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Abstract 

Lithium-ion cells are currently the dominant technology in the market for battery-powered electric vehicles. 

Their biggest downside is their degradation over lifetime and usage, limiting the main vehicle functions such 

as the driving power and range. Moreover, the battery aging state has a big influence on the expected residual 

value of electric vehicles. The speed of the degradation depends on specific operating conditions such as 

temperature, SOC level and current. These stress factors are influenced by the usage behaviour of the vehicle 

driver as well as possible tuning measures. The aim of this study is to investigate the impact of typical driver 

behaviour combined with tuning measures on battery aging and the resulting residual value. A fully 

configurable, longitudinal simulation model is presented for the analysis that covers the main components of 

an electric drivetrain and takes battery aging into account. The model allows us to simulate various possible 

driver characteristics and tuning measures. Furthermore, the affiliated regression model allows the 

establishment of a link between the battery aging induced by driver behaviour and the residual value. First 

results show that our approach is promising and indicate that driver behaviour has a big influence on battery 

aging and thus the residual value, this being further reinforced by tuning measures. In addition, there is no 

linear correlation between the aging induced by driver behaviour and the residual value. 

Keywords: Battery Aging, Vehicle Operation, Driving Cycle, Residual Value, Tuning Measures, Electric 

Vehicles, Lithium-Ion Batteries 

1 Introduction 

Today, electric vehicles are becoming increasingly popular all over the world. Lithium-ion based cells are 

mainly used for energy storage and have many advantages over other types of batteries. However, they are 

also expensive, potentially safety critical and they show a pronounced aging behaviour. Battery aging is 

governed by many factors, which are greatly influenced by the driver’s behaviour. Therefore, one can expect 

a correspondingly strong spread of the battery’s State of Health (SOH) over its lifetime. Steinbuch supports 

this hypothesis with his battery degradation analysis [1]. Through the crowdsourcing of battery SOH over 

lifetime data from Tesla owners worldwide (Figure 1), he analysed the remaining driving range, which 

mailto:SteMaMue@mytum.de


 

EVS30 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium    2 

displays an almost linear correlation to the remaining capacity of the electric vehicle. His approach lacks 

accuracy but shows the trend and impact of the individual driver, vehicle and environment. 

 

Figure 1: Crowdsourcing of remaining range of Tesla Model S 

The expected SOH distribution of end of first life (EO1L) batteries is an important criterion for strategic 

decisions on the potential use of the EV-battery in Second Life applications. Furthermore, the distribution of 

aging states is an important parameter for the design of insurance products, which is not least reflected in the 

residual value. If tuning also becomes popular on electric vehicles, the driver behaviour is no longer limited 

by the restricted operating limits of non-manipulated vehicles. This leads to the risk of the aging spread 

becoming even wider. The influence on the residual value of tuning measures is also interesting for the field 

of security. The resulting damage can be taken into account in the security risk assessment [2] as well as the 

development of security concepts. 

In this context, the question arises as to the extent to which the vehicle driver influences battery aging and 

thus the residual value of the vehicle and the battery? 

1.1 Battery aging 

The biggest downside of the market-dominating lithium-ion technology is the degradation over lifetime and 

usage, which limits main vehicle functions such as driving power, range and reliability [3]. Moreover, the 

battery aging state has a big influence on the expected residual value of electric vehicles. The speed of the 

degradation depends on specific stress factors. In [4], stress factors are defined as operating conditions of 

components and systems that can result in failure or degradation. With a focus on battery degradation, the 

operating conditions are temperature, State of Charge (SOC) level and current [3]. 

Due to the high complexity and interdependencies [5, 6], it is sensible to abstract and structure the aging of 

the lithium-ion cell. This can be separated into calendrical and cycle aging [6–8], whereby both effects have 

different major sources. Calendrical aging is typically influenced through stress factors such as temperature 

and SOC [6, 9]. Cycle aging covers the discharging and charging process [7]. This reflects the effect of 

current rates, temperature and depth of discharge on the battery parameters. In [10], we summarised the 

dependencies between the most important stress factors and battery parameters, summarising and evaluating 

the wide variety of existing battery aging models. Please refer to [11] for deeper insights into the degradation 

effects of the specific cell components. 

