
TECHNISCHE UNIVERSITÄT MÜNCHEN
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Abstract

Research and industry proceed to build autonomous driving cars, self-navigating unmanned aerial

vehicles and intelligent, mobile robots. Furthermore, due to the demographic change, intelligent

assistance devices for visually impaired and elderly people are in demand. For these tasks systems

are needed which reliably map the 3D surroundings and are able to self-localize in these created

maps. Such systems or methods can be summarized under the terms simultaneous localization

and mapping (SLAM) or visual odometry (VO). The SLAM problem was broadly studied for

different visual sensors like monocular, stereo and RGB-D cameras. During the last decade

plenoptic cameras (or light field cameras) have become available as commercial products. They

capture 4D light field information in a single image. This light field information can be used, for

instance, to retrieve 3D structure.

This dissertation deals with the task of VO for plenoptic cameras. For this purpose, a new

model for micro lens array (MLA) based light field cameras was developed. On the basis of this

model a multiple view geometry (MVG) for MLA based light field cameras is derived.

An efficient probabilistic depth estimation approach for MLA based light field cameras is pre-

sented. The method establishes semi-dense depth maps directly from the micro images recorded

by the camera. Multiple depth observations are merged in a probabilistic depth hypotheses.

Disparity uncertainties resulting e.g. from differently focused micro images and sensor noise are

taken into account. This algorithm is initially developed on the basis of single light field images

and later extended by the introduced MVG.

Furthermore, calibration approaches for focused plenoptic cameras at different levels of com-

plexity are presented. We begin with depth conversion functions, which convert the virtual depth

estimated by the camera into metric distances, and then proceed to derive a plenoptic camera

model on the basis of the estimated virtual depth map and the corresponding synthesized, totally

focused image. This model takes into consideration depth distortion and a sensor which is tilted in

relation to the main lens. Finally it leads to a plenoptic camera model which defines the complete

projection of an object point to multiple micro images on the sensor. Based on this model we

emphasize the importance of modeling squinting micro lenses. The depth conversion functions are

estimated based on a series of range measurements while the parameters of all other models are

estimated in a bundle adjustment using a 3D calibration target. The bundle adjustment based

methods significantly outperform existing approaches.

The plenoptic camera based MVG, the depth estimation approach, and the model obtained

from the calibration are combined in a VO algorithm called Direct Plenoptic Odometry (DPO).

DPO works directly on the recorded micro images. Therefore, it does not have to deal with

aliasing effects in the spatial domain. The algorithm generates semi-dense 3D point clouds on the

basis of correspondences in subsequent light field frames. A scale optimization framework is used

to adjust scale drifts and wrong absolute scale initializations. To the best of our knowledge, it is

the first method that performs tracking and mapping for plenoptic cameras directly on the micro

images. DPO is tested on a variety of indoor and outdoor sequences. With respect to the scale

drift, it outperforms state-of-the-art monocular VO and SLAM algorithms. Regarding absolute

accuracy, DPO is competitive to existing monocular and stereo approaches.
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Kurzfassung

Sowohl in der Forschung als auch der Industrie werden autonome Fahrzeuge, selbstfliegende

Drohnen und intelligente, mobile Roboter entwickelt. Außerdem wird aufgrund des demogra-

phischen Wandels die Nachfrage nach intelligenten Hilfsmitteln für sehbeeinträchtigte und ältere

Menschen immer größer. Für die beschriebenen Anwendungen werden Systeme benötigt, welche

zuverlässig die 3D Umgebung erfassen und sich selbst in dieser Umgebung lokalisieren können.

Diese Systeme können unter den Begriffen Simultaneous Localization and Mapping (SLAM) oder

visuelle Odometrie (VO) zusammengefasst werden. Bisher wurden SLAM-Methoden hauptsäch-

lich basierend auf monokularen, Stereo- und RGB-D Kameras untersucht. In den letzten Jahren

kamen plenoptische Kameras auf den Markt. Diese sind in der Lage, anhand des aufgenommenen

4D Lichtfelds, z.B. 3D Information zu erlangen.

In dieser Arbeit werden VO-Methoden basierend auf einer plenoptische Kamera untersucht.

Dafür wurde ein neues Modell sowie eine Multi-View-Geometrie (MVG) für Lichtfeldkameras mit

Mikrolinsengittern (engl.: micro lens arrays, MLA) hergeleitet.

Es wurde eine Methode zur Tiefenschätzung für MLA basierte Lichtfeldkameras entwick-

elt. Diese Methode berechnet, direkt aus den Mikrolinsenbildern der Kamera, eine teildichte

Tiefenkarte. Mehrere Tiefenbeobachtungen werden hierbei in einem stochastischen Modell vereint.

Das Modell berücksichtigt Disparitätsunsicherheiten welche aus z.B. unterschiedlich fokussierten

Mikrolinsenbildern und Sensorrauschen resultieren.

Weiterhin werden verschiedene Kalibiermethoden für fokussierte plenoptische Kameras vorge-

stellt. Zunächst werden Funktionen zur Umrechnung der geschätzten virtuellen Tiefe in metrische

Abstände definiert. Anschließend leiten wir Modelle basierend auf der geschätzten virtuellen

Tiefenkarte und dem zugehörigen totalfokussierten Bild her. Diese Modelle berücksichtigen

Tiefenverzeichnung und eine Sensorverkippung bezüglich der Hauptlinse. Schließlich wird ein

Modell definiert, welches die komplette Projektion eines Objektpunkts in mehrere Mikrolinsen-

bilder auf dem Sensor beschreibt. Hier wird die Bedeutung der Modellierung von schielenden

Mikrolinsen, wie sie in einer plenoptischen Kamera vorkommen, herausgearbeitet. Die Funktionen

zur Tiefenumrechnung werden anhand einer Reihe von Abstandsmessungen bestimmt, während

alle weiteren Modelle mit einem 3D Kalibrierobjekt im Bündelausgleich geschätzt werden. Die

auf Bündelausgleichung basierende Kalibriermethoden erzielen robustere Ergebnisse als bisherige

Methoden.

Die MVG für plenoptische Kameras, das Verfahren zur Tiefenschätzung und das während

der Kalibrierung geschätzte Modell werden in einem VO-Algorithmus namens Direct Plenoptic

Odometry (DPO) vereint. DPO arbeitet direkt auf den Mikrolinsenbildern und vermeidet damit

Unterabtastungseffekte bei der Tiefenschätzung. Der Algorithmus erzeugt teildichte 3D Punkt-

wolken basierend auf Korrespondenzen in aufeinanderfolgenden Lichtfeldaufnahmen. Nach un-

serem Wissen ist DPO die erste Methode welche die Kameraposition sowie eine 3D Karte aus den

Aufnahmen einer plenoptischen Kamera bestimmt. DPO wurde mit verschiedenen Innenraum-

und Außenbereichsequenzen getestet. Bezüglich des Skalierungsdrifts übertrifft DPO aktuellste

monokulare VO und SLAM Algorithmen. Die absolute Genauigkeit liegt in der Größenordnung

von aktuellen monokularen und stereobasierten Algorithmen.
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1 Introduction

1.1 Motivation

The sense of vision allows us humans to navigate in any kind of environment without interacting

with it. Furthermore, we are able to build a three dimensional (3D) map of the surroundings in

our brain, based on what we see. In this way vision, in combination with other senses, enable

us to navigate through and interact with our environment. In the century of automation, where

we want to build autonomous cars, self-navigating unmanned aerial vehicles (UAVs) as well as

mobile and intelligent robots, teaching a computer the sense of vision became a very important

and broadly studied field both in research and industry. Aside from its use in automation, 3D

vision can also be used to assist for instance visually impaired and elderly people in order to

enhance their quality of life.

For some of the mentioned tasks, like localizing a car on an existing road map, external

infrastructure can be established to achieve this goal. However, this is not always possible.

Inaccuracies in existing maps or even the lack of maps are examples of such cases. Furthermore,

it might be difficult to keep maps of transient environments (e.g. moving objects and people)

updated. Depending on the application, establishing such an infrastructure might simply be too

expensive. Therefore, even though various systems which allow localization on a global and local

scale already exist, a growing demand for closed systems which do not rely on any infrastructure

for navigation and mapping can be observed.

Such tasks based on closed systems can be summarized under the research topic of simultaneous

localization and mapping (SLAM). This means that a computer-based movable system is able to

build a map, usually in 3D, of the environment and to localize itself within this map. Further-

more, tracking and mapping are supposed to be performed online since the resulting map and

trajectory have to be used e.g. for obstacle avoidance.

Depending on the application, the SLAM problem can be tackled by incorporating many

different active and passive sensors, which balance each other’s capabilities and thereby are able

to compensate for the failure of individual sensors. Furthermore, autonomous cars can combine

the information gained through their own sensor system with that of external infrastructure like

GPS (Global Positioning System). However, there are other applications where the number, size,

and weight of the sensors as well as the power consumption matters. UAVs and small household

robots for instance can only carry a limited weight. Furthermore, for indoor scenarios there

usually are no external localization systems available and existing maps are not detailed enough

and outdated since they generally do not include furniture, etc. Similar concerns hold true for

assistance devices, which at best are so small and light that they are almost invisible. Besides,

it is crucial that such devices operate reliably both indoors and outdoors and therefore must not

be dependent on external systems. Furthermore, while some active sensors (e.g. structured light

sensors) perform reliably in indoor environments with artificial lighting, they completely fail in

sunlight conditions.

1



2 1. INTRODUCTION

so
u

rce:
fu

tu
rezo

n
e.a

t

(a) Lytro camera (1. generation) (b) Raytrix R5 camera

so
u

rce:
P

elica
n

Im
a
g
in

g

(c) PiCam, Pelican Imaging

Figure 1.1: Different light field sensors. While (a) and (b) are both micro lens array based
plenoptic cameras, (c) is a miniaturized 4× 4 camera array.

In these scenarios, where weight and power consumption matter, the SLAM problem is gener-

ally solved based on a single monocular camera. A monocular camera captures only two dimen-

sional (2D) images of the 3D world. Therefore, a 3D map can not be build without observing

the scene multiple times from different perspectives. Since no absolute depth can be measured

using a monocular camera, tracking and mapping can only be performed up to an unknown scale

factor.

Over the last few decades, plenoptic cameras, which are also called light field cameras, with

a size comparable to standard industry cameras have emerged (Adelson and Wang [1992]; Ng

et al. [2005]; Lumsdaine and Georgiev [2009]; Perwaß and Wietzke [2012]) and were developed

up to a commercial stage. Unlike monocular cameras, which record a 2D image of a scene,

plenoptic cameras capture the light field of a scene as a four dimensional (4D) function in a single

image. The additional information in two angular dimensions allows the reconstruction of the

3D scene from a single image to a certain degree, and therefore to measure the absolute scale of

a scene. Figure 1.1 shows three different, portable light field sensors. While the cameras from

Lytro and Raytrix are plenoptic cameras which gather angular information based on a micro lens

array (MLA) in front of the image sensor, the PiCam from Pelican Imaging is a miniaturized

camera array. Here, an array of 4× 4 cameras is realized on a single image sensor.

In plenoptic cameras the additional angular information is obtained at the expense of spatial

resolution. However, as pixel sizes continue to shrink (currently around 1 µm) and image resolu-

tions of over 40 million pixels on a sensor of about 17 mm× 17 mm in size can be manufactured,

it seems to be a good compromise to reduce spatial resolution in order to gain additional infor-

mation about the environment. This claim is supported by Engel et al. [2016] who showed that,

at least for direct SLAM approaches, increasing the image resolution does not necessarily lead to

more accurate tracking results.

The motivation of this work was to study the pros and cons of plenoptic cameras with respect

to visual odometry (VO) and SLAM. One question in particular, which is hoped to be answered

within the context of this work, was whether or not the absolute scale of a scene can be recovered

from a sequence of plenoptic images. It was also supposed to be examined whether the additional

angular information gained by a plenoptic camera leads to improved tracking capabilities in

comparison to monocular cameras.

In this dissertation often the two terms SLAM and VO are used to describe at first glance

the same task. However, these tasks are different by definition. VO is the task of estimating

the motion and therefore the trajectory of a camera (or multiple cameras) based on the recorded

images. SLAM furthermore establishes a map of its environment which aims for global consistency.

Hence, a SLAM system stores map information of previously explored regions and will recognize
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these regions when they are revisited. This is called loop closure. A VO system stores only

transient map information since it is needed to estimate the camera trajectory. Therefore, loop-

closures will not be recognized.

1.2 Objectives

The objective of this dissertation is to explore plenoptic cameras, built on the basis of standard

industrial cameras, with respect to the task of 3D tracking and mapping and evaluate the suit-

ability of these cameras for applications such as robot navigation or vision assistance for visually

impaired persons.

The overarching goal of this dissertation can therefore be stated as the development and

investigation of a plenoptic camera based 3D tracking and mapping algorithm. This problem is

supposed to be solved by way of an example for a focused plenoptic camera by the manufacturer

Raytrix (model R5). While the previous sentences define this work’s intent entirely, there are a

number of secondary problems that arise on the way to achieving this goal.

One can consider the problem of camera calibration as solved for monocular cameras and

stereo cameras. So far, this is not the case for plenoptic cameras. Hence, one goal was to solve

the problem of plenoptic camera calibration while simultaneously finding a mathematical model

for the camera that is suitable for a multiple view system.

On the basis of the camera model, tracking and depth estimation algorithms, which are able to

process sequences of plenoptic images, had to be developed and combined in a plenoptic camera

based VO framework.

1.3 Dissertation Overview

Following the introduction, Chapter 2 introduces some fundamentals with respect to light field

imaging as well as visual SLAM. This dissertation combines these two topics which have been

handled as two more or less independent fields of research so far. Mathematical terms which are

needed throughout this dissertation will be defined.

Chapter 3 gives an overview about related work and the state-of-the-art in the field of this

thesis. Publications are divided into the categories of light field based depth estimation, plenoptic

camera calibration, and VO (or visual SLAM). Furthermore, the main contributions of this thesis

with respect to the state-of-the-art are listed.

Chapter 4 investigates the plenoptic camera from a mathematical perspective. A new math-

ematical model for MLA based light field cameras is introduced. Based on this mathematical

model a multiple view geometry (MVG) can be defined directly for the micro images recorded

by the camera. Furthermore, the two concepts of focused and unfocused plenoptic cameras are

investigated with respect to the task of depth estimation.

Chapter 5 introduces a probabilistic depth estimation algorithm based on a single recording

of a focused plenoptic camera. The algorithm performs depth estimation without any metric

calibration of the plenoptic camera. Multiple depth observations are incorporated into a single

depth estimate based on a probabilistic model. A filtering method is presented to refine the

probabilistic depth map. Based on this refined depth map a so called totally focused image of

the recorded scene can be synthesized.

Chapter 6 presents intrinsic camera models and calibration approaches for focused plenoptic

cameras on different abstraction levels. In a first model, the camera is considered to follow a
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pinhole camera model, while the estimated virtual depth is transformed into object distances

based on a depth conversion function. In a second model, the projection from object space to the

image created by the main lens is defined. Here, in addition to lateral distortion a depth distortion

model has to be defined, since depth estimation is performed prior to any image correction. The

last model defines the plenoptic camera in the most complete way. It defines the projection of

a 3D object point to multiple micro images on the sensor. Since distortion is applied directly to

the recorded raw image, it is no longer necessary to consider any depth distortion.

Chapter 7 formulates a direct and semi-dense VO algorithm based on a focused plenoptic

camera. This algorithm combines the mathematical plenoptic camera model and multiple view

geometry (Chapter 4), the probabilistic depth estimation (Chapter 5) and the metric camera

calibration (Chapter 6).

Chapter 8, Chapter 9, and Chapter 10 present the experiments which were performed to

evaluate the methods developed in this thesis. To evaluate the probabilistic depth estimation

algorithm two public datasets as well as light field images recorded by us are used. For the

plenoptic camera calibration there are no suitable public datasets available. The used dataset

was recorded based on a 3D calibration target. Similarly, up to now there exist no public datasets

for light field based VO. Therefore, a synchronized dataset was recorded to compare light field

based VO with VO algorithms relying on other sensors. The results obtained for the proposed

methods based on the datasets are presented and extensively discussed.

Chapter 11 summarizes this dissertation and presents prospects for further improvements and

future work.

1.4 Publications
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Wissenschaftlich-Technische Jahrestagung der DGPF (DGPF Tagungsband 23 / 2014).

