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Abstract

The success of applying neural networks crucially depends on the network architecture being

appropriate for the task. Determining the right architecture is a computationally intensive

process, requiring many trials with different candidate architectures. We show that the neural

activation function, if allowed to individually change for each neuron, can implicitly control

many aspects of the network architecture, such as effective number of layers, effective number

of neurons in a layer, skip connections and whether a neuron is additive or multiplicative.

Motivated by this observation we propose stochastic, non-parametric activation functions

that are fully learnable and individual to each neuron. Complexity and the risk of overfitting are

controlled by placing a Gaussian process prior over these functions. The result is the Gaussian

process neuron, a probabilistic unit that can be used as the basic building block for probabilistic

graphical models that resemble the structure of neural networks. The proposed model can

intrinsically handle uncertainties in its inputs and self-estimate the confidence of its predictions.

Using variational Bayesian inference and the central limit theorem, a fully deterministic loss

function is derived, allowing it to be trained as efficiently as a conventional neural network

using stochastic gradient descent. The posterior distribution of activation functions is inferred

from the training data alongside the weights of the network. The proposed model favorably

compares to deep Gaussian processes, both in model complexity and efficiency of inference.

It can be directly applied to recurrent or convolutional network structures, allowing its use

in audio and image processing tasks. As an empirical evaluation we present experiments on

regression and classification tasks, in which our model achieves performance comparable to or

better than a Dropout regularized neural network.

We further develop a novel method for automatic differentiation of elementwise-defined,

tensor-valued functions that occur in the mathematical formulation of Gaussian processes. The

proposed method allows efficient evaluation of the derivatives on modern GPUs and is used

in our implementation of the Gaussian process neuron to achieve computational performance

that is about 25% of a convential neuron with a fixed logistic activation function.
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Chapter 1

Introduction

Artificial neurons (Haykin, 1994) are a model of biological neurons as they exist in biological

brains. An artificial neuron receives inputs (real numbers) from other neurons, calculates a

weighted sum of it and applies a non-linear activation function to the result, producing its

output. Neurons are arranged in artificial neural networks (ANNs), which are graphs that

describe how the output of each neuron connects to the inputs of other neurons. Of course, many

different graphs are imaginable. One simple, yet common, type of ANNs is the feed-forward

network, where neurons are arranged in layers and all neurons of one layer are connected

to all neurons of the next layer. The bottom and top layers are called input and output layer

respectively, while the in-between layers are called hidden layers. By iteratively calculating

weighted sums and applying non-linearities any function can be represented if the network is

large enough. Changing the weights changes the function and so we can “train” a network from

data consisting of pairs of input and target samples by adjusting the weights so that for each

input the output of the ANN resembles the target as much as possible. Since an ANN is nothing

more than a function with many parameters, we can do this by calculating the gradient of some

measure of how bad the network is at hitting the targets w.r.t. all weights and then use some

(advanced) form of gradient descent to iteratively minimize that measure. This algorithm is

known as backpropagation (Rumelhart, G. E. Hinton, et al., 1988). “Deep learning” (Y. LeCun,

Bengio, et al., 2015), which currently spawns a considerable amount of research interest, refers

to the training of ANNs that have many layers and are thus “deep”.

Besides feed-forward networks two important ANN classes exists. A recurrent neural net-

work (RNN) is a neural network architecture for processing a (time) sequence of inputs. It

is evaluated over a series of steps, each corresponding to an item in an input sequence. The

structure of an RNN matches the structure of a feed-forward network but with additional,

recurrent connections on the hidden units. These connections specify how the state of the

hidden layer neurons is propagated from one step to the next. Like a feed-forward network it

1



2 CHAPTER 1. INTRODUCTION

is trained by minimizing some loss measure with respect to its weights using the backpropaga-

tion through time algorithm (Werbos, 1990). Thus, given an input sequence of, for example,

speech-recording, an RNN can be trained to output a sequence of the spoken words in text

form.

A convolutional neural network (CNN) is a network architecture developed for image pro-

cessing and recognition (Y. LeCun, B. E. Boser, et al., 1990; Y. LeCun, B. Boser, et al., 1989).

It is modeled after the visual cortex in biological brains and consists of a stack of alternating

convolutional and pooling layers. The activations of the neurons in a convolutional layer are

given by a convolution of the outputs of the previous layer with the weights, which are shared

between all neurons in that layer. The motivation for this operation is that an object in an image

should produce the same response without respect to its position. A pooling layer divides its

inputs into blocks of a fixed size (for example 4x4) and applies a reduction operation on these

blocks to compute its output. A common choice for this reduction operation is taking the maxi-

mum value, thus adding a certain amount of invariance to translations. Due to weight sharing

CNNs only have a fraction of the weights a feed-forward network of the same size would have.

This significantly reduces the amount of required training data, memory and training time and

thus CNNs have become the network architecture of choice for image processing tasks.

1.1 State of the Art

We review the state of the art in neural activation functions, multiplicative interactions in neural

networks, structure search, stochastic neural networks and their connection to regularization.

Activation Functions

Since the dawn of neural network research the most commonly used activation functions were

the logistic function and other sigmoid functions. Sigmoid refers to “S”-shaped functions, for

example the hyperbolic tangent (tanh). The use of the logistic function was originally inspired

by the thresholding behavior of biological neurons and because its derivative is benign and

can be computed very inexpensively. This choice of activation functions was not seriously

challenged by researchers (except for special purpose applications), until recently when Nair et

al. (2010) introduced the rectified linear unit (ReLU), a neuron with an activation function that

is linear for positive inputs and zero for negative inputs. Krizhevsky, Sutskever, et al. (2012)

showed that ReLUs produce significantly better results on image recognition tasks using deep

networks than the common sigmoid-shaped activation functions. One possible explanation for

this success is that, when a sigmoid-shaped function is used in its saturated (flat) areas, its
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(a) hyperbolic tangent (sigmoidal) (b) exponential linear unit

(c) ReLU (d) leaky ReLU

Figure 1.1: Commonly used activation functions in neural networks.

derivative is near zero, thus leading to a weak training signal to the weights and hence training

becomes slow or gives worse results. This problem is amplified in deep neural networks. There,

the training signal travels through many layers and thus many potentially saturated neurons

until it reaches the weights in the lower layers. Since, by the chain rule, the derivative of a

composed function is the product of each of the derivatives of its composing functions, the

training signal can get exponentially small. The ReLU does not have this problem, at least in

the positive range, because there its derivative is simply one.

This achievement led to a wave of follow-up research in activation functions specifically

tailored to deep networks. While the ReLU solved the problem of vanishing gradients for

positive values, it completely cut off the gradient for negative ones; thus once a neuron enters

the negative regime (either through initialization or during training) for most samples, no

training signal can pass through it. To mitigate this problem Maas et al. (2013) introduced the

leaky ReLU, which is also linear for negative values but with a very small, although non-zero,

slope; for positive values it behaves like the ReLU. Soon after He et al. (2015) demonstrated

that it is advantageous to make the slope of the negative part of the leaky ReLU an additional

parameter of each neuron. This parameter was trained alongside the weights and biases of

the neural network using gradient descent. A CNN using these so-called parametric ReLUs was

the first to surpass human-level performance on the ImageNet classification task (Deng et al.,
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2009). Commonly used activation functions are shown in fig. 1.1.

It is thus natural to ask if even more flexible activation functions are beneficial. This ques-

tion was answered affirmative by Agostinelli et al. (2014) on the CIFAR-10 and CIFAR-100

benchmarks (Krizhevsky, Nair, et al., 2014). The authors introduced piecewise linear activation

functions that have an arbitrary (but fixed) number of points where the function changes it

slope. These points and the associated slopes are inferred from training data by stochastic

gradient descent. Maxout networks (Goodfellow et al., 2013) consist of neurons that use no

activation function but instead take the maximum over a set of different linear combinations of

their inputs to compute their output. This, however, also results in piecewise linear segments

in their outputs and thus the slopes of the different segments of piecewise linear activation

functions can be encoded in the weights of maxout networks.

Instead of having a fixed parameter for the negative slope of the ReLU, Xu et al. (2015)

introduced stochasticity into the activation function by sampling the value for the slope with

each training iteration from a fixed uniform distribution. Clevert et al. (2015) and Klambauer

et al. (2017) replaced the negative part of ReLUs with a scaled exponential function and

showed that, under certain conditions, this leads to automatic renormalization of the inputs

to the following layer and thereby simplifies the training of the neural networks, leading to

accuracy improvements of deep feed-forward networks on tasks from the UCI Machine Learning

repository (Lichman, 2013) amongst others.

Nearly fully adaptable activation functions have been proposed by Eisenach et al. (2017).

The authors use a Fourier basis expansion to represent the activation function; thus with

enough coefficients any (periodic) activation function can be represented. The coefficients of

this expansion are trained as network parameters using stochastic gradient descent. Similarly,

Scardapane et al. (2017) also use a basis expansion, but with a set of Gaussian kernels that are

equally distributed over a preset input range.

Neurons that Multiply their Inputs

Let us introduce another type of artificial neuron. It has the same structure as the neuron

introduced before, but instead of summing over its inputs, it calculates the product over them

to compute its output. In such a multiplicative neuron the weights are not multiplied with

the inputs but used as their exponents in the product. A unit that combines the calculation of

a product followed by a summation (thus computing a polynomial over its inputs) is called

Sigma-Pi unit, where Sigma stands for sum and Pi stands for product, and has been introduced

by Rumelhart, McClelland, et al. (1987) and Shin et al. (1991). Networks containing units that

perform multiplications are called higher-order neural networks. The power of Sigma-Pi units
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(a) relating two images (b) attention for speech recognition

Figure 1.2: Examples for multiplicative interactions in neural networks. (a) Tripartite graph
consisting of two images and their relation vector; from (Memisevic, 2011). (b) Attention mech-
anism over hidden units of RNN scanning over input sequence; from (Bahdanau, J. Chorowski,
et al., 2016).

can be seen from Taylor series, which express every analytic function as a (possibly infinite)

polynomial. Thus a Sigma-Pi unit with enough products can represent any function. Although

intriguing in what they can represent, polynomials are also problematic with respect to stability,

since any finite polynomial will approach infinity as the magnitudes of its variables increase.

This makes higher-order neural networks significantly more challenging to train, which led to

a focus of research on purely additive ANNs for many years.

Multiplicative interactions reappeared when Memisevic (2011) and Memisevic (2013)

showed that they are necessary to represent the relationship between two images. The authors

assume that one image can be transformed into the other by application of simple transfor-

mations such as translations and rotations to patches of the image. The proposed model is a

tripartite graph (fig. 1.2a) consisting of both images and a transformation vector, the entries

of which act multiplicatively on the pixels of one image to obtain the other image. Building

upon this work, Alain et al. (2013) proposed an autoencoder (Bengio, 2009) containing mul-

tiplicative neurons to model the relation between two images with fewer weights and greater

generalization performance.

Multiplications also proved very beneficial in the context of speech recognition and machine

translation using RNNs. J. K. Chorowski et al. (2015) and Bahdanau, J. Chorowski, et al. (2016)

showed that adding an attention mechanism to a speech recognition model can significantly

improve its prediction accuracies. The proposed model (fig. 1.2b) consists of two RNNs, a
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encoder and a decoder, and a feed-forward network controlling the attention. The encoder is

used to produce a sequence of latent state vectors from the input audio. The decoder uses this

sequence to to generate the output text. However, it does not process it sequentially, but its

input in each step is given by a linear combination of the latent state vectors. The weights

of this linear combination are computed by the attention feed-forward network that takes

the previous state of the decoder as input. Thus the decoder chooses to which parts of the

encoded input sequence it “attends” to for each output word. Because the linear combination

is a multiplication of the outputs of two neural networks, the proposed model belongs to the

class of higher-order neural networks. The same principle was applied by Bahdanau, Cho, et al.

(2014) to machine translation and achieved significant improvements over models without an

attention mechanism.

The Search for Network Architectures

Choosing the structure of an ANN suitable for a particular task is a non-trivial problem. The

universal approximation theorem (Gybenko, 1989) guarantees that a network with one hidden

layer can approximate any continuous function arbitrarily well; however, it does not bound the

number of neurons required and thus such a flat network becomes too large to be practical

when the function to approximate is high-dimensional (such as an image). In many cases ANNs

consisting of multiple stacked layers are more efficient, i.e. they can learn the same function

with less neurons and thus weights. An explanation for this effect is that in the lower layers

simple function approximations are built that are then combined into more powerful functions

by the subsequent layers.

However, when designing multi-layer architectures many question arise about their struc-

ture. How many layers should the network have? How many neurons should there be in each

layer? Should the weights be shared according to some scheme (e.g. CNN)? What activation

function should be used for the neurons in each layer? Should only additive neurons be used

or will multiplicative units help?

A class of algorithms that can optimize the structure of neural network are evolution strate-

gies (Rechenberg, 1973). These optimization algorithms mimic the progress of natural evolution

on a population of artificial genomes. Each genome represents a possible solution to the prob-

lem at hand, for instance it can encode the structure of a neural network. An evolution strategy

iteratively applies selection according to some fitness measure, mutation (random change) and

crossover (combination) between two genomes on the population. Thus, over the progression

of the algorithm the genomes will tend to produce individuals with higher fitness, although no

gradient information are used. The success or failure of evolution strategies depends on the
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encoding of the genome; if it is unsuitably chosen the operations of mutation and crossover

will damage the population and no progress can be made.

The first application of evolution strategies to feed-forward neural networks was proposed

by Maniezzo (1994). The author encoded both the weights and structure in the genome, leading

to a very large genome, which limited the applicability of this approach to small networks. On

the other hand, NEAT (Stanley and Miikkulainen, 2002) evolves only the network structure

by augmenting it from generation to generation. The fitness of each genome is evaluated by

instancing the corresponding network, training it using backpropagation on the data set until

convergence and calculating the loss on a separate validation set. Since the weights are not

part of the genome, NEAT can scale to very large networks. However, each round of evolution

strategies needs considerable time to train all networks of the population before selection can

take place. HyperNEAT (Stanley, D’Ambrosio, et al., 2009) follows the same principle as NEAT

but uses Compositional Pattern Producing Networks (Stanley, 2007) to decode the network

structure from the genome.

Another approach is to search for ANN structures using reinforcement learning (Sutton and

Barto, 1998). Zoph et al. (2016) propose a generator RNN that outputs a sequence of tokens that

encodes the architecture of a CNN. As with NEAT each network architecture is decoded from

the token-sequence, instantiated, trained and its loss on a validation set evaluated. The negated

loss is then used as a reward for the generator RNN, which is optimized using the REINFORCE

rule (R. J. Williams, 1992) with the derivative of the reward signal being approximated using

the policy gradient method (Sutton, McAllester, et al., 2000). This method produced good

results on the CIFAR-10 benchmark, however like evolution strategies it is computationally

demanding as many candidate networks must be trained.

Uncertainty meets Regularization

ANNs as described so far are deterministic models. After being trained the network produces

a deterministic output for each given test input. This output corresponds to a best guess esti-

mate of what the network considers the appropriate target. There are mainly two motivations

for extending ANNs into the probabilistic domain. First, performing Bayesian inference in a

probabilistic model introduces a natural resiliency against overfitting when an appropriate

prior is chosen. Second, it would be useful if the ANN could output how certain it is about its

predictions, so that one knows how much trust can be put into those.

Overfitting means that the model places too much importance on getting the predictions on

the training set exactly right and thus lets random noise and outliers heavily influence its output,

which leads to a significant decrease in accuracy on the test set. Regularization is a concept for
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(b) neural weight uncertainty

Figure 1.3: Examples for uncertainty in machine learning models. (a) GP regression has lower
confidence (shaded area) when no training point (cross) is nearby; from (Rasmussen et al.,
2006). (b) Uncertain weights in a neural network parameterized using normal distributions;
from (Blundell et al., 2015).

preventing statistical models from overfitting. An example is L2-regularization, which was first

proposed by Tikhonov et al. (1977) in the context of logistic regression. For neural networks

this method works by adding a penalty given by the magnitude of the weight vector of each

neuron to the loss function. Thus it “encourages” each neuron to keep its activation in or close

to the linear range of the (usually) sigmoidal activation function. In consequence, using this

augmented loss as training objective will lead a multi-layer ANN to learn functions that have a

more linear functional dependency on their inputs. Since this limits the classes of functions that

can be learned and thus the hypothesis space, learning theory (Vapnik, 2013) predicts that the

risk of overfitting is thereby reduced. The probabilistic pendant of this method is to use Bayesian

inference with a Gaussian prior with zero mean on the weights. A more advanced regularization

method for neural networks is Dropout (G. E. Hinton, Srivastava, et al., 2012; Srivastava et

al., 2014), which randomly disables (sets their output to zero) neurons during training and

thus prevents neurons in subsequent layers from co-adaptation by implicitly performing model

averaging.

For many applications of predictive models it is essential to have an estimate about the

uncertainty of the prediction given an input. For example, for an automated medical diagnosis

system it is imperial that not only the most probable diagnosis is outputted but also how much

trust can be put into the result. Gaussian process regression and classification (Rasmussen

et al., 2006) provide such estimates by performing probabilistic linear regression in a high

dimensional feature space computed from its inputs. Here the estimate of uncertainty depends
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on the test input. The model will be more certain about predictions it makes on inputs that

are similar to samples from the training set, while inputs that have hardly any resemblance

to the training set will lead to predictions afflicted with high levels of uncertainty, cf. fig. 1.3a.

For example, Urban, Bayer, et al. (2013) use GPs to compute grip forces and their confidence

interval from video sequences of fingernails. Furthermore Urban, Ludersdorfer, et al. (2015)

embed GPs within a time series filter to compensate for the hysteresis of a tactile sensor; in this

work the confidence estimation is crucial for Bayesian optimal fusion of state predictions from

a dynamical model and raw measurement data.

For neural networks it has been proposed (Graves, 2011; G. E. Hinton and Van Camp,

1993) to treat the weights of the ANN as probabilistic variables and apply variational inference

(Bishop, 2006) to approximate their posteriors. The common choice for the variational posterior

of the weights (fig. 1.3b) is a Gaussian distribution with diagonal covariance matrix. Thus, in

such a probabilistic ANN the number of parameters is doubled compared to a deterministic

network, since for each weight we now additionally store its variance. A further approximation

is to model the output of each neuron as a normal distribution; the mean and variance being

calculated from the means and variances of its inputs and the uncertainty of the weights. This

method is similar to the technique of error propagation (Taylor, 1997) for scientific calculations

using uncertain physical measurements (which are normally distributed in the majority of

cases). Hence, the neurons in the output layer provide a prediction in form of the mean and

variance parameters of a normal distribution. Blundell et al. (2015) have shown that the

backpropagation algorithm can be adapted to train such probabilistic models.

In summary, treating neural networks probabilistically makes them less prone to overfitting

and allows to reason about the certainty of their predictions.
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1.2 Motivation for this Work

It is well known that x y = exp(log x+ log y). It means that one can write a product as a sum

with help of the exponential function and logarithm. This also works for negative numbers by

using the complex versions of these functions. Now consider an (additive) neural network. By

using the logarithm as the activation function in a layer and the exponential function in the

next, we can perform multiplications without having to change the network architecture. Of

course we can still apply the sigmoid after the exponential function, if we want to do some

(soft) thresholding after the multiplication. Thus, solely by changing the activation function we

can turn an additive neural network into a higher order neural network.

In terms of searching for the optimal architecture not much has been gained yet, since we

just shifted the problem from how a neuron handles its inputs to the choice of its activation

function. We still would have to instantiate many networks with different combinations of

neurons using the exponential, logarithm and logistic activation functions. The reason for this

is that the choice of activation function is discrete and thus it must be treated as a hyper-

parameter since no derivative can be computed. However, if we could turn that discrete choice

into a continuous spectrum of infinitely many activation functions, the derivative with respect

to the choice of activation function would be well-defined. Thus, we could make the activation

function an additional parameter (besides the bias) of each neuron and train it alongside the

existing network parameters using backpropagation.

The activation function also determines the “existence” of a neuron. If it is constant zero, the

network behaves as if that particular neuron and all its incoming and outgoing connections were

not present at all. Furthermore it also determines the effective depth of the ANN. If a neuron

uses a strictly linear activation function, the network also behaves like it was not present, but

with its incoming connections directly connected to its outgoing connections and the weights

adjusted accordingly (using the matrix dot product). Thus if all neurons within a layer use

a linear activation function, the whole layer can be folded into the next layer, thus reducing

the effective depth of the ANN. In summary, the choice of activation functions determines the

effective architecture of an ANN with respect to additive or multiplicative interactions, number

of neurons in a layer and number of layers.

If a (parametric) model should make predictions with confidence estimates, it needs to

contain information about the certainty of its own parameters. Previous approaches to make

predictions of ANNs probabilistic have modeled the uncertainty of the network weights, for

example by approximating their posterior with a normal distribution, as discussed before and

shown in fig. 1.3b. In this work we follow a different approach. We treat the weights as

deterministic network parameters, but propose to mediate the model uncertainty through a
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distribution over the activation functions of each neuron. Using activation functions which have

an input-dependant variance, like the GP in fig. 1.3a, will make the certainty of the network

depend on which region of the activation function is used. If areas of high confidence are used,

the output of the neuron will have low variance. On the other hand, if the activation falls into

a region of low confidence, the neuron output will have high variance and thus indicate that it

is unsure about its output. By propagating this uncertainty through the network, the outputs of

the network become predictive distributions that can be interpreted as confidence intervals. The

weights influence how the uncertainty is propagated from one neuron to a subsequent neuron.

If a connection from a neuron with high variance output to another neuron has a strong weight,

then (by propagation of uncertainty) the receiving neuron will have an activation with high

variance. However, if the weight is weak, then the high variance output does not have a high

impact on the variance of the activation of the receiving neuron. Consequently, uncertainty in

such a neural network can also decrease as the inputs are propagated from layer to layer.

Stochastic activation functions can also act as powerful regularizer on the ANN if Bayesian

inference is performed using an appropriate prior over these functions. If the chosen prior

promotes functions with small magnitude, the resulting network will try to solve the learning

task with a minimum number of active neurons, because for each active neuron (non-zero

output) a penalty is imposed through that prior. If the chosen prior promotes linear functions,

the effective depth of the resulting network will be minimized, thus keeping it as linear as

possible for solving the given learning task. Since both priors try to keep the complexity of the

ANN low and thus also the size of the hypothesis space, they act as regularizers and counter

overfitting.

Research on the Dropout regularization method has shown that having neuron outputs

that are “noisy” also leads to better generalization performance of the network. A neuron that

receives noisy inputs will tend to base its predictions on a evenly spread mixture of these inputs

in order to minimize its own output variance (assuming uncorrelated noise). Large weights are

disadvantageous for the neuron in that case, since they will lead to a high output variance. The

net effect is that the magnitudes of the weight vectors are kept small and each neuron uses

redundant inputs for its predictions. This redundancy can be interpreted as an implicit form

of model averaging (Hoeting et al., 1999), which is known to counteract overfitting and thus

improve the generalization ability of the whole ANN.

Motivated by the observations described in this section, this thesis proposes two new classes

of activation functions for neural networks, both with the motivation to make the network

architecture more dynamic and learnable while confronting overfitting in a Bayesian setting

with appropriate priors.

The first class of activation functions is a continuum between the logarithm, identity and
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exponential function in the real and complex domain. It is based on the mathematical theory

of fractional functional iteration and fully differentiable both with respect to its input and

the iteration parameter, a real number which selects a function within the continuum. The

intended application of these functions is to allow the network to learn where to make use of

multiplicative interactions and where to stick to purely additive neurons. This is done during

standard backpropagation training with no discrete optimization steps necessary.

The second class of activation functions we propose consists of fully flexible, non-parametric

functions that can be learned alongside the other parameters of the network. The only constraint

on these functions is that they are smooth; thus this is a generalization of the first class. It is

clear that this leads to a very expressive model, which must be regularized appropriately to

avoid overfitting. We do so by treating the neural network as a probabilistic model and assuming

a GP prior over the activation function of each neuron. Training is performed in a fully Bayesian

setting by optimizing a variational posterior, which we derive in this work. The proposed model

shares some commonalities with deep Gaussian processes but is more economical in terms of

model parameters and considerably more efficient to train.
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1.3 Outline

This thesis is structured as follows.

Chapter 2 is a summarization of necessary mathematical and technical prerequisites that will

be used within this thesis. It contains an introduction to neural networks, Gaussian pro-

cesses, numeric optimization and elements of probability theory, including sampling algo-

rithms and variational inference.

Chapter 3 introduces a family of activation functions that span a smooth and differentiable

continuum between the logarithm, identity and exponential function. Based on the con-

cept of fractional functional iteration, real and complex versions of these families and

their derivatives are derived. Experimental results of applying neural networks using

these activation functions to real and synthetic datasets are presented.

Chapter 4 describes how to efficiently compute expressions for the derivatives of elementwise

defined tensor-valued functions. The development of this method within this thesis was

motivated as a high-performance implementation of the stochastic activation function

that will be presented in chapter 5. However, since it is generally applicable to any tensor-

valued function with applications inside and outside the field of machine learning, we

present it independently.

Chapter 5 introduces the Gaussian process neuron, which is a stochastic neuron that uses a

non-parametric activation function with a Gaussian process prior. The activation function

of each neuron is fully flexible and inferred from the training data. It is discussed how to

build probabilistic graphical models resembling feed-forward networks from these units

and perform inference using Monte-Carlo methods. An auxiliary parameterization of this

model is proposed to enable more efficient training and inference. We describe the route

from the auxiliary parameterization to approximate Bayesian inference using a variational

posterior. For this purpose the applicability of the central limit theorem to activations of

neurons and three different variational approaches are discussed. Preliminary experimen-

tal results on regression and classification datasets as well as performance benchmarks

are shown.

Chapter 6 provides a summary of the path from non-parametric model to efficient inference

and establishes the relation to deep Gaussian processes. It further gives an overview of

possible extensions and applications of the proposed model.



14 CHAPTER 1. INTRODUCTION



Chapter 2

Prerequisites

This chapter is a summary of technical and mathematical concepts required for the original

part of this work. It also serves to establish the notations which will be used. It contains an

introduction to neural networks, Gaussian Processes, numeric optimization and elements of

probability theory, including sampling algorithms and variational inference. It introduces the

subset of concepts necessary for this work and provides references to literature for more detailed

information.

2.1 Tensor Slicing

In this work the need arises to slice tensors along one or more dimension. A star (?) will be

used in place of the index to select all indices of that dimension.

Let us provide a few examples. Given a matrix X ∈ RN×M the notation Xi? ∈ RM denotes

the i-th row of X. Similarly X?j ∈ RN denotes the j-th column of X.

This can also be extended to tensors and the star can be used multiple times. For example,

consider the tensor A ∈ RN1×N2×N3×N4 . Here Ai?j? ∈ RN2×N4 denotes the matrix that is

obtained by fixing the first dimension of A to i and the third dimension to j.

2.2 Probability and Probability Distributions

We will use the notation P(X) = f(X) to denote that the random variable X is distributed

according to the probability density function f . Sometimes we will abbreviate this with the

notation X ∼ f . The notation P(X |Y ) = f(X,Y ) expresses the conditional probability density

of X given Y and may be abbreviated using X |Y ∼ f .

We will use the notation EP (X)[g(X)] =
∫
P (X) g(X) dX to denote the expectation value

15
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of g over P(X). The variance of g(X) under distribution P will be written as VarP(X)(g(X)) =

EP (X)[g(X)2]− EP (X)[g(X)]2.

Consider three sets of random variables A, B and C. We say that set A is conditionally

independent of B given C, if it holds that P(A |B,C) = P(A |C) for all values of A, B and C.

Conditional independence can be written using the notation

A ⊥⊥ B |C .

If A is conditionally independent of B given no other variables, i.e. P(A |B) = P(A), we write

A ⊥⊥ B | ∅ .

Note that this does not imply that A is still conditionally independent of B if another variable,

for example C, becomes observed.

Checking for conditional independence can be done by writing out the joint distribution of

A and B given C and checking that it factorizes,

P(A,B |C) = P(A |C) P(B |C) .

However, this method quickly becomes cumbersome when more random variables are involved

and the structure of the joint distribution is more complicated. A systematic method for check-

ing for conditional independence using probabilistic graphical models will be discussed in

section 2.2.10.

2.2.1 Average

Given a matrix X ∈ RN×M the notation

〈X〉nm ,
1

N

1

M

N∑
n=1

M∑
m=1

Xnm (2.1)

will be used to denote the average over the indices specified in the subscript. Furthermore the

notation

〈X〉n6=m ,
1

N

1

M − 1

N∑
n=1

M∑
m=1
m 6=n

Xnm (2.2)

denotes the average over the off-diagonal elements of the matrix.
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2.2.2 Jensen’s Inequality

Jensen’s inequality states that for every convex function ϕ(x) we have

ϕ(E[X]) ≤ E[ϕ(X)] . (2.3)

Consequently, for a concave function ψ(x), for example the logarithm, we have

ψ(E[X]) ≥ E[ψ(X)] . (2.4)

2.2.3 Cross Entropy

The cross entropy between two probability distributions P and Q is defined as

H(P,Q) , EP(X)[− log Q(X)] = −
∫

P(X) log Q(X) dX . (2.5)

It measures the average number of nats (natural unit of information) required to encode an

event from P when a coding scheme optimal for events distributed according to Q is used.

2.2.4 Kullback-Leibler Divergence

The Kullback-Leibler divergence from distribution Q(X) to distribution P(X) is defined as

KL(P ||Q) , EP(X)

[
− log

Q(X)

P(X)

]
= −

∫
P(X) log

Q(X)

P(X)
dX . (2.6)

It can be interpreted as the average additional number of nats necessary to encode a message

X from distribution Q(X) using a code optimal for distribution P(X). The Kullback-Leibler

divergence is not symmetric with regard to swapping P(X) and Q(X). It can be shown that it

is always non-negative, KL(P ||Q) ≥ 0.

2.2.5 Central Limit Theorems

The family of central limit theorems addresses how the distribution of a sum of random variables

behaves in the limit of infinitely many summands. There exist variants of the central limit

theorem for sums of independent and dependent random variables.
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Lindeberg-Lèvy Central Limit Theorem for Independent and Identical Random Variables

This is the simplest and most widely known version of the central limit theorem. We fol-

low (Georgii, 2015) here. Given an infinite sequenceXi, i ∈ {1, 2, . . . }, of independent and iden-

tical distributed (iid.) random variables with mean E[Xi] = µ and finite variance Var(Xi) = σ2.

Then, for the sequence of sample averages

Sn ,
1

n

n∑
i=1

Xi , (2.7)

the following holds
√
n(Sn − µ)

dist−→ N (0, σ2) , (2.8)

where dist−→ means “converges in distribution” (Billingsley, 2013). Thus an infinite sum of iid.

random variables approaches a normal distribution.

Lyapunov Central Limit Theorem for Independent Random Variables

Given an infinite sequence Xi, i ∈ {1, 2, . . . }, of independent random variables each with finite

mean E[Xi] = µi and finite variance Var(Xi) = σ2
i . If for some δ > 0 the condition

lim
n→∞

1

s2+δ
n

n∑
i=1

E
[
|Xi − µi|2+δ

]
= 0 (2.9)

with

s2
n ,

n∑
i=1

σ2
i (2.10)

is satisfied, then for the sequence of partial sums

Sn ,
1

sn

n∑
i=1

(Xi − µi) (2.11)

it holds that Sn
dist−→ N (0, 1) (Fischer, 2010). Thus it is not necessary for the random variables

in a sum to be identically distributed; independence can be enough for the sum to approach a

normal distribution.
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Central Limit Theorem for Weakly Dependent Random Variables

We follow (Lehmann, 2004) here. If X1, . . . , XN are N dependent random variables with

E[Xi] = µ and Var(Xi) = σ2, then

SN ,
√
N

[(
1

N

N∑
n=1

Xn

)
− µ

]
(2.12)

in the limit N →∞ has the distribution

P (S∞) = N
(
S∞

∣∣∣∣ 0, lim
N→∞

τ2
N

)
(2.13)

with

τ2
N = σ2 +

1

N

∑
i 6=j

Cov(Xi, Xj) (2.14)

provided that limN→∞ τ
2
N is finite. Thus for the central limit theorem to apply the variables

must be weakly correlated at most, in the sense that the sum in (2.14) is finite. Since this sum

contains N(N − 1) = O(N2) terms, a way to ensure this is to have Cov(Xi, Xj) 6= 0 for at most

O(N) number of variable pairs (Xi, Xj).

For random variablesX ′1, . . . , X
′
N with inhomogeneous means E[X ′i] = µi but still Var(X ′i) =

σ2, we can set Xi , X ′i − µi and by applying the above theorem on Xi, we obtain that

S′N ,
1√
N

N∑
n=1

Xn (2.15)

in the limit N →∞ has the distribution

P (S′∞) = N
(
S′∞

∣∣∣∣ lim
N→∞

N∑
n=1

µn√
N
, lim
N→∞

τ2
N

)
. (2.16)

2.2.6 Categorical Distribution

The categorical distribution is a probability distribution that describes the possible values of a

discrete random variables that can take one out of C possible values. The notation we use for a

random variable Z ∈ {1, 2, . . . , C} that is categorically distributed with probabilities ρ ∈ [0, 1]C

is

Z ∼ Cat(ρ) . (2.17)
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This requires that
∑

i ρi = 1. The corresponding probability mass function is

P(Z |ρ) = Cat(Z |ρ) =
∏
i

ρ
[Z=i]
i (2.18)

where [a = b] is the Iverson bracket (Iverson, 1962), defined by

[a = b] ,

1 if a = b

0 otherwise
. (2.19)

2.2.7 Exponential Family Distributions

An exponential family distribution is a probability distribution that has a density function of

the form

Pθ(X) = h(X) exp(η(θ) · T (X)−A(θ)) (2.20)

or equivalently

Pθ(X) = exp[η(θ) · T (X)−A(θ) +B(X)] (2.21)

which is sometimes called canonical form. Here h(X), η(θ), T (X), A(θ) and B(X) are known

functions and η(θ) · T (X) =
∑

i ηi(θ)Ti(X) denotes the scalar product. The vector θ is called

the parameter vector of the distribution. The function A(θ) is called the log-partition function

and is automatically determined once the other functions are specified. It is given by the

logarithm of the normalization factor, which must be chosen so that the resulting density is

properly normalized.

2.2.8 Univariate Normal Distribution

The normal distribution is parameterized by the mean µ and the variance σ2 > 0. The notation

we use for a random variable X that is normally distributed is

X ∼ N (µ, σ2) .

The corresponding probability density function (PDF) is

P(X |µ, σ2) =
1√

2πσ2
exp

(
−(X − µ)2

2σ2

)
(2.22)

and thus it is an exponential family distribution.
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Product of Univariate Normal PDFs

As described by Bromiley (2003) the product of two Gaussian PDFs in the same random variable

is a scaled Gaussian PDF. Given two normal PDFs

f1(X) = N (X |µ1, σ
2
1)

f2(X) = N (X |µ2, σ
2
2)

we can verify using basic arithmetic that

g(X) , f1(X) f2(X) = SgN (X |µg, σ2
g) (2.23)

with the following parameters

1

σ2
g

=
1

σ2
1

+
1

σ2
2

(2.24a)

µg =

(
µ1

σ2
1

+
µ2

σ2
2

)
σ2
g (2.24b)

Sg =

(
2π
σ2

1σ
2
2

σ2
g

)− 1
2

exp

(
−(µ1 − µ2)2

σ2
1σ

2
2

σ2
g

2

)
. (2.24c)

By induction these formulas can be generalized to the product of an arbitrary number of normal

PDFs. For the case of N PDFs with fi(X) , N (X |µi, σ2
i ), i ∈ {1, . . . , N}, the function

h(X) ,
N∏
i=1

fi(X) = ShN (X |µh, σ2
h) (2.25)

has the following parameters

1

σ2
h

=
N∑
i=1

1

σ2
i

(2.26a)

µh = σ2
h

N∑
i=1

µi
σ2
i

(2.26b)

Sh = (2π)−
N−1

2

√
σ2
h∏N

i=1 σ
2
i

exp

[
−1

2

(
N∑
i=1

µ2
i

σ2
i

− µ2
h

σ2
h

)]
. (2.26c)
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2.2.9 Multivariate Normal Distribution

The d-dimensional normal distribution is parameterized by the mean vector µ ∈ Rd and the

covariance matrix Σ ∈ Rd×d where Σ must be positive-definite. We write

X ∼ N (µ,Σ)

The PDF of the multivariate normal distribution is given by

P(X |µ,Σ) = (2π)−d/2 |Σ|−1/2 exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
. (2.27)

or as

P(X |µ,Σ) = exp

(
ζ(µ,Σ) + µTΣ−1X − 1

2
XTΣ−1X

)
(2.28)

with the log-partition function

ζ(µ,Σ) = −1

2
(d log 2π + log |Σ|+ µTΣ−1µ) .

The multivariate normal distribution is a member of the exponential family distributions and

can be written in the form of eq. (2.21) using

η(θ) =

(
Σ−1µ

−1/2 vec(Σ−1)

)
(2.29a)

T (X) =

(
x

vec(XXT )

)
(2.29b)

A(θ) =
1

2
µTΣ−1µ+

d

2
log 2π +

1

2
log |Σ| (2.29c)

B(x) = 0 . (2.29d)

Here we have used the vectorization operator vec(A) that transforms a matrix into a vector

by concatenating its rows. Given A ∈ RN×M applying a = vec(A) results in a ∈ RNM with

anM+m = An,m.

Marginal Normal Distribution

Given a normally distributed random vector X ∈ Rd with X ∼ N (µ,Σ), the random vector

X′ ∈ Rd−1 defined by removing element r from X,

X′ , (X1, . . . , Xr−1, Xr+1, . . . , Xd)
T , (2.30)
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is normally distributed X′ ∼ N (µ′,Σ′) with

µ′ = (µ1, . . . , µr−1, µr+1, . . . , µd)
T , (2.31a)

Σ′ =



Σ1,1 · · · Σ1,r−1 Σ1,r+1 · · · Σ1,d

...
. . .

...
...

. . .
...

Σr−1,1 · · · Σr−1,r−1 Σr−1,r+1 · · · Σr−1,d

Σr+1,1 · · · Σr+1,r−1 Σr+1,r+1 · · · Σr+1,d

...
. . .

...
...

. . .
...

Σd,1 · · · Σd,r−1 Σd,r+1 · · · Σd,d


. (2.31b)

Thus the marginal distribution

P(X′) =

∫
P(X) dXr

is obtained by removing all entries from the mean vector and covariance matrix that correspond

to the dimension that is marginalized out. The multivariate normal distribution is closed under

marginalization and the process can be iterated to marginalize out more than one dimension.

Conditional Normal Distribution

Let the random block vector

X ,

[
X1

X2

]
(2.32)

be normally distributed, X ∼ N (µ,Σ), with mean and variance given by the block matrices

µ ,

[
µ1

µ2

]
, Σ ,

[
Σ11 Σ12

Σ21 Σ22

]
. (2.33)

Then the conditional is normally distributed, X1 |X2 ∼ N (µ1,Σ1), with

µ1 = µ1 + Σ12 Σ−1
22 (X2 − µ2) , (2.34a)

Σ1 = Σ11 − Σ12 Σ−1
22 Σ21 . (2.34b)

Note that the conditional covariance Σ1 does not depend on the observed values. The multi-

variate normal distributed is closed under conditioning on a subset of its variables.
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KL-divergence between Two Normal Distributions

The Kullback-Leibler divergence (2.6) can be evaluated explicitly for two multivariate normal

distributions. Let P(X) , N (X |µp,Σp) and Q(X) , N (X |µq,Σq) be two distribution over

X ∈ Rd. Then the Kullback-Leibler divergence from Q(X) to P(X) is

KL(P ||Q) =
1

2

(
tr(Σ−1

q Σp) + (µq − µp)T Σ−1
q (µq − µp)− d+ log

|Σq|
|Σp|

)
, (2.35)

where |•| denotes the determinant of a matrix and tr • is its trace.

Affine Transformation

Given an affine function Y : Rd → Rb with

Y (X) , c+BX

where c ∈ Rb and B ∈ Rb×d, the distribution of Y is also multivariate normal with

Y ∼ N (c+Bµ, BΣBT ) . (2.36)

Thus the multivariate normal distribution is closed under affine transformations. Furthermore,

the standard normal distribution N (0,1) can be transformed into a normal distribution of any

mean and covariance by means of an affine transformation of the random variable.

Product of Multivariate Normal PDFs

The product of multiple multivariate normal PDFs in the same random variable is a scaled

multivariate normal PDFs. Given N multivariate normal PDF,

fi(X) = N (X |µi,Σi)

in d-dimensional space, their product

h(X) ,
N∏
i=1

fi(X) = ShN (X |µh,Σh) (2.37)
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has the following parameters

Σ−1
h =

N∑
i=1

Σ−1
i (2.38a)

µh = Σh

N∑
i=1

(Σi)
−1µi (2.38b)

Sh = exp

[
1

2

(
(1−N)d log 2π + log |Σh| −

N∑
i=1

log |Σi|+ µThΣ−1
h µh −

N∑
i=1

µTi Σ−1
i µi

)]
(2.38c)

as can be seen by writing the PDFs in form (2.28) and summing the terms inside the exponential

function. A detailed derivation is presented in (Bromiley, 2003).

2.2.10 Probabilistic Graphical Models

Probabilistic graphical models (Lauritzen, 1996) define a factorization of a probability distri-

bution using a directed, acyclic graph. For example, the factorization of the joint distribution

P(X1, X2, X3, X4, X5, X6, X7) into

P(X1, X2, X3, X4, X5, X6, X7) = P(X1) P(X2) P(X3)P (X4 |X1, X2, X3) P(X5 |X1, X3) ·
P(X6 |X4) P(X7 |X4, X5) (2.39)

corresponds to the probabilistic graphical model shown in fig. 2.1a. Distributions for the factors

P(X1), P(X2), P(X3), P (X4 |X1, X2, X3), P(X5 |X1, X3), P(X6 |X4) and P(X7 |X4, X5) must

be specified separately.

In general the joint distribution of a graphical model over random variables X is specified

by

P(X) =
∏
k

P(Xk | parents(Xk)) (2.40)

where parents(Xk) denotes the set of parents of node Xk in the directed, acyclic graph repre-

senting the graphical model. Each random variable can be either discrete or continuous. In

graphical models conditional distributions are directly available when all parents of a particular

node are observed. To obtain marginal distributions for a node in the graph, all its ancestors

have to be marginalized out.