In summary, the reduced vehicle functions such as driving power and range can be traced back to a reduced 

cell capacity and increase in its internal resistance. Therefore, to investigate the influence of the driver 

behaviour on battery aging, the SOH of EO1L batteries and the residual value of electric vehicles, it is 

essential to calculate the resulting stress factors within the longitudinal model and the effect on the drop in 

capacity and increase in internal resistance. 

1.2 Possible driver parameters that may influence battery aging 

In this section we explain how the driver influences the aforementioned stress factors. Basically, the stress 
factors are limited by the vehicle design, but can be influenced by vehicle drivers to a large extent. The entire 
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vehicle system is utilised in such a way that no component is operated outside its specified operating range, 

mainly for safety reasons but also to minimise aging effect. For example, the battery management system 

monitors and limits the use of the electrical energy store. However, not all functions can be restricted because 

they are primary and important to the driver, for example the speed profile or the driving distance. 

Grubwinkler [12] showed the high impact of driving profiles on energy consumption. According to Brundell-

Freij et al. [13], the speed range of a road is an influencing factor for the power demand and is thus expected 

to be a relevant determinant for the stress on the battery through discharging at higher currents. Neudorfer et 

al. [14] analyses conventional driving cycles and categorises them as inner-city, overland and highway cycles. 

In the present paper, the shares of road types are considered as percentages of the daily driving distance. 

Furthermore, a factor for scaling maximum speed is employed since a real driver does not strictly adhere to 

speed limits and the power demand adjusts to velocity due to air resistance. 

Further influencing factors can be derived from the driving resistance equations [15] because the power 

demand on the battery changes with the resulting resistance. This includes the acceleration behaviour, the 

additional load as well as changes in the rolling resistance coefficient, the frontal area or the drag coefficient. 

Apart from driving resistances, the driver is also able to influence the required power for auxiliaries such as 

lights or air-conditioning. The resulting power demand on the battery changes depending on frequency and 

intensity of use. 

Table 1 summarises the possible driver influences and shows corresponding values. These are used for the 

parameterisation of the simulation. Finally, the driver determines where and in which ambient temperature 

range the vehicle is operated. 

Table 1: Possible driver influences 

 

Driver 

 

min 

distribution 

peak 

 

max 

 

source 

Daily driving distance in km 5 20 50 [16] 

Inner-city share in % one cycle 33 100 assumption 

Overland share in % 0 33 100 assumption 

Highway share in % 0 33 100 assumption 

Factor for max speed 0.8 1.0 1.2 [17] 

Acceleration behaviour  slow intermediate fast  

Additional load in kg 70 108 425 [16, 18, 19]  

Auxiliaries while driving (lights etc.) in W 300 425 550 [20] 

Interior target temperature in °C 18 21 24 [21] 

Charging behaviour twice a day  

Vehicle     

Factor for air resistance (roof rack etc.) 1.0 1.0 1.2 [12] 

Factor for rolling resistance 1.0 1.0 1.3 [12] 

Environment     

Ambient temperature and irradiation profile Nuremberg [22] 

Each parameter in Table 1 is shown in a specified range to represent as many different driver behaviours as 

possible. Figure 2 shows a few exemplary histograms of the distributions of driver-influenced parameters 

within a given range. In order to perform a Monte Carlo experiment in this work, we assumed each factor is 

normally distributed between a min and max value with a defined distribution peak to achieve realistic and 

transparent spreads of driver behaviour. 