2. Zeller N, Quint F, and Guan L (2014b). Kinect based 3D Scene Reconstruction. In Inter-

national Conference on Computer Graphics, Visualization and Computer Vision (WSCG),

volume 22, pages 73–81.

3. Zeller N, Quint F, and Stilla U (2014c). Applying a Traditional Calibration Method to a

Focused Plenoptic Camera. In BW-CAR Symposium on Information and Communication

Systems (SInCom).

4. Zeller N, Quint F, and Stilla U (2014d). Calibration and Accuracy Analysis of a Focused
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mation Sciences (Proc. PCV 2014), II-3:205–212.

5. Zeller N, Quint F, and Stilla U (2014e). Kalibrierung und Genauigkeitsuntersuchung einer

fokussierten plenoptischen Kamera. In 34. Wissenschaftlich-Technische Jahrestagung der

DGPF (DGPF Tagungsband 23 / 2014).

6. Zeller N, Quint F, Zangl C, and Stilla U (2014f). Edge Segmentation in Images of a Fo-

cused Plenotic Camera. In International Symposium on Electronics and Telecommunications

(ISETC), pages 269–272.
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1.6 Notations

In this section important notations, which are used throughout this dissertation, are introduced.

Matrices are denoted as bold, capital letters (G), vectors as bold, lower case letters (x) and scalars

as normal letters, either capital or lower case (d). It is not differentiated between homogeneous

(x = [x, y, z, 1]T ) and non-homogeneous (x = [x, y, z]T ) representations. Nevertheless, the mean-

ing should be clear from the context. The notation [t]i defines the i-th element of a vector t and

[R]j the j-th row of a matrix R. The determinate of a matrix R is denoted by |R| and tr(R)

denotes the trace of a matrix R.



2 Fundamentals – Light Field
Imaging and Visual SLAM

2.1 The Light Field

While a regular camera captures only the amount of light hitting a 2D image sensor, the light

field is what describes the entire distribution of light in a 3D volume. First explorations of the

light field were made by Gershun [1936], more than eighty years ago.

2.1.1 The Plenoptic Function

A general definition of the light field, as it is used today in image processing, was given by

Adelson and Bergen [1991]. They described the entire distribution of light in 3D space by a seven

dimensional function which they called the plenoptic function. Here, the intensity distribution of

light is defined for any point (Vx, Vy, Vz) in the 3D space, with respect to the angle (Φ, Θ) of the

respective light ray, at a certain wavelength λ, for any time t:

P (Φ,Θ, λ, Vx, Vy, Vz, t). (2.1)
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Figure 2.1: Original drawing by Adelson and Bergen [1991], which is a quite famous visualization
of the plenoptic function. The plenoptic function describes the amount of light penetrating any
point in space (Vx, Vy, Vz) from any possible angle (Φ, Θ). This is shown here schematically with
two eyes representing two different observer positions. While a real observer does not gather light
rays coming from behind, these are included in the plenoptic function.

7
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While there might be even more dimensions, describing, for instance, the light’s polarization, the

plenoptic function stated in eq. (2.1) gives a quite generalized definition of the light field. Anyhow,

as one will see in the following, several assumptions can be made with respect to computational

imaging. The plenoptic function considered here will only be a subset of the function given in

eq. (2.1).

When processing images, one is not interested in the absolute time t. Even for the task of

visual odometry as discussed in this thesis, the assumption of a light field which is stationary, at

least in a wide sense, has to be made. Furthermore, when considering a monochromatic image

sensor, the plenoptic function is integrated along a certain bandwidth of the wavelength domain.

Therefore, the function will be independent of the wavelength λ itself. Hence eq. (2.1) shrinks

down to a five dimensional function:

P (Φ,Θ, Vx, Vy, Vz). (2.2)

For RGB sensors one can simply consider the three colors as separate channels of the plenoptic

function. The function given in eq. (2.2) can be visually interpreted as shown in Figure 2.1, which

is the original drawing by Adelson and Bergen [1991]. Here, the coordinates (Vx, Vy, Vz) can be

considered as the position of an observer, while (Φ,Θ) are the angles corresponding to a light ray

going through the observer’s pupil. While a real-eye observer would only gather the light rays

coming from in front, the plenoptic function considers all rays penetrating from every direction.

Another simplification of the plenoptic function can be made when considering the intensity

distribution P along a ray being independent of the absolute position along the respective light

ray. This assumption holds true as long as the ray is traveling through free space without hitting

any object or being attenuated by some medium. One can parametrize the light field on a surface

outside the convex hull of the scene as given in eq. (2.3) (Gortler et al. [1996]).

P (Φ,Θ, x, y) (2.3)

This 4D plenoptic function has its limitation in that only the light field around a scene bounded

by a convex hull can be parameterized. While this assumption implies certain limitations, the 4D

plenoptic function represents the nature of light fields captured by common imaging systems.

2.1.2 Light Field Parametrization and Capturing

While in the previous section the plenoptic function was considered as a continuum, what we

capture is just a sampled version of it, where the intensity distribution is integrated over a certain

area (e.g. the photosensitive are of a sensor pixel). There are several ways to parametrize this

sampled 4D light field. The most popular one is the two plane parametrization (2PP) introduced

by Levoy and Hanrahan [1996]. A ray in the 4D light field is defined by its intersections with two

parallel planes Ω and Π, where the intersections are defined by the coordinates (u, v) ∈ Ω and

(s, t) ∈ Π respectively:

L(u, v, s, t). (2.4)

Each ray (u, v, s, t) in the light field is described by its corresponding intensity value L. Here, it

is important to notice that the variable t does not represent time. Figure 2.2 visualizes this two

plane parametrization. The figure illustrates the example of two light rays (L1 and L2) of the 4D

light field. Both rays are emitted from the same point O(Vx, Vy, Vz) in 3D space and therefore

intersect in this point. Since both rays are emitted from the same point, they will have the same

intensity value (L1 = L2), as long as Lambertian reflectance is assumed.
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O(Vx, Vy, Vz)

Π

Ω

Figure 2.2: Two plane parametrization (2PP). Light rays are defined based on their intersections
with two parallel planes and have a certain intensity value L. The figure shows the example of
two light rays L1 and L2 emitted from the same point O(Vx, Vy, Vz) in the 3D space.

At first glance this parametrization seems to have quite a few limitations. Only the light field

outside a convex hull and on a planar cut through the 3D space is covered. However, the two

plane parametrization is sufficient for the data gathered by most of today’s light field capturing

setups. Some of these setups are shown in Figure 2.3, which all basically form arrays of real or

virtual cameras. Figure 2.3a shows a gantry, which is able to capture the 4D light field of a static

scene by moving a camera in horizontal and vertical direction. Figure 2.3b shows an array of

lenses and prisms, which can be used to capture a light field using a single camera. Figure 2.3c

shows a large camera array, based on which high resolution light field videos of dynamic scenes

can be captured.

A convenient feature of 4D light fields captured by camera arrays is that they already are

recorded in a format conforming to the two plane parametrization. Consider a camera array,

for instance, where all cameras are arranged on a plane and are pointing in the same direction.

The plane Ω can be defined as the plane of the camera lenses, while the plane Π defines the

respective image plane. Hence, for the conventional pinhole camera model, the plane Π is defined

in distance f in front of the plane Ω, where f is the cameras’ focal length. Selecting certain

coordinates (u, v) on the plane Ω is equivalent to the selection of a certain camera in the array. In

contrast selecting coordinates (s, t) would be equivalent to the selection of a respective pixel in the

rectified images. Even though both coordinates (u, v) and (s, t) define positions on the respective

plane, the coordinates (s, t) are referred to as spatial coordinates while (u, v) are referred to as

angular coordinates. The coordinates (s, t) define the spatial samples in a single image of the

camera array, while the coordinates (u, v) define the position of the respective pinhole camera

and hence the viewing angle on the scene.

2.2 The Plenoptic Camera

For camera arrays it is quite intuitive to see that they capture a 4D light field which conforms

to the two plane parametrization. However, it is not as obvious that a MLA based light field

camera, as drawn in Figure 2.4, does so, too.

In this section we will discuss both concepts of MLA based light field cameras: the traditional,

unfocused plenoptic camera (or plenoptic camera 1.0) proposed by Adelson and Wang [1992] and
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(c) Lytro Immerge camera array

Figure 2.3: Different setups to acquire 4D light fields. (a) Stanford’s Lego Mindstorms gantry.
Here an assembled DSLR camera can be moved in horizontal and vertical direction to capture
images from different viewpoints on a plane. (b) Optical device by Georgiev et al. [2006] consisting
of 19 lenses and 18 prisms. It can be placed in front of a regular camera lens to capture 4D light
fields. (c) Lytro Immerge. Large camera array to capture 4D light field videos in cinema quality.

developed further by Ng et al. [2005] and the focused plenoptic camera (or plenoptic camera 2.0)

introduced by Lumsdaine and Georgiev [2009] and commercialized by Perwaß and Wietzke [2012].

2.2.1 The Unfocused Plenoptic Camera

There are different ways to look at plenoptic cameras. In contrast to the perspective presented

here, there are plenty of other ways to describe the concept of plenoptic imaging (e.g. Dansereau

[2013] (Sec. 2.3)). Here, the plenoptic camera is considered to be an array of cameras that

captures the light field inside the camera and therefore behind the main lens. As will be shown

in the following, this light field conforms to the two plane parametrization. Hahne et al. [2014]

show how this array can be transformed into an array outside the camera. However, here the

data conforms to the two plane parametrization only under certain conditions.

For an unfocused plenoptic camera, the focal length fM of the micro lenses is chosen to be

equal to the distance B between sensor and MLA (see Fig. 2.4). Thus, each micro lens is focused

to infinity and thus each pixel under a micro lens integrates intensities over a bundle of rays which

incident in parallel on the micro lens. For the light field parametrization one plane of the two

plane parametrization can be chosen to be the MLA plane, where each micro lens is one sample,

while the second plane is the main lens plane sampled by the pixels under a micro lens. Hence,

the plane Ω is defined to be on the MLA and the plane Π on the main lens.

This setup of the unfocused plenoptic camera is shown in Figure 2.4. As one can see from the

figure, each micro lens gathers light across the complete aperture of the main lens, while each pixel

under the micro lens captures only rays from a small sub-aperture. From the previous section one

can remember that picking a point (u, v) on the plane Ω can be considered as selecting a specific

camera from the camera array, while the central perspective image of this camera is formed on the

plane Π. This can be done in a similar way for the plenoptic camera. By selecting a point (u, v)

one chooses a certain sub-aperture on the main lens and respectively a certain pixel position under

the micro lenses. Hence, by arranging the pixels with certain coordinates from each micro image

in an array, according to the corresponding micro lens position (s, t), again, a central perspective

view is obtained (see Figure 2.6a). This is a simplified perspective on the image recorded by a

plenoptic camera, where it is assumed that the MLA consists of rectangular micro lenses and each

micro image consists of an integer number of pixels. For real data, interpolation and resampling

have to be performed. However, the principle of the concept is as stated.
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main lens
sensor MLA

image plane

B = fM bL0

Figure 2.4: Setup inside of an unfocused plenoptic camera. While each micro lens captures light
penetrating the whole of the main lens aperture (shown in blue), a single pixel on the sensor only
gathers a bundle of rays penetrating a small subsection of the main lens aperture.

In this thesis, plenoptic cameras are mainly considered from a geometric perspective. But

for interested readers who seek further insight into the topic of plenoptic imaging, the author

would like to refer them to the work of Dansereau [2013]. In his PhD thesis (Dansereau [2013],

Section 2.3), he compares a traditional camera to a plenoptic camera with respect to the captured

depth of field (DOF) as well as the amount of light which is gathered.

2.2.2 The Focused Plenoptic Camera

One limitation of unfocused plenoptic cameras is that the spatial resolution, i.e. the resolution of

the plane Ω in the 2PP, is limited by the number of micro lenses in the MLA. The idea behind the

focused plenoptic camera or plenoptic camera 2.0 is to find an imaging concept which decouples

this connection and therefore adds more degrees of freedom to the design of a plenoptic camera.

Instead of placing the MLA in the image plane of the main lens, it is placed either in front of or

behind that image plane. Furthermore, the micro lenses are not focused at infinity, but at the

image plane of the main lens. This is shown in Figure 2.5 for an image plane in front of the MLA,

called Keplerian mode (Figure 2.5a), and an image plane behind the MLA, called Galilean mode

(Figure 2.5b). A micro lens with focal length fM < B has to be chosen for the Keplerian mode

and fM > B for the Galilean mode. More precisely, for the Keplerian mode the micro lens focal

length is given by

fM =
b ·B
b+B

, (2.5)

while for the Galilean mode a micro lens focal length of

fM =
b ·B
b−B

(2.6)

results from the thin lens equation. While in the Keplerian mode a real main lens image is formed

and captured by the MLA, the image of the main lens in the Galilean mode exists only as virtual

image behind the image sensor.

In the setup of a focused plenoptic camera, the micro images are focused subsections of the

main lens image. Hence, this main lens image plane is sampled with a spatial resolution which

is decoupled from the number of micro lenses in the MLA. Instead, the spatial resolution on the

image plane is defined by the ratio b
B and the pixel pitch. Increasing the distance b between image

plane and MLA will decrease the spatial resolution, while reducing the distance will increase it

accordingly. At the same time that the spatial resolution is increased, the number of angular
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Figure 2.5: Setup inside of a focused plenoptic camera. (a) Keplerian configuration: the image
plane of the main lens is in front of the MLA. (b) Galilean configuration: the image plane of
the main lens is behind the MLA. In both cases the micro lens’ focal lengths are matched such
that the main lens image is focused on the sensor. In this schematic drawing aperture matching
between micro lenses and main lens was not considered.

samples decreases, since an image point is seen by fewer micro lenses. Thus, since the total

number of rays is given by the number of sensor pixels, a tradeoff between spatial and angular

resolution has to be found. This phenomena was discussed exhaustively by Georgiev et al. [2006].

Assuming b
B = 1, for instance, would imply that each image point is seen by only a single

micro lens. Therefore, for each image point there would exist only one angular sample, while the

spatial domain is sampled at full sensor resolution. For this case the focused plenoptic camera

would, in theory, act as the equivalent of a monocular camera.

Similar to the way that the number of captured light rays is directly coupled to the number of

pixels on the sensor, the depth of field (DOF) captured by the camera is coupled to the angular

resolution. Hence, increasing the spatial resolution will result in a decreased DOF in comparison

to the equivalent unfocused plenoptic camera.

In conclusion, the main difference between an unfocused and a focused plenoptic camera is

the manner of sampling. In an unfocused plenoptic camera, the MLA samples the spatial domain

of the light field and the sensor pixels sample the angular domain. In the case of the focused

plenoptic camera, the reverse is true. Generally speaking, an unfocused plenoptic camera exhibits

more vagueness in the spatial domain, while a focused plenoptic camera exhibits more vagueness

in the angular domain. This can also be seen when considering the ray bundle of a single pixel

in Figure 2.4 and Figure 2.5, respectively.

With regards to the 2PP, the unfocused plenoptic camera already samples the light field in

a uniform fashion, whereas the focused plenoptic camera performs a nonuniform sampling of the

light field, which cannot be arranged directly in an equally spaced 2PP. Therefore, obtaining a

uniformly sampled 2PP from a focused plenoptic camera requires depth estimation and interpo-

lation of the light field (Wanner et al. [2011]).

A further extension to the focused plenoptic camera is the multi-focus plenoptic camera pro-

posed by Perwaß and Wietzke [2012]. Here a MLA consisting of different interlaced types of micro

lenses is used. Each micro lens type has a different focal length and therefore is focused on a

different image plane. This way the lost depth of field can be compensated for, to some degree.
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(a) sub-aperture images (b) center sub-aperture image and EPIs

Figure 2.6: 4D light field visualizations. (a) Sub-aperture images: each image corresponds to
a specific sample (u, v) on the plane Ω and hence is showing the scene from a slightly different
perspective. (b) Epipolar plane images (EPIs): top and right part show slices through the (v, t)
and (u, s) domain of the light field respectively. The resulting EPIs represent a point of the scene
as a straight line of constant color. Here, the slope of the line is directly correlated to the depth
of the scene point. The image in the center shows the central sub-aperture image. The light field
was resampled from the recoding of a Lytro camera using the methods of Dansereau et al. [2013].

However, this setup makes the interpretation of the recorded data in the sense of a 4D light field

even more complicated.

2.3 Visualizations of 4D Light Field Recordings

There are mainly two popular ways to visualize recorded 4D light fields. They will be discussed in

the following. These are the so-called sub-aperture images and the epipolar plane images (EPIs).