Probabilistic graphical models offer a method to directly check for conditional independence

in the corresponding directed, acyclic graph without having to write down the joint distribution

represented by the graph. To check whether A ⊥⊥ B |C, where A, B and C are non-intersecting
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x1

x2 x3

x4 x5

x6 x7

(a)

f

e b

a

c

(b)

f

e b

a

c

(c)

Figure 2.1: Examples for probabilistic graphical models from (Bishop, 2006). Observed vari-
ables are shown as filled nodes. (a) This corresponds to the factorization of the probability
distribution in eq. (2.39). (b) Example for no d-separation between a and b by c. The path from
a to b is not blocked by f because the arrows meet tail-to-tail and f is not observed. The path
is neither blocked by e because the arrows meet head-to-head and its descendant c is observed.
Thus a ⊥⊥ b | c does not follow from this graphical model. (c) Example for d-separation between
a and b by f . The path from a to b is blocked by f because the arrows meet tail-to-tail and f is
observed. Thus this graphical model implies a ⊥⊥ b | f .

sets of random variables, holds in a graphical model perform the following routine. Consider all

possible path from any node in set A to any node in set B. Any such path is said to be blocked

if it includes a node such that

• the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the meeting

node is in the observed set C, or

• the arrows meet head-to-head at the node, and neither the meeting node, nor any of its

descendants, are in the observed set C. A descendant is any node that can be reached by

following the arrows in tail-to-head direction.

If all paths between A and B are blocked, then A is said to be d-separated from B by C and

it holds that A ⊥⊥ B |C. A proof is given in (Lauritzen, 1996). Two examples are shown in

fig. 2.1b and fig. 2.1c.

2.2.11 The Unscented Transform

The unscented transform (Julier et al., 1996, 1997) is a method for calculating the statistics

of a random variable that undergoes a transformation by a non-linear function. It works by

approximating a multivariate normal distribution by a finite and deterministic set of points that

are called sigma points and have the same mean and covariance as the distribution. The sigma

points are then propagated through the non-linear function and used to estimate the moments

of the transformed distribution. No Taylor expansion of the non-linear function is necessary.
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Let X ∈ Rd be a d-dimensional random variable with distribution

X ∼ N (µX ,ΣX)

and let f : Rd → Rc be an arbitrary function. The distribution of the random variable Y ∈ Rc

is determined by Y = f(X). Consider the 2d+ 1 sigma points X? and the associated weights

W?, which are given by

X0 , µX , W0 ,
κ

d+ κ
, (2.41a)

Xi , µ
X + Si? , Wi ,

1

2 (d+ κ)
, i ∈ {1, . . . , d} , (2.41b)

Xi+d , µ
X − Si? , Wi+d ,

1

2 (d+ κ)
, i ∈ {1, . . . , d} , (2.41c)

where

S ,
√

(d+ κ)ΣX (2.42)

denotes the matrix square root of the scaled covariance matrix; it can be calculated using an

eigendecomposition of ΣX . The parameter κ ∈ R controls the spread of the sigma points and

can be chosen freely; a standard heuristic is to set κ = 3− d. It can easily be verified that the

weighted average of the sigma points equals the mean,

µX =
2d∑
i=0

WiXi , (2.43)

and the weighted outer product equals the covariance,

ΣX =
2d∑
i=0

Wi (Xi − µX) (Xi − µX)T . (2.44)

Thus the sigma points can be taught of as samples from the distribution of x that capture its

mean and covariance exactly, i.e. the clever choice of points eliminates the statistical variance

that is usually induced by having a limited number of samples.

The mean and covariance of Y are obtained by transforming the sigma points though f

and calculating the above statistics using f(Xi). Thus the mean of y is given by the weighted

average of the transformed points,

µY =

2d∑
i=0

Wi f(Xi) , (2.45)
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and the covariance of y is given by the weighted outer product,

ΣY =
2d∑
i=0

Wi (f(Xi)− µY ) (f(Xi)− µY )T . (2.46)

It can be shown that the estimates provided by the unscented transform are significantly better

than when linearizing f(X) around the mean of the distribution and using the affine transfor-

mation property of the normal distribution to calculate the transformed statistics.

Alternatively the Cholesky decomposition, see below, can be used instead of the matrix

square root in (2.42). To do so we set

S , chol[(d+ κ)ΣX ] (2.47)

and notice that eqs. (2.43) and (2.44) still hold for the sigma points obtained by doing so; thus

they exactly capture the mean and covariance of the distribution as before. The mean and covari-

ance of the transformed distribution are calculated as above using eqs. (2.45) and (2.46). Using

the Cholesky decomposition has the advantage that its derivative is available, see eq. (2.48),

and thus µy and Σy can be differentiated w.r.t. parameters occurring in f by application of the

chain rule.

Cholesky Decomposition

The Cholesky decomposition of a symmetric, positive-definite matrix A ∈ Rd×d is the lower

triangular matrix chol(A) ∈ Rd×d, such that

A = chol(A) chol(A)T .

It can be shown that the Cholesky decomposition is unique and the elements on the diagonal

of chol(A) are positive, chol(A)ii ≥ 0. The Cholesky decomposition can be computed using a

modified form of the Gaussian elimination algorithm (Press et al., 1992).

Following (Murray, 2016) the Jacobian of the Cholesky decomposition is given by

∂Lij
∂Akl

=

 d∑
m=j+1

Lim L
−1
mk +

1

2
Lij L

−1
jk

L−1
jl + (1− δkl)

 d∑
m=j+1

Lim L
−1
ml +

1

2
Lij L

−1
jl

L−1
jk

(2.48)
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with L , chol(A) and δkl is the Kronecker delta with

δkl ,

{
1 if k = l

0 otherwise
. (2.49)

However, it is more efficient to adapt the Cholesky decomposition algorithm for numerical

computation of the derivative using automatic differentiation as described in (S. P. Smith,

1995) than to employ the above formula.

2.2.12 Variational Inference

Consider a model that consists of two sets of random variables, X = {X1, . . . , Xn} and Z =

{Z1, . . . , ZN}. Furthermore the joint distribution of these variables,

P(X,Z) = P(X |Z) P(Z) , (2.50)

is specified. The random variables Z can be thought of as latent variables with a prior distri-

bution P(Z). The variables X belong to the part of the model that can be observed. Their

distribution P(X) could be obtained by marginalizing out Z in (2.50), which is, however,

intractable in many cases.

Given observed values for X we want to perform Bayesian inference of the latent variables,

i.e. calculate the posterior distribution

P(Z |X) =
P(X |Z) P(Z)

P(X)
, (2.51)

which is intractable due the occurrence of P(X). The technique of variational inference (Bishop,

2006; Fox et al., 2012) finds an approximative distribution Q(Z) ≈ P(Z |X) for the posterior

instead. Variational inference uses the KL-divergence to measure how closely Q(Z) resembles

P(Z), thus the best approximative distribution Q∗(Z) is given by

Q∗(Z) = arg min
Q

KL
(
Q(Z) ||P(Z |X)

)
.
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Expanding the KL-divergence and rewriting the posterior gives

KL
(
Q(Z) ||P(Z |X)

)
=

∫
Q(Z) log

Q(Z)

P(Z |X)
dZ

=

∫
Q(Z) log

Q(Z) P(X)

P(X,Z)
dZ

=

∫
Q(Z) log

Q(Z)

P(X,Z)
dZ + log P(X) .

Reordering gives

log P(X) = L(Q) + KL
(
Q(Z) ||P(Z |X)

)
(2.52)

where

L(Q) ,
∫

Q(Z) log
P(X,Z)

Q(Z)
dZ (2.53)

is called the evidence lower bound (ELBO). Since log P(X) is constant with respect to Q(Z)

and a KL-divergence is non-negative, the KL-divergence KL
(
Q(Z) ||P(Z |X)

)
is minimized by

maximizing L(Q). Furthermore, this implies

log P(X) ≥ L(Q)

and thus we obtain a lower bound for the log model evidence by maximizing L(Q). Maximizing

L(Q) is a much easier task, because usually the joint distribution P(X,Z) is available and

tractable while the posterior is not. There are a variety of methods to perform the maximization

of L(Q). We will briefly describe two of them.

Mean-field Approach

The mean-field approach factors Q(Z) into independent partitions of random variables Z1, Z2,

. . . , ZM , so that

Q(Z) =
M∏
p=1

Qp(Zp) . (2.54)

It can be shown that L(Q) is maximized by iteratively setting

Qj(Zj) =
exp
(
Ei 6=j [log P(X,Z)]

)∫
exp
(
Ei 6=j [log P(X,Z)]

)
dZj

(2.55)
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until convergence, where the occurring expectation is defined as

Ei 6=j [log P(X,Z)] ,
∫

log P(X,Z)

M∏
i=1
i 6=j

Qp(Zp) dZp .

In this approach the only aspect that must be specified by the user is the factorization of

Q(Z) in (2.54). The functional forms of the distribution factors Qp(Zp) follow automatically

from (2.55). However, care must be taken to choose the factorization so that the occurring

expectations remain analytically tractable, which can be challenging in practice.

Parameterized Approximative Distribution

Another approach is to choose a parameterized distribution for Qθ(Z) and perform the max-

imization of L(Qθ) numerically. For that purpose the derivatives ∂Qθ/∂θ are calculated and

a gradient-based method is used optimize θ step by step. The advantage of this approach is

that it works even for problems where the expectations in (2.55) are intractable. However, it

is prone to getting stuck in local minima and an unsuitable choice of the functional form of

Qθ(Z) will result in a poor approximation. Nevertheless, this approach has seen widespread

adoption lately in the context of variational autoencoders (D. P. Kingma et al., 2013). In that

instance Qθ(Z) was modeled as a neural network.

2.2.13 Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) sampling is a class of methods for obtaining samples from

probability distributions when the PDF is not available or prohibitively expensive to compute.

All MCMC methods have in common that a Markov chain is formed to obtain samples from the

distribution. These methods differ in the speed of convergence of the aforementioned Markov

chain and the requirements on the availability of PDFs of distributions related to the distribution

to be approximated.

Metropolis-Hastings Sampling

The Metropolis-Hastings algorithm (Metropolis et al., 1953) only requires a function that is

proportional to the PDF of the target distribution and thus it can be used to sample from

unnormalized probability densities. Let X = (X1, X2, . . . , XD) ∈ RD be a vector of random

variables with density function P(X) ∝ f(X). Furthermore let Q(X∗ |X) be a distribution

over X∗ = (X∗1 , X
∗
2 , . . . , X

∗
D) ∈ RD that can be efficiently sampled from. A Markov chain X(s),
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Algorithm 1: Metropolis-Hastings sampling
Input: unnormalized density f(X) ∝ P(X); proposal distribution Q(X∗ |X)
Output: Markov chain X(s), s ∈ {0, 1, 2, . . . }, with stationary distribution P (X)

1 X(0) ←− random state // start from random initial state
2 s←− 1
3 while true do
4 Sample X∗ ∼ Q(X∗ |X(s−1)) // obtain proposal state

5 ρ←− min

(
1,

f(X∗)

f(X(s−1))

Q(X(s−1) |X∗)
Q(X∗ |X(s−1))

)
// calculate acceptance prob.

6 Sample a ∼
{

true with probability ρ
false with probability 1− ρ

// accept or reject proposal

7 if a then
8 X(s) ←−X∗
9 s←− s+ 1

s ∈ {0, 1, 2, . . . }, that has stationary distribution P(X) can then be obtained by algorithm 1. It

works by proposing state changes X∗ and accepting them with a probability ρ that is chosen

so that the resulting Markov chain will converge to P(X). Since ρ is calculated from ratios of

probability densities only, the algorithm can accept an unnormalized PDF.

It is necessary to run the Markov chain for a number of iterations before samples from it are

distributed according to the stationary distribution P(X). The necessary number of iterations

for that purpose is referred to as the burn-in period Sburnin. Also, nearby samples from the

Markov chain will not be independent samples from P(X) but have autocorrelation. If this is

not desired, the Markov chain must be run for Scor intermediate steps between taking samples,

where Scor should be of the order of the autocorrelation time of the Markov process.

The rate with which we can obtain uncorrelated samples from the Metropolis-Hastings

algorithm depends mainly on the choice of the proposal distribution Q(X∗ |X). If proposed

values are too dissimilar from the current state, then the acceptance probability will be low,

resulting in many trails before a new state is accepted and thus sample generation will be

slow. This problem is intensified in high-dimensional spaces, since with increasing number of

variables it becomes less likely that a sample from a proposal distribution moves the Markov

chain into a region of higher probability. Thus, in high-dimensional spaces commonly a proposal

distribution is used that only changes the state in a single dimension by a small values. This

leads to an acceptable acceptance probability, but the autocorrelation between adjacent states of

the Markov chain will be high, making it necessary to run it for a large number of intermediate

steps between consuming samples to ensure that they are uncorrelated.
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Algorithm 2: Gibbs sampling
Input: conditional distributions P(Xp |X1, . . . ,Xp−1,Xp+1, . . . ,XP ), p ∈ {1, 2, . . . P},

that can be sampled from
Output: Markov chain X(s), s ∈ {0, 1, 2, . . . }, with stationary distribution

P (X1, . . . ,XP )

1 X(0) ←− random state // start from random initial state
2 for s ∈ {1, 2, . . . } do
3 for p ∈ {1, 2, . . . , P} do
4 X

(s)
p ←− sample from P(X

(s)
p |X(s)

1 , . . . ,X
(s)
p−1,X

(s−1)
p+1 , . . . ,X

(s−1)
P )

Gibbs Sampling

Gibbs Sampling (Casella et al., 1992) requires that conditional sampling of partitions of the

random variables is efficiently possible. For example, if sampling from the target distribu-

tion P(X1, X2, X3) is not directly possible, but sampling from the conditionals P(X1 |X2, X3),

P(X2 |X1, X3) and P(X3 |X1, X2) is possible, then Gibbs Sampling can be applied to obtain

samples from that target distribution.

Let the random variables X be split into P partitions, each denoted by Xp. Further assume

that sampling from the conditionals

P(Xp |X1, . . . ,Xp−1,Xp+1, . . . ,XP ) , p ∈ {1, 2, . . . P} , (2.56)

is possible. Then algorithm 2 generate a Markov chain with stationary distribution P (X1,

. . . ,XP ). Provided that all conditional distribution in (2.56) have non-zero probabilities, this

Markov chain is ergodic and will thus eventually converge to the target distribution.

Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) algorithm (Duane et al., 1987) is a variant of the

Metropolis-Hastings sampling algorithm that employs a proposal distribution tailored to the

distribution to sample from and thus obtains a high acceptance rate in high-dimensional state

spaces while still proposing samples that are mostly uncorrelated. It is inspired by the Hamilto-

nian function (Arnol’d, 2013), which measures the total energy of a physical system, consisting

of kinetic and potential energy. By the laws of physics, energy is conserved in a closed system

and thus the value of the Hamiltonian function is constant. This idea is translated into a sam-

pling algorithm by treating the unnormalized PDF as potential energy and introducing auxiliary

variables that represent impulses and thus contribute the kinetic energy. Movement is then
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simulated using the Hamiltonian’s differential equations and samples from P(X) are proposed

using snapshots of this system.

For each variable Xi of the distribution P(X) HMC introduces an auxiliary variable ρi.

These variables are referred to as impulses. The joint distribution P(X,ρ) is given by

P(X,ρ) =
1

Z
exp

(
−H(X,ρ)

T

)
(2.57)

where

H(X,ρ) , U(X) +K(ρ) (2.58)

is the so-called Hamiltonian, T > 0 is the temperature of the system and Z is the partition

function, so that the joint probability is properly normalized. K(ρ) is called the kinetic energy

of the system and is given by

K(ρ) ,
1

2
ρTdiag(m)−1ρ (2.59)

where mi > 0 is called the mass of variable Xi. The so-called potential energy U(X) is deter-

mined up to a constant by the distribution we wish to sample from,

U(X) , − log P(X) + const (2.60)

and thus an unnormalized density P(X) can be used.

HMC uses Gibbs sampling to alternatively sample the state X and impulse ρ from P(X,ρ).

Since X and ρ are independent random variables under (2.57), we have

P(ρ |X) = P(ρ) = N (ρ |0, diag(m))

and can easily sample ρ. However, we cannot sample from P(X |ρ) = P(X) directly, thus

here HMC uses the Metropolis-Hastings sampling method (algorithm 1) to sample from that

conditional. The employed proposal distribution Q is deterministic. The proposal state {X∗,ρ∗},
where ρ∗ stands for the proposed impulse, is computed as follows: Start at the state X(t =

0) ,X and ρ(t = 0) , ρ and evaluate it according to Hamilton’s differential equations

dXd

dt
=
∂H

∂ρd
,

dρd
dt

= − ∂H

∂Xd
, d ∈ {1, 2, . . . , D} (2.61)

for a fixed period of time T . This can be done by either finding an analytic solution of these

differential equations or using a numerical simulation method. The proposed state is given

by X∗ , X(t = T ) and ρ∗ , −ρ(t = T ). Consequently, the Metropolis-Hasting acceptance
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probability in line 5 of algorithm 1 calculates to

ρ = min[1, exp(−H(X∗,ρ∗) +H(X,ρ))] . (2.62)

Note that the quotient of the probability of the proposed step and the reverse step Q(X(s−1) |X∗)
/Q(X∗ |X(s−1)) cancels out, since the proposal state is given deterministically by the Hamilto-

nian dynamics and the reverse step would also occur with probability one due to negating the

impulse in the final state ρ∗.

By calculating the temporal derivative of the Hamiltonian and applying the dynamics (2.61)

we get
dH

dt
=

D∑
d=1

(
∂H

∂Xd

dXd

dt
+
∂H

∂ρd

dρd
dt

)
=

D∑
d=1

(
∂H

∂Xd

∂H

∂ρd
− ∂H

∂ρd

dH

dXd

)
= 0 ,

and thus we see that the Hamiltonian is conserved when following Hamilton’s differential

equations. Hence, if the dynamics are simulated perfectly the acceptance probability (2.62)

becomes one. However, in practice we will seldom be able to find an analytic solution for

eq. (2.61) and will thus have to revert to numerical simulation. The accuracy will be limited

by the necessity to discretize the differential equations and compute the states at fixed time

steps. Since each time step depends on the step before, errors accumulate over time and the

invariance of the Hamiltonian will only be preserved approximately.

In general any numerical integration method can be used to simulate the system dynamics

eq. (2.61). One simple, yet numerically stable, method is the leapfrog method (Griebel et al.,

2003). The leapfrog method works by evaluating the state variables X at discretized times that

are integer multiples of a step size ε, while the impulse variables ρ are evaluated at times that

are shifted by half the step size. Thus X(t) is evaluated for t ∈ {0, ε, 2ε, 3ε, . . . } and ρ(t) is

evaluated for t ∈ {0.5ε, 1.5ε, 2.5ε, 3.5ε, . . . }. The full method is described in algorithm 3.

It can be shown (Neal et al., 2011) that the interleaved calculation of state and impulse

ensures that H(X,ρ) is preserved exactly, despite the finite discretization of time, because each

update step is a volume-preserving shear transformation. Therefore, using the leapfrog method

within HMC ensures that the acceptance probability (2.62) is nearly one.

2.3 Optimization

Mathematical optimization (Lange, 2013) deals with finding minimum or maximum values of

a function. Functions to be minimized are often called “cost” or “loss” functions. Given a loss

function L : Rd → R we are usually concerned with the problem of finding optimal parameters
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Algorithm 3: HMC state proposal using leapfrog integration

Input: current state X(0) ,X and current impulse ρ(0) , ρ; potential energy U(X)
Output: proposal state X∗ ,X(T ) and proposal impulse ρ∗ , ρ(T )
Parameters: step size ε; run time T ; masses m

1 ∀i : ρi(ε/2)←− ρi −
ε

2

∂U

∂Xi
// initial half-step for impulses

2 for t ∈ {1ε, 2ε, . . . , T} do

3 ∀i : Xi(t)←− Xi(t− ε) + ε
ρi(t− ε/2)

mi
// full-step for states

4 ∀i : ρi(t+ ε/2)←− ρi(t− ε/2)− ε ∂U

∂Xi

∣∣∣∣
X=X(t)

// full-step for impulses

5 ∀i : ρi(T )←− ρi(T − ε/2)− ε

2

∂U

∂Xi

∣∣∣∣
X=X(T )

// final half-step for impulses

θ∗ ∈ Rd determined by

θ∗ = arg min
θ

L (θ) . (2.63)

When dealing with neural networks, GPs and related models the loss function is usually non-

convex, so an infinite number of local minima can exist and finding the global minimum is

usually infeasible due to the high dimensionality of the parameter vector θ. However, in these

applications L is differentiable at least almost everywhere, thus iterative optimization methods

based on local first and second order derivative information are a good choice here.

In machine learning the structure of the loss function is often a sum of losses over individual

training samples,

L (θ) =
1

T

T∑
t=1

Lt(θ) , (2.64)

where t is the sample index and T is the number of training samples.

2.3.1 Gradient Descent

Gradient descent uses the gradient of the loss function w.r.t. θ to perform incremental steps

towards a local minimum. It uses the fact that the gradient of a function points to the direction

of its steepest ascent. The parameters θ0 are initialized randomly. In each step s we set

θs+1 ←− θs − η∇L (θs) (2.65)

where ∇L denotes the gradient of L w.r.t. θ and η > 0 is called the step rate. It determines

the size of each step and a good choice is crucial for the success of this method. If η is too large,
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the algorithm becomes unstable and the sequence of θ diverges. If η is too small, the method

takes more time than necessary and is more prone to getting stuck in small local minimal. Many

heuristics for automatic adaption and scheduling of η exist.

Assuming that L is a convex function and Lipschitz continuous with constant K > 0, i.e.

∣∣∇L (θ)−∇L (θ′)
∣∣ ≤ K ∣∣θ − θ′∣∣ (2.66)

for any θ and θ′, then gradient descent with fixed step size η ≤ 1/K satisfies

|L (θs)−L (θ∗)| ≤
∣∣θ0 − θ∗

∣∣2
2 η s

, (2.67)

meaning that gradient descent converges for convex functions with a rate of O(1/ηs) (Boyd

et al., 2004).

This form of gradient descent is also called batch training, because the loss is taken over all

training samples, i.e. the whole batch of training samples is consulted to perform an update of

the parameters.

2.3.2 Stochastic Gradient Descent

Stochastic gradient descent (Y. A. LeCun et al., 2012) exploits the structure (2.64) of the loss

functions and works as follows. Start with epoch r set to zero, r ←− 0. Shuffle the training set

and then iterate over the training set performing the following update step iteratively,

θrT+t+1 ←− θrT+t − η

T
∇Lt(θrT+t) . (2.68)

Increase epoch counter r, reshuffle the training set and repeat until convergence.

Thus in contrast to batch learning this method performs an update of the parameters after

each training sample. A compromise between these two extremes is mini-batch training. This

method partitions the training set into random, disjoint subsets called mini-batches of size M .

Training is performed by iterating over the mini-batch index b ∈ {1, . . . , B} using the update

rule

θrB+b+1 ←− θrB+b − η

T

Mb+M−1∑
t=Mb

∇Lt(θrB+b) (2.69)

where B , T/M is the number of mini-batches. After the iteration over all mini-batches b is

completed, the repetition counter r is increment and the process restarted.

Mini-batch training has two advantages over batch training. One, it is computationally

more efficient, because often a subset of the training set is sufficient to calculate a good enough
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gradient. Two, it leads to better optima since the randomness of the mini-batches adds a small

amount of noise to the gradient signal, which can help escape local minima. However it is also

more prone to instabilities as fewer training samples enter the gradient estimate; thus η must

be reduced appropriately.

2.3.3 Momentum

The momentum technique (Rumelhart, G. E. Hinton, et al., 1988) mimics the physical behavior

of a particle moving on the surface of the loss function. In this physical model the acceleration

of the particle is determined by the gradient of the loss function and its position is updated

according to its velocity. In the case of batch learning this leads to the following update rules

for velocities θ̇ and parameters θ from step s to step s+ 1,

θ̇
s+1 ←− αθ̇s − η∇L (θs) , (2.70a)

θs+1 ←− θs + θ̇
s+1

, (2.70b)

where 0 ≤ α < 1 is the momentum factor. Momentum can also be applied to mini-batch

learning by adapting the update rules in the same way.

2.3.4 Optimization Methods for Neural Networks

In multi-layer neural networks the gradient w.r.t. to the weights of the lower layers can get

very small due to iterated application of the logistic function, leading to very small update

steps on these weights. A method to avoid this is to just use the sign (positive or negative) of

each gradient element to decide whether to increase or decrease the corresponding parameter.

An optimization method based on this concept for batch learning is resilient backpropagation

(Rprop) by Riedmiller et al. (1992).

For mini-batch learning Tieleman et al. (2012) proposed the RMSProp (root mean square

propagation) method that averages the signs of the gradient elements from multiple mini-

batches of training data. It works by keeping a running average of the gradient in the auxiliary

variable ψ. The method iterates over the mini-batch index b and uses the following update

equations,

ψrB+b+1 ←− γψrB+b +
1− γ
T

(
Mb+M−1∑
t=Mb

∇Lt(θrB+b)

)2

, (2.71a)

θrB+b+1 ←− θrB+b − η

T

∑Mb+M−1
t=Mb ∇Lt(θrB+b)√

ψrB+b+1
, (2.71b)
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where the square in (2.71a) and the quotient in (2.71b) are to be taken elementwise. It divides

each gradient element by its average magnitude, leading to a sign estimate being used for the

parameter updates. The parameter γ controls the decay rate of the average and a usual setting

is γ = 0.9. RMSProp leads to a significant improvement of the learning speed and results of

deep neural networks.

D. Kingma et al. (2014) combined the ideas of RMSProp and momentum leading to the

development of the Adam (adaptive moment estimation) optimizer. It works in a mini-batch

setting and keeps running averages for both the gradient and second moment of the gradient.

Iterating over the mini-batch index b, Adam uses the following update equations,

θ̇
rB+b+1 ←− α θ̇rB+b

+
1− α
T

Mb+M−1∑
t=Mb

∇Lt(θrB+b) , (2.72a)

ψrB+b+1 ←− γψrB+b +
1− γ
T

(
Mb+M−1∑
t=Mb

∇Lt(θrB+b)

)2

, (2.72b)

θrB+b+1 ←− θrB+b − η θ̇
rB+b+1

/(1− α)√
ψrB+b+1/(1− γ) + ε

, (2.72c)

where the parameter α controls the decay rate of the gradient, γ controls the decay rate of the

second moment of the gradient, η is the step rate and ε is a small number to prevent division

by zero.

2.4 Gaussian Processes

A Gaussian process (Lawrence, 2005; Neal, 1997; O’Hagan et al., 1978; C. K. Williams et al.,

1996, 2006) describes a distribution over scalar-valued functions f(x) with multivariate inputs

x. Consider a matrix X ∈ RN×D of N input values with D dimensions. Any finite number of

function values f(Xi?), i ∈ {1, 2, . . . N}, has a joint multivariate normal distribution, which is

defined by the mean function m : RD → R and covariance function k : RD × RD → R of the

GP. Let f ∈ RN be the vector of function values given by fi , f(Xi?). If the function f follows

a GP,

f(x) ∼ GP(m(x), k(x,x′)) , (2.73)

this means that the function values f are normally distributed,

f ∼ N (m,K(X,X)) , (2.74)
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with mean and covariance determined by the inputs X,

mi , m(Xi?) , (2.75a)

K(X,X)ij , k(Xi?, Xj?) . (2.75b)

This implies that k(x,x′) must by symmetric and positive-definite to be a valid covariance

function.

GPs can be defined with a variety of mean and covariance functions. A common choice is to

use the zero mean function, m(x) = 0, thus regularizing the function magnitude. The squared

exponential (SE) covariance function is given by

kSE(x,x′) = σ2
f exp

(
−|x− x

′|2
2 l2

)
. (2.76)

Since it can be differentiated infinitely many times, GPs using the SE covariance function

produce smooth functions. The parameter l controls the characteristic length-scale of the co-

variance function, which can be understood as the increase in distance that leads to a decrease

in covariance by factor 1/e. Function samples from a GP with SE covariance function using

lengthscale l will have similar values within distance l with high probability.

Another choice is the automatic relevance determination (ARD) covariance function given

by

kARD(x,x′) = σ2
f exp

[
−1

2

D∑
d=1

(
xd − x′d
ld

)2
]
. (2.77)

It is an extension of the SE covariance function and uses a separate lengthscale parameter ld
for each input dimension. This makes it possible to automatically weight the importance of

each input dimension in the prediction and ignore dimensions that are not correlated with the

targets.

The parameter σ2
f common to both covariance functions specifies the variance of the samples

and thus controls the average deviation from the mean function.

2.4.1 Gaussian Process Regression

GPs can be used to perform regression by conditioning the GP on a set of observed function

values. Consider a function f(x) distributed according to (2.73). Given a finite set of obser-

vation points Xi?, i ∈ {1, 2, . . . , N}, with corresponding observed values y = (y1, y2, . . . , yN )T

where yi = f(Xi?) the conditional distribution of the predicted function values f(x∗) at some
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test points x∗ is another GP,

f(x∗) |X,y ∼ GP(m∗(x∗), k∗(x∗,x∗′)) , (2.78)

with predictive mean and covariance functions given by

m∗(x∗) , m(x∗) +K(x∗, X)K(X,X)−1 (y −m) , (2.79a)

k∗(x∗,x∗′) , k(x∗,x∗′)−K(x∗, X)K(X,X)−1K(X,x∗′) , (2.79b)

whereK(x∗, X)i , k(x∗, Xi?),K(X,x∗′) , k(Xi?,x
∗′) andmi , m(Xi?). This follows directly

from the equations for the mean and covariance (2.34) of a conditional, multivariate normal

distribution, since any finite number of points from the GP must be consistent with it.

The above result assumes that the function values were observed exactly and may lead to

suboptimal results because the GP will fit the observations without any tolerance, leading to

overfitting. To avoid this, we can assume that each observation is afflicted with iid. Gaussian

noise, i.e. yi = f(Xi?) + ε with ε ∼ N (0, σ2
n). This corresponds to adding σ2

n to the diagonal of

the covariance matrix K(X,X). Thus, in the case of noisy observations we obtain for the mean

and covariance functions of the predictive GP,

m∗(x∗) , m(x∗) +K(x∗, X) [K(X,X) + σ2
n1]−1 (y −m) , (2.80a)

k∗(x∗,x∗′) , k(x∗,x∗′)−K(x∗, X) [K(X,X) + σ2
n1]−1K(X,x∗′) , (2.80b)

where 1 is the identity matrix.

An example for GP regression in one dimensional space without and with observation noise

is shown in fig. 2.2.

2.4.2 Marginal Likelihood

So far it was assumed that the parameters σf , σn and l are known in advance, for example by

some domain knowledge of the underlying process generating the function. However, in many

regression problems we are just given the observations without additional information. Thus it

becomes necessary to estimate good values for these parameters from the data alone. Since a

GP is a probabilistic model we can calculate the likelihood of the observed data and maximize

it w.r.t. the parameters. The marginal log-likelihood of the observations is calculated using the

PDF of the multivariate normal distribution (2.27) and evaluates to

log P(y |X) = −1

2
yT (K(X,X) + σ2

n1)−1y − 1

2
log
∣∣K(X,X) + σ2

n1
∣∣− D

2
log 2π . (2.81)
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Figure 2.2: Gaussian process regression using the squared exponential covariance function.
Observations are shown as red dots. The black line shows the predictive mean and the grey
lines are samples from the predictive GP. (a) The observations are treated as exact with σn = 0;
thus all GP samples must pass through them. (b) The observations are treated as afflicted with
noise (σn = 1.3); thus the predictive GP does not need to fit them exactly.

It is a measure of how well the GP fits the data. Maximizing it using an iterative optimization

method of our choice (section 2.3) w.r.t. σf , σn and l results in a maximum likelihood estimate

of these parameters.

2.4.3 Derivative Observations and Predictions

Since the derivative is a linear operation, the derivative of a Gaussian process is also a Gaussian

process (Riihimäki et al., 2010; Solak et al., 2003). It can be shown that given two points xi

and xj with values yi = f(xi) and yj = f(xj) respectively, it holds for the covariances of the

derivatives that

Cov

(
∂yi

∂xig
, yj
)

=
∂

∂xig
Cov(yi, yj) , (2.82a)

Cov

(
∂yi

∂xig
,
∂yj

∂xjh

)
=

∂2

∂xig ∂x
j
h

Cov(yi, yj) . (2.82b)

For the SE covariance function these expressions evaluate to

Cov

(
∂yi

∂xig
, yj
)

=
∂kSE

∂xig
= −σ2

f exp

(
−
∣∣xi − xj∣∣2

2 l2

)
xig − xjg
l2

, (2.83a)

Cov

(
∂yi

∂xig
,
∂yj

∂xjh

)
=

∂2kSE

∂xig ∂x
i
h

= σ2
f exp

(
−
∣∣xi − xj∣∣2

2 l2

) (
δgh
l2
−
xig − xjg
l2

xih − x
j
h

l2

)
, (2.83b)
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where δgh is the Kronecker delta function. Thus we can introduce observations of the derivatives

into the training data of the GP. To do so the sets of training points and target values are

extended with the derivative observations and the covariance matrix uses (2.82a) and (2.82b)

for the appropriate entries. The joint vector of targets and target derivatives becomes

ŷ =

[
y

y′

]

where y′ denotes the derivative targets and the covariance matrix K is composed according to

K̂ =

[
Kyy Kyy′

(Kyy′)T Ky′y′

]

with

Kyy
ij = k(xi,xj) , Kyy′

ij =
∂k

∂xjg
(xi,xj) , Ky′y′

ij =
∂2k

∂xig ∂x
j
h

(xi,xj) .

Predictions are then obtained by using eq. (2.79) with y and K replaced by ŷ and K̂ respec-

tively.

We can also calculate the mean and the variance of the derivative for a test point x∗. Since

the mean of the derivative is equal to the derivative of the mean we obtain

E

[
∂f∗

∂x∗d

]
=
∂E[f∗]

∂x∗d
=

(
∂k∗

∂x∗

)T
(K + σ2

nI)−1 y , (2.84)

and for the variance of the derivative we get

Var

(
∂f∗

∂x∗d

)
=
∂2k(x∗,x∗)

∂(x∗d)
2
−
(
∂k∗

∂x∗d

)T
(K + σ2

nI)−1 ∂k
∗

∂x∗d
. (2.85)

A possible application of this technique is to sample random but smooth trajectories (for exam-

ple for robots) with constraints on the positions, velocities and accelerations at the start and

the end of the trajectory.

2.5 Artificial Neural Networks

An artificial neural network (Haykin, 1994) is a mathematical model of a biological neural

network, as it occurs in the brain. An ANN consists of units called neurons that receive inputs

from other neurons, perform a computation on their inputs and output a single value. Neurons

are usually arranged in so-called layers, which are groups of neurons that receive their inputs
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Figure 2.3: A feed-forward neural network consisting of three layers. Each filled circle represents
a neuron xli. The directed connections show the input a neuron receives. With each connection
from neuron xl−1

j to neuron xli there is a weight W l
ij associated.

from the same set of neurons. There are different neural network architectures. The most

basic architecture is the feed-forward, in which one layer is stacked upon another and the data

always flows from one layer to the next. For illustration let us consider the feed-forward neural

network with multidimensional input and scalar output, as shown in fig. 2.3.

Each neuron xli, where l ∈ {1, . . . , L} denotes the layer and i ∈ {1, . . . , Nl} denotes the

index of the neuron within the layer, receives input from the neurons xl−1
j , j ∈ {1, . . . ,M},

of the previous layer. The output of a neuron is given by a weighted sum of its inputs plus a

so-called bias propagated through a non-linear activation function. The weights are stored in a

weights matrix W l ∈ RNl×Nl−1 and the biases are given by a vector b ∈ RNl . The activation of

a neuron is

ali(x
l−1) = bli +

Nl−1∑
j=1

W l
ijx

l−1
j . (2.86)

and its output is given by

xli(x
l−1) = σ(ali) = σ

bli +

Nl−1∑
j=1

W l
ijx

l−1
j

 . (2.87)

The purpose of the activation function σ(t) is to introduce a non-linearity into the neural

network. Otherwise the whole network could be described by one matrix multiplication and its

output would thus be an affine function of its input. A typical choice for the activation function
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σ(t) is the logistic function

σ(t) =
1

1 + e−t
(2.88)

or another sigmoid-shaped function like the hyperbolic tangent σ(t) = tanh(t). This choice

was historically inspired by the thresholding behavior of biological neurons and because the

derivative of the logistic function is inexpensive to compute.

Matrix multiplication can be used to jointly compute the activations of all neurons in one

layer more efficiently, resulting in

al(xl−1) = W l xl−1 + bl (2.89)

and xl(al) = σ(al) where the activation function is applied elementwise implicitly, that is

σi(t) , σ(ti). For convenience, the parameters of a neural network are usually combined into a

parameter vector θ , {W 1, b1, . . . ,WL, bL}. A feed-forward network defines a function f θ(x
0)

depending on its inputs x0 and parameterized by θ, given by

f θ(x
0) = xL(xL−1(· · ·x1(x0) · · · )) . (2.90)

2.5.1 Regression and Classification

Feed-forward networks can be used to approximate an arbitrary function g(z) from a training

set {(zs, ts) : s ∈ {1, . . . , S}} of S samples, consisting of pairs of inputs zs and corresponding

targets ts = g(zs). To make the output of the feed-forward network f θ(z) approximate the

target values t, appropriate values for the parameters θ must be determined. To do so, a loss

function is defined; for regression tasks a usual choice is the average mean-squared error over

the training set,

Lreg(θ) =
1

S

S∑
s=1

(f θ(zs)− ts)2 . (2.91)

For classification problems it is desirable to obtain the predictions in the form of probabilities

that a given input is in a particular class. However, the network outputs cannot be directly

interpreted as class probabilities since they are not normalized. Thus the function softmax :

RC → RC , defined by

softmax(o)i ,
exp oi∑
j exp oj

, (2.92)

is used to translate raw network outputs o into probabilities. It can easily be verified that

0 ≤ softmax(o)i ≤ 1 and
∑

i softmax(o)i = 1; thus the softmax provides valid probabilities for

a categorical distribution as defined in section 2.2.6. We have for the probability that input z
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belongs to class t ∈ {1, 2, . . . , C},

P(t | z) = Cat(t | softmax(f θ(z))) . (2.93)

Since this model gives a probabilistic interpretation of the predictions of the neural network, it

is natural to train it by maximizing the likelihood of the parameters θ. Thus we use the negative

log-likelihood as the loss,

Lclass(θ) = − 1

S

S∑
s=1

log P(ts | zs) = − 1

S

S∑
s=1

log[softmax(f θ(zs))ts ] , (2.94)

where zs is input sample s and ts is the corresponding target class. A one-hot encoding T ∈
{0, 1}S×C encodes the target class ts as a vector of length C with Tsc = 1 if ts = c and Tsc = 0

otherwise. If such a one-hot encoding is used, then the loss can be written as

Lclass(θ) = − 1

S

S∑
s=1

Ts? · log softmax(f θ(zs)) , (2.95)

where the · denotes the scalar product between two vectors.

For both regression and classification the optimal parameters θ∗ are found by minimizing

L (θ), i.e.

θ∗ = arg min
θ

L (θ) . (2.96)

Since this minimization cannot be performed analytically due to the non-linearities induced

by the activation functions, iterative optimization techniques are employed as described in

section 2.3. Historically the gradient was calculated using a technique called backpropagation

(Y. LeCun, B. Boser, et al., 1989) based on iterative applications of the chain rule. Modern

software packages that implement neural networks use a more flexible approach. They interpret

the neural network as a generic function and use reverse mode automatic differentiation, which

is described in detail in section 4.1, to compute all its derivatives. This allows extending the basic

ANN model with additional elements with the only requirement that each function element the

model is composed of must be differentiable at least almost everywhere.

2.5.2 Universal Approximation Theorem

It was shown by Hornik et al. (1989) that feed-forward networks with at least one hidden

layer and a sigmoidal activation function are able to approximate any function arbitrarily well

given a sufficient number of hidden units. However, even though such a network is an universal
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function approximator, there is no guarantee that it can approximate a function efficiently. If

the architecture of the neural network is not a good match for a particular problem, a very

large number of neurons may be required to obtain acceptable results. Increasing the number

of layer can make a feed-forward network more powerful, because upper layers can compose

more complex functions from basic functions learned by neurons in the lower layers (Bengio,

2009).
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Chapter 3

A Continuum between Addition and
Multiplication

Common feed-forward neural networks are widely successful at learning various datasets, but

they struggle to learn certain classes of functions efficiently, which can be attributed to the lack

of multiplicative interactions. Vice versa, networks solely build on multiplicative interactions

excel at certain problems but fail at many problems for which common neural networks work

well. Existing approaches to combine both additive and multiplicative networks either use a

fixed assignment of operations (which may be inspired from domain knowledge) or require

discrete optimization to determine what function a neuron should perform. This leads either

to an inefficient distribution of computational resources or an extensive increase in the com-

putational complexity of the training procedure due to the necessity of empirically evaluating

different assignments of neurons to the additive or multiplicative regime.

In this chapter we introduce a novel, parameterizable activation function based on the

mathematical concept of non-integer functional iteration. Non-integer functional iteration gen-

eralizes the concept of iterated application of a function to non-integer number of iterations; for

example the 1/3-iterate of the exponential function, is the function that needs to be applied iter-

atively 3 times to calculate the exponential. We will show how this concept allows the operation

each neuron performs to be smoothly and, most importantly, differentiablely adjusted between

addition and multiplication. Finally, we show how this enables the decision between addition

and multiplication to be integrated into the standard backpropagation training procedure of a

neural network. Issues regarding numerical precision are discussed and the proposed family of

activation functions is validated on a synthetic polynomial dataset and on the standard MNIST

digit recognition task.

49
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Contributions to this Chapter

The original proposal of this idea and the formulation of the concepts in this chapter were done by me

and originally published in Urban and Smagt (2015). Implementation, benchmarking and experiments

were done by Wiebke Köpp under my guidance leading to publications in Köpp (2015) and Köpp et al.

(2016). The results of these experiments are reproduced here for completeness and explicitly marked as

such.

3.1 Examples for the Utility of Multiplicative Interactions

We have already mentioned in chapter 1 that multiplicative interactions have proven useful

for attention mechanisms in RNNs and for modeling the relations between two images. Here

we present a theoretic argument involving the representability of polynomials and show how

multiplicative interactions can make the task of learning variable pattern shifts efficiently rep-

resentable.