 

Figure 2: Distribution of influencing driver parameters 
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1.3 Objectives and approach 

The objective of this paper is to answer the question of the extent to which drivers can influence the aging 

process of the vehicle battery and thus the aging or residual value distribution. In order to be able to make a 

quantitative statement about the influence of different driver profiles and tuning measures, an entire 

longitudinal model with an integrated aging model was developed and validated with real test data. The aging 

and residual value distributions were analysed along the service life as well as mileage using this model. For 

this purpose, a Monte Carlo experiment was carried out in which random driver profiles were selected from 

the influencing factors presented in chapter 1.2 and used to simulate the resulting cell capacity loss after four 

years as an indicator of battery aging. The specific aging-related residual value of the vehicle is derived from 

the respective aging state, the mileage and the vehicle age by means of a regression analysis. In order to 

assess the effects of selected tuning measures, the resulting influence on the aging distribution for a specific 

annual mileage is simulated and analysed. 

2 Description of the EV Longitudinal Simulation Model 

This chapter presents the key features of the Electric Vehicle Longitudinal Simulation Model that we used in 

the driver influence study. This model contains the main components of an electric drivetrain and enables an 

investigation of completely variable driver profiles and manipulations to all core components of the electric 

drivetrain. The model is built on basic physical equations and does not represent one specific vehicle but can 

be parameterised to various cases. 

Chapter 2.1 begins by describing the overall model structure and providing general information about the 

model. This is followed by a detailed description of the modelling approach to important components. Since 

tuning measures are to be explicitly investigated, the behaviour at the system limits is also taken into account. 

Finally, the validation of the model is presented. 

2.1 Overall model structure 

The simulative analysis of the slow process of battery aging requires the consideration of a long time period. 

However, dynamic driver behaviour must also be taken into account. In order to achieve a compromise 

between dynamic driving situations, the slow process of aging and the resulting computation time, an efficient 

Simulink simulation model was developed that is operated with a step size of one second. The components 

of an EV, as shown in Matz et al. [23], are often bi-directionally interlinked within the main flow. If the 

logical dependencies (for example the distribution of the discharge current permitted by the battery) are also 

present, this results in a highly networked system structure. The danger here (particularly with a step size of 

1s) is that time delays may occur in the main flow if not all of the loops have been correctly implemented. 

This can lead to incorrect model behaviour, especially in driving operations. We use a strictly linear model 

topology (Figure 3) that corresponds to the physical sequence, with a focus on the battery. The use of a purely 

linear topology and implementation with an intelligent bus structure allows the entire data bus to use only 

one "memory" element to also make the information generated from the previous time step available in the 

current time step. In this way, the arrangement of the components in the linear topology determines the 

primary flow of information. 

 

Figure 3: Overview of electric vehicle modelling 
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2.2 Modelling components including the behaviour at system limits 

This section provides a brief overview of modelling the most important components and implementation of 

the corresponding system limits. Please refer to Matz et al. [23] and the detailed documentation that will 

follow in further works for the remaining components. 

Driver model 

Realistic driver behaviour has to be modelled to quantify the driver’s influence on battery aging. The first 

aspect is to set up a realistic simulation environment for the vehicle, including the temperature of the 

environment as well as irradiation by the sun. The model presented here uses hourly data points for both 

parameters from Nuremberg available on [22]. Annual profiles were used to factor in seasonal effects. The 

simulation presented in this paper implements a time-based daily routine that models the driver’s behaviour 

when the vehicle is parked, driven and charged. In each time slot for driving, the driver performs one 

predefined, position-based cycle and then parks. The results presented in this paper simulate four years, 

whereby each day contains two driving slots with subsequent charging. The simplifying assumption that all 

days are equal ignores weekends and vacations. Their influences may be examined in further works. 