Both visualizations represent the light field as a set of 2D functions and therefore as a set of 2D

slices through the two plane parametrization (2PP).

The sub-aperture images are the most obvious visualization of light fields. As discussed

before, selecting coordinates (u, v) on the plane Ω in the 2PP can be interpreted as picking a

pinhole camera located on this plane. The sub-aperture images are simply the images of these

pinhole cameras and thus 2D slices along the plane Π. Figure 2.6a shows the sub-aperture images

extracted from a Lytro camera. Here, each of the images shows the same scene from a slightly

different perspective and hence from different coordinates (u, v). Since each image is captured

through only a subsection of the complete aperture, each image by itself has a very large depth

of field. The set of sub-aperture images represent the complete 4D light field. This set can be

used for disparity estimation and to synthesize a single full aperture image focused at different

focal planes.

Figure 2.6b exemplary shows two EPIs as well as the center sub-aperture image. The EPIs

represent slices along the (u, s) and (v, t) domains of the 2PP, respectively. As one can see from

the figure, a single point in the 3D space corresponds to a straight line of constant color in the
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Figure 2.7: Cross section of a focused plenoptic camera in the Galilean mode. Main lens creates a
virtual image of a real object behind the sensor. The virtual image is captured in multiple micro
images on the sensor.

EPI. The distance of this point is encoded in the slope of the line. Let us consider a point lying

on the plane Π, for instance. All rays corresponding to this point have the same coordinates s

and t, respectively, while u and v can be swept across the entire range. Therefore, a point lying

on the plane Π will result in a line of constant color which is perpendicular to the s and t axis,

respectively. A point lying between the two planes Ω and Π will result in a negative slope along

the u and v axis respectively, while a point behind the plane Π (referred to Ω) will result in a

positive slope.

Considering this depth encoding in the 2PP, disparity estimation from the light field can be

considered as the estimation of the slope of lines of constant color through the EPI (Wanner and

Goldlücke [2014]), while image refocusing can be performed by shearing the EPIs and integrating

along the (u, v) domains.

2.4 Depth Estimation for Plenoptic Cameras

This thesis deals with light fields captured by focused plenoptic cameras. Therefore, the idea

of depth estimation is discussed exclusively for this type of camera. Depth estimation from the

image of an unfocused plenoptic camera can be considered either as finding pixel correspondences

in the set of sub-aperture images (e.g. Jeon et al. [2015]) or as estimating the slope of straight

lines of constant color in the EPIs (e.g. Wanner and Goldlücke [2012]). The first task basically can

be solved by standard stereo matching algorithms since the sub-aperture images form a multiple

view stereo configuration. However, disparities have to be estimated with sub-pixel accuracy due

to the small stereo baselines.

As discussed before, the light fields captured by focused plenoptic cameras do not conform to

a uniformly sampled 2PP. Hence, sub-aperture images can not be extracted directly. Instead, the

task of depth estimation is solved by finding pixel correspondences directly in the recorded micro

images. In the following, the concept of depth estimation is described for the Galilean mode.

However, it can be applied in a similar way to the Keplerian mode.

Figure 2.7 shows again a complete cross section of a focused plenoptic camera in the Galilean

mode. The main lens produces a virtual image of an object, which is located at a distance zc in
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front of the main lens, at the distance bL behind the main lens. The relationship between image

distance bL and object distance zC is defined by the thin lens equation:

1

fL
=

1

zC
+

1

bL
. (2.7)

In general, a virtual image point is projected to multiple micro images. This can be guaranteed

by placing the MLA with respect to the main lens’ focal length fL (min(bL) = fL). Since the

minimum image distance min(bL) is equivalent to the main lens focal length fL, the parameter

bL0 must be chosen in such a way that an image point at distance fL to the main lens is still

visible in multiple micro images. Perwaß and Wietzke [2012] discuss this problem extensively for

different MLA arrangements.

Figure 2.7 shows how the virtual image is projected by the three middle micro lenses onto dif-

ferent pixels of the sensor. If it is known which pixels on the sensor correspond to the same virtual

image point, the distance b between MLA and virtual image can be calculated by triangulation.

To derive how the distance b can be calculated, Figure 2.8 shows an example of the trian-

gulation for a virtual image point, based on the corresponding points in two micro images. In

Figure 2.8 µi (for i ∈ {1, 2}) define the distances of the points in the micro images with respect to

the principal points of their micro images. Similarly, di (for i ∈ {1, 2}) define the distances of the

respective principal points to the orthogonal projection of the virtual image point on the MLA.

All distances µi, as well as di, are defined as signed values. Distances with an upwards pointing

arrow in Figure 2.8 have positive values and those with a downward pointing arrow have negative

values. Triangles which have equal angles are similar and therefore the following relations hold:

µi
B

=
di
b

−→ µi =
di ·B
b

for i ∈ {1, 2}. (2.8)

The baseline distance ∆cML between the two micro lenses can be calculated as given in eq. (2.9).

∆cML = d2 − d1 (2.9)

The disparity µ of the virtual image point is defined as the difference between µ2 and µ1, and the

relation given in eq. (2.10) is obtained.

µ = µ2 − µ1 =
(d2 − d1) ·B

b
=
∆cML ·B

b
(2.10)

After rearranging eq. (2.10), the distance b between a virtual image point and the MLA can be

described as a function of the baseline distance ∆cML, the distance B between MLA and sensor,

and the disparity µ, as given in eq. (2.11).

b =
∆cML ·B

µ
(2.11)

The number of micro images in which a virtual image point will appear depends on its distance

b to the MLA. Thus, the length of the longest baseline ∆cML, which can be used for triangulation,

changes. It can be defined as a multiple of the micro lens diameter ∆cML = κ · DM (κ ≥ 1).

Here, κ is not necessarily an integer, due to e.g. the 2D arrangement of the micro lenses in the

MLA. Instead, for a hexagonally arranged MLA, which is the case for most plenoptic cameras,

the first 10 values of κ are as follows: 1.00, 1.73, 2.00, 2.65, 3.00, 3.46, 3.61, 4.00, 4.36, 4.58.

The baseline distance ∆cML and the disparity µ are both defined in pixels and can be measured

from the recorded micro lens images, while the distance B between MLA and sensor is a metric
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Figure 2.8: Depth estimation in a focused plenoptic camera based on the Galilean mode. The
distance b between a virtual image point and the MLA can be calculated based on its projection
in two or more micro images.

dimension which cannot be measured precisely. Thus, the distance b is estimated relatively to

the distance B. This relative distance, which is free of any unit and is called virtual depth, will

be denoted by v throughout this thesis:

v =
b

B
=
∆cML

µ
. (2.12)

To retrieve the real depth, i.e. the object distance zC between an observed point and the

camera, one has to estimate the relation between the virtual depth v and the image distance bL
(which relies on B and bL0) in a calibration process. Then, one can use the thin lens equation

(eq. (2.7)) to calculate the object distance zC .

Once the virtual depth v has been estimated from the micro images, one is able to project the

corresponding points into the image space and therefore to reconstruct a convex surface of the

virtual image, including the corresponding intensities. It will be focused on that in more detail

in Chapter 5.

2.5 Visual SLAM

The task of visual SLAM is about finding the position and orientation of a camera moving through

3D space while simultaneously building a 3D map of its surroundings. This section introduces

basic components of SLAM such as transformations in 3D Euclidean space and its representations

or nonlinear optimization, which the work presented in this dissertation builds upon.

2.5.1 Rigid Body and Similarity Transformation

The orientation and position of a camera in 3D space can be described by a rigid body transfor-

mation (or rigid body motion) which is also called a 3D special Euclidean transformation. Special

means that reflections are excluded from the set of Euclidean transformations and therefore the

respective transformation matrix has a determinate of +1. The set of all special Euclidean trans-

formations in 3D is denoted by SE(3) and is also referred to as the special Euclidean group. The

group of 3D rotational transformations is a subgroup of the special Euclidean group SE(3).
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This group is also referred to as the special orthogonal group SO(3), as it is the group of

orthogonal matrices with a positive determinate.

It is well known that with respect to homogeneous coordinates the rigid body transformation

can be defined by a 4× 4 matrix which will be denoted by G ∈ SE(3):

x′ = G · x,
x′

y′

z′

1

 =

[
R t

0 1

]
·


x

y

z

1

 with R ∈ SO(3) and t ∈ R3. (2.13)

Here R ∈ SO(3) describes a 3D rotation, which is also called a special orthogonal transformation.

The vector t describes a 3D translation.

In a mathematical sense, the rigid body transformation is a transformation which preserves

the inner product as well as the cross product. In other words, the rigid body transformation

preserves distances as well as angles in the 3D space and thereby the complete 3D structure.

However, since in visual SLAM the camera orientation is estimated as a concatenation of

multiple rigid body transformations, there will be scale drifts present in the reconstructed scene.

To cover these scale drifts in the 3D map, the special Euclidean group can be generalized to the

group of 3D similarity transformations Sim(3). While the 3D rigid body transformation has six

degrees of freedom, one degree of freedom is added for the scale in the case of the 3D similarity

transformation. Using homogeneous coordinates of 3D points, this transformation still can be

described by a 4× 4 matrix which will be denoted by S ∈ Sim(3):

x′ = S · x,
x′

y′

z′

1

 =

[
sR t

0 1

]
·


x

y

z

1

 with R ∈ SO(3), t ∈ R3 and s ∈ R+. (2.14)

In comparison to the rigid body transformation, the similarity transformation is simply extended

by a positive scale s. S ∈ Sim(3) is a transformation which preserves angles in the 3D space,

while distances are scaled dependent on s.

For both matrices, G as well as S, the fourth row is constant and therefore can be omitted.

This leaves 12 real numbers to represent either a rigid body or a similarity transformation. Hence,

the matrix representation is quite a redundant representation.

In this dissertation we chose to represent the transformations by the vector of the respective

tangent space received from its Lie algebra. The tangent spaces give representations with (almost)

no redundancy, since the transformations are defined in R6 and R7. ‘almost’ is added as a

disclaimer, because the rotation angles are still not limited to a range of 2π. The way to formulate

this tangent spaces is outlined in the following section.

2.5.2 Lie Groups and Lie Algebra

Lie groups are special types of manifolds. A Lie group is a group which is at the same time

a smooth manifold. A smooth manifold defines a global differentiable structure, which can be

approximated locally by a Eucildean space, as the surface of a sphere, for instance. The surface

of a sphere can be approximated locally by a 2D Euclidean space, as maps are a local Euclidean
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Figure 2.9: Schematic visualization of the tangent space of a smooth manifold, illustrated by the
example of a circle. This circle defines the Lie group of 1D rotations. While the group of 1D
rotations is a commutative Lie group, the Lie groups presented here are not commutative.

approximation of the globe. However, on a global scale, the sphere is a structure quite different

from a Euclidean space. The sphere does not have the properties of a group with any operation

and therefore is also not a Lie group. Figure 2.9 shows a simple example of a Lie group, a

circle, which defines the group of one dimensional (1D) rotations. While the 1D rotation locally

forms a 1D Euclidean space, it globally describes a circular hull. In contrast to the Lie groups

introduced later, the group of 1D rotations is a commutative group which means that the order

of a concatenation of transformations is interchangeable.

In fact, the transformations described above (SE(3) and Sim(3)) satisfy the properties of a

Lie group together with the matrix multiplication as group operation. In the following, at first

Lie groups will be discussed using the example of the special orthogonal group SO(3), after which

we generalize our insight and extend it to apply to SE(3) and Sim(3).

While the Lie algebras for the groups of rotational transformations (SO(3)), rigid body trans-

formations (SE(3)) and similarity transformations Sim(3) are introduced here, at this point, the

respective derivations are skipped. The derivations in question are stated in different publications

(e.g. Murray et al. [1994] (Chapter 2, Appendix A), Ma et al. [2004] (Chapter 2), Strasdat [2012]

(Section 2.4, Appendix A). Therefore, the author refers readers who have a greater interest in Lie

Manifolds and their applications in robotics and computer vision to the publications given above.

3D Rotational Transformation

It is well known that a rotational transformation (or special orthogonal transformation) can be

described by a 3× 3 matrix:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 ∈ SO(3). (2.15)

While this matrix has 9 entries it has only three degrees of freedom to fulfill the properties of a

3D rotation matrix. The matrix R must be an orthogonal matrix (RTR = I) and must have a

positive determinate of one (|R| = +1).

A 3D vector w ∈ R3 is defined which describes the three degrees of freedom of the matrix

R ∈ SO(3). Furthermore, the -̂operator is defined, which maps the vector w to a skew symmetric
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matrix:

w =

w1

w2

w3

 7→ ŵ =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 with w ∈ R3 and ŵ ∈ so(3). (2.16)

Here, the matrix ŵ defines an element of the Lie algebra so(3).

For the matrix ŵ which has just three degrees of freedom a so-called exponential map is

defined which maps the tangent space element ŵ ∈ so(3) to the corresponding element of the Lie

group SO(3).

exp : so(3)→ SO(3); ŵ 7→ eŵ (2.17)

It is not as obvious that the matrix exponential of a skew symmetric matrix ŵ defines a rotation

matrix. However, from the definition of the matrix exponential, one can easily prove that the

matrix R = eŵ is actually a rotation matrix. Eq. (2.18) proves that R−1 = RT holds true and

thus R defines an orthogonal matrix.

R−1 =
(
eŵ
)−1

= e−ŵ = eŵ
T

=
(
eŵ
)T

(2.18)

One can prove that the determinate of R is equal to +1 by Jacobi’s formula as follows:

|eŵ| = etr(ŵ) = e0 = 1, (2.19)

where tr(ŵ) defines the trace of the matrix ŵ.

Instead of solving the infinite series which defines the matrix exponential, the exponential

map R = e(ŵ) can be solved based on Rodrigues’ formula:

R = eŵ = I +
ŵ

‖w‖
sin(‖w‖) +

ŵ2

‖w‖2
(1− cos(‖w‖)) . (2.20)

The logarithm which is the inverse operation of the exponential map is denoted by ŵ = log(R).

log : SO(3)→ so(3); eŵ 7→ ŵ (2.21)

The logarithm from SO(3) to the tangent space element so(3) is defined as follows:

‖w‖ = cos−1

(
tr(R)− 1

2

)
,

w

‖w‖
=

1

2 sin(‖w‖)

r32 − r23

r13 − r31

r21 − r12

 . (2.22)

Rodrigues’ formula (eq. 2.20) immediately shows that there is no one-to-one mapping between

ŵ ∈ so(3) and R ∈ SO(3) as the function is periodic in 2π with respect to the vector norm ‖w‖.
However, each vector w defines only one rotation matrix R. Furthermore, the group of rotational

transformations, and therefore the exponential map, is not commutative. For two elements of the

tangent space w1 and w1 ∈ so(3) it is,

eŵ1eŵ2 6= eŵ2eŵ1 6= eŵ1+ŵ2 , (2.23)

unless ŵ1ŵ2 = ŵ2ŵ1. Therefore, the Lie algebra for non-commutative Lie groups is completed

by the introduction of the so-called Lie bracket, denoted by:

[ŵ1, ŵ2] = ŵ1ŵ2 − ŵ1ŵ2, ŵ1, ŵ2 ∈ so(3). (2.24)

The Lie bracket can be considered as a measure for how strong the commutativity is violated

by the Lie group. Recalling the example of 1D rotations for instance, shown in Figure 2.9, the

tangent space element is only a scalar, defining the rotation angle φ. Since the multiplication with

respect to a scalar is commutative, the respective Lie bracket will always be zeros. This implies

that the Lie group of 1D rotations is commutative.
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3D Rigid Body Transformation

For the Lie group of 3D rigid body transformations, in a similar way as for the special orthogonal

group, a tangent space can be defined which is connected to the group by an exponential map.

In homogeneous coordinates the rigid body transformation is defined by a 4 × 4 matrix (see

eq. (2.13)). One can define a map from a six dimensional vector ξ to the corresponding matrix ξ̂

as follows:

ξ̂ =

[
ŵ v

0 0

]
∈ se(3), (2.25)

with

ξ =

[
v

w

]
∈ R6. (2.26)

For the tangent space defined by the vector ξ again an exponential map can be defined, in order

to map to the respective element in the Lie group:

exp : se(3)→ SE(3); ξ̂ 7→ eξ̂ (2.27)

This exponential is defined as follows:

G = eξ̂ =

[
eŵ (I−eŵ)ŵv+wwT v

‖w‖
0 1

]
. (2.28)

While the upper left part of the transformation matrix G simply defines a special orthogonal

transformation, the upper right part defines the 3D translation vector t ∈ R3:

t =
(I − eŵ)ŵv +wwTv

‖w‖
. (2.29)

The logarithm in SE(3), defining the inverse of the exponential map, can be calculated straight

forward from eqs. (2.22) and (2.29).

