every vertex. In the second case, the particles are restricted to the non-negative integers,
have a bias, and are reflected at 0. In both cases, we show an explicit formula for the speed
of the rightmost occupied vertex involving the large deviation rate function of the underlying
random walk. These models are explained and discussed in Section 3. The results are given
in Theorems 3.5 and 3.7. Lastly, as a technical preparation, a large deviation principle for
random walk with drift and reflection on the non-negative integers is derived in Theorem 3.6.
Before we discuss the two models in more detail in the following chapters, let us briefly
compare them and remark on some of their properties. Pick a particle in the branching
random walk and observe it. At any point in time the position of this singled out particle
has the same distribution as the position of a random walk moving in the same environment.
In the frog model on the other hand, this is not true. Consider the trajectory of one frog. We
can extend it backwards in time by recursively attaching the trajectories of the frogs that
are responsible for activating our chosen frog. Thus, we end up with a trajectory starting
at the origin at time 0. The part that describes the actual trajectory of the active frog
looks like the path of a random walk, but the beginning has a much stronger bias away from
the origin. Therefore, one singled out frog tends to be further away from the origin than a
random walk started at the origin at time 0. This difference can also be seen in Figure 0.1.
The picture shows the trajectories of the frog model and of a branching random walk in
dimension d = 1. In each case, one particle is singled out and its trajectory is highlighted.
The trajectory of the particle in the branching random walk looks like a simple random walk
path while the one of the frog does not.
Another difference between the two models becomes apparent when considering the ge-
nealogical trees. The genealogical tree of the branching random walk is the family tree of
the underlying Galton-Watson process decorated with positions of the various particles. The
frog model can be viewed as a modification of a branching random walk, in which particles
generate two children whenever they are at a vertex that has never been occupied by a par-
ticle before. Using this approach we can construct a family tree for the frog model as well.
The genealogical tree of the branching random walk exhibits self-similarity. Every sub-tree
has the same distribution as the full tree, shifted by the position of the root of the sub-tree.
Once again, the family tree of the frog model does not have this property.
These two properties are repeatedly used in the proofs concerning branching random walks.
They enable us to perform many explicit calculations. Unfortunately, we do not have such
strong tools when dealing with frogs. We can, however, couple the frog model with a more
approachable system. We will e.g. use this method in the proofs concerning recurrence and
transience of the frog model. To show transience, we carefully smuggle more frogs into the
system until we end up with a branching random walk. Transience of this branching random
walk then implies transience of the frog model. To show recurrence, we couple the frog model
with independent site percolation. Roughly speaking, the open cluster containing the origin
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Figure 0.1: The figure shows a simulation of the frog model on the left hand side and one
of a branching random walk on the right hand side. Each picture shows the
first 50 steps of the trajectories of the active, respectively alive particles. The
particles are exposed to the same drift in both models. They go to the right with
probability 0.6 and to the left with probability 0.4. In each case one arbitrary
particle is picked and its trajectory is highlighted as a thick red line.

in the percolation will be a subset of the set of vertices ever visited by active frogs. The
theory of percolation provides us with information on the structure of this open cluster, and
thus on the behaviour of the frogs.
This discussion explains why the results for branching random walks are much more refined
than those for the frog model. As mentioned above, we can derive precise formulas for
the speed of a branching random walk, yet we can only prove qualitative statements about
the speed of the rightmost particle in the frog model. While there are precise criteria for
distinguishing recurrence and transience for branching random walks, we can only prove the
existence of recurrent and transient regimes for the frogs. We believe that indeed a phase
transition between recurrence and transience takes place, but this problem remains open.
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1 The Frog Model

1.1 Description of the model

We briefly review the construction of the frog model in a slightly more general setting than
in the introduction. Consider a graph with a fixed root vertex. Initially, there is one active
particle at the root, and at every other vertex x there is a (possibly zero) number ηx of
inactive particles. All active particles perform nearest neighbour random walks in discrete
time. Whenever an inactive particle is visited by an active particle, the inactive particle
becomes active and and also starts a random walk, independently of the others, and according
to the same dynamics. The active particles are also called awake frogs, and the inactive
particles are referred to as sleeping frogs.
We focus on the frog model on the d-dimensional lattice Zd with d ≥ 1. By the d-dimensional
lattice we mean, with the usual abuse of notation, the graph with vertex set Zd and edge
set {(x, y) ∈ Zd × Zd : ‖x − y‖1= 1}. Here, ‖x‖1=

∑d
i=1 |xi| denotes the 1-norm. Let us

introduce the model for this case in a more formal way. Set Ed = {±ei : 1 ≤ i ≤ d}, where
ei denotes the i-th standard basis vector in Zd, i = 1, . . . , d, and let π : Ed → [0, 1] be a
function with

∑
e∈Ed π(e) = 1. The function π provides the transition probabilities for the

random walks performed by the active particles. A particle at a vertex x jumps to x + e

with probability π(e). The transition probabilities for d = 2 are depicted in Figure 1.1.
Further, let η be a random variable taking values in N0 with P(η ≥ 1) > 0. Now, let
{ηx : x ∈ Zd \{0}} and {(Sxn(i))n∈N0 : i ∈ N, x ∈ Zd} be independent families of i.i.d. random
variables as follows: For every x ∈ Zd the random variable ηx has the same distribution
as η and describes the initial number of sleeping frogs at vertex x. As we assume that
there is one active frog at 0 in the beginning we further set η0 = 1. We call η the initial
distribution of particles. For every x ∈ Zd and i ∈ N the process (Sxn(i))n∈N0 is a discrete
time nearest neighbour random walk with transition function π and starting point x. If
i ≤ ηx, it describes the trajectory of the i-th particle that is initially at vertex x.
For x, y ∈ Zd, x 6= y, we define t(x, y) = min{n ∈ N : Sxn(i) = y, i ≤ ηx}, the first time a
particle initially at x reaches vertex y. Here, as in the next definition, we use the convention
min ∅ =∞. Then

Tx = inf
k∈N, x0,x1,...,xk∈Zd,

x0=0, xk=x

{
t(x0, x1) + t(x1, x2) + . . .+ t(xk−1, xk)

}
is the first time vertex x is visited by an active frog. We call Tx the activation time of x. At
that time all frogs at x are activated and start to follow their respective trajectories. The
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1 The Frog Model

location Zxn(i) of the i-th frog initially at vertex x ∈ Zd at time n ∈ N0 is then given by

Zxn(i) =

{
x for n < Tx,

Sxn−Tx(i) for n ≥ Tx.

We denote the frog model on the d-dimensional lattice Zd with initial distribution η and
underlying transition probabilities π by FM(d, π, η).

0

π(e1)

π(e2)

π(−e1)
π(−e2)

Figure 1.1: The picture on the left shows the set-up at time 0 of the frog model on the lattice
Z2 with initial configuration η ≡ 1. There is one awake frog at 0 and one sleeping
frog at every other vertex. In every step the active frogs independently move to
a neighbouring vertex that is chosen according to the transition function π as
depicted in the right picture.

The first question usually asked about particle systems deals with recurrence and transience.
Is the origin visited infinitely often or does the cloud of particles move away from 0? In the
first case we call the frog model recurrent, in the second transient. More precisely, we use
the following definition.

Definition 1.1. The frog model FM(d, π, η) is called recurrent, if

P(0 is visited infinitely often) = 1

Otherwise, it is called transient.

If the model is recurrent, then all vertices are visited and all particles get activated. The
frog model satisfies a zero-one law. This has recently been shown by Kosygina and Zerner
in [33]. See also Appendix A in [33] for a comment on the slightly different definition of
recurrence used there.

Theorem 1.2 ([33, Theorem 1]). In FM(d, π, η) the probability that the origin is visited
infinitely many times by active frogs is either 0 or 1.

In fact, Kosygina and Zerner show that this zero-one law holds in greater generality. It
e.g. also applies to frog models that live on countably infinite state spaces and have frog
trajectories given by a common transitive and irreducible Markov chain.
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1.2 A short survey on symmetric frogs

As mentioned in the introduction, one of the main topics of this thesis is recurrence and
transience of frogs with drift. We restrict ourselves to the most natural initial distribution
η ≡ 1, i.e. there is one particle at every vertex at time 0. This initial set-up is shown in
Figure 1.1 for d = 2. According to the zero-one law we can classify the transition laws into
a recurrent and a transient class. Our results show that both classes exist. We also present
more quantitative statements. Further, in dimension d = 1, we study the speed of the spread
of the frogs as a function of the drift and discuss the distribution of active frogs. The results
are presented in Section 1.3.

1.2 A short survey on symmetric frogs

Most papers published on the frog model so far assume that the particles perform simple
random walks. In this chapter we shortly summarise known results on this symmetric frog
model which are either relevant for the topic of this thesis or of interest in the context.
Some of them apply to slightly different versions of the frog model. In these cases we clearly
specify the changes.
We denote the transition function corresponding to this symmetric evolution by πsym, i.e.
we define the function πsym : Ed → [0, 1], πsym(e) = 1

2d .

1.2.1 Recurrence and transience

For dimension d = 1 and d = 2 simple random walk on Zd is recurrent. Thus, in the
symmetric frog model, already the frog that starts its life at 0 visits the origin infinitely
many times almost surely, and hence the frog model is recurrent. In d = 3 simple random
walk is transient. Therefore, the first frog activates at least one frog at every distance n
from 0. A frog activated at such a distance from 0 has probability of order 1

n to visit the
origin. The Borel-Cantelli Lemma then shows that in d = 3 the symmetric frog model
is recurrent. In higher dimensions it is not obvious whether the symmetric frog model is
recurrent or transient. This question is solved by Telcs and Wormald in [52]. They prove
that the frog model is indeed recurrent in any dimension d ≥ 1 when the underlying random
walk is symmetric and the frog model is started with one particle per site. Popov refines this
result in [42] by considering a special random initial configuration of frogs. He considered the
situation where there is for each x ∈ Zd\{0} originally one sleeping frog at x with probability
p(x) and no frog with probability 1 − p(x), independently of all other vertices, and found
the exact rate of decay for the function p(x) to separate transience from recurrence.

Theorem 1.3 ([42, Theorem 1.1]). For d ≥ 3 let p : Zd \ {0} → [0, 1]. Let {ηx : x ∈ Zd} be
a collection of independent random variables with P(ηx = 1) = 1− P(ηx = 0) = p(x) for all
x ∈ Zd \ {0} as well as P(η0 = 1) = 1. Consider the frog model with initial configuration
{ηx : x ∈ Zd} and transition function πsym. There exists αc = αc(d) ∈ (0,∞) such that

(i) if α < αc and p(x) ≤ α‖x‖−2 for all x large enough, then the frog model is transient,

(ii) if α > αc and p(x) ≥ α‖x‖−2 for all x large enough, then the frog model is recurrent.

7



1 The Frog Model

The question of recurrence and transience of the frog model on the d-ary tree has been open
for a long time. It was posed in [43] and has recently been mostly answered by Hoffman et
al. in [28]. They considered the frog model on the infinite rooted d-ary tree Td, which denotes
the regular tree in which every vertex has d+ 1 neighbours, with initially one sleeping frog
at every vertex, i.e. with η ≡ 1. The frogs all perform simple random walks. In accordance
with our notation we denote this model by FM(Td, πsym, 1).

Theorem 1.4 ([28, Theorem 1]). Consider the frog model FM(Td, πsym, 1).

(i) For d = 2 the frog model on Td is recurrent.

(ii) For d ≥ 5 the frog model on Td is transient.

The transience proof relies on a comparison with branching random walks. To prove recur-
rence, Hoffman et al. derive a recursion relation for the probability generating function of
the number of visits to the root. They further conjecture that the frog model is recurrent for
d = 3 and transient for d = 4. In [29] and [30] Hoffman, Johnson and Junge study recurrence
and transience of the frog model on the regular tree with the initial number of frogs being
Poisson distributed. Interesting in this context is also the article [31]. In this paper Johnson
and Junge show that certain frog model statistics are monotone in the initial configuration.
Their prime example for a suitable statistic is the number of returns of active particles to the
origin. In [47] Rosenberg proves that the frog model on the 3, 2-alternating tree is recurrent.
The 3, 2-alternating tree is the rooted tree in which nodes have 2, respectively 3 children,
depending on whether they are in an even or odd generation.

1.2.2 Frogs with death

One modification of the model is the frog model with death. Here, activated particles
are allowed to disappear after a random, e.g. geometric, lifetime. Let s ∈ [0, 1]. After
being activated, every active frog dies at every step with probability 1− s independently of
everything else. The parameter s is called the survival probability. Otherwise, the frog model
is defined as usual. We denote this frog model on Zd by FM∗(d, π, η, s) if the underlying
random walk has transition function π and random initial configuration distributed according
to η.
In the symmetric case, i.e. with the underlying random walk being simple, this model was
intensely analysed in [1] by Alves et al. Furthermore, it is discussed in [18] and [35]. Also,
results on the frog model on regular trees are presented in [1]. We summarise a selection of
the results in [1]. Some of them are relevant for the proofs of the results of this thesis.
The first question that comes to one’s mind is whether or not this particle systems survives.

Definition 1.5. The frog model with death survives if at any time there is at least one active
frog. Otherwise, we say that it dies out.

As the probability P(FM∗(d, π, η, s) survives) is an increasing function in s, we can further
define

sc(d, π, η) = inf{s : P(FM∗(d, π, η, s) survives) > 0}.

8



1.2 A short survey on symmetric frogs

First, it is established in [1] that, under weak conditions on η, the one-dimensional frog
model FM∗(1, πsym, η, s) becomes extinct almost surely for every s < 1.

Theorem 1.6 ([1, Theorem 1.1]). Consider the frog model with death for d = 1 and transi-
tion function πsym. If E[ln+(η)] <∞, then sc(1, πsym, η) = 1.

For d ≥ 2 the frogs have a chance to survive if s is sufficiently close to 1. Further, Alves et
al. describe sufficient conditions for extinction for small s.

Theorem 1.7 ([1, Theorem 1.4],[1, Theorem 1.3]). Consider the frog model with death for
d ≥ 2 and transition function πsym.

(i) If P(η ≥ 1) > 0, then sc(d, πsym, η) < 1.

(ii) If E[(log+(η))d] <∞, then sc(d, πsym, η) > 0.

Alves et al. also prove asymptotics for the critical survival parameter.

Theorem 1.8 ([1, Theorem 1.8]). In the symmetric frog model with death, if E[η] < ∞,
then

lim
d→∞

sc(d, πsym, η) =
1

1 + E[η]
.

This result in particular implies that for all s > 1
1+E[η] the frog model FM∗(d, πsym, s)

survives with positive probability for d large enough. Dominating the frog model with a
branching random walk it is also easy to see that sc(d, πsym, η) >

1
1+E[η] for all d ≥ 1 and η

with E[η] <∞. For details see [1, Proposition 1.1]. This suggests that d 7→ sc(d, πsym, η) is
monotone decreasing. Whether or not this is true, is also asked in [1].
Further, Alves et al. study recurrence and transience of the frog model with death in [2].

Theorem 1.9 ([1, Theorem 1.10], [1, Theorem 1.12]). For d ≥ 1 consider the frog model
FM∗(d, πsym, η, s).

(i) If E[(ln+(η))d] <∞, then the probability that the origin 0 is hit infinitely many times
is 0 for all s ∈ [0, 1).

(ii) If there is β < d such that P(η ≥ n) ≥ 1
(lnn)β

for all n large enough, then the probability
that 0 is hit infinitely many times is positive for all s ∈ (0, 1].

For the frog model with death that starts with one sleeping particle at every vertex, i.e. η ≡ 1,
these theorems have the following consequences: In dimension d = 1 the process dies out
for all s < 1. For d ≥ 2 the model exhibits a phase transition in the survival parameter s,
i.e. 0 < sc(d, πsym, 1) < 1. Furthermore, in any dimension d ≥ 1, the frog model with death
is transient for any s < 1.

9



1 The Frog Model

1.2.3 A shape theorem

In the symmetric frog model the set of vertices visited by active frogs, rescaled by time,
converges to a convex set. This shape theorem is proven by Alves et al. in [2] for the frog
model with initially one frog per vertex. It is generalised in [3] to the frog model with an
i.i.d. random initial configuration. Recall that Tx denotes the activation time of vertex x.
Let ξn be the set of all sites visited by active frogs by time n, i.e.

ξn(η) = {x ∈ Zd : Tx ≤ n}.

Further, we define

ξn(η) :=
{
x+

(
−1

2
,
1

2

]d
: x ∈ ξn(η)

}
⊆ Rd.

Theorem 1.10 ([3, Theorem 1.1]). For any dimension d ≥ 1 there is a non-empty convex
symmetric set A = A(d, η) ⊆ Rd, A 6= {0}, such that for almost all initial configurations η
and for any 0 < ε < 1 we have

(1− ε)A ⊆ ξn
n
⊆ (1 + ε)A

for all n large enough Pη-almost surely. Here Pη = P(·|η) is the conditional measure for a
given initial configuration η.

The proof of this shape theorem relies on Liggett’s subadditive ergodic theorem. The authors
of [3] and [2] also make some comments on the shape of A, but this question is harder than
the existence of A. Of course, A ⊆ {x ∈ Rd : ‖x‖1 ≤ 1}. Equality holds here, if the initial
distribution η is heavy-tailed enough. See [3, Theorem 1.2] for details.

1.2.4 Further results

In [8] Junge et al. consider the symmetric frog model on the complete finite graph with
n vertices and study the asymptotics in n of the wake-up time. The wake-up time is the
expected time it takes until every vertex is visited.
An overview and a collection of problems up to the year 2003 can also be found in [43].

1.3 Frogs with drift

What happens if a drift is imposed on the frog model on Zd? As mentioned in the introduc-
tion, this is the leading questions of this thesis. In order to avoid technical problems and
to be able to give more quantitative statements, we focus on a model in which the particles
perform nearest neighbour random walks which are balanced in all but one direction. We
expect that our methods also work for a frog model with a more general drift. More pre-
cisely, we assume that all particles move according to the following transition probabilities

10



1.3 Frogs with drift

which depend on two parameters w ∈ [0, 1] and α ∈ [0, 1]:

πw,α(e) =


w(1+α)

2 for e = e1
w(1−α)

2 for e = −e1
1−w

2(d−1) for e ∈ {±e2, . . .± ed}
(1.1)

The parameter w is the weight of the drift direction ±e1, i.e. the random walk chooses to
go in direction ±e1 with probability w. The parameter α describes the strength of the drift.
If the random walk has chosen to move in drift direction, it takes a step in direction e1
with probability 1+α

2 and in direction −e1 with probability 1−α
2 . All other directions are

balanced. As α ∈ [0, 1], the model has a drift to the right.
In dimension d = 1 we have to demand w = 1. Thus, the transition probabilities on Z are
defined by

πα(e1) = 1− πα(−e1) =
1 + α

2
. (1.2)

Figure 1.2 illustrates the behaviour of the frog model with transition function πw,α. We
simulated the frog model FM(2, πw,α, 1) for various parameters (α,w) as indicated in the
figure. Each of the pictures in the panel belongs to one pair (α,w) of parameters and shows
the subset {x ∈ Z2 : ‖x‖∞ ≤ 500} of Z2. Vertices that are occupied by active frogs at time
500 in the simulation are coloured green. In the leftmost column the shape of the cloud
of frogs for α = 0 and various weight parameters can be seen. In this case the transition
probabilities are balanced and the shape of the cloud of frogs is symmetric. Looking at the
pictures in one row from left to right shows how the shape changes when the drift parameter
is increased. The higher the drift, the more arrow-like the shape looks and the more to
the right the cloud of particles has moved. The columns show the impact of the weight
parameter. The higher the weight on the drift direction is, the stronger the effect of the
drift becomes. If the cloud of frogs moves away from the origin that is located in the middle
of each of the pictures, then the frog model is transient. This behaviour can be seen in the
pictures at the top right corner of the panel. If the cloud of frogs grows in all directions and
stays located around the origin, then the model is recurrent. This can be most clearly seen
in the leftmost column showing the balanced case, but also in the pictures corresponding
to small drift α or small weight w. In the next section we will describe these phenomena
mathematically.

1.3.1 Recurrence and transience

Let us again first summarise known results, to put our results into context. For dimension
d = 1 the question of recurrence and transience has been settled by Gantert and Schmidt in
[22]. They consider both fixed and i.i.d. random initial configurations (ηx)x∈Z\{0} of sleeping
frogs and derive a criterion separating transience from recurrence.

Theorem 1.11 ([22, Theorem 2.2]). For d = 1 and α ∈ (0, 1) the frog model FM(1, π1,α, η)

is recurrent if and only if E[ln+(η)] =∞.

11



1 The Frog Model
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Figure 1.2: We have simulated the frog model FM(2, πw,α, 1) for parameters (α,w) as in-
dicated above. Each of the pictures contained in the figure shows the cloud of
active frogs after 500 steps in time. In each picture the origin is located in the
middle.

In the case of one frog per site initially, the system is transient for any positive drift. This
result is generalised to a nonhomogeneous version of the frog model by Rosenberg in [46].
In that paper the transition probabilities of the frogs may depend on their starting points.
Also, the initial numbers ηx do not need to be identically distributed.
The recurrence part of Theorem 1.11 is generalised to any dimension d by Döbler and
Pfeifroth in [17].