Variable Pattern Shift

As an example for why additive and multiplicative interactions in neural networks are useful,

consider the dynamic pattern shift task shown in fig. 3.1a. For simplicity we consider this

problem in one dimension, but this argument can be extended to two dimensions (representing

images for example) without much effort. The input consists of a binary vector x of N elements

and an integer m ∈ {0, 1, . . . , N − 1}. The desired output y ∈ RN is x circularly shifted by m

elements to the right,

yn = x(n−m) modN ,

where

(n−m) modN ,

n−m if n−m > 0

N + n−m if n−m ≤ 0
.

A method to implement this task efficiently in a neural architecture is based on the shift theorem

of the discrete Fourier transform (DFT) (Brigham, 1988). Let F(x)k denote the k-th element

of the DFT of x. By definition we have

F(x)k =

N−1∑
n=0

xn+1 e−2πi
(k−1)n
N
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and its inverse is given by

F−1(X)n =
1

N

N−1∑
k=0

Xk+1 e2πi
k(n−1)
N .

The shift theorem states that a shift by m elements in the time domain is equivalent to a

multiplication by factor e−2πi(k−1)m/N in the frequency domain,

F(y)k = F(x)k e−2πi
(k−1)m
N .

Hence the shifted pattern can be calculated using

y = F−1(F(x)k e−2πi
(k−1)m
N ) .

Using the above definitions its v-th component of y is given by

yv =
1

N

N−1∑
k=0

e2πi
k(v−1)
N

[
e−2πi km

N

N−1∑
n=0

xn+1 e−2πi kn
N

]
.

If we encode the shift amount m as a one-hot vector s of length N , i.e. sj = 1 if j = m else

sj = 0, we can further rewrite this as

yv =
1

N

N−1∑
k=0

e2πi
k(v−1)
N Sk+1Xk+1 (3.1a)

with

Sk =
N−1∑
m=0

sm+1 e−2πi
(k−1)m
N , Xk =

N−1∑
n=0

xn+1 e−2πi
(k−1)n
N . (3.1b)

This corresponds to a neural network with two hidden layers (one additive, one multiplicative)

and an additive output layer as shown in fig. 3.1b. The optimal weights of this network are given

by the corresponding coefficients from (3.1). This example can also be extended to patterns

in two or more dimensions. A neural network without multiplications could still be trained on

this task since any network with at least one hidden layer is an universal function approximator

(Hornik et al., 1989). However, the number of neurons required might be significantly increased

and it is unclear if good generalization would be possible, as no ideal weight assignment is

known.
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pattern x

y
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Y1 Y2 Y3

y1 y2 y3

S1 S2 S3

+
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+
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Figure 3.1: (a) Variable pattern shift problem. Given a random binary pattern x ∈ RN and
an integer m ∈ {0, 1, . . . , N − 1} presented in one-hot encoding, the neural network should
output the pattern x circularly shifted to the right by m grid cells. (b) An ANN with two hidden
layers can solve this problem by employing the Fourier shift theorem. The first hidden layer is
additive, the second is multiplicative and the output layer is additive. All neurons use linear
activation functions. The first hidden layer computes the DFT of the input pattern x and shift
mount s. The second hidden layer applies the Fourier shift theorem by multiplying the DFTs of
x and s. The output layer computes the inverse DFT of the shifted pattern.

Polynomials

Considering the representability of a polynomial in one or multiple variables is important

because any analytic function can be written as an (infinite) polynomial by means of its Taylor

series (Swokowski, 1979). Since in practice infinite polynomials cannot be handled, the Taylor

series is cut off after a number of terms, leading to an approximation of the function. Given a

polynomial of degree d in n variables with k non-zero coefficients, it can be shown (Andoni

et al., 2014; Barron, 1993, 1994) that it is representable by an additive neural network with

a single hidden layer and nkdO(d) hidden units. Note that dd grows exponentially and thus for

a moderate polynomial of degree seven, which is for example the degree of the Taylor series

necessary to represent one period of the sine function reasonably well, this already leads to a

factor of 77 ≈ 800 000. A neural network using product units in its hidden layer can represent

the same polynomial with k coefficients, regardless of the dimensionality of the input space

and the degree of the polynomial.
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3.2 Additive and Multiplicative Neurons

As described in section 2.5 in standard ANNs the value of a neuron is given by a weighted sum

of its inputs propagated through a non-linear activation function. Considering a single layer of

neurons y receiving inputs from a preceding layer denoted by x, the value of y is given by

y = σ(Wx) , (3.2)

where we have absorbed the bias term into the weight matrix W by assuming that there exists

an xb with xb = 1. In the context of this chapter we will call neural networks consisting of such

layers additive ANNs.

In Durbin et al. (1989) an alternative neural unit in which the weighted summation is

replaced by a product, where each input is raised to a power determined by its corresponding

weight, was proposed. The value of such a product unit is given by

yi = σ

∏
j

x
Wij

j

 . (3.3)

Using laws of the exponential function this can be written as

yi = σ

exp

∑
j

Wij log xj


and thus the values of such a layer can be computed efficiently using matrix multiplication, i.e.

y = σ
(

exp(W logx)
)

(3.4)

where exp and log are taken elementwise. If the incoming values x can be negative, the complex

exponential and logarithm must be used. Often no non-linearity is applied to the output of a

product unit, i.e. σ(t) = t.

We have seen that having both additive and multiplicative interaction in a neural networks

is useful to solve complex problems. Yet this poses the problem of how to distribute additive

and multiplicative units over the network, i.e. how to determine whether a specific neuron

should be an additive or multiplicative unit to obtain the best results. For the tasks described in

section 3.1 an optimal allocation could be determined by mathematical analysis of the problem;

however such an analysis is not possible in general for complex problems.

We propose an approach, in which the distinction between additive and multiplicative
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neurons is not discrete but continuous and differentiable, resulting in a continuum between

addition and multiplication. Hence, the optimal distribution of additive and multiplicative units

can be determined during standard gradient-based optimization. Our approach is organized as

follows. First, we introduce non-integer iterates of the exponential function in the real and com-

plex domains. This is based on the mathematical theory of fractional functional iteration. We

then use these iterates to smoothly interpolate between addition (3.2) and multiplication (3.4).

Finally, we show how this interpolation can be integrated and implemented in neural networks

by means of a novel class of activation functions.

3.3 Iterates of the Exponential Function

Let f : C→ C be an invertible function. For integer n ∈ Z we write f (n) for the n-times iterated

application of f ,

f (n)(z) , f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(z) . (3.5)

Further let f (−n) = (f−1)(n) where f−1 denotes the inverse of f . We set f (0)(z) = z to be

the identity function. It can be easily verified that functional iteration with respect to the

composition operator, i.e.

f (n) ◦ f (m) = f (n+m) (3.6)

for n,m ∈ Z, forms an Abelian group.

Equation (3.5) cannot be used to define functional iteration for non-integer n. Thus, in order

to calculate non-integer iterations of a function, we have to find an alternative definition. The

sought generalization should extend the additive property (3.6) of the composition operation

to non-integer n,m ∈ R.

3.3.1 Abel’s Functional Equation

Consider the following functional equation given by (Abel, 1826),

ψ(f(x)) = ψ(x) + β (3.7)

with constant β ∈ C. We are concerned with f(x) = exp(x). A continuously differentiable

solution (Kneser, 1950) for β = 1 and x ∈ R is given by

ψ(x) = log(k)(x) + k (3.8)
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with k ∈ Z s.t. 0 ≤ log(k)(x) < 1. Note that for x < 0 we have k = −1 and thus ψ is well defined

on whole R.

The function ψ is differentiable, as can be seen from the following argument (Köpp, 2015).

Obviously ψ is differentiable at points where k does not change. At a point x0 = exp(k) 1 where

k changes, we have for the left derivative

∂−ψ

∂x

∣∣∣∣
x=x0

= lim
x→x−0

ψ(x)− ψ(exp(k) 1)

x− exp(k) 1
= lim

x→x−0

log(k) x− 1

x− exp(k) 1
. (3.9)

Applying L’Hôpital’s rule allows the limit to be resolved, resulting in

∂−ψ

∂x
= lim

x→x−0

k−1∏
j=0

1

log(j) x
=

k−1∏
j=0

1

exp(k−j) 1
. (3.10)

For the right derivative we obtain

∂+ψ

∂x

∣∣∣∣
x=x0

= lim
x→x+0

ψ(x)− ψ(exp(k) 1)

x− exp(k) 1
= lim

x→x+0

log(k+1) x

x− exp(k) 1
, (3.11)

and, again by application of L’Hôpital’s rule, this evaluates to

∂+ψ

∂x
= lim

x→x+0

k∏
j=0

1

log(j) x
=

k∏
j=0

1

exp(k−j) 1
. (3.12)

Since exp(k−k) = exp(0) is the identity function, the left and right derivative are identical and

thus the function ψ is differentiable at all points.

The function ψ is shown in Fig. 3.2a. Since ψ : R → (−1,∞) is strictly increasing, the

inverse ψ−1 :]− 1,∞[→ R exists and is given by

ψ−1(ψ) = exp(k)(ψ − k) (3.13)

with k ∈ N s.t. 0 ≤ ψ−k < 1. Furthermore it follows that ψ−1 is differentiable. For practical rea-

sons we set ψ−1(ψ) = −∞ for ψ ≤ −1. The functions ψ and ψ−1 can be computed numerically

using algorithms 4 and 5 respectively.

The derivative of ψ is given by

ψ′(x) =

k−1∏
j=0

1

log(j)(x)
(3.14a)
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Algorithm 4: Computation of Abel’s solution ψ(x)

Input: x ∈ R
Output: ψ ∈ R

1 if x < 0 then
2 ψ ←− exp(x)− 1

3 else
4 k ←− 0
5 while x > 1 do
6 x←− log x
7 k ←− k + 1

8 ψ ←− x+ k

Algorithm 5: Computation of Abel’s solution inverse ψ−1(ψ)

Input: ψ ∈ R
Output: x ∈ R ∪ {−∞}

1 k ←− dψ − 1e
2 if k < 0 then
3 x←− log(ψ − k) // negative infinity can occur

4 else
5 x←− ψ − k
6 while k > 0 do
7 x←− expx
8 k ←− k − 1

with k ∈ N s.t. 0 ≤ log(k)(x) < 1 and the derivative of its inverse is

ψ−1′(ψ) =

k−1∏
j=0

exp(j)
(
ψ−1(ψ − j)

)
(3.14b)

with k ∈ N s.t. 0 ≤ ψ − k < 1. Using an analogous proof as for the differentiability of ψ it can

be shown that ψ′ and ψ−1′ are continuous.

Non-integer iterates using Abel’s equation

By inspection of Abel’s equation (3.7), we see that the n-th iterate of the exponential function

can be written as

exp(n)(x) = ψ−1(ψ(x) + n) . (3.15)
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Figure 3.2: (a) A continuously differentiable solution ψ(x) to Abel’s equation (3.7) for the
exponential function in the real domain. (b) Iterates of the exponential function exp(n)(x) for
n ∈ {−1,−0.9, . . . , 0, . . . , 0.9, 1} obtained using the solution (3.15) of Abel’s equation.

This family of functions is shown in fig. 3.2b. While the above equation is equivalent to (3.5) for

integer n, we are now also free to choose n ∈ R and thus (3.15) can be seen as a generalization

of functional iteration to non-integer iterates. It can easily be verified that the composition

property (3.6) holds. Hence we can understand the function ϕ(x) = exp(1/2)(x) as the function

that gives the exponential function when applied to itself. ϕ is called the functional square root

of exp and we have ϕ(ϕ(x)) = exp(x) for all x ∈ R. Likewise exp(1/N) is the function that gives

the exponential function when iterated N times.

Since n is a continuous parameter in definition (3.15) we can take the derivative of exp

with respect to its argument as well as n. They are given by

exp′(n)(x) ,
∂ exp(n)(x)

∂x
= ψ′−1(ψ(x) + n)ψ′(x) (3.16a)

exp(n′)(x) ,
∂ exp(n)(x)

∂n
= ψ′−1(ψ(x) + n) . (3.16b)

Thus (3.8) provides a method to interpolate between the exponential function, the identity

function and the logarithm in a continuous and differentiable way.

3.3.2 Schröder’s Functional Equation

The method presented so far only works for x > 0 when n is arbitrary since the real logarithm

is undefined for zero and negative arguments. Motivated by the necessity to calculate negative

fractional iterates for negative arguments as well, we derive a solution of Abel’s equation for
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the complex exponential function. Applying the substitution

ψ(x) ,
β

log γ
logχ(x)

in Abel’s equation (3.7) produces Schröder’s function equation, first examined by Schröder

(1870) and analyzed in detail by Kneser (1950),

χ(f(z)) = γ χ(z) (3.17)

with constant γ ∈ C. As before we are interested in solutions of this equation for f(x) = exp(x).

We have

χ(exp(z)) = γ χ(z) (3.18)

but now we are considering the complex exp : C→ C. The complex exponential function is not

injective, since

exp(z + 2πni) = exp(z) , n ∈ Z ,

where i ,
√
−1. Thus the imaginary part of the codomain of its inverse, i.e. the complex

logarithm, must be restricted to an interval of size 2π. Here we define log : C→ {z ∈ C : β ≤
Im z < β + 2π} with β ∈ R. For now let us consider the principal branch of the logarithm, that

is β = −π.

To derive a solution, we examine the behavior of the exponential function around one of

its fixed points. A fixed point of a function f is a point c with the property that f(c) = c. The

exponential function has an infinite number of fixed points (Agarwal, 2001); here we select the

fixed point closest to the real axis in the upper complex half plane. Since log is a contraction

mapping, according to the Banach fixed-point theorem (Khamsi et al., 2001) the fixed point of

exp can be found by starting at an arbitrary point z ∈ C with Im z ≥ 0 and repetitively applying

the logarithm until convergence. Numerically we find

exp(c) = c ≈ 0.318132 + 1.33724 i

where i =
√
−1 is the imaginary unit.

Close enough to c the exponential function behaves like an affine map. To show this, let

z′ = z − c and consider

exp(c+ z′)− c = exp(c) exp(z′)− c = c [exp(z′)− 1]

= c [1 + z′ +O(|z′|2)− 1] = c z′ +O(|z′|2) . (3.19)
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Here we used the Taylor expansion of the exponential function, exp(z′) = 1 + z′ +O(z′2). This

means that points on a circled centered on c with radius r � 1 are mapped to a circle around c

with radius |c| r and rotated around c by Im c ≈ 76.62◦. For any point z in a circle of radius r0

around c, we have

exp(z) = cz + c− c2 +O(r2
0) . (3.20)

By substituting this approximation into (3.18) it becomes apparent that a solution to Schröder’s

equation around c is given by

χ(z) = z − c for |z − c| ≤ r0 (3.21)

where we have set γ = c.

We will now compute the continuation of the solution to points outside the circle around c.

From (3.18) we obtain

χ(z) = c χ(log(z)) . (3.22)

If for a point z ∈ C repeated application of the logarithm leads to a point inside the circle of

radius r0 around c, we can obtain the function value of χ(z) from (3.21) via iterated application

of (3.22). We will show later that this is indeed the case for nearly every z ∈ C. Hence the

solution to Schröder’s equation is given by

χ(z) = ck (log(k)(z)− c) (3.23)

with k = mink′∈N k
′ s.t. | log(k′)(z)− c| ≤ r0. Solving for z gives

χ−1(χ) = exp(k)(c−kχ+ c) (3.24)

with k = mink′∈N k
′ s.t. |c−k′χ| ≤ r0. Obviously we have χ−1(χ(z)) = z for all z ∈ C. However

χ(χ−1(ξ)) = ξ only holds if Im (c−kξ + c) ∈ [β, β + 2π[. The solution (3.23) is only defined for

a point z if iterated application of the logarithm starting from z will converge to the fixed point

c. We will show below which conditions are necessary for that.

Kneser (1950) demonstrated that χ is holomorphic on C \ {0, 1, e, ee, . . . }. The complex

derivative of χ evaluates to

χ′(z) =

k−1∏
j=0

c

log(j) z
(3.25a)
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with k = mink′∈N k
′ s.t. | log(k′)(z)− c| ≤ r0 and we have

χ′−1(χ) =
1

c

k∏
j=1

exp(j)
(
χ−1

( χ
c j

))
(3.25b)

with k = mink′∈N k
′ s.t. |c−k′χ| ≤ r0.

The solution χ is defined on almost C

The principal branch of the logarithm, i.e. restricting its imaginary part to the interval [−π, π[,

has the drawback that iterated application of log starting from a point on the lower complex

half-plane will converge to the complex conjugate c instead of c. Thus χ(z) would be undefined

for Im z < 0.

To avoid this problem, we use the branch defined by log : C→ {z ∈ C : β ≤ Im z < β+ 2π}
with −1 < β < 0. Using such a branch the series zn, where

zn+1 , log zn ,

converges to c, provided that there is no n such that zn = 0. Thus χ is defined on C \D where

D = {0, e, ee, eee , . . . }.
If Im zn ≥ 0 then arg zn ∈ [0, π] and thus Im zn+1 ≥ 0. Hence, if we have Im zn ≥ 0 for

n ∈ N, then Im zn′ ≥ 0 for all n′ > n. Now, consider the conformal map (Kneser, 1950)

ξ(z) ,
z − c
z − c

which maps the upper complex half-plane to the unit disk and define the series ξn+1 = ζ(ξn)

with

ζ(t) , ξ
(
log ξ−1(t)

)
.

We have ζ : D1 → D1, where D1 = {t ∈ C : |t| < 1} is the unit disk; furthermore ζ(0) = 0.

Thus by Schwarz lemma |ζ(t)| < |t| for all t ∈ D1 (since ζ(t) 6= λt with λ ∈ C) and hence

limn→∞ ξn = 0. This implies limn→∞ zn = c.

On the other hand, if Im zn < 0 and Re zn < 0, then Im log zn > 0 and zn converges as

above. Finally, if Im zn < 0 and Re zn ≥ 0, then, using −1 < β, we have Re zn+1 ≤ | log zn| ≤
1 + log(Re zn) < Re zn and thus at some element n′ in the series we will have Re zn′ < 1 which

leads to Re zn′+1 < 0.
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Algorithm and error estimates for numeric computation

Numerical computation of χ and its inverse is possible using algorithms 6 and 7 respectively.

The computation procedure is visualized in fig. 3.3a and χ(z) is plotted in fig. 3.4. The number

of loop iterations to compute χ(z) for an arbitrary point z ∈ C is on average 30; a detailed plot

of the iteration count is shown in fig. 3.3b. Since the algorithms are computationally intensive,

it is advisable to precompute χ(z) and χ−1(χ) in forms of interpolation tables.

Algorithm 6: Computation of a solution χ(z) to Schröder’s equation
Input: z ∈ C \ {0, 1, e, ee, . . . }
Output: χ ∈ C

1 c←− 0.318132 + 1.33724 i // fixed point of exp
2 ρ←− 1
3 while |z − c| ≥ r0 do // r0 � 1
4 z ←− log z
5 ρ←− c ρ
6 χ←− ρ(z − c)

Algorithm 7: Computation of the inverse χ−1(χ) of a solution to Schröder’s equation
Input: χ ∈ C
Output: z ∈ C

1 c←− 0.318132 + 1.33724 i // fixed point of exp
2 k ←− 0
3 while |χ| ≥ r0 do // r0 � 1
4 χ←− χ

c
5 k ←− k + 1

6 z ←− χ+ c
7 while k > 0 do
8 z ←− exp z
9 k ←− k − 1

Computing χ(z) is unproblematic with regards to numeric accuracy since the logarithm,

which is iteratively applied in line 4 of algorithm 6, is a contractive map and thus numeric

errors are not amplified with each application. The computation of χ−1(χ), however seems

vulnerable to numeric instabilities since the exponential function is iteratively applied in line 8

of algorithm 7. We therefore derive an estimation of how much an error in χ is amplified when

computing z using algorithm 7. First we note that lines 4 and 6 do not increase an error on χ
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Figure 3.3: (a) Calculation of χ(z). Starting from point z0 = z the series zn+1 = log zn is
evaluated until |zn − c| ≤ r0 for some n. Inside this circle of radius r0 the function value can
then be evaluated using χ(z) = cn(zn−c). The contours are generated by iterative application of
exp to the circle of radius r0 around c. Near its fixed point the exponential behaves like a scaling
by |c| ≈ 1.374 and a rotation of Im c ≈ 76.6◦ around c. (b) Number of iterated applications of
exp required to cover a marked area when starting from a point very close to the fix point c.
This roughly equals the number of loop iterations in algorithm 6 necessary to compute χ(z) for
a point z on the complex plane. Starting with 30 iterations the areas start to intersect since the
complex exponential is not injective. This part has been reproduced from (Köpp, 2016).

since |c| > 1. Thus the increase of error comes from application of exp(n) in line 8. It is given by

∆ =

∣∣exp(n)(z + δ)− exp(n) z
∣∣

|δ|

where δ is the error of z and the for the initial z we have |z − c| ≤ r0. An estimation of the

error factor ∆ can be obtained by calculating how much area of the complex plane is covered

by iterative applications of the exponential to the points of a circle with radius r0 around c, i.e.

∆ ≈
√

area({exp(n) z | z ∈ C ∧ |z − c| ≤ r0})
2πr0

. (3.26)

The assumption here is that an error will be scaled like the area of the complex plane it is

contained in. As noted before, around c the exponential acts like an affine transform that
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Figure 3.4: Domain coloring plot of χ(z). Domain coloring (Wegert, 2012) refers to the vi-
sualization of complex-valued functions based on the HSB-color model. HSB stands for hue,
saturation and brightness and each value can vary between 0 and 1. The hue is used to repre-
sent the phase ϕ of the function value f(z) = r eiϕ, the saturation encodes the magnitude r and
for brightness the real and imaginary parts are combined. The exact computation for the latter
two involves taking the sine of either f(z) or its real or imaginary part, leading to repetitive
patterns. For χ(z) the discontinuities that arise at 0, 1, e and stretch into the negative complex
half-plane are clearly visible. They are caused by log being discontinuous at the polar angles β
and β + 2π. The fixed point c of the exponential function can also be seen as well as the affine
behavior of the exponential around it.
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n ∆circ ∆area ∆num

0 1 1 —
1 1.375 1.375 —
2 1.889 1.889 —
...

...
...

...
26 3 910 3 978 3 949
27 5 375 5 552 5 463
28 7 389 7 860 7 604
29 10 156 11 441 10 764
30 13 960 17 621 15 733
31 19 189 30 623 24 504
32 26 376 70 222 43 765
33 36 255 328 253 131 981

Table 3.1: Average relative errors of exp(n) z for |z − c| ≤ r0 and different number of iterations
n, where the coverage of the iterations can be seen from fig. 3.3b. The values for ∆circ were
computed using eq. (3.27) and the values for ∆area were computed using eq. (3.26) where
the area was computed numerically. Starting with 30 iterations the circle approximation does
not hold anymore. Numerical error estimates obtained using the arbitrary precision calculation
feature of Mathematica are shown in column ∆num. This table has been adapted from (Köpp,
2015).

multiplies distances |z − c| with a factor of |c| ≈ 1.375, cf. fig. 3.3a, and from fig. 3.3b we see

that this approximation is reasonable for up to 30 iterations of exponentiation. Thus for n < 30

we obtain the explicit formula

∆circ ≈
√
π(|c|n r0)2

πr2
0

= |c|n . (3.27)

For n ≥ 30 we turn to estimating the area by numerically computing the area of the set

{exp(n) z | z ∈ C ∧ |z − c| ≤ r0} on the complex plane. Results were calculated by Köpp

(2015) and are shown as ∆area in table 3.1. For verification the error has also been calcu-

lated numerically using the arbitrary precision calculation feature of the software package

Mathematica (Wolfram Research, 2017).

To cover the interesting part of C we need 33 iterations and thus a conservative estimate

for the relative error factor of χ−1(χ) is 106. Since the machine epsilon (Quarteroni, 2000)

for 32-bit single precision floating-point operations is 10−7, we conclude that 64-bit double

precision arithmetic with a machine epsilon of 2 · 10−16 must be used to calculate χ−1 with

reasonable accuracy.
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Figure 3.5: Structure of the function χ(z) and calculation of exp(n)(1 + πi) for n ∈ [0, 1] in
z-space (left) and χ-space (right). The uniform grid with the cross at the origin is mapped using
χ(z). Since the map is conformal, local angles are preserved. The points 1+πi and ξ = χ(1+πi)
are shown as magenta circles. The black line shows χ−1(cn ξ) and cn ξ for n ∈ [0, 1]. The blue
and purple points are placed at n = 1/2 and n = 1 respectively.

Non-integer iterates using Schröder’s equation

Repetitive application of Schröder’s equation (3.17) on an iterated function (3.5) leads to

χ(f (n)(z)) = γn χ(z) . (3.28)

Thus the n-th iterate of the exponential function on the whole complex plane is given by

exp(n)(z) = χ−1(cn χ(z)) (3.29)

where χ(z) and χ−1(z) are given by (3.23) and (3.24) respectively. Since χ is injective, we

can think of it as a mapping from the complex plane, called z-plane, to another complex plane,

called χ-plane. By (3.29) the operation of calculating the exponential of a number y in the z-

plane corresponds to complex multiplication by factor c of χ(y) in the χ-plane. This is illustrated

in fig. 3.5. Samples from exp(n) are shown in fig. 3.6.

While the definition for exp(n) given by (3.29) can be evaluated on the whole complex

plane C, it only has meaning as a non-integer iterate of exp, if composition exp(n)[expm(z)] =
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Figure 3.6: Iterates of the exponential function exp(n)(x + 0.5i) for n ∈ {0, 0.1, . . . , 0.9, 1}
(upper plots) and n ∈ {0,−0.1, . . . ,−0.9,−1} (lower plots) obtained using the solution (3.29)
of Schröder’s equation. The exponential, logarithm and identity function are highlighted in
orange.

exp(n+m)(z) holds. Since this requires that χ(χ−1(ξ)) = ξ, let us define the sets

E ′ , {ξ ∈ C |χ[χ−1(cm ξ)] = cm ξ ∀m ∈ [−1, 1]}

and E , χ−1(E ′). Then, for z ∈ E , n ∈ R and m ∈ [−1, 1], the composition of the iterated

exponential function is given by

exp(n)[exp(m)(z)] = χ−1
[
cn χ

(
χ−1(cm χ(z))

)]
= χ−1

[
cn+m χ(z)

]
= exp(n+m)(z)

and the composition property is satisfied. The subset E ⊂ C of the complex plane where

composition of exp(n) for non-integer n is shown in figure 3.7.

The derivatives of exp(n) x, defined using Schröder’s equation, w.r.t. x and n can be calcu-
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E

Figure 3.7: Function composition holds in the set E ⊂ C (gray-shaded area) for non-integer
iteration numbers, there we have exp(n) ◦ exp(m)(z) = exp(n+m)(z) for n ∈ R and m ∈ [−1, 1].
We defined log such that Im log z ∈ [−1,−1 + 2π]. In the striped area function composition
does not hold, but exp(n) can still be computed.

lated using the chain rule and evaluate to

exp′(n)(z) = cn χ′−1[cnχ(z)]χ′(z) (3.30a)

exp(n′)(z) = cn χ′−1[cnχ(z)]χ(z) log(c) . (3.30b)

In conclusion, this section defined the continuously differentiable function exp(n) : C \D → C
on almost the whole complex plane and showed that it has the meaning of a non-integer iterate

of the exponential function on the subset E .

3.4 Interpolation between Addition and Multiplication

Using fundamental properties of the exponential function we can write every multiplication of

two numbers x, y ∈ R as

xy = exp(log x+ log y) = exp(exp(−1) x+ exp(−1) y) .

If x < 0 or y < 0 then the complex logarithm and exponential function must be used. We define

the operator ⊕n for x, y ∈ R and n ∈ R as

x⊕n y , exp(n)
(

exp(−n)(x) + exp(−n)(y)
)
. (3.31)
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Note that we have x ⊕0 y = x + y and x ⊕1 y = xy. Thus for 0 < n < 1 the above operator

continuously interpolates between the elementary operations of addition and multiplication.

We will refer to ⊕n as the “addiplication” operator. Analogous to the n-ary sum and product we

will employ the following notation for the n-ary addiplication operator,

K⊕
j=k
n

xj , xk ⊕n xk+1 ⊕n · · · ⊕n xK . (3.32)

The derivative of the addiplication operator w.r.t. its operands and the interpolation parameter

n are calculated using the chain rule. Using the shorthand

E , exp(−n)(x) + exp(−n)(y) (3.33a)

we have

∂(x⊕n y)

∂x
= exp′(n)(E) exp′(−n)(x) , (3.33b)

∂(x⊕n y)

∂y
= exp′(n)(E) exp′(−n)(y) , (3.33c)

∂(x⊕n y)

∂n
= exp(n′)(E) + exp′(n)(E) ·

[
exp(−n′)(x) + exp(−n′)(y)

]
. (3.33d)

For positive arguments x, y > 0 we can use the iterates of exp based either on the solution of

Abel’s equation (3.15) or Schröder’s equation (3.29). However, if we also want to deal with

negative arguments, we must use iterates of exp based on Schröder’s equation (3.29), since

the real logarithm is only defined for positive arguments. Thus we will call solution (3.15) the

“real fractional exponential” and solution (3.29) the “complex fractional exponential”.

From the exemplary “addiplication” shown in fig. 3.8 we can see that the interpolations

produced by these two methods are not monotonic functions w.r.t. the interpolation parameter

n. In both cases local maxima exist, however interpolation based on Schröder’s equation has

higher extrema in this case and also in general (personal experiments). It is well known, that

the existence of local extrema can pose a problem for gradient-based optimizers.

3.5 Neurons that can Add, Multiply and Everything In-Between

We propose two methods to construct neural nets that have units the operation of which can

be adjusted using a continuous parameter. The straightforward approach is to use neurons that
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Figure 3.8: The interpolation between addition and multiplication using (3.31) with x = 2
and y = 7. The iterates of the exponential function are either calculated using Abel’s equation
(blue) or Schröder’s equation (orange). In both cases the interpolated values exceed the range
between 2 + 7 = 9 and 2 · 7 = 14 and therefore a local maximum exists. However in the Abel
case the local maximum is not very pronounced.

employ “addiplication” instead of summation, i.e. the value of neuron yi is given by

yi = σ

⊕
j
ni

Wijxj

 = σ

exp(ni)

∑
j

Wij exp(−ni)(xj)

 . (3.34)

where the operator ⊕ has been defined in section 3.4. For ni = 0 the neuron behaves like

an additive neuron and for ni = 1 it computes the product of its inputs. Because we sum

over exp(−ni)(xj) which has dependence on the parameter ni of neuron yi, this calculation

corresponds to a network in which each neuron in layer x has separate outputs for each neuron

in the following layer y; see fig. 3.9a. Compared to conventional ANNs this architecture has

only one additional real-valued parameter per neuron (ni) but also poses a significant increase

in computational complexity due to the necessity of separate outputs. Since exp(−ni)(xj) is

complex it might be sensible (but is not required) to allow a complex weight matrix Wij .

The computational complexity of separate output units can be avoided by calculating the

value of a neuron according to

yi = σ

exp(n̂yi )

∑
j

Wij exp(ñxj )(xj)

 . (3.35)

This corresponds to the architecture shown in fig. 3.9b. The interpolation parameter ni has been

split into a pre-activation-function part n̂yi and a post-activation-function part ñxj . Since n̂yi
and ñxj are not tied together, the network is free to implement arbitrary combinations of iterates
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Figure 3.9: Two proposed neural network architectures that can implement “addiplication”. (a)
Neuron yi calculates its value according to (3.34). We have yi = σ(ŷi) and the subunits compute
x̃ij = exp(−ni)(xj) and ŷi = exp(ni)

(∑
jWij x̃ij

)
. The weights between the subunits are shared.

(b) Neuron yi calculates its value according to (3.35). We have yi = σ(ŷi) and the subunits
compute x̃j = exp(−ñj)(xj) and ŷi = exp(n̂i)

(∑
jWij x̃j

)
. This matches the conventional neural

network architecture, the only difference being the parameterized activation function individual
to each neuron.

of the exponential function. “Addiplication” occurs as the special case n̂yi = −ñxj . Compared

to conventional neural nets each neuron has two additional parameters, namely n̂yi and ñxj .

However the asymptotic computational complexity of the network is unchanged. In fact, this

architecture corresponds to a conventional, additive neural net, as defined by (2.87), with a

neuron-dependent, parameterized activation function. For neuron zi the activation function

given by

σzi(t) = exp(ñzi )
[
σ
(

exp(n̂zi )(t)
)]

. (3.36)

where σ is a standard activation function like the logistic function or just the identity. Using the

identity does not pose a problem, because even then σzi is not linear for zi 6= 0. Consequently,

implementation in existing neural network frameworks is possible by replacing the standard

sigmoidal activation function with this function and optionally using a complex weight matrix.

3.6 Benchmarks and Experimental Results

Implementation and experiments were done by Köpp (2015) under my guidance; the corre-

sponding results are reproduced here in excerpts.

We investigate how ANNs using fractional iterates of the exponential function as activa-
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tion functions and therefore interpolation between summation and multiplication perform on

different datasets. Alongside standard gradient descent we apply adaptive optimizers such as

Adam (D. Kingma et al., 2014), RMSProp (Tieleman et al., 2012) or Adadelta (Zeiler, 2012)

which are provided by Climin (Bayer, 2013) for simple use with the Theano software pack-

age (Al-Rfou et al., 2016). An overview over these algorithms is given in section 2.3.

To achieve good performance the functions ψ, χ and their inverses, which are used to

calculate the fractional exponential, have been implemented using fast linear interpolation

over a precomputed lookup tabled stored in texture memory on the graphics processing unit

(GPU) and accessed through Compute Unified Device Architecture (CUDA)-provided hardware

interpolation operations.

3.6.1 Recognition of Handwritten Digits

We perform multi-class logistic regression with one hidden layer on the MNIST dataset (Lecun

et al., 1998). It contains 60 000 images of handwritten digits zero to nine in its training set and

10 000 images in its test set. Furthermore 10 000 samples of the training set are split off for use

as a validation set. Each image has 784 grayscale pixels, which are used as raw values for the

input layer.

We compare a conventional additive ANN to ANNs using the real- and complex-valued

fractional exponential function as follows. The ANN with the fractional exponential function

uses complex weights, stored as real and imaginary part. Thus, in order for all networks to

have approximately the same number of trainable parameters, the additive network and the

network using the real fractional exponential function use 200 hidden units while the ANN with

the complex fractional exponential function has 100 hidden units. The additional parameters

ñ and n̂ do not affect the total parameter count significantly, since their number scales only

linearly with the number of neurons. The setup resembles the one used for benchmarking

Theano (Bergstra et al., 2010).

All networks are trained with stochastic gradient descent using an initial learning rate of

10−1, a momentum of 0.5, and a mini-batch size of 60 samples. The learning rate is reduced

whenever the validation loss does not improve for 100 consecutive iterations. Initially, all

weights are set to zero with exception of the real part of the weights within the hidden layer.

These are initialized by randomly sampling from the uniform distribution over the interval[
−4

√
6

nin + nout
, 4

√
6

nin + nout

]
following a suggestion from Glorot, Bordes, et al. (2011) for weight initialization in ANNs
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ANN type num. parameters samples per sec. iterations error rate
additive 159 010 32 387 283 0.0203
R frac. exp. 159 994 21 253 245 0.0253
C frac. exp. 159 894 17 147 263 0.0267

Table 3.2: Results for using ANNs of different types for classification of handwritten digits.
Training was terminated when no improvement was seen on the validation set. The error
rate denotes the fraction of how many digits in the test set have been wrongly classified after
training.

with a sigmoid activation function, where nin and nout denote the number of input and output

connections respectively for the considered neuron.

Table 3.2 shows the results for training the three networks until no improvement happens

on the validation set. Networks using interpolation between summation and multiplication

achieve competitive though not surpassing performance on the MNIST dataset. Although their

activation function is more complicated than the standard sigmoid, their execution performance

(processed samples per second) only suffers by a factor of 1/2. Figure 3.10 displays a histogram

for the iteration parameters ñ and n̂ in the interpolating complex-valued ANN at the iteration

with the best validation loss. While many of the parameters remain close to initialization value

zero, some have changed notably and thus the trained ANN performs operations beyond pure

additive interactions, and even super-exponential computations for some neurons.

3.6.2 Synthetic Polynomial Regression

In order to analyze long-range generalization performance, we use a polynomial of fourth

degree with two inputs and a dataset with a non-random split into training and test set. The

function to be learned is of the form

f(x, y) =
4∑

k=0

4−k∑
l=0

akl x
k yl , (3.37)

with two inputs x and y and randomly generated coefficients akl. The polynomial can be

computed exactly by an ANN with one hidden layer. The hidden layer is multiplicative and

calculates the products between inputs and the output layer is additive using the coefficients

akl as weights. We randomly sample 600 input values (x, y) from the uniform distribution with

support [0, 1]2 and compute targets according to (3.37). All points within a circle of radius 0.33

around x = 0.5, y = 0.5 are used as the test set and all points outside that circle make up the

training set, see fig. 3.11a. This is done to test the long-range generalization ability of the ANN.
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Figure 3.10: Histogram of the parameters n̂ (top) and ñ (bottom) within the hidden layer of an
ANN using the fractional exponential function after being trained on the MNIST dataset. Both
were initialized to zero before training. A value of 0 corresponds to the identity function, 1 is
the exponential and −1 is the logarithm.

We train three different ANNs with each having one hidden layer. The loss is optimized

using Adam and the output layer is additive using the identity activation function in all cases.

The first neural network is purely additive with hyperbolic tangent as the activation function

for the input and hidden layers. The second network uses (3.36) in the input and hidden

layer, thus allowing interpolation between addition and multiplication. The third and final

network uses log and exp as activation functions in the input and hidden layer respectively,

yielding fixed multiplicative interaction between the inputs and thus representing the structure

of a polynomial. All weights of all networks, including the activation function parameters of

our model, are initialized with zero mean and variance 10−2. Hence, our model starts with a

mostly additive configuration of neurons. The initial learning rate is set to 10−2 and all hyper-

parameter combinations use a batch size of 100 training samples. The learning rate is reduced

upon no improvement on the validation set until a minimum learning rate is reached; in that

case training is terminated. The progression of training and test loss for all three structures is

displayed in fig. 3.11b.

Our proposed activation function generalizes best in this experiment. The area where no

training data is provided is approximated well. Surprisingly, our model even surpasses the

log-exp network, which perfectly resembles the data structure due to its fixed multiplicative
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(a) training points
and prediction error (b) loss progression

Figure 3.11: Training of an “addiplication” neural network on a two-dimensional polynomial
of fourth degree. (a) The training samples are shown as red dots in x-y-space. The color of
the background shows the magnitude of the prediction error after training is finished using a
exp(n) network. (b) The curves show the mean-squared error versus the training iteration for a
standard tanh neural network, a network with neurons that can interpolate between addition
and multiplication, and a fixed addition-multiplication network with a structure suitable for
the given polynomial. While the tanh networks overfits on this dataset, the proposed exp(n)

network generalizes well on the test set.

interactions. We hypothesize that training a neural network with multiplicative interactions

but otherwise randomly initialized weights is hindered by very complex error landscapes that

make it difficult for gradient-based optimizers to escape deep local minima. Our model seems

unaffected by this issue, supposedly because it starts with additive interactions and can thus

find reasonable values for the weights before moving into the multiplicative regime.
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3.7 Discussion

We proposed a method to continuously and differentiably interpolate between addition and

multiplication and showed how it can be integrated into neural networks by replacing the

standard logistic activation function with a parameterized activation function. We presented

the mathematical formulation of these concepts and showed how to integrate them into neural

networks with a small increase in the number of parameters. It was further shown that efficient

numerical implementation is possible with only a 35% increase in computational time compared

to a purely additive neural network.

On a synthetic dataset of polynomials we have seen that multiplicative units resulted in

greater accuracy and better long range generalization. However, on the standard digit classi-

fication benchmark MNIST a purely additive ANN slightly but consistently outperformed the

proposed model. We suspect two reasons for this result. First, the transition from addition to

multiplication is not monotonic, thus inducing local minima in the error surface, which will

make a good minimum of the loss hard to find, especially when using first-order optimization

methods as it is common with neural networks. While second order methods may help here,

their use with large datasets is problematic due to memory consumption and the stochasticity

of mini-batch training. Second, the expressive power introduced by multiplicative interactions

may lead to overfitting because there is no regularizing force driving the neurons back into the

additive regime. Especially the exponential function has a very strong growth and thus a sig-

moid function can quickly be driven into saturation by its outputs. This encourages overfitting.

While an ad-hoc regularization would be possible, we believe it is better to use a theoretically

founded Bayesian approach to prevent overfitting.

For this purpose in chapter 5 we generalize the approach of a parameterized activation func-

tion to non-parametric stochastic activation functions with an appropriate prior that encourages

smooth functions. These activation functions are a superset of the family of functions presented

in this chapter and can thus also interpolate between addition and multiplication. However,

they have two advantages. First, due to the prior, simple function will be preferred, making

the model resilient to overfitting. Second, the flexibility of non-parametric functions allows

for many possibilities (paths in function space) to transition from addition to multiplication.

This results in a smooth error surface with far less local minima in which the network can get

trapped, thus leading to a better discoverability of good network parameters.
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Chapter 4

Elementwise Automatic Differentiation

Traditionally the derivatives necessary for training of ANNs, cf. section 2.5, have been computed

using the backpropagation algorithm (Hecht-Nielsen et al., 1988; Y. A. LeCun et al., 2012;

Y. LeCun, B. Boser, et al., 1989), which is a special case of reverse accumulation automatic

differentiation (Griewank et al., 2008; Rall, 1981). While backpropagation is only applicable

to standard ANNs, automatic differentiation can be used to calculate the derivatives of any

model that provides a training objective in the form of a loss function, such as “addiplication”

and Gaussian process neuron (GPN) networks do. When applied to a standard ANN, automatic

differentiation performs the exact same steps as the backpropagation algorithm.

Currently automatic differentiation is implemented in many frameworks for deep learning,

such as Theano (Al-Rfou et al., 2016) and TensorFlow (Martin Abadi et al., 2015). The imple-

mentation used in these software packages works at the tensor level, i.e. an example expression

is

f(x,y) ,Wx+ y

where W is a matrix of appropriate shape. When such an expression is evaluated on a GPU for

each operation a separate compute kernel is invoked. A compute kernel is a massively parallel

routine that is executed on the GPU. In this case two invocations would take place: one for the

dot product and one for the addition.