For the special Euclidean group the Lie bracket is defined analogously to the special orthogonal

group: [
ξ̂1, ξ̂2

]
= ξ̂1ξ̂2 − ξ̂1ξ̂2, ξ̂1, ξ̂2 ∈ se(3). (2.30)

3D Similarity Transformation

The generalization of the tangent space and the exponential map from SE(3) to Sim(3) is quite

simple. The tangent space vector ξs is simply extended by one entry with respect to ξ as follows:

ξs =

vw
ρ

 ∈ R7. (2.31)

In contrast to the 3D rigid body transformation, for the 3D similarity transformation the rotation

matrix R is multiplied by a positive scalar s unequal to zero (see eq. (2.14)). This is equivalent

to an additive scalar in the exponent. Hence, the respective tangent space element ξ̂s is defined

by the following 4× 4 matrix:

ξ̂s =

[
ŵ + Iρ v

0 0

]
∈ sim(3). (2.32)
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Finally, the exponential map for the Lie group of similarity transformations:

exp : sim(3)→ Sim(3); ξ̂s 7→ eξ̂s , (2.33)

is defined as follows:

S = eξ̂s =

[
e(ŵ+Iρ) (I−eŵ)ŵv+wwT v

‖w‖
0 1

]
=

[
eρeŵ (I−eŵ)ŵv+wwT v

‖w‖
0 1

]
. (2.34)

Here, obviously the scale is defined by s = eρ.

For the sake of simplicity we will later omit the -̂operator and use the notations w ∈ so(3),

ξ ∈ se(3), and ξs ∈ sim(3). Furthermore, the following notations will be used for the exponential

maps and logarithms respectively:

R = expso(3)(w) w = logSO(3)(R) with w ∈ R3 and R ∈ SO(3) (2.35)

G = expse(3)(ξ) ξ = logSE(3)(G) with ξ ∈ R6 and G ∈ SE(3) (2.36)

S = expsim(3)(ξs) ξs = logSim(3)(S) with ξs ∈ R7 and S ∈ Sim(3) (2.37)

2.5.3 Nonlinear Optimization on Lie Manifolds

This section describes, by way of example, the Gauss-Newton optimization based on the Lie group

of rigid body transformations SE(3). However, this optimization can be applied in the same way

to any other Lie group.

In the interest of readability, the ◦-operator, as the concatenation of two rigid body transfor-

mation in the respective tangent space, is defined:

◦ : se(3)× se(3)→ se(3). (2.38)

The concatenation of the two elements ξ1 and ξ2 is defined as follows:

ξ := ξ2 ◦ ξ1 := logSE(3)

(
expse(3)(ξ2) · expse(3)(ξ1)

)
. (2.39)

As the Lie group SE(3) is not commutative, the concatenation of course is also not commutative.

Nonlinear optimizations rely on a Euclidean space parameterization of the function to be

optimized with respect to the function argument. In this way the function can be optimized

iteratively by adding an optimization increment δx(n) to the current estimate x(n):

x(n+1) = δx(n) + x(n). (2.40)

However, 3D rigid body transformations do not span a Euclidean space. Nevertheless, as

discussed before, rigid body transformations form a smooth manifold and therefore can be ap-

proximated locally by a Euclidean space. Assuming that the optimization increment δξ is small

enough, optimization can be performed in a way similar to a Euclidean space.

The energy function E(ξ) is generally defined as the sum over as set of squared residuals, as

given in eq. (2.41). The set of residuals is denoted by the vector r(ξ).

E(ξ) = r(ξ)Tr(ξ) (2.41)

The goal of the optimization is to find the vector ξ which minimizes the energy function E(ξ).
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Iterative optimization is performed by minimizing the second order Gauss-Newton approxi-

mation with respect to the tangent space:

δξ(n) = −(JTJ)−1JTr(ξ(n)). (2.42)

Here, J is the Jacobian of r(ξ(n)) at the current estimate ξ(n) with respect to the tangent space.

J =
∂r(ε ◦ ξ(n))

∂ε

∣∣∣∣∣
ε=0

(2.43)

The optimization increment δξ(n) is defined as a left-side increment to the current estimate ξ(n).

The error made by formulating the optimization of the tangent space is compensated by applying

the increment using the concatenation operator ◦, which was defined previously:

ξ(n+1) = δξ(n) ◦ ξ(n). (2.44)

The optimization can be extended by a weighting scheme, as will be done in Section 7.5, for

instance. Here, the energy function is extended by a weighting matrix W as follows:

E(ξ) = r(ξ)TWr(ξ), (2.45)

where W is a diagonal matrix of positive entries defining the respective weights for the squared

residuals. Furthermore, the definition of the update changes as follows:

δξ(n) = −(JTWJ)−1JTWr(ξ(n)). (2.46)

The matrix W generally does not have to be constant but is recalculated for each iteration.

To formulate a robust estimator for instance, W is chosen such that high residuals are down

weighted.

Levenberg-Marquardt Extension

In the implementations related to this thesis the Levenberg-Marquardt algorithm, which is a

variation of Gauss-Newton optimization described above, is used. For the Levenberg-Marquardt

algorithm the weighted Gauss-Newton approximation of the Hessian N = JTWJ is modified.

This modified matrix will be denoted by N ′. More precisely, each diagonal element of the matrix

N , denoted by [N ]ii, is multiplied by (1 + λ). Hence, the matrix N ′ is defined as follows:

[
N ′
]
ij

=

{
(1 + λ) [N ]ij for i = j,

[N ]ij for i 6= j.
(2.47)

In the update step given in eq. (2.46), the approximation of the Hessian N is replaced by its

extension N ′. If the optimization increment δξ, obtained by performing the update step, leads

to a reduction in the energy function E(ξ), then the increment is δξ accepted and λ is decreased

(usually divided by a factor > 1). If the obtained δξ leads to an increased value of the energy

function, then the increment is rejected and λ is increased (multiplied by the same factor). The

parameter λ is increased until a vector δξ is found which leads to a decreased value of the energy

function.

For λ = 0, the Levenberg-Marquardt algorithm behaves equivalently to the Gauss-Newton

optimization and converges fast for an energy function which is close to a quadratic function. For

a large λ the matrix N ′ is dominated by its diagonal elements. As the matrix N ′ nears the state
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of a diagonal matrix, its inverse does so, too. This can be interpreted as if each parameter of the

vector ξ is optimized separately without considering the cross-correlation between the individual

parameters. At the same time, for an increasing λ the determinate of the matrix N ′ increases as

well. This results in a diminishing of the optimization increment δξ. Given that the Levenberg-

Marquardt algorithm only accepts increments which lead to an improved energy function, or else

requires that the step size is reduced, the algorithm always guarantees a decrease in the energy

function and therefore always leads to a local minimum of that energy function.

More about the Levenberg-Marquardt optimization can be found e.g. in the book of Hartley

and Zisserman [2003] (Appendix 6).





3 Related Work

Plenoptic camera based localization and mapping is a very young research field and as such, only

few articles covering this topic have been published so far. In order to assess the advances that this

dissertation contributes to the topics of plenoptic camera based VO and 3D scene reconstruction

this section presents related work by other research groups. For a better overview, related work

is categorized into three different research fields:

• plenoptic camera calibration

• depth estimation in light fields

• visual localization and mapping

After the related work the main contributions of this thesis are summarized.

3.1 Plenoptic Camera Calibration

Finding an appropriate model for the plenoptic camera is crucial for the success of scale aware 3D

scene reconstruction. In this section camera models and calibration approaches which are known

to date are discussed.

Work in the field of plenoptic camera calibration can be divided into three categories. In

the first category, approaches are presented which do not perform a full geometric calibration of

plenoptic cameras, but instead perform only a partial calibration to obtain optimized resampled

light fields (Section 3.1.1). The second category contains calibration approaches for unfocused

plenoptic cameras (Section 3.1.2), while the third category contains those for focused plenoptic

cameras (Section 3.1.3).

Since the models for unfocused and focused plenoptic cameras are quite similar, some of

the presented geometric calibration approaches apply for both concepts. Nevertheless, they are

generally only tested on either of both cameras.

3.1.1 MLA Calibration & Light Field Resampling

The method presented by Ng and Hanrahan [2006] corrects the aberration of a real lens. Thereby

it enhances the imaging quality by re-sorting the sampled light rays captured in a plenoptic

camera but is strictly speaking not a calibration approach.

Yu et al. [2012] propose a color demosaicing approach for plenoptic cameras. Instead of

performing demosaicing directly in the recorded raw image, it is performed after the processes

of resampling and image synthesis. In this way, higher frequency components in the sampled 4D

light field are preserved, while aliasing artifacts are minimized.

25
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A complete pipeline for the calibration of the MLA in a plenoptic camera is presented by

Cho et al. [2013]. Their method is demonstrated based on the specific example of a Lytro

camera (Lytro [2013], 1. generation). They propose a discrete Fourier transform (DFT) based

method to estimate the micro lens pitch and the MLA orientation. Furthermore, the regular

hexagonal grid of the MLA is estimated by Delauney triangulation between priorly detected mi-

cro lens centers. Aside from the calibration of the MLA, they also propose several methods to

resample the 4D light field.

Thomason et al. [2014] describe another approach to calibrate the MLA of a plenoptic camera.

They model the deviation between the centers of the micro images, obtained from a recorded white

image, and the actual micro lens centers and a misalignment of the MLA.

In a more recent approach Hog et al. [2017] propose an image rendering pipeline for focused

plenoptic cameras. This pipeline includes the calibration of the MLA. While Cho et al. [2013]

calculate only the micro lens pitch from a Fourier domain representation of a white image, Hog

et al. [2017] derive all MLA parameters from the DFT of the white image.

3.1.2 Unfocused Plenoptic Camera Calibration

The first complete mathematical model of a plenoptic camera was proposed by Dansereau et al.

[2013]. Here, the MLA is modeled as a grid of pinholes, while the main lens is modeled as a thin

lens. Distortion of the main lens is corrected in the decoded 4D light field. The camera model is

estimated from a planar checkerboard pattern detected in the sub-aperture images.

While the calibration approach put forward by Dansereau et al. [2013] requires that sub-

aperture images are extracted from the distorted raw image of the plenoptic camera, Bok et al.

[2014, 2017] define a distortion model directly in the micro images and resample the 4D light

field from the rectified raw image. To overcome the problem of feature point detection in the

small micro images, rather than detecting point features, they detect line features of a planar

checkerboard directly in the micro images.

Both Dansereau et al. [2013] and Bok et al. [2014, 2017] estimate the intrinsic plenoptic

camera parameters as well es the extrinsic orientation with respect to the planar checkerboard in

a non-linear optimization approach.

3.1.3 Focused Plenoptic Camera Calibration

A first method for the calibration of focused plenoptic cameras was presented by Johannsen et al.

[2013]. In contrast to the methods listed in Section 3.1.2, this calibration approach does not

work directly on recorded raw images or 4D light fields. Instead, the camera model is estimated

based on a synthesized view of the virtual main lens image (totally focused image) in combination

with a virtual depth map received from disparities estimated in the micro images. Similar to the

approaches described in Section 3.1.2, the main lens is modeled as a thin lens. In addition to the

intrinsic camera model, imperfections of the main lens are corrected by a distortion model. Due

to the fact that disparities are estimated based on the distorted raw image, a depth distortion

model consisting of five coefficients is defined in addition to lateral distortions.

On the basis of the work from Johannsen et al. [2013], Heinze et al. [2015, 2016] propose an

improved calibration approach. Here, the camera model is extended by modeling the effect of a

plenoptic sensor (MLA and image sensor) which is tilted with respect to the main lens. However,

the effect of a misaligned MLA with respect to the image sensor, as described by Thomason et al.

[2014], is neglected. The depth distortion model is reduced to a three-coefficient model. This

three-coefficient model shows an improved accuracy when compared to the five-coefficient model
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of Johannsen et al. [2013]. The calibration approach proposed by Heinze et al. [2015, 2016] is

designed specifically for Raytrix cameras (Raytrix GmbH [2013]). A distinct feature of plenoptic

cameras from the manufacturer Raytrix is a MLA which consists of three interlaced types of micro

lenses with different focal lengths to extend the DOF of the camera. For each type of micro lens

Heinze et al. [2015, 2016] estimate a different distance with respect to the image sensor.

In both approaches, Johannsen et al. [2013] and Heinze et al. [2015, 2016], a planar target is

used for calibration. This target is recorded from multiple perspectives to estimate the intrinsic

and extrinsic parameters.

Strobl and Lingenauber [2016] present a stepwise calibration approach for focused plenoptic

cameras which is based on a planar checkerboard target. In their approach, the first step is to

estimate a lateral camera model based on the synthesized totally focused virtual image of the

plenoptic camera and disregarding the estimated depth map. In a second step, a conversion

function from estimated virtual depths to metric object distances is estimated.

Zhang et al. [2016] propose a novel model and calibration approach for focused plenoptic cam-

eras, consisting of 10 intrinsic parameters. In addition to the standard extrinsic parameters, they

model a misalignment of the MLA with respect to the image sensor in a similar way as proposed

by Thomason et al. [2014]. A misalignment between MLA and main lens is not considered. Simi-

lar to Bok et al. [2014], they consider the aberration between micro image centers, estimated from

a recorded white image, and the real micro lens centers. Zhang et al. [2016] estimate the complete

model, including the micro lens centers, based on a recorded white image and recordings of two

parallel planes which provide depth and scale priors. However, their model does not consider

lens distortion. Aside from that, the extrinsic orientation is not estimated during optimization.

Therefore, their approach does not allow for the combination of information of multiple images

captured from different views for calibration.

3.2 Depth Estimation in Light Fields

In the last years extensive research on light-field-based depth estimation has been published. This

section gives an overview of published algorithms which work on images recorded by a plenoptic

cameras and other light field data.

A first algorithm for depth estimation based on the recordings of a plenoptic camera was

published more than 20 years ago by Adelson and Wang [1992]. They assembled one of the first

plenoptic cameras and proposed an algorithm for disparity estimation in the sub-aperture images

received from the camera.

Bishop and Favaro [2009, 2012] show that for plenoptic cameras the low sampling frequency

in the spatial domain results in aliasing effects which generate artifacts in the estimated disparity

map. Therefore, they propose an iterative depth estimation algorithm which performs filtering

to remove those aliasing artifacts. One drawback of this method is that depth estimation is

performed on low resolution sub-aperture images. Therefore, the spatial resolution of the depth

map is limited by the number of micro lenses in the MLA. Bishop and Favaro [2011] developed

their algorithm further to overcome the limitation of low spatial resolution. This is achieved by

rendering full-resolution views from the recorded micro images.

Wanner and Goldlücke [2012, 2014] propose a method for globally consistent depth estimation

in 4D light fields. Their algorithm estimates disparities by finding line slopes in the EPIs. The

algorithm is tested on simulated data, light fields recorded from camera arrays as well as those

reconstructed from images of a focused plenoptic camera (Wanner et al. [2011]).
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Kim et al. [2013] propose an efficient method for 3D scene reconstruction from high spatio-

angular resolution Giga-ray light fields. Similar to Wanner and Goldlücke [2014] their algorithm

works on EPIs. The algorithm is broken down in to several steps to efficiently process the large

amount of data. They start with estimating the depth around object boundaries. Homogeneous

regions are filled in a fine-to-coarse (rather than coarse-to-fine) approach.

Heber et al. [2013] describe a method for high quality depth map calculation from a set of

sub-aperture images extracted from the recording of a plenoptic camera. The sub-aperture images

are extracted in such a way that the view points are arranged on circles around a center view.

Thus, depth map calculation is solved by estimating the virtual rotation of a scene point over the

set of sub-aperture images.

In another paper, Heber and Pock [2014] show that a multiple view stereo problem can be

formulated as a principal component analysis (PCA).

Yu et al. [2013] propose a light field triangulation and stereo matching approach. They analyze

3D line segments in the light field’s ray space and perform Delaunay triangulation afterwards. The

extracted line segments are used to perform light field based stereo matching using a line-assisted

graph cut algorithm.