Theorem 1.12 ([17, Theorem 2.1]). Let d ≥ 1. If E
[
ln+(η)(d+1)/2

]
= ∞, then the frog

model FM(d, πw,α, η) is recurrent.
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1.3 Frogs with drift

In [33] Kosygina and Zerner also show a sufficient recurrence criterion involving the tail
behaviour of η. They derive it for a rather large class of frog models on Zd. They only assume
that the nearest neighbour transition probabilities are bounded from below. Restricted to
our set-up, the theorem can be stated as follows.

Theorem 1.13 ([33, Theorem 5]). Let d ≥ 1 and ε > 0. Assume π(e) ≥ ε for all e ∈ Ed.
Then there is a constant c = c(d, ε) > 0 such that if

P(η(0) > s) ≥ c

(ln s)d

for all large s, then with probability 1 the frog model FM(d, π, η) is recurrent.

Kosygina and Zerner further show in [33, Proposition 23] that, if E
[
ln+(η)d

]
< ∞ and all

frogs have a drift away from the origin, then the frog model is transient. Note that in this
scenario the underlying transition matrix is not translation invariant.
Zerner also shortly presents a result on the frog model in [56] as an application of his results
on autoregressive processes. He considers a one-dimensional frog model with death, initially
i.i.d. many frogs on every non-negative site and a drift to the left. This model is almost
surely transient if and only if there are not too many frogs initially, depending on the death
and drift parameters.
Remarkably, the sharp criterion of Theorem 1.11 for the one-dimensional frog model only
depends on the distribution of η and does, in particular, not depend on the value of the drift.
The results below show that such a sharp criterion separating transience from recurrence
that depends only on the distribution of η cannot exist in higher dimensions. Indeed, we
show that for η ≡ 1 and d ≥ 2 the frog model can be recurrent as well as transient depending
on the drift.
Let us from now on assume that at each vertex in Zd \ {0} there is exactly one sleeping frog
at time 0. Further, we assume for the rest of this section that d ≥ 2, and we concentrate on
transition probabilities given by (1.1).
First, we discuss the extreme cases. For w = 1 the frog model is one-dimensional. This can
also be seen in the topmost row in Figure 1.2. Thus, it is transient for any α ∈ (0, 1] and
recurrent for α = 0 by Theorem 1.11.
For α = 1 one easily checks that it is transient for any w ∈ (0, 1]. Indeed, note that no vertex
in the half-space {x ∈ Zd : x1 < 0} is ever visited. In Figure 1.2 in the rightmost column
there are therefore no particles in the left half of the pictures. Further, no particle that is
initially in the half-space {x ∈ Zd : x1 > 0} can ever reach 0. The probability that a particle
originating in the hyperplane {x ∈ Zd : x1 = 0} ever reaches 0 decays exponentially with the
distance of its starting point from 0. Therefore, only finitely many particles starting in the
hyperplane {x ∈ Zd : x1 = 0} visit the origin.
If w = 0, then FM(d, π0,α) is equivalent to the symmetric frog model in d − 1 dimensions
and hence recurrent by Theorem 1.3. If α = 0 we are back in the balanced case and the
model is recurrent. This follows from Theorem 1.14 (i) and Theorem 1.16 below.
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1 The Frog Model

In dimension d = 2 the frog model is recurrent whenever α or w are sufficiently small, i.e. if
the underlying transition mechanism is almost balanced. The frog model is transient for α
or w close to 1.

Theorem 1.14. Let d = 2 and w ∈ (0, 1).

(i) There exists αr = αr(w) > 0 such that the frog model FM(d, πw,α, 1) is recurrent for
all 0 ≤ α ≤ αr.

(ii) There exists αt = αt(w) < 1 such that the frog model FM(d, πw,α, 1) is transient for
all αt ≤ α ≤ 1.

Theorem 1.15. Let d = 2 and α ∈ (0, 1).

(i) There exists wr = wr(α) > 0 such that the frog model FM(d, πw,α, 1) is recurrent for
all 0 ≤ w ≤ wr.

(ii) There exists wt = wt(α) < 1 such that the frog model FM(d, πw,α, 1) is transient for
all wt ≤ w ≤ 1.

In dimension d ≥ 3 the frog model is also recurrent if the transition probabilities are almost
balanced. Further, for any fixed drift parameter α ∈ (0, 1] it is transient if the weight w
is close to 1. However, in contrast to d = 2, for fixed w ∈ [0, 1) there is not necessarily a
transient regime. This follows from Theorem 1.17 (i) below.

Theorem 1.16. Let d ≥ 3 and w ∈ (0, 1). There exists αr = αr(d,w) > 0 such that the
frog model FM(d, πw,α, 1) is recurrent for all 0 ≤ α ≤ αr.

Theorem 1.17. Let d ≥ 3 and α ∈ (0, 1).

(i) There exists wr > 0, independent of d and α, such that the frog model FM(d, πw,α, 1)

is recurrent for all 0 ≤ w ≤ wr.

(ii) There exists wt = wt(α) < 1, independent of d, such that the frog model FM(d, πw,α, 1)

is transient for all wt ≤ w ≤ 1.

The results are graphically summarised in Figure 1.3. Note that the above theorems only
make statements about the existence of recurrent, respectively transient regimes. We do not
describe their shapes, as might be suggested by the curves depicted in Figure 1.3. However,
we believe that there is a monotone curve separating the transient from the recurrent regime
in the phase diagram shown in Figure 1.3.

Conjecture 1.18. For any d ≥ 2 there is a decreasing function fd : [0, 1]→ [0, 1] such that
the frog model FM(d, πw,α, 1) is recurrent for all w,α ∈ [0, 1] with w < fd(α), and transient
for all w,α ∈ [0, 1] with w > fd(α).
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d ≥ 3

Figure 1.3: Phase diagram for the frog model FM(d, πw,α, 1): the recurrent regime is marked
by , the transient one by .

This conjecture is also supported by simulations. Figure 1.4 gives an idea of the form of the
two regimes. We simulated 500 steps of the frog model in d = 2 and d = 3 with initially
one frog per site, and counted the number of visits of active frogs to the origin. Besides
showing the monotone curve separating the two regimes as described in Conjecture 1.18,
the figure shows monotonicity in the dimension d. In d = 3, the transient regime seems to
be smaller than in d = 2. We can also give an intuition for this effect. Intuitively, the frog
model approximates a binary branching random walk for d → ∞ from below, as each frog
activates a new frog in every step if there are “infinitely” many directions to choose from.
This leads to the following conjecture.

1

1

0
α

w

d = 2

1

1

0
α

w

d = 3

0

200

400

600

Figure 1.4: This figure shows the results of simulations of the frog model in d = 2 and d = 3
for 500 steps in time and various pairs of parameters (α,w). It colour codes the
number of visits of active particles to the origin.

Conjecture 1.19. The sequence of functions (fd)d≥2 is increasing in d.
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1 The Frog Model

We will describe some further intuition on why we believe in this conjecture at the end of
Section 2.2. For the binary branching random walk the recurrent and transient regimes are
known precisely. Let

g : [0, 1]→ [0, 1], g(α) = min
{
1, (2(1−

√
1− α2))−1

}
.

A binary branching random walk on Zd with transition probabilities as in (1.1) is recurrent
iff w < g(α), see [20, Section 4]. The phase diagram is shown in Figure 1.5. The comparison
of the frog model and a binary branching random walk also raises the following question.

Question 1.20. Does the sequence of functions (fd)d≥2 converge pointwise to g as d→∞?

1

1

0
α

w

Figure 1.5: Phase diagram for the binary branching random walk when the underlying tran-
sition probabilities are given by πw,α: the recurrent regime is marked by ,
the transient one by .

1.3.2 Speed of the fastest frog

Consider the one-dimensional frog model FM(1, πα, 1). How does the set of sites occupied
by active frogs evolve over time? Theorem 1.11 implies that this frog model is transient for
any α > 0. Thus, the set of occupied sites moves to the right. In this section we study how
fast it moves. We therefore consider the leftmost and rightmost occupied vertex, i.e. the
positions of the “slowest” and “fastest” frogs, and discuss their speed. In particular, we are
interested in the dependence of the speed on the drift parameter α.
Figure 1.6 shows the paths of all active frogs in a simulation of the frog model FM(1, 0.2, 1).
For a particle initially at x ∈ Z the function n 7→ Zxn is plotted for n ≥ Tx. The speed of
the minimal and maximal occupied site corresponds to the asymptotic slope of the lower,
respectively upper boundary of the coloured region containing all frog paths.
Before we start, let us mention two papers that deal with related questions. In [23] Ghosh et
al. study a frog model on Z with drift and calculate the moments of the leftmost visited site.
For a continuous time version of the frog model the behaviour of the right front is studied
in [13] and [5].
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Figure 1.6: A simulation of all frog paths in FM(1, 0.2, 1) for 200 steps in time. Each path
is coloured according to the starting point of the frog. Whenever paths overlap,
the one belonging to the frog that was activated last is displayed.

Let An denote the set of active frogs at time n, i.e. An = {x ∈ Z : Tx ≤ n}. We define

Mn = max
x∈An

Zxn and mn = min
x∈An

Zxn.

Mn describes the maximum and mn the minimum of the locations of the active frogs at
time n. We refer to Mn and mn as the maximum and the minimum. One can show that
there are non-zero constants vmax and vmin such that

vmax = lim
n→∞

Mn

n
a.s.

vmin = lim
n→∞

mn

n
a.s.

The existence of vmax is well known. If follows from the shape theorem, i.e. Theorem 1.10
and is also discussed in Section 2.4. The existence of vmin is part of Theorem 1.21 below.
We call vmax the speed of the maximum and vmin the speed of the minimum. We study
vmax and vmin as functions of the drift parameter α. First, we show that the speed of the
minimum equals the speed of a single frog.

Theorem 1.21. For α > 0 the speed of the minimum in the frog model FM(1, πα, 1) exists
and is given by

vmin = α.
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1 The Frog Model

We unfortunately cannot give a precise formula for the speed of the maximum. The following
two theorems describe some properties of the speed.

Theorem 1.22. The speed of the maximum in the frog model FM(1, πα, 1) is an increasing
function of α.

Theorem 1.23. For the frog model FM(1, πα, 1) with α < 1 it holds that vmax < 1.

In comparison to the last result note that for branching random walk on Z with binary
branching the speed of the maximum equals 1 for every α ∈ [0, 1], see for example [41,
Theorem 18.3] or Chapter 3.
Simulations suggest that the speed of the maximum is a concave function in the drift pa-
rameter α. See Figure 1.7.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

α

Mn
n

Figure 1.7: The figure shows results of simulation of Mn
n for n = 100000 and various α ∈ [0, 1].

A heuristic argument might be the following. We expect that the number of frogs in the
maximum converges to a stationary distribution τα for α < 1. Therefore, the speed of the
maximum should equal ∑

x∈N
τα(x)

(
1− 2

(1− α
2

)x)
.

If τα was independent of α, this would be a concave function. However, we believe that the
dependence on α does not destroy the concavity.

Conjecture 1.24. The speed of the maximum is a concave function of α.

In addition to studying the behaviour of the minimum and the maximum we investigate
the distribution of the active frogs. In the limit they are distributed uniformly in between
the minimum and the maximum. To make this statement precise we rescale the positions
of all active frogs at time n roughly to the interval [0, 1] and then consider the empirical
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distribution µn, which is defined for α < 1 by

µn(B) =
1

|An|
∑
x∈An

1{ Zxn−vminn

(vmax−vmin)n
∈B
}

for every Borel set B ⊆ [0, 1]. Recall that An denotes the set of active frogs at time n. Note
that µn is a random measure.

Theorem 1.25. Consider the frog model FM(1, πα, 1) with α ∈ [0, 1]. Almost surely, as
n→∞, the empirical distribution µn converges weakly to the Lebesgue measure λ on [0, 1].

Our interest in the distribution of active particles was motivated by the following idea.
Assume we knew that at every vertex occupied by frogs there were approximately the same
number k of frogs. Then we could count the number of active frogs in two ways. The largest
occupied vertex is approximately nvmax, the smallest nvmin. For parity reasons only every
second vertex is occupied at a time. Hence, the number of active frogs should approximately
be k · n(vmax − vmin) · 12 . On the other hand, it should also be close to nvmax, as only
finitely many frogs on negative sites are activated due to transience. This argument, which
is illustrated in Figure 1.8, gives k ·n(vmax−vmin) · 12 ≈ nvmax. Thus, if we knew k, we had a
formula for vmax. In average 1+α

2 k of the k frogs located at the maximum go to the right in
the next step and activate one new frog. Thus, in equilibrium the number k of frogs should
satisfy 1+α

2 k+1 ≈ k, which would give k. Unfortunately, the behaviour at the front is more
complicated. We conjecture that the number of frogs at the front is actually larger.

0 ∼ n(vmax − vmin)

k

∼ nvmax

Z

Figure 1.8: At time n, the number of active frogs is approximately nvmax. They are spread
out uniformly in the interval [nvmin, nvmax]. Suppose we knew that there are
approximately k frogs at every occupied vertex and suppose we knew k, then we
could calculate the number of active frogs in a second way, multiplying k and
the number of occupied sites. This would lead to a formula for the speed of the
maximum vmax. This idea motivated our study of the distribution of active frogs.
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2 Proofs for the Frog Model

Before we prove the theorems stated in Chapter 1, we need to introduce more notation.
Further, we collect some basic facts about random walks on Zd that are used in the proofs.
This is done in Section 2.1. In Section 2.2 all statements concerning recurrence are proved,
i.e. Theorems 1.14 (i), 1.15 (i), 1.16, and 1.17 (i). In Section 2.2 we show the claims made
about transience of the frog model, i.e. Theorems 1.14 (ii), 1.15 (ii), and 1.17 (ii). Finally,
Section 2.4 deals with the statements on the speed of the minimum and maximum of the
cloud of frogs in the one-dimensional frog model, which are presented in Section 1.3.2.

2.1 Preliminaries

2.1.1 Notation

Recall that we refer to the frog model on Zd with initial distribution η and transition
function π as FM(d, π, η). As we only work with η ≡ 1 here, we abbreviate this notation
and write FM(d, π) instead of FM(d, π, 1). Similarly, we drop the reference to η in the
other notation introduced in the Chapter 1: We write (Sxn)n∈N0 instead of (Sxn(1))n∈N0 for
the trajectory of the first and only frog initially at vertex x ∈ Zd. Further, we denote the
position at time n ∈ N0 of the frog initially at x ∈ Zd by Zxn instead of Zxn(1).
To keep the sentence structure simple we from now on refer to the frog that is initially at
vertex x ∈ Zd as “frog x”.
For x, y ∈ Zd we write x → y if frog x (potentially) ever visits y, i.e. y ∈ {Sxn : n ∈ N0}.
For x, y ∈ Zd and A ⊆ Zd we say that there exists a frog path from x to y in A and write
x

A
y if there exist n ∈ N and z1, . . . , zn ∈ A such that x→ z1, zi → zi+1 for all 1 ≤ i < n

and zn → y, or if x → y directly. Note that x and y are not necessarily in A. Also the
trajectories of the frogs zi, 1 ≤ i ≤ n, do not need to be in A.

A

x z1

z2

z3

z4 z5 y

Figure 2.1: A frog path from x to y in a set A.
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For x ∈ Zd we call the set
FCx =

{
y ∈ Zd : x Zd

y
}

(2.1)

the frog cluster of x. Note that, if frog x ever becomes active, then every frog y ∈ FCx
is also activated. Observe that to decide whether the system is transient or recurrent, we
do not need to know the exact activation times of the frogs. Only the information whether
or not a frog is activated is important. Thus, this notation comes in handy in the proofs
concerning recurrence and transience. The activation times of the particles become relevant
for the proofs concerning the speed of the frogs.
In the recurrence and transience proofs we often use the (d− 1)-dimensional hyperplane Hn

in Zd defined by
Hn := {x ∈ Zd : x1 = n} (2.2)

for n ∈ Z.

2.1.2 Hitting probabilities of random walks

We need to deal with hitting probabilities of random walks on Zd. For x, y ∈ Zd recall
that {x→ y} denotes the event that the random walk started at x ever visits the vertex y.
Analogously, for A ⊆ Zd we write {x→ A} for the event that the random walk started at x
ever visits a vertex in A.

Lemma 2.1. For d ≥ 3 consider a random walk on Zd with transition function πw,0. There
exists a constant c = c(d,w) > 0 such that for all x ∈ Zd

P(0→ x) ≥ c‖x‖−(d−2)2 ,

where ‖x‖2 =
(∑d

i=1 x
2
i

)1/2 is the Euclidean norm.

A proof of the lemma for simple random walk, i.e. with transition function πsym, can e.g. be
found in [2, Theorem 2.4] and [1, Lemma 2.4]. It relies on well known estimates of the Green
function. The proof can immediately be generalised to our set-up using the Green function
estimates provided by [34, Theorem 2.1.3].

Lemma 2.2. For d ≥ 1 consider a random walk on Zd with transition function πw,α. Then
for each γ > 0 there is a constant c = c(d, γ, w, α) > 0 such that for all n ∈ N and x ∈ Zd

with x1 = −n and |xi| ≤ γ
√
n, 2 ≤ i ≤ d, it holds that

P(x→ 0) ≥ cn−(d−1)/2.

For a proof see e.g. [17, Lemma 3.1].

Lemma 2.3. For d ≥ 1 consider a random walk on Zd with transition function πw,α. Then
for every n ∈ N and H−n as defined in (2.2)

P(0→ H−n) =
(1− α
1 + α

)n
.
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Proof. As P(0→ H−n) = P(0→ H−1)
n for n ∈ N, it suffices to prove the lemma for n = 1.

By the Markov property

P(0→ H−1) =
1− α
2

+
1 + α

2
P(0→ H−2).

The results follows after a straightforward calculation.

2.2 Recurrence

To prove recurrence we make use of the theory of independent site percolation on Zd. The
basic idea is to dominate the frog cluster of the origin by a supercritical percolation cluster.
Then we can employ the knowledge about the structure of such a percolation cluster. We
therefore give a brief introduction to percolation here.

2.2.1 Some facts about percolation

Let p ∈ [0, 1]. Every site in Zd is independently of the other sites declared open with
probability p and closed with probability 1− p. An open cluster is a connected component
of the subgraph induced by all open sites. It is well known that for d ≥ 2 there is a critical
parameter pc = pc(d) ∈ (0, 1) such that for all p > pc (supercritical phase) there is a unique
infinite open cluster C almost surely, and for p < pc (subcritical phase) there is no infinite
open cluster almost surely. Furthermore, denoting the open cluster containing the site x ∈ Zd

by Cx, it holds that P(|Cx| = ∞) > 0 for p > pc, and P(|Cx| = ∞) = 0 for p < pc and all
x ∈ Zd. The following lemma states that the critical probability pc is small for d large.

Lemma 2.4. For independent site percolation on Zd,

lim
d→∞

pc(d) = 0.

Indeed, pc(d) = O
(
d−1
)
holds. A proof of this result can e.g. be found in [7, Chapter 1,

Theorem 7]. Further, in the recurrence proofs we use the fact that an infinite open cluster
is “dense” in Zd. The following weak version of denseness suffices.

Lemma 2.5. Consider supercritical independent site percolation on the lattice Zd with d ≥ 2.
Let Bn = {−n}× [−√n,√n]d−1 and B′n = [−√n,√n]d for n ∈ N. Then, there are constants
a, b > 0 and N ∈ N such that we have for all n ≥ N and x ∈ Zd

P
(
|Bn ∩ Cx| ≥ an(d−1)/2

)
> b,

P
(
|B′n ∩ Cx| ≥ and/2

)
> b.

Proof. For y ∈ Zd consider the event Ay = {y ∈ C}. The process (1Ay)y∈Zd is stationary
and ergodic. By the spatial ergodic theorem

lim
n→∞

|B′n ∩ C|
|B′n|

= lim
n→∞

1

|B′n|
∑
y∈B′n

1Ay = E[1A0 ] = P(A0)
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2 Proofs for the Frog Model

almost surely. Note that P(A0) > 0 since the percolation is supercritical. Hence, there are
constants a, c > 0 and N ∈ N such that for all n ≥ N

P
(
|B′n ∩ C| ≥ and/2

)
> c.

By the FKG inequality and the uniqueness of the infinite cluster

P
(
|B′n ∩ Cx| ≥ and/2

)
≥ P

(
|B′n ∩ C| ≥ and/2, |Cx| =∞

)
≥ P

(
|B′n ∩ C| ≥ and/2

)
P(|Cx| =∞)

≥ c · P(|Cx| =∞).

As P(|Cx| =∞) = P(|C0| =∞) > 0 this shows the second inequality of the lemma.
For the first inequality consider the boxes Bn(m) = {−m}× [−√n,√n]d−1 for fixed m ∈ N.
Since (1Ay)y∈{−m}×Zd−1 is stationary and ergodic, we get for every m ∈ N

lim
n→∞

|Bn(m) ∩ C|
|Bn(m)| = P(A0)

almost surely. Analogously to the proof of the second inequality, there are constants a′, c′ > 0

and N ′ ∈ N, all independent of m, such that for all n ≥ N ′ and m ∈ N

P
(
|Bn(m) ∩ Cx| ≥ a′n(d−1)/2

)
> c′ · P(|Cx| =∞). (2.3)

Setting m = n in (2.3) yields the claim.

2.2.2 A lemma on Bernoulli random variables

In the recurrence proofs we repeatedly use the following simple lemma. Note that the random
variables in this lemma do not have to be independent.