These frameworks also support operations like reshaping (to change the shape of a tensor)

and broadcasting (to repeat a tensor over a specified axis). This is useful to perform operations

that do not correspond to well-known operations in linear algebra such as the dot product,

elementwise additions and norms. For example, the matrix of pairwise differences

Dij(x,y) , xi − yj

77
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where x ∈ RN , y ∈ RM could be written in tensor form as

D = broadcast2(reshapeN,1(x))− broadcast1(reshape1,M (y)) (4.1)

where broadcastd(•) repeats its argument over dimension d so that the resulting shape fits

subsequent operations and reshapeN1,N2,...,ND(•) reshapes a tensor into shape RN1×N2×···×ND

without changing the total number of elements in the tensor. Working with expressions at the

tensor level is a good fit for architectures like neural networks, which consist mostly of dot

products and elementwise applications of (activation) functions.

However consider the following function which occurs in section 5.5. The function is speci-

fied elementwise, i.e. we are given an expression for element s, n of the matrix-valued function

f which explicitly depends on elements of its argument matrices and tensors. The expression is

fs,n(V,U, κ, µ,Σ) =

R∑
r=1

R∑
t=1

(
I∑
i=1

κr,i,nUi,n

) I∑
j=1

κt,j,nUj,n

 · (4.2)

√√√√ 1

1 + 4Σs,n,n
exp

(
−2 [µs,n − (Vr,n + Vt,n)/2]2

1 + 4Σs,n,n
− (Vr,n − Vt,n)2

2

)
.

It would be possible to rewrite it in tensor form, i.e. like (4.1), however this comes with four

drawbacks. First, rewriting such complicated expressions into tensor form by hand is error-

prone and hinders quick changes and experiments. Second, evaluating this expression in tensor

form requires temporary memory of at leastR2×S×N elements to store the intermediate values

of the square root before summation over r and t is performed. This may become prohibitive for

large tensors. The elementwise form (4.2) does not require that memory as the elements of the

occurring sums can be evaluated on the fly. Third, depending on the structure and the sizes of

the involved tensors, evaluating the tensor form can be computationally inefficient, especially

on GPUs. Since cache management on CUDA GPUs is manual and local to a compute kernel,

intermediate values (for example all elements of the square root) must be stored and then

retrieved from main graphics memory, because the computation of such an expression is split

over multiple compute kernels. Fourth, if the involved tensors are small, then an expression

like (4.2) will invoke many short-running compute kernels on GPUs. While the launch overhead

of a compute kernel is generally small, it becomes significant in that case and can even become

the performance limiting factor. Thus in this case it is desirable to evaluate (4.2) directly as

given in elementwise form, instead of translating it into tensor form.

While describing a method for efficient evaluation of such expressions on a GPU is not in

the scope of this thesis, we want to tackle a sub-problem that occurs when developing such an
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implementation. As already stated, training is usually performed using gradient descent and

thus derivatives of all expressions of a model are necessary. Frameworks that work on the tensor

level handle this by composing the derivative of an expression also at the tensor level, i.e. for

each tensor-level operation like dot product, broadcast or reshape, a corresponding tensor-level

operation to calculate the derivative is specified. If we work at the element level, we have to

follow a different strategy and derive derivative expressions that are also specified elementwise.

This might seems straightforward at first, but this is not the case, since the way how indices

appear on the arguments of such an elementwise defined function affects the derivative expres-

sion. Thus let us first review the issues that occur when handling such expressions on a few toy

examples.

For our applications it is necessary to derive an expression for the gradient of a loss func-

tion, for example l(a, b, c,d) = l(f(a, b, c,d)), with respect to model parameters a, b, c,d. This

derivatives will be denoted by (da)ik , ∂l/∂aik. When the mapping between function indices

and argument indices is not 1:1, special attention is required. For example, for the function

fij(x) = x2
i , the derivative of the loss w.r.t. x is (dx)i , ∂l/∂xi =

∑
j(df)ij 2xi; the sum is

necessary because index j does not appear in the indices of f . Another example is fi(x) = x2
ii,

where x is a matrix; here we have (dx)ij = δij (df)i 2xii; the Kronecker delta is necessary

because the derivative is zero for off-diagonal elements. Another indexing scheme is used by

fij(x) = expxi+j; here the correct derivative is (dx)k =
∑

i(df)i,k−i expxk, where the range

of the sum must be chosen appropriately.

In this chapter we present an algorithm that can handle any case in which the indices of

an argument are an arbitrary linear combination of the indices of the function, thus all of the

above examples are governed. Sums (and their ranges) and Kronecker deltas are automatically

inserted into the derivatives as necessary. Additionally, the indices are transformed, if required

(as in the last example). The algorithm outputs a symbolic expression that defines the derivative

elementwise and can thus be subsequently evaluated like form (4.2).

This work is also interesting outside the field of machine learning. For instance, recently

Kjolstad et al. (2017) proposed a “tensor algebra compiler” that takes elementwise expressions

of the form (4.2) and generates code to efficiently evaluate them. The algorithm presented

in this chapter can thus be combined with such a tensor algebra compiler to automatically

generate implementation code for an arbitrary elementwise expression and all its derivatives.

We first review the basic automatic differentiation algorithm (sections 4.1 and 4.2) and

necessary algorithms for integer matrix inversion and for solving systems of linear inequalities

(section 4.3). Then, in section 4.4, we show how to extend automatic differentiation to gener-

ate derivative expressions for elementwise defined tensor-valued functions. An example and

numeric verification of our algorithm are presented in section 4.5.
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Contributions to this Chapter

The method presented in this chapter was developed by me in the context of improving the computational

performance of GPNs. A prototype was implemented together with Marcus Basalla and extended by me.

4.1 Symbolic Reverse Accumulation Automatic Differentiation

Every function f can be written as a composition of elementary functions such as addition,

subtraction, multiplication, division, trigonometric functions, the exponential function, the log-

arithm and so on. For now let us assume that the elementary functions take one or more scalar

arguments, thus f will also be a function accepting scalar arguments. For example, the function

f(x1, x2) = exp(x1 + x2) can be written as f(x1, x2) = f1(f2(x1, x2)) with parts f1(t) = exp(t)

and f2(t1, t2) = t1 + t2. It is also possible that parts appear more than once in a function. As an

example f(x) = sin(x2)·cos(x2) can be decomposed into f(x) = f1

[
f2

(
f4(x)

)
, f3

(
f4(x)

)]
where

the parts f1(s, t) = s · t, f2(t) = sin(t), f3(t) = cos(t) are used once and f4(t) = t2 is used twice.

A decomposition of a function into parts can be represented by a computational graph, that is

a directed acyclic graph in which each node represents a function part fi and an edge between

two node represents that the target node is used as the value to an argument of the source

node. An exemplary computational graph for the function f(x) = f1

[
f2

(
f3

(
f4(x), f5(x)

))]
is

shown by the blue nodes in fig. 4.1.

Automatic differentiation (Rall, 1981) is based on the well-known chain rule, which states

that for a scalar function of the form f(x) = g(h(x)) the derivative can be written as

df

dx
=
∂g

∂h

∂h

∂x
.

Given a function f and its decomposition into parts fi, the following algorithm uses reverse

accumulation automatic differentiation to obtain a computational graph for the derivatives of

f . Since f(x) = f1(. . . ) the derivative of f w.r.t. f1 is

∂f

∂f1
= 1 . (4.3)

Then iteratively do the following: Find a part fi for which the derivative of all its consumers

is available but ∂f/∂fi is yet unknown. A part fc is a consumer of part fi, if fi occurs as a

direct argument to fc in the function f . Thus, in the graphical representation of f part fc is a

consumer of fi, if there exists an edge from fc to fi. Since the computational graph of a function

is acyclic, there will always exist a part fi for which this condition is fulfilled. Let csmr(fi) be
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f

f1

f2

f3

f4 f5

x

1
∂f
∂f1

df1
df2

·∂f
∂f2

df2
df3

·∂f
∂f3

· ∂f3
∂f4

∂f
∂f4

· df4
dx

∂f
∂x

+

·∂f3
∂f5

∂f
∂f5

·df5
dx

Figure 4.1: The blue nodes show a computational graph for the function f(x) =
f1

[
f2

(
f3

(
f4(x), f5(x)

))]
. Each node f1, f2, f3, f4, f5 represents a part of the function and each

edge represents an argument. By applying reverse accumulation automatic differentiation as
described in section 4.1 the computational graph for the derivatives (shown in red) is obtained.

the set of consumers of part fi. Following the chain rule, the derivative of f w.r.t. fi is given by

∂f

∂fi
=

∑
d∈csmr(fi)

∂f

∂fd

∂fd
∂fi

. (4.4)

Repeat this process until the derivatives w.r.t. all parts ∂f/∂fi have been calculated. Once

completed, the derivatives of f w.r.t. its arguments xj , j ∈ {1, . . . , n}, follow immediately,

∂f

∂xj
=

∑
d∈csmr(xj)

∂f

∂fd

∂fd
∂xj

. (4.5)

Note, that this algorithm requires a single pass only to complete the derivatives of f w.r.t. to all

of its arguments.

By performing this algorithm on the computational graph shown in blue in fig. 4.1, the

derivative represented by the red nodes and edges is obtained. The computation proceeds from

top to bottom in a breadth-first order of traversation. In general the partial derivatives of the
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function parts can depend on all of its arguments, as it can be seen in the dependencies of

the nodes for ∂f3/∂f4 and ∂f3/∂f5. Symbolic derivatives can be obtained from the resulting

computational graph by starting from the node ∂f/∂xi and following the dependencies until

reaching the leafs of the graph. However, for numerical evaluation it is more efficient to insert

numerical values for the parameters x into the graph and then evaluate it node by node. This

ensures that intermediate values are only computed once and thus the possibility of an expo-

nential blow up of the number of terms that can occur during classical symbolic differentiation

is avoided. To evaluate the derivative ∂f/∂x numerically, the function f(x) must be evaluated

followed by the derivatives of all parts. This corresponds to the forward and backward passes

of the backpropagation algorithm for neural networks.

An example of a computational graph and its derivative for the concrete function

f(x1, x2, x3) = sin
[

sin
(
x1 · (x2 + x3) + sinh(x2 + x3)

)]
is shown in fig. 4.2.
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f

sin1

sin2

+1

· sinh

x1 +2

x2 x3

1
∂f
∂ sin1

cos·∂f
∂ sin2

cos·∂f
∂+1

· 1∂f
∂ ·

·∂f
∂x1

·1 ∂f
∂ sinh

+

·cosh

·
∂f
∂+2

·1
∂f
∂x3

· 1
∂f
∂x2

Figure 4.2: A practical example for reverse accumulation automatic differentiation. The compu-
tational graph for the function f(x1, x2, x3) = sin

[
sin
(
x1 · (x2 + x3) + sinh(x2 + x3)

)]
is shown

in blue. The computational graph for the derivatives obtained by automatic differentiation is
shown in red. Note how intermediate values are reused automatically and the derivatives w.r.t.
different xi share most parts of the computational graph. Symbolic derivatives can be extracted
from the graph or it can be evaluated numerically by substituting values for x1, x2 and x3.
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4.2 Handling Multidimensional Functions

So far we have shown automatic differentiation for scalar functions. However, in the context of

ANNs and GPs we will mostly be dealing with functions that deal with tensor-valued functions.

While any tensor-valued function can be written as a scalar function by splitting it into separate

functions for each element of the tensor, it may be beneficial to directly work with tensor-

valued functions if the employed primitive operations work on matrices or tensors. For example

an ANN is defined as a series of dot products and elementwise applications of an activation

function.

Also some operations benefit directly from calculating all elements of a matrix simulta-

neously. Matrix multiplication is such an operation. Calculating each element of C = A · B
separately using Cij =

∑
k Aik Bkj requires a total of O(n3) operations where n is the size of

the square matrices A and B. Contrary to that, calculating the elements simultaneously can

be done in O(n2.807) using the Strassen algorithm (Strassen, 1969) or even more efficiently

in O(n2.375) using the Coppersmith-Winograd algorithm (Coppersmith et al., 1987).1 Thus we

will show how automatic differentiation is performed on multidimensional functions. To our

knowledge this is the working principle of the derivation functions in frameworks like Theano

and TensorFlow.

For functions working in two- or higher dimensional space, we use the vectorization op-

erator vec to transform them into vector-valued functions. For a D-dimensional tensor A ∈
RN1×N2×···×ND the vectorization operator is defined elementwise by

(vecA)∑
d sdid

, Ai1,i2,...,iD , id ∈ {1, . . . , Nd} , (4.6)

where the strides s are given by

sd ,
d∏
b=2

Nb−1 .

As an example, for a matrix A ∈ RN×M this operator takes the columns of the matrix and stacks

them on top of one another,

vecA =
(
A11, A21, . . . , AN1, A12, A22, . . . , AN2, . . . , A1M , A2M , . . . , ANM

)T
.

Thus the derivatives of a tensor-valued function F : RN1×N2×···×ND → RM1×M2×···×MD′ can

be dealt with by defining a helper function F̂ : RN1N2···ND → RM1M2···MD′ with F̂ (vecX) =

1While these algorithms are asymptotically faster than naive matrix multiplication, they also have a larger
constant factor in their running time that is not captured by the big O notation. Therefore in practice they are only
beneficial for matrices larger than a certain size.
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vecF (X) and considering the derivatives of this vector-valued function F̂ instead.

It remains to show how to apply automatic differentiation to vector-valued functions. To do

so, let us first see how the chain rule works on vector-valued functions. Consider two functions,

g : RK → RN and h : RM → RK , and a composite function f : RM → RN with f(x) , g(h(x)).

By expanding g(r) as g(r1, r2, . . . , rK) and h(x) as
(
h1(x), h2(x), . . . , hK(x)

)T we can write

fi(x) = gi
(
h1(x), h2(x), . . . , hK(x)

)
and apply the chain rule on each argument of gi, resulting in

∂fi
∂xj

=

K∑
k=1

∂gi
∂hk

∂hk
∂xj

. (4.7)

By introducing the Jacobian (
df

dx

)
ij

,
∂fi
∂xj

we can rewrite (4.7) as a vectorized equation,

df

dx
=
∂g

∂h
· ∂h
∂x

, (4.8)

and thus obtain the chain rule for vector-valued functions. As we see, it is like the chain rule

for scalars but with scalar multiplication replaced by matrix multiplication.

The algorithm for automatic differentiation for vector-valued functions is thus equal to

scalar automatic differentiation described in section 4.1, but with eq. (4.3) replaced by

∂f

∂f1
= 1 (4.9)

and eq. (4.4) replaced by
∂f

∂fi
=

∑
d∈csmr(fi)

∂f

∂fd
· ∂fd
∂fi

. (4.10)

For many common operations the size of the Jacobian ∂fd/∂fi may become very large. For

example, the Jacobian of a matrix multiplication is of size n4 for two matrices of size n × n.

However, since most elements are indeed zero, it is possible and vastly more efficient to directly

compute the product (∂f/∂fd) · (∂fd/∂fi) without explicitly evaluating the Jacobian. This is

also the case for all elementary operations that work elementwise, such as addition, subtraction

and the Hadamard product, which result in a diagonal Jacobian matrix. Consequently the

explicit form (4.10) should only be used as a fall-back when such a shortcut computation is not
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available.

4.3 Systems of Integer Equalities and Inequalities

This section reviews methods to solve systems of integer equalities and inequalities. The algo-

rithms presented here are a prerequisite to compute the elementwise derivative expressions of

tensor-valued functions, which will be described in the following section.

4.3.1 Systems of Linear Integer Equations

Consider a system of linear equations

A11 x1 +A12 x2 + · · ·+A1m xm = b1

A21 x1 +A22 x2 + · · ·+A2m xm = b2

...
...

...
...

An1 x1 +An2 x2 + · · ·+Anm xm = bn ,

with integer coefficients A ∈ ZN×M , integer variables x ∈ ZM and integer targets b ∈ ZN . In

matrix notation this system can be expressed much briefer as

Ax = b . (4.11)

To determine the set of solutions the matrix A must be transformed into Smith normal form,

which is a diagonal matrix of the form

S = diag(α1, α2, . . . , αR, 0, . . . , 0) (4.12)

with the property that

αi | αi+1, 1 ≤ i < r , (4.13)

where a | b should be read as “a divides b”. Analogously a - b should be read as “a does not

divide b”. The number of non-zero entries R in the diagonal corresponds to the rank of A. It can

be shown (Adkins et al., 1999) that for each non-zero matrix A ∈ ZN×M there exist invertible

matrices U ∈ ZN×N and V ∈ ZM×M so that

S = U AV (4.14)
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where S ∈ ZN×M is the Smith normal form of A. Using the Smith normal form, the equation

system (4.11) can be rewritten as

S x′ = b′ (4.15)

with

x = V x′ , b′ = U b . (4.16)

Since S is diagonal, the solutions can be read off from (4.15), as we describe in the following.

For rows of S that are zero the corresponding entries of b′ must also be zero, otherwise

the equation system would be inconsistent and no solution exists. Thus for the system to be

solvable we must have

C b = 0 (4.17)

where C ∈ Z(N−R)×N with Cij = UR+i,j is the sub-matrix consisting of the rows R+ 1 to N of

U . It is called the cokernel of A.

For each non-zero entry αi of S we must have

x′i =
b′i
αi

(4.18)

and thus a solution exists only if b′i is dividable by αi. We can define a so-called pseudo-inverse

I : QM×N by

I , V S† U (4.19)

where S† ∈ QN×M is defined by

S† = diag(1/α1, 1/α2, . . . , 1/αR, 0, . . . , 0) , (4.20)

with the factors αi given by (4.12). This pseudo-inverse has the property that AI A = A. Thus,

for every b that is in the cokernel of A, we can obtain an x so that Ax = b is fulfilled by setting

x = I b.

For the columns of S that are zero the corresponding entries of x′ do not affect the value

of b′. Consequently, the columns of the matrix K ∈ ZM×(M−R), with Kij = Vi,R+j , are a basis

for the kernel (also called null-space) of A. This means that AK = 0 and thus for every b that

is in the cokernel of A we can write b = A(I b+K z) where z ∈ ZM−R is a vector of arbitrary

integers.

In summary, the equation system Ax = b has no integer solution for a particular b, if

C b 6= 0 or I b /∈ ZN . Otherwise, if A has full rank, that is R = N = M , a unique integer

solution exists, determined by x = I b. If A has non-full rank, infinitely many integer solutions



88 CHAPTER 4. ELEMENTWISE AUTOMATIC DIFFERENTIATION

exist and are given by x = I b+K z where z ∈ ZM−R is a vector of arbitrary integers.

Computation of the Smith Normal Form

An algorithm (H. S. Smith, 1860) that, given a matrix A, computes the Smith normal form

S and two matrices U and V , such that S = U AV is shown in algorithm 8. The algorithm

transforms the matrix A into Smith normal form by a series of elementary row and column

operations. Matrices U and V are initialized to be identity matrices and the same row and

column operations are applied to them, so that in the end the relation S = U AV holds. Since

all operations are elementary, it follows that U and V are invertible as required. By following

the description of the algorithm it is clear that the resulting matrix S will be diagonal and fulfill

the property (4.13). To find the factors β, σ and τ of Bézout’s identity in steps 10 and 19 the

extended Euclidean algorithm (Knuth, 1997) is used, which is presented in algorithm 9.

What remains to be shown is that the described algorithm terminates. With each iteration

of the loop in step 9 the absolute value of the element Saa decreases, because it is replaced

with the greatest common divisor (GCD) of itself and another element. Thus, this loop will

terminate since, in worst case, Saa = +1 or Saa = −1 will divide all following rows and columns.

The same argument holds, when the matrix must be rediagonalized due to the execution

of step 36. It is easy to verify that the first diagonalization step executed thereafter will set

Saa = gcd(Saa, Sa+1,a+1) and thus the absolute value of Saa decreases. Thus, in the worst case,

the loop terminates as soon as S11 = S22 = · · · = SR−1,R−1 = 1, which then divides SRR.
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Algorithm 8: Smith normal form of an integer matrix

Input: non-zero matrix A ∈ ZN×M
Output: Smith normal form S ∈ ZN×M , invertible matrices U ∈ ZN×N , V ∈ ZM×M , rank

R

1 U ←− 1N ; V ←− 1M // initialize U and V with identity matrices
2 S ←− A // initialize S with A
3 a←− 1 // initialize active row and column
4 while ∃i, j : i ≥ a ∧ j ≥ a ∧ Sij 6= 0 do // diagonalize S

// Bring non-zero pivot element into position Saa
5 Simultaneously S?a ←− S?j and S?j ←− S?a
6 Simultaneously V?a ←− V?j and V?j ←− V?a
7 Simultaneously Sa? ←− Si? and Si? ←− Sa?
8 Simultaneously Ua? ←− Ui? and Ui? ←− Ua?
9 while S is changing do // zero all elements below and right of Saa

10 while ∃i : i > a ∧ Saa - Sia do // ensure divisibility of rows
11 Find β, σ, τ so that β = gcd(Saa, Sia) = σ Saa + τ Sia. // algorithm 9
12 γ ←− Sia

β ; α←− Saa
β

13 Simultaneously Sa? ←− σ Sa? + τSi? and Si? ←− −γ Sa? + αSi?
14 Simultaneously Ua? ←− σ Ua? + τUi? and Ui? ←− −γ Ua? + αUi?

15 while ∃i : i > a ∧ Sia 6= 0 do // eliminate first element of rows
16 f ←− Sia

Saa

17 Si? ←− Si? − f Sa?
18 Ui? ←− Ui? − f Ua?
19 while ∃j : j > a ∧ Saa - Saj do // ensure divisibility of columns
20 Find β, σ, τ so that β = gcd(Saa, Saj) = σ Saa + τ Saj . // algorithm 9

21 γ ←− Saj
β ; α←− Saa

β

22 Simultaneously S?a ←− σ S?a + τS?j and S?j ←− −γ S?a + αS?j
23 Simultaneously V?a ←− σ V?a + τV?j and V?j ←− −γ V?a + αV?j

24 while ∃j : j > a ∧ Saj 6= 0 do // eliminate first element of columns
25 f ←− Saj

Saa

26 S?j ←− S?j − f S?a
27 V?j ←− V?j − f V?a
28 a←− a+ 1 // next diagonal element

29 R←− a− 1 // rank is number of non-zero diagonal elements
30 for a ∈ {1, . . . , R} do
31 if Saa < 0 then // ensure positive diagonal
32 S?a ←− −S?a
33 V?a ←− −V?a
34 if a ≤ R− 1 ∧ Saa - Sa+1,a+1 then // ensure divisibility constraints
35 S?a ←− S?a + S?,a+1

36 V?a ←− V?a + V?,a+1

37 Go back to step 4.
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Algorithm 9: Extended Euclidean algorithm
Input: positive numbers a ∈ Z+, b ∈ Z+

Output: factors x ∈ Z, y ∈ Z, z ∈ Z fulfilling Bézout’s identity z = gcd(a, b) = a x+ b y

1 r0 ←− a ; r1 ←− b
2 s0 ←− 1 ; s1 ←− 0
3 t0 ←− 0 ; t1 ←− 1
4 i←− 1
5 while ri 6= 0 do
6 q ←− ri−1

ri
// integer division

7 ri+1 ←− ri−1 − q ri
8 si+1 ←− si−1 − q si
9 ti+1 ←− ti−1 − q ti

10 i←− i+ 1

11 z ←− ri−1; x←− si−1; y ←− ti−1
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4.3.2 Systems of Linear Inequalities

Consider a system of linear inequalities

A11 x1 +A12 x2 + · · ·+A1M xM ≥ b1
A21 x1 +A22 x2 + · · ·+A2M xM ≥ b2

...
...

...
... (4.21)

AN1 x1 +AN2 x2 + · · ·+ANM xM ≥ bN ,

with coefficients A ∈ RN×M , variables x ∈ RM and biases b ∈ RN . Note that this notation can

also describe equalities by including the same line twice, where one occurrence is multiplied by

−1 on both sides. In matrix notation this inequality system can be expressed much briefer as

Ax ≥ b . (4.22)

The objective is to transform the inequality system into the form

max(LMb) ≤ xM ≤ min(HMb) (4.23a)

max(LM−1b+ L̂M−1xM ) ≤ xM−1 ≤ min(HM−1b+ ĤM−1xM ) (4.23b)

max(LM−2b+ L̂M−2xM−1 ...M ) ≤ xM−2 ≤ min(HM−2b+ ĤM−2xM−1 ...M ) (4.23c)
...

...
...

...

max(L2b+ L̂2x3 ...M ) ≤ x2 ≤ min(H2b+ Ĥ2x3 ...M ) (4.23d)

max(L1b+ L̂1x2 ...M ) ≤ x1 ≤ min(H1b+ Ĥ1x2 ...M ) , (4.23e)

so that the range of each element xi can be determined sequentially. Here xi ... j should be read

as the subvector of x starting at element i and including all elements up to (including) element

j. Furthermore min z and max z mean the minimum or maximum element of a vector z. The

transformed system should be tight in the sense that given a subvector xM−s ...M which satisfies

the first s+ 1 inequalities there must exist remaining elements x1 ...M−s−1 so that x satisfies all

inequalities. This is equivalent to demanding that the transformed inequalities must not allow

values for an element xi so that the ranges of allowed values for other elements of x become

empty. Obviously the matrices Li, L̂i, H i and Ĥ i depend on A and must be determined.

Multiplying an inequality by a positive, non-zero factor will result in an equivalent system,

where equivalent means that it has exactly the same set of solutions as the original system.

Thus, by dividing each line i with Ai1 6= 0 by the factor |Ai1| and rearranging, we can bring a
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system of the form (4.21) into the equivalent form

x1 +

M∑
j=2

Dhjxj ≥ dh , h ∈ {1, . . . ,H} , (4.24a)

−x1 +
M∑
j=2

Ekjxj ≥ ek , k ∈ {1, . . . ,K} , (4.24b)

M∑
j=2

Fljxj ≥ fl , l ∈ {1, . . . , L} , (4.24c)

with H+K+L = N . It is clear that adding two inequalities will not reduce the set of solutions,

i.e. if x is a solution to the inequalities aTx ≥ α and bTx ≥ β, then x is also a solution to the

inequality (a + b)Tx ≥ α + β. Consequently by adding each inequality from (4.24a) to each

inequality from (4.24b) and dropping the used inequalities we arrive at the reduced system

with x1 eliminated,

M∑
j=2

(Dhj + Ekj)xj ≥ dh + ek , h ∈ {1, . . . ,H}, k ∈ {1, . . . ,K} , (4.25a)

M∑
j=2

Fljxj ≥ fl , l ∈ {1, . . . , L} , (4.25b)

which has at least the solutions x of the original system consisting of (4.24). Fourier and

Motzkin (G. B. Dantzig and Eaves, 1973) observed that both systems are indeed equivalent. To

verify this, we have to show that for each solution x2···M of (4.25), there exists x1 so that the

combined x satisfies (4.24). From (4.24a) and (4.24b) we see that an x1 satisfying the original

system is given by

min
k

 M∑
j=2

Ekjxj − ek

 ≥ x1 ≥ max
h

− M∑
j=2

Dhjxj + dh

 (4.26)

and rewriting (4.25a) as

M∑
j=2

Ekjxj − ek ≥ −
M∑
j=2

Dhjxj + dh , h ∈ {1, . . . ,H}, k ∈ {1, . . . ,K} (4.27)

shows that an x1 with this property exists if the reduced system is satisfied.

By iteratively applying the reduction method just described, we can sequentially eliminate

x1, x2 and so on up to xM , as long as there exists at least one pair of inequalities with opposite
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signs for a specific xi. If this is not the case, then the remaining xi+1 ...M are not affected by

these inequalities since a value for xi can always be found after determining xi+1 ...M because

xi is bounded from one side only; consequently when xi occurs with positive or negative sign

only, all inequalities containing xi can be dropped to progress with the elimination. After xM
has been eliminated, what remains is a system of constant inequalities of the form

0 ≥ fl , l ∈ {1, . . . , L} . (4.28)

If these inequalities contain a contradiction, i.e. if any fl is positive, the original system of

inequalities is inconsistent and the set of solutions for x is empty.

This elimination method gives rise to algorithm 10 which has been adapted from (G. Dantzig,

2016; G. B. Dantzig and Thapa, 2006a,b) to work on matrix A only and thus solving the

system of inequalities for arbitrary b. The algorithm produces matrices Li, H i and L̂i, Ĥ i for

i ∈ {1, . . . ,M} that can be inserted into the inequalities (4.23) to subsequently obtain the

ranges for each element of x. It also outputs the feasibility matrix F , with the property that if

Fb ≤ 0, then there exist a solution for a particular b.
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Algorithm 10: Fourier-Motzkin elimination for a system of linear inequalities Ax ≥ b
Input: matrix A ∈ RN×M
Output: matrices Li, H i and L̂i, Ĥ i for i ∈ {1, . . . ,M} for use in (4.23); feasibility

matrix F

1 B ←− 1N // initialize B with identity matrix
2 for k ∈ {1, . . . ,M} do // loop over variables to eliminate

// divide each row i by |Aik|
3 for i ∈ {1, . . . N} do
4 if Aik 6= 0 then
5 Ai? ←− 1

|Aik| Ai?

6 Bi? ←− 1
|Aik| Bi?

// extract solution matrices
7 ζ ←− {i ∈ Z | Aik = 0}; φ←− {i ∈ Z | Aik = +1}; µ←− {i ∈ Z | Aik = −1}
8 S ←− − columns {k + 1, . . . ,M} of A
9 Lk ←− rows φ of B; Hk ←− − rows µ of B

10 L̂k ←− rows φ of S; Ĥk ←− − rows µ of S

// eliminate xk
11 if φ = ∅ ∧ µ = ∅ then

// xk does not occur, nothing to eliminate

12 else if φ = ∅ ∨ µ = ∅ then
// xk occurs with coefficient +1 or −1 only

13 A←− rows ζ of A; B ←− rows ζ of B

14 else
// xk occurs with coefficients +1 and −1

15 A′ ←− rows ζ of A; B′ ←− rows ζ of B
16 for p ∈ φ do
17 for n ∈ µ do
18 A′ ←− A′ with row Ap? +An? appended
19 B′ ←− B′ with row Bp? +Bn? appended

20 A←− A′; B ←− B′

21 F ←− B // inequalities with no variables left
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4.4 Elementwise-Defined Functions and their Derivatives

We introduce the situations that can occur when calculating the derivatives of elementwise-

defined tensors using the following set of examples. Then we will describe a general method

to derive expressions for the derivatives of elementwise-defined tensors, where the indices

of the arguments are an arbitrary linear combination of the indices of the function output.

Summations within these expressions are allowed.

Consider the vector-valued function f1 : RN → RN , that is defined by specifying how each

element of f1(x) depends on the elements of its arguments x. For example, a very simple

example for such a function is

f1
i (x) = sinxi .

Here it is straightforward to see that its Jacobian is given by

∂f1
i

∂xi′
= δi,i′ cosxi′

since element i of f1 only depends by element i of its arguments x. Hence, the Kronecker delta

was introduced in the above expression to make sure that ∂f1
i /∂xi′ = 0 for i 6= i′.

Further assume that f is part of a scalar function l with l(x) = g(f(x)) and the derivatives

of l w.r.t. the elements of x are to be derived. The derivatives ∂g/∂fi are supposed to be known.

Let us introduce the notation

d•α =
∂l

∂•α
for the derivatives of l w.r.t. an element of a variable or function. In the context of deep

learning this is the derivative we are usually interested in, since it provides the gradient of a

loss function l and is thus used for minimization of the loss. The explicit computation of the

Jacobians ∂fi/∂xj is usually not of interest since it wastes space. We obtain for our function

f1(x),

df1
i′ =

∑
i

∂g

∂f1
i

∂f1
i

∂xi′
=
∑
i

dgi δi,i′ cosxi = dgi′ cosxi′ .

Let us now consider a slightly more complicated example given by the function f2 : RN ×
RN×N → RN×N of two arguments with the elementwise specification

f2
ij(x, y) = xi yij .
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The (extended) Jacobians w.r.t. x and y are given by

∂f2
ij

∂xi′
= δi,i′ yi′j ,

∂f2
ij

∂yi′j′
= δi,i′ δj,j′ xi′ ,

where the derivative w.r.t. x does not contain a Kronecker delta for index j, since it is not used

to index variable x. Consequently application of the chain rule gives the following derivatives

of l,

dxi′ =
∑
j

dgi′j yi′j , dyi′j′ = dgi′j′ xi′ ,

where the lack of index j on variable x has lead to a summation over this index.

Another situation is demonstrated by the function f3 : RN×N → RN with

f3
i (x) = x3

ii .

The Jacobian,
∂f3

i

∂xi′j′
= δi,i′ δi,j′ 3x

2
i′j′ ,

now contains two Kronecker deltas for the index i to express that i = i′ = j′ must hold so that

the derivative is non-zero. This leads to the derivative of l,

dxi′j′ = δi′,j′ dgi′ 3x
2
i′j′ ,

which now contains a Kronecker delta itself, since it has not been canceled out by a correspond-

ing summation.

A good example for a function containing a summation over its arguments is the matrix dot

product,

f4
ij(x, y) =

∑
k

xik ykj ,

which has the (extended) Jacobians

∂f4
ij

∂xi′k′
= δi,i′

∑
k

δk,k′ ykj ,
∂f4

ij

∂yk′j′
= δj,j′

∑
k

δk,k′ xik .



4.4. ELEMENTWISE-DEFINED FUNCTIONS AND THEIR DERIVATIVES 97

Thus the derivatives of l evaluate to

dxi′k′ =
∑
i

∑
j

dgij δi,i′
∑
k

δk,k′ ykj =
∑
j

dgi′j yk′j ,

dyk′j′ =
∑
i

∑
j

dgij δj,j′
∑
k

δk,k′ xik =
∑
i

dgij′ xik′ .

Note that the summation indices of the derivatives have changed over from k to j and i

respectively.

Finally consider the situation where the indices of the argument are given by a linear

combination of the function indices, as demonstrated by f5 : RN×M → RNM with

f5
ij(x) = expxMi+j .

These indexing scheme could, for example, be used to reshape a vector organized in row-major

form into a matrix. Its Jacobian is straightforward to express,

∂f5
ij

∂xi′
= δMi+j,i′ expxMi+j ,

however to efficiently express the derivative of l,

dxi′ =
∑
i

∑
j

dgij δMi+j,i′ expxMi+j ,

the occurring Kronecker delta should be combined with one of the sums, because one of them

is redundant. To do so it is necessary to solve the equation Mi+ j = i′ for j, which is trivial in

this example. The solution is given by j = i′ −Mi and after substitution this results in

dxi′ =
∑
i

dgi,i′−Mi expxi′ .

We have seen that, depending on the constellation of indices of the arguments of a element-

wise-defined function, the derivative will either introduce additional summations, drop existing

summations, introduce Kronecker deltas or even require substitution of the solution of a linear

equation system into the indices or a combination of these things.

4.4.1 Computing Elementwise Derivative Expressions

We first describe the method without accounting for summations inside the function and reintro-

duce them later. Generally the problem of computing expressions for elementwise derivatives
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can be stated as follows. Let α = (α1, α2, . . . , αDf ) be a multi-index and let the tensor-valued

function f : RN
1
1×···×N1

D1 ×· · ·×RN
P
1 ×···×NP

DP → RN
f
1×···×N

f
Df taking P tensor arguments called

x1, x2, . . . , xP be specified elementwise,

fα(x1, x2, . . . , xP ) , f(x1
A1α, x

2
A2α, . . . , x

P
APα) , (4.29)

where each matrix Ap : ZDf → ZDp maps from the indices of f to the indices of its argument

xp. Such a linear transform covers all the cases shown in the introductory examples. If the same

argument xp should appear multiple times with different indices, we shall treat it as different

arguments (by renaming the different occurrences) and sum over the resulting expressions

for the derivatives after they have been obtained. Note that f : R × · · · × R → R is a scalar

function. Furthermore let g : RN
f
1×···×N

f
Df → R be a scalar-valued function and let l = g ◦ f .

Let df ∈ RN
f
1×···×N

f
Df be the tensor of derivatives of l w.r.t. the elements of f , thus by above

definition

dfα =
∂l

∂fα
=

∂g

∂fα
. (4.30)

The objective is to obtain expressions that specify the derivatives of l w.r.t. the elements of each

xp elementwise, i.e.

dxpβp =
∂l

∂xpβp
(4.31)

where βp = (βp1 , β
p
2 , . . . , β

p
Dp

) is a multi-index enumerating the elements of xp.

Applying the chain rule to (4.31) gives

dxpβp =
∂l

∂xpβp
=

∑
1≤α≤Nf

Apα=βp

∂l

∂fα

∂fα
∂xpβp

=
∑

α∈Γ(βp)

dfα
∂f

∂xpApα
(4.32)

and since f is a scalar function, computing the scalar derivative ∂f/∂xpApα is straightforward

using the strategy described in section 4.1. Thus the main challenge is to efficiently evaluate

the summation over the set

Γ(βp) , {α ∈ ZDf | 1 ≤ α ≤N f ∧ Apα = βp} , (4.33)

i.e. find all integer vectors α that fulfill the relation Apα = βp and lie within the range 1 ≤
α ≤N f determined by the shape of f .
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An elementary approach is to rewrite eq. (4.32) as

dxpβp =

N1∑
α1=1

· · ·
N
Df∑

αDf=1

δApα−βp dfα
∂f

∂xpApα
(4.34)

where the single-argument Kronecker delta is given by δt = 0 for t 6= 0 and δ0 = 1. Thus for

each index α of f we test explicitly if it contributes to the derivative of index βp of argument xp

and if so, we include that element in the summation. By evaluating (4.34) for all βp in parallel

the cost of iterating over α can be amortized over all elements of dxp. However, if multiple

threads are used to perform this iteration, as it is required to gain acceptable performance

on modern GPUs, locking becomes necessary to serialize writes to the same element of dxp.

If Ap has low rank, write collisions on dxpApα become likely, leading to serialization and thus

considerable performance loss.2 Another drawback of this approach is that even if only a subset

of elements of the derivative dxp are required, the summation must always be performed over

the whole range of α. Furthermore, while not being of great importance for minimization of

loss functions in machine learning, it is regrettable that no symbolic expression for dxpβp is

obtained using this method.

For these reasons it is advantageous to find a form of the set (4.33) that directly enumerates

all α belonging to a particular βp. This requires solving Apα = βp for α. In general, a set of

linear equations with integer coefficients over integer variables, has either none, one or infinitely

many solutions. The set of solutions can be fully described using the pseudo-inverse, cokernel

and kernel. Thus, let I be the pseudo-inverse, C the cokernel and K the kernel of the integer

matrix A as defined in section 4.3.1. Using these matrices we can rewrite (4.33) as

Γ(βp) = {Iβp +Kz | Cβp = 0 ∧ Iβp ∈ ZDf ∧ z ∈ Zκ ∧ 1 ≤ Iβp +Kz ≤N f} , (4.35)

where κ is the dimensionality of the kernel of A. The conditions Cβp = 0 and Iβp ∈ ZDf

determine whether the set is empty or not for a particular βp and since they are independent

of z, they only need to be checked once for each βp. Thus if these conditions do not hold,

we can immediately conclude that dxpβp = 0. Otherwise, in order to further simplify the set

specification, we need to find the elements of the set

Σ(βp) , {z ∈ Zκ | 1 ≤ Iβp +Kz ≤N f} (4.36)

2The CUDA programming guide (Nvidia, 2017) is vague about the performance penalties associated with atomic
addition to the same memory address from within multiple threads. Nonetheless, experiments (Farzad, 2013;
yidiyidawu, 2012) show that performance can be degraded by up to a factor of 32 due to locking and resulting
serialization.
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containing all z that generate values for α within its valid range. Since α(z) = Iβp + Kz is

an affine transformation, the set Σ(βp) must be convex. By rewriting the system of inequalities

defining the set Σ(βp) as

K z ≥ 1− Iβp (4.37a)

−K z ≥ −N f + Iβp (4.37b)

we can apply the Fourier-Motzkin algorithm described in section 4.3.2 to obtain the boundaries

of the convex set in closed form. The Fourier-Motzkin algorithm produces matrix Li, H i and

L̂i, Ĥ i so that (4.36) can be written as

Σ(βp) = {z ∈ Zκ |dmax(Lκb)e ≤ zκ ≤ bmin(Hκb)c ∧
dmax(Lκ−1b+ L̂κ−1zκ)e ≤ zκ−1 ≤ bmin(Hκ−1b+ Ĥκ−1zκ)c ∧
· · · ∧
dmax(L1b+ L̂1z2 ... κ)e ≤ z1 ≤ bmin(H1b+ Ĥ1z2 ... κ)c} (4.38)

where

b(βp) ,

[
1− Iβp

−N f + Iβp

]
and b•c and d•e are the floor and ceiling respectively. Since the Fourier-Motzkin algorithm

executes independently of the value of b, the computationally intensive procedure of comput-

ing the matrices Li, H i and L̂i, Ĥ i is only done once for each kernel matrix K. Afterwards,

computing the boundaries for a particular index βp requires only four matrix multiplications

per dimension and the determination of the minimum and maximum value of a vector.

An example for a one-dimensional kernel, i.e. line, is shown in fig. 4.3. In this case (4.38)

consists of only one condition for z1 and describes the part of the line that is inside the range

specified by 1 ≤ α ≤N f . Another example, this time for a two-dimensional kernel, i.e. plane,

is shown in fig. 4.4. Due to the choice of the kernel basis, the range specified by 1 ≤ α ≤N f

becomes a parallelogram in the domain of the kernel and thus the resulting ranges for z1 and

z2 are dependent on each other.

Since we have the convex set

Γ(βp) = {Iβp +Kz | Cβp = 0 ∧ Iβp ∈ ZDf ∧ z ∈ Σ(βp)}
= {Iβp +Kz | Cβp = 0 ∧ z ∈ Σ(βp)} , (4.39)

where we were able to drop the integer condition on Iβp, because it is redundant to Σ(βp)



4.4. ELEMENTWISE-DEFINED FUNCTIONS AND THEIR DERIVATIVES 101

α1

α2

−1 0 1 2 3 4 5 6 7

1

2

3

4

5

•

•

•

•

K

•Iβ
× l

×h

Figure 4.3: A one-dimensional parameter index β driven by a two-dimensional function index
α shown in α-space. The one-dimensional index of x is given by β = Aα with A =

(
1 −2

)
.