Chen et al. [2014] published a light field stereo matching algorithm which is based on the

surface camera (Scam) parametrization, introduced by Yu et al. [2004], to handle significant

occlusions. They use a bilateral statistics concept to model the probability of occlusions. Fur-

thermore, they show that bilateral Scam analysis can be used to distinguish between on-surface

and free space, textured and non-textured, as well as Lambertian and Specular reflection. An-

other approach, which is able to detect and remove specular reflection, is presented by Tao et al.

[2014], while Wang et al. [2015] propose an additional depth estimation method which explicitly

models occlusions in the recorded scene.

Tosic and Berkner [2014] present a so-called scale-depth space by convolving a recorded light

field with a special kernel. In the scale-depth space, regions of constant depth are represented by

local extrema and are used to calculate dense depth maps.

Jeon et al. [2015] make use of the phase-shift theorem of the Fourier transform to interpolate

the sub-aperture images and thereby obtain disparity estimates with sub-pixel accuracy.

Tao et al. [2013, 2015] and Lin et al. [2015] present light field based depth estimation algo-

rithms which combine different types of cues. These include correspondence, focus, and shading

information.

Yucer et al. [2016] propose an approach to calculate per-pixel depth, based on local gradient

information and thereby they calculate accurate depth for thin features. Furthermore, using a

two-sided photoconsistency measure, they are able to detect whether a pixel lies on a texture or

silhouette edge and use the gained information to fill untextured regions.

Heber and Pock [2016] utilize convolutional neural networks (CNNs) to predict depth informa-

tion for given light field data. The proposed method learns an end-to-end mapping between the

4D light field and a representation of the corresponding 4D depth field in terms of 2D hyperplane

orientations. The obtained prediction is then further refined in a post processing step by applying

a higher-order regularization.

Recently, Hog et al. [2017] published an algorithm which estimates depth directly from the

raw data of a focused plenoptic camera. Disparities are estimated from a set of stereo images,

called focal stack, extracted directly from the recorded micro images.
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As the algorithm of Hog et al. [2017] is customized to raw images recorded by focused plenoptic

cameras it is probably the one most closely related to the work presented in this dissertation

(Chapter 5).

Furthermore, the author refers interested readers to the publication of Wu et al. [2017] which

tries to offer a complete overview of light field image processing.

3.3 Visual Localization and Mapping

This section summarizes recent advances in visual SLAM and odometry estimation based on

monocular (Section 3.3.1), stereo and RGB-D sensors (Section 3.3.2). Section 3.3.3 presents light

field based VO and structure from motion (SfM) algorithms which are the most closely related

to the work on plenoptic odometry (Chapter 7) presented in this dissertation.

SLAM and VO algorithms can be categorized in different groups with regards to the sensor

used, the type of measurements fitted in the optimization approach, the structure of the estimated

point cloud, and the form in which the camera orientation is represented.

With respect to the type of measurements, VO can be divided into indirect (or feature based)

and direct methods. Indirect methods perform an intermediate step to extract a certain type

of geometric primitives (i.e. points, line segments, vectors), based on which a cost function is

defined. This cost function is minimized to find the optimal model parameters. Direct methods, by

contrast, skip this intermediate step and formulate the cost function directly for the measurements

supplied by the sensor (i.e. intensities or depth measurements).

Regarding the structure of the point cloud, the algorithms can be divided into sparse and dense

(or semi-dense) approaches. While sparse methods calculate only a sparse and unstructured

set of uncorrelated 3D points, dense and semi-dense methods provide a dense or partly dense

reconstruction. Neighboring points are connected to each other in the sense of a probabilistic

smoothness term.

Regarding the way the camera motion or the camera position is represented, there are essen-

tially two different concepts, which are filter-based and keyframe-based methods. Filter-based

approaches estimate a densely sampled or even continuous representation of the camera trajec-

tory over time. However, these filter-based approaches drop past measurements. Keyframe-based

methods, by contrast, reduce the number of samples over time by selecting a subset of frames

(keyframes), for which the camera orientations and 3D structure are optimized. Past keyframes

are kept, which allows for optimization of the complete map in terms of global consistency.

The task of vision-based navigation has been studied for almost fifty year now. However,

approaches which estimated all six degrees of freedom of camera motion first emerged around the

turn of the millennium.

3.3.1 Monocular Algorithms

One of the main challenges for monocular VO is that depth can not be gained from a single frame.

Therefore, in an initial stage, monocular VO results in an ill-conditioned optimization problem.

While indirect methods generally try to find an initial solution by estimating the essential matrix

between subsequent frames, direct methods generally start from a random depth map and rely

on only little motion between initial frames to assure convergence. Here, existing algorithms will

be divided into these two categories.
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Indirect Methods

One of the first algorithms which incrementally estimates camera motion and 3D structure of a

predefined set of feature points was proposed by Chiuso et al. [2002]. Feature points are tracked

from frame to frame, while the algorithm tries to handle occlusion and different scale factors of

the features.

Davison et al. [2007] propose an algorithm called MonoSLAM, which is one of the first fully

automated visual SLAM algorithms. Features are tracked based on patch correlation and the

algorithm is able to perform local loop closures.

A significant breakthrough in monocular SLAM was achieved by Klein and Murray [2007,

2008] with their algorithm called PTAM (Parallel Tracking and Mapping). They split the SLAM

problem into two separate tasks. On one hand, the current camera pose is tracked based on a

given scene model for every single frame. On the other hand, the 3D map and camera poses

are optimized based on a carefully selected set of keyframes. In this way, map optimization does

not have to be performed at camera frame rate and therefore the number of landmarks used for

mapping can be increased. Later PTAM was shown to be able to run on modern cell phones

(Klein and Murray [2009]).

While most indirect SLAM and VO algorithms are based on corner points, which in turn are

matched based on feature descriptors (e.g. SIFT or SURF), Eade and Drummond [2009] propose

a monocular SLAM approach which makes use of edge landmarks instead of corners. The defined

landmarks, called edgelets, are still point features which are well defined only along one dimension.

Accumulated scale drifts are a problem of monocular SLAM algorithms. They may lead to

convergence issues at loop closures. Strasdat et al. [2010b] propose a pose graph optimization

scheme, which is based on the Lie group of Sim(3). After a loop closure detection, the complete

pose graph is optimized, including the scale of each keyframe.

Furthermore, Strasdat et al. [2010a, 2012] perform extensive evaluations based on Monte Carlo

simulations to compare extended Kalman filter (EKF) based VO with keyframe-based approaches,

which perform local pose graph optimization. They come to the conclusion that keyframe-based

approaches always outperform filter-based approaches while requiring the same computational

effort.

ORB-SLAM, presented by Mur-Artal et al. [2015], can be considered today’s state-of-the-art

in feature-based real-time SLAM. They present a full SLAM framework which performs tracking

and keyframe-based mapping on extracted ORB-features (Rublee et al. [2011]). Relocalization

and loop closure detection is performed in a bag-of-words approach, using a vocabulary learned

from a large set of images (Galvez-López and Tardós [2012]).

While indirect dense approaches are still rather rare, a few algorithms considering this ap-

proach have been published in recent years.

Valgaerts et al. [2012] lay out how the estimation of the fundamental matrix, mostly used

as initialization in indirect SfM and SLAM, can benefit from dense optical flow estimates. Fur-

thermore, they propose a new model to recover the fundamental matrix and dense optical flow

simultaneously.

Instead of using only point features, Concha and Civera [2014] propose a monocular SLAM

approach based on superpixels, which are features consisting of image regions with homogeneous

texture and are assumed to be planar surfaces in the scene.

Ranftl et al. [2016] propose a dense depth estimation approach from a monocular moving

camera. Their approach estimates a dense depth for static parts of the scene and detects moving
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objects based on motion segmentation in the optical flow field received from two consecutive

images.

Direct Methods

Traditionally sparse indirect approaches were developed for odometry estimation to reduce the

amount of data. Today’s computers are capable of handling large optimization problems by

implementing them in a parallel structure. This makes it possible to skip the time-consuming

feature extraction part and perform tracking and mapping directly on pixel intensities.

Newcombe et al. [2011] propose a first algorithm called DTAM (Dense Tracking and Mapping).

They estimate a dense 3D map of the scene and the camera motion based on a moving monocular

camera by minimizing the photometric error between consecutive frames. Using modern graphics

processing units (GPUs) their approach is able to run in real-time.

Engel et al. [2013] propose a semi-dense formulation which ignores homogeneous regions and

considers only image regions with a sufficiently high intensity gradient. This reduction of the

amount of data allows direct VO approaches to run in real time on standard central processing

units (CPUs) and even on modern smart phones (Schöps et al. [2014]). Engel et al. [2014]

developed their approach further and propose a full SLAM framework, based on this semi-dense

formulation, called LSD-SLAM. LSD-SLAM performs relocalization, loop closure detection and

Sim(3) pose graph optimization without any feature extraction.

Beside dense and semi-dense formulations, there also exist some sparse direct formulations. A

first sparse and semi-direct approach for structure from motion is proposed by Jin et al. [2003].

Semi-direct means that the algorithm does not completely relinquish the extraction of geometric

features. Instead, it performs a combined optimization based on geometric feature points and

image patches.

Forster et al. [2014, 2017] propose another semi-direct approach. While they use direct meth-

ods for tracking of new frames, structure and motion optimization is performed based on ge-

ometric feature points. They successfully incorporate point features as well as edgelets (Eade

and Drummond [2009]) into their algorithms and are able to track and map features in regions

where traditional indirect methods would fail. Gomez-Ojeda et al. [2016] extend the algorithm

by Forster et al. [2014] to line segment based features.

In a recent publication, Engel et al. [2018] propose the first completely direct sparse approach

which is able to run in real-time on a standard CPU. While previous sparse and direct approaches

still relied on geometric features in the optimization back-end, Engel et al. [2018] perform pose

optimization and sparse scene structure estimation in a completely direct approach. The opti-

mization is performed over a sliding window of keyframes without building a pose graph.

3.3.2 RGB-D Sensor and Stereo Camera based Algorithms

For RGB-D sensors and stereo cameras the task of VO is significantly simplified in comparison

to monocular approaches. Since absolute depth is received from a static recording, these systems

do not have to deal with scale drifts. Furthermore, initialization becomes much easier since scene

structure is available from the first frame. Here, publications are grouped into RGB-D sensor and

stereo camera based approaches.

RGB-D Sensor based VO and SLAM

Extensive research on RGB-D SLAM and VO began with the release of the Microsoft Kinect

sensor in 2010. The Kinect offers a low-cost sensor which is able to capture dense RGB-D data
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at video frame rate. The SLAM methods for RGB-D sensors are mostly a combination of direct

and indirect approaches. Hence, this section offers a more or less chronological list of algorithms.

Henry et al. [2010, 2012] present one of the first algorithms for RGB-D based tracking in

combination with dense 3D mapping. They use a combination of visual features and 3D structures

received from the depth sensor to perform frame alignment in a modified Iterative Closest Point

(ICP) algorithm (Chen and Medioni [1992]; Besl and McKay [1992]). Furthermore, loop closures

are detected based on visual and depth information.

Huang et al. [2011] extend the algorithm of Henry et al. [2010] with a feature-based VO front-

end. While the VO algorithm is able run at a high frame rate, accurate mapping can be performed

at a much lower frame rate.

Pomerleau et al. [2011] present another ICP-based algorithm. In contrast to Henry et al.

[2010], they do not rely on any visual features.

Osteen et al. [2012] present an odometry estimation algorithm for RGB-D cameras which does

not extract any feature points. They estimate an initial pure rotational motion by the correlation

of extended Gaussian images (EGIs) (Horn [1984]), created from the local normal estimates of

the point cloud. Afterwards, the initial estimate is refined and translation is added in an ICP

approach.

In a manner similar to Henry et al. [2010], Dryanovski et al. [2012] perform an initial estimation

based on features extracted from the images and in a second step, refined the estimate using ICP.

However, in contrast to Henry et al. [2010], they use edge features instead of points.

Dryanovski et al. [2013] present another feature- and ICP-based VO algorithm. In contrast

to previous approaches, rather than performing alignment with respect to a reference frame,

alignment is performed referring to a global model dataset of 3D features. While this model is

gradually growing, it is upper bounded by the number of points.

Hu et al. [2012] propose an algorithm which switches between pure intensity-based bundle

adjustment and optimization based on full RGB-D data. Two separate local maps are built

which are joined afterwards.

The famous KinectFusion algorithm by Izadi et al. [2011] also performs six degrees of freedom

pose estimation based on the ICP algorithm. The depth maps of the single camera frames are

incorporated into a volumetric 3D model, which is based on truncated signed distance functions

(Curless and Levoy [1996]). There exist several extensions to KinecFusion. Kintinuous (Whelan

et al. [2012]), for instance, allows the algorithm to perform on a large scale by shifting the

volumetric space. Furthermore, the tracking approach is extended to use color information in

combination with depth (Whelan et al. [2013b]). Whelan et al. [2013a] add a pose graph for

global pose optimization.

Yet another extension to the work of Whelan et al. [2013a] is ElasticFusion (Whelan et al.

[2015]). Here, the pose graph is omitted while global optimization is achieved by the fusion of

windowed surface elements.

Endres et al. [2014] present a feature-based RGB-D-SLAM algorithm. In a front-end stage

the egomotion of the camera is estimated based on features extracted from the RGB image and

validated by the point cloud received from the depth map. Based on these estimates, a pose graph

is built and optimized.

Steinbrücker et al. [2011] propose an odometry estimation method where the intensity image of

one frame is warped into the next frame, based on the corresponding depth map. Then the relative

pose between the two frames is optimized by minimizing the photometric error between the warped
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and the real image. Kerl et al. [2013b] and Klose et al. [2013] propose quite similar approaches

which extend the method of Steinbrücker et al. [2011] by the robust Huber-norm (Huber [1964]).

Furthermore, Kerl et al. [2013a] combine the odometry estimation with a keyframe-based pose

graph to obtain globally consistent maps.

Bylow et al. [2013] present a tracking approach which is based on the alignment of signed

distance functions (Curless and Levoy [1996]).

Kerl et al. [2015] model the effect of a rolling shutter for RGB-D cameras. Furthermore, instead

of representing the camera trajectory as sampled in the time domain, the algorithm estimates a

continuous trajectory representation using cubic B-splines (Lovegrove et al. [2013]).

Stereo Camera based VO and SLAM

Monocular SLAM algorithms can generally be directly extended to stereo based approaches and

therefore both types are very closely related to each other.

Mei et al. [2011] present a feature-based large-scale relative SLAM system based on a binocular

stereo camera. By using a continuous relative representation of the trajectory and map they are

able to perform robust tracking and mapping in constant time.

Engel et al. [2015] describe a stereo extension of their previously published monocular LSD-

SLAM algorithm. Static stereo observations from the images of both cameras are combined with

motion stereo. Similar to LSD-SLAM, its stereo version establishes semi-dense depth maps as

well as a keyframe pose graph. However, optimization is performed with respect to SE(3) instead

of Sim(3), as no accumulated scale drifts occur.

Mur-Artal and Tardós [2017] present a generalization of the ORB-SLAM algorithm (Mur-Artal

et al. [2015]) for stereo camera systems and RGB-D sensors.

While all algorithms listed above are only based on camera data, there are other algorithms

which fuse visual information with additional sensor data such as those from inertial measurement

units (IMUs): Mourikis and Roumeliotis [2007]; Li and Mourikis [2013]; Leutenegger et al. [2015];

Usenko et al. [2016].

3.3.3 Light Field based Localization and Mapping

As mentioned before, there have been no plenoptic camera based VO and SLAM algorithms

published thus far. However, this section presents the algorithms most closely related to the

method proposed in this thesis. These are either VO algorithms, which are based on any kind of

light field representations, as well as SfM and 3D reconstruction approaches based on plenoptic

images and other light fields.

Dansereau et al. [2011] published a paper called Plenoptic Flow. They describe three different

closed-form solutions for six degrees of freedom odometry estimation based on 4D light field

representations. Nevertheless, the proposed methods do not use multiple light field frames to

improve scene structure. Furthermore, the methods have been tested only on light fields captured

from camera arrays and simulated data.

Similar to Dansereau et al. [2011], Dong et al. [2013] propose a light field based VO system

to estimate the trajectory of a moving robot. Their system has been tested only on light fields

received from a 3 × 3 camera array and is likely to fail on plenoptic cameras which suffer from

small stereo baselines.

Johannsen et al. [2015] propose a ray-feature based SfM approach for 4D light field repre-

sentation. They formulate a linear solution for the rigid body transformation from one 4D light
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field into the other, based on ray correspondences. This initial solution is refined in a non-linear

optimization process.