A position-based cycle is necessary to scale the acceleration behaviour and maximum speed without affecting 

the driven distance and to include stops at traffic lights with a specified stop interval at particular points. A 

driver controller is thus used that calculates accelerator and brake pedal actuations as function of current and 

desired velocity. The controller consists of a PI-controller for each pedal as well as a feed forward control for 

the acceleration pedal. The position-based cycle is a dynamically generated synthetic profile that is compiled 

from three basic cycles (inner-city, overland and highway). The NEDC was integrated over time for the inner-

city and overland section to extract position and velocity data points. The first part of the NEDC (ECE-15) 

models a representative city-cycle, whereas the EUDC is a mix of overland and highway (speed range from 

50 to 120 km/h). Consequently, the EUDC is used as overland cycle with a reduced maximum speed of 100 

km/h. The highway cycle consists of three speed levels that are common on German highways (100, 120 and 

140 km/h). Figure 4 shows an exemplary cycle with one part of each category respectively.  

 

Figure 4: Exemplary synthetic driving cycle, assumption: free traffic flow, zero wind velocity, zero ground slope 

Battery 

We developed a thermal, electric and aging model of the 18650 2.05 Ah Sanyo UR18650E NMC cell in [24] 

as the battery model. We simplified the battery system by representing it with one cell to validate the 

longitudinal model. This assumption, did not consider the existing effects through parallel cell 

interconnection in the system, for example. The discrepancies in cell aging within the battery system are a 

consequence of the cell spread and different loading of the cells, caused by temperature and SOC 

inhomogeneities within the battery system [25]. 

While the thermal model provides the approximated cell temperature within the battery cell package for the 

other sub-models, the equivalent circuit model (ECM) of the cell calculates the terminal voltage and internal 

resistance according to the battery cell’s load and temperature. These then influence the thermal development 

and aging within the cell. For long-term simulations, the impact of aging is also considered in the thermal 

model (increase of internal resistance) and the ECM (both increase of internal resistance and decrease of 

overall capacity). We performed several electrical and thermal characterisations of a Sanyo UR18650E cell 

when developing the model to determine the initial parameter set for the ECM and thermal model. The aging 

model is based on Schmalstieg et al. [6] from 2014, who performed accelerated aging tests to build the model. 

inner-city overland highway 
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This model contains the essential aging effects in NMC cells. Current NMC cells display a higher quality in 

terms of aging speed. In order to represent this further development, we took 80 % of the remaining capacity 

after 8 years under normal operating conditions as a reference and scaled the aging behaviour accordingly. 

The sub-models are described in [24] in detail and all parameters can be provided by the authors. The BMS 

monitors the system behaviour and stops the simulation in the event of a fault. In addition, it operates the 

battery within its performance specifications. 

Powertrain including electric machine and power electronics 

The powertrain model includes the electric machine and power electronic sub-models. A phenomenological 

modelling method is used. For this reason, the complex operating function is represented in a simplified 

manner using efficiency maps and taking torque and speed into account. The machine parameters are 

calculated according to Horlbeck [26] and the power electronics’ parameters according to Pesce [27]. The 

power of the machine is limited when the inverter, the motor or the battery reaches its threshold. Therefore, 

the motor temperature is modelled separately and used to ultimately derate the performance of the power 

electronics.  

HVAC 

It is crucial to consider different energy sources and loads for the operation of electric vehicles. Cabin cooling 

and heating is an important load that accounts for a considerable percentage of the energy demand. We 

developed a simplified and dynamic thermal model for the cabin of a vehicle. This is why we applied a first-

order cabin model that considers the cooling and heating convection through the car’s surface according to 

Großmann [28] and the solar irradiation. The model is built on theoretical heat transfer, thermal inertia and 

solar radiation equations. The heat capacity of the car is represented by the air volume and interior according 

to [12]. We use the heat pump method represented by the COP to calculate the resulting electric power 

according to the heating power. 

DC-DC converter and charger 

The DC-DC converter is modelled with an efficiency map taking the voltage and current output into account. 

The charger is implemented with a PI-controller and considers the operating limits in terms of current and 

power set from the battery. 