This yields α = Iβ + Kz with the pseudo-inverse IT =
(
1 0

)
and one-dimensional kernel

KT =
(
2 1

)
. For β =

(
−1
)

the set of possible values for α lies on the marked line with
direction vector given by the kernel K. This set is limited by the requirement that α must
be integer, thus only the marked points on the line are valid values for α. Furthermore the
constraint (4.36) imposed by the range of α requires valid values to lie between the points
marked l and h. Thus values for z as allowed by (4.38) are Σ(

(
−1
)
) = {z ∈ Z | 1 ≤ z ≤ 3},

corresponding to the three points on the line inside the rectangle.

being not empty, we can now expand the sum (4.32) and thus write down an explicit expression

for dxpβp . This gives

dxpβp = δCβp
bmin(Hκb)c∑

zκ=dmax(Lκb)e

bmin(Hκ−1b+Ĥκ−1zκ)c∑
zκ−1=dmax(Lκ−1b+L̂κ−1zκ)e

· · ·

bmin(H1b+Ĥ1z2 ... κ)c∑
z1=dmax(L1b+L̂1z2 ... κ)e

dfIβp+Kz
∂f

∂xpApα

∣∣∣∣
α=Iβp+Kz

, (4.40)

in which no Kronecker delta occurs within the sums and thus all iterations are utilized. The

evaluation of the sums can be parallelized without difficulty and no synchronization is necessary

for writes to dxpβp since in this form one thread can be used per element of dxp.

4.4.2 Handling Expressions Containing Sums

As mentioned earlier we also want to handle expressions that contain summations over one

or more indices. For this purpose consider a function containing a summation depending on
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(b) in z-space

Figure 4.4: A one-dimensional parameter index β driven by a three-dimensional function index
α. (a) This shows α-space as a cut through the α1-α2 plane, i.e. the α3-axis is perpendicular
to this drawing. The one-dimensional index of x is given by β = Aα with A =

(
1 −2 −2

)
.

This yields α = Iβ + Kz with the pseudo-inverse I =

1
0
0

. A possible choice for the two-

dimensional kernel is K =

2 0
1 1
2 1

. For β =
(
3
)

the set of possible values for α is given by the

sum of Iβ and integer linear combinations of the columns of the kernel matrixK. The constraint
(4.36) imposed by the range of α requires valid values to lie inside the red rectangle. (b) By
mapping this rectangle into the domain of the kernel, i.e. z-space, we obtain a parallelogram.
Thus values for z as allowed by (4.38) are the integer points that lie within this parallelogram,
i.e. Σ(

(
3
)
) = {z ∈ Z | −1 ≤ z2 ≤ 5 ∧ max(−1,−z2) ≤ z1 ≤ min(1, 4 − z2)} corresponding to

the 15 points inside the rectangle in α-space. This causes the range of z1 to become dependent
on the value of z2.
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arguments y1, . . . , yP
′
. It can be written in the form

fα(y1, . . . , yP
′
, x1, . . . , xP ) = f

(
s(y1, . . . , yP

′
), x1

A1α, . . . , x
P
APα

)
(4.41)

with

s(y1, . . . , yP
′
) =

∑
k∈Ψ

s(y1
Â1α̂

, . . . , yP
′

ÂP ′ α̂
) (4.42)

where s : R × · · · × R → R and α̂ ,
[
α k

]
and Âp

′
: ZDf+1 → ZDp′ and Ψ ⊂ Z is a convex

integer set. Using the chain rule to calculate the derivative of l (defined as before) w.r.t. yp
′

βp
′

gives

dyp
′

βp
′ =

∂l

∂yp
′

βp
′

=
∑

1≤α≤Nf

∂l

∂fα

∂fα

∂yp
′

βp
′

=
∑

1≤α≤Nf

dfα
∂f

∂s

∑
k∈Ψ

Âp
′
α̂=βp

′

∂s

∂yp
′

Âp′ α̂

=
∑

1≤α≤Nf

k∈Ψ

Âp
′
α̂=βp

′

dfα
∂f

∂s

∂s

∂yp
′

Âp
′
α̂

=
∑
α̂∈Γ̂

dfα
∂f̂

∂yp
′

Âp
′
α̂

(4.43)

with the “sum-liberated” scalar function

f̂(y1
Â1α̂

, . . . , yP
′

ÂP ′ α̂
, x1

A1α, . . . , x
P
APα) , f

(
s(y1

Â1α̂
, . . . , yP

′

ÂP ′ α̂
), x1

A1α, . . . , x
P
APα

)
(4.44)

and the “sum-extended” multi-index set

Γ̂ ,

{[
α k

] ∣∣∣∣α ∈ ZDf ∧ k ∈ Ψ ∧ 1 ≤ α ≤N f ∧ Âp′
[
α k

]
= βp

′
}
. (4.45)

Note that (4.43) equals the original expression for the derivative (4.32) but with f replaced

by f̂ , which is the same as f but with the sum symbol removed, and Γ replaced by Γ̂, which

additionally includes the conditions on k from the summation range.

Thus handling summations can be done using the previously described strategy for deriva-

tion by extending it as follows. Each sum symbol (!) in the function f to be derived is removed,

its summation index is appended to the multi-index α of f and its summation range is included

as an additional constraint in the set Γ. This process is iterated for nested sums. When indexing

into df the additional indices in α introduced by sums are ignored.
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4.4.3 Elementwise Derivation Algorithm

Combining the concepts described so far algorithm 11 computes expressions for derivatives

dxpβp = ∂l/∂xpβp of a elementwise defined function f .

Since the summation ranges (4.38) in the produced derivative are of the same form as

the index ranges (4.36) of the input function and we have shown in section 4.4.2 how to

handle summations in the input function, we can iteratively apply the derivation algorithm

on derivative functions to obtain second and higher order derivatives. Therefore the set of

elementwise defined functions using linear combination of indices for its arguments is closed

under the operation of derivation.

If an explicit expression for the Jacobian ∂fα′/∂xpβp is desired, it can be obtained from dxpβp

by substituting

dfα ,
∏
d

δαd,α′d

into it.
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Algorithm 11: Elementwise expression derivation
Input: elementwise defined tensor-valued function f taking P tensor arguments

x1, . . . , xP ; expression of derivative dfα , ∂l/∂fα
Output: expression of derivatives w.r.t. arguments dxpβp , ∂l/∂xpβp

1 for p ∈ {1, . . . , P} do // loop over arguments xp

2 dxpβp ←− 0

3 for q ∈ {1, . . . , Qp} do // loop over index expressions for xp

// compute derivative expression w.r.t. xpApqα using reverse
accumulation automatic differentiation (sec. 4.1)

4 ∆←− dfα
∂fα

∂xp
Apqα

// ignore sum symbols within f

// compute range constraints from shape of f and limits of occurring
sums

5 Ω←− {range constraints on α of the form Rα ≥ r}
// compute Smith normal form (sec. 4.3.1) to obtain the following

6 I ←−integer pseudo-inverse of Apq

7 K ←−integer kernel of Apq

8 C ←−integer cokernel of Apq

// rewrite constraints using βp and kernel factors z
9 Ω′ ←− {RKz ≥ r −RIβp | (Rα ≥ r) ∈ Ω}

// solve Ω′ for z using Fourier-Motzkin elimination (sec. 4.3.2)
10 Σ←− {range constraints Ω′ on z transformed into form (4.38)}

// generate derivative expressions

11 dxpβp ←− dxpβp + δCβp
∑
z∈Σ

∆|α=Iβp+Kz // use form (4.40) for sum
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4.5 Example and Numeric Verification

In our implementation and thus in this example we use zero-based indexing, i.e. a vector

x ∈ RN has indices {0, . . . , N − 1}, as it is usual in modern programming languages. Given the

function

fij(a, b, c,d) = exp

[
−

4∑
k=0

(
(aik + bjk)

2 cii + d3
i+k

)]

where the shapes of the arguments are a ∈ R3×5, b ∈ R4×5, c ∈ R3×3 and d ∈ R8 and the shape

of the function is f ∈ R3×4 the derivation algorithm produces the following output:

Input: f[i; j] = exp (-sum{k}_0^4 (((a[i; k] + b[j; k]) ** 2 * c[i; i] + d[i + k] ** 3)))

Derivative of f wrt. a: da[da_0; da_1] = sum{da_z0}_0^3 (((-(df[da_0; da_z0] * exp (-sum{k}_0

^4 (((a[da_0; k] + b[da_z0; k]) ** 2 * c[da_0; da_0] + d[da_0 + k] ** 3))))) * c[da_0;

da_0] * 2 * (a[da_0; da_1] + b[da_z0; da_1]) ** (2 - 1)))

Derivative of f wrt. b: db[db_0; db_1] = sum{db_z0}_0^2 (((-(df[db_z0; db_0] * exp (-sum{k}_0

^4 (((a[db_z0; k] + b[db_0; k]) ** 2 * c[db_z0; db_z0] + d[db_z0 + k] ** 3))))) * c[db_z0;

db_z0] * 2 * (a[db_z0; db_1] + b[db_0; db_1]) ** (2 - 1)))

Derivative of f wrt. c: dc[dc_0; dc_1] = if {dc_0 + -dc_1 = 0} then (sum{dc_z1}_0^4 (sum{dc_z0}

_0^3 (((a[dc_1; dc_z1] + b[dc_z0; dc_z1]) ** 2 * (-(df[dc_1; dc_z0] * exp (-sum{k}_0^4 (((

a[dc_1; k] + b[dc_z0; k]) ** 2 * c[dc_1; dc_1] + d[dc_1 + k] ** 3))))))))) else (0)

Derivative of f wrt. d: dd[dd_0] = sum{dd_z1}_(max [0; -2 + dd_0])^(min [4; dd_0]) (sum{dd_z0}

_0^3 (((-(df[dd_0 + -dd_z1; dd_z0] * exp (-sum{k}_0^4 (((a[dd_0 + -dd_z1; k] + b[dd_z0; k

]) ** 2 * c[dd_0 + -dd_z1; dd_0 + -dd_z1] + d[dd_0 + -dd_z1 + k] ** 3))))) * 3 * d[dd_0]

** (3 - 1))))

The operator ** denotes exponentiation in this output. The Kronecker delta has been encoded

as a “if x then y else z” expression for more efficiency.

Internally these expressions are represented as graphs, thus subexpressions occurring mul-

tiple times are only stored and evaluated once and no expression blowup as with symbolic

differentiation occurs. To cleanup the generated expressions from the automatic differentiation

algorithm an expression optimization step, which pre-evaluates constant parts of the expres-

sions, should be incorporated. However, since this is not part of the core derivation problem, it

has not been performed for this demonstration.

These derivative expressions have been verified by using random numeric values for the

arguments and comparing the resulting values for the Jacobians with results from numeric

differentiation.
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4.6 Discussion

We have presented a method to compute symbolic expressions for derivatives of any order of

elementwise defined tensor-valued functions. These functions may contain summations and

the indices of its arguments can be an arbitrary linear combination of the function indices. The

output of our algorithm is an explicit symbolic expression for each element of the derivative.

Thus the resulting expressions are very well suited for massively parallel evaluation in a

lock- and synchronization-free computational kernel, which runs on a massively parallel GPU

and computes one element of the derivative per thread. No temporary memory is necessary for

the evaluation of the derivatives.

The derivatives themselves may contain additional summations over indices which have

become free in the derivative. The output of the algorithm specifies the ranges of these sums as

a maximum or minimum over a set of linear combinations of the derivative indices; therefore

computing the numerical range at evaluation time costs only two matrix multiplications per

loop run (not iteration).

The method presented in this chapter is employed together with a code generator for el-

ementwise defined functions within an efficient implementation of the models that will be

introduced in chapter 5.
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Chapter 5

Gaussian Process Neurons

The objective of this chapter is to introduce a neural activation function that can be learned

completely from training data alongside the weights of the neural network. The number of

constraints on the form of the learnable functions should be kept as low as possible to allow

the highest amount of flexibility. However, we want the neural network to be trainable using

stochastic gradient descent, thus we require the activation function to be at least continuously

differentiable. Furthermore, it is a fundamental principle of statistics that by increasing the flex-

ibility of a model the risk of overfitting is also increased. To keep that risk in check the model

needs to regularized. Here we apply the Bayesian approach to regularization by putting a prior

over the space of activation functions. We choose a GP with a zero mean and SE covariance

function for that prior, since it encourages smooth functions of small magnitude. This proba-

bilistic treatment transforms a neuron into a probabilistic unit, which we call Gaussian process

neuron (GPN). Consequently a neural network built from GPNs becomes a probabilistic graphi-

cal model, which can intrinsically handle training and test data afflicted with uncertainties and

estimate the confidence of its own predictions.

This chapter is structured as follows. First, we introduce the basic GPN unit. Then we show

how integrating it into a feed-forward neural network transforms the network into a probabilis-

tic graphical model. Since a GP is a non-parametric model it introduces dependencies between

samples into the model. Consequently, even after learning the network weights, the predictions

on a test input directly depend on the training samples and inference has to be performed using

Monte Carlo methods. Since this is impractical, we introduce the parametric GPN, an auxil-

iary model that applies methods from sparse GP regression to represent its activation function

using a set of trainable parameters. The resulting model approximation can be trained using

stochastic gradient descent by sampling the gradient.

Then we will combine ideas from fast Dropout and sparse variational GPs to make a non-

parametric GPN network trainable using variational Bayesian inference. The result is a fully

109
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deterministic loss function that eliminates the need to sample the gradient and thus makes

training vastly more efficient. Although the model is treated fully probabilistically, the loss

function retains the functional structure of a neural network, making it directly applicable to

network architectures such as RNNs and CNNs.

Since literature shows that monotonicity has proven favorable for the generalization ability

of a neural network in some cases, we present methods to constrain GPNs to monotonic activa-

tion functions. Preliminary benchmark and experimental results on regression and classification

tasks are reported at the end of the chapter.

A chart showing the family of GPN models, their relationships and inference methods is

presented in fig. 6.1. Furthermore, the relation to deep Gaussian processes, which is a model

that likewise combines GPs in a probabilistic graphical model, is established in section 6.1.

Contributions to this Chapter

The GPN model and methods for its efficient training were proposed and designed by me. Implementa-

tion was performed by Marcus Basalla and me. Benchmarking and experiments were done by Marcus

Basalla and published in (Basalla, 2017).

5.1 The Gaussian Process Neuron

A Gaussian process neuron (GPN) is a probabilistic unit that receives multiple inputs and

computes an output distribution conditioned on the values of its inputs. Given multiple input

samples the output samples of a GPN become correlated, i.e. the output distribution is not iid.

over the samples. A probabilistic graphical model corresponding to an instance of a GPN for a

fixed number of inputs and samples is shown in fig. 5.1.

The input to a GPN is a set of random variables denoted by Ysm, s ∈ {1, . . . , S}, m ∈
{1, . . . ,M}, where s is the sample and m is the index of the input. The random variables

As, s ∈ {1, . . . , S}, are called activations and they are given by the dot product of the inputs

with the weight vector w ∈ RM . The weight vector is not probabilistic. Furthermore, we do

not specify a bias term explicitly, since it can be absorbed into the weight matrix and input

distribution, if necessary. The conditional distribution of As can be written1 as

P(As |Ys?) = δ(As −wTYs?) , s ∈ {1, . . . , S} , (5.1)

1The star (?) performs tensor slicing as described in section 2.1.
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Y12Y11 Y13 Y21 Y22 Y23 Y31 Y32 Y33

A1 A2 A3

F1 F2 F3

X1 X2 X3

sample 1 sample 2 sample 3

w w w

σ2 σ2 σ2

inputs

activation

response

output

Figure 5.1: A GPN with three inputs is shown for three samples as a probabilistic graphical
model. The inputs are represented by the random variables Ysm, s ∈ {1, 2, 3},m ∈ {1, 2, 3}.
The activations for each sample are represented by the random variables As, s ∈ {1, 2, 3}, and
depend deterministically on the inputs. The responses F? are a GP over the samples conditioned
on the activations; in the figure the GP is represented by a Markov random field shown as
an undirected connection between all samples. The outputs are represented by the random
variables Xs, s ∈ {1, 2, 3}.

where δ(t) is the delta distribution, defined by

∫ B

A
δ(t) dt ,

{
1 if A ≤ 0 ≤ B
0 otherwise

. (5.2)

The random variables Fs, s ∈ {1, . . . , S}, represent the responses of the GPN to the activations.

The GPN does not assume a fixed activation function, instead it imposes a GP prior on the

activation function thus allowing it to be inferred from the data. Therefore, the response of

sample s is given by Fs = F (As) where the distribution over the activation functions F (A) is

given by

F |A ∼ GP(0, k(A,A′)) , (5.3)

where k : R × R → R is a valid covariance function for a one-dimensional GP, cf. section 2.4.

Note, that the GP introduces correlations between the responses of different samples; thus the

responses of a GPN are not independent. The GPN uses the SE covariance covariance function,

k(a, a′) , exp
(
−(a− a′)2

)
, (5.4)
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where we have omitted the lengthscale parameter, as it is redundant to a rescaling of the

weights w in (5.1).

To make the conditional dependencies introduced by the GP more clear, it is helpful to

explicitly consider a set of samples for eq. (5.3). Per definition of a GP for a finite number of

samples, that equation is equivalent to

F? |A? ∼ N (0,K) , (5.5)

where F? and A? denote vectors of random variables, i.e., F? = (F1, F2, . . . , FS)T and A? =

(A1, A2, . . . , AS)T respectively. The covariance matrix K ∈ RS×S is given by

Kss′ , k(As, As′) . (5.6)

Thus, as shown in fig. 5.1, the responses Fs, s ∈ {1, . . . , S}, form a Markov random field with

full connectivity between all samples. All samples of each GPN share the same Gaussian process

and hence the same activation function.2

Each output is represented by the random variable Xs, s ∈ {1, . . . , S}, which is a noisy

version of the corresponding response Fs. Its conditional distribution is given by

Xs |Fs ∼ N (Fs, σ
2) , s ∈ {1, . . . , S} , (5.7)

where σ ≥ 0 specifies the standard deviation of the superimposed Gaussian noise. This can be

used to introduce additional noise into the output of a GPN. If this is not desired, σ is set to

zero and the output equals the response. While the superimposed noise is iid. for each sample,

the outputs X are not iid. due to the propagation of the correlation of the responses F between

the samples. This concludes the definition of a Gaussian process neuron.

Let us briefly compare a GPN unit to a conventional neuron in an artificial neural network, as

introduced in section 2.5. A conventional neuron computes its output x using the deterministic

function x = σ(wTy), where y is the vector of the neuron’s inputs and w are its weights.

The term a , wTy is called activation and the (non-linear) function σ(a) is called activation

function. Both the GPN and the conventional neuron compute their activations in the same

way, with the difference that, being a probabilistic model, the GPN deals with an activation

distribution P (As). Note that, the weights w are fully deterministic in the GPN model and

the uncertainty in As arises fully from the uncertainty in the inputs Ysm. The GPN replaces

the fixed activation function σ(a) of the conventional neuron by a distribution over functions

2If F? |A? did not form a Markov random field over the samples, then each sample would use an independent
and random activation function and no generalization to new samples would be possible.
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P(F |A). This distribution is defined by a GP over the activations. Because the SE covariance

function is used, each activation function sampled from P(F |A) is infinitely differentiable and

thus smooth. Since a GP is non-parametric, it introduces dependencies between the samples, i.e.

each GPN uses one GP to represent the activation function of all samples. Consequently, a GPN

has components of a parametric model, e.g. the weights, and components of a non-parametric

model, e.g. the distribution of activation functions.

5.1.1 Marginal Distribution

The GPN has been specified in terms of conditional probabilities for the activations, responses

and outputs. In order to obtain a more convenient conditional distribution for the outputs X

given the inputs Y , we marginalize over the random variables internal to the GPN, i.e. the

activations A and responses F . Using (5.1) and (5.5) we obtain

P(F? |Y?) =

∫
P(F? |A?)

(
S∏
s=1

P(As |Ys?)
)

dA?

=

∫
N (F? |0,K)

(
S∏
s=1

δ(As −wTYs?)

)
dA?

= N (F? |0, K̃) , (5.8)

where K̃ss′ , k̃(Ys?, Ys′?) and the covariance function k̃(y,y′) is given by

k̃(y,y′) , k(wTy,wTy′) = exp
(
−[wTy −wTy′]2

)
. (5.9)

This function can be interpreted as follows. From the geometric definition of the dot product,

wTy = |w| |y| cos θ, where |•| is the 2-norm and θ is the angle between w and y, we see

that wTy in (5.9) is the length of the projection of y onto w scaled by |w|. Consequently the

GP defined by (5.8) encourages similar response values Fs to samples that have inputs with

comparable projection lengths onto w. The length 1/ |w| can be interpreted as the lengthscale

of the SE covariance function and thus the magnitude of the weight vector determines how

much samples of the activation function vary around the zero mean function.



114 CHAPTER 5. GAUSSIAN PROCESS NEURONS

Y11 Y12 Y13 Y21 Y22 Y23 Y31 Y32 Y33

X1 X2 X3

sample 1 sample 2 sample 3

w w w

σ2 σ2 σ2

inputs

output

Figure 5.2: A probabilistic graphical model for the conditional distribution (5.10) of a GPN
having three inputs is shown for three samples. The thick line between the output samples
X? indicates, that they are all dependent and form a (conditional) Markov random field. The
parameters of a GPN are its weights w and variance σ2.

We perform another marginalization using (5.7) to obtain the output distribution

P(X? |Y?) =

∫ ( S∏
s=1

P(Xs |Fs)
)

P(F? |Y?) dF?

=

∫ ( S∏
s=1

N (Xs |Fs, σ2)

)
N (F? |0, K̃) dF?

= N (X? |0, K̃ + σ21) , (5.10)

with K̃ defined as above and 1 being the identity matrix. The outputs of a GPN given its

inputs are thus normally distributed over the samples with zero mean and an input-dependent

covariance matrix. The equivalent graphical model is shown in fig. 5.2.

5.1.2 Building Layers

A set of GPNs that share the same inputs is called a GPN layer. This definition is equivalent to

the definition of a layer of neurons in a conventional artificial neural networks. While combing

conventional neurons into a layer is straightforward, in the case of GPNs, care must be taken

because of the additional inter-sample dependencies. GPN layers can be stacked to form a

multi-layer model similar to a feed-forward neural network.

Let the GPN layer l receive S samples of M -dimensional input Y l = X l−1 from the previous

layer l − 1 and let it produce N -dimensional output X l. The input dimension is indexed using

m ∈ {1, . . . , Nl−1} and the output dimension is indexed by n ∈ {1, . . . , Nl}. As before the

samples are enumerated by s ∈ {1, . . . , S}. An instance of a GPN layer is shown as a graphical

model in fig. 5.3a. Let the input that the layer receives be denoted by Y l
sm = X l−1

sm , s ∈
{1, . . . , S},m ∈ {1, . . . ,M}. Note, that we make no assumption on the distribution of the inputs
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Figure 5.3: The conditional distribution of a layer of three GPNs with two inputs is shown for
two samples as a probabilistic graphical model. Each GPN output X l

?n, n ∈ {1, 2, 3}, forms a
Markov random field (represented by the thick undirected connection) that depends on all
inputs X l−1

?? of all samples. The GPN layer is parameterized by the weight matrix W l and the
standard deviation vector σl. (a) All GPNs and samples are shown as separate nodes. (b) All
samples are consolidated into one node for each GPN. (c) All GPNs of a layer and all samples
are consolidated into one node.

and they may be correlated within or between samples or both. The outputs are represented

by the random variables X l
sn, s ∈ {1, . . . , S}, n ∈ {1, . . . , N} where the distribution of each

GPN X l
?n, n ∈ {1, . . . , N}, is given by (5.10). Thus, by combining the individual weights w of

the GPNs into the weight matrix W l ∈ RN×M and the standard deviations σ into the vector

σl ∈ RN , we have

P(X l
?? |X l−1

?? ) =

N∏
n=1

N (X l
?n |0, K̃ l

n + (σln)21) with K̃ l
n,ss′ , k(W l

n?X
l−1
s? ,W l

n?X
l−1
s′? ) . (5.11)

For clarity of visualization the graphical model of a GPN layer can be condensed: In fig. 5.3a

each node represents a particular input/output dimension and sample. In fig. 5.3b each node

represents all samples, thus the Markov random is not visible in the graphical model. This

is the representation most similar to a layer of a conventional neural network. In fig. 5.3c

the graphical model is reduced to one input node and one output node, both representing all

input/output dimensions and samples.

5.2 Probabilistic Feed-Forward Networks

Similar to conventional feed-forward ANNs, layers of GPNs can be stacked to form probabilistic

models for regression and classification tasks. The resulting models are a hybrid of parametric

and non-parametric models, because their predictions depend on learned parameters (weights),
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but also directly on the training samples due to the inter-samples dependencies of GPs.

5.2.1 Regression

Given a set of Ŝ training inputs X̂0 = {x̂0
1, . . . , x̂

0
Ŝ
} with x̂0

s ∈ RN0 and corresponding targets

Ẑ = {ẑ1, . . . , ẑŜ} with ẑs ∈ RNZ , the regression problem is to find a function f : RN0 → RNZ

that assigns a prediction y = f(x0) to an input x0. The prediction function f should minimize

the loss L (X̂0, Ẑ) with

L (X,Z) ,
1

S

S∑
s=1

L(f(x0
s), zs) , (5.12)

where the loss measure L : RNZ × RNZ → R assigns a penalty L(y, z) based on the difference

between the prediction f(x0) and the target value z. A good prediction function must gen-

eralize well to previously unseen test inputs X̃0 = {x̃0
1, . . . , x̃

0
S̃
} by correctly predicting their

target values Z̃ = {z̃1, . . . , z̃S̃} and thus having a small loss L (X̃0, Z̃) on the test set as well.

A common loss measure for regression problems is the squared L2-norm given by

L(y, z) = |y − z|2 =
∑
d

(yd − zd)2 . (5.13)

It can be shown that this loss measure is proportional to the negative log-likelihood of z under

a normal distribution with mean y and unit variance, i.e.

L(y, z) ∝ − logN (z |y,1) . (5.14)

Consequently, minimizing the loss given by eqs. (5.12) and (5.13) corresponds to finding the

maximum likelihood solution of a probabilistic model that assumes a normal distribution for

P(y |x0).

Here, we use a stack of GPN layers to model the predictive distribution P(XL |X0). Like in

a conventional feed-forward artificial neural networks the output of a GPN layer is fed as the

input into the next GPN layer. The first layer receives the sample inputs X0 and the last layer

outputs the predictions XL. A graphical model corresponding to a feed-forward GPN network

is shown in fig. 5.4.

The random variable X̂ l
sn denotes the n-th GPN in layer l corresponding to training sample

s. Test samples are represented by the random variables X̃ l
sn. The layer l = 0 corresponds to

the inputs and its values are observed for both the training and test samples. The top-most layer

l = L represents the outputs. Since its values are observed for the training samples, we have

X̂ l
s? = ẑs, s ∈ {1, . . . , Ŝ}. For defining the distributions occurring in the model, it is convenient



5.2. PROBABILISTIC FEED-FORWARD NETWORKS 117

(a)

X̂0
11 X̂0

12 X̂0
21 X̂0

22 X̃0
11 X̃0

12

X̂3
11 X̂3

21 X̃3
11

trn. 1 trn. 2 test 1

W 1

W 2

W 3

σ1

σ2

σ3

inputs

layer 1

layer 2

outputs
layer 3

(b)

X̂0
1? X̂0

2? X̃0
1?

X̂3
1? X̂3

2? X̃3
1?

W 1

W 2

W 3

σ1

σ2

σ3

Figure 5.4: A feed-forward network of GPNs for a regression task with two-dimensional input
and one-dimensional output is shown as a probabilistic graphical model for two training samples
and one test sample. The network consists of an input layer and three layers of GPNs with the
top-most layer representing the predictions of the model. All inputs and the training targets are
observed (represented by filled circles). For performing regression the distribution over the test
output X̃3

11 must be inferred. Panel (a) shows one random variable X l
sn per GPN and sample.

For a more compact representation, in panel (b) each random variable represents all GPNs X l
s?

of a layer and sample.

to concatenate the training and test samples of all inputs and GPNs, i.e.

X l
?n =

[
X̂ l
?n

X̃ l
?n

]
, l ∈ {0, . . . , L}, n ∈ {1, . . . , Nl} . (5.15)

The joint distribution of the GPN feed-forward network for regression is given by

P(X1
??, . . . , X

L
?? |X0

??) =
L∏
l=1

P(X l
?? |X l−1

?? ) (5.16)

where the conditional layer probabilities P(X l
?? |X l−1

?? ) are given by (5.11).

5.2.2 Training and Inference

We have shown how to build a regression model using GPN layers. It is also possible to build

a classification model using GPNs, by using the same structure as for regression, feeding the

network output distribution through the softmax function (2.92) and interpreting the result as

class probabilities of a categorical distribution (2.93).

As we see GPN models for regression and classification are similar to conventional ANN mod-
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els. Both contain parameters (weights) that must be fitted on the training set. However, the GPN

models also introduce dependencies between samples, which does not occur in conventional

ANNs where the predictions for all samples are independent and identical distributed. Conse-

quently, GPN models as presented above are a hybrid between parametric and non-parametric

models and their predictions on test samples depend directly on the training samples. Later we

will show how a GPN model can be approximated by a fully parameterized model thus dropping

the direct dependency on the training samples and making its predictions independent and

identical distributed.

For now, however, we stay with the exact model and show how to obtain predictions on a

test set. Naturally, predictions on the test set follow the distribution Pθ(X̃
L | X̃0, X̂0, X̂L), where

we wrote Pθ to express that this distribution depends on the model parameters θ , {θ1, . . . , θL}
consisting of the layer parameters θl , {W l,σl}. To obtain these predictions, two steps are

necessary.

First, the parameters θ of the model need to be estimated from the training data. A possible

way to handle these parameters is to treat them as additional random variables and marginalize

them out. To do so it would become necessary to introduce a prior for each of these parameters.

While this is sound, it has the drawback that by making the parameters uncertain, additional

stochasticity that is redundant to that of the probabilistic activation function of each GPN is

introduced. Also, it would introduce complexity into the model which we wish to avoid at this

point. Thus we keep all parameters θ deterministic and find a point estimate for their best

values by maximizing their likelihood Pθ(X̂L | X̂0) under the training set. As we will see, this

likelihood is intractable, since it involves marginalization over the inner layers l ∈ {1, . . . , L−1},
which cannot be done analytically due to the occurrence of integrals that cannot be computed.

However, it is possible to approximate the likelihood function and its derivatives w.r.t. θ by

MCMC methods.

Second, the predictive distribution Pθ(X̃
L | X̃0, X̂0, X̂L) needs to be calculated. Unfortu-

nately, it is also intractable due to the same reason that the likelihood is intractable. Thus, to

obtain predictions on the test set, we have to employ MCMC methods here as well. Particularly,

we will sample training values X̂ l of the inner GPN layers from Pθ(X̂
1, . . . , X̂L−1 | X̂0, X̂L)

and equipped with these samples, we can sample the test values X̃ l of each layer conditioned

on training values X̂ l from the distributions Pθ(X̃
l | X̃ l−1, X̂ l, X̂ l−1). We will show that this

method produces unbiased samples from the predictive distribution.

Both steps and the employed sampling methods are explained in detail in the following

sections.
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Fitting the Model Parameters

To find a good point estimate for the model parameters θ, we calculate their likelihood under

the training data and maximize it w.r.t. the parameters. For the regression task the likelihood

of the parameters on the training set is given by

L(θ) , Pθ(X̂
L | X̂0) =

∫
· · ·
∫

Pθ(X̂
1, . . . , X̂L | X̂0) dX̂1 · · · dX̂L−1

=

∫
· · ·
∫ ( L∏

l=1

Pθl(X̂
l | X̂ l−1)

)
dX̂1 · · · dX̂L−1 . (5.17)

with Pθl(X̂
l | X̂ l−1) given by (5.11). Applying the logarithm does not result in a simplified

expression for the log-likelihood since the marginalization over the latent variables prevents

the likelihood to factorize into a product over the training samples. The marginalizations in

eq. (5.17) cannot be performed analytically, since X̂ l−1 enters the PDF through the highly

non-linear inverse of the covariance matrix given by (5.11).

Thus an analytic maximization of the likelihood is impossible and we will use an iterative

optimization procedure, for example gradient descent introduced in section 2.3.1, to maximize

the likelihood. For that, it is necessary to compute the gradients of L w.r.t. the parameters θ.

Using the form (2.28) for the PDF of the multivariate normal distribution, we obtain for the

derivative w.r.t. a parameter ϕl ∈ {W l,σl} of the l-th layer:

∂L
∂ϕl

=

∫
· · ·
∫ ( L∏

l′=1

Pθl′ (X̂
l′ | X̂ l′−1)

)
ρ′θl(X̂

l | X̂ l−1) dX̂1 · · · dX̂L−1 (5.18)

where ρθl(X̂
l | X̂ l−1) , log Pθl(X̂

l | X̂ l−1) and ρ′
θl
, ∂ρθl/∂ϕ

l. Consequently the derivatives can

be represented as expectations under the joint distribution of the feed-forward GPN network,

∂L
∂ϕl

= E
Pθ(X̂1,...,X̂L−1 | X̂0)

[
ρ′θl(X̂

l | X̂ l−1) PθL(X̂L | X̂L−1)
]
. (5.19)

This expectation can be approximated by sampling from Pθ(X̂
1, . . . , X̂L−1 | X̂0) using MCMC

methods. Since by definition of the GPN feed-forward network (5.16) the GPN layers form a

Markov chain, unbiased samples can be obtained by sequentially sampling from the conditional

normal densities P(X̂1 | X̂0) followed by P(X̂2 | X̂1) and so on up to P(X̂L−1 | X̂L−2). Sam-

pling these conditionals is straightforward since their distributions are multivariate normals.

Note, that this uses the whole training set to estimate the gradient w.r.t. the parameters and

splitting the training set into mini-batches is not possible at this point, as this would neglect

the dependencies the model introduces between the samples.
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Although layer-wise sampling of X̂ l to evaluate (5.19) correctly generates unbiased sam-

ples of the derivatives, it has the crucial drawback that for the majority of samples the factor

PθL(X̂L | X̂L−1) is nearly zero, since the sampled values for the inner layers are only condi-

tioned on the inputs X̂0 and not on the target values X̂L. Consequently, while this training

procedure is sound, convergence to meaningful parameter values would be very slow.

The described problem can be avoided by observing that the joint density of the model can

be decomposed into P(X̂1, . . . , X̂L | X̂0) = P(X̂1, . . . , X̂L−1 | X̂0, X̂L) P(X̂L | X̂0). Using this

alternative decomposition of the joint density, the derivative (5.18) can be rewritten as

∂L
∂ϕl

=

∫
· · ·
∫

Pθ(X̂
1, . . . , X̂L | X̂0) ρ′θl(X̂

l | X̂ l−1) dX̂1 · · · dX̂L−1

= Pθ(X̂
L | X̂0)

∫
· · ·
∫

Pθ(X̂
1, . . . , X̂L−1 | X̂0, X̂L) ρ′θl(X̂

l | X̂ l−1) dX̂1 · · · dX̂L−1

= L(θ) E
Pθ(X̂1,...,X̂L−1 | X̂0,X̂L)

[
ρ′θl(X̂

l | X̂ l−1)
]
. (5.20)

As stated before, analytic calculation of the likelihood L(θ) is intractable. However, calculating

its actual value is unnecessary, since L(θ) has the same value, no matter what parameter ϕl

the derivative is taken with respect to. Thus, by setting L(θ) , 1 while evaluating (5.20)

for all parameters θ, we obtain a scaled version of the true gradient ∇θL. Since L(θ) is a

probability density, the scaling factor is always non-negative and the gradient points into the

right direction. Maximization of L w.r.t. θ can then be performed using the gradient ascent

algorithm. It does not matter that the obtained gradient is scaled, since only the direction is

important, cf. section 2.3.1.

Contrary to (5.19) the expectation in (5.20) samples from the distribution P(X̂1, . . . , X̂L−1

| X̂0, X̂L), thus avoiding the problem of vanishing probabilities. However, due to the additional

dependency on the training targets X̂L, this distribution cannot be sampled from using a

Markov chain over the layers. A method to sample from the GPN network, taking into account

the observed targets, will be presented in next section.

It remains to calculate the actual derivatives of the log conditional densities ρθl(X̂
l | X̂ l−1)

using (5.11). They are given by

ρ′θl ,
∂ρθl

∂ϕl
=

1

2

Nl∑
n=1

[
(X̂ l

?n)T (K̃ l
n)−1∂K̃

l
n

∂ϕ
K̃ l
nX̂

l
?n − tr

(
(K̃ l

n)−1∂K̃
l
n

∂ϕ

)]
, (5.21)
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where the derivatives of the covariance matrix w.r.t. the weights and variances are given by

∂K̃ l
n,ss′

∂W l
nm̂

= −2 (X̂ l−1
sm̂ − X̂ l−1

s′m̂)Sln,ss′ exp
(
−(Sln,ss′)

2
)

with Sln,ss′ ,
Nl−1∑
m=1

W l
nm (X̂ l−1

sm − X̂ l−1
s′m)

(5.22a)

∂K̃ l
n,ss′

∂σln
= 2σln δss′ . (5.22b)

Note, that we do not optimize the parameters by finding some point estimate of values X̃1, . . . , X̃L−1

for the inner layers first and then optimizing the likelihood assuming fixed values for the latent

variables. Instead, we use the distribution over the inner GPN layers for calculation of the likeli-

hood, which leads to more robust estimates of the GPN parameters and an inherent resiliency to

overfitting due to probabilistic nature of the GPN model. Before a complete training algorithm

can be specified, we need to develop a method to sample from P(X̂1, . . . , X̂L−1 | X̂0, X̂L) which

will be done in the following section.

Sampling from GPN Feed-Forward Networks

Consider the distribution of a GPN feed-forward network as given by (5.16). If only the inputs

X0 are observed, then, as stated before, sampling from the distribution is straightforward. Since

the distribution of each layer is defined conditioned on the values of the previous layer by (5.11),

we can sequentially sample from the conditional distributions P(X l |X l−1) for l ∈ {1, 2, . . . , L}.
Each conditional distribution is a multivariate normal distribution, thus efficient samplers are

readily available.

However, in the previous section the need arose to sample from a GPN feed-forward network

having observed the inputs and the targets, i.e. we need to sample from the distribution

P(X̂1, . . . , X̂L−1 | X̂0, X̂L) =
1

Z
P(X̂1, . . . , X̂L | X̂0) (5.23)

with the partition function Z = P(X̂L | X̂0) being independent of the inner layers X̂ l, l ∈
{1, . . . , L − 1}. The sequential sampling procedure is no longer applicable, since no analyt-

ically tractable density function exists for the conditional P(X l |X l−1, XL). Under these cir-

cumstances we have to use a more elaborate sampling method. We consider the following,

well-known MCMC sampling methods introduced in detail in section 2.2.13.

Gibbs sampling splits the random variables into multiple partitions and alternatively samples

from each partition conditioned on the values of the other partitions. It can be shown
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that this procedure draws sample from the joint distribution of all random variables if

run for enough steps. Observed variables can be introduced be keeping their values fixed

at the observed value. In the case of a GPN feed-forward network it is natural to partition

the random variables per layer, i.e. each X l for l ∈ {1, . . . , L} is a separate partition.

Then Gibbs sampling consists of sampling from each conditional P(X l |X l−1, X l+1) in a

round-robin sequence over the layers l ∈ {1, 2, . . . , L}. Unfortunately, in the conditional

density function P(X l |X l−1, X l+1) ∝ P(X l−1, X l, X l+1) the random variable X l occurs

inside the covariance matrix of the PDF of the normal distribution, thus introducing highly

non-linear functional dependencies for which no efficient sampling method is available.

Metropolis-Hastings moves within the state space of a probabilistic model by drawing candi-

date moves from a proposal distribution and accepting or rejecting them based on the

change of joint probability that would occur if the move was executed. As with Gibbs

sampling, observed random variables can be introduced by keeping their values fixed.

The algorithm requires two things: a function that is proportional to the density to sam-

ple from and a distribution that proposes new potential states given the current state of

the random variables. Thus, it makes it possible to work with unnormalized probability

densities, allowing us to sample from (5.23) without calculating the partition function

Z. However, to work efficiently the Metropolis-Hastings algorithm requires a proposal

distribution that is well-tailored to the joint distribution of the model.

Hamiltonian Monte-Carlo sampling describes a method to calculate good proposal distribu-

tions for the Metropolis-Hastings algorithm. In addition to a function that is proportional

to the model’s PDF, it requires the derivatives of this function w.r.t. all random variables.

The gradient of the probability density is used to propose states of higher probability

compared to the current state and thus the proposed state have a high acceptance prob-

ability, making HMC work efficiently even in a high-dimensional state space. Since the

derivatives of (5.23) can be calculated in closed form, HMC is a good choice for sampling

from a GPN feed-forward network and we will now describe its application.

The HMC potential energy corresponding to the joint distribution P(X̂1, . . . , X̂L | X̂0) given

by eqs. (5.11) and (5.16) is

U(X1, . . . , XL) = − log P(X̂1, . . . , X̂L | X̂0) = −
L∑
l=1

log P(X l |X l−1)

∝ −
L∑
l=1

Nl∑
n=1

LN (X l
?n |0, K̃ l

n) (5.24)
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where LN is the unnormalized log-density of the multivariate normal distribution given by

LN (x |µ,Σ) , −1

2
(x− µ)TΣ−1(x− µ) . (5.25)

The HMC algorithm requires the derivatives of the potential energy w.r.t. the layer values X l
sn.

For computation of these derivatives, let us split up the potential energy layer-wise, so that we

obtain

U(X1, . . . , XL) =
L∑
l=1

U l(X l, X l−1) (5.26)

with

U l(X l, X l−1) , −
Nl∑
n=1

LN (X l
?n |0, K̃ l

n) . (5.27)

The layer-wise gradients are straightforward to compute. For each layer l, we obtain

∂U l

∂X l
?n

= (K̃ l
n)−1X l

?n (5.28a)

∂U l

∂X l−1
ŝm̂

=
1

2
(X l

?n)T (K̃ l
n)−1 ∂K̃ l

n

∂X l−1
ŝm̂

(K̃ l
n)−1X l

?n (5.28b)

where we have defined

∂K̃ l
n,ss′

∂X l−1
ŝm̂

, K̂ l
nm̂,ss′(δsŝ − δs′ŝ) (5.29a)

K̂ l
nm̂,ss′ , −2W l

nm̂ exp

−
Nl−1∑
m=1

W l
nm(X l−1

sm −X l−1
s′m)

2 Nl−1∑
m=1

W l
nm(X l−1

sm −X l−1
s′m) . (5.29b)

Evaluating the Kronecker deltas in (5.29a) allows to rewrite (5.28b) into

∂U l

∂X l−1
ŝm̂

= −
Nl−1∑
n=1

S∑
s=1

K̂ l
nm̂,ŝs z

l
n,ŝ z

l
n,s with zln , (K̃ l

n)−1X l
?n . (5.30)

This completes the calculation of the derivatives and we can now apply HMC sampling with

the leapfrog method as described in section 2.2.13. If the target values XL are observed, as

in (5.23), they are kept fixed at their observed values during HMC sampling.