Lemma 2.6. For i ∈ N let Xi be a Bernoulli(pi) random variable with infi∈N pi =: p > 0.
Then for every a > 0 and n ∈ N

P
(
1

n

n∑
i=1

Xi ≥ a
)
≥ p− a.

Proof. Since E[Xi] ≥ p and 1
n

∑n
i=1Xi ≤ 1, we have

p ≤ E
[
1

n

n∑
i=1

Xi

]
≤ P

(
1

n

n∑
i=1

Xi ≥ a
)
+ a,

which yields the claim.

24



2.2 Recurrence

2.2.3 Recurrence for d ≥ 2 and arbitrary weight

In this section we prove Theorem 1.14 (i) and Theorem 1.16. Throughout this section assume
that w < 1 is fixed. To illustrate the basic idea of the proof we first sketch it for d = 2. We
call a site x in Z2 open if the trajectory (Sxn)n∈N0 of frog x includes the four neighbouring
vertices x± e1, x± e2 of x, i.e. if x → x± e1 and x → x± e2. Note that for this definition
it does not matter whether frog x is ever activated or not. All sites are open independently
of each other due to the independence of the trajectories of the frogs. Furthermore, the
probability of a site to be open is the same for all sites. Consider the percolation cluster C0

that consists of all sites that can be reached from 0 by open paths, i.e. paths containing only
open sites. Note that all frogs in C0 are activated as frog 0 is active in the beginning. In
this sense the frog model dominates the percolation. As we are in d = 2, the probability of
a site x being open equals 1 for α = 0 and by continuity is close to 1 if α is close to 0. Thus,
if α is close enough to 0 the percolation is supercritical. Hence, with positive probability
the cluster C0 containing the origin is infinite. By Lemma 2.5 this infinite cluster contains
many sites close to the negative e1-axis. This shows that many frogs that are initially close
to this axis get activated. Each of them travels in the direction of the e1-axis and has a
decent chance of visiting 0 on its way. Hence, this will happen infinitely many times. This
argument shows that the origin is visited by infinitely many frogs with positive probability.
Using the zero-one law stated in Theorem 1.2 yields the claim.
In higher dimensions the probability of a frog to visit all its neighbours is not close to 1

however small the drift may be. We can still make the argument work by using a renormal-
ization type argument. To make this argument precise let K be a non-negative integer that
will be chosen later. We tessellate Zd for d ≥ 2 with cubes (Qx)x∈Zd of size (2K + 1)d. For
every x ∈ Zd we define

qx = qx(K) = (2K + 1)x,

Qx = Qx(K) = {y ∈ Zd : ‖y − qx‖∞ ≤ K},
(2.4)

where ‖x‖∞ = max1≤i≤d |xi| is the maximum norm. A tessellation for d = 2 is shown in
Figure 2.2. For d = 2 actually no tessellation is necessary, but the picture illustrates the
construction.
We call a site x ∈ Zd open if for every e ∈ Ed there exists a frog path from qx to qx+e in Qx.
Otherwise, x is said to be closed. The probability of a site x to be open does not depend on
x, but only on the drift parameter α and the cube size K. We denote it by p(K,α). This
defines an independent site percolation on Zd, which, as mentioned before, is dominated by
the frog model in the following sense: For any x ∈ C0 the frog at qx will be activated in the
frog model, i.e. qx ∈ FC0 with FC0 as defined in (2.1).
In the next two lemmas we show that the probability p(K,α) of a site to be open is close to
1 if the drift parameter α is small and the cube size K is large. We first show this claim for
the symmetric case α = 0.
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e1

e2

q0 qe1

qe2

q−e1

q−e2

Q0

2K + 1

2
K

+
1

Figure 2.2: Tessellation of Z2 for K = 2; The site 0 is open if there a frog paths in Q0 to qe
for all e ∈ Ed.

Lemma 2.7. For every w < 1 in the frog model FM(d, πw,0) we have

lim
K→∞

p(K, 0) = 1.

Proof. For d = 2 we obviously have p(K, 0) = 1 for all K ∈ N0 as balanced random walk
on Z2 is recurrent. Therefore, we can assume d ≥ 3. The proof of the lemma relies on the
shape theorem (Theorem 1.10) for the frog model. This theorem assumes equal weights on
all directions. As in our model the e1-direction has a different weight, we need a workaround.
We couple our model with a modified frog model on Zd−1 in which the frogs in every step stay
where they are with probability w and move according to a simple random walk otherwise.
A direct coupling shows that, up to any fixed time, in the modified frog model on Zd−1

there are at most as many frogs activated as in the frog model FM(d, πw,0). Note that
Theorem 1.10 holds true for the modified frog model on Zd−1 as the process is only slowed
down by a constant depending on w. Let ξK , respectively ξmod

K , be the set of all sites visited
by active frogs by timeK in the frog model FM(d, πw,0), respectively the modified frog model
on Zd−1. Further, let ξmod

K := {x + (−1
2 ,

1
2 ]
d−1 : x ∈ ξmod

K }. By Theorem 1.10 there exists
a non-trivial convex symmetric set A = A(d) ⊆ Rd−1 and an almost surely finite random
variable K such that

A ⊆ ξmod
K

K

for allK ≥ K. This implies that there is a constant c1 = c1(d) > 0 such that |ξmod
K | ≥ c1Kd−1

for all K ≥ K. By the coupling the same statement holds true for ξK . As ξK ⊆ Q0(K) and
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2.2 Recurrence

any vertex in ξK can be reached by a frog path from 0 in Q0, this implies∣∣∣{y ∈ Q0 : 0
Q0

y
}∣∣∣ ≥ |ξK | ≥ c1Kd−1

for all K ≥ K. Thus we have at least c1Kd−1 vertices in the box Q0 that can be reached by
frog paths from 0. Each frog in Q0 has a chance to reach the centre qe of a neighbouring
box. More precisely, by Lemma 2.1 there is a constant c2 = c2(d) > 0 such that

P
(
y → qe

)
≥ c2
Kd−2

for any vertex y ∈ Q0 and e ∈ Ed. Hence, for any e ∈ Ed

P
(
(0

Q0
qe)

c | K ≥ K
)
≤ P

({
y 6→ qe for all y ∈ Q0 with 0

Q0
y
} ∣∣ K ≥ K)

≤
(
1− c2

Kd−2

)c1Kd−1

≤ e−c1c2K .

Therefore,

p(K, 0) ≥ P
( ⋂
e∈Ed

{0 Q0
qe}

∣∣∣ K ≥ K)P0(K ≥ K)

≥
[
1− 2d e−c1c2K

]
P(K ≥ K). (2.5)

Since K is almost surely finite, we have limK→∞ P0(K ≥ K) = 1. Thus, the right hand side
of (2.5) tends to 1 in the limit K →∞.

Lemma 2.8. For fixed w < 1, in the frog model FM(d, πw,α) we have for all K ∈ N0

lim
α→0

p(K,α) = p(K, 0).

Proof. Let L(a, b, c,K) be the number of possible realisations such that all q±e, e ∈ Ed, are
visited by frogs in Q0 for the first time after in total (of all frogs) exactly a steps in e1-
direction, b steps in −e1-direction and c steps in all other directions. Note that L(a, b, c,K)

is independent of α. We have

p(K,α) =

∞∑
a,b,c=1

L(a, b, c,K)

(
w(1 + α)

2

)a(w(1− α)
2

)b( 1− w
2(d− 1)

)c
−−−→
α→0

∞∑
a,b,c=1

L(a, b, c,K)

(
w

2

)a+b( 1− w
2(d− 1)

)c
= p(K, 0).

Proof of Theorem 1.14 (i) and Theorem 1.16. By Lemma 2.7 and Lemma 2.8 we can assume
that K is big enough and α > 0 small enough such that p(K,α) > pc(d), i.e. the percolation
with parameter p(K,α) on Zd constructed at the beginning of this section is supercritical.
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Consider boxes Bn = {−n} × [−√n,√n]d−1 for n ∈ N. By Lemma 2.5 there are constants
a, b > 0 and N ∈ N such that for all n ≥ N

P(|Bn ∩ C0| ≥ an(d−1)/2) > b.

After rescaling, the boxes Bn correspond to the boxes

FBn = {y ∈ Zd : |y1 + (2K + 1)n| ≤ K, |yi| ≤ (2K + 1)
√
n+K, 2 ≤ i ≤ d}.

Recall that FC0 consists of all vertices reachable by frog paths from 0 as defined in (2.1),
and note that x ∈ Bn ∩ C0 implies qx ∈ FBn ∩ FC0. This shows

P(|FBn ∩ FC0|≥ an(d−1)/2) > b (2.6)

for n large enough. By Lemma 2.2 and (2.6) the probability that at least one frog in FBn
is activated and reaches 0 is at least(

1− (1− cn−(d−1)/2)an(d−1)/2
)
b ≥

(
1− e−ac

)
b,

where c = c(K, d,w) > 0 is a constant. Altogether we get by Lemma 2.6

P(0 visited infinitely often) = lim
n→∞

P(0 is visited εn many times )

≥ lim inf
n→∞

P
( n∑
i=1

1{∃x∈FBi∩FC0 : x→0} ≥ εn
)

≥
(
1− e−ac

)
b− ε > 0

for ε sufficiently small. The claim now follows from Theorem 1.2.

2.2.4 Recurrence for d = 2 and arbitrary drift

In this section we prove Theorem 1.15 (i). Throughout the section let α < 1 be fixed. The
proof is similar to the one presented in the previous section. We couple the frog model with
independent site percolation on Z2. Let K be an integer that will be chosen later. We
tessellate Z2 with segments (Qx)x∈Z2 of size 2K + 1 as illustrated in Figure 2.3. For every
x = (x1, x2) ∈ Z2 we define

qx = qx(K) =
(
x1, (2K + 1)x2

)
,

Qx = Qx(K) = {y ∈ Z2 : y1 = x1, |y2 − (2K + 1)x2| ≤ K}.

We call the site x ∈ Z2 open if there are frog paths from qx to qx+e in Qx for all e ∈ E2. As
before, we denote the probability of a site to be open by p(K,w). Note that this probability
does not depend on x.
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x
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Figure 2.3: Tessellation of Z2 for K = 2.

Lemma 2.9. For α < 1, in the frog model FM(2, πw,α) we have

lim
K→∞

lim inf
w→0

p(K,w) = 1.

Proof. We claim that there is a constant c = c(α) > 0 such that for any K ∈ N0 and x ∈ Q0

lim inf
w→0

P
( ⋂
e∈E2

{x→ qe}
)
≥ c. (2.7)

We can estimate the probability in (2.7) by

P
( ⋂
e∈E2

{x→ qe}
)
≥ P

(
x→ q−e2

)
P
(
q−e2 → q−e1

)
P
(
q−e1 → qe2

)
P
(
qe2 → qe1

)
.

The probability of moving in ±e2-direction for dw−1e steps is (1−w)dw−1e. Conditioning on
moving in this way, we just deal with a simple random walk on Z. Therefore, there exists a
constant c1 > 0 such that for w close to 0

P
(
x→ q−e2

)
≥ c1(1− w)dw

−1e ≥ c1
4
.

The probability of moving exactly once in −e1-direction and otherwise in ±e2-direction
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within dw−1e+ 1 steps is

(
dw−1e+ 1

)(1− α)w
2

(1− w)dw−1e ≥ 1− α
8

for w close to 0. Therefore, there exists a constant c2 > 0 such that

P
(
q−e2 → q−e1

)
≥ c2(1− α)

8

for w sufficiently close to 0. The two remaining probabilities P
(
q−e1 → qe2

)
and P

(
qe2 → qe1

)
can be estimated analogously, which implies (2.7).
If frog 0 activates all frogs in Q0 and any of these 2K frogs manages to visit the centres of all
neighbouring segments, then 0 is open. By independence of the trajectories of the individual
particles in Q0 this implies

p(K,w) ≥ P
( ⋂
x∈Q0

{0→ x}
)(

1−
(
1− P

( ⋂
1≤i≤4

{x→ qei}
))2K)

. (2.8)

As in the proof of Lemma 2.8 one can show that for w → 0 the first factor in (2.8) converges
to 1. Therefore, taking limits in (2.8) and using (2.7) yields the claim.

Proof of Theorem 1.15 (i). By Lemma 2.9 we can choose K big and w small enough such
that p(K,w) > pc(2), where pc(2) is the critical parameter for independent site percolation
on Z2. As in the proof of Theorem 1.14 (i) and Theorem 1.16 the coupling with supercritical
percolation now yields recurrence of the frog model. As we rescaled the lattice Z2 slightly
different this time, the box Bn defined in the proof of Theorem 1.14 (i) and Theorem 1.16
now corresponds to the box

FBn = {y ∈ Z2 : y1 = −n, |y2| ≤ (2K + 1)
√
n+K}.

Since only asymptotics in n matter for the proof, it otherwise works unchanged.

2.2.5 Recurrence for d ≥ 3 and arbitrary drift

The proof of Theorem 1.17 (i) again relies on the idea of comparing the frog model with
percolation. But instead of looking at the whole space Zd as in the previous proofs, we
consider a sequence of (d − 1)-dimensional hyperplanes (H−n)n∈N0 with H−n as defined in
(2.2) and depicted in Figure 2.4. We compare the frogs in each hyperplane with supercritical
percolation, ignoring the frogs once they have left their hyperplane and all the frogs from
other hyperplanes. Within a hyperplane we now deal with a frog model without drift, but
allow the frogs to die in each step with probability w by leaving their hyperplane, i.e. we are
interested in FM∗(d− 1, πsym, 1−w) as defined in Section 1.2.2. Hence, the argument does
not depend on the value of the drift parameter α < 1.
We start with one active particle in the hyperplane H0. With positive probability this
particle initiates an infinite frog cluster in H0 if w and therefore the probability to leave the
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e1e1 e1

e2

e3

H0H−n

Figure 2.4: Hyperplanes (H−n)n∈N0 in Z3; We will show that every hyperplane contains an
infinite frog cluster, indicated by gray dots.

hyperplane is sufficiently small. Every frog eventually leaves H0 and has for every n ∈ N
a positive chance of activating a frog in the hyperplane H−n, which might start an infinite
cluster there. This is the only time where we need α < 1 in the proof of Theorem 1.17 (i).
Using the denseness of such clusters we can then proceed as before. We split the proof of
Theorem 1.17 (i) into two parts:

Proposition 2.10. There is d0 ∈ N and wr > 0, independent of d and α, such that the frog
model FM(d, πw,α) is recurrent for all 0 ≤ w ≤ wr, 0 ≤ α < 1 and d ≥ d0.

Proposition 2.11. For every d ≥ 3 there is wr = wr(d) > 0, independent of α, such that
the frog model FM(d, πw,α) is recurrent for all 0 ≤ w ≤ wr and all 0 ≤ α < 1.

We first prove Proposition 2.10. As indicated above we need to study the frog model with
death and no drift in Zd−1. To increase the readability let us first work in dimension d

instead of d− 1 and with a general survival parameter s, i.e. we investigate FM∗(d, πsym, s)

for d ≥ 2.
We tessellate Zd with cubes (Q′x)x∈Zd of size 3d. More precisely, define for x ∈ Zd

Q′x = {y ∈ Zd : ‖y − 3x‖∞ ≤ 1}.

Further, for technical reasons, for a ∈ (23 , 1) we define

Wx = {y ∈ Q′x : ‖y − 3x‖1 ≤ ad},

where ‖z‖1 =
∑2d

i=1|zi| is the graph distance from z ∈ Zd to 0. Informally, Wx is the set
of all vertices in Q′x which are “sufficiently close” to the centre of the cube. Consider the
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box Q′x for some x ∈ Zd and let o ∈ Wx. If there are frog paths in Q′x from o to vertices
close to the centres of all neighbouring boxes, i.e. if the event⋂

e∈Ed

⋃
y∈Wx+e

{o Q′x y}

occurs, we call the vertex o good. Note that this event only depends on the trajectories of
all the frogs originating in the cube Q′x and the choice of o. If o is good and is activated,
then also the neighbouring cubes are visited. We show that the probability of a vertex being
good is bounded from below uniformly in d and this bound does not depend on the choice
of o.

Lemma 2.12. Consider the frog model FM∗(d, πsym, s). There are constants β > 0 and
d0 ∈ N such that for all d ≥ d0, s > 3

4 ,
2
3 < a < 2− 1

s , x ∈ Zd and o ∈Wx

P(o is good) > β.

To show this we first need to prove that many frogs in the cube are activated. In the proof
of Theorem 1.14 (i) and Theorem 1.16 this is done by means of Lemma 2.7 using the shape
theorem. Here, we use a lemma that is analogous to Lemma 2.5 in [1].

Lemma 2.13. Consider the frog model FM∗(d, πsym, s). There exist constants γ > 0, µ > 1

and d0 ∈ N such that for all d ≥ d0, s > 3
4 ,

2
3 < a < 2− 1

s and o ∈W0 we have

P
(∣∣{y ∈W0 : o

Q′0 y
}∣∣ ≥ µ√d) ≥ γ.

Proof of Lemma 2.13. The proof consists of two parts. In the first part we show that with
positive probability there are exponentially many vertices in Q′0 reached from o by frog paths
in Q′0, and in the second part we prove that many of these vertices are indeed in W0. For
the first part we closely follow the proof of Lemma 2.5 in [1] and rewrite the details for the
convenience of the reader.
We examine the frog model with initially one active frog at the vertex o and one sleeping
frog at every other vertex in Q′0 for

√
d steps in time. Consider the sets S0 = {o} and

Sk = {x ∈ Q′0 : ‖x − o‖1 = k, ‖x − o‖∞ = 1} for k ≥ 1 and let ξk denote the set of active
frogs which are in Sk at time k. We will show that, conditioned on an event to be defined
later, the process (ξk)k∈N0 dominates a process (ξ̃k)k∈N0 , which again itself dominates a
supercritical branching process. The process (ξ̃k)k∈N0 is defined as follows. Initially, there
is one particle at o. Assume that the process has been constructed up to time k ∈ N0. In
the next step each particle in ξ̃k survives with probability s. If it survives, it chooses one of
the neighbouring vertices uniformly at random. If that vertex belongs to Sk+1 and no other
particle in ξ̃k intends to jump to this vertex, the particle moves there, activates the sleeping
particle, and both particles enter ξ̃k+1. Otherwise, the particle is deleted. In particular,
if two or more particles attempt to jump to the same vertex, all of them will be deleted.
Obviously, ξ̃k ⊆ ξk for all k ∈ N0.
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First, we show that for d large it is unlikely that two particles in ξ̃k attempt to jump to
the same vertex. To make this argument precise we need to introduce some notation. For
x ∈ Sk and y ∈ Sk+1 with ‖x− y‖1 = 1 define

Dx = {z ∈ Sk+1 : ‖x− z‖1 = 1},
Ay = {z ∈ Sk : ‖z − y‖1 = 1},
Ex = {z ∈ Sk : Dx ∩ Dz 6= ∅}.

Dx denotes the set of possible descendants of x, Ay the set of ancestors of y and Ex the
set of enemies of x. Note that Ex =

⋃
y∈Dx(Ay \ {x}) is a disjoint union. Further, let

nx =
∑d

i=1 1{oi=0, xi 6=0}. Then one can check that

|Dx| = 2(d− ‖o‖1 − nx) + ‖o‖1 − (k − nx) = 2d− ‖o‖1 − k − nx, (2.9)

|Ay| = k + 1.

For x ∈ Sk let χ(x) denote the number of particles of ξ̃k in x. Note that χ(x) ∈ {0, 2} for
any x ∈ Sk with k ∈ N.
Let ζkxy denote the indicator function of the event that there is z ∈ Ex with χ(z) ≥ 1 such
that one of the particles at z intends to jump to y at time k + 1. If ζkxy = 1, then a particle
on x cannot move to y at time k + 1.
Further, we introduce the event Ux = {χ(z) = 2 for all z ∈ Ex}. This event describes the
worst case for x, when it is most likely that particles at x will not be able to jump. For
k ≤
√
d we have

P(ζkxy = 1) ≤ P(ζkxy = 1 | Ux) ≤
∑

z∈Ay\{x}

2s

2d
=
ks

d
≤ 1√

d
.

Given σ > 0 we can choose d large such that P(ζkxy = 1) < σ for all k ≤
√
d. Now, consider

the set of all descendants y of x such that there is a particle at some vertex z ∈ Ex that
tries to jump to y at time k + 1. This set contains

∑
y∈Dx ζ

k
xy elements. Let ζkx denote the

indicator function of the event
{∑

y∈Dx ζ
k
xy > 2σd

}
. If ζkx = 1, then more than 2σd of the

2d neighbours of x are blocked to a particle at x.
The random variables {ζkxy : y ∈ Dx} are independent with respect to the measure P(· | Ux)
as Ex =

⋃
y∈Dx(Ay \{x}) is a disjoint union. Using 2d−ad−2k ≤ |Dx| ≤ 2d and a standard

large deviation estimate we get for k ≤
√
d

P(ζkx = 1) ≤ P
(∑
y∈Dx

ζkxy > 2σd
∣∣∣ Ux)

≤ P
(

1

|Dx|
∑
y∈Dx

ζkxy > σ
∣∣∣ Ux)

≤ e−c1|Dx|

≤ e−c2d
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with constants c1, c2 > 0. Next, let us consider the bad event

B =

√
d⋃

k=1

⋃
x∈ξ̃k

{ζkx = 1}.