Skinner and Johnson-Roberson [2016] present a method for underwater 3D reconstruction

based on a plenoptic camera. Instead of working on the light field data captured by the plenoptic

camera, they apply an underwater light propagation model to the virtual depth maps calculated

with standard software and build a 3D model from a set of depth maps.

Recently Zhang et al. [2017] published a work called “the light field 3D scanner”. This work

presents a feature-based SfM approach working on 4D light field representations. Similar to

Johannsen et al. [2015] the method is able to fuse a large light field of a static scene from a

collection of light field images. Their approach relies on the well known 2PP of the light field,

which firstly has to be extracted from the raw data of a plenoptic camera.

3.4 Own Contribution

Plenoptic Camera Model

In this thesis a new mathematical model for a focused plenoptic camera is proposed (Section 4.1).

In contrast to all previous models, this model shows that a focused plenoptic camera actually

forms a virtual camera array in the object space where each micro lens in the MLA represents a

single pinhole camera.

Based on the new plenoptic camera model a multiple view geometry (MVG) for plenoptic

cameras is established (Section 4.2). This MVG allows to define epipolar constraints between

micro images of different light field frames.

Furthermore, based on the model, one can show that focused plenoptic cameras are gen-

erally superior to unfocused plenoptic cameras with respect to single frame depth estimation

(Section 4.3.2).

Light Field based Depth Estimation

Even though there already exists a variety of light field based depth estimation algorithms, a new

algorithm was developed throughout the course of this doctoral thesis. Most of the algorithms

listed in Section 3.2 perform dense and consistent depth estimation from some 4D light field

representation. These approaches are computationally complex and must calculate EPIs or sub-

aperture images in advance. Thus, these approaches supply highly accurate and consistent depth

information but are impractical for real-time processing.

This dissertation presents an efficient depth estimation approach for focused plenoptic cameras

(Chapter 5), which is able to run in real-time. In contrast to other algorithms, it works directly

on the recorded raw data. It calculates semi-dense depth maps by working only on image regions

with a sufficiently high intensity gradient.

The algorithm works incrementally using a graph of stereo baselines (Section. 5.2). New depth

observations are incorporated in a probabilistic manner, where different stochastic error sources

are taken into account. Furthermore, a probabilistic filtering approach is presented, which models

the correlation between neighboring points (Section 5.6).

Due to its incremental nature, the algorithm can be extended to multiple frames of the plenop-

tic camera, as it is done in the proposed Direct Plenoptic Odometry (DPO) algorithm (Chapter 7).
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Plenoptic Camera Calibration

In this dissertation the plenoptic camera is modeled at various levels of abstraction leading to

plenoptic camera calibration approaches of various complexities (Chapter 6).

Starting from simple depth conversion functions (Section 6.1), we proceed to define a camera

model based on the totally focused image and the virtual depth calculated from the raw data of

the plenoptic camera (Section 6.2.1). Ultimately, we arrive at a complete model of a plenoptic

camera which defines the projection from a 3D point in object space to multiple points in the micro

images (Sections 6.2.2 and 6.2.3). In contrast to most previous models, here the fact is considered

that the micro lens centers are actually not at the center of the micro images (obtained from a

white image). Instead, the micro lenses in a plenoptic camera are squinting. Not considering the

squinting micro lenses in the camera model results in a bias in the estimated object distance.

The methods presented in this theses perform plenoptic camera calibration based on a 3D

calibration target which consists of unordered calibration points. While the 3D nature of our

calibration target leads to a well-conditions optimization task, the method does not rely on

any prior constraints, which is due to the reason that a set of unordered points is used for

calibration. To estimate the camera parameters a full plenoptic bundle adjustment is formulated

which optimizes the camera parameters as well as the 3D structure of the calibration target.

(Sections 6.3).

Direct Plenoptic Odometry

A VO algorithm named Direct Plenoptic Odometry (DPO) is proposed, which combines the MVG

for plenoptic cameras, the light field based depth estimation algorithm, and the intrinsic camera

parameters received from the calibration (Chapter 7).

DPO is formulated as a keyframe-based algorithm which generates semi-dense probabilistic

point clouds. New recorded light field frames are tracked based on direct image alignment with

respect to the micro images (Section 7.5).

Depth estimates in the current keyframe are refined based on stereo correspondences within

subsequent frames (Section 7.3.3). Correspondences are established on the basis of the introduced

plenoptic MVG (Section. 4.2).

By working directly with the recorded micro images (raw image) one is able to find stereo

correspondences using full sensor resolution instead of low-resolution sub-aperture images. This

avoids aliasing effects due to undersampling in the spatial domain and results in significantly

higher resolved depth maps.

Different approaches, e.g. lighting compensation (Section 7.5.3) and motion priors (Sec-

tion 7.5.4), are implemented to improve the tracking robustness of the algorithm. Scale drifts are

accounted for in a keyframe-based active scale optimization framework (Section 7.7).

To the best of our knowledge, DPO is the first VO algorithm for plenoptic cameras of its type,

which works directly with the recorded raw data of a plenoptic camera and improves the static

depth by plenoptic motion stereo.

Datasets

To perform plenoptic camera calibration, a customized 3D calibration target was assembled.

Based on this target, calibration datasets for various main lens focal lengths were recorded.

Furthermore, calibration datasets based on a standard checkerboard pattern were recorded to

compare the proposed methods to state-of-the-art algorithms (Chapter 9).
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To date, there are no public datasets available for plenoptic camera based VO. For this thesis

a handheld platform was developed to record synchronized data from a plenoptic camera and a

stereo camera system. Using the platform, a versatile dataset consisting of indoor and outdoor

scenes was recorded. A ground truth for the sequences was obtained by detecting a large loop

closure between the beginning and the end of a sequence (Chapter 10).



4 The Plenoptic Camera from a
Mathematical Perspective

Light fields recorded by plenoptic cameras have been extensively studied in the past. These studies

have provided us with insight about how a 4D light field representation can be extracted from the

image captured by the camera. It is known, for instance, that from a plenoptic camera one can

extract a set of sub-aperture images which depict the scene from slightly different perspectives.

Using these sub-aperture images, one is able to estimate disparity maps representing the 3D

structure of the recorded scene. However, if it is not known where the synthesized views are

located in the real world and what intrinsic parameters these synthesized views rely on, one is not

able to transform the disparity maps into metric depth maps or register them to the real world.

But such information is needed if one wants to perform odometry estimation based on the images

of a plenoptic camera.

This geometric relationship has been studied by Christopher Hahne (Hahne [2016]; Hahne

et al. [2014]) for traditional, unfocused plenoptic cameras in his PhD thesis. However, the matter

changes slightly for focused plenoptic cameras, because rather than merely representing a light ray

with a certain incident angle, each pixel also represents a focused image point. Here, high resolu-

tion sub-aperture images or EPI representations cannot be extracted directly from the recorded

raw data. Instead, disparity estimation must be performed in advance (Wanner et al. [2011]).

Therefore, in the following, the geometrical relationship between the micro images recorded by a

focused plenoptic camera and the real world is investigated. This leads to a new interpretation of

a MLA based light field camera in which each micro lens acts as a single virtual pinhole camera.

This interpretation allows to formulate a multiple view epipolar geometry for plenoptic cameras.

The new camera interpretation does not only allow to perform multiple view stereo vision based

on a plenoptic camera, it also gives insight into the structure of the depth data received from

the camera. Furthermore, it will demonstrated why, when performing 3D reconstruction based

on plenoptic cameras, one should generally choose a focused plenoptic camera over a traditional

unfocused one.

In the following mathematical models, the plenoptic camera is always considered a perfect

optical system, where the main lens is an ideal thin lens and the MLA is a grid of pinholes.

Imperfections in the optical system are completely neglected in this chapter and will be handled

during the camera calibration presented in Chapter 6.

4.1 New Interpretation of a Plenoptic Camera

Traditionally the focused plenoptic camera is modeled in the following way. The plenoptic sensor

(image sensor and MLA) is considered an array of pinhole cameras which observe the image

created by the main lens. This model is visualized in Figure 4.1 for the Galilean mode of a

37
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Figure 4.1: Imaging process for a focused plenoptic camera in the Galilean mode. The main lens
forms a virtual image behind the sensor. This image is a warped representation of the object
space. The virtual image is projected by the MLA on the sensor where multiple focused micro
images are formed.

focused plenoptic camera. In the Galilean mode, the main lens image is formed behind the sensor

and thus results in a virtual image which is observed by the micro lenses.

Due to the concatenated projections of the main lens and the MLA, defining a multiple

view geometry (MVG) for a plenoptic camera is not a straightforward matter. To obtain depth

estimates from corresponding points in two micro images which belong to separate recordings

from different positions one first must establish this correspondence. For traditional cameras,

corresponding points can be found in a linear 1D space (standard epipolar geometry), since the

camera can be simplified to be a pinhole camera. Therefore, the aim was to find an equivalent

mathematical representation of the plenoptic camera which no longer includes the deflection of

light rays by the main lens.

Similar to the way that an object point is projected from the object to the image space through

the main lens, a micro lens center, which is a 3D point in image space, can be projected through

the main lens to the object space.

Thus, the resulting object distance z′C0 of a micro lens center can be calculated using the thin

lens equation and is defined as given in eq. (4.1).

z′C0 =
fL · bL0

bL0 − fL
(4.1)

Here fL is the main lens’ focal length and bL0 is the distance between MLA and main lens

plane, as shown in Figure 4.1. Figure 4.2 shows the projected micro lens centers, resulting in a

virtual camera array. From the specific example shown in Figure 4.2 one can see that for the

given setup (fL > bL0), the micro lenses are projected behind the main lens. For later use we

define zC0 as the negative value of z′C0:

zC0 := −z′C0 =
fL · bL0

fL − bL0
. (4.2)



4.1. NEW INTERPRETATION OF A PLENOPTIC CAMERA 39

1

zC|zC0|

z′C

Figure 4.2: New interpretation of a focused plenoptic camera. MLA is projected from image space
to object space and results in a virtual array of very narrow FOV pinhole cameras at distance
|zC0| to the main lens. The figure shows the case fL > bL0, which results in a virtual array behind
the main lens, whereas for the case of fL < bL0, the array would be projected in front of the
main lens. The distance between projected micro lens centers and virtual image sensor has been
normalized to 1.

With this definition, z′C given in eq. (4.3) represents the object distance with respect to the virtual

camera array.

z′C := zC + zC0 (4.3)

The coordinates in x- and y-direction of a projected micro lens center are received as the

intersection of the projected MLA plane with the main lens’ central ray through the corresponding

real micro lens. Thus, one receives a projected micro lens center in camera coordinates pML from

the coordinates of the real micro lens center cML as given in eq. (4.4).

pML =

pMLx

pMLy

−zC0

 = −cML
zC0

bL0
= −

cMLx

cMLy

bL0

 zC0

bL0

= −cML
fL

fL − bL0
= cML

fL
bL0 − fL

(4.4)

Here, the minus in front of cML results due to the transformation from image coordinates to

object coordinates (see Section 1.6 for the definition of different coordinate systems).

The projected micro images are defined in such a way that they have a normalized focal

length and are parallel to the x-y-plane at zC = 1 − zC0. This way, the central projection from

homogeneous 2D to 3D coordinates is defined by simply a scaling in all three dimensions with the



40 4. THE PLENOPTIC CAMERA FROM A MATHEMATICAL PERSPECTIVE

effective object distance z′C . A point xp in the projected micro image is calculated based on the

respective point xML in the real micro image as follows:

xp =

xpyp
1

 = xML
fL − bL0

fL ·B
+
cML

fL

=

xML

yML

B

 fL − bL0

fL ·B
+
cML

fL
. (4.5)

In addition to the regular camera coordinates xC , with their origin being at the center of the

main lens, separate camera coordinates x′C are defined for each micro lens, i.e. for each virtual

camera. This is done because each projected micro lens results in different center coordinates pML,

which in turn define the origin of the respective camera coordinate systems. The coordinates x′C
will subsequently be called effective camera coordinates. Therefore, one obtains the following

relation between regular (main lens centered) camera coordinates xC and effective (projected

micro lens centered) camera coordinates x′C :

xC := x′C + pML = z′Cxp + pML (4.6)

Even though Figure 4.1 and 4.2 only show a setup for fL > bL0, the presented projection is

valid for almost any setup. The only setup for which no projection is possible is for fL = bL0.

Here, the micro lenses are projected to infinity. However, for this case the micro images no

longer represent central perspective images of the real world. Instead, each micro image yields

an orthographic projection of the object space and because of this, depth estimation becomes

independent from the absolute object distance. Here, each of the orthographic images has a

different viewing angle. For fL < bL0 it could even be the case that the MLA is projected behind

the recorded scene and effectively observes it from the rear. Hence, the depth accuracy will

increase with increasing object distance.

A plenoptic camera model has been found which no longer includes the deflection of light rays

by the main lens. As this new model represents the mathematical equivalent of a standard camera

array, multiple view epipolar geometry can be defined directly for the micro images recorded by

a plenoptic camera. Furthermore, projection from object to image space and vice versa can be

performed in a single step, rather than performing an intermediate step of calculating the virtual

depth and virtual image coordinates.

4.2 Multiple View Epipolar Geometry

This section defines a multiple view geometry (MVG) for plenoptic cameras based on the model

introduced in Section 4.1. While in the following the plenoptic camera based epipolar geometry

is derived for the specific case of two views, generalizing it to apply to more views is quite a

straightforward matter.

Considering a set of images (views) taken with the plenoptic camera from different locations.

Let i and j be two particular views of this set. Equation (4.7) defines the transformation of a 3D

object point with camera coordinates x
(i)
C in the i-th view to camera coordinates x

(j)
C in the j-th

view based on the rigid body transformation Gij ∈ SE(3):

x
(j)
C = Gij · x(i)

C =

[
Rij tij
0 1

]
· x(i)

C . (4.7)
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Figure 4.3: Multiple view epipolar geometry for plenoptic cameras in the case of two distinct
views. The short baseline between micro images of the same view results in a large depth variance.
However, increasing the stereo baseline by finding stereo correspondences in the micro images of
a second view significantly reduces the depth variance. Due to the defined epipolar geometry,
seeking corresponding points from multiple views results in a linear search along the epipolar
line.

Similarly to a point in regular camera coordinates, a point in effective camera coordinates

x
′(i,k)
C of the k-th micro lens in the i-th view can be transformed into the effective camera coor-

dinates x
′(j,l)
C of the l-th micro lens in the j-th view:

x
′(j,l)
C = G

′(kl)
ij · x′(i,k)

C . (4.8)

Here, G
′(kl)
ij ∈ SE(3) is again a rigid body transformation defined as follows:

G
′(kl)
ij =

[
Rij t

′(kl)
ij

0 1

]
(4.9)

t
′(kl)
ij = tij − p(l)

ML +Rij · p(k)
ML. (4.10)

In eq. (4.10) p
(k)
ML and p

(l)
ML are the coordinates of the respective projected micro lens centers, as

defined in eq. (4.4). With respect to non-homogeneous effective camera coordinates eq. (4.8) can
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be restated as follows:

x
′(j,l)
C = Rij · x′(i,k)

C + t
′(kl)
ij . (4.11)

Based on this definition, one can derive the epipolar geometry between one micro image in

the i-th view and another micro image in the j-th view. From projected image coordinates x
(i,k)
p

(i-th view) and x
(j,l)
p (j-th view) one obtains the effective camera coordinates x

′(i,k)
C and x

′(j,l)
C as

follows:

x
′(i,k)
C = λix

(i,k)
p with λi := z

′(i,k)
C , (4.12)

x
′(j,l)
C = λjx

(j,l)
p with λj := z

′(j,l)
C . (4.13)

In eqs. (4.12) and (4.13) λi and λj are the effective object distances of the respective views. The

parameters λi and λj are the scaling factors mentioned in the previous section, which define the

projection from 2D image to 3D object coordinates.

In order to enhance readability, in the following all indices are omitted which do not lead to

ambiguous definitions (x
′(i)
C := x

′(i,k)
C ; x

′(j)
C := x

′(j,l)
C ; R := Rij ; t

′ := t
′(kl)
ij ). Inserting eq. (4.12)

and (4.13) into eq. (4.11) leads to the following relation:

x
′(j)
C = λjx

(j)
p = λiR · x(i)

p + t′, (4.14)

where λj can be written as follows:

λj = λi [R]3 · x
(i)
p +

[
t′
]
3
. (4.15)

In eq. (4.15) [R]3 is the third row of the matrix R and [t′]3 is the third element of the vector t′

(see Section 1.6).