In conclusion, we can now evaluate the expectation in (5.20) and optimize the likelihood

function L(θ) iteratively towards a maximum-likelihood estimate of the model parameters

θ. The complete training procedure is described in algorithm 12. For subsequent evaluations

of (5.20) it is beneficial to preserve the state of the random variables from evaluation to evalu-
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Algorithm 12: Parameter estimation for a GPN feed-forward regression network

Input: training inputs X̂0 and corresponding targets X̂L

Output: local parameter optimum θ maximizing L(θ)
Parameters: learning rate η; number of gradient est. samples R; init. variance σinit

// random initialization of parameters
1 ∀l, n, m̂ : sample W l

nm̂ ∼ N (0, σ2
init)

2 ∀l, n : sample σln ∼ U(0, σinit)

3 while L(θ) increases do // training loop
// calculate scaled gradient estimate using R gradient samples

4 ∀l, n, m̂ : ∆W l
nm̂ ←− 0

5 ∀l, n : ∆σln ←− 0
6 for r ∈ {1, 2, . . . , R} do
7 Sample {X̂1, . . . , X̂L−1} with HMC using the potential energy (5.24) and its

derivatives given by eqs. (5.28a) and (5.30) while keeping X̂L fixed to target.

8 ∀l, n, m̂ : ∆W l
nm̂ ←− ∆W l

nm̂ +
∂ρθl

∂W l
nm̂

// eqs. (5.21) and (5.22a)

9 ∀l, n : ∆σln ←− ∆σln +
∂ρθl

∂σln
// eqs. (5.21) and (5.22b)

// perform parameter updates using gradient ascent
10 ω ←− |∆W |2 + |∆σ|2 // use Frobenius norm

11 ∀l, n, m̂ : W l
nm̂ ←−W l

nm̂ +
η√
ω

∆W l
nm̂

12 ∀l, n : σln ←− σln +
η√
ω

∆σln

ation, since the state from the previous evaluation still represents an area of high probability

even after a small change of the parameters and thus the burn-in period of the HMC algorithm

can be reduced significantly.

Care must be taken with the learning rate η. In standard gradient ascent the magnitude of

the gradient vector goes to zero as a local optimum is approached and thus training proceeds

using smaller steps near the optimum. However, since our gradient is scaled by an arbitrary

factor, this property does not hold. Thus we have to explicitly monitor the trend of the likelihood

L(θ) and decrease the learning rate η when the likelihood starts to oscillate near the optimum.
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Obtaining Predictions on the Test Set

After fitting the model parameters θ we want to obtain predictions X̃L for previously unseen

test inputs X̃0 from the GPN feed-forward network. This means sampling from the distribution

Pθ(X̃
L | X̃0, X̂0, X̂L) =

Pθ(X̂
0, X̃0, X̂L, X̃L)

Pθ(X̂0, X̃0, X̂L)
,

which cannot be calculated analytically due to required marginalizations of (5.16) over the

inner layer values X̂ l and X̃ l, l ∈ {1, . . . , L − 1}, that are intractable. The situation is shown

in fig. 5.5a for a GPN feed-forward network with three layers. The left side shows the random

variables associated with the training set with the input and outputs being observed. The right

side shows the random variables associated with the test set with only the input being observed

and the outputs to be inferred. Training and test samples share the same Markov random field

within each layer. Note that for clarity each node in this figure represents all GPNs and all

samples of the respective partition within a layer.

We will now show how predictions can be obtained without having access to an explicit

form of the predictive distribution. By expanding (5.11) over the training and test samples

explicitly, we get the conditional GPN layer distribution in the form

P(X̂ l, X̃ l | X̂ l−1, X̃ l−1) =

Nl∏
n=1

P(X̂ l
?n, X̃

l
?n | X̂ l−1, X̃ l−1) (5.31)

with the GPN layer normal distribution being defined jointly over training and test samples,

P(X̂ l
?n, X̃

l
?n | X̂ l−1, X̃ l−1) = N

([
X̂ l
?n

X̃ l
?n

] ∣∣∣∣ 0,

[
Σl
n,11 Σl

n,12

Σl
n,21 Σl

n,22

])
, (5.32)

with the blocks of the covariance matrix given by

Σl
n,11,ŝŝ′ , k(W l

n?X̂
l−1
ŝ? ,W l

n?X̂
l−1
ŝ′? ) + (σln)2δŝŝ′ (5.33a)

Σl
n,12,ŝs̃ , k(W l

n?X̂
l−1
ŝ? ,W l

n?X̃
l−1
s̃? ) (5.33b)

Σl
n,21,s̃ŝ , k(W l

n?X̃
l−1
s̃? ,W l

n?X̂
l−1
ŝ? ) (5.33c)

Σl
n,22,s̃s̃′ , k(W l

n?X̃
l−1
s̃? ,W l

n?X̃
l−1
s̃′? ) + (σln)2δs̃s̃′ . (5.33d)

We decompose the GPN distribution (5.32) into

P(X̂ l
?n, X̃

l
?n | X̂ l−1, X̃ l−1) = P(X̂ l

?n | X̂ l−1) P(X̃ l
?n | X̂ l

?n, X̂
l−1, X̃ l−1) (5.34)



126 CHAPTER 5. GAUSSIAN PROCESS NEURONS

X̂0
?? X̃0

??

X̂1
?? X̃1

??

X̂2
?? X̃2

??

X̂3
?? X̃3

??

training test

(a)

X̂0
?? X̃0

??

X̂1
?? X̃1

??

X̂2
?? X̃2

??

X̂3
?? X̃3

??

training test

(b)

Figure 5.5: Obtaining predictions from a GPN feed-forward network. Observed values are
shown as filled nodes. (a) The graphical model for a feed-forward GPN with separate nodes for
training and test samples. The layer-wise conditional probabilities are specified jointly over the
training and test set. (b) The undirected connections between training and test samples have
been replaced by directed connections by using a different factorization of the joint probability
distribution of the model shown in (a). Thus (a) and (b) are representing the same probability
distribution. Since all nodes in (b) representing training samples are d-separated from the
observed test inputs X̃0, the test part (on the right side) can be ignored while sampling the
training part X̂ l, l ∈ {1, . . . , L − 1} (on the left side) and then the test part can be inferred
conditioned on sampled values of the training part.

and using the marginalization and conditioning properties of the multivariate normal distribu-

tion, cf. section 2.2.9, we obtain the following factors,

P(X̂ l
?n | X̂ l−1) = N (X̂ l

?n |0,Σl
n,11) , (5.35a)

P(X̃ l
?n | X̂ l

?n, X̂
l−1, X̃ l−1) = N (X̃ l

?n |Σl
n,21(Σl

n,11)−1X̂ l
?n, Σl

n,22 − Σl
n,21(Σl

n,11)−1Σl
n,12) .

(5.35b)

This allows us to rewrite the joint distribution of training and test samples of the GPN feed-

forward network (5.16) as

P(X̂1, X̃1, . . . , X̂L, X̃L | X̂0, X̃0) = P(X̂1, . . . , X̂L | X̂0) P(X̃1, . . . , X̃L | X̃0, X̂0, . . . , X̂L)

(5.36)
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Algorithm 13: Obtaining predictions from a GPN feed-forward regression network

Input: test inputs X̃0; training inputs X̂0 and corresponding targets X̂L; fitted model
parameters θ

Output: test predictions X̃L

1 Sample {X̂1, . . . , X̂L−1} with HMC using the potential energy (5.24) and its derivatives
given by eqs. (5.28a) and (5.30) while keeping X̂L fixed to targets.

2 for l ∈ {1, 2, . . . , L} do
3 Sample X̃ l from P(X̃ l | X̂ l, X̂ l−1, X̃ l−1) given by eq. (5.35b).

with the factors

P(X̂1, . . . , X̂L | X̂0) =

L∏
l=1

Nl∏
n=1

P(X̂ l
?n | X̂ l−1) (5.37a)

P(X̃1, . . . , X̃L | X̃0, X̂0, . . . , X̂L) =
L∏
l=1

Nl∏
n=1

P(X̃ l
?n | X̂ l

?n, X̂
l−1, X̃ l−1) (5.37b)

and thus we obtain the probabilistic graphical model shown in fig. 5.5b. Both fig. 5.5a and

fig. 5.5b represent the same joint distribution but with different expansions of the distribution.

In fig. 5.5b the alternative decomposition (5.34) replaced the undirected connection between

training and test samples in each layer with a directed connection from training to test samples.

From (5.36) it follows that the GPN feed-forward network distribution with the training

targets X̂L observed is given by

P(X̂1, X̃1, . . . , X̂L−1, X̃L−1, X̃L | X̂0, X̃0, X̂L) = P(X̂1, . . . , X̂L−1 | X̂0, X̂L) ·
P(X̃1, . . . , X̃L | X̃0, X̂0, . . . , X̂L) . (5.38)

From fig. 5.5b we see that all nodes representing training samples are d-separated (sec-

tion 2.2.10) from the observed test input X̃0 and thus they are unaffected by its observation.

Hence, drawing samples from the distribution (5.38) is straightforward as described in algo-

rithm 13. Thus, finally we can infer model predictions X̃L given the test inputs X̃0. To calculate

confidence intervals of the predictions, multiple predictive samples must be obtained and the

mean and variance evaluated numerically.
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5.2.3 Complexity of Non-Parametric Training and Inference

The main cost of training a GPN network is determined by HMC sampling (in line 7 of algo-

rithm 12) to get values for the inner layers X̂1, . . . , X̂L given training inputs and targets. Each

step of HMC sampling computes derivatives w.r.t. all GPNs in the network and thus has cost

similar to one round of back-propagation in a conventional neural network. Consequently the

cost factor of training a GPN network compared to the cost of training a conventional neural

network is determined by how many HMC steps are necessary between drawing gradient sam-

ples. Provided that the learning rate η is reasonably small, it can be assumed that the change of

the parameters is small enough, so that the final state of the Markov chain from the previous

training step is a good initial state for the Markov chain of the next training step and hence no

burn-in period is required. Thus the number of required steps is solely driven by the need to

avoid autocorrelation between samples of the gradient.

Contrary to a conventional neural network with a fixed activation function, the training set

is also required to obtain predictions from a GPN network, even after the parameters θ have

been fitted. This is due to the correlation between samples inherent to the model. Also, training

can only be performed in batches. Mini-batch training, in which the gradient is estimated on

alternating parts of the training set and used for intermediate updates of the parameters, is not

possible. Thus, in its current form, a GPN network cannot scale to datasets that are beyond the

size of available memory.

While the flexibility of a data-adaptable activation function for each GPN increases the

expressive power of the model compared to a conventional neural network, the drawbacks

listed above make the model impractical and inefficient to use in its current form. Especially the

loss of the fully parametric nature of a neural network and the associated benefit of being able to

scale to datasets of arbitrary size, limits the applicability of the model. Thus, we will introduce

an auxiliary parametric approximation of the GPN model that avoids the drawbacks listed

above and retains the advantages of a fully parametric model, while allowing the activation

functions to adapt to the training data. We will later show how the non-parametric GPN can be

recovered from the auxiliary parametric model by use of an appropriate prior. This will allow us

to perform Bayesian inference using an approximative variational posterior without the need

for MCMC sampling methods and their associated costs.
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5.3 The Parametric Gaussian Process Neuron

Let us revisit the definition of a GPN given in section 5.1. According to (5.3) the responses are

given by a GP conditioned on the activations and thus correlations between samples are intro-

duced, as can be seen from (5.5). As demonstrated in the previous sections, these correlations

force us to perform HMC sampling for training and inference, and require the preservation of

the training set for inference. While it is desirable to break up the inter-sample dependencies,

the activation function still has to be consistent across all samples.

A possibility to convey consistent information across all samples is to introduce additional

random variables that are sampled independent and condition the response of each sample on

them. In the context of GPs this method was first used to find a sparse approximation of the

training data and is described in (Quiñonero-Candela and Rasmussen, 2005). Three random

vectors V ∈ RR, U ∈ RR and S ∈ (R+)R are introduced per GPN. Their purpose is to explicitly

parameterize R points of the activation function representing the mode of the GP distribution.

For each virtual observation point r ∈ {1, . . . , R} this parameterization consists of an inducing

point Vr, corresponding to the activation of the observation, the target Ur, corresponding to the

response given that activation, and the variance Sr around the response. Thus we assume that

we are making observations of the activation function f(a). These observations are of the form

f(Vr) = Ur + ε with ε ∼ N (0, Sr) , r ∈ {1, . . . , R} . (5.39)

We introduce these observations by replacing the GP prior P(F |A), i.e. eqs. (5.3) and (5.5),

with the conditional distribution

P(F? |A?, V?, U?, S?) = N (F? |µF? ,ΣF
??) (5.40)

where the mean and covariance are those obtained by using the virtual observations V? and

U? as “training” points for a GP regression evaluated at the “test” points A?. By calculating the

conditional of the multivariate normal distribution (5.5), cf. section 2.2.9, we obtain

µF? = K(A?, V?) [K(V?, V?) + diag(S?)]
−1 U? (5.41a)

ΣF
?? = K(A?, A?)−K(A?, V?) [K(V?, V?) + diag(S?)]

−1K(V?, A?) . (5.41b)



130 CHAPTER 5. GAUSSIAN PROCESS NEURONS

where the covariance matrices are defined by

[K(V?, V?)]rr′ , k(Vr, Vr′) , (5.42a)

[K(A?, A?)]ss′ , k(As, As′) , (5.42b)

[K(A?, V?)]sr = [K(V?, A?)]rs , k(As, Vr) . (5.42c)

using the covariance function k(a, a′) given by (5.4).

5.3.1 Marginal Distribution and Layers

Leaving the rest of the GPN model unchanged we can perform marginalization over A and F

to obtain a collapsed distribution for the outputs given the inputs P(X |Y ) of the parametric

model. By following the same procedure as in section 5.1.1 we obtain

P(X? |Y??, V?, U?, S?) = N (X? |µX ,ΣX) (5.43)

with

µX = K(Y??w, V?) [K(V?, V?) + diag(S?)]
−1 U? (5.44)

ΣX = K(Y??w, Y??w)−K(Y??w, V?) [K(V?, V?) + diag(S?)]
−1K(V?, Y??w) + σ2 , (5.45)

where w is the weight vector and σ2 is the output variance of the GPN as before. Since the

inducing points V , targets U and variances S will always assumed to be observed in the follow-

ing sections, we stop listing them explicitly from here on to maintain the clarity of notation. We

call this model a parametric Gaussian process neuron.

As before when stacking layers, we set Y l = X l−1 for l ≥ 1. Thus, for layer l of GPNs as

described in section 5.1.2 the parametric GPN distribution becomes

P(X l
?n |X l−1

?? ) = N (X l
?n |µX

l

?n ,Σ
Xl

??n) (5.46)

with

µX
l

?n =K(X l−1
?? W l

n?, V
l
?n) [K(V l

?n, V
l
?n) + diag(Sl?n)]−1 U l?n (5.47a)

ΣXl

??n =K(X l−1
?? W l

n?, X
l−1
?? W l

n?)−
K(X l−1

?? W l
n?, V

l
?n) [K(V l

?n, V
l
?n) + diag(Sl?n)]−1K(V l

?n, X
l−1
?? W l

n?) + (σln)2 1 . (5.47b)

where V l
rn, U lrn and Slrn respectively denotes the r-th virtual observation point, target and
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symbol purpose

model hyper-parameters:
Nl number of GPNs in layer l

random variables:
Y l
sm input dimension m of sample s to GPN layer l
Alsn activation of GPN n in layer l corresponding to sample s
F lsn response of GPN n in layer l corresponding to sample s
X l
sn output of GPN n in layer l corresponding to sample s

model parameters:
W l
nm weight from input m to GPN n in layer l

(σln)2 output variance of GPN n in layer l

additional parameters for parametric GPN:
V l
rn virtual observation point r of GPN n in layer l
U lrn virtual observation target r of GPN n in layer l
Slrn virtual observation variance r of GPN n in layer l

Table 5.1: Overview of the notation used for GPNs. When GPN layers are stacked a superscripted
l is used to denote the layer index and the output of one layer is the input to the next, thus
Y l = X l−1.

variance of GPN n in layer l. Thus we obtained a parametric GPN layer.

An overview of the notation used is provided in table 5.1. As before we will use superscripts

to denote the layer index when stacking GPN layers to build feed-forward networks. The

parameters of a layer now include the virtual observations besides the weights, thus θl ,

{W l,σl, V l, U l, Sl} are the parameters of each layer that need to be estimated during training.

5.3.2 Drawing Samples

Let us set aside the question on how to efficiently estimate the parameters of the model and

examine how sampling is performed in a parametric GPN feed-forward network beforehand.

Thus, for now we assume that the values for the parameters θ have been learned in some way

and we want to obtain predictions from the model. Since the GPN layers form a Markov chain,

sampling is straightforward. Given the inputs X0, the mean vectors and covariance matrices of

all GPNs in the first layer are calculated using (5.47) and a sample is drawn from the resulting

multivariate normal distribution for X1. This process is repeated for X l, l ∈ {2, . . . , L}, until

reaching the top layer. The resulting value for XL is an unbiased sample from the distribution

P(XL |X0).

Alternatively, we can understand this procedure as drawing samples in the space of acti-
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vation functions. Revisiting the response distribution (5.40), we note that it gives raise to a

distribution over functions f(a), which can be specified in terms of a GP as

f(a) |V l
?n, U

l
?n, S

l
?n ∼ GP(mp(a), kp(a, a

′)) (5.48)

with mean and covariance functions

mp(a) = K(a, V l
?n) [K(V l

?n, V
l
?n) + diag(Sl?n)]−1 U l?n , (5.49a)

kp(a, a
′) = k(a, a′)−K(a, V l

?n) [K(V l
?n, V

l
?n) + diag(Sl?n)]−1K(V l

?n, a
′) . (5.49b)

As a consequence the sampling procedure described above can be interpreted as follows. First,

for each GPN in the feed-forward network a function f(a) is drawn from the GP (5.48). This is

depicted for four GPNs in fig. 5.6. Then, each GPN is treated as if it was a conventional neuron

using the sampled function as its activation function. Thus the input samples are propagated

through the network as if it was a conventional feed-forward neural network. To obtain a new

batch of samples a new set of activation functions is drawn and the procedure repeats.

5.3.3 Loss Functions and Training Objectives

The standard method for training a deterministic regression or classification model is to min-

imize the so-called loss on the training set. The loss is defined as a function of the model

parameters θ,

L (θ) =
1

S

S∑
s=1

L(yθ(Xs?), Ts?) , (5.50)

where Xs? is a training sample with corresponding target Ts? and yθ(x) is the prediction of

the model given input x. The loss measure L : RD × RD → R assigns a loss value to each

sample based on the difference between the model’s prediction and the ground truth. Many

loss measures are imaginable. For classification tasks the cross entropy loss as given by (2.95)

is a common choice for the loss measure. It uses the softmax function (2.92) to transform the

outputs of the model into class probabilities of a categorical distribution and calculates the log

probability of the targets under this distribution.

Since a GPN feed-forward network provides a predictive distribution P(XL |X0) instead

of a point estimate, training is performed by minimizing the expectation of the loss, i.e. the

objective is to minimize

L (θ) = EP(XL |X0)

[
1

S

S∑
s=1

L(XL
s?, Ts?)

]
=

1

S

S∑
s=1

EP(XL
s? |X0)

[
L(XL

s?, Ts?)
]
. (5.51)



5.3. THE PARAMETRIC GAUSSIAN PROCESS NEURON 133

X0
?1 X0

?2

X1
?1 X1

?2

-3 -2 -1 0 1 2 3

activation A

-2

-1

0

1

2

re
sp

o
n
se

F

-3 -2 -1 0 1 2 3

activation A

-2

-1

0

1

2

re
sp

o
n
se

F

X2
?1 X2

?2

-3 -2 -1 0 1 2 3

activation A

-2

-1

0

1

2

re
sp

o
n
se

F

-3 -2 -1 0 1 2 3

activation A

-2

-1

0

1

2

re
sp

o
n
se

F

X3
?1

Figure 5.6: Obtaining samples from a feed-forward parametric GPN network. The inducing
points (V,U) of each GPN are shown as red circles with their variances S depicted by error bars.
The resulting mean function is denoted by the dashed black line and the standard deviation is
represented by the gray shaded area. For each GPN an activation function has been drawn from
this distribution over functions and is shown as the blue line. The filled blue circles represent
data samples that are propagated through the network using the sampled activation functions.

Due to the marginalization property of the multivariate normal distribution and because

µX
l

s? and ΣXl

ss? depend only on X l−1 via X l−1
s? as can be seen from (5.47), we observe that

P(X l
s? |X l−1

?? ) = P(X l
s? |X l−1

s? ) for all l, and thus the objective becomes

L (θ) =
1

S

S∑
s=1

EP(XL
s? |X0

s?)

[
L(XL

s?, Ts?)
]
. (5.52)

Thus for a classification task we have the objective

Lclass(θ) =
1

S

S∑
s=1

EP(XL
s? |X0

s?)

[
Ts? · log softmax(XL

s?)
]

(5.53)

where Ts? uses a one-hot encoding for the target classes and · denotes the scalar product
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between two vectors.

For a regression task, we use the negative delta distribution (5.2) as the loss measure

Lreg(y, t) = −δ(y − t) . (5.54)

Thus the loss is “minus infinity” if the prediction is exactly correct, otherwise it is zero. This

seems unreasonable at first since this measure is not differentiable, but analytically evaluating

parts of the expectation will result in a plausible loss function as we will show now. Inserting

this loss into (5.52) and expanding the expectation over the last layer leads to

Lreg(θ) = − 1

S

S∑
s=1

EP(XL
s? |X0

s?)

[
δ(XL

s? − Ts?)
]

= − 1

S

S∑
s=1

∫∫
P(XL−1

s? |X0
s?) P(XL

s? |XL−1
s? ) δ(XL

s? − Ts?) dXL−1
s? dXL

s?

= − 1

S

S∑
s=1

EP(XL−1
s? |X0

s?)

[
P(XL

s? = Ts? |XL−1
s? )

]
. (5.55)

We can further take the logarithm and apply Jensen’s inequality to obtain the standard negative

log-likelihood objective function,

Lll(θ) = − 1

S

S∑
s=1

EP(XL−1
s? |X0

s?)

[
log P(XL

s? = Ts? |XL−1
s? )

]
≥ − log(−Lreg(θ)) , (5.56)

which is an upper bound of the logarithmic regression loss. Note that by minimizing Lll(θ) the

predicted variance of the outputs XL−1 is taken into account. A prediction that is far off from

the ground truth will be penalized stronger if the GPN network simultaneously predicts a low

variance, i.e. high confidence, at the same time. Consequently during training the model not

only learns to predict the targets but also to self-estimate the confidence of its predictions.

5.3.4 Reparameterization and Stochastic Training

Analytically maximizing the objective function (5.52) would involve marginalization over the

states of the intermediate layers l ∈ {1, . . . , L − 1}. Unfortunately this is intractable, because

each layer marginal P (X l
s? |X0

s?) for l ≥ 2 is a distribution of arbitrary form since the values

of the previous layer appear non-linearly through the covariance function in its conditional

mean and covariance. Instead we will approximate the expectations in eqs. (5.52) and (5.56)

by sampling from P(XL
s? |X0

s?) or P(XL−1
s? |X0

s?) respectively.
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Figure 5.7: Parametric approximation of a GPN with factorization over samples for training.
The box indicates that the inside structure is replicated for each sample s. The response of
every sample depends on a set of inducing points V , targets U and variances S that is shared
between all samples. This parameterization allows for efficient training and inference.

The structure of this expectation leads to all samples being independent given the model

parameters. Consequently, each sample can be propagated independently through the network.

For this purpose the layer conditionals further simplify into univariate normal distributions for

each sample s and GPN n in layer l,

P(X l
sn |X l−1

s? ) = N (X l
sn |µX

l

sn ,Σ
Xl

ssn) (5.57)

with µX
l

sn and ΣXl

ssn given by (5.47). Note that this significantly reduces the computational

complexity, since only the diagonals of the matrices ΣXl

??n are required from now on. This

factorization corresponds to the probabilistic graphical model shown in fig. 5.7. The Markov

random field between the samples in the responses of the full GPN model (fig. 5.1) has been

replaced by directed connections from the inducing points to each sample, with the virtual

observations {V l
rn, U

l
rn, S

l
rn} being shared between all samples.

For optimization we need the derivative of L (θ) w.r.t. θ, but it cannot be calculated directly

because the parameters θ appear in the distribution P(XL
s? |X0

s?) the expectation is taken

over. To solve this issue we reparameterize the model using the reparameterization trick (D. P.

Kingma et al., 2013) as follows. For each random variableX l
sn representing a GPN we introduce
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an auxiliary random variable χlsn with standard normal distribution,

χlsn ∼ N (0, 1) , l ∈ {1, . . . , L}, s ∈ {1, . . . , S}, n ∈ {1, . . . , Nl} , (5.58)

and replace each random variable X l
sn by

X l
sn(X l−1

s? , χlsn) , µX
l

sn + ΣXl

ssnχ
l
sn (5.59)

where the dependency on X l−1
s? is mediated through µX

l

sn and ΣXl

ssn. This is equivalent to defining

the probability

P(X l
sn |X l−1

s? , χlsn) = δ(X l
sn − µX

l

sn − ΣXl

ssnχ
l
sn) (5.60)

using the delta distribution. The affine transformation property of the normal distribution

(2.36) enables us to immediately verify that the distribution of

Pθl(X
l
sn |X l−1

s? ) =

∫ ∞
−∞

P(X l
sn |X l−1

s? , χlsn) P(χlsn) dχlsn (5.61)

is unchanged, i.e. we recover the original P(X l
sn |X l−1

s? ) given by (5.57). We insert (5.61)

into (5.52) and obtain the loss of the reparameterized model,

L (θ) =
1

S

S∑
s=1

∫
· · ·
∫ ( L∏

l=1

Pθl(X̂
l
s? | X̂ l−1

s? , χls?) P(χls?)

)
L(XL

s?, Ts?) ·

dX̂1
s? dχ1

s? · · · dX̂L
s? dχLs? , (5.62)

where we have defined

P(χls?) ,
Nl∏
n=1

P(χlsn) , dχls? , dχls1 dχls2 · · · dχlsNl .

The integrals over X̂1
s?, . . . , X̂

L
s? can now be evaluated, leading to

L (θ) =
1

S

S∑
s=1

∫
· · ·
∫
L

(
XL
s?

(
XL−1
s?

(
· · ·X1

s?(X
0
s?, χ

1
s?) · · · , χL−1

s?

)
, χLs?

)
, Ts?

)
·

P(χ1
s?)dχ

1
s? · · ·P(χLs?)dχ

L
s? .
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Thus the reparameterized objective function is

L (θ) =
1

S

S∑
s=1

EP(χ1
s?,...,χ

L
s?)[L̂χ(θ,X0

s?, Ts?)] , (5.63)

with the reparameterized loss measure given by

L̂χ(θ,X0
s?, Ts?) , L

(
XL
s?

(
XL−1
s?

(
· · ·X1

s?(X
0
s?, χ

1
s?) · · · , χL−1

s?

)
, χLs?

)
, Ts?

)
. (5.64)

Note that this is a fully deterministic function given χ.

By performing the same reparameterization for the regression log-likelihood (5.56) we

obtain

Lll(θ) =
1

S

S∑
s=1

EP(χ1
s?,...,χ

L−1
s? )[L̂ll,χ(θ,X0

s?, Ts?)] (5.65)

with the reparameterized regression loss measure

L̂ll,χ(θ,X0
s?, Ts?) , − log Pθ

(
XL
s? = Ts?

∣∣∣∣ (5.66)

XL−1
s? = XL−1

s?

(
XL−2
s?

(
· · ·X1

s?(X
0
s?, χ

1
s?) · · · , χL−2

s?

)
, χL−1

s?

))
.

Note that in both cases only the expectant depends on the model parameters θ and the

distribution the expectation is taken over is independent of them. Since the expectation is a

linear operator, we can now calculate the gradients of the expected loss w.r.t. a parameter ϕ ∈ θ.
It is given by

∂L

∂ϕ
=

1

S

S∑
s=1

EP(χ?s?)

[
∂L̂χ
∂ϕ

(θ,X0
s?, Ts?)

]
. (5.67)

Since L̂χ(θ,X0
s?, X

L
s?) and L̂ll,χ(θ,X0

s?, X
L
s?) are deterministic functions provided that χ?s? is

given, all their derivatives can be calculated by iterated applications of the chain rule. Further-

more, P(χ?s?) is the product of standard, univariate normal distributions and thus sampling

values for all χlsn is trivial and can be performed fully parallel.

A training algorithm for parametric GPN feed-forward networks using mini-batches is shown

in algorithm 14. The only difference to training a conventional neural network is in line 9 where

the values for χ are sampled. During the forward and back propagation passes in lines 10 and 12

χ is treated as a constant and the loss and gradient calculations are done using the standard

forward- and back-propagation algorithms. The formulas for the derivatives are not given here;

instead we rely on automatic differentiation in our implementation to calculate them. Further
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Algorithm 14: Training a parametric GPN feed-forward network using sampling

Input: training inputs X̂0 and corresponding targets T̂L

Output: local parameter optimum θ
Parameters: learning rate ηp; loss update rate ηl; mini-batch size Sb; initial variance

σinit; initial ranges DV , DU

// random initialization of parameters
1 ∀l, n,m : sample W l

nm ∼ N (0, σ2
init)

2 ∀l, n : sample σln ∼ U(0, σinit)

3 ∀l, r, n : sample V l
rn ∼ U(−DV , DV )

4 ∀l, r, n : sample U lrn ∼ U(−DU , DU )

5 ∀l, r, n : sample Slrn ∼ U(0, σinit)

// training loop using mini-batches
6 Lest ←− 0
7 while Lest decreases do
8 Draw Sb samples from the training set and call the inputs X0

s? and targets T s? with
s ∈ {1, . . . , Sb}.

9 ∀l, s, n : sample χlsn ∼ N (0, 1)

10 Lest ←− (1− ηl)Lest +
ηl
Sb

S∑
s=1

L̂χ(θ,X
0
s?, T s?) // update loss estimate

11 for ϕ ∈ {W l
nm, σ

l
n, V

l
rn, U

l
rn, S

l
rn} do

12 ∆ϕ←− 1

Sb

Sb∑
s=1

∂L̂χ
∂ϕ

(θ,X
0
s?, T s?) // use backpropagation for deriv.

13 for ϕ ∈ {W l
nm, σ

l
n, V

l
rn, U

l
rn, S

l
rn} do

14 ϕ←− ϕ− ηp∆ϕ // perform parameter updates

details about how this is performed are given in chapter 4.

5.3.5 Discussion

We have presented an auxiliary parametric approximation to the GPN model, which provides

several benefits compared to the original model. Since the model is fully parametric, after

training all information about the training samples is stored in the parameters of the model and

hence it is not necessary to keep training samples for prediction. The number of parameters

depends on the number of GPNs and how many virtual observations are used per GPN, but it is

independent of the number of training samples. Furthermore training can be performed in mini-

batches; thus portions of the training set can be presented sequentially to the model during

training. These properties taken together allow parametric GPN networks to scale to datasets of



5.3. THE PARAMETRIC GAUSSIAN PROCESS NEURON 139

arbitrary size, just like conventional neural networks do. The parametric approximation makes

no assumptions on the marginal distributions P(X l
s? |X0

s?), l ∈ {1, . . . , L}, and thus, although

all conditional distributions are multivariate normals, a parametric GPN feed-forward network

can learn to represent arbitrary data distributions P(XL
s? |X0

s?).

By sampling from the distribution of activation functions during training we are introducing

a stochastic element into the training procedure. Consequently parametric GPNs further up

in a feed-forward network see a noisy version of the processed inputs and learn to perform

predictions even under presence of this noise, making the model resilient against overfitting

on the training data. This is similar to the regularization technique Dropout (Srivastava et al.,

2014), where the output of neurons is randomly set to zero with a given probability. Compared

to Dropout however, the amount of noise induced in a parametric GPN is not constant but

data-dependent. This follows from the variance of the probabilistic activation function being

depended on the inputs to the parametric GPN, i.e. close to an inducing point the activation

function has low variance, but far away from any inducing point it becomes almost completely

random.

While stochastic training has been proven to find parameter optima that generalize better to

unseen data samples, it also slows training down considerably because it leads to noisy estimates

of the gradient, which, in turn, require the learning rate to be kept at least a magnitude lower

compared to noise-free algorithms to prevent the trajectory in parameter space from becoming

unstable. This is also a drawback of the Dropout technique mentioned above. To increase the

speed of training and make it comparable with that of a conventional neural network, we will

therefore demonstrate how to analytically propagate distributions through a parametric GPN

network in section 5.5.

On the negative side the maximum likelihood estimation of the parameters performed

in this section increases the risk of overfitting. Section 5.6 will show how to prevent this by

performing Bayesian inference using appropriate priors.
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5.4 Monotonic Activation Functions

Many commonly used activation functions, such as the sigmoid, hyperbolic tangent and (soft)

rectifier are non-decreasing, i.e. their first derivative is non-negative for all values of the function.

The idea behind using non-decreasing activation functions comes from treating a neuron as a

thresholding unit that becomes active when the weighted sum of its inputs reaches a predefined

threshold. This behavior would be best captured by using the step function as the activation

function; however since its derivative is almost everywhere zero, it is not a suitable choice

for a model that needs to be differentiable for training. Thus a softer version of the step

function like the logistic function and its relatives, which all have in common that they are

increasing functions, are used. Furthermore, it can be shown analytically (Wu, 2009) that the

loss function of a neural network with a single layer is convex and thus only has one minimum,

when a monotonic activation function is used. Taking into account these arguments, it might

be desirable to enforce that activation functions modeled by a GPN are also monotonic.

As it can be seen from fig. 5.8a monotonicity cannot be imposed by simply requiring the

targets of the inducing points to be increasing, since the zero mean function of the GP pulls

the mean back to zero in areas without virtual observations. Moreover samples from a GP

with an increasing mean function, fig. 5.8b, can be non-monotonous due the variability of

the sampled function between the virtual observations. Hence, there exist several methods of

varying complexity that achieve different levels of monotonicity of the activation function. We

start by describing how the ensure a monotonous mean function with slight effort and continue

by developing a more elaborate method that ensures that nearly every activation function

sample is monotonous.

5.4.1 Increasing Activation Function Mean

A positive mean function can be enforced by calculating the derivative of the activation function

at a finite number of derivative check points and adding a penalty term for negative derivative

values at these points to the loss function of the model. Since a GP is differentiable the mean of

the derivative can be calculated analytically from the inducing points and targets using (2.84)

without the need for numerical differentiation. Let c ∈ Rd be a vector of D derivative check

points; for example, a set of evenly spaced points between the left-most and right-most inducing

point of the GPN. For each parametric GPN with index n within a layer we obtain for the mean

of the derivative

µX
′

?n = K ′(c, V?n) [K(V?n, V?n) + diag(S?n)]−1 U?n (5.68)
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Figure 5.8: (a) Increasing targets (red circles) for inducing points do not necessarily lead to an
increasing mean function (red line). (b) Furthermore, even with an increasing mean function
a sample (blue line) from the GP can still be non-monotonous.

where the derivative covariance matrix is given by

[K ′(c, V?n)]dr , −2 exp
(
−(cd − Vrn)2

)
(cd − Vrn) . (5.69)

The penalty term is then given by

Lm(θ) =
αm

N D

N∑
n=1

D∑
d=1

σ(−βm µX
′

dn ) (5.70)

where σ(t) is the logistic function and αm � 1 and βm � 1 are constants that control the

strength of the penalty. Thus a value of αm is added to the loss for each derivative check point

with a negative derivative value. Adding Lm to the loss of the model results ensures that the

means of the activation functions of all parametric GPNs are increasing, if the derivative check

points are placed densely enough.
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5.4.2 Increasing Activation Function Samples

As seen from fig. 5.8b even a GP with an increasing mean can give rise to non-increasing

function samples. In fact, due to the stochastic nature of a GP it is impossible to guarantee that

each function sample will be increasing, unless the observations are so closely packed the the

GP effectively becomes deterministic. However, it is possible to greatly reduce the probability of

obtaining non-increasing function samples by introducing virtual observations of the derivative

into the GP at locations where it shows a significant probability of becoming negative.

A method for choosing this virtual derivative observations has been suggested by Riihimäki

et al. (2010). The authors place a monotonicity prior on the GP and use the expectation propa-

gation algorithm (Minka, 2001) to infer the derivative observations in a Bayesian framework.

While the proposed technique works well, the use of expectation propagation makes it com-

putationally expensive and particularly problematic to include in a model that is trained by

gradient descent, such as a parametric GPN network. As an alternative we develop a method

based on co-optimizing a secondary loss that penalizes non-increasing function samples w.r.t.

the variances of the virtual derivative observations.

In addition to the derivate check points c we introduce R′ virtual derivative observations

per parametric GPN. The locations of the derivative observations are denoted by V ′r′n and the

derivative targets are Ur′n with r′ ∈ {1, . . . R′}. Each derivative observation is associated with

a variance S′r′n ≥ 0 that controls the influence of that virtual observation on the activation

function of the GPN. The locations V ′r′n of the derivative observations can be chosen arbitrarily;

however it is most efficient to evenly place the derivative observation locations between the

left- and right-most inducing point of a GPN. The corresponding targets U ′r′n are set to be the

slope between the targets of the neighboring inducing points; i.e. let r− be the index of the

inducing point Vr−n that is nearest to the left of V ′r′n and let r+ be the index of the inducing

point Vr+n that is nearest to the right of V ′r′n, then we set

U ′r′n =
Ur+n − Ur−n
Vr+n − Vr−n

. (5.71)

The derivative targets U ′r′n are updated accordingly when the targets U change. Once initialized

the locations V ′r′n remain fixed during training of the model. Note that here we assume that

the inducing points V of a parametric GPN do not move much during training. This is an

observation we have made during empirical evaluations of parametric GPN models.

The variances S′r′n are variable and used to control the influence of the derivative observa-

tions. For S′r′n � 1 the derivative observation r′ becomes insignificant and the GP behaves as

if it was not present. As S′r′n gets smaller the derivative observation becomes more important
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and for S′r′n = 0 all function samples f obtained from the GP will have f ′(V ′r′n) = U ′r′n. The

idea is thus to use a low derivative variance S′r′n in regions where the GP has a high risk of pro-

ducing non-increasing functions and otherwise let S′r′n →∞ to keep the GP as unconstrained

as possible. We do so by introducing a secondary loss function that penalizes function samples

that are non-increasing at the check points c. It is given by

Ls =
αs

N D

N∑
n=1

D∑
d=1

σ
(
−βsX ′dn

)
(5.72)

where σ is the logistic function and αs and βs serve the same function as αm and βm respectively.

The random variable X ′dn is distributed according to

X ′dn ∼ N (µX
′

dn , (σ
X′
dn )2) (5.73)

with its mean and variance given by

µX
′

dn = K∗d K̃
−1 Ũ , (5.74a)

(σX
′

dn )2 = K ′′(cd, cd)−K∗d K̃−1 (K∗d)T . (5.74b)

where the covariance matrices and targets are

K∗d ,
[
K ′(cd, V?n) K ′′(cd, V

′
?n)
]
, (5.75a)

K̃ ,

[
K(V?n, V?n) + diag(S?n) K ′(V ′?n, V?n)T

K ′(V ′?n, V?n) K ′′(V ′?n, V
′
?n) + diag(S′?n)

]
, (5.75b)

Ũ ,

[
U?n

U ′?n

]
. (5.75c)

The blocks of the covariance matrices are given by the corresponding derivatives (2.83) and

thus evaluate to

[K ′(x′,y)]r′t = −2 exp
(
−(x′r′ − yt)2

)
(x′r′ − yt) , (5.76a)

[K ′′(x′,y′)]r′t′ = exp
(
−(x′r′ − y′t′)2

) (
2− 4(x′r′ − y′t′)2

)
. (5.76b)

The expectation of the monotonicity loss (5.72) can either be evaluated by sampling

from (5.73) or, more efficiently, by using the unscented transform. Since the activation function

and its derivative are one-dimensional, the unscented transform (section 2.2.11) can be easily

applied without the need to perform a Cholesky decomposition. The approximate expectation
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of the monotonicity loss is thus given by

EP(X′)[Ls] ≈
αs

N D

N∑
n=1

D∑
d=1

1

1 + κ

[
κσ
(
−βs µX

′
dn

)
+

1

2
σ

(
−βsµX

′
dn − βs

√
(1 + κ)(σX

′
dn )2

)
+

1

2
σ

(
−βsµX

′
dn + βs

√
(1 + κ)(σX

′
dn )2

)]
(5.77)

Since the virtual derivative observations should only influence the GPN when necessary

to avoid a non-increasing activation function, the monotonicity loss shall include a term that

drives the precision 1/S′r′n to zero. This can be achieved by

Lp =
αp

N R′

N∑
n=1

R′∑
r′=1

1

S′r′n
(5.78)

with αp � αs since (5.77) quickly goes to zero when the derivative is positive, due to the use of

the logistic function. The monotonicity loss (5.77) and derivative precision regularization (5.78)

are added to the model loss and minimized w.r.t. the variances S′r′n.