Then with |ξ̃k| ≤ 2k ≤ 2
√
d we get

P(B) ≤
√
d · 2

√
d · e−c2d.

In particular P(B) can be made arbitrarily small for d large. Conditioned on Bc, in each
step for every particle there are at least

|Dx| − 2σd− 1 ≥ (2− a− 2σ)d− 3
√
d

available vertices in Sk+1, i.e. vertices a particle at x can jump to in the next step. Thus,
conditioned on Bc, the process ξ̃k dominates a branching process with mean offspring at
least (

(2− a− 2σ)d− 3
√
d
)
· 2 · s

2d
.

For σ small and d large the mean offspring is bigger than 1 as we assumed a < 2− 1
s . Since

a supercritical branching process grows exponentially with positive probability, there are
constants c3 > 1, q ∈ (0, 1) that do not depend on d such that

P
(
|ξ̃√d| ≥ c

√
d

3

)
≥ q. (2.10)

For the second part of the proof we condition on the event
{
|ξ̃√d| ≥ c

√
d

3

}
and choose

0 < ε < a− 2
3 . If ‖o‖1 ≤ (a−ε)d, all particles of ξ̃√d are inW0 for d large. This immediately

implies the claim of the lemma. Otherwise, let n = |ξ̃√d|, enumerate the particles in ξ̃√d and
let S̃i, 1 ≤ i ≤ n, denote the position of the i-th particle. Further, we define for 1 ≤ i ≤ n

Xi =

{
1 if ‖S̃i‖1 ≤ ‖o‖1,
0 otherwise.

It suffices to show that P(X1 = 1) > 0. Then Lemma 2.6 applied to the random variables
X1, . . . , Xn implies that with positive probability a positive proportion of the particles in
ξ̃√d indeed have L1-norm smaller than o, and are thus in W0. Together with (2.10) this
finishes the proof.
For the proof of the claim let S̃1

k denote the position of the ancestor of S̃1 in Sk, where
0 ≤ k ≤

√
d. Note that S̃1

0 = o and S̃1√
d
= S̃1.

We are interested in the process (‖S̃1
k‖1)1≤k≤√d. By the construction of the process (ξ̃k)k∈N0

it either increases or decreases by 1 in every step. The positions S̃1
k and S̃1

k+1 differ in exactly
one coordinate. If this coordinate is changed from 0 to ±1, then ‖S̃1

k+1‖1 = ‖S̃1
k‖1 + 1. If it

is changed from ±1 to 0, then we have ‖S̃1
k+1‖1 = ‖S̃1

k‖1−1. There are at least (a−ε)d−
√
d
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2.2 Recurrence

many ±1-coordinates in S̃1
k that can be changed to 0. As we also know that S̃1

k+1 ∈ DS̃1
k
,

we have for all k ≤
√
d by (2.9) and the choice of ε

P
(
‖S̃1

k+1‖1 = ‖S̃1
k‖1 − 1

)
≥ (a− ε)d−

√
d

|DS̃1
k
| ≥ (a− ε)d−

√
d

2d− (a− ε)d >
1

2

for d large. Hence, ‖S̃1
k‖1 dominates a random walk with drift on Z started in ‖o‖1. There-

fore,

P(X1 = 1) = P
(
‖S̃1√

d
‖1 ≤ ‖o‖1

)
≥ 1

2
,

which finishes the proof.

Proof of Lemma 2.12. By Lemma 2.13, with probability at least γ there are frog paths in
Q′x from o to at least µ

√
d vertices in Wx for d large. We divide the frogs on these vertices

into 2d groups of size at least µ
√
d/2d and assign each group the task of visiting one of the

neighbouring boxes Wx+e, e ∈ Ed. Notice that this job is done if at least one of the frogs in
the group visits at least one vertex in the neighbouring box. If all groups succeed, o is good.
Any frog in any group is just three steps away from its respective neighbouring box Wx+e,
e ∈ Ed, and thus has probability at least ( s2d)

3 of achieving its group’s goal. Hence,

P(o is good) ≥
(
1−

(
1−

( s
2d

)3)µ√d/2d)2d
γ ≥ γ

2

for d large.

In the other recurrence proofs we couple the frog model with percolation by calling a cube
open if its centre is good. Here, the choice of a “starting” vertex, like the centre, is not
independent of the other cubes. Therefore, we cannot directly couple the frog model with
independent percolation. However, the following lemma allows us to compare the distribu-
tions of a frog cluster and a percolation cluster.

Lemma 2.14. Consider the frog model FM∗(d, πsym, s). Let β > 0 and assume that for all
o ∈Wx, x ∈ Zd we have P(o is good) > β. Further, consider independent site percolation on
Zd with parameter β. Then for all sets A ⊆ Zd, v ∈ Zd and for all k ≥ 0

P(|A ∩ Cv| ≥ k) ≤ P
(∣∣∣⋃
x∈A

Q′x ∩ FC∗3v
∣∣∣ ≥ k).

Proof. For technical reasons we introduce a family of independent Bernoulli random variables
(Xo)o∈Zd which are also independent of the choice of all the trajectories of the frogs and
satisfy P(Xo = 1) = P(o is good)−1β. Their job will be justified soon. Further, we fix an
ordering of all vertices in Zd.
Now we are ready to describe a process that explores a subset of the frog cluster FC∗3v. Its
distribution can be related to the cluster Cv in independent site percolation with parame-
ter β. The process is a random sequence (Rt, Dt, Ut)t∈N0 of tripartitions of Zd. As the letters

35



2 Proofs for the Frog Model

indicate, Rt will contain all sites reached by time t, Dt all those declared dead by time t,
and Ut the unexplored sites. We construct the process in such a way that for all t ∈ N0,
x ∈ Rt and e ∈ Ed there is y ∈Wx+e such that there is a frog path from 3v to y in

⋃
z∈Rt Q

′
z.

We start with R0 = D0 = ∅ and U0 = Zd. If 3v is good and X3v = 1, set U1 = Zd \ {v},
R1 = {v}, and D1 = ∅. Otherwise, stop the algorithm. If the process is stopped at time t,
let Us = Ut−1, Rs = Rt−1 and Ds = Dt−1 for all s ≥ t. Assume we have constructed the
process up to time t. Consider the set of all sites in Ut that have a neighbour in Rt. If it is
empty, stop the process. Otherwise, pick the site x in this set with the smallest number in
our ordering. By the choice of x there is y ∈Wx such that there is a frog path from 3v to y
in
⋃
z∈Rt Q

′
z. Choose any vertex y with this property. If y is good and Xy = 1, set

Rt+1 = Rt ∪ {x}, Dt+1 = Dt, Ut+1 = Ut \ {x}.

Otherwise, update the sets as follows:

Rt+1 = Rt, Dt+1 = Dt ∪ {x}, Ut+1 = Ut \ {x}

In every step t the algorithm picks an unexplored site x and declares it to be reached or dead,
i.e. added to the set Rt or Dt. The probability that x is added to Rt equals β. This event
is (stochastically) independent of everything that happened before time t in the algorithm.
Note that every unexplored neighbour of a reached site will eventually be explored due to
the fixed ordering of all sites.
In the same way we can explore independent site percolation on Zd with parameter β.
Construct a sequence (R′t, D

′
t, U

′
t)t∈N0 of tripartitions of Zd as above, but whenever the

algorithm evaluates whether a site x is declared reached or dead we toss a coin independently
of everything else. Note that

⋃
t∈N0

R′t = Cv, where Cv is the cluster containing v. This
exploration process is well known for percolation, see e.g. [7, Proof of Theorem 4, Chapter 1].
By construction,

⋃
t∈N0

Rt equals the percolation cluster Cv in distribution. The claim
follows since for every x ∈ ⋃t∈N0

Rt there is a y ∈ Wx such that there is a frog path from
3v to y, i.e. y ∈ FC∗3v.

Now we can show Proposition 2.10. Note that we are again working with the frog model
FM(d, πw,α) (without death).

Proof of Proposition 2.10. Throughout this proof we assume that d is so large that we can
apply Lemma 2.12 for d− 1 and such that pc(d− 1) < β, where β is the constant introduced
in the statement of Lemma 2.12. This is possible because of Lemma 2.4. These assumptions
in particular imply that we can use Lemma 2.14 and that the percolation introduced there
is supercritical.
Consider the sequence of hyperplanes (H−n)n∈N0 defined in (2.2) and let A denote the event
that there is at least one frog vn activated in every hyperplane H−n. For technical reasons we
want vn of the form vn = (−n, 3wn) for some wn ∈ Zd−1. We first show that A occurs with
positive probability. To see this consider the first hyperplane H0 and couple the frogs in this
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2.2 Recurrence

hyperplane with FM∗(d− 1, πsym, 1−w) in the following way: Whenever a frog takes a step
in ±e1-direction, i.e. leaves its hyperplane, it dies instead. By Theorem 1.8 or Lemma 2.14
this process survives with positive probability if w is sufficiently small (independent of the
dimension d). This means that infinitely many frogs are activated in H0. Obviously, this
implies the claim.
From now on we condition on the event A. Note that FCvn ⊆ FC0 for n ∈ N. Analogously
to the proofs in the last sections we introduce boxes

FB′n = {−n} × [−(3√n+ 1), 3
√
n+ 1]d−1

for n ∈ N. We claim that analogously to Lemma 2.5 there are constants a, b > 0 and N ∈ N
such that for n ≥ N

P
(
|FB′n ∩ FC0| ≥ an(d−1)/2

)
≥ b. (2.11)

To prove this claim let a, b > 0 and N ∈ N be the constants provided by Lemma 2.5 for
percolation with parameter β. For n ≥ N couple the frog model with FM∗(d−1, πsym, 1−w)
in the hyperplane Hn as above. Let B′n = [−√n,√n]d−1 and note that B′n corresponds to
FB′n restricted to Hn after rescaling. Then by Lemma 2.14 and Lemma 2.5

P
(
|FB′n ∩ FCvn | ≥ an(d−1)/2|A

)
≥ P

(
|FB′n ∩ ({−n} × FC∗3wn)| ≥ an(d−1)/2)|A

)
≥ P

(
|B′n ∩ Cwn | ≥ an(d−1)/2)|A

)
≥ b.

Here, Cwn is the open cluster containing wn in a percolation model with parameter β in
Zd−1, independently of the frogs. As FCvn ⊆ FC0, this implies inequality (2.11).
By Lemma 2.2 and (2.11), the probability that there is at least one activated frog in FB′n
that reaches 0 is at least(

1− (1− c′n−(d−1)/2)an(d−1)/2
)
b ≥

(
1− e−ac

′)
b,

where c′ > 0 is a constant. Altogether we get by Lemma 2.6

P(0 visited infinitely often) = lim
n→∞

P(0 is visited εn many times )

≥ lim
n→∞

P
( n∑
i=1

1{∃x∈FB′n∩FC0 : x→0} ≥ εn
)

≥
((

1− e−ac
′)
b− ε

)
> 0

for ε sufficiently small. The claim now follows from Theorem 1.2.

To prove Proposition 2.11 we again first study the frog model with death FM∗(d, πsym, s) in
the hyperplanes and couple it with percolation. This time we use cubes of size (2K + 1)d

for some K ∈ N0. By choosing K large we increase the number of frogs in the cubes. In the
proof of the previous proposition this was done by increasing the dimension d. For x ∈ Zd
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2 Proofs for the Frog Model

and K ∈ N0 we define

qx = qx(K) = (2K + 1)x,

Qx = Qx(K) = {y ∈ Zd : ‖y − qx‖∞ ≤ K}.

Note that this definition coincides with (2.4). In analogy to Lemma 2.14 the frog cluster
dominates a percolation cluster.

Lemma 2.15. For d ≥ 2 there are constants sr(d) < 1 and K ∈ N0 such that for any
s ≥ sr(d) the frog model FM∗(d, πsym, s) can be coupled with supercritical site percolation on
Zd such that for all sets A ⊆ Zd, v ∈ Zd and for all k ≥ 0

P(|A ∩ Cv| ≥ k) ≤ P
(∣∣∣⋃
x∈A

Qx ∩ FC∗qv
∣∣∣ ≥ k).

Proof. We couple the frog model with percolation as follows: A site x ∈ Zd is called open if
for every e ∈ Ed there exists a frog path from qx to qx+e in Qx. We denote the probability
of a site x to be open by p(K, s). By Lemma 2.7 p(K, 1) is close to 1 for K large. As in the
proof of Lemma 2.8 one can show that lims→1 p(K, s) = p(K, 1). Thus, we can choose K ∈ N
and sr > 0 such that p(K, s) > pc(d) for all s > sr, i.e. the percolation is supercritical. Now
it remains to note that by the construction of the percolation x ∈ Cv implies qx ∈ FC∗qv for
any v ∈ Zd.

Proof of Proposition 2.11. Using Lemma 2.15 instead of Lemma 2.14 and boxes Qx instead
of Q′x, the proof is analogous to the proof of Proposition 2.10.

Proof of Theorem 1.17 (i). Theorem 1.17 (i) follows from Proposition 2.10 and Proposi-
tion 2.11.

Before we conclude this section, let us shortly reflect on what we did. In the proof of
Theorem 1.17 (i) we use Lemma 2.12 to show that in the frog model with death a frog
cluster is dense with positive probability if the survival probability is larger than 3

4 and d
is large. Indeed, we believe that every infinite frog cluster is dense. Hence, FM(d, πw,α)

would be recurrent for all α < 1 if FM∗(d−1, πsym, 1−w) has a positive survival probability.
Further, as mentioned in Section 1.2.2, we believe that the critical survival probability is
decreasing in d. See also the discussion in [1, Chapter 1.2]. Recall that we also suppose that
there is a curve fd separating the transient from the recurrent regime in the phase diagram.
See Conjecture 1.18. All together, this argument would imply that fd(1−) is increasing in d
and thus support Conjecture 1.19.

2.3 Transience

To show the transience of the frog model we couple the frog model with branching random
walks. For the proofs we need the following lemma concerning the one-dimensional frog
model. It enables us to estimate the number of activated frogs.

38



2.3 Transience

2.3.1 One result about one-dimensional frogs

Recall that FM∗(d, πsym, s) refers to the frog model on Zd with survival parameter s and
the underlying random walk being simple.

Lemma 2.16. For FM(1, π1,α) with α > 0 and FM∗(1, πsym, s) with s < 1 there is c > 0

such that P(0 Z − n) ≤ e−cn for all n ∈ N.

Proof. Let p be the probability that a frog starting from 0 ever hits the vertex −1. In both
models we have p < 1. Obviously, as s < 1, this is true for FM∗(d, πsym, s). For FM(1, π1,α)

it follows from Lemma 2.3.
For n ∈ N define Yn = |{m > −n : m → −n}| if −n ∈ FC0, respectively −n ∈ FC∗0 .
Otherwise set Yn = 0. If −n is visited by active frogs, then Yn counts the number of frogs
to the right of −n that potentially ever reach −n. The process (Yn)n∈N is a Markov chain
on N0 with

Yn+1 =

{
0 if Yn = 0,
Binomial(Yn + 1, p) if Yn > 0.

Note that P(0 Z − n) = P(Yn > 0) by definition. A straightforward calculation shows that
there is k0 ∈ N such that P(Yn+1 < Yn | Yn = k) > 2

3 for all k ≥ k0. Hence, we can dominate
the Markov chain (Yn)n∈N by the Markov chain (Ỹn)n∈N on {0, k0, k0+1, . . .} with transition
probabilities

P(Ỹn+1 = l | Ỹn = k) =



1
3 if l = k + 1, k > k0,
2
3 if l = k − 1, k > k0,

(1− p)k0+1 if l = 0, k = k0,

1− (1− p)k0+1 if l = k + 1, k = k0,

1 if l = k = 0

for all n ∈ N and starting point Ỹ1 = max{Y1, k0}. Obviously, we have the inequality
P(Yn > 0) ≤ P(Ỹn > 0) for all n ∈ N. Let Tk = min{n ∈ N : Ỹn = k} and Tk,l = Tl − Tk.
Note that P(Ỹn > 0) = P(T0 > n). For t > 0 the Markov inequality implies

P(T0 > n) = P
(Ỹ1−1∑
k=k0

Tk+1,k + Tk0,0 > n

)

≤ e−tnE
[
exp

(
t

Ỹ1−1∑
k=k0

Tk+1,k + tTk0,0

)]

= e−tn
∞∑
l=k0

l−1∏
k=k0

E
[
exp(tTk+1,k)

]
E
[
exp(tTk0,0)

]
P(Ỹ1 = l)

= e−tn
∞∑
l=0

E
[
exp(tTk0+1,k0)

]lE[exp(tTk0,0)]P(Ỹ1 = l + k0). (2.12)
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Ỹ1 can only be equal to l + k0 if at least one frog to the right of l − 1 reaches −1. Thus,

P(Ỹ1 = l + k0) ≤
∞∑
i=l

pi+1 = pl
p

1− p. (2.13)

Now, we choose t > 0 small enough such that E
[
exp(tTk0+1,k0)

]
< p−1. Then (2.13) shows

that the sum in (2.12) is finite, which yields the claim.

2.3.2 Transience for d ≥ 2 and arbitrary drift

Proof of Theorem 1.15 (ii) and Theorem 1.17 (ii). Let the parameters α > 0 and d ≥ 2 be
fixed throughout the proof. For x ∈ Zd we define

Lx = {y ∈ Zd : yi = xi for all 2 ≤ i ≤ d}. (2.14)

Lx consists of all vertices which agree in all coordinates with x except the e1-coordinate.
The key observation used in the proof is that all particles mainly move along these lines if
the weight w is large.
We dominate the frog model by a branching random walk on Zd. At time n = 0 the
branching random walk starts with one particle at the origin. At every step in time every
particle produces offspring as follows: For every particle located at x ∈ Zd consider an
independent copy of the frog model. At any vertex z ∈ Zd \ Lx the particle produces
|{y ∈ Lx : x

Lx
y, y → z}| many children. Notice that this number might be 0 or infinite.

The particle does not produce any offspring at a vertex in Lx. Further, note that the particles
reproduce independently of each other as we use independent copies of the frog model to
generate the offspring.
One can couple this branching random walk with the original frog model. To explain the
coupling, let us briefly describe how to go from the original frog model to the branching
random walk. Recall that the frog model is entirely determined by a set of trajectories
(Sxn)n∈N0,x∈Zd of random walks. We use this set of trajectories to produce the particles in
the first generation of the branching random walk, i.e. the children of the particle initially at
0, as explained above. Now, assume that the first n generations of the branching random walk
have been created. Enumerate the particles in the n-th generation. When generating the
offspring of the i-th particle in this generation, delete all trajectories of the frog model used
for generating the offspring of a particle j with j < i or a particle in an earlier generation,
and replace them by independent trajectories. Otherwise, use the original trajectories.
One can check that the branching random walk dominates the frog model in the following
sense: For every frog in Zd \ L0 that is activated and visits 0 there is a particle at 0 in
the branching random walk. Thus, the number of visits to the origin by particles in the
branching random walk is at least as big as the number of visits to 0 by frogs in the frog
model, not counting those visits to 0 made by frogs initially in L0. Note that, if the frog
model was recurrent, then almost surely there would be infinitely many frogs in Zd \ L0

activated that return to 0. In particular, also in the branching random walk infinitely many
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particles would return to 0. Therefore, to prove transience of the frog model it suffices to
show that in the branching random walk only finitely many particles return to 0 almost
surely.

e1

e2

L0
0 x1 x2

x3

x4x5

x6

x7

Figure 2.5: The figure shows the lines Lx, x ∈ Z2. Assume x1, . . . , x7 is a frog path from 0
to 0. In the branching process there is one descendant of 0 at x3. This particle
produces one child at x4, this child has one descendant at x6. The particle at x6
produces one descendant at 0. The dashed frog path, on the other hand, does
not result in a particle being placed at 0 in the branching random walk.

Let Dn denote the set of descendants in the n-th generation of the branching random walk.
Further, for i ∈ Dn let Xi

n be the e1-coordinate of the location of particle i. Define for θ > 0

and n ∈ N0

µ = E
[∑
i∈D1

e−θX
i
1

]
and Mn =

1

µn

∑
i∈Dn

e−θX
i
n . (2.15)

We claim that µ < 1 for w close to 1 and θ small, which, in particular, implies that (Mn)n∈N0

is well-defined. We show this claim in the end of the proof. We next show that (Mn)n∈N0 is
a martingale with respect to the filtration (Fn)n∈N0 with

Fn = σ
(
D1, . . . , Dn, (X

i
1)i∈D1 , . . . , (X

i
n)i∈Dn

)
.

Obviously, Mn is Fn-measurable. For a particle i ∈ Dn denote its descendants in generation
n+ 1 by Di

n+1. Since particles branch independently, we get

E[Mn+1|Fn] = E
[ 1

µn+1

∑
i∈Dn+1

e−θX
i
n+1

∣∣ Fn]
=

1

µn

∑
i∈Dn

e−θX
i
n · 1

µ
E
[ ∑
j∈Din+1

e−θ(X
j
n+1−Xi

n)
]
.