2.3 Validation of the EV model 

We used data from the downloadable dynamometer database, which was generated at the Advanced 

Powertrain Research Facility (APRF) of Argonne National Laboratory under the funding and guidance of the 

U.S. Department of Energy (DOE), to validate the longitudinal model. This offers publicly available test data 

from independent laboratory tests of electric vehicles. For more information about the test facilities, test 

conditions and driving cycles please refer to [29]. The parameterisation of the model is based on the BMW 

i3 setup. We compared not only the battery voltage and SOC (Figure 5) but also the current and temperature 

over time. 

 

Figure 5: Comparison of Argonne data and simulation results, a) battery voltage, b) SOC 

We performed the validation for four different Argonne test blocks: Test-ID 61505039 - 40 (~6 °C, very cold), 

Test-ID 61505028 - 30 (~0 °C, cold), Test-ID 61505019 - 22 (~23 °C, warm) and Test-ID 61505024 - 27 

(~36 °C, very warm). The validation results in Table 2 show an average error below 5 % for all four different 

test scenarios and a good correlation between the simulation model and the Argonne data. 

b) a) 
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Table 2: Error simulation and Argonne data in % 

Error simulation and Argonne data in % very cold cold warm very warm 

Average SOC  1.8 1.5 0.8 0.5 

Integrated current  2.2 0.1 5 4.9 

Integrated power  4.1 2.3 1.9 2 

3 Regression model for estimating the vehicle residual value 

When it comes to estimating the residual value of vehicles, nearly all authors use statistical methods in their 

work to analyse the influencing factors of future residual values. For this purpose, large quantities of used 

cars need to be examined to identify the factors that have the greatest influence on the vehicle’s value. The 

lack of corresponding data to parameterise the models is often a crucial problem. Historical data contains not 

only the price of the respective models but a lot of other important information such as the vehicle’s age, 

mileage, power, etc. In the calculation or price, a vehicle is conceptually divided into quality properties and 

the effect of these quality characteristics on the price is then determined by means of a regression analysis. 

As a result, those price changes that are only based on qualitative changes in certain properties can be 

mathematically separated and eliminated from the pure price changes. The regression analysis is a statistical 

analysis to detect relationships between variables. Since vehicles are products that are subject to rapid 

technological changes, the differences in quality between vehicle models also has to be taken into account. 

New vehicle models will always be of a higher quality than the previous model. However, prices of products 

from two different periods can only be compared with each other if the quality remains constant [30]. This is 

why the hedonic approach is used, which equates quality-influencing factors. 

The lack of long-term data for electric vehicles is the problem when transferring this conventional hedonic 

approach, based on regression models, for combustion engine-powered vehicles to electric vehicles. However, 

if the regression equation that represents the residual value function of an equivalent combustion vehicle 

were to be modified for a particular electric vehicle, the residual value of the electric vehicle could possibly 

be approximated. Trede of DAT (Deutsche Automobil Treuhand) employs such an approach when calculating 

the residual value of electric vehicles [31]. 

Equation (1) is the result of two different approaches. The first part, without the term advantageTCO, is derived 

from Plötz et al. [30] and Dexheimer et al. [32]. It describes the residual value of an electric vehicle by adding 

the value of the traction battery to the original price of a comparable combustion vehicle. The latter should 

reflect the influence of taxation (e.g., the abolition of VAT). The term advantageTCO describes the (residual 

value) gains by lower fuel costs over the entire life cycle of the vehicle. Finally, to establish a link between 

the battery aging behaviour and residual value, we adjusted this linear regression model from Plötz et al. [30], 

Dexheimer et al. [32] as shown in equation (1) by taking the battery state of health into account and calculated 

the residual value distribution for the aging spread. We used the parameterisation from [30] for the Monte 

Carlo experiment. 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝐵𝐸𝑉 = 𝑒𝛼 ∙ 𝑒𝛽1∙𝑎𝑔𝑒 ∙ 𝑒𝛽2∙
𝑘𝑚

𝑚𝑜𝑛𝑡ℎ ∙ (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑟𝑖𝑐𝑒 + 𝜅𝑅 ∙ 𝑝𝑏𝑎𝑡𝑡𝑒𝑟𝑦)
𝛽3

+⋯+  𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝑇𝐶𝑂  (1) 

where β1: factor age, β2: factor monthly km, β3: factor original price, α: weighting factor, 𝜅: battery capacity 

degraded kWh, 𝑝
𝑏𝑎𝑡𝑡𝑒𝑟𝑦

: battery price €/kWh. 