After combining eq. (4.14) and eq. (4.15) one receives a linear function in λi, as given in

eq. (4.16).

λi

(
[R]3 · x

(i)
p

)
x(j)
p +

[
t′
]
3
· x(j)

p = λiR · x(i)
p + t′ (4.16)

Therefore, a point on the epipolar line in the micro image of the j-th frame is defined as follows:

x(j)
p =

λiR · x(i)
p + t′

λi [R]3 · x
(i)
p + [t′]3

=
λiR · x(i)

p + t− p(l)
ML +R · p(k)

ML

λi [R]3 · x
(i)
p + [t]3 + zC0 + [R]3 · p

(k)
ML

. (4.17)

Using this epipolar geometry, one is able to deal with stereo observations from different micro

images of different views.

Equation (4.5) shows a linear relationship between micro image coordinates xML and projected

micro image coordinates xp. Hence, the epipolar geometry defined for projected micro images

can be applied directly to the micro images on the sensor.

Figure 4.3 visualizes the epipolar geometry for a specific micro lens with respect to two different

reference micro lenses. On the one hand a reference micro lens (with index k′) which is located

in the same light field frame and on the other hand a reference micro lens (with index l) which

is located in a different frame. Since the micro lens located in the same frame only results in a

very short stereo baseline, the estimate will result in a low depth accuracy. The baseline to the

micro lens located in a different frame, on the other hand, is much larger, and therefore the depth

accuracy will also increase.

For the sake of simplicity, the micro lenses in Figure 4.3 are placed on a rectangular grid

instead of a hexagonal grid, as is the case for most plenoptic cameras.



4.3. PROPERTIES AND LIMITATIONS OF PLENOPTIC CAMERAS 43

4.3 Properties and Limitations of Plenoptic Cameras

Compared to a monocular camera or stereo cameras, the plenoptic camera builds a more complex

optical system. Therefore, the plenoptic camera is analyzed from a mathematical perspective in

more detail with respect to 3D reconstruction.

In Section 4.3.1, the relationship between the virtual depth v and the effective object dis-

tance z′C is derived. While the virtual depth v can be estimated directly from the images of a

focused plenoptic camera, defines z′C the metric object distance for the new camera interpretation

introduced in Section 4.1.

In Section 4.3.2 a comparison between the theoretical depth accuracy of an unfocused plenoptic

camera (plenoptic 1.0 rendering) and the one of a focused plenoptic camera (full resolution or

plenoptic 2.0 rendering) is carried out.

4.3.1 Effective Object Distance vs. Virtual Depth

For the case that two micro lenses are within the same frame (t = 0 and R = (δmn)m,n∈{1,2,3}),

the epipolar geometry defined by eq. (4.17) simplifies to the following:

x(j)
p = λ−1

i

(
p

(k)
ML − p

(l)
ML

)
+ x(i)

p . (4.18)

From eq. (4.18) one receives the disparity in the projected micro images µp as given in eq. (4.19).

µp :=
〈x(j)

p − x(i)
p ,p

(k)
ML − p

(l)
ML〉

‖p(k)
ML − p

(l)
ML‖

= λ−1
i ‖p

(k)
ML − p

(l)
ML‖ = z′−1

Ci ‖p
(k)
ML − p

(l)
ML‖ (4.19)

From eq. (4.19) one can see that for in-frame depth estimation (micro images used for stereo

matching lie within the same light field frame) the disparity µp is proportional to the inverse

effective object distance λ−1 = z′−1
C . From eq. (2.12) in Section 2.4 one can see that the disparity

µ in the real micro images is proportional to the inverse virtual depth v−1.

From eq. (4.5) it follows that the coordinates of a point in a real micro image xML and the

coordinates of the corresponding point in the projected micro images xp have a linear relationship.

Hence, the respective disparities µ and µp are also linearly connected. This leads to the conclusion

that there has to be a linear relationship between z′−1
C and v−1, both of which are proportional

to the respective disparities µp and µ (see eqs. (4.19) and (2.12)). This is proven by replacing the

metric object distance with its definition based on the thin lens equation:

z′C = zC + zC0 =

(
1

fL
− 1

bL

)−1

+ zC0

=

(
1

fL
− 1

v ·B + bL0

)−1

+
fL · bL0

fL − bL0
. (4.20)

Rearranging eq. (4.20) gives the following definition of z′−1
C with respect to v−1:

z′−1
C = −(fL − bL0)2

B · f2
L

· v−1 +
fL − bL0

f2
L

. (4.21)

Since both z′−1
C and v−1 linearly depend on the disparity µ, estimated from the micro images,

both will have similar probability distributions. One can assume that v−1 is Gaussian distributed

as will be shown in Section 5.1.
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4.3.2 Effective Stereo Baseline – Unfocused vs. Focused

Previously it was shown that a focused plenoptic camera can be interpreted as an array of very

narrow field of view (FOV) virtual cameras with high resolution (full resolution or plenoptic 2.0

rendering). An unfocused plenoptic camera can be interpreted as an array of wide FOV virtual

cameras with low resolution (Hahne et al. [2014]) (plenoptic 1.0 rendering). Here, the resolution

of a sub-aperture image, observing the complete scene, is limited by the number of micro lenses

in the MLA.

Even though the images of both concepts have different characteristics, the camera setups

differ only by the focal length of the micro lenses. For some cases the plenoptic 1.0 and 2.0

concept can even be applied to the same raw image (Lumsdaine and Georgiev [2009]).

In the following, the effective stereo baselines for both concepts are compared to each other and

therefore the benefits that each concept yields with regards to 3D reconstruction are depicted. The

calculations for plenoptic 1.0 rendering are based on the model of Hahne et al. [2014], while the

calculations for plenoptic 2.0 rendering rely on the camera interpretation described in Section 4.1.

For plenoptic 1.0 rendering the maximum stereo baseline ∆B1.0 max results from the distance

B between MLA and sensor, the micro lens diameter DM , and the main lens focal length fL:

∆B1.0 max =
DM · fL

B
. (4.22)

Since the virtual camera array is formed at distance fL in front of the main lens, the object

distance zC can be calculated based on the pixel disparity µ in the sub-aperture images as given

in eq. (4.23).

zC =
∆B1.0 max · fL

DM · µ
+ fL (4.23)

The disparity µ is scaled by the micro lens diameter DM , which defines the size of a pixel in

the sub-aperture image. From eq. (4.23) one receives the depth accuracy σzC1.0 for plenoptic 1.0

rendering as a function of the disparities standard deviation σµ, given in eq. (4.24).

σzC1.0 =

∣∣∣∣∂zC∂µ
∣∣∣∣ · σµ =

(zC − fL)2

f2
L

·B · σµ (4.24)

Using the plenoptic camera interpretation of Section 4.1 one can calculate the effective stereo

baseline and therefore the theoretical depth accuracy for plenoptic 2.0 (full resolution) rendering,

in a similar way. The effective stereo baseline ∆B2.0(κ) for a pair of projected micro images is

obtained as follows:

∆B2.0(κ) = ‖p(k)
ML − p

(l)
ML‖

= ‖c(k)
ML − c

(l)
ML‖

fL
bL0 − fL

= κ ·DM ·
fL

bL0 − fL
. (4.25)

The parameter κ defines the multiple of DM between the two micro lens centers. Therefore κ ≥ 1

holds true.

The object distance zC is calculated based on the disparity µp in the projected micro images

as given in eq. (4.26).

zC =
∆B2.0(κ)

µp
− zC0 (4.26)
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Figure 4.4: Depth accuracy of plenoptic cameras based on plenoptic 1.0 and 2.0 rendering. Plenop-
tic 2.0 (full resolution) rendering results in a much larger stereo baseline and therefore better depth
accuracy when compared with plenoptic 1.0 approaches.

Again, the depth accuracy σzC2.0 is received from the standard deviation σµ of the pixel disparity

as follows:

σzC2.0 =

∣∣∣∣∂zC∂µp

∣∣∣∣ · σµp =

∣∣∣∣∂zC∂µp

∣∣∣∣ · ∣∣∣∣∂µp∂µ

∣∣∣∣ · σµ
=

(zC + zC0)2 · bL0

κ ·DM · zC0
· fL − bL0

fL ·B
· spixel · σµ

=
(zC + zC0)2

κ ·DM
· (fL − bL0)2

f2
L ·B

· spixel · σµ. (4.27)

In eq. (4.27)
∣∣∣∂µp∂µ ∣∣∣ defines the scaling from the pixel disparity µ to the disparity µp in the projected

micro images. The parameter spixel defines the size of a pixel.

Using eq. (4.24) and eq. (4.27), the expected depth accuracies (standard deviations of the

object distance zC) for plenoptic 1.0 and 2.0 rendering are calculated. Figure 4.4 shows the

accuracies for both concepts, while using the same camera parameters (fL = 35 mm, B = 0.35 mm,

bL0 = 34.3 mm, DM = 0.1265 mm, spixel = 5.5 µm). For both rendering methods a disparity

uncertainty σµ = 1 pixel was chosen.

From eq. (4.24) and eq. (4.27) one can see that both curves are parabolic shaped. However,

for the given setup σzC1.0 has a much steeper slope than σzC2.0 (see Fig. 4.4), which is due to a

shorter effective stereo baseline.

For the shown setup (bL0 < fL), the virtual camera array of the plenoptic 2.0 rendering lies

behind the main lens, while the one for plenoptic 1.0 rendering always lies in front of the main lens

at a distance of fL. This leads to different minima in the curves and therefore to an intersection

of both curves, as can be seen in Figure 4.4b.

For smaller object distances the plenoptic 2.0 approach can use micro lenses which are spaced

farther apart for stereo matching (κ > 1), which in turn leads to an improved accuracy.
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As can be seen from Figure 4.4, the plenoptic 2.0 approach is always superior to the plenoptic

1.0 approach with respect to depth estimation. The κ-s shown in Figure 4.4 are the first 10

received for a hexagonal arrangement of the MLA (1.00, 1.73, 2.00, 2.65, 3.00, 3.46, 3.61, 4.00,

4.36, 4.58).

The functions were not evaluated for object distances closer than 0.5 m, because the images

taken in this range can no longer be considered in focus for both of the concepts. Hence, the

real accuracy will deviate from the calculated curves. Moreover, in visual odometry (VO) one is

generally interested in larger object distances. To resolve smaller object distances the focus of

the camera must be adjusted by adjusting the parameter bL0.

The only way to improve the depth accuracy of plenoptic 1.0 with respect to plenoptic 2.0

rendering is to reduce B. However, this seems unfeasible due to the thickness of the MLA and

the resulting impractically small F-number of the main lens (see F-number matching in Perwaß

and Wietzke [2012]).



5 Probabilistic Light Field based
Depth Estimation

At first glance the fact that this chapter covering depth estimation is placed ahead of the topic of

camera calibration (Chapter 6) might seem confusing. This can be done because the micro images

of a plenoptic cameras are rectified by construction. Therefore, one of the plenoptic camera’s

convenient properties is that depth estimation can be performed without applying a full camera

calibration. The only entities which have to be known for estimating depth are the coordinates

of the micro lens centers cML. These can be estimated based on a single white image captured

with the plenoptic camera (e.g. Cho et al. [2013]). Since at the current point in time no further

knowledge about the intrinsic camera parameters in available, one must consider the estimated

centers of the micro images to be equivalent to the micro lens centers cML. In practice this is

not the case. The way it influences the projection model of the plenoptic camera, and thereby

influences the estimated depth, will be discussed in later chapters (Sections 6.2.3 and 9.2).

Most light field based depth estimation approaches rely on higher order 4D light field abstrac-

tions like sub-aperture images or epipolar plane images (EPIs). While these approaches generally

are computationally quite complex, they also generate highly accurate and globally consistent

disparity maps from the light field data. The goal here, however, is to develop an efficient algo-

rithm which works directly with the raw data (i.e. micro images) recorded by a focused plenoptic

camera and therefore avoids any preprocessing steps.

Virtual depth estimation in a focused plenoptic camera can be considered a multiple view

stereo problem. Each virtual image point is mapped to multiple micro images. However, the

problem simplifies since all micro lenses have the same orientation by construction and thus, the

micro images are already rectified.

One approach to solving such a multiple view stereo problem would be to optimize either a

photometric or geometric error function over multiple micro images. One would have to estab-

lish point correspondences over multiple micro images with sub-pixel accuracy or run a multi-

dimensional photometric optimization over the entire virtual depth range. Furthermore, due to

the extremely small size of the micro images, traditional corner detection will very likely suffer

from an insufficient number of points.

Here, a different approach is pursued, namely one which is based on multiple depth observa-

tions received from different micro image pairs. To combine these multiple observations in a single

estimate a probabilistic virtual depth model is defined (Section 5.1). Depth observations from

the different micro images are obtained in an incremental way using a graph of stereo baselines

(Section 5.2). Here one benefits from the structure of the recorded micro images, where for each

virtual image point stereo pairs with short and long baselines are present. Correspondences are

determined by performing a 1D intensity error minimization along the epipolar line (Section 5.3).

For each depth observation an uncertainty is calculated. The uncertainties are used to incorpo-

rate the obtained depth observations into the probabilistic model (Section 5.4). This approach

47
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is similar to the one of Engel et al. [2013], where the probabilistic model is used to merge depth

observations in monocular visual odometry (VO). The depth map estimated in micro images is

projected to the virtual image space (Section 5.5) and is refined in a filtering step (Section 5.6.1).

Finally, it is described how a totally focused intensity image for the virtual main lens image can

be synthesized (Section 5.7).

Throughout this entire chapter coordinates can be considered to have pixel dimensions.

5.1 Probabilistic Virtual Depth

From eq. (2.12) one can see that the inverse virtual depth v−1 is proportional to the disparity µ

observed from a pair of micro images. Hence, the inverse virtual depth z = v−1, given in eq. (5.1),

is defined.

z =
1

v
=

µ

∆cML
(5.1)

Since pixel correspondences are determined by matching pixel intensities, the sensor noise is

considered to be the main error source which disturbs the estimated disparity µ and thereby

also disturbs the inverse virtual depth z. Furthermore, the effect of differently focused micro

images which occur in multi-focus plenoptic cameras (Perwaß and Wietzke [2012]) is modeled as

a second error source disturbing the disparity estimation. Any misalignments of the MLA with

respect to the image sensor or offsets on the micro lens centers are completely neglected. One

can do this because, as one can see from eq. (5.1), the estimate of z relies only on the baseline

distance ∆cML and the disparity µ, both of which result as differences of absolute 2D positions

in pixel coordinates. Thus, at least within a local neighborhood, the estimate of z is invariant of

alignment errors on the MLA.

The sensor noise is usually modeled as additive white Gaussian noise (AWGN). Since pixel

correspondences are estimated based on intensity values, the disparity µ, and thus the estimated

inverse virtual depth z, can also be considered Gaussian distributed.

In the following, the inverse virtual depth hypothesis of a pixel is given by the random variable

Z ∼ N (z, σ2
z), defined by the probability density function fZ(x) as given in eq. (5.2).

fZ(x) =
1√

2πσz
e
− (x−z)2

2σ2z (5.2)

5.2 Graph of Stereo Baselines

For stereo matching a graph of stereo baselines is defined. This graph defines which micro images

are matched to each other. Each baseline in the graph is defined by its length ∆cML as well

as its 2D orientation on the MLA plane ep = [epx, epy]
T . Since the micro images are rectified

by construction, the orientation vector of the baseline is equivalent to that of the corresponding

epipolar line. Thus, ep defines the epipolar line for each pixel of the micro lens pair. In the

following, it will be always considered that ep is normed to unity (||ep|| = 1 pixel).