Note that the expectation on the right hand side is independent of i and n and therefore,
by the definition of µ, we conclude

E[Mn+1|Fn] =Mn.
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This calculation also yields E[|Mn|] = E[Mn] = E[M0] = 1, and therefore Mn ∈ L1. This in
particular implies that Mn is finite almost surely for every n ∈ N0. Thus, Xi

n = 0 can only
occur for finitely many i ∈ Dn almost surely for every n ∈ N0, i.e. in every generation only
finitely many particles can be at 0. By the martingale convergence theorem, there exists
an almost surely finite random variable M∞, such that limn→∞Mn = M∞ almost surely.
Combining this with µ < 1, we get limn→∞

∑
i∈Dn e

−θXi
n = 0 almost surely. Hence, Xi

n = 0

for some i ∈ Dn occurs only for finitely many times n. Overall, this shows that the branching
random walk is transient.
It remains to show µ < 1. Note that the particles in D1 are located at vertices in the set
{y ∈ Zd \ L0 : 0

L0
y}. Therefore, for the calculation of µ we first need to consider all

sites in L0 that are reached from 0 by frog paths in L0. The idea is to control the number
of frogs activated on the negative e1-axis using Lemma 2.16 and estimating the number of
frogs activated on the positive e1-axis by assuming the worst case scenario that all of them
will be activated. Then, for every k ∈ Z we have to estimate the number of vertices with
e1-coordinate k visited by each of these active frogs on the e1-axis. Due to the definition of
µ, the sites visited by frogs on the positive e1-axis do not contribute much to µ. Recall that
Hk denotes the hyperplane that consists of all vertices with e1-coordinate equal to k ∈ Z,
see (2.2). For k, i ∈ Z define

Nk,i = |{x ∈ Hk \ L0 : (i, 0, . . . , 0)→ x}|.

As Nk,i equals Nk−i,0 in distribution for all i, k ∈ Z, we get

µ = E
[∑
i∈D1

e−θX
i
1

]
=

∞∑
i=−∞

∞∑
k=−∞

P
(
0
L0

(i, 0, . . . , 0)
)
E[Nk,i]e

−θk

=
∞∑

k=−∞
E[Nk,0]e

−θk
∞∑

i=−∞
e−θiP

(
0
L0

(i, 0, . . . , 0)
)
. (2.16)

Note that P
(
0
L0

(i, 0, . . . , 0)
)
is smaller or equal than the probability of the event {0 Z

i}
in the frog model FM(1, 1, α). Hence, by Lemma 2.16, there is a constant c1 > 0 such that
P
(
0
L0

(i, 0, . . . , 0)
)
≤ ec1i for all i ≤ 0. Thus, (2.16) implies that for θ < c1 there is a

constant c2 = c2(θ) <∞ such that

µ ≤ c2
∞∑

k=−∞
E[Nk,0]e

−θk. (2.17)

Next we estimate E[Nk,0], the expected number of vertices in Hk \ L0 visited by a single
particle starting at 0. Recall that the trajectory of frog 0 is denoted by (S0

n)n∈N0 . We
define Tk = min{n ∈ N0 : S

0
n ∈ Hk}, the entrance time of the hyperplane Hk, and further

T ′k = max{n ∈ N0 : S
0
n ∈ Hk}, the last time frog 0 is in the hyperplane Hk. Obviously,
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Nk,0 = 0 on the event {Tk = ∞}. Hence, assume we are on {Tk < ∞}. The particle
can only visit a vertex in Hk \ L0 at time Tk if the random walk took at least one step in
non-e1-direction up to time Tk. This happens with probability E[1 − wTk ]. Furthermore,
the number of vertices visited in Hk after time Tk can be estimated by the number of steps
in non-e1-direction taken between times Tk and T ′k. This number is binomially distributed
and, thus, its expectation equals (1− w)E[T ′k − Tk]. Overall, this implies

E[Nk,0] ≤ P(Tk <∞)
(
E
[
1− wTk | Tk <∞

]
+ (1− w)E

[
T ′k − Tk | Tk <∞

])
.

For k < 0 the probability P(Tk < ∞) decays exponentially in k by Lemma 2.3. Therefore,
we can choose θ small such that P(Tk <∞)e−θk ≤ e−θ|k| for all k ∈ Z. Thus, (2.17) implies

µ ≤ c2
∞∑

k=−∞
e−θ|k|

(
E
[
1− wTk | Tk <∞

]
+ (1− w)E

[
T ′k − Tk | Tk <∞

])
. (2.18)

Note that the sum in (2.18) is finite as E
[
T ′k − Tk | Tk < ∞

]
is independent of k. By

monotone convergence limw→1 µ = 0 and the right hand side of (2.18) is continuous in w.
Therefore, we can choose w close to 1 such that µ < 1, as claimed.

2.3.3 Transience for d = 2 and arbitrary weight

Proof of Theorem 1.14 (ii). Let w > 0 be fixed throughout the proof. As in the proof of
Theorem 1.15 (ii) and Theorem 1.17 (ii) we dominate the frog model by a branching random
walk. This time we use a one-dimensional branching random walk on Z. For the construction
of the process, let ξ be the number of activated frogs in an independent one-dimensional frog
model FM∗(1, πsym, 1−w) with two active frogs at 0 initially. At time n = 0, the branching
random walk starts with one particle in the origin. At every time n ∈ N, the process repeats
the following two steps. First, every particle produces offspring independently of all other
particles with the number of offspring being distributed as ξ. Then, each particle jumps to
the right with probability 1+α

2 and to the left with probability 1−α
2 .

As an intermediate step to understand the relation between the frog model and this branching
random walk on Z, we first couple the frog model with a branching random walk on Z2 with
initially one particle at 0. Partition the lattice Z2 into hyperplanes (Hn)n∈Z as defined in
(2.2). Let the frog model FM(2, πw,α) with initially two active frogs at 0 ∈ H0 evolve and
stop every frog when it first enters H1 or H−1. Every frog leaves its hyperplane in every
step with probability w. Thus, the number of stopped frogs is distributed according to
ξ. A stopped frog is in H1 with probability 1+α

2 and in H−1 with probability 1−α
2 . The

stopped particles form the offspring of the particle at 0 in the branching random walk. We
repeat this procedure to generate the offspring of an arbitrary particle in the branching
random walk. Introduce an ordering of all particles in the branching random walk and let
the particles branch one after another. Before generating the offspring of the i-th particle,
refill every vertex which is no longer occupied by a sleeping frog with an extra independent
sleeping frog. Unstop frog i and let it continue its work as usual, ignoring all other stopped
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frogs. Note that there is a sleeping frog at the starting vertex of frog i that is immediately
activated. This explains our definition of ξ. Again stop every frog once it enters one of the
neighbouring hyperplanes. These newly stopped frogs form the offspring of the i-th particle.
This procedure creates a branching random walk with independent identically distributed
offspring. Every vertex visited in the frog model is obviously also visited by the branching
random walk.
Now, project all particles in the intermediate two-dimensional branching random walk onto
Z. This creates a branching random walk on Z distributed as the one described above. The
construction shows that transience of this one-dimensional branching random walk implies
transience of the frog model.
To prove that the one-dimensional branching random walk is transient for α close to 1, we
proceed as in the proof of Theorem 1.15 (ii) and Theorem 1.17 (ii). The proof only differs
in the calculation of the parameter µ defined by

µ = E
[∑
i∈D1

e−θX
i
1

]
for θ > 0 with D1 denoting the set of descendants in the first generation of the branch-
ing random walk and Xi

1 the e1-coordinate of the location of particle i ∈ D1. Here, we
immediately get

µ =
1

2

(
(1− α)eθ + (1 + α)e−θ

)
E[ξ].

Lemma 2.16 implies E[ξ] < ∞. Thus, we can choose θ = log
(
2E[ξ]

)
. Then limα→1 µ = 1

2

and by continuity µ < 1 for α close to 1, as required.

2.4 About the maximum and minimum

In this section we present the proofs of Theorems 1.21–1.25 presented in Section 1.3.2. They
concern the one-dimensional frog model FM(1, πα) for α ∈ [0, 1] with πα as defined in (1.2).

2.4.1 Existence of the speed of the maximum

The existence of the speed of the maximum follows from Liggett’s Subadditive Ergodic The-
orem. Indeed, this theorem yields more information which we use throughout this section.
We summarize it in the following lemma.

Lemma 2.17. For each α ∈ [0, 1] there exists a positive constant vmax such that in the frog
model FM(1, πα)

vmax = lim
n→∞

Mn

n
a.s.

Furthermore,

v−1max = lim
x→∞

Tx
x

= lim
x→∞

E[Tx]
x

= inf
x∈N

E[Tx]
x

a.s. (2.19)
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Proof. Let Tx,y denote the activation time of the frog at site y when initially there is one
active frog at site x and one sleeping frog at every other site. An application of Liggett’s
Subadditive Ergodic Theorem (see e.g. [38]) to the times (Tx,y)x,y∈Z shows the existence of
a positive constant vmax such that (2.19) holds. For α = 0 this is proved for a more general
model by Alves et al. in [2]. In our setting their argument immediately applies to α > 0 as
well.
By a standard argument it now follows that limn→∞

Mn
n exists almost surely: There exists

a unique random sequence (xn)n∈N with values in N0 such that Txn ≤ n < Txn+1. Note that
limn→∞ xn =∞. Hence,

lim
n→∞

Tn
n

= lim
n→∞

Txn
xn

= lim
n→∞

n

xn
a.s.

Obviously, xn − (n− Txn) ≤Mn ≤ xn. This implies

xn
n
−
(
1− Txn

xn
· xn
n

)
≤ Mn

n
≤ xn

n
.

Taking limits yields the claim.

2.4.2 Speed of the minimum

In order to prove Theorem 1.21 we compare the frogs initially on non-negative sites with
independent random walks. The speed of the minimum of independent random walks can
be computed explicitly which is done in the first of the following lemmas. Then it remains
to deal with the frogs initially on negative sites. Luckily, they can be ignored due to the
transience of the frog model. See Theorem 1.11.
We often need to talk about the frogs initially on negative sites and refer to them as the
“negative frogs”. Analogously we speak of “non-negative” and “positive frogs”.

Lemma 2.18. Let
{(
S̃xn
)
n∈N0

: x ∈ Z
}

be a collection of independent random walks with
start in 0 and transition probabilities πα for α ∈ [0, 1]. Then

lim
n→∞

1

n
min

x∈{−n,...,n}
S̃xn = α a.s.

Proof. We only need to prove lim infn→∞
1
n minx∈{−n,...,n} S̃

x
n ≥ α. The converse immedi-

ately follows from the law of large numbers. For all ε > 0 we have

P
(
1

n
min

x∈{−n,...,n}
S̃xn ≤ α− ε

)
= P

( n⋃
x=−n

{
S̃xn
n
≤ α− ε

})
≤ (2n+ 1)P

(
S̃0
n

n
≤ α− ε

)
.

By Cramér’s Theorem the probability in the last term of this calculation decays exponentially
fast in n. Hence, it is summable. An application of the Borel-Cantelli Lemma and letting
ε→ 0 completes the proof.
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2 Proofs for the Frog Model

This result now enables us to prove a formula for the speed of the minimum of the non-
negative frogs.

Lemma 2.19. Consider FM(1, πα) for α ∈ [0, 1] and let A+
n = {x ≥ 0: Tx ≤ n}. Then

lim
n→∞

1

n
min
x∈A+

n

Zxn = α a.s.

Before proving Lemma 2.19 we make another short observation. Obviously vmax is at least
as big as the speed of a single frog, i.e. vmax ≥ α. In fact, this inequality is strict for all
α ∈ [0, 1). For α = 0 this fact is known from [2] or Theorem 1.10.

Lemma 2.20. Consider FM(1, πα) for α ∈ (0, 1). Then it holds that vmax > α.

Proof. The key point is to notice that E[T1] < E[T s1 ] holds, where T s1 = inf{n ∈ N : S0
n = 1}

denotes the hitting time of the vertex 1 of a single simple random walk with drift α and
start in 0. Hence, by Lemma 2.17

v−1max = inf
x∈N

E[Tx]
x
≤ E[T1] < E[T s1 ] =

1

α
.

One can of course find better lower bounds for the speed of the maximum by estimating
E[Tx] for x ≥ 1, but this is not done or needed here.

Proof of Lemma 2.19. It is enough to show lim infn→∞
1
n minx∈A+

n
Zxn ≥ α almost surely.

In this proof we use a different but equivalent way of defining the movement of the frogs.
Let

{(
S̃xn
)
n∈N0

: x ∈ Z
}
be a collection of independent random walks with start in 0 and

transition probabilities πα for α ∈ [0, 1]. We assume that, once it is activated, frog x follows
the trajectory

(
S̃xn− S̃xT̃x

)
n∈N0

, where T̃x denotes the activation time of frog x in this set-up.
More formally, for every x ∈ Z the position of frog x at time n ∈ N0 is given by

Z̃xn =

{
x for n < T̃x,
x+ S̃xn − S̃xT̃x for n ≥ T̃x.

Note that (Z̃xn) equals (Zxn) in distribution. We now want to compare the trajectory (Z̃xn)n∈N0

of each frog with the trajectory (S̃xn)n∈N0 of the corresponding random walk started at 0.
From time T̃x onwards they move synchronously by definition. Therefore, we only need to
compare their locations at time T̃x. Note that Z̃x

T̃x
= x and define G = {x ≥ 0: S̃x

T̃x
≤ x}

to be the set of good frogs. Further, let Ã+
n = {x ≥ 0: T̃x ≤ n}. Now, x ∈ Ã+

n ∩G implies
S̃xn ≤ Z̃xn for all n ∈ N, i.e. all good frogs stay to the right of their corresponding random
walk. Hence,

min
x∈Ã+

n

Z̃xn ≥ min
x∈Ã+

n

S̃xn −
∑

x∈Gc∩Ã+
n

(
S̃xn − Z̃xn

)
≥ min

x∈Ã+
n

S̃xn −
∑
x∈Gc

(
S̃x
T̃x
− x
)
. (2.20)
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We claim that the set Gc is finite almost surely. For α = 1 this is obviously true. For α < 1

it is enough to show that

lim
x→∞

S̃x
T̃x
− x
T̃x

= α− vmax a.s. (2.21)

since by Lemma 2.20 the last term is strictly negative and hence S̃x
T̃x
−x > 0 can occur only

for finitely many x ≥ 0 almost surely.
Note that (S̃xn)n≤T̃x is independent of the movement of the frogs up to time T̃x. Thus, S̃x

T̃x

equals S̃0
T̃x

in distribution. Using a standard large deviation estimate we get for every ε > 0

P
( S̃x

T̃x

T̃x
≤ α− ε

)
= P

( S̃0
T̃x

T̃x
≤ α− ε

)
≤ E

[
e−cT̃x

]
≤ e−cx

where c = c(ε, α) > 0 is a constant. Analogously P
( S̃x

T̃x

T̃x
≥ α+ ε

)
decays exponentially fast

in x. An application of the Borel-Cantelli Lemma and letting ε→ 0 therefore shows

lim
n→∞

S̃x
T̃x

T̃x
= α a.s.

Further, we know from Lemma 2.17 that limx→∞
x

T̃x
= vmax almost surely. This proves

equation (2.21) which implies that Gc is finite almost surely.
Therefore, the second term on the right side in inequality (2.20) is finite almost surely. Also
note that it does not depend on n. Thus,

lim inf
n→∞

1

n
min
x∈Ã+

n

Z̃xn ≥ lim inf
n→∞

1

n
min
x∈Ã+

n

S̃xn a.s.

As Ã+
n ⊆ {−n, . . . , n} an application of Lemma 2.18 finishes the proof.

Proof of Theorem 1.21. As shown in [22, Theorem 2.3] and cited in Theorem 1.11 the frog
model with drift, as considered here for α 6= 0, is transient almost surely. This means that
the origin is visited by only finitely many frogs almost surely. Therefore only finitely many
negative frogs are ever activated. Hence, Theorem 1.21 follows from Lemma 2.19.

2.4.3 Monotonicity of the speed of the maximum

Next we prove that the speed of the maximum is an increasing function in the drift pa-
rameter α. Though this statement might seem obvious at first, no direct coupling of the
frog models for different drift parameters seems possible, since for smaller values of α more
negative frogs will eventually be woken up, which might help in pushing the front forward.
But we can ignore all these frogs without changing the speed of the maximum, similar to
the proof of Theorem 1.21. This is shown in the next lemma. We therefore consider the frog
model without negative frogs and initially one sleeping frog at every positive integer, i.e. the
frog model FM(1, πα, η) with ηx = 1 for x > 0 and ηx = 0 for x < 0.
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Lemma 2.21. Let vmax be the speed of the maximum in the frog model FM(1, πα) with
α ∈ [0, 1]. Further, let η be the initial configuration given by ηx = 0 for x < 0 and ηx = 1

for x > 0. Let T+
x denote the activation time of x ∈ N in the frog model FM(1, πα, η). Then

v−1max = lim
x→∞

T+
x

x
a.s.

Proof. We only need to prove lim supx→∞
T+
x
x ≤ v−1max almost surely. We couple the two frog

models by assuming that the corresponding frogs in both models follow the same paths. They
might be activated at different times, but otherwise move in the same way. All variables in
this proof, apart from the activation times T+

x , refer to the frog model FM(1, πα).
First, we consider the frog model FM(1, πα) and show that the speed of the maximum of all
negative frogs equals α almost surely. I.e. setting A−n = {x < 0: Tx ≤ n} we claim that

lim
n→∞

1

n
max
x∈A−n

Zxn = α a.s. (2.22)

For α > 0 only finitely many negative frogs will ever be activated almost surely by Theo-
rem 1.11. In this case equation (2.22) follows immediately. If α = 0, then by symmetry the
claim follows from Lemma 2.19.
Let E be the set of all positive frogs which are activated by negative frogs, meaning that at
the time of their activation at least one negative frog is present. Since vmax > α as proved
in Lemma 2.20 and by equation (2.22) the set E is finite almost surely.
Hence, T = supx∈E(T

+
x − Tx) is an almost surely finite random variable. For all x ∈ E we

the definition of T yields T+
x ≤ Tx + T . Actually, we claim that this inequality is true for

all x ∈ N0, which immediately implies the claim of the lemma.
The inequality can e.g. be proven inductively. For x = 0 the inequality is obviously true as
T+
0 = T0 = 0. Now assume that x ∈ N and T+

y ≤ Ty + T holds for all 0 ≤ y ≤ x − 1. If
x ∈ E, there is nothing to show. Otherwise, let 0 ≤ z ≤ x − 1 be the (random) frog that
activates the frog x in the version FM(1, πα). Then we have

T+
x ≤ T+

z + (Tx − Tz) ≤ Tx + T,

as claimed.

Proof of Theorem 1.22. Using a standard coupling we can achieve that T+
i (α) is monotone

decreasing in α. As vmax(α) = limx→∞
x
T+
x

almost surely by Lemma 2.21, we conclude that
vmax(α) is increasing in α.

2.4.4 Upper bound for the speed of the maximum

In order to bound the speed of the maximum from above we prove an upper bound for the
number of frogs in the maximum. We do this for a slightly modified frog model: Each time
the maximum moves to the left we put a sleeping frog at the site that has just been left by
the maximum. Hence, in this new model there is one sleeping frog at every site to the right
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of the maximum at any time. Further notice that, except at time 0, there are always at least
two frogs in the maximum. We use the same notation as in the usual frog model, but add
an index “mod” when referring to the modified model. Further, let an denote the number of
frogs in the maximum at time n ∈ N0 in the modified frog model.

Lemma 2.22. In the modified frog model as explained above, we have for α ∈ (0, 1) and all
n ∈ N0

E[an] ≤
(3− α)(1 + α)

2(1− α)α .

Proof. We define p = 1+α
2 , i.e. we use p to denote the probability of a jump to the right by

a particle. This notation slightly improves the readability of the following calculations.
We prove bounds not only for the number of frogs in the maximum, but for every other site
as well. Therefore, let an(k) be the number of frogs at location Mmod

n − 2k at time n for
k, n ∈ N0. We prove by induction on n that for all n, k ∈ N0

E[an(k)] ≤
(2− p)p

(1− p)(2p− 1)pk
. (2.23)

For n = 0 and n = 1 one easily checks that the claim is true. Assume that the claim holds
for some integer n ∈ N.
First we show inequality (2.23) for k = 0. Distinguishing whether all an particles in the
maximum at time n move to the left or not in the next step one calculates

E[an+1] = E
[
(1− p)an

(
an + pan(1)

)]
+ E

[(
1− (1− p)an

)( pan
1− (1− p)an + 1

)]
= E

[
(1− p)an

(
an + pan(1)− 1

)
+ pan + 1

]
.

Note here that the expectation of a binomial random variable with parameters p > 0 and
k ∈ N conditioned on being at least 1 is given by pk

1−(1−p)k . Using an ≥ 2 yields

E[an+1] ≤ (1− p)2E
[
an + pan(1)− 1

]
+ pE[an] + 1. (2.24)

Inserting the induction hypothesis (2.23) in (2.24) the claim follows after a straightforward
calculation.
For k = 1 an analogous calculation yields

E[an+1(1)] = E
[
(1− p)an

(
pan(2) + (1− p)an(1)

)]
+ E

[(
1− (1− p)an

)(
an −

pan
1− (1− p)an + pan(1)

)]
= E

[
(1− p)an

(
pan(2)− (2p− 1)an(1)− an

)]
+ E

[
(1− p)an + pan(1)

]
. (2.25)
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For k ≥ 2 one gets

E[an+1(k)] = E
[
(1− p)an

(
pan(k + 1) + (1− p)an(k)

)]
+ E

[
(1− (1− p)an)

(
pan(k) + (1− p)an(k − 1)

)]
= E

[
(1− p)an

(
pan(k + 1)− (2p− 1)an(k)− (1− p)an(k − 1)

)]
+ E

[
(1− p)an(k − 1) + pan(k)

]
. (2.26)

Thus, for k ≥ 1 equations (2.25) and (2.26) imply

E[an+1(k)] ≤ p(1− p)2E[an(k + 1)] + pE[an(k)] + (1− p)E[an(k − 1)]. (2.27)

As before, inserting the induction hypothesis (2.23) into inequality (2.27) completes the
proof.