Let us demonstrate the working principle of this method on a GPN with fixed inducing

points U , V and S. An example is shown in fig. 5.9. Without virtual derivative observations

(derivative variance S′ is infinite, fig. 5.9a) the lower panel shows that the derivative of the GP

has areas where it becomes negative with high probability. After the sum of the losses (5.77)

and (5.78) is optimized w.r.t. S′ (fig. 5.9b) the virtual derivative observations make it unlikely

for the GP to produce a non-increasing function. The variance of these observations remains as

high as possible, thus we obtain a GP the derivative of which is constrained only as much as

necessary.
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Figure 5.9: Encouraging a GP to produce increasing function samples by optimizing the sum of
the monotonicity losses (5.77) and (5.78) w.r.t. the variances of virtual derivative observations.
The upper panel shows the GP with mean function (red) and two samples (blue and magenta);
observations are shown as red circles. The lower panel shows the derivative of the GP with
virtual derivative observations indicated by green crosses with lines showing their standard
deviation. (a) The variance of the virtual derivative observations is initialized with infinity and
thus they do not affect the GP. The target derivative value is set to the slope between the two
neighboring inducing points. (b) After optimizing the monotonicity loss, the virtual derivative
observations have low variance where the GP would have high risk of producing function with
negative derivative, for example around x ≈ 1. At regions where the GP produces increasing
function anyway, here between −1.5 and 0, the variance of the virtual derivative observations
remains high.
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5.5 Central Limit Activations

The reason for approximating the loss and its derivatives by sampling in section 5.3.4 is that a

parametric GPN is able to completely change the shape of a distribution propagated through

it. This can be seen as follows. Given enough virtual observations the activation function

of an parametric GPN can approximate an arbitrary function. Thus, taking for instance the

step function as the activation function of the GPN, we see immediately that a normal input

distribution will result in an output distribution that is not normal. Given the appropriate

choice of inducing points and targets, it is even possible for a GPN to transform a, say, uniform

distribution into a normal distribution or vice versa. Intuitively speaking, the incoming normal

distribution passes through the activation function, which is smooth but arbitrary, and thus

the distribution will be deformed arbitrarily. Hence, in general it is not possible to find a

class of distributions that is closed under propagation through a GPN. However, in practice a

multivariate normal is still a very good approximation of the occurring distributions, as we will

show in this section.

Consider the excerpt of a GPN feed-forward network shown in fig. 5.10. Since the inputs

are observed, the distribution of each GPN in layer 1 is a univariate normal distribution with all

GPNs being pairwise independent. Thus their joint distribution is a multivariate normal with

diagonal covariance,

X1
s? ∼ N (µX

1

s? ,diag(σX
1

s? )) . (5.79)

and consequently the distribution over the activations of the GPNs in layer 2 is given by

A2
s? ∼ N (µA

2
s? ,ΣA2

s?)

with mean and covariance given by

µA
2
s? = W 2µX

1
s?

ΣA2
s? = W 2 diag(σX

1

s? ) (W 2)T .

We now have to discriminate between two cases.

If the variances in layer 1 are small, σX
1

sn � 1, and the weights are equally distributed

around zero3, 〈W 2
nm〉nm ≈ 0, we can assume that the variances of the activations in layer 2 will

also be reasonably small, Σ
A2
s?

ii � 1, so that a first-order Taylor expansion4 of the activation

3〈•〉nm denotes the average over the elements of a matrix as defined in eq. (2.1).
4For the sake of this argument we ignore the additional variance imposed by the GP representing the activation

function.
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Figure 5.10: The principle of the normal approximation in a feed-forward GPN network. Prop-
agating the distribution of the activations A2

s? through the activation functions results in ar-
bitrary distributions X2

s?. However, given enough GPNs in layer 1 and 2, the responses X2
sn,

n ∈ {1, 2, . . . N2}, are only weakly correlated and thus the distribution of the activations A3
s?

will again resemble a normal distribution due to the central limit theorem.

function of each GPN around the mean,

Fn(A) = F (µA
2
sn) +

dF

dA

∣∣∣∣
A=µA

2
sn

(A− µA2
sn) +O

(
(A− µA2

sn)2
)
,

can be used to propagate the distribution of A2
sn through the activation function Fn(A). Hence,

it follows that in this case the distribution of X2
sn must also be normal, since applying an affine

transformation to a normal distribution results in another normal distribution.

If the variances Σ
A2
s?

ii are not sufficiently small, the response distribution X2
sn is arbitrary.

However, if the activation functions are sufficiently uncorrelated, the covariance statistics re-

main approximately unchanged; thus it will hold that

〈Cov(X2
sn, X

2
sm)〉n6=m ≈ 〈Cov(A2

sn, A
2
sm)〉n6=m .

Assuming random layer 2 weights W 2, we see that by writing the covariance matrix as

ΣA2
s?

nm = |Vn?| |Vm?| cos](Vn?, Vm?) with V ,W 2 diag(σX
1

s? )
1
2 ,
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Figure 5.11: The figure shows the CDF of the distribution of activations of a GPN in layer 3 of
the GPN feed-forward network shown in fig. 5.10. The red line shows the empirical distribution
obtained by propagating 1000 draws from X1

s? through layer 2 and applying the weights W 3.
The dashed blue line is the CDF of a best-fit normal distribution on this data. Given random
weights and activation functions, 10 GPNs seem to be enough for the activationsA3

s? to resemble
a Gaussian.

the expected value of the off-diagonal elements is determined by the cosine of the angle between

elements of V . Since the weights are assumed to be iid.random, this implies

〈 cos](Vn?, Vm?)〉n 6=m ≈ 0 . (5.80)

This makes the central limit theorem for dependent variables, cf. section 2.2.5, applicable on

the layer 3 activations

A3
si =

∑
n

W 3
inX

2
sn ,

since (5.80) ensures that the variables X2
sn are weakly correlated at most and thus the prereq-

uisite for the central limit theorem that

τ2
N2

= const +
1

N2

N2∑
n=1

N2∑
m=1
m6=n

Cov(W 3
inX

2
sn,W

3
imX

2
sm)

stays finite for N2 →∞ is fulfilled. Consequently even for large variances Σ
A2
s?

ii the central limit

theorem suggests that the activations A3
s? of the following layer will be normally distributed

due to summation over a large number of weakly correlated variables.

We can also test the claim of having normally distributed activations in each layer experi-
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mentally. For that purpose we instantiate three-layer GPN feed-forward networks (see fig. 5.10)

with different numbers of GPNs in layer 1 and 2. Their weights are sampled from a standard

normal distribution and the activation function of each GPN is randomly sampled from a zero-

mean GP with the SE covariance function with unit lengthscale. A random input vector is

drawn and the parameters of the distribution for X1
s? given by (5.79) are calculated. Then

1000 samples are drawn from X1
s? and propagated through each network until reaching A3

s?.

The resulting empirical CDFs of A3
s? for two networks are shown in fig. 5.11 together with the

best-fit normal CDFs. For a very small network with only 3 GPNs on both layers it is apparent

that the activations are not normally distributed. As the number of GPNs increases the distribu-

tion becomes more normal and having 10 GPNs in both layers is enough for the distribution to

resemble a Gaussian very closely.

A similar analysis has been performed by (Wang et al., 2013) on a conventional neural

network. In their work the authors show empirically that the activations of each neuron remain

normally distributed even after the network has been trained to convergence. We can therefore

deduce that for the weights in a trained network, eq. (5.80) still holds and thus our argument

remains valid during and after training.

In conclusion, we have motivated analytically and shown empirically that assuming a mul-

tivariate normal distribution over Als? for all layers l is a reasonable approximation for non-

degenerate feed-forward networks of parametric GPNs. The best choice for the parameters of

the approximating normal is to use the same mean and covariance as the true distribution, i.e.

P̃(Als?) = N (Als? | µ̃A
l

s? , Σ̃
Al

s??) (5.81)

with

µ̃A
l

sn , E
P(Als? |A

l−1
s? )P̃(Al−1

s? )
[Alsn] (5.82)

Σ̃Al

snm , Cov
P(Als? |A

l−1
s? )P̃(Al−1

s? )
(Alsn, A

l
sm) , (5.83)

and we must now find how to propagate these statistics from layer to layer. It turns out that it

can be done exactly using closed-form equations that will be derived in the following section.
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5.5.1 Propagation of Mean and Covariance

Since Als? = W lX l−1
s? we have for each layer

µ̃A
l

s? = W l µ̃X
l−1

s? (5.84a)

Σ̃Al

s?? = W l Σ̃Xl−1

s?? (W l)T , (5.84b)

where µ̃X
l−1

and Σ̃Xl−1
are the mean and variance of X l−1, which is not normally distributed.

We now have to calculate µ̃X
l

and Σ̃Xl
given µ̃A

l
and Σ̃Al .

The first layer, l = 1, already follows a normal distribution, since its inputs and thus activa-

tions are deterministic. Thus we set

µ̃X
1

sn = µX
1

sn (5.85a)

Σ̃X1

snm = ΣX1

ssn δnm (5.85b)

with µX
1

sn and ΣX1

ssn given by (5.47). Note that in the normal approximation Σ̃ describes the

covariance between different GPNs within a layer while Σ from (5.47b) captures the covariance

between different samples for the same parametric GPN.

For the following layers, l > 1, we proceed as follows. To calculate the mean vector we

apply the law of total expectation and get

µ̃X
l

sn = E[X l
sn] = E

P̃(Als?)

[
EP(Xl

s? |Als?)[X
l
sn]
]

= E
P̃(Als?)

[µX
l

sn ] . (5.86)

By inserting µX
l

sn from (5.47a) we further obtain

µ̃X
l

sn =
(

E
P̃(Als?)

[αl?n]
)T

κl??n U
l
?n (5.87)

with

αlrn , k(Alsn, V
l
rn) (5.88)

κl??n , [K(V l
?n, V

l
?n) + diag(Sl?n)]−1 . (5.89)

The expectation becomes

E
P̃(Alsn)

[αlrn] =

∫
k(Alsn, V

l
rn)N (Alsn | µ̃A

l

sn, Σ̃
Al

snn) dAlsn . (5.90)
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Noting that the SE covariance function can be written as the unnormalized PDF of a Gaussian,

k(a, a′) =
√
πN

(
a

∣∣∣∣ a′, 1

2

)
,

we can further calculate

E[αlrn] =
√
π

∫
N (Alsn |V l

rn, 1/2)N (Alsn | µ̃A
l

sn, Σ̃
Al

snn) dAlsn (5.91)

and by applying the product formula for two Gaussian PDFs (2.23) we obtain another Gaussian

PDF,
√
πN (Alsn |V l

rn, 1/2)N (Alsn | µ̃A
l

sn, Σ̃
Al

snn) = Ŝ N (Alsn | µ̂, σ̂2) (5.92)

with

1

σ̂2
= 2 +

1

Σ̃Al
snn

(5.93a)

µ̂ =

(
2V l

rn +
µ̃A

l

sn

Σ̃Al
snn

)
σ̂2 (5.93b)

Ŝ =

√
1

1 + 2Σ̃Al
snn

exp

(
−(µ̃A

l

sn − V l
rn)2

1 + 2Σ̃Al
snn

)
(5.93c)

After substitution into (5.91) only the factor Ŝ remains since the integral over any PDF is one,

thus we obtain

ψlrn , E[αlrn] = Ŝ (5.94)

This concludes the calculation of the mean of X l.

For the covariance matrix we obtain by using the definition of the covariance and expanding

the occurring expectations as above

Σ̃Xl

snm = Cov(X l
sn, X

l
sm) = E

P̃(Als?)

[
EP(Xl

s? |Als?)[X
l
snX

l
sm]
]
− µ̃Xl

sn µ̃
Xl

sm . (5.95)

We must now differentiate between on-diagonal and off-diagonal elements of the covariance

matrix. For diagonal elements, n = m, we note that E[X2] = Var(X) + E[X]2 and obtain

Σ̃Xl

snn = E
P̃(Al−1

s? )

[
ΣXl

ssn + (µX
l

sn )2
]
− (µ̃X

l

sn )2 . (5.96)

The first term of the sum in the expectation evaluates to

E
P̃(Als?)

[
ΣXl

ssn

]
= 1− E

[
(αls?)

T κl??n α
l
s?

]
+ (σln)2 . (5.97)
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which can further be expanded into

E
[
(αls?)

T κl??n α
l
s?

]
=
∑
r

∑
t

κlrtn Ωl
rtn .

with Ωl
rtn , E[αlrn α

l
tn]. Rewriting αlrn, αltn as Gaussian PDFs and combining them with the

normal distribution over Alsn using the product formula for Gaussian PDFs (2.25) gives after

simplification

√
πN (Alsn |V l

rn, 1/2)
√
πN (Alsn |V l

tn, 1/2)N (Alsn | µ̃A
l

sn, Σ̃
Al

snn) = S̃ N (Alsn | µ̃, σ̃2) (5.98)

with

σ̃2 =
Σ̃Al
snn

1 + 4Σ̃Al
snn

(5.99a)

µ̃ =
Σ̃Al
snn

1 + 4Σ̃Al
snn

(
2V l

rn + 2V l
tn +

µ̃A
l

sn

Σ̃Al
snn

)
(5.99b)

S̃ =

√
1

1 + 4Σ̃Al
snn

exp

−2
(
µ̃A

l

sn − V lrn+V ltn
2

)2

1 + 4Σ̃Al
snn

− (V l
rn − V l

tn)2

2

 . (5.99c)

Thus we have Ωl
rtn = S̃ due to integrating over a normalized PDF. The second term in the

expectation evaluates to

E
[
(µX

l

sn )2
]

= E
[
(βl?n)T αl?n (αl?n)T βl?n

]
=
∑
r

∑
t

βlrnβ
l
tn Ωl

rtn (5.100)

where we have defined βl?n , κl??n U
l
?n. Inserting the derived terms into (5.96) and simplifying

gives

Σ̃Xl

snn = 1− tr
[(
κl??n − βl?n (βl?n)T

)
Ωl
??n

]
− tr

(
ψl?n(ψl?n)T βl?n(βl?n)T

)
+ (σln)2 . (5.101)

An alternative derivation of the mean and variance giving the same result can be found in

(Quiñonero-Candela, Girard, et al., 2002).

For off-diagonal elements, n 6= m, we observe that X l
sn and X l

sm are conditionally indepen-

dent given Als? because the activation functions of neurons n and m are represented by two

different GPs. The correlation between GPNs within a layer l is induced by being conditioned
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on the same set of inputs X l−1
s? . Exploiting this conditional independence gives

Σ̃Xl

snm = E
[
µX

l

sn µ
Xl

sm

]
− µ̃Xl

sn µ̃
Xl

sm = E
[
(βl?n)T αl?n (αl?m)T βl?m

]
− µ̃Xl

sn µ̃
Xl

sm

=
∑
r

∑
t

βlrnβ
l
tm Λlrtnm − µ̃X

l

sn µ̃
Xl

sm (5.102)

To evaluate Λlrtnm , E[αlrnα
l
tm] we observe that

αlrnα
l
tm = exp

(
−(Alsn − V l

rn)2 − (Alsm − V l
tm)2

)
= exp

(
−1

2
(A− V )T 2(A− V )

)
= 4πN (A |V , L) (5.103)

where we have defined

A ,

(
Alsn

Alsm

)
, V ,

(
V l
rn

Altm

)
, L ,

(
1/2 0

0 1/2

)
.

We now have

Λlrtnm = 4π

∫∫
N (A |V , L)N (A | µ̂, Σ̂) dA

with

µ̂ =

(
µ̃A

l

sn

µ̃A
l

sm

)
, Σ̂ =

(
Σ̃Al
snn Σ̃Al

snm

Σ̃Al
smn Σ̃Al

smm

)

due to the marginalization property of the multivariate normal distribution over Als??. Applying

the product formula for the PDFs of multivariate normal distributions (2.37) we obtain

Λlrtnm = 4π exp(S1 + S2 − S3) (5.104)

with

S1 = − log 2π − 1

2
log |L| − 1

2
V TL−1V

S2 = − log 2π − 1

2
log
∣∣∣Σ̂∣∣∣− 1

2
µ̂T Σ̂−1µ̂

S3 = − log 2π +
1

2
log
∣∣∣L−1 + Σ̂−1

∣∣∣− 1

2

(
L−1V + Σ̂−1µ̂

)T (
L−1 + Σ̂−1

)−1 (
L−1V + Σ̂−1µ̂

)
.

Using the general matrix inversion identity

(A+B)−1 = A−1
(
A−1 +B−1

)−1
B−1 = B−1

(
A−1 +B−1

)−1
A−1
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the expression for S3 simplifies to

S3 = − log 2π +
1

2
log
∣∣∣L−1 + Σ̂−1

∣∣∣− V T
(
L−1 + Σ̂−1

)−1
µ̂−

1

2
V T

(
L−1 + Σ̂−1

)−1
Σ̂L−1 V − 1

2
µ̂T
(
L−1 + Σ̂−1

)−1
L Σ̃−1 µ̃ .

All matrices that occur in S1,S2,S3 are of size 2× 2, thus their inverses and determinants can

be calculated analytically in closed form using

detM = M11M22 −M12M21 ,

M−1 =
1

detM

(
M22 −M12

−M21 M11

)
.

Applying these formulas and substituting S1,S2,S3 into (5.104) gives after simplification

Λlrtnm =
exp(A l

rtnm/B
l
rtnm)√

(1 + 2Σ̃Al−1

snn ) (1 + 2Σ̃Al−1

smm)− 4Σ̃Al−1

snm

(5.105)

with

A l
rtnm = (V l

tm − µ̃A
l

sm)2 (1 + 2Σ̃Al

snn) + (V l
rn − µ̃A

l

sn)2 (1 + 2Σ̃Al

smm) +

4 (V l
rn − µ̃A

l

sn) (µ̃A
l

sm − V l
tm) Σ̃Al

snm (5.106a)

Bl
rtnm = (1 + 2Σ̃Al

nn) (1 + 2Σ̃Al

mm)− 4(Σ̃Al

nm)2 (5.106b)

This concludes the calculation of the covariance matrix of X l.

Having made the approximations shown in this section, we are able to analytically propagate

the mean and covariance of all data points through all layers of a feed-forward GPN stack.

Including Virtual Derivative Observations

If virtual derivative observations are used to ensure that the activation function of the GPN

is increasing, cf. section 5.4, the propagation of the mean and covariance must be adapted to

accommodate these observations. To propagate the mean using virtual derivative observations,

eq. (5.87) is replaced by

µ̃X
l

sn =
(

E
P̃(Als?)

[α̃l?n]
)T

κ̃l??n Ũ
l
?n (5.107)
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where we have κ̃l??n , K̃−1 with K̃ and Ũ given by (5.75b) and (5.75c). Furthermore,

α̃l?n ,

[
αl?n

α′l?n

]

with αlrn as previously defined in (5.88) and α′lr′n = K ′(V ′lr′n, A
l
sn) given by (5.76a). The corre-

sponding expectation value E[α′lr′n] is straightforward to calculate,

E[α′lr′n] = −2
(
V ′lr′n −Alsn

)√
π

∫
N (Alsn |V ′lr′n, 1/2)N (Alsn | µ̃A

l

sn, Σ̃
Al

snn) dAlsn

= −2 Ŝ
(
V ′lr′n − µ̂

)
= −2 exp

(
−(V ′lr′n − µ̃A

l

sn)2

1 + Σ̃Al
snn

)
V ′lr′n − µ̃A

l

sn

(1 + 2Σ̃Al
snn)3/2

, (5.108)

where Ŝ and µ̂ are given by (5.93c) and (5.93b) respectively.

For the variance eq. (5.97) must be replaced by

E
P̃(Als?)

[
ΣXl

ssn

]
= 1− E

[
(α̃ls?)

T κ̃l??n α̃
l
s?

]
+ (σln)2 . (5.109)

and the corresponding expectations evaluate to

E[αlrnα
l
tn] = π

∫
N (Alsn |V l

rn, 1/2)N (Alsn |V l
tn, 1/2)N (Alsn | µ̃A

l

sn, Σ̃
Al

snn) dAlsn

= S̃ (5.110a)

E[α′lr′nα
l
tn] = −2π

∫ (
V ′lr′n −Alsn

)
N (Alsn |V ′lr′n, 1/2)N (Alsn |V l

tn, 1/2) ·

N (Alsn | µ̃A
l

sn, Σ̃
Al

snn) dAlsn

= −2 S̃
(
V ′lr′n − µ̃

)
(5.110b)

E[α′lr′nα
′l
t′n] = 4π

∫ (
V ′lr′n −Alsn

)
N (Alsn |V ′lr′n, 1/2)

(
V ′lt′n −Alsn

)
N (Alsn |V ′lt′n, 1/2) ·

N (Alsn | µ̃A
l

sn, Σ̃
Al

snn) dAlsn

= 4 S̃
[
V ′lr′nV

′l
t′n − µ̃

(
V ′lr′n + V ′lt′n

)
+ µ̃2 + σ̃2

]
(5.110c)

with µ̃, σ̃2, and S̃ given by (5.99). Substituting these quantities into (5.101) propagates the

variance from layer to layer including the virtual derivative observation to ensure monotonicity

of the activation function samples.



156 CHAPTER 5. GAUSSIAN PROCESS NEURONS

Expectation of the Loss

It remains to calculate the expectation of the loss over the approximative normal distribution

of the top-most GPN layer,

L (θ) =
1

S

S∑
s=1

E
P̃θ(XL

s?)
[L(XL

s?, Ts?)] . (5.111)

In the case of regression the associated loss measure (5.54) results in

Lreg(θ) = − 1

S

S∑
s=1

P̃θ(X
L
s? = Ts?)

and we obtain the standard negative log-likelihood objective function by applying Jensen’s

inequality over the sum,

Lll(θ) = − 1

S

S∑
s=1

log P̃θ(X
L
s? = Ts?) = − 1

S

S∑
s=1

LN (Ts? | µ̃X
L

s? , Σ̃
XL

s??) . (5.112)

Note that µ̃X
L

s? and Σ̃XL

s?? are functions of the inputs X0
s? and model parameters θ through

iterated application of eqs. (5.87), (5.101) and (5.102). Thus under the normal approximation

developed in this section the training objective for regression is a fully deterministic function.

For this loss we made the additional assumption that the (learned) activation function of the

last layer is linear enough so that XL follows a normal distribution. This can easily be achieved

without loss of expressive power by fixing the activation function of the last layer to the identity

function. Then XL = AL and the central limit theorem ensures a normal distribution.

For other loss functions, for example the cross-entropy loss for classification, we still need

to evaluate the expectation in eq. (5.111). While we could compute the loss by sampling from

P̃θ(X
L
s?) and taking the average over the loss values for these samples, this would require our

training procedure to be stochastic and thus not as efficient as when minimizing a deterministic

objective such as (5.112). A method of propagating the mean and covariance of a normal

distribution through an arbitrary function is the unscented transform, that was introduced

in section 2.2.11. It works by propagating deterministically chosen points that represent the

distribution through the function and using the transformed points to estimate the mean and

covariance of the transformed distribution. Using the unscented transform the loss becomes

L (θ) =
1

S

S∑
s=1

2NL∑
i=0

Wi L(xsi , Ts?) (5.113)
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where xsi are the sigma points given by eqs. (2.41) and (2.47) for mean µx = µ̃X
L

s? and

covariance Σx = Σ̃XL

s?? and Wi are the corresponding weights of the unscented transform. Since

the sigma points are differentiable w.r.t. the mean and covariance, the derivative of (5.113)

w.r.t. the model parameters θ can be calculated using the chain rule. This method also assume

that XL follows a normal distribution thus it is sensible to fix the activation function of layer L

to the identity function.

In conclusion, we have derived completely deterministic training objectives for a feed-

forward parametric GPN network using analytic propagation of means and covariances from

layer to layer, resulting in loss functions that can be minimized using the classic technique of

backpropagation.

5.5.2 Computational and Model Complexity

To represent the activation functions a parametric GPN layer requires 3R parameters per GPN,

where R is the number of virtual observations. GPNs require no bias term, because it is equiva-

lent to an offset in the targets corresponding to the inducing points. To reduce the number of

parameters the locations of the inducing points V can be fixed, for example using equidistantly

placed points, so that only 2R parameters are required. Furthermore, the standard deviations S

of the targets U can be shared between all inducing points, resulting in only R+ 1 parameters

per GPN. Finally, to further reduce the number of required parameters we can apply the weight

sharing idea from CNNs and use a common set of virtual observations and thus activation

functions within a group of GPNs or even within a whole layer.

Since the flexibility of the parametric GPN is controlled by R, care must be taken not

to choose a too small R since this would limit the activation functions representable by the

GPN and thus the power of a feed-forward network constructed from these GPNs. A good

heuristic for choosing R is so that the GPN is able to represent the most common activation

functions currently in use. For that purpose, we empirically modeled the hyperbolic tangent,

rectifier and sine activation functions with a GPN using a varying number of inducing points

and compared the resulting approximation to the original function. From fig. 5.12 we can see

that R = 8 virtual observations with equidistant inducing points are enough to represent these

activation functions with high accuracy. However, outside of the range of the inducing points

the approximation of the activation function will return to zero by design and cannot model a

periodic function like the sine.

The computational complexities of propagating mean and covariance from layer to layer

are shown in table 5.2. The complexity of calculating the responses can be significantly reduced

fromO(NlR
3) toO(NlR

2) by keeping the inducing points V l and variances Sl fixed, because in
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(a) GPN using 5 virtual observations

identity

-6 -4 -2 0 2 4 6
-5

0

5

GPN
true act. func.

tanh

-6 -4 -2 0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

rectifier

-6 -4 -2 0 2 4 6
-5

0

5
sin

-6 -4 -2 0 2 4 6
-2

-1

0

1

2

(b) GPN using 8 virtual observations

Figure 5.12: Common activation functions approximated by a parametric GPN with 5 or 8
virtual observations (red circles) respectively. The dotted line shows the actual activation func-
tions, while the red line is the approximation by the parametric GPN. The standard deviation
is shown using gray shading. Using 8 virtual observations all functions can be closely approxi-
mated within the range of the inducing points; outside this range the function values gradually
return to zero.
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expression complexity
activations given µ̃X

l−1

s? , Σ̃Xl−1

s?

mean µ̃A
l

s? (5.84a) O(NlNl−1)

variance diag(Σ̃Al
s??) (5.84b) O(NlNl−1)

covariance Σ̃Al
s?? (5.84b) O(N2

l Nl−1 +NlN
2
l−1)

responses given µ̃A
l

s? , Σ̃Al
s? variable V, S fixed V, S

mean µ̃X
l

s? (5.87) O(NlR
3) O(NlR

2)

variance diag(Σ̃Xl

s??) (5.101) O(NlR
3) O(NlR

2)

covariance Σ̃Xl

s?? (5.102) O(N2
l R

3) O(N2
l R

2)

Table 5.2: Computational complexity of propagating the mean and variance or covariance from
layer l − 1 to layer l. The exponent O(R3) comes from the complexity of matrix multiplication
and inversion. For matrix multiplication it can be reduced to O(R2.807) using the Strassen
algorithm (Strassen, 1969).

this case the tensor κl given by (5.89) is fixed and can be precomputed. Another method to save

computational complexity is to only propagate the variances, i.e. diagonal of the covariance

matrix, through the GPN stack. This reduces the complexity of computing the activations from

O(N2
l Nl−1 + NlN

2
l−1) to O(NlNl−1) and the complexity of computing the responses from

O(N2
l R

3) to O(NlR
3).

Note, that the number of parameters and the computational complexity of propagating the

means and covariances only depend on the number of virtual observations and parametric

GPNs; therefore the memory requirement is independent of the number of training samples and

the required training time per epoch scales linearly with the number of training samples. Thus,

like a conventional neural network, a parametric GPN feed-forward can inherently be trained

on datasets of unlimited size.
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5.6 Approximate Bayesian Inference

In experiments with parametric GPNs it became apparent that the variances Sr of the virtual

observations were driven to zero, thus leading to overfitting. This is to be expected since a para-

metric GPN feed-forward network is a model with more expressive power than a conventional

neural network and maximum-likelihood solutions are usually prone to overfitting if no care is

taken to limit the expressiveness of the model or ensure regularization by some other means.

A method to avoid these problems is to perform approximate Bayesian inference by means of

an variational approximation instead of maximum likelihood estimation. Bayesian inference

requires a prior distribution on the parameters.

Thus we cannot directly apply it on the parametric GPN as introduced in section 5.3, since

the inducing points Vr, targets Ur and variances Sr lack such a prior distribution. The original

concept of the non-parametric GPN was to have a GP prior on the activation function of each

unit, as given by (5.10); hence the natural choice for a prior on the virtual observations is

such that the GP prior on the activation function is restored when the virtual observations are

marginalized out. To our knowledge the first use of this prior-restoring technique was in finding

inducing points for sparse GP regression (Titsias, 2009).

More formally, we want to find a prior P(V?, U?, S?) so that

P(X? |A?) =

∫∫∫
P(X? |A?, V?, U?, S?) P(V?, U?, S?) dV? dU? dS?

where P(X? |A?) is the GP prior given by (5.10) and P(X? |A?, V?, U?, S?) is the parametric

GPN distribution given by (5.43). We remember that S? was introduced to allow to control the

precision and thus influence of the virtual observations when V? and U? were deterministic

parameters. However, now that V? and U? have become random variables, it is redundant to

have an explicit parameter S? for the variance of the virtual observations and thus we remove

it by setting S? = 0. Thus we are looking for a prior P(V?, U?) so that

P(X? |A?) =

∫∫
P(X? |A?, V?, U?, S? = 0) P(V?, U?) dV? dU? .

From section 2.4 we know that the GP regression distribution P(X? |A?, V?, U?, S?) follows

from observing a subset of variables, here U?, that share a common GP prior with X?. Thus X?

and U? must follow a joint GP prior,

P(X?, U? |A?, V?) = N
([

X?

U?

] ∣∣∣∣∣0,
[
K(A?, A?) K(A?, V?)

K(V?, A?) K(A?, A?)

])
, (5.114)
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and using the marginalization property of the normal distribution we obtain

P(X? |A?) = N
(
X? |0,K(A?, A?)

)
, (5.115)

P(U? |V?) = N
(
U? |0,K(V?, V?)

)
. (5.116)

Consequently P(V?, U?) = P(U? |V?) P(V?), where P(V?) can be chosen freely, results in a GP

prior on the activation function as desired. To avoid marginalization over V? we keep that

variable deterministic by choosing a delta distribution for its prior,

P (V?) = δ(V? − v?) . (5.117)

For clarity of notation we will also drop V? from the conditioning set of probability distributions

from now on.

The joint distribution of a parametric GPN feed-forward network with appropriate prior is

thus given by

P({X}L1 , {A}L1 , {U}L1 , {F}L1 |X0) =
L∏
l=1

P(Al |X l−1) P(U l) P(F l |Al, U l) P(X l |F l) , (5.118)

where to notation {•}L1 should be read as {•1, •2, . . . , •L}. To keep notation brief we did not

write out explicitly the dependencies of the occurring conditionals on samples and GPN units.

Note that by marginalizing (5.118) over {U}L1 using the prior (5.116) we will obtain the distri-

bution of a non-parametric GPN feed-forward network as given by (5.16). A graphical model

corresponding to that distribution with training targets XL observed is shown in fig. 5.13a.

As described in section 5.2.2 exact inference in this model requires the use of Monte Carlo

methods that come with additional computational complexity. Instead, here we turn to the

technique of variational inference, cf. section 2.2.12, to approximate the posterior of the model.

Performing variational inference requires planning the approximation. It has to be decided

which latent variables of the model should be inferred and which should be marginalized

out. Also the structure of the approximative distribution Q has to be chosen; this entails the

approximative distributions for the posteriors of the latent variable and assumed independence

relations. We analyze three different approaches for performing variational inference in a GPN

feed-forward network and present them in the following sections.
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Figure 5.13: A GPN feed-forward network distribution for three layers and three approximations
of its posterior. Each node corresponds to all samples and GPN units within a layer. (a) Exact
posterior distribution P({X}L−1

1 , {A}L1 , {F}L1 , {U}L1 |X0, XL) that results in a non-parametric
GPN feed-forward network when marginalized over {U}L1 . (b) Variational approximation of
the inducing targets U l. The remaining conditional distributions of the approximative posterior
are the same as the prior. (c) Variational approximation of the inducing targets U l assuming
that the central limit theorem holds for the marginals of the latent activations Al. This is the
case when there is a sufficient number of GPNs per layer. (d) Variational approximation of the
inducing targets U l and the latent values X l factorizing over the layers (mean-field approach).



5.6. APPROXIMATE BAYESIAN INFERENCE 163

5.6.1 Stochastic Variational Inference

Since the information about the activation functions learned from the training data is mediated

via the virtual observation targets U l, their posterior must be adaptable in order to store that

information. Hence, we choose a normal distribution factorized over the GPN units within a

layer with free mean and covariance for the approximative posterior of U l,

Q(U l) ,
Nl∏
n=1

Q(U l?n) , Q(U l?n) , N (U l?n | µ̂U
l

?n, Σ̂
U l

??n) . (5.119)

This allows the inducing targets of a GPN to be correlated, but the covariance matrix can be

constrained to be diagonal, if it is desired to reduce the number of model parameters. We keep

the rest of the model distribution unchanged from the prior; thus the overall approximating

posterior is given by

Q({U}L1 , {X}L−1
1 , {A}L1 , {F}L1 ) ,

L∏
l=1

P(Al |X l−1) Q(U l) P(F l |Al, U l) P(X l |F l) , (5.120)

where the dependency on X0 has been dropped from Q for clarity of notation. A graphical

model corresponding to this approximative posterior is shown in fig. 5.13b.

The parameters µ̂U
l

and Σ̂U l are estimated using the method of variational inference, cf.

section 2.2.12, which does that by minimizing a lower bound on the KL-divergence between

the approximation and true posterior,

KL
(
Q({U}L1 , {X}L−1

1 , {A}L1 , {F}L1 ) || P({X}L−1
1 , {A}L1 , {U}L1 , {F}L1 |X0, XL)

)
.

This is performed implicitly by maximizing the ELBO given by

L = −
∫
· · ·
∫

Q({U}L1 , {X}L−1
1 , {A}L1 , {F}L1 ) log

Q({U}L1 , {X}L−1
1 , {A}L1 , {F}L1 )

P({U}L1 , {X}L1 , {A}L1 , {F}L1 |X0)
·

d{U}L1 d{X}L1 d{A}L1 d{F}L1 (5.121)

w.r.t. to the parameters of interest. Substituting the distributions into this equation results in

L = −Lreg + Lpred (5.122)
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with the following terms after simplification,

Lreg =

L∑
l=1

∫
Q(U l) log

Q(U l)

P(U l)
dU l , (5.123)

Lpred =

∫
Q(FL) log P(XL |FL) dFL . (5.124)

The term Lreg can be identified as the sum of the KL-divergences of the virtual observation

targets between their prior and variational posterior. Since this term enters L with a negative

sign, its purpose is to keep the approximative posterior close to the prior; thus it can be

understood as a regularization term. It is evaluated using the formula for the KL-divergence

between two normal distributions (2.35). Disregarding an additive constant, its value is given

by

Lreg =

L∑
l=1

KL
(
Q(U l) ||P(U l)

)
=

L∑
l=1

Nl∑
n=1

KL
(
Q(U l?n) ||P(U l?n)

)
(5.125)

∝ 1

2

L∑
l=1

Nl∑
n=1

tr
(
K(V l

?n, V
l
?n)−1 Σ̂U l

??n

)
+ (µ̂U

l

?n)TK(V l
?n, V

l
?n)−1µ̂U

l

?n + log

∣∣K(V l
?n, V

l
?n)
∣∣∣∣∣Σ̂U l

??n

∣∣∣
 .

The term Lpred cannot be evaluated directly because the marginal Q(FL) is intractable in

general. However, expanding log P(XL |FL) over the samples and writing Q(FL) as a marginal

over the layers, we note that Lpred can be written as an expectation,

Lpred = EQ(FL)

[
log P(XL |FL)

]
= EQ(FL)

[
S∑
s=1

log P(XL
s? |FL)

]

=
S∑
s=1

EQ(FLs?)

[
log P(XL

s? |FLs?)
]

(5.126)

=
S∑
s=1

EQ(X1
s? |X0

s?) Q(X2
s? |X1

s?) ···Q(XL−1
s? |XL−2

s? ) Q(FLs? |ALs?=WLXL−1
s? )

[
log P(XL

s? |FLs?)
]
,

and thus we can evaluate it by successively sampling from the chain of conditional distributions

the expectation is taken over. For this purpose we need to evaluate the conditional distributions

Q(X l |X l−1) =

∫
Q(F l |Al = W lX l−1) P(X l |F l) dF l , (5.127)

Q(F l |Al) =

Nl∏
n=1

∫
Q(U l?n) P(F l?n |Al?n, U l?n) dU l?n . (5.128)
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Since Q(F l |Al) is the conditional of a GP with normally distributed observations, the joint

distribution Q(F l?n, U
l
?n |Al?n) = Q(U l?n) P(F l?n |Al?n, U l?n) must itself be normal,

Q(F l?n, U
l
?n |Al?n) = N

([
F l?n

U l?n

] ∣∣∣∣∣
[
µ̂F

l

?n

µ̂U
l

?n

]
,

[
Σ̂F l
??n Σ̃FU

Σ̃UF Σ̂U l
??n

])
, (5.129)

and we can find the values for the unknown parameters µ̂F
l

?n, Σ̂F l
??n and Σ̃FU = Σ̃T

UF by equat-

ing the moments of its conditional distribution Q(F l?n |U l?n, Al?n) with P(F l?n |U l?n, Al?n). The

conditional distribution is given by

Q(F l?n |U l?n, Al?n) = N (F l?n | µ̃, Σ̃)

and thus we obtain the following set of equations by comparing mean and covariances,

µ̃ , µ̂F
l

?n + Σ̃FU (Σ̂U l

??n)−1 (U l?n − µ̂U
l

?n) = K(Al?n, V
l
?n)K(V l

?n, V
l
?n)−1 U l?n , (5.130)

Σ̃ , Σ̂F l

??n − Σ̃FU (Σ̂U l

??n)−1 Σ̃UF = K(Al?n, A
l
?n)−K(Al?n, V

l
?n)K(V l

?n, V
l
?n)−1K(V l

?n, A
l
?n) ,

where the right sides are obtained from µF
l

?n, ΣF l
??n given by (5.41). Solving for the three un-

knowns5 gives

µ̂F
l

?n = K(Al?n, V
l
?n)K(V l

?n, V
l
?n)−1 µ̂U

l

?n (5.131a)

Σ̂F l

??n = K(Al?n, A
l
?n)−K(Al?n, V

l
?n) K̂U l

??nK(V l
?n, A

l
?n) (5.131b)

Σ̃FU = K(Al?n, V
l
?n)K(V l

?n, V
l
?n)−1 Σ̂U l

??n = (Σ̃UF )T (5.131c)

with

K̂U l

??n , K(V l
?n, V

l
?n)−1 −K(V l

?n, V
l
?n)−1 Σ̂U l

??nK(V l
?n, V

l
?n)−1 . (5.132)

Finally, we obtain for the sought-after marginal of F l given Al

Q(F l |Al) =
N l∏
n=1

N (F l?n | µ̂F
l

?n, Σ̂
F l

??n) . (5.133)

At this point it is instructive to verify that the obtained mean and covariance are consistent with

the deterministic case and with the GP prior. For deterministic observations, that is Σ̂U l
??n = 0,

we obtain K̂U l
??n = K(V l

?n, V
l
?n)−1 and thus recover the standard GP regression distribution as

expected. If U l follows its prior, that is µ̂U
l

?n = 0 and Σ̂U l
??n = K(V l

?n, V
l
?n), we obtain K̂U l

??n = 0

5The first line of the system contains two equations, since it must be valid for all values of U l?n. Thus a unique
solution exists for three unknowns.
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and thus recover the GP prior on F l. In that case the virtual observations behave as if they were

not present.

Having Q(F l |Al) immediately allows us to evaluate (5.127) since P(X l |F l) just provides

additive Gaussian noise. Thus we obtain

Q(X l |X l−1) =

N l∏
n=1

N (F l?n | µ̂F
l

?n, Σ̂
F l

??n + (σln)21) . (5.134)

As we can see all conditional distributions are multivariate normals and thus sampling is

straightforward. In fact, it can be performed in the same way as described in section 5.3.4;

only the means and covariances must be adapted due to the fact that U l is now governed

by a distribution. Training is then done by reparameterizing the distributions as described in

that section and performing gradient descent using the stochastic derivatives of L w.r.t. the

variational parameters µ̂U
l
, Σ̂U l and model parameters W l, σl. As before mini-batch training

can be used since Lpred factorizes over the samples.

5.6.2 Variational Inference using a Marginalized Posterior Distribution

The drawback of stochastic training procedure is the increase in the number of required training

iterations due to the noise that is introduced into the model by the sampling procedure. As

described in section 5.5, the activations Al will closely resemble a normal distribution due to

the central limit theorem if there is a sufficient number of GPNs per layer and the weights

W l have a sufficiently random distribution. In this case sampling becomes unnecessary, as the

moments of P(Al) can be calculated exactly and propagated from layer to layer as described

previously. Here we use the same approximative posterior as in (5.120) with the additional

assumption that each marginal Q(Al) for l ∈ {1, . . . , L} is indistinguishable from a normal

distribution with appropriate mean and covariance, i.e.

Q(Al) =
S∏
s=1

Q(Als?) , Q(Als?) = N
(
Als?

∣∣∣µAls? ,ΣAl

s??

)
. (5.135)

A graphical model corresponding to this approximate posterior is shown in fig. 5.13c.

Writing Lpred from (5.124) as

Lpred =

∫∫∫
Q(AL) Q(UL) P(FL |AL, UL) log P(XL |FL) dAL dUL dFL . (5.136)

shows that we first need to obtain the distribution Q(AL). This is done by iteratively calculating

the marginals Q(Al) for l ∈ {1, . . . , L} in a similar way as it was done in section 5.5.1 for fixed
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values of U l. For l ≥ 1 we have

Q(Al+1) =

∫∫∫
Q(Al) Q(F l |Al) P(X l |F l) P(Al+1 |X l) dAl dF l dX l (5.137)

where Q(F l |Al) is given by (5.133). We first evaluate the mean and covariance of the marginal

Q(F l) by following the course of action in section 5.5.1. For the mean of the response µ̃F
L

sn =

EQ(FL)

[
F lsn
]

we obtain

µ̃F
l

sn = EQ(Als?)