4 Results 

4.1 Monte Carlo experiment 

In order to receive the driver influence on battery aging we conducted a Monte Carlo experiment with the 

developed longitudinal vehicle model. For 10 000 samples, we randomly picked normal distributed driver 

profile parameters (Table 1) and simulated the vehicle usage for a duration of four years. The resulting cell 

capacity loss is used as indicator for battery aging. The normal distribution for the driver profile parameters 

is an assumption and does not necessarily fit reality but helps to gain transparency within the analysis. In this 
chapter, we provide first results. 
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Figure 6 a) shows capacity over time in three different mileage clusters for the 10 000 samples after the four 

simulated years of vehicle usage. The main outcome is the strong capacity spread induced by usage profiles, 

which is increasing with mileage. Aging and mileage are not correlative, making the mileage unsuitable as 

independent aging indicator. The increasing horizontal scattering is due to the accumulation of small errors 

of the driver controller. In future work it may be solved with a predictive controller. Figure 6 b) analyses the 

dependency of the remaining battery capacity from the accumulated energy throughput. To also show the 

evolution with time, three different time points are indicated (480 days, 960 days, 1440 days). The 

dependency shows a linear or even slightly quadratic shape, which tends to lower remaining capacity with 

higher energy throughput. Assumed a linear dependency for a specific point in time, the gradients of the 

shapes are decreasing for later time. This means that the correlation between energy throughput and aging is 

decreasing with ongoing time. Nevertheless, taking the effects of mileage and driver profile into account, the 

power throughput is the dominating indicator for the remaining capacity of the battery. 

  

Figure 6: Dependency of battery aging on mileage a) and energy throughput b) 

Figure 7 a) shows the development of capacity over the battery lifetime and its distribution after four years, 

clustered in the three mileage areas introduced in Figure 6 a). The distribution has a left shifted Weibull shape 

and is more left shifted with more driven kilometres and the spread is increasing. The impact of drivers 

becomes visible and stable. Furthermore, extreme drivers are increasingly drifting away from the bulk. 

Summarized, with increasing mileage, the driver impact even increases.  

The residual value, shown in Figure 7 b), also reflects the decrease for the three different kilometre clusters. 

The residual value reaches 40 % in cluster 3 while cluster 1 is still above 50 %. The drop in the residual value 

is mainly dependent on the driven miles. Battery aging influence decreases with an increasing mileage. 

  

Figure 7: Driver-influenced aging distribution over time, aging spread, a) dependency of the remaining capacity on the 

energy throughput for three different time points, b) residual value after four years 

a) b) 

(1) 

(2) 

(3) 

Cluster 

(1) 

Cluster 

(2) 

Cluster 

(3) (1) 

(2) 
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Over- 

all 

b) a) 
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4.2 Additional application of specific tuning measures 

Potential tuning measures can be derived from the needs of electric vehicle drivers and the tuning market for 

conventional vehicles [2]. These range from purely optical measures or upgrading the vehicle right through 

to the classic performance enhancement. This results in a large number of possibilities for tuning measures, 

which can have different degrees of intensity and can also be combined. In order to demonstrate the 

fundamental effects on aging distribution, the following cases are considered: 

a) A software-based power increase of 15 % (chip-tuning) 

b) The use of newer cells (20 % more capacity, 10 % larger mass, 10 % lower internal resistance) 

c) The additional use of powerful auxiliary equipment, such as a sound system (300 W additional load) 

The tuning measures are simulated in combination with 500 samples of randomly selected driver profiles, 

though a fixed annual mileage of approximately 15 000 km. Figure 8 shows the resulting aging distributions 

for the three tuning measures considered after three simulated years.  