Proof of Theorem 1.23. Consider the event that in the modified frog model at time n all an
frogs sitting in the maximum move to the left. Using Jensen’s inequality and Lemma 2.22,
we conclude that the probability of this event is bounded from below by

E
[(1− α

2

)an] ≥ (1− α
2

)E[an] ≥ (1− α
2

) (3−α)(1+α)
2(1−α)α

.

Therefore, for all n ∈ N0

E
[
Tmod
n+1 − Tmod

n

]
≥ 1 + 2E

[(1− α
2

)a
Tmod
n

]
≥ 1 + 2

(1− α
2

) (3−α)(1+α)
2(1−α)α

.

Clearly, in the modified model, frogs are activated no later than in the normal version of the
frog model. Thus,

E[Tn] ≥ E
[
Tmod
n

]
=

n∑
k=1

E
[
Tmod
k − Tmod

k−1
]
≥
(
1 + 2

(1− α
2

) (3−α)(1+α)
2(1−α)α

)
n.

By Lemma 2.17 we conclude

v−1max = inf
n∈N

E[Tn]
n
≥ 1 + 2

(1− α
2

) (3−α)(1+α)
2(1−α)α

> 1.

2.4.5 Equidistribution of frogs

It remains to prove Theorem 1.25. The idea of the proof is quite simple: From the point of
view of the minimum the front moves with a positive speed, but all the frogs only fluctuate
around their locations with

√
n, so basically they stay where they are.

First, we show that for large enough times n all active frogs do not deviate much from their
expected locations. To formalize this statement we define for n ∈ N0 the set

Gn = {x ∈ An :
∣∣Zxn − E[Zxn]

∣∣ < n3/4}.
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Lemma 2.23. In the frog model FM(1, πα) with α ∈ [0, 1], we almost surely have Gn = An
for all n large enough.

Proof. As An ⊆ {−n, . . . , n} we have

P
(
An 6= Gn

)
= P

( ⋃
x∈An

{∣∣Zxn − E[Zxn]
∣∣ ≥ n3/4})

≤
n∑

x=−n
P
(∣∣Zxn − E[Zxn]

∣∣ ≥ n3/4)
=

n∑
x=−n

n∑
k=0

P
(∣∣Zxn − E[Zxn]

∣∣ ≥ n3/4∣∣Tx = k
)
· P(Tx = k). (2.28)

Further, for every x ∈ Z and 0 ≤ k ≤ n it holds that

P
(∣∣Zxn − E[Zxn]

∣∣ ≥ n3/4∣∣Tx = k
)
= P

(∣∣Sxn−k − E[Sxn−k]
∣∣ ≥ n3/4)

≤ 2 exp
(
− n3/2

4(n− k)
)

≤ 2 exp
(
−n

1/2

4

)
.

In the first inequality in the above estimate we use Höffding’s inequality. Thus, (2.28) implies

P
(
An 6= Gn

)
≤ 2 exp

(
−n

1/2

4

) n∑
x=−n

n∑
k=0

P(Tx = k) ≤ 2(2n+ 1) exp
(
−n

1/2

4

)
which is summable. An application of the Borel-Cantelli Lemma completes the proof.

For ε > 0 and b ∈ [0, 1] define

Ln(b, ε) =

{{
x ∈ Z : − (vmax − ε)n ≤ x ≤

(
(2b− 1)vmax − ε

)
n
}

for α = 0,{
x ∈ Z : 0 ≤ x ≤ (bvmax − ε)n

}
for α > 0

and

Rn(b, ε) =

{{
x ∈ Z :

(
(2b− 1)vmax + ε

)
n ≤ x ≤ (vmax − ε)n

}
for α = 0,{

x ∈ Z : (bvmax + ε)n ≤ x ≤ (vmax − ε)n
}

for α > 0.

Lemma 2.24. Consider the frog model FM(1, πα) with α ∈ [0, 1] and let b ∈ [0, 1]. For n
large enough, x ∈ Ln(b, ε) ∩Gn implies

Zxn − vminn

(vmax − vmin)n
≤ b, (2.29)

whereas x ∈ Rn(b, ε) ∩Gn implies

Zxn − vminn

(vmax − vmin)n
≥ b. (2.30)

51



2 Proofs for the Frog Model

Proof. For α = 0 note that by symmetry vmin = −vmax. Thus, (2.29) holds if and only if
Zxn ≤ (2b− 1)vmaxn. Assume x ∈ Ln(b, ε) ∩Gn. A straightforward calculation shows

Zxn ≤ E[Zxn] + n3/4 = x+ n3/4 ≤ (2b− 1)vmaxn

for n big enough. Analogously, one shows (2.30) in this case.
For α > 0 the proof works essentially in the same way as for α = 0, but the estimation of
E[Zxn] is less trivial. We have E[Zxn] = x+(n−E[Tx])vmin. For x ∈ Ln(b, ε)∩Gn we thus get

Zxn ≤ E[Zxn] + n3/4 = vminn+
x

vmax

(
vmax −

E[Tx]
x

vminvmax

)
+ n3/4.

Lemma 2.17 yields that E[Tx]
x ≥ infx∈N

E[Tx]
x = v−1max. Hence, for n big enough

Zxn ≤ vminn+
x

vmax
(vmax − vmin) + n3/4

≤ vminn+ b(vmax − vmin)n,

as claimed in (2.29). On the other hand, x ∈ Rn(b, ε) ∩Gn analogously implies

Zxn ≥ vminn+
x

vmax

(
vmax −

E[Tx]
x

vminvmax

)
− n3/4.

Since limx→∞
E[Tx]
x = v−1max, and x tends to infinity whenever n does by the definition of

Rn(x, ε), we know that E[Tx]
x ≤ v−1max+δε for n big enough and a small constant δ. Therefore,

Zxn ≥ vminn+
x

vmax
(vmax − vmin − εδvminvmax)− n3/4.

Using x ≥ (bvmax + ε)n and choosing δ small enough finishes the proof.

Proof of Theorem 1.25. We need to show that limn→∞ µn([0, b]) = λ([0, b]) holds for every
b ∈ [0, 1] almost surely.
Take a realisation of the frog model such that An = Gn holds for sufficiently large n, such
that limn→∞

Mn
n = vmax and limn→∞

mn
n = vmin, and finally such that An ∩ Z− is finite.

This happens with probability 1 as we have seen in Lemma 2.23, Lemma 2.17, Theorem 1.21
and previous discussions about the transience of the frog model. Now fix b ∈ [0, 1] and ε > 0

small. Lemma 2.24 yields that, for n large enough,

µn([0, b]) ≥
1

|An|
|Gn ∩ Ln(b, ε)| =

n

|An|
· |Ln(b, ε)|

n
. (2.31)

For the last equation we used Ln(b, ε) ⊆ An for sufficiently large n as limn→∞
Mn
n = vmax.

The definition of Ln(b, ε) implies

|Ln(b, ε)| ≥
{
2(bvmax − ε)n for α = 0,

(bvmax − ε)n for α > 0.
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2.4 About the maximum and minimum

Further, limn→∞
n
|An| =

1
2v
−1
max for α = 0, respectively limn→∞

n
|An| = v−1max for α > 0. Thus,

the limit inferior of the last term in (2.31) as n → ∞ is bounded from below by b− εv−1max.
Since ε > 0 was chosen arbitrarily we conclude

lim inf
n→∞

µn([0, b]) ≥ b.

On the other hand, Lemma 2.24 shows that, for n large enough,

µn([0, b]) ≤
1

|An|
∣∣An \ (Gn ∩Rn(b, ε))∣∣ = 1− n

|An|
· |Rn(b, ε)|

n
(2.32)

since An = Gn and Rn(b, ε) ⊆ An for n big enough. By the definition of Rn(b, ε) we have

|Rn(b, ε)| ≥
{
2
(
(1− b)vmax − ε

)
n for α = 0,(

(1− b)vmax − 2ε
)
n for α > 0.

Analogous to the above estimation this yields that the limit superior of the right hand side
of (2.32) is bounded from above by b+ 2εv−1max. As before we get, since ε > 0 is arbitrary,

lim sup
n→∞

µn([0, b]) ≤ b,

which finishes the proof.
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3 Branching Random Walks

3.1 Introduction

In this chapter we study branching random walks in discrete time on the one-dimensional
lattice Z. In general, such a branching random walk is a system of particles living on Z
that evolves as follows: Initially, there is one particle at 0. The particle produces offspring
that are placed on Z according to some point process. The offspring of this initial particle
form the first generation of the branching random walk. Each particle in the n-th generation
itself has children whose positions are distributed according the same point process (from the
point of view of the parent particle). All the children of the particles in the n-th generation
form the (n+1)-th generation. Usually, one also refers to the particles of the n-th generation
as the particles present at time n. We assume that all particles reproduce independently of
each other and independently of the past of the process. The point process governing the
reproduction may in general depend on time and the location of the parent particle. An
introduction to branching random walks and overview of classical results can e.g. be found
in [48], [55], and [53].
There is an abundance of variants of branching random walks studied in the literature. We
will take a look at one of them, in which the production of offspring consists of two parts.
First, every particle moves according to a nearest neighbour random walk. The transition
probabilities may depend on the location of the particle. Then it reproduces according to
a fixed distribution. More precisely, let the sequence (ωx)x∈Z ∈ [0, 1]Z describe some (for
the moment arbitrary) environment on Z that is responsible for the motion of the particles.
Further, let (pk)k∈N0 with pk ≥ 0,

∑∞
k=0 pk = 1 denote the reproduction distribution. At

time 0 the process starts with one particle at 0. At time n all particles move one step
according to the environment (ωx)x∈Z and then reproduce according to (pk)k∈N0 , i.e. a
particle at a vertex x ∈ Z jumps to x+ 1 with probability ωx and to x− 1 with probability
1 − ωx, and is then replaced by k particles with probability pk. Let m =

∑∞
k=0 kpk denote

the expected number of offspring of one particle. Throughout, we assume m > 1 and∑∞
k=0 k

2pk <∞. In particular, this implies that the branching process survives with positive
probability. Let

Mn = max{x ∈ Z : x occupied at time n}

denote the rightmost position occupied by a particle at time n. We are interested in the
limit limn→∞

Mn
n .

We consider this particle process in a random environment as well as in a homogeneous
environment on the non-negative integers N with reflection at 0. In the first case we assume
that (ωx)x∈Z are i.i.d. random variables, in the latter that ω0 = 1 and ωx = α for all x > 0
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3 Branching Random Walks

and some α ∈ (0, 1). In both cases the limit exists almost surely and can be determined
via the mean m of the offspring distribution and the large deviation rate function I of a
single particle moving according to the respective environment. Indeed, in both cases, one
can define b as the largest solution of logm = I(b) if logm < I(1), or let b = 1 otherwise.
Then, conditioned on the survival of the branching process, we almost surely have that

lim
n→∞

Mn

n
= b. (3.1)

This result (and often much more) is known for many variations of branching random walks.
Let us just mention, that the classical version, in which the particles move in a homogeneous
environment on Z, is studied e.g. in [25], [32] and [6].
Our study of the problem was motivated by the question whether the speed of the maximum
can in general be characterised by the rate function I and the reproduction mean m, or
whether there is a natural counterexample. There is a simple and robust standard technique
for showing that b is indeed an upper bound for the limit in (3.1). The proof of a lower bound
is more involved and requires information on the environment. For the branching random
walk in random environment we use the method of constructing an embedded Galton-Watson
process. This method uses translation invariance of the environment. The proof in the case
of the branching random walk on N therefore uses another method.

3.2 In random environment

The aim of this section is to discuss a branching random walk in an i.i.d. random environment.
Before we delve into the discussion of the movement of a whole cloud of particles, let us deal
with the motion of a single particle. In the following section, we therefore very briefly
summarise some classical results about random walk in random environment.

3.2.1 Random walk in random environment

Let ω = (ωx)x∈Z be a collection of i.i.d. random variables with values in (0, 1). We denote the
distribution of ω = (ωx)x∈Z by η. The process ω plays the role of the random environment.
Given an environment ω let (Sn)n∈N0 be a Markov chain on Z with S0 = 0 and transition
probabilities

Pω(Sn+1 = x+ 1|Sn = x) = ωx,

Pω(Sn+1 = x− 1|Sn = x) = 1− ωx

for all x ∈ Z as shown in Figure 3.1. Pω is called the quenched measure. Further, let

P(·) =
∫
Pω(·)η(dω)

define the annealed measure. The corresponding expectations are denoted by Eω and E,
respectively.
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3.2 In random environment

Z
i

ωx1− ωx

Figure 3.1: Transition probabilities in environment ω; Being at a vertex x ∈ Z, the particle
jumps to the right with probability ωx and to the left with probability 1− ωx.

A key role is played by the ratio ρx = 1−ωx
ωx

of the probability of a jump to the left and the
probability of a jump to the right. Indeed, transience and recurrence of random walk in the
random environment depend on E[log ρ0]. This is shown in [50] by Solomon. Also see [54,
Theorem 2.1.2].

Theorem 3.1 ([50, Theorem 1.7]). Assume E[log ρ0] ∈ [−∞,∞] is well-defined. Then it
holds P-a.s. that

lim
n→∞

Sn = +∞ if E[log ρ0] < 0,

lim
n→∞

Sn = −∞ if E[log ρ0] > 0,

−∞ = lim inf
n→∞

Sn < lim sup
n→∞

Sn = +∞ if E[log ρ0] = 0.

In particular, the model is P-almost surely recurrent if E[log ρ0] = 0, and transient otherwise.

Further, the following law of large numbers is given in [50]. Also see [54, Theorem 2.1.9].

Theorem 3.2 ([50, Theorem 1.16]). There exists v ∈ [−1, 1] such that limn→∞
Sn
n = v

P-almost surely, where

v =


1−E[ρ0]
1+E[ρ0] if E[ρ0] < 1,

−1−E[ρ−1
0 ]

1+E[ρ−1
0 ]

if E[ρ−10 ] < 1,

0 otherwise.

Jensen’s inequality implies E[log ρ0] ≤ logE[ρ0]. Thus, if the random walk is, say, transient
to the left, then v ≤ 0. One can find examples of transient environments with v = 0.
We also make use of the following quenched large deviation principle shown by Greven and
Hollander in [24, Theorem 1] and Comets et al. in [9, Theorem 1]. See also [54, Theo-
rem 2.3.12].

Theorem 3.3 ([24, Theorem 1], [9, Theorem 1]). Assume that there is δ > 0 such that
ω0 ∈ (δ, 1 − δ) η-almost surely. There exists a deterministic convex rate function Iqη such
that η-almost surely for any measurable set A

lim inf
n→∞

1

n
logPω

(
Sn
n
∈ A

)
≥ − inf

x∈A◦
Iqη(x), (3.2)

lim sup
n→∞

1

n
logPω

(
Sn
n
∈ A

)
≤ − inf

x∈A
Iqη(x). (3.3)

Here, A◦ denotes the interior of the set A, and A the closure.
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3 Branching Random Walks

The rate function Iqη is increasing on [v, 1], and, as it is convex, it is strictly increasing on
[v, 1] ∩ {Iqη 6= 0}. Further, Iqη(v) = 0 and Iqη(1) > 0. More details on the shape of the rate
function can be found in [9, Section 5] and [24, Section 0.3].
For more detailed information and an excellent introduction to random walk in random
environment see e.g. Zeitouni’s lecture notes [54].

3.2.2 Speed of the maximum

Now we are ready to study a branching random walk in the random environment introduced
in the previous section. Let us first present a more precise construction of the branching
random walk which is taken from [15]. Recall that ω = (ωx)x∈Z denotes the random envi-
ronment. Further, (pk)k∈N0 gives the reproduction distribution, and m =

∑∞
k=0 kpk denotes

the branching mean. Throughout this section we make the following assumptions:

ω0 ∈ (δ, 1− δ) η-almost surely for some δ > 0 and (3.4)

m > 1 and
∞∑
k=0

k2pk <∞. (3.5)

The assumption on the environment ω ensures the applicability of all theorems introduced
in Section 3.2.1. In particular, the large deviation principle stated in Theorem 3.3 holds.
The assumption on the reproduction distribution (pk)k∈N0 implies that the branching random
walk survives with positive probability and that the number of particles grows exponentially.
The process survives if at any time there exists at least one particle. We will always condition
on the event that the branching random walk survives.
Let {Z(x, n, i) : x ∈ Z, n ∈ N0, i ∈ N} be a collection of i.i.d. random variables that are also
independent of ω such that P(Z(0, 0, 1) = k) = pk for all k ∈ N0. The random variable
Z(x, n, i) describes the number of descendants of the i-th particle that is at x ∈ Z at time
n ∈ N0. Further, let {X(x, n, i) : x ∈ Z, n ∈ N0, i ∈ N} be another collection of i.i.d. random
variables, which are uniformly distributed on [0, 1]. Assume that they are independent
of the random variables {Z(x, n, i) : x ∈ Z, n ∈ N0, i ∈ N} and (ωx)x∈Z. These random
variables are responsible for the motion of the particles in a given random environment ω.
If X(x, n, i) ≤ ωx, then the i-th particle that is at x at time n goes to the right in its next
step. Otherwise, it goes to the left. Given the environment ω, we can now inductively define
a process (λ(x, n))x∈Z, n∈N0 by setting λ(0, 0) = 1, λ(x, 0) = 0 for all x 6= 0, and for n ≥ 1

and x ∈ Z

λ(x, n+ 1) =

λ(x−1,n)∑
i=1

1{X(x−1,n,i)≤ωx−1}Z(x− 1, n, i)

+

λ(x+1,n)∑
i=1

1{X(x+1,n,i)>ωx+1}Z(x+ 1, n, i).

(3.6)

λ(x, n) denotes the number of particles at the vertex x ∈ Z at time n ∈ N0. Then the
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3.2 In random environment

process (Mn)n∈N0 , that describes the maximal position occupied by a particle, satisfies

Mn = max{x ∈ Z : λ(x, n) > 0}.

Of course, this definition only makes sense on the event that the branching random walk
survives. In [15] A. Devulder shows a phase transition result for the speed of the maximum.

Theorem 3.4 ([15, Theorem 1.1 and Proposition 1.2]). Suppose that the Assumptions (3.4)
and (3.5) hold. Further, assume E[log ρ0] ≥ 0 and define mc = exp(Iqη(0)). Then, P-almost
surely, conditioned on survival,

lim sup
n→∞

Mn

n
< 0 if 1 < m < mc,

lim sup
n→∞

Mn

n
≤ 0 if m = mc,

lim inf
n→∞

Mn

n
> 0 if m > mc.

The assumption E[log ρ0] ≥ 0 implies that every particle moving in the random environment
is recurrent or transient to the left by Theorem 3.1, and that v ≤ 0 by Theorem 3.2. On
the other hand, the number of particles in the branching random walk grows exponentially
in n. A larger reproduction mean m results in a higher probability of particles being far to
the right of 0. The theorem shows that for m > mc this huge mass of particles wins against
the drift of the environment and pushes the rightmost front to +∞. For m < mc, on the
contrary, the effect of the environment prevails and the rightmost front goes to −∞.
Results by Gantert and Müller in [20] imply the following statement: Consider the setting
of Theorem 3.4 with E[log ρ0] > 0 and assume that every particle has at least one offspring.
Then, in the critical case m = mc, we have limn→∞Mn = −∞ P-almost surely.
Using the description of the shape of the rate function in [9, Section 5] and [24, Section 0.3]
one can calculate mc more explicitly. Without loss of generality, we continue to assume
E[log ρ0] ≥ 0 and define ωmax = sup{q : q ∈ suppω0}. If ωmax <

1
2 , the local drift is negative

at any vertex. In this case we have mc =
1
2

(
ωmax(1−ωmax)

)−1/2
> 1. If ωmax ≥ 1

2 , then the
local drift can be positive as well as negative. Particles might be “trapped” in areas with
positive drift. In this case mc = 1 and the maximum of our supercritical branching random
walk has positive speed.
We give an explicit formula for the speed of the right front and thus improve Theorem 3.4.
Let b ∈ (v, 1) be the unique solution of logm = Iqη(b) if logm < Iqη(1), and let b = 1

otherwise. Note that the function Iqη is continuous.

Theorem 3.5. Assume that Assumptions (3.4) and (3.5) are given. Conditioned on the
survival of the process, P-almost surely it holds that

lim
n→∞

Mn

n
= b.

59



3 Branching Random Walks

In [37] Liu et al. consider a more general version of this branching random walk, allowing
the offspring distribution to vary randomly in time. Their results show that b is indeed an
upper limit for the speed. They also prove an analogous statement to Theorem 3.5 for the
case of a random offspring distribution and a deterministic homogeneous environment. In
[39, Theorem 2.20] Liu claims to have a proof of Theorem 3.5, but this proof, to the best of
our knowledge, is not published.