[
K(Alsn, V

l
?n)
]T
K(V l

?n, V
l
?n)−1 µ̂U

l

?n

= (ψl?n)T K(V l
?n, V

l
?n)−1 µ̂U

l

?n (5.138)

with ψlrn as previously calculated in (5.94). Similarly for the response covariance matrix Σ̃FL
snm =

CovQ(FL)

(
F lsn, F

l
sm

)
, we obtain that the diagonal is given by

Σ̃F l

snn = 1− tr
[(
K̂U l

??n − βl?n (βl?n)T
)

Ωl
??n

]
− tr

(
ψl?n(ψl?n)T βl?n(βl?n)T

)
(5.139)

with βl?n , K(V l
?n, V

l
?n)−1 µ̂U

l

?n and Ωl
rtn from (5.99c). The off-diagonal elements of the covari-

ance matrix evaluate to

Σ̃F l

snm =
∑
r

∑
t

βlrnβ
l
tm Λlrtnm − µ̃F

l

sn µ̃
F l

sm (5.140)

with Λlrtnm given by (5.105). Finally, assuming that the central limit theorem holds, the marginal

distribution of the approximative posterior of Al+1 is given by

Q(Al+1) = N (Al+1
s? | µ̃A

l+1

s? , Σ̃Al+1

s?? ) (5.141)

with

µ̃A
l+1

s? = W l+1 µ̃F
l

s? (5.142a)

Σ̃Al+1

s?? = W l+1
(

Σ̃F l

s?? + diag(σl)2
)

(W l+1)T . (5.142b)

The term Lpred, given by (5.124), can be identified as the expected log-probability of the
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observations under the marginal distribution Q(FL) and thus we can expand it as follows,

Lpred = EQ(FL)

[
log P(XL |FL)

]
∝ EQ(FL)

[
−S

Nl∑
n=1

log σLn −
1

2

S∑
s=1

NL∑
n=1

(
XL
sn − FLsn

)2
(σLn )2

]
,

= −S
NL∑
n=1

log σLn −
1

2

S∑
s=1

NL∑
n=1

(XL
sn)2 − 2XL

sn EQ(FL)

[
FLsn
]

+ EQ(FL)

[
(FLsn)2

]
(σLn )2

. (5.143)

The distribution Q(FL) itself is of arbitrary form, but as it can be seen from the above equation,

only its first and second moments are required to evaluate Lpred. For the first moment we obtain

EQ(FL)

[
F lsn
]

= µ̃F
L

sn with µ̃F
L

sn given by (5.138) and the second moment evaluates to

EQ(FL)

[
(FLsn)2

]
= VarQ(FL)

(
FLsn
)

+ EQ(FL)

[
FLsn
]2

= Σ̂FL

snn +
(
µ̂F

L

snn

)2
= 1− tr

[(
κL??n − βL?n(βL?n)T

)
ΩL
??n

]
, (5.144)

with βL?n , K(V L
?n, V

L
?n)−1 µ̂U

L

?n and ΩL
rtn from (5.99c).

This concludes the calculation of all terms of the variational lower bound (5.121). As with

the normal approximation derived in section 5.5, the resulting objective is a fully deterministic

function of the parameters. Training of the model is performed by maximizing L = −Lreg+Lpred,

with Lreg given by (5.125) and Lpred given by (5.143), w.r.t. to the variational parameters µ̂U
l
,

Σ̂U l and the model parameters σl,W l. This can be performed using any gradient-descent based

algorithm in a mini-batch training routine. As before, the necessary derivatives are not derived

here and it is assumed that this can be performed automatically using symbolic or automatic

differentiation in an appropriate framework.

5.6.3 Variational Inference using a Mean-Field Posterior Approximation

In the context of deep GPs it has been proposed (Damianou et al., 2013) to factorize the

approximative posterior over the layer values, which in our case correspond to the variables X l,

l ∈ {1, . . . , L}. We can use the same technique to perform approximative inference when the

assumption of a normal distribution over the activations is not fulfilled, for example in the case

of a feed-forward network that only has a few GPNs per layer. The approximative posterior for
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this approach is given by

Q({X}L−1
1 , {A}L1 , {U}L1 , {F}L1 ) =

(
L∏
l=1

P(Al |X l−1) Q(U l) P(F l |Al, U l)
)(

L−1∏
l=1

Q(X l)

)
.

(5.145)

The conditional distribution P(F l |Al, U l) coming from the GP regression has been inherited

from the prior unchanged; thus, the approximative posterior must carry all information from

the training data in Q(U l) and Q(X l). The approximative distribution over the layer outputs

Q(X l) is unconditional; this leads to the approximative posterior being fully factorized over the

layers and inference is performed using a mean-field of X l. For the virtual observation targets

U l we use the same form as in the non-factorized approximation, i.e. a multivariate normal

distribution with free mean and covariance,

Q(U l) =

Nl∏
n=1

Q(U l?n) , Q(U l?n) = N (U l?n | µ̂U
l

?n, Σ̂
U l

??n) . (5.146)

As before the virtual observations are factorized over the GPNs, but may be correlated within a

GPN. For the latent layer values X l a normal distribution factorized over the samples with free

mean and covariances is used,

Q(X l) =

S∏
s=1

Q(X l
s?) , Q(X l

s?) = N (X l
s? | µ̂X

l

s? , Σ̂
Xl

s??) . (5.147)

This allows for covariance between different GPN units within a layer. As the occurring co-

variance matrix grows quadratically with the number of GPNs within a layer, ΣXl

s?? should be

constrained to a diagonal matrix to limit the associated computational complexity. Note that

in contrast to the non-factorizing approach, here we assume a normal distribution for the ap-

proximative posterior Q(X l) and not for the marginals P(Al) of the original model. A graphical

model corresponding to this approximation is shown in fig. 5.13d.

The KL-divergence between the true posterior and the approximation Q is minimized im-

plicitly by maximizing the ELBO given by

L = −
∫
· · ·
∫

Q({X}L−1
1 , {A}L1 , {U}L1 , {F}L1 ) log

Q({X}L−1
1 , {A}L1 , {U}L1 , {F}L1 )

P({X}L1 , {A}L1 , {U}L1 , {F}L1 |X0)
·

d{X}L−1
1 d{A}L1 d{U}L1 d{F}L1 . (5.148)
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Substituting the distributions into that equation gives

L = −Lreg − Lprop + Lpred (5.149)

with

Lreg =
L∑
l=1

∫
Q(U l) log

Q(U l)

P(U l)
dU l (5.150)

Lprop =

L−1∑
l=1

∫∫∫∫
Q(X l−1) P(Al |X l−1) Q(U l) P(F l |Al, U l) Q(X l) log

Q(X l)

P(X l |F l) ·

dAl dU l dF l dX l−1 dX l (5.151)

Lpred =

∫∫∫∫
Q(XL−1) P(AL |XL−1) Q(UL) P(FL |AL, UL) log P(XL |FL) ·

dXL−1 dAL dUL dFL . (5.152)

The term Lreg is unchanged from the stochastic and marginal inference approaches and as

before it measures the difference between the prior and posterior distribution of the virtual

observation targets U l. Its value is given by (5.125). The term Lprop ensures the propagation

of values from layer to layer and can be interpreted as the expectation of the KL-divergences

between exact and approximative latent layer distributions,

Lprop =

L∑
l=1

EQ(F l)

[
KL
(

Q(X l) ||P(X l |F l)
)]

=

L∑
l=1

EQ(F l)[Lβ] , (5.153)

where

Q(F l) =

∫∫∫
Q(X l−1) P(Al |X l−1) Q(U l) P(F l |Al, U l) dX l−1 dAl dU l . (5.154)

Since the approximative posterior was chosen to factorize over the layers, we obtain a sum over

the layers for Lprop and no calculation of (intractable) marginals is necessary. The occurring
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KL-divergence Lβ is between two normals and thus straightforward to calculate,

Lβ = KL
(
Q(X l) ||P(X l |F l)

)
=

S∑
s=1

KL
(
Q(X l

s?) ||P(X l
s? |F ls?)

)
∝ 1

2

S∑
s=1

tr
(
diag(σl?)

−2Σ̂Xl

s??

)
+ (F ls? − µ̂X

l

s? )Tdiag(σl?)
−2(F ls? − µ̂X

l

s? ) + log

∣∣diag(σl?)
2
∣∣∣∣∣Σ̂Xl

s??

∣∣∣


=
1

2

S∑
s=1

[
Nl∑
n=1

(
Σ̂Xl

snn +
(
F lsn − µ̂X

l

sn

)2
(σln)2

+ 2 log σln

)
− log

∣∣∣Σ̂Xl

s??

∣∣∣] . (5.155)

Thus we obtain for Lprop,

Lprop =
1

2

L∑
l=1

S∑
s=1

[
Nl∑
n=1

(
Σ̂Xl

snn + EQ(F l)

[
(F lsn)2

]
− 2 µ̂X

l

sn EQ(F l)

[
F lsn
]

+ (µ̂X
l

sn )2

(σln)2
+ 2 log σln

)
−

log
∣∣∣Σ̂Xl

s??

∣∣∣ ] . (5.156)

In order to calculate the expectations EQ(F l)

[
F lsn
]

and EQ(F l)

[
(F lsn)2

]
we need the distribu-

tion Q(F l). This distribution cannot be calculated in closed form; however, by applying the law

of total expectation we can transform the expectations according to

EQ(F l)[•] = EQ(Al)

[
EQ(F l |Al)[•]

]
,

where Q(Al) evaluates to

Q(Al) =

∫
Q(X l−1) P(Al |X l−1) dX l−1 =

S∏
s=1

N
(
Als? | µ̃A

l

s? , Σ̃
Al

s??

)
(5.157)

with

µ̃A
l

s? ,W l µ̂X
l−1

s? , Σ̃Al

s?? ,W l Σ̂Xl−1

s?? (W l)T . (5.158)

This allows us to evaluate the expectations in a very similar way as we did in section 5.5.1, the

main difference being that U l is now a random variable. We note that Q(F l |Al), defined by

Q(F l |Al) =

Nl∏
n=1

∫
Q(U l?n) P(F l?n |Al?n, U l?n) dU l?n ,

has the same form as (5.133) from the stochastic inference approach and thus the marginal
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can be computed in the same way as done in section 5.6.2, yielding

Q(F l |Al) =
N l∏
n=1

N (F l?n | µ̂F
l

?n, Σ̂
F l

??n) . (5.159)

with µ̂F
l

?n and Σ̂F l
??n given by (5.131).

Continuing with the calculation of the expectations in (5.156) gives the following results

for the first moment,

EQ(F l)[F
l
sn] = EQ(Al)

[
EQ(F l |Al)[F

l
sn]
]

= EQ(Al)

[
µ̂F

l

sn

]
= ψl?nK(V l

?n, V
l
?n)−1 µ̂U

l

?n , (5.160)

with ψlrn given by (5.94) using µ̃A
l

s? and Σ̃Al
s?? from (5.158). For the second moment we obtain

EQ(F l)[(F
l
sn)2] = EQ(Al)

[
EQ(F l |Al)[(F

l
sn)2]

]
= EQ(Al)

[
Σ̂F l

snn

]
+ EQ(Al)

[(
µ̂F

l

snn

)2]
= 1− tr

[(
κl??n − βl?n(βl?n)T

)
Ωl
??n

]
, (5.161)

where κl??n , [K(V l
?n, V

l
?n)]−1 and βl?n , κl??n U

l
?n and Ωl

rtn is given by (5.99c) using µ̃A
l

s? and

Σ̃Al
s?? from (5.158) as above. This concludes the calculation of Lprop.

The term Lpred, given by (5.152), is the expected log-probability of the observations under

the approximative distribution. As the latter factorizes over the layers, the expectation only

needs to be calculated over the top-most layer L. This results in

Lpred = EQ(FL)

[
log P(XL |FL)

]
∝ −S

NL∑
n=1

log σLn −
1

2

S∑
s=1

NL∑
n=1

(XL
sn)2 − 2XL

sn EQ(FL)

[
FLsn
]

+ EQ(FL)

[
(FLsn)2

]
(σLn )2

(5.162)

where EQ(FL)

[
FLsn
]

and EQ(FL)

[
(FLsn)2

]
are given by (5.160) and (5.161) respectively.

This concludes the calculation of all terms of the mean-field variational lower bound (5.149).

Training of the model is performed by maximizing L w.r.t. to the variational parameters and

the model parameters. In contrast to the non-factorizing approach presented in the previous

section, the layer means µ̂X
l

and covariances Σ̂Xl
are now part of the variational parameters

and we must include them in the optimization of L. However, they do not enter the predictions,

which will be calculated from the approximative posterior of the inducing points U l and weights

W l. Thus µ̂X
l

and Σ̂Xl
can be discarded after training.
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5.6.4 Comparison and Discussion

Three methods for approximate Bayesian inference were presented in this section: one based

on stochastic approximations (section 5.6.1), and two based on approximations of intermediate

distributions. Out of these two, one relies on the central limit theorem (section 5.6.2) and the

other prescribes a mean-field factorization over the posterior (section 5.6.3).

Using sampling to approximate the marginal distribution Q(FL) puts no constraints on the

distributions occurring in the model and thus gives a GPN feed-forward network of two or

more layers the power to learn arbitrary distributions P(XL |X0) for an input X0. However,

the stochasticity in the objective function introduced by sampling causes the training to require

significantly more iterations than with a deterministic objective function and could therefore be

prohibitive if GPNs are to be used as a drop-in replacement for conventional artificial neurons.

The variational method proposed in section 5.6.2 uses the central limit theorem to approxi-

mate the layer distributions with multivariate normals and thus avoids the stochasticity costs

by allowing analytic calculation of the expected value of the objective function. The variational

approach using the mean-field approximative posterior (section 5.6.3) is a method that was first

proposed for training of deep GPs (Damianou et al., 2013) and, since a GPN feed-forward net-

work can be treated as a deep GP when the calculation of the activations are absorbed into the

GP covariance function, using a method developed for that model seems to be a sensible choice.

Furthermore, the factorizing approximative posterior does not rely on having enough GPNs per

layer and weights that are sufficiently random so that the central limit theorem holds. Indeed,

the resulting variational optimization objective will penalize model parameters that lead to

non-Gaussian posterior distributions on the intermediate layer values X l and thus enforce a

self-consistent solution.

Thus, so far the usage of the mean-field approach proposed in section 5.6.3 seems advan-

tageous; however, on closer examination the factorization of the posterior distribution over

the layers is very problematic. The values of neighboring layers are highly correlated, since

the values of layer l + 1 are determined by the weight matrix and activation function from the

values of layer l, with only a minor amount of additional noise added from the GP regression

uncertainty of the activation function and the GPN standard deviations σln. Approximating

such highly correlated values with a factorizing distribution, which assumes independence per

definition, is known to lead to a gross underestimation of variances when variational inference

is performed (Bishop, 2006). For a GPN stack this is particularly problematic, because it leads

to the loss of input-dependent uncertainty of the activation functions in the GPNs, as we will

show in the following illustrative example.

Consider a very simple GPN layer consisting of a single unit and one incoming connection,
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(b) mean-field approximation

Figure 5.14: Effects of the mean-field approximation on the propagation of a sample through a
GPN activation function. (a) An exemplary activation function of a GPN has varying amounts
of uncertainty due to varying distances from the virtual observations. The total uncertainty
is the sum of the input-dependent variance σ̂2(v) and the input-independent variance σ2. (b)
The mean-field variational approximation using a distribution factorizing over the layers leads
to the loss of the input-dependent variance and thus a massive underestimation of the total
uncertainty.

i.e. Nl−1 = Nl = 1. Let the weight matrix be the identity matrix (W l
11 = 1) and let U l be

chosen so that the activation function is any function but with varying amounts of noise due to

uncertainty of the GP regression as shown in fig. 5.14a. Assume that we have a single sample

and its incoming value X l−1 = v is observed.6 Then the marginal of the response F l will be

given by

P(F l) = N (F l | v, σ̂2(v))

where σ̂2(v) is the uncertainty of the GP representing the activation function at position v. The

distribution of the layer value X l is given by

P(X l |F l) = N (X l |F l, σ2)

with σ2 being the additional, input-independent noise of the GPN. For this layer Lprop from

eq. (5.151) can be written as a KL-divergence

Lprop =

∫∫
P(F l) Q(X l) log

P(F l) Q(X l)

P(F l) P(X l |F l) dF l dX l = KL
(
Q(F l, X l) ||P(F l, X l)

)
between the joint distribution P(F l, X l) and the factorized approximation Q(F l, X l) = P(F l) Q(X l).

6Because we are dealing with a single sample and a single GPN per layer we omit the sample and unit indexing
in this example.
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Evaluating the exact joint distribution P(F l, X l) = P(F l) P(X l |F l) gives

P(F l, X l) = N
((

F l

X l

) ∣∣∣∣∣µ,Σ
)

with µ =

(
v

v

)
, Σ =

(
σ̂2(v) σ̂2(v)

σ̂2(v) σ̂2(v) + σ2

)
.

It can be shown analytically (Bishop, 2006) that for a two-dimensional Gaussian distribution

P(Z1, Z2) = N
((

Z1

Z2

) ∣∣∣∣∣µZ ,ΣZ

)

the best factorizing approximation Q(Z1, Z2) = Q(Z1) Q(Z2), in the sense that the KL-divergence

between Q and P is minimized, is given by

Q(Z1) = N
(
Z1 |µZ1 ,Λ−1

11

)
, Q(Z2) = N

(
Z2 |µZ2 ,Λ−1

22

)
,

where Λ , (ΣZ)−1 is the precision matrix of P(Z). Using this result to calculate the optimal

approximation Q(X l) gives

Q(X l) = N
(
X l | v, σ2) .

The mean matches the exact joint distribution, however we see that only the input-independent

uncertainty σ2 of a GPN is kept and thus propagated to the next layer by the factorizing

variational approximation. This can be seen in fig. 5.14b.

Consequently, the variance is not only underestimated by the Lprop term coming from

the mean-field variational approach, but a central element of our model, namely the input-

dependent uncertainty of the activation function σ̂2(v) has been lost. The marginalizing ap-

proach (section 5.6.2) does not suffer from this issue and thus should always be preferred when

the number of GPNs is sufficient and the weights are initialized randomly.
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5.7 Benchmarks and Experimental Results

Due to limitations of computational resources and time, the results presented here corre-

spond only to the parametric GPN model as described in section 5.3. Experiments using

variational Bayesian inference as presented in section 5.6 were still ongoing as this thesis

was printed and thus their results could not be included with adequate statistical confi-

dence. The experiments presented here were done by Basalla (2017) under my guidance and

results are reproduced here in excerpts.

This section describes the experiments performed to estimate the performance of a GPN

feed-forward network. The datasets on which the models are evaluated is introduced and the

performance is compared to conventional feed-forward neural networks that were regularized

using fast Dropout (Wang et al., 2013). Furthermore, this section discusses the activation func-

tions learned by the GPNs in different layers of the feed-forward network and the computational

and memory requirements.

5.7.1 Benchmark Datasets

To evaluate how well a parametric GPN model performs on real-world classification problems,

we test it on three datasets from the UCI Machine Learning Repository (Lichman, 2013) as

well as on the MNIST database of handwritten digits (Lecun et al., 1998). Hereby our aim

is not yet to beat the current state of the art performance on these datasets, since the litera-

ture (Agostinelli et al., 2014) shows that trainable activation function are mostly beneficial to

large convolutional models for image classification. Instead, we focus on verifying the imple-

mentation, efficiency and trade-offs of parametric GPN feed-forward models on different kinds

of classification datasets compared to conventional neural networks with a fixed sigmoidal or

hyperbolic tangent activation function regularized by the Dropout technique (Srivastava et al.,

2014). The datasets were primarily chosen so that they do not only differ in size but also cover

different kinds of features and targets. Consequently, successful training on this selection of

datasets shows that GPNs are applicable to a variety of tasks and it is worthwhile to implement

convolutional architectures based on GPNs to tackle current image classification problems on

large datasets such as CIFAR-100 (Krizhevsky and G. Hinton, 2009) and ImageNet (Deng et al.,

2009). We shortly describe the properties of the dataset before continuing with the training

procedures.
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UCI Letter Recognition Dataset

The UCI Letter Recognition dataset, first used in (Frey et al., 1991), consists of 20 000 samples

with 16 continuous input features per sample. All features are calculated from pixel images of

the 26 capital characters of the English alphabet, with each image showing a single letter in

one of 20 different fonts. Furthermore the character images are randomly distorted to increase

the variation of the dataset. The 16 precomputed features, consisting of statistical moments

and edge counts, are used as input to the classifier. The objective is to identify the character.

UCI Adult Dataset

The UCI Adult dataset, introduced by (Kohavi, 1996), consists of 6 continuous and 8 categorical

features containing census data taken from 48 848 U.S. citizens collected in the year 1994. The

continuous features consists amongst others of the age, weight, work hours per week and years

of educations. The categorical features include such information as highest obtained degree,

martial status, race, sex and country of origin. The binary target objective is to predict whether

a person’s income exceeded 50 000 USD or not. This dataset contains missing features for some

samples, which we replaced by an additional “unknown” category for categorical features and

by zero for continuous features.

UCI Connect-4 Dataset

In contrast to the previous datasets, the Connect-4 dataset (John Tromp, Lichman (2013))

consists only of categorical features. Each of its 42 features represents the state of a field on

the board of a Connect-4 game with a board size of 6× 7. The categories encode whether the

position is currently occupied by player 1, by player 2 or is free. The dataset contains all legal

positions in which neither player has won yet and in which the next move is not forced; in total

the dataset contains 67 557 samples. The data is used to classify the game result for player 1 if

she plays optimally into one of the three classes: “win”, “loss” or “draw”.

MNIST Dataset

The MNIST database of handwritten digits (Lecun et al., 1998) is one of the most commonly

used machine learning datasets for image classification. It consists of 60 000 training and

10 000 test examples. We further split the training examples into a training and validation

set. Each input consists a 28 × 28 pixel image of a handwritten digit that has to be classified.

This task is similar to classification on the letter-recognition dataset, with the main difference

being, that instead of using precomputed image features the model receives the raw, grayscale
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image data as input. The MNIST dataset has been widely used to evaluate the performance

of neural network based classifiers (G. E. Hinton, 2007; G. E. Hinton and R. R. Salakhutdinov,

2006; G. E. Hinton, Srivastava, et al., 2012; R. Salakhutdinov et al., 2009) and is thus a natural

choice for evaluating trainable activation functions in a neural architecture.

5.7.2 Training Procedures

In our preliminary testing we want to demonstrate that parametric GPNs can be used as a

drop-in replacement for conventional artificial neurons. Consequently, we perform the initial

experiments using the parametric GPN normal approximation developed in section 5.5, since

it results in a deterministic loss function, allowing to optimize the model parameters using

gradient descent just like in a conventional neural network.

As stated in theoretical analysis of the computational complexity in table 5.2, propagating

mean, variance and the full covariance matrix from layer to layer comes with different compu-

tational and memory requirements. To analyze the trade-offs between runtime and prediction

accuracy of these different approximations we train parametric GPNs by only propagating the

mean, by propagating the mean and only the diagonal of the covariance matrix and by propa-

gating the mean and the full covariance matrix. To only propagate the mean, all layer variances

Σ̃Xl

s?? are assumed to be zero and only eqs. (5.84a) and (5.87) are evaluated for each layer;

thereby the probabilistic nature of the model is eliminated and the GPNs become conventional

neurons with an activation function that is given by interpolating between their inducing points

and targets. Including the variance diag(Σ̃Xl

s??) in the computations is done by setting all off-

diagonal elements of the layer covariance matrices to zero and using eqs. (5.84b) and (5.101).

For the full model we propagate Σ̃Xl

s?? from layer to layer by employing eqs. (5.84b) and (5.102).

The wall clock time and memory requirements of each approach are measured.

The virtual observations of the parametric GPN model can be shared between different

GPNs resulting in GPNs that use the same activation function. Obviously this reduces the num-

ber of model parameters and furthermore the computational complexity, since [K(V?n, V?n) +

diag(S?n)]−1 in eqs. (5.47a) and (5.47b) is only computed once per group of GPNs with shared

virtual observations. To assess the impact of sharing on model accuracy, we train two variants

of GPN feed-forward networks: an independent, where each GPN has its individual virtual

observations, and a layer-shared, where all GPNs within a layer share one activation function.

Preparatory experiments showed that the inducing points V l
rn of each GPN remained mostly

unchanged during training; hence the 14 inducing points are initialized using linear spacing

in the interval [−2, 2] and kept fixed during training. The corresponding targets U lrn are either

initialized from a standard normal distribution or set equal to V l
rn, resulting in the identity



5.7. BENCHMARKS AND EXPERIMENTAL RESULTS 179

function. We also tried initializing the targets to values of a well-known activation function,

such as the hyperbolic tangent or the rectifier, but found no significant benefit. All virtual

observation variances Slrn are initialized to the constant value of
√

0.1 and optimized during

training alongside with the targets. In preparatory experiments it became apparent that the

observation variances were driven to zero. To avoid this a penalty of the form

LS(θ) =

L∑
l=1

1

Nl

Nl∑
n=1

1

R

R∑
r=1

αS σ

(
βS
|Slrn|

)
(5.163)

where σ is the logistic function, αs = 0.1 and βs = 10−3, was added to the loss function. This

will become unnecessary once the variational Bayesian training objective derived in section 5.6

is used.

The weights W l
nm of each layer l are initialized using a uniform distribution with support

[−r, r] where r =
√

6/
√
Nl−1 +Nl+1. This initialization has been recommended by (Glorot

and Bengio, 2010) for training of deep neural network using the hyperbolic tangent activation

function. The motivation behind choosing r as described is to ensure that at the beginning

of training the activations of most neurons start in the linear range of the hyperbolic tangent

function. Although we are not using this function, it is desirable for the activations of GPNs to

fall within the range of their inducing points; thus this weight initialization method is applicable

here.

The continuous input features of all datasets are rescaled and shifted to lie in the interval

[0, 1]; for categorical features the one-hot encoding scheme is used. It encodes a categorical

feature as a vector having as many entries as there are categories with the entry for the active

category being set to one and all other entries being set to zero. The split between training and

test set is kept as provided in the datasets; furthermore the original training set is randomly

split into a smaller training set and a validation set consisting of 10% of the original training

samples. The test set is only used to report final classification accuracies and not used in any

way during training.

Training is performed by minimizing the expected loss L (θ) as calculated by the unscented

transform (5.113) of the softmax cross-entropy loss (5.53) using the Adam optimizer (D.

Kingma et al., 2014). The initial learning rate is 10−3 and is decreased by factor 10 each

time the validation loss stops improving for a predefined number of training iterations. When

the learning rate reaches 10−6 and no improvement is seen on the validation set, training is

terminated and the model parameters of the best iteration as seen on the validation set are

used to calculated the reported classification accuracies. Each experiment is repeated five times

with different random seeds for the initialization. For comparison we also train a conventional
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neural network of the same architecture with a fixed hyperbolic tangent activation function

and regularized using the fast Dropout method (Wang et al., 2013).

Preparatory experiments showed that enforcing increasing activation functions (section 5.4)

resulted in slightly worse results than without that constraint. Since this constraint imposes a

significant increase in computational complexity due to the introduction of virtual derivative

observations, the set of experiments presented here were all done without enforcing monotonic-

ity.

5.7.3 Preliminary Results

An exemplary loss curve and training rate schedule of a GPN feed-forward network is shown

in fig. 5.15. In this example the initial learning rate of 10−3 is automatically decreased after

400 iterations to 10−4 and then again after 9 000 iterations to 10−6. Training is terminated

after 20 000 iterations. Like a conventional feed-forward neural network, the losses decrease

smoothly due to the use of a fully deterministic loss.

The accuracies of all experiments are reported in table 5.3 and the resource usage of the

different propagation approaches is shown in table 5.4. As expected the conventional neural

network with a fixed activation function is fastest; however relative to that using a GPN is

only four times slower when propagating the means and the variances. This includes both the

times for forward propagation and for calculating the gradient w.r.t. the weights and virtual

observations using back propagation. The propagation of the GPN mean and variance leads to

significantly better results than the propagation of the mean alone on all datasets. However, the

propagation of the full covariance matrix is about 12 times computationally more expensive

than the propagation of the mean and variance and it did not show significant benefits to the

accuracy of the model in preparatory experiments. Sharing the GPN virtual observations over

all GPNs within a layer does not provide any benefits on the test accuracy in our experiments,

thus suggesting that the flexibility of having a separate activation function per GPN is beneficial

to the model and the increase in the number of parameters does not lead to overfitting. On

the UCL Adult dataset GPNs profited from initializing their virtual observations so that the

initial activation function is the identity function; however doing the same on the UCL Letter

Recognition dataset did not yield any significant improvement.

Figure 5.16 shows examples of activation functions that are commonly encountered in a

GPN feed-forward network after training it on UCL Connect-4 dataset. The activation functions

in the first layer vary much stronger than those in the upper two layers. Most commonly

functions in the first layer resemble sine-like functions and are approximately axis-symmetric

w.r.t. the y-axis. As we move to the second and third layer, sigmoid-shaped and linear functions
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Propagation using Memory usage Iteration time

fixed act. function 30 MB 9 ms
GPN means only 94 MB 29 ms
GPN means and variances 113 MB 36 ms
GPN means and full covariances 227 MB 118 ms

Table 5.4: Memory usage and time for performing one iteration of forward- and back-
propagation of a layer of 50 neurons or GPNs using different propagation methods. Values
should only be used for relative comparisons within this table since some irrelevant operations,
such as data reading, are included in the memory usage and iterations time. Memory usage
includes the memory used for storing intermediate results for calculation of the derivatives
using backpropagation.
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Figure 5.15: Training, validation and test losses during training of a parametric GPN feed-
forward network with mean and variance propagation on the UCL Connect-4 dataset. The
lower panel shows the scheduling of the learning rate. The progression of the loss is smooth
and stable due to the use of a fully deterministic objective.
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Figure 5.16: Three activation function from each layer of a parametric GPN feed-forward
network that was trained on the UCL Connect-4 dataset. The virtual observations are shown
as red dots together with their standard deviation. Activation functions in lower layers show
oscillatory behavior, while the activation functions in the top-most layer resemble sigmoid-
shaped functions.

become more common. This might indicate that the first layer exploits a periodicity in the input

data while the top two layers act as feature-detectors by gating their inputs.

The preliminary results presented here show that GPNs have consistently better performance

than a conventional neural network using the hyperbolic tangent activation function on real-

world datasets of small size. When the conventional neural network is regularized using the

Dropout method, the performance difference becomes marginal, with GPNs winning on some

datasets while conventional neural networks perform better on others. The benefit of activation

function initialization is dataset depended and sharing virtual observations does not yield
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improvements. Enforcing monotonicity of the activation function has not proven helpful. Since

the computational resources available for these experiments were limited, it was not possible

to perform tuning of the network architecture, i.e. experimenting with the number of layers

and their sizes.



Chapter 6

Conclusion

We proposed two novel classes of activation functions for artificial neural networks. The first

class of activation functions introduced in chapter 3 allows neural networks to automatically in-

troduce multiplicative interactions during training and thus reduces the need to hand-engineer

such interactions or use computationally expensive methods to search over different network

architectures. Compared to conventional activation functions, the proposed family of activation

functions shows favorable results on datasets based on a multiplicative structure but displays

slightly worse performance on standard image recognition tasks. The reason for this behavior

is believed to be a more complex error surface and a greater risk of overfitting due to the

increased expressive power of a neural network using such activation functions.

To evade these drawbacks, in chapter 5 we proposed to place a Gaussian process prior over

the activation function of each neuron. This has three consequences. First, the neuron using

this activation function becomes a probabilistic unit, allowing it to handle uncertain inputs

and estimate the confidence of its output. Second, complexity of the activation function is

penalized in a probabilistically sound Bayesian setting; this guards the model against overfitting.

Third, the squared exponential covariance function ensures that all activation functions are

smooth and therefore continuous derivatives are available. This resulted in the non-parametric

GPN model, which shows these theoretically attractive properties, but performing inference is

expensive due to its non-parametric nature.

An overview of the course of action we took to make GPNs tractable is shown in fig. 6.1.

Starting from a non-parametric model we derived a variational approximation of the posterior.

Based on methods proposed for sparse GP regression, we introduced an auxiliary model, the

parametric GPN, that provides inexpensive inference but is also less attractive since inference is

performed by maximizing the likelihood. We then showed that it is possible to recover the non-

parametric GPN model by placing an appropriate prior over the parameters of a parametric GPN.

Furthermore, we showed that the distribution of activations in both randomly initialized and
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fully trained neural networks closely resembles a normal distribution due to the central limit

theorem. Taken together, these two steps allowed us to derive a fully deterministic, variational

objective to train a non-parametric GPN by stochastic gradient descent. This objective has

the same functional structure as that of a conventional neural network and thus GPNs can be

directly included in CNNs and RNNs or any other architecture that uses neurons.

Implementing this model with high computational performance made it necessary to de-

velop new methods for efficient evaluation of expressions on GPUs, as existing software package

are not very efficient when dealing with a large number of small matrices that occur in our

model. We wish to mention that this thesis mostly focused on the mathematical point of view of

the proposed models; nevertheless a significant amount of time and effort went into optimizing

the implementation of fractional exponentiation and GPNs so that their computational perfor-

mance becomes comparable to that of conventional artificial neurons. This technical work is

necessary to make these models applicable to large datasets that have become common in ma-

chine learning in the last few years. Although a full description of the employed implementation

techniques and algorithms goes beyond the scope of this work, we believe that the methods

developed in chapter 4 for efficient derivation of elementwise defined tensors are applicable to

a wide variety of problems inside and outside the field of machine learning and thus decided

to present them here.

In preliminary experiments we showed that on classification and regression tasks the para-

metric GPN performs as least as well as a Dropout regularized neural network with comparable

computational performance. Due to time constraints we were not yet able to perform exper-

iments on large datasets or using CNNs which have proven to benefit the most from novel

activation functions over the course of the last years.

6.1 The Relation to Deep Gaussian Processes

Deep Gaussian processes (Damianou et al., 2013) is a framework for hierarchical composition of

GP functions. Similar to the GPN model, outputs of one GP are used as the input for another one;

thus graphical models resembling the structure of a feed-forward neural network can be formed.

Deep GPs also employ the variational sparse GP method using inducing points developed by

Titsias (2009) to make inference tractable. However, as we will show now, GPNs have a number

of advantages over deep GPs both in model complexity and efficiency of inference.

A GP within the deep GP framework takes multidimensional input, i.e. each input connec-

tion adds an input dimension to the GP it connects to. The connections in a deep GP do not use

weights to compute a weighted sum as it is done in the GPN model. Instead, each GP uses the

ARD covariance function that has an individual lengthscale parameter per input dimension. By
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interpreting the lengthscale of the ARD covariance function as the inverse of a weight, we can

write for the covariance function of a deep GP,

kARD(y,y′) = exp

[
−
∑
d

w2
d(yd − y′d)2

]
.

Compared to that the effective covariance function of a GPN is

kGPN(y,y′) = exp

−(∑
d

wd(yd − y′d)
)2
 .

Thus taking the square before or after summation is what distinguishes GPNs from deep GPs in

their essence. Although at first glance this seems to be a rather small difference, it leads to a

series of consequences that clearly distinguishes both models.

The first consequence is that each GP in the deep GP framework works in a multidimensional

function space. The dimensionality is determined by the number of input connections and thus

in a feed-forward model it equals the number of units in the previous layer. Hence the inducing

points of the virtual observations used for efficient inference are also multidimensional. This

implies that the number of virtual observations required to evenly cover the input space scales

exponentially with the number of input dimensions and thus incoming connections. Figure 6.2a

shows the predictive mean of a two-dimensional GP with the ARD covariance function with

four observations. As one moves further away from these observations the predictive mean

returns to zero.

On the other hand a GPN, like every artificial neuron, computes the projection of its inputs

onto its weight vector resulting in a scalar value. Thus no matter how many input connections

are present, a GPN always works in a one-dimensional function space. Hence the inducing points

of the virtual observations are also one-dimensional and the number of virtual observations per

GPN is unaffected by the number of incoming connections. Figure 6.2b shows the predictive

mean of a GP using a projection of a two-dimensional input space and four observations.

Thus inducing points become inducing lines or inducing hyperplanes when more than two

dimensions are concerned. It might be argued that the expressive power is vastly reduced by

using a projection, however this is not the case in a GPN feed-forward network as the following

argument demonstrates. Figure 6.2d also shows the predictive mean of a GP using a projection

of a two-dimensional input space but with different weights. Assume that fig. 6.2b and fig. 6.2d

are the outputs of two GPNs located in the same layer. For the sake of argument further assume

that this particular layer consists only of these two GPNs. Then the activations of a GPN in

the subsequent layer is formed by a linear combination of the output of these two GPNs. The
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resulting activation (using equal weights) is shown in fig. 6.2c and, as it can be seen, it produces

functions varying in both input dimensions. Here, the number of virtual observations required to

evenly cover the input space scales linearly with the number of input dimensions. Furthermore,

the virtual observations can now be interpreted as a grid in input space, thus making it unlikely

that an input point is located far away from all inducing hyperplanes.

The second consequence is that the inputs to a GP in a deep GP model cannot converge

to a normal distribution because no linear combination (as in a neural network) is performed.

This leaves two methods for training and inference of a deep GP: stochastic variational infer-

ence (section 5.6.1), which is computationally expensive due to sampling, or using a mean-field

variational posterior (section 5.6.3) which is a bad fit for the model and thus leads to poor

propagation of uncertainties as discussed in section 5.6.4. Furthermore, the mean-field outputs

of each GP within a deep GP must be inferred alongside the model parameters during mini-

mization of the variational objective function, leading to many more parameters to optimize.

Salimbeni et al. (2017) also observed that deep GPs are difficult to train for these reasons and

reverted to a stochastic inference algorithm to avoid this problem, albeit at significantly higher

computational costs.

On the other hand, the central limit theorem is applicable to the activation of each GPN,

guaranteeing that the activations will converge to a normal distribution if a GPN has a sufficient

number of input connection. This leads to the marginally normal variational posterior that we

derived in section 5.6.2. The variational objective function resembles the structure of a neural

network, which makes GPNs directly usable in other network architectures such as RNNs and

CNNs simply by adjusting eq. (5.142) accordingly.

Taken together both consequences show that the design of a GPN leads to a more sound

and efficient training procedure with fewer parameters to optimize compared to a deep GP.

These advances were possible by using a weight projection inside a standard SE covariance

function instead of an ARD covariance function. This crucial difference is what enabled us to

derive the vastly more efficient variational objective.

In summary, from a neural network viewpoint we have introduced a novel, stochastic, self-

regularizing activation function that is integratable into existing neural models with modest

effort. From a GP viewpoint we introduced the idea of learnable projections into deep Gaussian

processes, allowing us to derive a novel variational posterior that makes them as accessible and

easy to train as neural networks.
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Figure 6.2: GP with ARD covariance function as it occurs in a deep GP (top) versus GPNs
using projections (bottom) in two-dimensional space. (a) The predictive mean of a GP in
two-dimensional space using the ARD covariance function and four observations placed in
two-dimensional space. (b) The predictive mean of a GP using a projection of two-dimensional
inputs and four one-dimensional observations that are represented as lines in input space.
(d) Shows the same as (b) but using a different projection. (c) A linear combination of the
predictive means of (b) and (d) as it occurs in the activation of a GPN receiving inputs from the
GPNs shown in (b) and (d). Taken together their observations form a grid in two-dimensional
space.
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6.2 Future Work

Many extensions to and applications of the proposed model are imaginable.

The behavior of the activation function at infinity

Although the GPN can approximate all popular activation functions within a limited range, the

value of the GPN activation function will always return to zero as one moves towards negative

or positive infinity. This follows directly from using the zero mean function and the squared

exponential covariance function. However, in CNNs for image processing a neuron often fulfills

the function of a feature detector that measures how well the image patch in its receptive field

matches a reference pattern encoded in its weights. The usually employed logistic function thus

serves as a soft threshold that results in an output of one if the pattern is matched and zero if

not. When using GPNs an issue could arise when a unit obtains a very good match. In this case

the resulting very high activation value could be outside the range of the inducing points and

thus the thresholding behavior may be impacted.

Two possible solutions exist. One solution is to extend the covariance function of the em-

ployed GP. For this it should be remembered that a GP can also be interpreted as linear regres-

sion in a feature space with the weights following a normal prior. Thus, by using the identity

function and the step function as the basis functions (feature maps) of this feature space, a

GP with the appropriate covariance function, corresponding to the scalar product in feature

space, will produce a linear combination of these basis functions. We can add the so-defined

covariance function to the squared exponential covariance function to obtain a GPN that can

represent any function within the range of its inducing points and also control its behavior at

infinity by means of these basis functions. This approach requires adapting the equations for

propagating of uncertainty to the extended covariance function. Another solution is to change

the mean function of the GP as discussed below.

Non-zero activation function means

The GPN has been developed using the zero mean function for the GP representing its activation

function. Using a particular mean function leads to that function having the highest prior

probability in the distribution over activation functions. The zero mean function used so far

assigns the highest prior probability to a GPN which has constant zero output regardless of its

inputs and thus behaves as if it was not present in the network. In consequence the zero mean

function regularizes GPN networks by keeping the number of active GPNs in each layer to a

minimum.
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Figure 6.3: Using established activation functions as mean functions for the GPN. This figure
shows samples from the resulting prior before training.

By using other mean functions we can impose different regularization goals. For instance a

GPN using the identity function as its mean function (fig. 6.3a) will assign highest probability

to a completely linear GPN and thus behaves as if its incoming connections were directly

connected to its outgoing connections. Thus this function regularizes GPN networks by keeping

non-linearities, which can be interpreted as the effective number of layer, to a minimum.

We can also use an established activation function like the rectifier (fig. 6.3b) or the hyper-

bolic tangent (fig. 6.3c) as the GPN mean function. If the virtual observations are also initialized

to be zero, the GPN network starts training as if it was a conventional neural network with that

particular activation function. However, it has the power to modify the activation function to

obtain a better fit for the given training data. But, as before, a deviation from the prescribed

mean function is penalized by the prior.

Using non-zero mean functions requires adjusting the equations for propagation of uncer-

tainties through the GPN network. The best method depends on the particular mean function,

but in general the unscented transform can be used to propagate the marginal normal distribu-

tions through any mean function.

Empirical evaluation of the variational posterior

The results shown in section 5.7 were performed using the parametric GPN using maximum

likelihood inference. They showed that even the parametric model is already capable of beating

the performance of Dropout regularized neural networks on some real world datasets. A full set

of experiments using the variational posterior could not be performed before printing of this

work due to limitations of available time and computational resources. Since the variational

training objective is fully specified, a full evaluation of its empirical performance is the next

logical step.



6.2. FUTURE WORK 193

Application of GPNs in convolutional and recurrent networks

Novel activation functions like the ReLU and leaky ReLU have been developed for and were most

successful in CNNs. Recurrent neural networks on the other hand have proven to benefit from an

attention mechanism realized by multiplicative interactions, which can be implemented using a

GPN. Thus it is natural to evaluate the proposed model on these architectures. Implementation

is straightforward since a GPN retains the structure of a neuron. However, due to the large size

of CNN and RNN models combined with our limited computational resources we were not yet

able to perform these experiments.
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List of Acronyms

ANN artificial neural network

ARD automatic relevance determination

CDF cumulative density function

CNN convolutional neural network

CUDA Compute Unified Device Architecture

DFT discrete Fourier transform

ELBO evidence lower bound

GCD greatest common divisor

GP Gaussian process

GPN Gaussian process neuron

GPU graphics processing unit

HMC Hamiltonian Monte Carlo

iid. independent and identical distributed

MCMC Markov chain Monte Carlo

PDF probability density function

RNN recurrent neural network

SE squared exponential
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