 

Figure 8: Aging distribution based on different tuning measures after three years 

The increase in performance (case a) only relates to a small share of the daily driven distance and, in addition, 

to only a few drivers whose profiles demand additional performance. In individual cases, this results in 

significant effects on the aging behaviour. However, based on all drivers, the impact is negligible. Tuning 

measures that only affect specific individual drivers are therefore usually expressed in a broader distribution 

curve, the mean value hardly changes (Figure 8 b). 

Case b), the use of more modern cells, affects all drivers but is expressed to different degrees in different 

driver profiles. There is a decline in aging, especially among drivers who have a high energy throughput. 

This is partly due to a lower depth of discharge (DOD) as well as a lower cell temperature. In the distribution 

curve, such tuning measures are expressed by a one-sided displacement (Figure 8 b). 

An increased auxiliary load (case c) affects all driver profiles equally. The resulting aging distribution 

therefore shifts completely towards increased aging (Figure 8 c). 

5 Discussion 

The results of the analysis show a high sensitivity of the battery aging based on the driver behaviour. The 

dependency of the drop in capacity on the energy throughput shows a linear trend over time and various 

gradients dependent on the point in time. The capacity spread increases with the mileage.  

It becomes obvious that mileage has a big impact on battery aging and that the driver impact increases with 

an increasing mileage. Therefore, the mileage of a vehicle cannot be the sole indicator for the remaining 

capacity of the battery, but according to our analysis it has a strong effect to the residual. During our analysis, 

we also investigated second-hand car prices on mobile.de and autoscout.de, and it became obvious that the 

residual values are currently high for electric vehicles. In our opinion, however, this is likely to be due to the 

low availability and under-developed second-hand electric car market. This will change when a second-hand 

car market becomes established. In addition, subsidies for new vehicles as well as the drop in the price of 

electric vehicles will lead to a decline in old models. Our analysis is based on a methodology for combustion-

powered vehicles, which means we assumed an established second-hand car market. Because of this, our 

calculated development in value is pessimistic and will be more accurate in the future. Furthermore we didn’t 

take future necessary battery replacement into account, because we just investigated four years of lifetime 
and replacement was not required.  
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There are many possible tuning measures that have a varying influence on battery aging. However, a large 

proportion of tuning measures do not affect all driver profiles, only selected ones, and of course, not all 

vehicles will be manipulated. This means that in a global perspective, the influence of the assessed tuning 

measures on the aging distribution is negligible compared to the driver profile, but should still be considered 

as an uncertainty. When it comes to the individual driver profiles, the situation changes and tuning measures 

may have a significant effect on aging. A systematic analysis of the numerous tuning measures and their 

characteristics in combination with selected driver profiles is necessary in this area. This comprehensive 

consideration will be the goal of future work. 

6 Conclusion and future work 

This article investigates the impact of statistically distributed driver behaviour in combination with tuning 

measures on battery aging and the resulting residual value. We therefore suggest a fully configurable 

longitudinal model that covers the main components of an electric drivetrain and considers battery aging. 

Initial results show that our approach is promising and that driver behaviour has a big influence on battery 

aging and thus the residual value and being further reinforced by tuning measures. In addition, there is no 

linear correlation between driver-induced aging and the residual value and the impact of battery aging 

decreases with an increasing mileage. 

Future work requires a detailed understanding of the impact of different driver behaviour profiles on battery 

aging. Hence, we will carry out sensitivity analyses for the different driver behaviour parameters and will 

discuss concrete profiles such as slow city driver with fast charging vs. fast highway drivers with home 

charging. In addition, we will vary the environmental profile and include several different vehicles. 
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