3.3 On the non-negative integers

This section is devoted to branching random walks on the non-negative integers N0 with
reflection at 0. As before, we start with a short discussion of the motion of a single particle
on N0. In particular, we need to derive a large deviation principle for random walk on N.

3.3.1 Large deviations

Let (Srn)n∈N0 denote the simple random walk with drift on N0 with Sr0 = 0 and transition
probabilities given by

P(Srn+1 = y | Srn = x) =


1 if x = 0, y = 1,
α if x > 0, y = x+ 1,
1− α if x > 0, y = x− 1,
0 otherwise,

(3.7)

where α ∈ (0, 1) is a drift parameter. The transition probabilities are depicted in Figure 3.2.
If α ≤ 1

2 , the random walk is recurrent, otherwise it is transient.

N
0

α1− α1

Figure 3.2: Transition probabilities for reflected random walk on N0

Further, let (Sn)n∈N0 denote the corresponding homogeneous random walk on Z with start
in 0 and transition probabilities given by

P(Sn+1 = x+ 1|Sn = x) = α,

P(Sn+1 = x− 1|Sn = x) = 1− α
(3.8)

for all x ∈ Z. It is well known that the random walk (Sn)n∈N0 satisfies a large deviation
principle with rate function Iα given by

Iα(x) =
1

2

(
(1− x) log

( 1− x
2(1− α)

)
+ (1 + x) log

(1 + x

2α

))
(3.9)

for x ∈ [−1, 1]. We get a corresponding result for the reflected random walk on the non-
negative integers.
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3.3 On the non-negative integers

Theorem 3.6. For α ∈ (0, 12 ] and x ∈ [0, 1] define

Irα(x) =

{
x log 1−α

α if 0 ≤ x ≤ 1− 2α,
Iα(x) if 1− 2α < x ≤ 1.

(3.10)

For α ∈ (12 , 1) let I
r
α(x) = Iα(x) for all x ∈ [0, 1]. Then the process (Srn)n∈N0 satisfies a large

deviation principle with rate function Irα. This means that for any measurable set A ⊆ [0, 1]

we have

− inf
x∈A◦

Irα(x) ≤ lim inf
n→∞

1

n
logP

(
Srn
n
∈ A

)
≤ lim sup

n→∞

1

n
logP

(
Srn
n
∈ A

)
≤ − inf

x∈A
Irα(x).

As before, A◦ denotes the interior of the set A, and A the closure.

The rate functions for the random walk on the integers and for the reflected random walk
on the non-negative integers are shown in Figure 3.3.

−1 −(1− 2α) 0 1− 2α 1

log
(

1
1−α

)

log
(
1
α

) α ≤ 1
2

−1 2α− 10−(2α− 1) 1

log
(

1
1−α

)

log
(
1
α

)

α > 1
2

Figure 3.3: The figure shows the rate functions for α ≤ 1
2 on the left and for α > 1

2 on the
right. The rate function Iα for the random walk on Z is marked by . The
rate function Irα for the reflected random walk on N0 by .

If the random walk has a drift away from 0, then the rate function of the random walk on
N0 agrees with the one of the random walk on Z. Otherwise, they differ. Let us briefly give
an intuition why this happens. Let x > 0. The best strategy for a random walk on the
integers Z to end up to the right of nx after n steps is to go right with constant speed all
the way. The same strategy works for the random walk on the non-negative integers N0 as
long as x is big. For small x a better strategy consists in spending some time close to 0 at
no cost, and then go to the right with constant speed.
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3 Branching Random Walks

3.3.2 Speed of the maximum

Consider a branching random walk on N0 with reflection at 0. Assume that the transition
probabilities of the underlying random walk are given by (3.7) for α ∈ (0, 1). The branching
random walk can be constructed as the branching random walk in random environment in
Section 3.2.2, using the deterministic environment ω given by ω0 = 1 and ωx = α for x 6= 0.
We denote the position of the maximum at time n by M r

n.
A single particle moving in this environment has speed v = 2α − 1 if α > 1

2 , and v = 0 if
α ≤ 1

2 . Further, recall that m denotes the reproduction mean. Analogous to Section 3.2.2
let br ∈ (v, 1) be the unique solution of the equation logm = Irα(b

r) if logm < Irα(1), and
let br = 1 otherwise. We have the following law of large numbers for the process (M r

n)n∈N0 .

Theorem 3.7. Let α ∈ (0, 1) and assume that the branching random walk on N0 satisfies
the assumption (3.5). Conditioned on survival of the process, almost surely

lim
n→∞

M r
n

n
= br.

As we assume that the branching process is supercritical, the reproduction meanm is strictly
bigger than 1. Therefore, the maximum always has a strictly positive speed, no matter how
big the drift towards the origin is. The speed can be strictly bigger than the speed of the
maximum of the branching random walk on Z with the same drift.
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4 Proofs for Branching Random Walks

The aim of this chapter is to prove that the maximum of the branching random walk in
random environment as well as on the non-negative integers has linear speed as claimed
in Theorems 3.5 and 3.7. The proofs are presented in Sections 4.2 and 4.3, respectively.
In Section 4.1, we collect a few facts about Galton-Watson processes and introduce some
notation.

4.1 Preliminaries

4.1.1 Branching processes in a nutshell

If we consider a branching random walk and only pay attention to evolution of the number
of particles, then we end up with a Galton-Watson branching process. Several times in this
chapter we will make use of well known basic results about this process. For an introduction
to branching processes we refer the reader e.g. to [26]. In the proof of the lower bound
of Theorem 3.5 we further use a result about branching processes in random environment.
Here, the offspring distribution varies randomly in time. As this process is less well known,
we briefly introduce it here, following the presentation in [4] and [51].
LetM denote the set of offspring distributions (pk)k∈N0 satisfying

∑∞
k=1 kpk <∞. Further,

let (`∞,B∞) denote the probability space of all bounded sequences of real numbers equipped
with the Borel-σ-algebra generated by the product topology. M is a Borel subset of `∞.
Let (ζn)n∈N0 be a stochastic process taking values in M. This process plays the role of
the random environment. Given an environment process (ζn)n∈N0 , we can construct a non-
homogeneous branching process (Zn)n∈N0 . The number Zn of particles in generation n ∈ N0

is recursively defined by Z0 = 1, and for n ∈ N0 by

Zn+1 =

Zn∑
i=1

Xn,i,

where (Xn,i)i are independent and identically distributed according to the distribution ζn,
i.e. P(Xn,i = k) = pk(ζn). The random variable Xn,i describes the number of descendants
of the i-th particle in generation n.
This model was first studied by Smith and Wilkinson in [49] for the case where the environ-
ment process (ζn)n∈N0 consists of independent and identically distributed random variables.
Athreya and Karlin in [4], as well as Tanny in [51] extended the model to a stationary and
ergodic environment process.
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4 Proofs for Branching Random Walks

If the reproduction distribution (pk)k∈N0 is deterministic and does not depend on time, then it
is well known that the process (Zn)n∈N0 survives with positive probability if the reproduction
mean m =

∑
k∈N0

kpk is strictly bigger than 1. As with branching random walks, we say
that the process survives if Zn 6= 0 for all n ∈ N0. If m ≤ 1, then the branching process dies
out almost surely. A branching process with m > 1 is called supercritical, one with m = 1

critical, and one with m ≤ 1 subcritical. We also use this terminology for branching random
walks.
In [4] and [51], conditions for a positive survival probability of the branching process in
random environment are derived. Given an environment ζ0, let m(ζ0) denote the expected
number of descendants of a particle. It is defined by m(ζ0) =

∑∞
k=1 kpk(ζ0). Further,

let q(ζ) denote the extinction probability given the environment process ζ = (ζn)n∈N0 ,
i.e. q(ζ) = P(Zn = 0 for some n|ζ).

Theorem 4.1 ([4, Theorem 3], [51, Corollary 6.3]). Let (Zn)n∈N0 be a branching process
in random environment with stationary and ergodic environment process ζ = (ζn)n∈N0. If
E[− log(1− p0(ζ0))] <∞ and E[logm(ζ0)] > 0, then P(q(ζ) < 1) = 1.

As mentioned in the Chapter 3, the number of particles in a supercritical branching process
with finite reproduction variance grows exponentially. We only need this result for branching
processes with deterministic offspring distribution.

Theorem 4.2. [26, Chapter 1, Theorem 8.1] Let (Zn)n∈N0 be a branching process with re-
production distribution (pk)k∈N0. Assume m =

∑
k∈N0

kpk > 1 and
∑

k∈N0
k2pk <∞. There

is a non-negative random variable W such that limn→∞
Zn
mn = W almost surely and in L2.

Furthermore, E[W ] = 1 and W > 0 on the event of survival.

4.1.2 Notation and one basic lemma

In addition to the notation introduced in Section 3.2.2 we use the following notation when
dealing with branching random walks. For a set A ⊆ Z and n ∈ N0, the number of particles
in generation n located in the set A is given by λ(A,n) =

∑
x∈A λ(x, n). According to this

notation, λ(Z, n) counts the total number of particles in generation n ∈ N0. To abbrevi-
ate notation, we define Zn = λ(Z, n) in accordance with the notation used for branching
processes. As we have just discussed, (Zn)n∈N0 is a Galton-Watson branching process with
reproduction law (pk)k∈N0 and Z0 = 1. The probability that the process is extinct by time n
is given by qn = P(Zn = 0). Recall that we always assume m =

∑
k∈N0

kpk > 1 and∑
k∈N0

kpk <∞. Thus, the extinction probability q = limn→∞ qn is strictly smaller than 1.
Further, for an environment ω = (ωx)x∈Z and time N ∈ N we define the σ-algebra

Fω(N) = σ(λ(x, n), ω : x ∈ Z, 0 ≤ n ≤ N).

The σ-algebra Fω(N) contains all information about the distribution of particles up to
time N .
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4.2 In random environment

We often reduce problems we encounter with branching random walks to problems concerning
the movement of one single particle. We then use (Sn)n∈N0 to denote a random walk with
start in 0 moving in the same environment as the branching random walk..
Several times we will use the following standard lemma. The proof is very short, so we
present it here for the sake of completeness.

Lemma 4.3 ([15, Lemma 2.2], [37, Lemma 4]). For n ∈ N0 and x ∈ Z we have for any
environment ω

Eω[λ(x, n)] = mnPω(Sn = x).

Proof. At time n ∈ N0 there are Zn particles. We enumerate them and denote the position
of the i-th particle by Sin. As the distribution of the position of any particle equals the
distribution of the position of a normal random walk in the respect environment, we have

Eω
[
λ(x,N + 1)

]
= Eω

[
Eω

[ Zn∑
i=1

1{Sin=x}

∣∣∣∣Zn]] = Eω
[
ZnPω(Sn = x)

]
= mnPω(Sn = x).

4.2 In random environment

4.2.1 Upper bound on the speed

As mentioned in Section 3.2.2, the upper bound on the speed is shown in [37]. It also follows
from the proof of Theorem 3.4 presented in [15, Section 3]. We rewrite it here for the sake
of completeness.

Proposition 4.4 ([37, Theorem 1]). P-almost surely, conditioned on survival,

lim sup
n→∞

Mn

n
≤ b.

The proof relies on the Markov inequality and the large deviation principle given by Theo-
rem 3.3.

Proof. Without loss of generality assume b < 1 and let b < β < 1. By the definition of b,
and since Iqη is strictly increasing on [v, 1] ∩ {Iqη 6= 0}, there is ε > 0 such that

logm < Iqη(β)− ε. (4.1)

By Theorem 3.3 for almost all ω and n large

Pω(Sn ≥ βn) ≤ e−(I
q
η(β)−ε)n.
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4 Proofs for Branching Random Walks

Hence, for almost all ω, by the Markov inequality and Lemma 4.3

Pω
(
λ
(
[βn,∞), n

)
≥ 1
)
≤ Eω

[∑
x≥βn

λ(x, n)

]
= mnPω(Sn ≥ βn)
≤ e(logm−I

q
η(β)+ε)n.

By inequality (4.1) the exponent in the last term is negative. Therefore, the sequence(
Pω
(
λ
(
[βn,∞), n

)
≥ 1

))
n∈N0

is summable in n. Thus, by the Borel-Cantelli Lemma,
Pω-almost surely, at large times n there is no particle in [nβ,∞). Thus, Mn

n ≤ β for
n large, if Zn > 0. Hence, conditioned on the survival of the process, Pω-almost surely
lim supn→∞

Mn
n ≤ β. As β > b was chosen arbitrarily, this yields the claim.

4.2.2 Lower bound on the speed

Next we show the lower bound of the speed of the maximum by constructing an embedded
branching process. The idea is the following. Fix β < b and an integer k > 0. For every
n ∈ N consider the branching random walk at time nk. Delete all particles that are at
vertices smaller than nkβ and all their descendants. For suitably chosen k the remaining
branching process is supercritical and survives with positive probability. Hence, with positive
probability, the speed of the maximum is bigger than β. It then remains to invoke a zero-
one-law. The random environment complicates the proof a little. To ensure that at time
nk, n ∈ N, the surviving particles see the same environment, we relocate them all to nkβ.
The proof follows along the lines of the proof of Theorem 3.4 given in [15]. We construct
the embedded branching process in a slightly different way to get the stronger result. This
also simplifies some estimates needed in the proof.

Proposition 4.5. P-almost surely, conditioned on survival, it holds that

lim inf
n→∞

Mn

n
≥ b.

Proof. The proof consists of three parts. In the first part we choose a suitable integer k.
In the second part we construct the embedded branching process and show that it is su-
percritical. The last part shows that the event {lim infn→∞

Mn
n ≥ b} indeed occurs almost

surely.
Fix β ∈ (v, b) ∩Q. By the definition of b there is ε > 0 such that

logm > Iqη(β) + ε (4.2)

as Iqη is strictly increasing on [v, 1]∩ {Iqη 6= 0}. By Theorem 3.3, for η-almost every environ-
ment ω, there is N(ω) <∞ such that for all n ≥ N(ω)

Pω(Sn ≥ nβ) ≥ e−(I
q
η(β)+

ε
2
)n. (4.3)
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4.2 In random environment

As limN→∞ η(N(ω) ≤ N) = 1, we can choose N <∞ such that

η(N(ω) > N) <
ε

2| log δ| . (4.4)

Recall that δ was introduced in the assumption (3.4), which demands η(ω0 ∈ (δ, 1− δ)) = 1.
By Lemma 4.3 we have for k ≥ N∫

logEω

[∑
x≥kβ

λ(x, k)

]
η(dω) =

∫
log
(
mkPω(Sk ≥ kβ)

)
η(dω)

= k logm+

∫
logPω(Sk ≥ kβ) η(dω). (4.5)

Using (4.3) and the assumption ωx ∈ (δ, 1− δ) η-almost surely for x ∈ Z, we get for k ≥ N

logPω(Sk ≥ kβ) ≥ −
(
Iqη(β) +

ε

2

)
k1{N≥N(ω)} + logPω(Sk ≥ k)1{N<N(ω)}

≥ −
(
Iqη(β) +

ε

2

)
k + k log δ 1{N<N(ω)}.

Inserting this estimate into (4.5) and using (4.4) and (4.2) yields for k ≥ N∫
logEω

[∑
x≥kβ

λ(x, k)

]
η(dω) ≥ k

(
logm− Iqη(β)−

ε

2
+ log δ η(N < N(ω))

)
≥ k(logm− Iqη(β)− ε) > 0. (4.6)

From now on we fix an even integer k ≥ N such that kβ is also an even integer. We
construct a sequence Y = (Yn)n∈N0 of random variables as follows. Set Y0 = 1. This
corresponds to the fact that the branching random walk starts with one particle at 0. Let
the branching random walk evolve and let Y1 denote the number of particles located in
[kβ,∞) at time k. Relocate all those Y1 particles to the vertex kβ, delete all other particles,
and let the system run for another k steps of time. Now, let Y2 be the number of particles
located in [2kβ,∞) at time 2k. Repeat this procedure. Suppose the process is constructed
up to time nk. There are Yn particles in [nkβ,∞). Relocate them to nkβ, delete the others,
and let the system evolve. Define Yn+1 to be the number of particles in [(n + 1)kβ,∞) at
time (n+1)k. Recall that the branching random walk is entirely determined by the families
{Z(x, n, i) : x ∈ Z, n ∈ N0, i ∈ N} and {X(x, n, i) : x ∈ Z, n ∈ N0, i ∈ N} of random variables
as described at the beginning of Section 3.2.2. The first set of random variables determines
the number of descendants, the second the movement of the particles. Every particle in
the modified process corresponds to one particle in the original branching random walk. To
determine the movement and number of descendants of the particle use the corresponding
Z and X of the particle in the original process. This coupling ensures that a particle in
the modified process never overtakes its counterpart in the original process, thus ending up
on a bigger vertex. Otherwise, the particle and its counterpart would meet somewhere and
afterwards be forced to move together due to the coupling. As we chose k such that k and kβ
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4 Proofs for Branching Random Walks

are even, the corresponding particles are on vertices with an even distance and thus cannot
bypass each other without meeting. This argument shows that for all n ∈ N0

Yn ≤ λ([nkβ,∞), nk). (4.7)

The sequence (Yn)n∈N0 forms a branching process in random environment. Indeed, for all
n ∈ N0 we can write

Yn+1 =

Yn∑
i=1

Xn,i,

where Xn,i counts how many of the descendants of the i-th particle placed at nkβ at time
nk are in [(n + 1)kβ,∞) at time (n + 1)k. Given an environment ω, for every n ∈ N0

the random variables (Xn,i)i are independent and identically distributed with respect to
Pω. Thus, the process (Yn)n∈N0 fits into the setting of the branching process in random
environment introduced in Section 4.1.1. We want to apply Theorem 4.1 and next check
whether all conditions are satisfied. The sequence (L(Xn,1))n∈N0 of offspring distributions
is stationary and ergodic. Furthermore, the choice of k and (4.6) imply∫

logEω[X0,1] η(dω) =

∫
logEω

[∑
x≥kβ

λ(x, k)

]
η(dω) > 0.

Recall that qk denotes the probability that the branching process is extinct by time k. Using
β < 1, for η-almost every environment ω we have

Pω
(
λ
(
[kβ,∞), k

)
= 0
)
≤ Pω

(
λ
(
[k,∞), k

)
= 0
)

≤ Pω(Zk = 0) + Pω
(
λ
(
[k,∞), k

)
= 0 | Zk 6= 0

)
Pω(Zk 6= 0)

≤ qk + (1− qk)Pω(Sk 6∈ [k,∞))

≤ qk + (1− qk)(1− δk) = 1− δk(1− qk).

As qk < 1, the last estimate implies∫
− log(1− Pω(X0,1 = 0)) η(dω) =

∫
− log

(
1− Pω

(
λ
(
[kβ,∞), k

)
= 0
))
η(dω)

≤
∫
− log

(
δk(1− qk)

)
η(dω)

= − log
(
δk(1− qk)

)
<∞.

Hence, we can apply Theorem 4.1 and get for η-almost all ω

Pω(Y survives) > 0.

By (4.7), survival of the process (Yn)n∈N0 implies Mnk
nk ≥ β for all n ∈ N, and thus
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4.2 In random environment

lim infn→∞
Mnk
nk ≥ β. This leads to

Pω

(
lim inf
n→∞

Mn

n
≥ β

)
> 0 (4.8)

for η-almost all ω. It remains to show that the event {lim infn→∞
Mn
n ≥ β} has indeed

probability 1, conditioned on the survival of the process.
To abbreviate notation let A = {lim infn→∞

Mn
n ≥ β}. Further, let θ denote the shift-

operator given by (θω)x = ωx+1 for all x ∈ Z. The sequence
(
Pθ2xω(A)

)
x∈Z is stationary. A

coupling argument similar to the one used previously in this proof further shows that the
sequence is non-decreasing. Thus, by stationarity, it has to be constant, i.e. for η-almost
every ω we have

Pω(A) = Pθ2xω(A) (4.9)

for all x ∈ Z. Choose 1 < r < m and N ∈ N. Consider the genealogical tree of the
branching random walk. In generation 2N , there are Z2N =

∑
x∈Z λ(2x, 2N) particles. The

descendants of each of them form Z2N subtrees that are independent given an environment ω.
If the maximum of the entire tree has speed smaller than β, then the speed of the maximum
of each subtree has to be smaller than β as well. The law of a subtree started by a particle
at a vertex 2x equals the one of the entire tree shifted by 2x, i.e. Pθ2xω. Using (4.9), we
therefore have for η-almost every environment ω

Pω

(
lim inf
n→∞

Mn

n
< β,Z2N ≥ r2N

∣∣∣Fω(2N)
)
≤
∏
x∈Z

Pθ2xω

(
lim inf
n→∞

Mn

n
< β

)λ(2x,2N)
1{Z2N≥r2N}

=
∏
x∈Z

(
1− Pθ2xω(A)

)λ(2x,2N)
1{Z2N≥r2N}

≤
(
1− Pω(A)

)r2N
.

We know that Pω(A) > 0 for η-almost every ω by (4.8). Therefore, the last estimate yields

lim
N→∞

Pω

(
lim inf
n→∞

Mn

n
< β,Z2N ≥ r2N

)
= 0.

The branching process (Zn)n∈N0 has reproduction mean m > 1 and reproduction variance∑∞
k=0 k

2pk <∞. For such a branching process the event that (Zn)n∈N0 survives equals the
event lim infN→∞{ZN ≥ rN} by Theorem 4.2. Therefore, we conclude

Pω

(
lim inf
n→∞

Mn

n
< β, (Zn)n∈N0 survives

)
= 0,

which finishes the proof.

Theorem 3.5 now follows immediately from Proposition 4.4 and Proposition 4.5.
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4 Proofs for Branching Random Walks

4.3 On the non-negative integers

In this last section of the thesis we turn to branching random walk on the non-negative
integers. Before we can prove Theorem 3.7, we derive the large deviation rate function for
random walk on N0.

4.3.1 Large deviations

We split the proof into the cases α ≤ 1
2 and α > 1

2 .

Proof of Theorem 3.6 for α ≤ 1
2 . It is enough to prove

lim
n→∞

1

n
logP

(Srn
n
≥ x

)
= −Irα(x) (4.10)

for 0 ≤ x ≤ 1 with Irα as defined in the statement of the theorem. The proof is split
into proofs of lower and upper bounds on limn→∞

1
n logP

(Srn
n ≥ x

)
for x ∈ [0, 1 − 2α] and

x ∈ (1− 2α, 1], respectively.
Lower bound A direct coupling of the random walks (Srn)n∈N0 and (Sn)n∈N0 immediately
shows the following lower bound that holds for all 0 ≤ x ≤ 1:

lim inf
n→∞

1

n
logP

(Srn
n
≥ x

)
≥ lim

n→∞

1

n
logP

(Sn
n
≥ x

)
= −Iα(x) (4.11)

Lower bound on [0, 1 − 2α] For this part we can without loss of generality assume α < 1
2 .

We need to find a good strategy for the random walk to end up to the right of nx after n
steps. The best strategy for small x is to spend some time close to 0 and only then go to
the right. Indeed, assume 0 ≤ x ≤ 1 − 2α and let x < γ < 1. Using the Markov property
and the coupling with the random walk (Sn)n∈N0 on Z as before we get

P
(Srn
n
≥ x

)
≥ P

(
Sr2dn

2
(1−γ)e = 0

)
P
(Srn−2dn

2
(1−γ)e

n
≥ x

)
≥ P

(
Sr2dn

2
(1−γ)e = 0

)
P
(
Sn−2dn

2
(1−γ)e

n
≥ x

)
.

The random walk (Srn)n∈N0 is a 2-periodic positive recurrent Markov chain starting at 0.
Therefore, limn→∞ P

(
Sr2dn

2
(1−γ)e = 0

)
= 2π(0) > 0, where (π(i))i∈N0 is the stationary distri-

bution. Thus,

lim inf
n→∞

1

n
logP

(Srn
n
≥ x

)
≥ lim inf

n→∞

1

n
logP

(
Sn−2dn

2
(1−γ)e

nγ
≥ x

γ

)
≥ lim inf

n→∞
γ

1

nγ
logP

(
Sn−2dn

2
(1−γ)e

n− 2dn2 (1− γ)e
≥ x

γ

)
= −γIα

(x
γ

)
.
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For γ = x
1−2α a straightforward calculation yields γIα

(
x
γ

)
= x log

(
1−α
α

)
. Therefore,

lim inf
n→∞

1

n
logP

(Srn
n
≥ x

)
≥ −x log

(1− α
α

)
. (4.12)

Upper bound on [0, 1 − 2α] Again, we can without loss of generality assume α < 1
2 . Using

the exponential Markov inequality we get for all λ ≥ 0 and 0 ≤ x ≤ 1

1

n
logP

(Srn
n
≥ x

)
≤ 1

n
log
(
E
[
eλS

r
n
]
e−λnx

)
=

1

n
logE

[
eλS

r
n
]
− λx. (4.13)

One can check by induction that P(Srn = z) ≤
(
1−α
α

)(
α

1−α
)z for all n, z ∈ N0. Therefore,

lim sup
n→∞

E
[
eλS

r
n
]
= lim sup

n→∞

∞∑
z=0

P(Srn = z)eλz ≤
∞∑
z=0

(1− α
α

)( α

1− α
)z

eλz. (4.14)

The last sum is finite if λ < log 1−α
α . In this case (4.13) and (4.14) imply

lim sup
n→∞

1

n
logP

(Srn
n
≥ x

)
≤ −λx.

Thus, optimizing the parameter λ,

lim sup
n→∞

1

n
logP

(Srn
n
≥ x

)
≤ −x log

(1− α
α

)
. (4.15)

Upper bound on (1− 2α, 1] We want to use inequality (4.13) and claim that for λ > log 1−α
α

lim
n→∞

1

n
logE

[
eλS

r
n
]
= log

(
αeλ + (1− α)e−λ

)
. (4.16)

Indeed, for n ≥ 1

E
[
eλS

r
n
]
= E

[
1{Srn−1 6=0}e

λSrn−1(αeλ + (1− α)e−λ)
]
+ E

[
1{Srn−1=0}e

λ
]
.

Abbreviating a = αeλ + (1− α)e−λ, this recursion formula simplifies to

E
[
eλS

r
n
]
= aE

[
eλS

r
n−1
]
+ P(Srn−1 = 0)(eλ − a).

Hence, since we assumed Sr0 = 0,

E
[
eλS

r
n
]
= an

(
1 + (eλ − a)

n−1∑
k=0

P(Srk = 0)a−(k+1)
)
≤ an

(
1 + (eλ − a)

n−1∑
k=0

a−(k+1)
)
. (4.17)

Note that we used eλ−a ≥ 0 in the last estimate. A straightforward calculation using α ≤ 1
2

and λ > log 1−α
α shows a > 1. Thus, the second factor on the right hand side of (4.17) is
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bounded and therefore (4.17) implies (4.16). Now, inserting (4.16) in (4.13) yields

lim sup
n→∞

1

n
logP

(Srn
n
≥ x

)
≤ log

(
αeλ + (1− α)e−λ

)
− λx. (4.18)

Set λ = 1
2 log

(1−α)(1+x)
α(1−x) . This satisfies λ > log 1−α

α since we assumed x > 1 − 2α. Then
another straightforward calculation shows that the last inequality implies, for x > 1− 2α,

lim sup
n→∞

1

n
logP

(Srn
n
≥ x

)
≤ −Iα(x). (4.19)

(4.10) now follows from (4.11), (4.12), (4.15) and (4.19).

Proof of Theorem 3.6 for α > 1
2 . We need to show

lim
n→∞

1

n
logP

(Srn
n
≥ x

)
= −Iα(x) for x ≥ 2α− 1 and

lim
n→∞

1

n
logP

(Srn
n
≤ x

)
= −Iα(x) for x ≤ 2α− 1.

A coupling with the random walk (Sn)n∈N0 on Z shows lim infn→∞
1
n logP

(Srn
n ≥ x

)
≥ −Iα(x)

as well as lim supn→∞
1
n logP

(Srn
n ≤ x

)
≤ −Iα(x) for all x ∈ [0, 1]. It remains to prove an

upper bound for x ∈ [2α− 1, 1] and a lower bound for x ∈ [0, 2α− 1].
Upper bound on [2α− 1, 1] The proof follows along the lines of the proof of the upper bound
on (1− 2α, 1] in the case α ≤ 1

2 . Let λ ≥ 0 and set a = αeλ+(1−α)e−λ. A straightforward
calculation shows a > 1 and eλ − a ≥ 0. Thus, we also get Estimate (4.18),

lim sup
n→∞

1

n
logP

(Srn
n
≥ x

)
≤ log

(
αeλ + (1− α)e−λ

)
− λx.

As before, setting λ = 1
2 log

(1−α)(1+x)
α(1−x) yields the claim. This time we have λ ≥ 0 as

x ≥ 2α− 1.
Lower bound on [0, 2α − 1] Let x ∈ [0, 2α − 1], n ∈ N and ε > 0. For technical reasons we
define the event Aε(n) = {Srk = k : 0 ≤ k ≤ dεne}. The Markov property implies

P
(Srn
n
≤ x

)
≥ P

(
Aε(n)

)
P
(
Srn ≤ xn

∣∣Srdεne = dεne)
≥ P

(
Aε(n)

)
P
(
0 < Srk ≤ xn for all dεne ≤ k ≤ n

∣∣∣Srdεne = dεne). (4.20)

As
lim
ε→0

lim
n→∞

1

n
logP

(
Aε(n)

)
= 0, (4.21)

we only need to estimate the second factor on the right hand side of (4.20). The probability
to never hit 0 and to stay below xn when starting in dεne is the same for random walk on N0

and random walk on Z. By shifting everything by dεne, it therefore remains to show that

lim
ε→0

lim inf
n→∞

1

n
logP

(
−dεne < Sk ≤ xn− dεne for all 0 ≤ k ≤ n− dεne

)
≥ −Iα(x). (4.22)
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Then, the lower bound follows from (4.20), (4.21), and (4.22). Estimate (4.22), however, is
a consequence of large deviation results for paths of random walks that can e.g. be found
in [14, Chapter 5.1]. To show this, we define the process (Zn(t))t∈[0,1] for n ∈ N0 by

Zn(t) =
Sbb(1−ε)nctc

b(1− ε)nc .

The paths of this process are elements in the space L∞[0, 1] of bounded functions [0, 1]→ R
equipped with the uniform norm. Further, let

Bε =
{
f ∈ L∞[0, 1] : f(t) ∈

(
− ε

1− ε,
x− 2ε

1− ε
)
for all t ∈ [0, 1]

}
.

Note that Zn ∈ Bε implies Sk ≤ xn− dεne as well as Sk > −dεne for all 0 ≤ k ≤ b(1− ε)nc
and n sufficiently large. Hence,

P
(
−dεne < Sk ≤ xn− dεne for all 0 ≤ k ≤ n− bεnc

)
≥ P(Zn ∈ Bε).

Using [14, Theorem 5.1.2] we get

lim inf
n→∞

1

n
logP(Zn ∈ Bε) = − inf

f∈B◦ε
J(f), (4.23)

where for f ∈ L∞([0, 1]) absolutely continuous with f(0) = 0 we have

J(f) =

∫ 1

0
Iα(ḟ(t)) dt.

For h ∈ R let fh(t) = ht for t ∈ [0, 1]. Observe that fh ∈ B◦ε for all h ∈
(
0, x−2ε1−ε

)
. Thus, as

Iα is decreasing on [0, 2α− 1],

inf
f∈B◦ε

J(f) ≤ inf
h∈(0,x−2ε

1−ε )
J(fh) = inf

h∈(0,x−2ε
1−ε )

Iα(h) = Iα

(x− 2ε

1− ε
)

ε→0−−−→ Iα(x).

Together with (4.23) this shows the claimed Estimate (4.22).

4.3.2 The speed of the maximum

For the proof of the lower bound of Theorem 3.7 we compare the branching random walk
on the non-negative integers N with the corresponding branching random walk on Z. This
branching random walk has the same reproduction law and the underlying transition prob-
abilities are given by (3.8). To distinguish the processes, we decorate all notation used for
the branching random walk on N with reflection at 0 with a superscript r.
In particular, we use a large deviation result for the maximum process (Mn)n∈N0 of the
branching random walk on Z. It can be found in a paper by Gantert and Höfelsauer.
Simplified to the scenario and case we need, it can be stated as follows:
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Lemma 4.6 ([19]). Consider a branching random walk on Z that satisfies Condition (3.5)
and has transition probabilities given by (3.8) with α ∈ (0, 1). Let (Mn)n∈N0 denote the
maximum process. Assume that is has speed b, i.e. limn→∞

Mn
n = b almost surely. Then we

have for x ≥ b
lim
n→∞

1

n
logP

(Mn

n
≥ x

)
≥ −Iα(x) + logm.

See (3.9) for the definition of Iα.

Recall that b exists e.g. by Theorem 3.5. It satisfies logm = Iα(b) if logm < Iα(1), and b = 1

otherwise. In [19] the authors discuss large deviation principles for branching random walks
with reproduction laws that vary randomly in time. As this paper is not yet published, we
present the proof of Lemma 4.6 here.

Proof of Lemma 4.6. Let ε > 0 and n ∈ N. We enumerate the Zbεnc particles in the bεnc-th
generation of the branching process and denote the position of the i-th of them by Sibεnc. The
descendants of each of these Zbεnc particles form independent branching random walks. For
every 1 ≤ i ≤ Zbεnc let M i

m denote the maximum of the positions of the descendants of the
i-th particle at time bεnc+m, relative to their parent particle i. The processes (M i

m)m∈N0

are independent and have the same distribution as (Mn)n∈N0 . For x > b we have

P
(Mn

n
≥ x

)
= P

(
max

1≤i≤Zbεnc

M i
n−bεnc

(1− ε)n +
Sibεnc

(1− ε)n ≥
x

1− ε
)

≥ P
(

max
1≤i≤Zbεnc

M i
n−bεnc

n− bεnc +
Sibεnc

(1− ε)n ≥
x

1− ε
)
. (4.24)

Let (Sn)n∈N0 be an independent random walk with start in 0 that moves in the same envi-
ronment as the branching random walk. Note that Sibεnc has the same distribution as the
random variable Snε for every 1 ≤ i ≤ Zbεnc. One can show that (4.24) implies

P
(Mn

n
≥ x

)
≥ P

(
max

1≤i≤Zbεnc

M i
n−bεnc

n− bεnc +
Sbεnc

(1− ε)n ≥
x

1− ε
)

≥ P
(

max
1≤i≤Zbεnc

M i
n−bεnc

n− bεnc ≥ x
)
P
( Sbεnc

(1− ε)n ≥
εx

1− ε
)
. (4.25)

As (Sn)n∈N0 satisfies a large deviation principle with rate function Iα, we have

lim
n→∞

1

n
logP

( Sbεnc

(1− ε)n ≥
εx

(1− ε)
)
= lim

n→∞

1

n
logP

(Sbεnc
εn

≥ x
)
= −εIα(x). (4.26)

To estimate the first factor in (4.25) we use the independence of the processes (M i
m)m∈N0 .

Recall that m denotes the reproduction mean of the branching random walk. For c > 0 it
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holds that

P
(

max
1≤i≤Zbεnc

M i
n−bεnc

n− bεnc ≥ x
)
≥ P

(
max

1≤i≤Zbεnc

M i
n−bεnc

n− bεnc ≥ x
∣∣∣Zbεnc ≥ cmbεnc)P(Zbεnc ≥ cmbεnc)

≥
(
1−

(
1− P

(M i
n−bεnc

n− bεnc ≥ x
))cmbεnc)

P
(
Zbεnc ≥ cmbεnc

)
.

Using the inequality 1 − (1 − x)y ≥ xy(1 − xy), that holds for x ∈ [0, 1] and y ≥ 0, this
implies

P
(

max
1≤i≤Zbεnc

M i
n−bεnc

n− bεnc ≥ x
)
≥ P

(M i
n−bεnc

n− bεnc ≥ x
)
cmbεnc

·
(
1− cmbεncP

(M i
n−bεnc

n− bεnc ≥ x
))

P
(
Zbεnc ≥ cmbεnc

)
. (4.27)

By Theorem 4.2 and Assumption (3.5) the sequence
(
Zn
mn

)
n∈N0

converges almost surely to-
wards a non-negative random variable W . We further know that W is positive if the process
survives. Thus, we can choose c > 0 such that limn→∞ P

(
Zbεnc ≥ cmbεnc

)
= P(W ≥ c) > 0,

and therefore
lim
n→∞

1

n
logP

(
Zbεnc ≥ cmbεnc

)
= 0. (4.28)

If at time n− bεnc the maximum is bigger or equal than x, then at least one of the Zn−bεnc
particles present at time n−bεnc has to be at a position bigger or equal than x. Thus, using
E
[
Zn−bεnc

]
= mn−bεnc, we get

cmbεncP
(M i

n−bεnc

n− bεnc ≥ x
)
≤ cmbεncE

[
Zn−bεnc

]
P
( Sn−bεnc
n− bεnc ≥ x

)
= cmnP

( Sn−bεnc
n− bεnc ≥ x

)
.

The choice of x implies logm < Iα(x). If we choose ε > 0 small enough, the last term tends
to 0 in the limit n→∞ by the large deviation principle for (Sn)n∈N0 . Therefore,

lim
n→∞

1

n
log

(
1− cmbεncP

(M i
n−bεnc

n− bεnc ≥ x
))

= 0. (4.29)

Now, (4.25), (4.26), (4.27), (4.28), and (4.29) imply

lim
n→∞

1

n
logP

(Mn

n
≥ x

)
≥ (1− ε) lim

n→∞

1

n
logP

(Mn

n
≥ x

)
+ ε logm− εIα(x).

This immediately yields the claim of the lemma.

Proof of Theorem 3.7. Upper bound We first show that

lim sup
n→∞

M r
n

n
≤ br (4.30)

holds almost surely. The proof of this upper bound is identical to the proof of Lemma 4.4.
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Without loss of generality assume br < 1. Let br < β < 1. As Irα is strictly increasing on
the interval [v, 1] there is ε > 0 such that

logm < Irα(β)− ε. (4.31)

By Theorem 3.6 for n large
P(Srn ≥ βn) ≤ e−(I

r
α(β)−ε)n.

Hence, the Markov inequality implies

P
(
λ
(
[βn,∞), n

)
≥ 1
)
≤ E

[∑
x≥βn

λ(x, n)

]
= mnP(Srn ≥ nβ)
≤ e(logm−I

r
α(β)+ε)n.

By (4.31) the exponent in the last term is negative. The probability P
(
λ
(
[nβ,∞), n

)
≥ 1
)
is

hence summable in n. Thus, by the Borel-Cantelli Lemma, almost surely, for n large there
is no particle in [βn,∞). Therefore, M

r
n
n ≤ β for n large, if Zn > 0. Hence, on {Zn → ∞}

almost surely lim supn→∞
Mr
n
n ≤ β. As β > br was chosen arbitrary, this shows (4.30).

Lower bound: A direct coupling with the branching random walk on Z yields M r
n ≥ Mn

for every n ∈ N0. Thus, lim infn→∞
Mr
n
n ≥ b. If α ≤ 1

2 and b ≥ 1 − 2α, then br = b

by Theorem 3.6. The same holds whenever α > 1
2 . Hence, we can assume α ≤ 1

2 and
b < 1− 2α. The last condition is equivalent to logm < Irα(1− 2α) and br < 1− 2α.
Let 0 < β < br and define γ = β

1−2α . Note that γ ∈ (0, 1). As the rate function is strictly
increasing, there is ε > 0 such that

logm > Irα(β) + ε. (4.32)

Let us first motivate the following calculations. We want to estimate from above the prob-
ability of the event that the maximum M r

n is at most βn, show that this probability is
summable in n, and then apply the Borel-Cantelli Lemma. In the proof of Theorem 3.6
we have seen that the best strategy for a single particle to get to a vertex to the right of
βn within n steps is to spend (1 − γ)n steps close to 0 and only then go to the right with
positive speed. Here, we also let the branching random walk run for (1− γ)n steps in time,
and then relocate all Z(1−γ)n particles to 0. The descendants of these Z(1−γ)n particles form
independent branching random walks. By the usual coupling, if M r

n ≤ βn, then the max-
imum of each of these branching random walks after the remaining γn steps has to be at
most at βn as well.
For the sake of correctness we have to round γn and (1 − γ)n. To abbreviate notation let
n(γ) = n − 2bn2 (1 − γ)c and note that n(γ) ∼ γn. By the above argument we have for
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1 < r < m and n ∈ N0

P
(M r

n

n
≤ β, Zn−n(γ) ≥ rn−n(γ)

)
= E

[
P
(M r

n

n
≤ β

∣∣∣F(n− n(γ)))1{Zn−n(γ)≥rn−n(γ)}]
≤ E

[
P
(M r

n(γ)

n
≤ β

)Zn−n(γ)
1{Zn−n(γ)≥rn−n(γ)}

]
≤
(
1− P

(M r
n(γ)

n(γ)
≥ β

γ

))rn−n(γ)
≤
(
1− P

(Mn(γ)

n(γ)
≥ β

γ

))r(1−γ)n−2

. (4.33)

By the above assumption we have β
γ = 1− 2α > b and can apply Lemma 4.6. Therefore,

P
(Mn(γ)

n(γ)
≥ β

γ

)
≥ e
−n(γ)(Iα(βγ )−logm+ ε

γ
)

for n large enough. Inserting this estimate into (4.33) and using γIα(βγ ) = Irα(β) shows that
for n large

P
(M r

n

n
≤ β, Zn−n(γ) ≥ rn−n(γ)

)
≤
(
1− e

−n(γ)
γ

(Irα(β)−γ logm+ε)
)r(1−γ)n−2

≤ exp
(
−e−

n(γ)
γ

(Irα(β)−γ logm+ε−(1−γ) log r) · r−2
)
.

As limr→m I
r
α(β) − γ logm + ε − (1 − γ) log r = Irα(β) − logm + ε < 0 by (4.32), we can

choose r close enough to m such that∑
n∈N0

P
(M r

n

n
≤ β, Zn−n(γ) ≥ rn−n(γ)

)
<∞.

By the Borel-Cantelli Lemma the event {Mr
n
n ≤ β, Z(1−γ)n ≥ r(1−γ)n} thus occurs only for

finitely many n ∈ N0 almost surely. Conditioned on the survival of the process (Zn)n∈N0 ,
we know that Z(1−γ)n ≥ r(1−γ)n for all but finitely many n ∈ N0 almost surely. Therefore,
conditioned on survival, we conclude

lim inf
n→∞

M r
n

n
≥ β

almost surely. As β < br was chosen arbitrarily, this finishes the proof.
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