In the graph the baselines are sorted in ascending order with respect to their length. This

is also the order in which stereo matching will be performed. For initialization of the depth

hypotheses the algorithm benefits from short baselines, for which it is more likely to find unique

matches, while long baselines improve the accuracy of the estimation but are also more likely to

result in ambiguous matches. By performing such an incremental approach, the results for short

baselines can be used as prior information for micro image pairs which are connected by a longer
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Figure 5.1: Five shortest stereo baseline distances in a hexagonal micro lens grid. For a micro
lens, stereo matching is only performed with neighbors for which the baseline angle φ is in the
range −90° ≤ φ < 90°.
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Figure 5.2: Matching cost plotted over the entire inverse virtual depth range from z = 0 (v →∞)
to z = 0.5 (v = 2). (a) Matching cost for different baseline distances in an image region of strong

intensity variation. While the short baseline ∆c
(1)
ML results in a unique but broad minimum,

the minimum becomes more distinct with longer baselines. However, the cost function also shows
ambiguous optimal solutions. (b) Matching cost along an edge with intensity gradient gI ≈ [0, 1]T

(gTI e
(1)
p ≈ 0). Thus, no accurate depth can be estimated along e

(1)
p , while e

(2)
p and e

(3)
p result in

unique minima.

baseline. By way of example, Figure 5.2a shows the matching cost (which will be defined below

in eq. (5.8)) as a function of the inverse virtual depth z of a certain image point for three different

baseline distances. While the shortest baseline ∆c
(1)
ML results in a unique but broad minimum, the

minimum becomes more distinct with longer baselines. Yet at the same time the cost function

shows ambiguous optimal solutions.

Stereo matching is performed for each pixel on the raw sensor image separately. One must

assure that corresponding pixels in different micro images are matched to each other only once.
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Thus, it suffices to perform matching only with respect to micro images to the right of the

reference micro image. All micro images to the left will establish correspondence when they are

considered as reference. Thus, only baselines or epipolar lines with an angle −90° ≤ φ < 90°
are considered.

Figure 5.1 shows the five shortest baseline distances in a hexagonal MLA grid. Here the red

dashed circles represent the respective baseline distance around the micro lens of interest. The

solid blue lines show one example baseline for each distance, while only baselines to the right of

the dotted line are used for stereo matching. The epipolar line ep is defined in such a way that it

points away from the centered reference micro lens.

5.3 Virtual Depth Estimation

The estimation of the inverse virtual depth z is performed for each pixel xR = [xR, yR]T in the

raw (sensor) image IML(xR). As already mentioned, the depth observations are obtained starting

from the shortest baseline and working up to the largest possible baseline. Based on each new

observation, the inverse depth hypothesis ZML(xR) of a raw image pixel xR is updated, thus

becoming more reliable.

ZML(xR) ∼ N (z(xR), σ2
z(xR)) (5.3)

To reduce computational effort, the first step is to check for each baseline whether the pixel under

consideration xR has a sufficiently high intensity gradient along the epipolar line, as defined in

eq. (5.4).

|gI(xR)Tep| ≥ TH (5.4)

Here gI(xR) represents the intensity gradient vector at the coordinates xR (eq. (5.5)) and TH
represents a predefined threshold.

gI(xR) = gI(xR, yR) =
[
∂I(xR,yR)

∂xR

∂I(xR,yR)
∂yR

]T
(5.5)

Figure 5.2b shows an example of the matching cost (cf. eq. (5.8)) dependent on the inverse virtual

depth z of a certain image point for three different epipolar line angles. In this specific example

the intensity gradient gI(xR) is almost orthogonal to e
(1)
p = [1, 0]T . Therefore, no minimum is

obtained in the cost function and hence, depth estimation does not have to be performed for this

baseline. However, for the same point xR both e
(2)
p =

[
0.5,−

√
0.75

]T
and e

(3)
p =

[
0.5,
√

0.75
]T

result in unique minima.

5.3.1 Stereo Matching

To find the pixel in a certain micro image which corresponds to the pixel of interest xR, it is

searched for the minimum intensity difference along the epipolar line in the corresponding micro

image.

If no inverse virtual depth observation for the pixel of interest xR has been obtained yet, an

exhaustive search along the epipolar line must be performed. For this case, the search range is

limited by the micro lens border on the one end and by the coordinates of xR with respect to

the micro lens center on the other end. A pixel on the micro lens border results in the maximum

observable disparity µ and thus in the minimum observable virtual depth v, while a pixel at the

same coordinates as the pixel of interest in the corresponding micro image equals a disparity

µ = 0 and thus also equals a virtual depth v = ∞. Furthermore, the virtual depth range is
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lower bounded by the total covering plane (TCP). The total covering plane (TCP) defines the

plane closest to the MLA for which it can be guaranteed that any virtual image point xV on the

plane appears focused in at least one micro image. For a multi-focus plenoptic camera with a

hexagonally arranged MLA, consisting of three different types of micro lenses, the TCP is at a

virtual depth v = 2 (see Perwaß and Wietzke [2012]).

If an inverse virtual depth hypothesis ZML(xR) for a point xR already exists, the search range

can be limited to z(xR)± nσz(xR), where n is usually chosen to be n = 2. In the following we

define the search range along the epipolar line as given in eq. (5.6).

xsR(µ) = xsR0 − µ · ep. (5.6)

Here xsR0 is defined as the coordinate of a point on the epipolar line at the disparity µ = 0, as

given in eq. (5.7).

xsR0 = xR +∆cML · ep (5.7)

Within the search range, the sum of squared intensity differences eISS over a 1D pixel patch

(1×N) along the epipolar line is calculated, as defined in eq. (5.8).

eISS(µ) =
N−1

2∑
k=−N−1

2

[IML(xR + kep)− IML(xsR(µ) + kep)]
2 (5.8)

The resulting estimate is the disparity µ which minimizes eISS(µ). For the implementation we

found N = 5 to be a good choice for the patch size. It is important to emphasize that µ is

estimated with sub-pixel accuracy by interpolating linearly between the samples of the intensity

image IML(xR) and therefore the disparity is not restricted to any regular grid. In the following

it is referred to the estimated disparity by µ̂, which defines the corresponding pixel coordinate

xsR(µ̂).

Observation Uncertainty

For each inverse virtual depth observation, an observation uncertainty, represented by the inverse

virtual depth variance σ2
z , is calculated. Hence, the variance σ2

z defines a measure of certainty

with which an estimate represents the corresponding real value. For the determination of the

variance σ2
z , on the one hand, a photometric component is considered, which models the effect

of sensor noise, and on the other hand a focus component is considered, which models the effect

of differently focused micro images, as they occur in a multi-focus plenoptic camera (Perwaß and

Wietzke [2012]).

Photometric Disparity Error The effect of sensor noise εn on the estimated disparity µ is

modeled in a photometric disparity error, defined by the variance σ2
µ(I). This error source is

inspired by Engel et al. [2013] and is modeled in a similar way.

The variance of the sensor noise σ2
n can be considered to be the same for each pixel xR. In

doing so, the effect of vignetting correction is neglected. To compensate for vignetting of the micro

lenses pixel intensities at micro image boundaries and, accordingly, the additive noise components

are amplified.

In the following it will be derived how σ2
n affects the disparity estimation. To do this, we

formulate the stereo matching by the minimization problem given in eq. (5.9), where the estimated
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disparity µ̂ is the one which minimizes the squared intensity difference eI(µ)2. In the interest of

temporarily simplifying the expressions, the sum over a number of pixels is omitted, as defined

for eISS(µ) in eq. (5.8).

µ̂ = arg min
µ

[
eI(µ)2

]
= arg min

µ

[
(IML(xR)− IML(xsR(µ)))2

]
(5.9)

To find the minimum, the first derivative of eI(µ)2 with respect to µ is calculated and is set to

zero. This results in eq. (5.11) as long as gI(µ) 6= 0 holds true (which is guaranteed by eq. (5.4)).

∂eI(µ)2

∂µ
=
∂ [IML(xR)− IML(xsR(µ))]2

∂µ

= 2 [IML(xR)− IML(xsR(µ))] · [−gI(µ)] (5.10)

0
!

= IML(xR)− IML(xsR(µ)) (5.11)

In eq. (5.10) the intensity gradient along the epipolar line gI(µ) is defined as follows:

gI(µ) = gI (xsR(µ)) =
∂IML(xsR0 − µep)

∂µ
= gI(x

s
R(µ))Tep. (5.12)

After approximating eq. (5.11) by its first-order Taylor-series at the disparity µ = µ0, which is

close to µ̂, it can be solved for µ̂ as given in eq. (5.13).

µ̂ =
IML(xR)− IML(xsR(µ0))

gI
(
xsR(µ0)

) + µ0 (5.13)

If one now considers IML(xR) in eq. (5.13) to be disturbed by AWGN, the variance σ2
µ(I) of the

disparity µ can be derived as given in eq. (5.14).

σ2
µ(I) =

Var{IML(xR)}+ Var{IML(xsR(µ0))}
gI(xsR(µ0))2

=
2σ2

n

gI(xsR(µ0))2
(5.14)

Figure 5.3 illustrates how the gradient gI affects the estimation of µ. The blue line represents the

tangent at the disparity µ0, at which the intensity values are projected onto the disparities.

Focus Disparity Error In contrast to regular cameras, which generally are focused to infinity,

the micro images of the plenoptic camera can not be considered to be in focus for the entire

operating range, especially not for a multi-focus plenoptic camera (Perwaß and Wietzke [2012]).

Hence, the focusing itself also affects the stereo observation. In the following the variance σ2
µ(v,k,j)

of the focus disparity error is derived.

Let k be the index of the micro image for which mapping is performed, while j is the index of

the stereo reference. To model the focus disparity error, it is considered that the real edge Ireal(x),

which is observed in the micro images, is a perfect Heaviside-step-function h(x) with amplitude

A and offset B along the epipolar line:

Ireal(x) = A · h(x) +B. (5.15)
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gI(µ0)µ
IML(µ)

µ

gI(µ0)µ
IML(µ)

µ

Figure 5.3: Visualization of the photometric disparity error. Sensor noise εn can be considered
additive white Gaussian noise (AWGN) which disturbs the intensity values IML(xR) and thus
affects the disparity observation as AWGN. As shown on the left, for a low image gradient along
the epipolar line, the influence of the sensor noise nI is stronger than for a high image gradient,
as it is shown on the right.

The variable x is the position on the respective epipolar line in relation to the step position µ0i

(i ∈ {k, j}):

x = µk − µ0k = µj − µ0j . (5.16)

Therefore, the correct disparity is defined by µ∗ = µ0j − µ0k. During the imaging process the

edge Ireal(x) is filtered by a Gaussian filter with variance σ2
i , which in turn depends on the virtual

depth v, the micro lens type and the aperture of a pixel1.

Thus, on the sensor one receives the following intensity functions along the epipolar line:

IMLi(x) = B +
A

2

(
1 + erf

(
x

σi
√

2

))
i ∈ {k, j}. (5.17)

The estimated disparity µ̂ = µ∗+ εf is the one for which both intensities have the same value

and therefore, the following condition is fulfilled:

IMLk(x)
!

= IMLj(x− εf ), (5.18)

erf

(
x

σk
√

2

)
!

= erf

(
x− εf
σj
√

2

)
. (5.19)

Since the error function (erf(·)) can not be solved analytically, eq. (5.19) is linearized and one

obtains, after some rearranging, the following relationship between the focus disparity error εf
and the position on the edge x:

εf = x ·
(

1− σj
σk

)
. (5.20)

Figure 5.4 visualizes the focus disparity error εf , by way of example, for two different positions

(x1 and x2), in relation to the real edge position on the epipolar line. Here, the red and blue

curves represent the intensity along the epipolar line in two different micro images with different

blur radii. For a certain position x the estimated disparity µ̂ will be the one for which both curves

have the same value and therefore will be shifted by εf with respect to the real disparity µ∗, as

1Pixel aperture results rather in a sinc response function. However, the Gaussian kernel gives a good approxi-
mation as defocus blur will generally be dominate.
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Figure 5.4: Visualization of the focus disparity error εf for two different positions (x1 and x2),
in relation to the real edge position, on the epipolar line. The red and blue curves represent the
intensity along the epipolar line in two different micro images with different blur radii. For a
certain position x on the edge the estimated disparity µ̂ will be the one for which both curves
have the same value and therefore will be shifted by εf with respect to the real disparity µ∗.

given in eq. (5.18). For the case that both images have the same blur radius, both curves are

perfectly overlaid and therefore εf = 0 will hold for any position x.

Considering the position in relation to the real edge x as a random variable with variance σ2
x,

the variance σ2
µ(v,k,j) of the focus disparity error is as follows:

σ2
µ(v,k,j) = σ2

x ·
(

1− σj
σk

)2

(5.21)

The standard deviation σi (i ∈ {k, j}) depends on the blur diameter si of the respective micro

image, which is calculated based on the virtual depth v and the micro lens parameters (DM , fM ,

B) using the thin lens equation:

si = DM ·
∣∣∣∣ 1

vi
+

B

fMi
− 1

∣∣∣∣ (5.22)

Since the minimum blur radius is limited by the pixel pitch and the overall optical system,

the blur radius has a lower boundary s0. Thus the following variances σ2
k and σ2

j result to be:

σ2
k = β2 ·min{s2

k, s
2
0}, σ2

j = β2 ·min{s2
j , s

2
0} (5.23)

The constant parameter β models the scaling from blur diameter to the standard deviation of the

Gaussian filter.

Considering the two error sources, photometric disparity error and focus disparity error, as

independent random variables, the complete observation uncertainty for the inverse virtual depth

z can be defined as given in eq. (5.24)

σ2
z = ∆c−2

ML ·
(
σ2
µ(I) + σ2

µ(v,k,j)

)
(5.24)

5.4 Updating Virtual Depth Hypothesis

As described in Section 5.2, the observations for the inverse virtual depth z are obtained by

starting from the shortest baseline and working up to the longest possible baseline for which a
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(xR, yR)
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B

vB = z−1B

sensor MLA

Figure 5.5: Projection of a raw image point xR to a virtual image point xV based on an central
projection through the micro lens center cML.

virtual image point is still seen in both micro images. An exhaustive stereo matching over all

possible micro images2 is performed for each pixel in this manner. In the algorithm new inverse

virtual depth observations are incorporated similar to the update step in a Kalman filter. Thus,

the new distribution N (z, σ2
z) results from the previous distribution N (zp, σ

2
p) and the new inverse

depth observation N (zo, σ
2
o) as given in eq. (5.25).

N (z, σ2
z) = N

(
σ2
p · zo + σ2

o · zp
σ2
p + σ2

o

,
σ2
p · σ2

o

σ2
p + σ2

o

)
(5.25)

The baseline distance ∆cML is more or less proportional to the virtual depth v = z−1. From

eq. (5.24) one can see that the inverse virtual depth variance σ2
z is inversely proportional to ∆c2

ML.

Moreover, the number of observations increases with the virtual depth v, since one point occurs

in more micro images. For the case that all depth observations are statistically independent and

have the same variance σ2
i = σ2

o (i ∈ 1, 2, . . . , N), the variance of the combined depth estimate σ2
z

is just N times smaller than the observation variance σ2
0, as given in eq. (5.26).

1

σ2
z

=

N∑
i=1

1

σ2
i

=
N

σ2
o

(5.26)

In conclusion, one can assume that the inverse virtual depth variance σ2
z improves approximately

proportionally to v3.

5.5 Calculating a Virtual Depth Map

Based on the observed inverse virtual depth z, a point in the raw image IML, defined by the

coordinates xR, can be projected in the virtual image space. In the virtual image space, a point

is denoted by the coordinates xV =
[
xV , yV , v = z−1

]T
. This projection is defined as follows in

eqs. (5.27) and (5.28).

xV = (xR − cMLx)z−1 + cMLx (5.27)

yV = (yR − cMLy)z
−1 + cMLy (5.28)

Here cML = [cMLx, cMLy]
T defines the center of the respective micro lens. The projection is

visualized in Figure 5.5. Points which are projected to the same virtual image coordinates are

2Possible micro images are all those which still see the respective virtual image point.
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merged based on the updating procedure described in Section 5.4. Hence, building on the depth

hypotheses ZML(xR) which in turn are based on raw image coordinates, a probabilistic depth

map ZV (xV ) based on virtual image coordinates can be calculated.

5.6 Probabilistic Depth Map Filtering

In the proposed probabilistic depth estimation algorithm, pixel correspondences are found only

based on local criteria. Furthermore, each pixel is processed separately without considering a

larger neighborhood. Thus, the estimated inverse virtual depth values z = E{ZML(xR)} in the

micro images, which are defined as the expected values of ZML(xR), can be considered to be

more or less uncorrelated. This is, in fact, not the case for depth maps of real scenes, where

neighboring pixels usually are highly correlated, as they very likely belong to the same object.

Therefore, a post-processing step is formulated in which the connection between points in a certain

neighborhood is modeled and used to refine the depth estimates.

The regularization is done in several steps. Even before the micro image points are projected

to the virtual image space as described in Section 5.5, the first step is to perform outlier removal

and hole filling for each micro image in the depth map ZML(xR) individually (Section 5.6.1). After

this, the pixels from the micro images are projected into the virtual image space as described in

Section 5.5. After the projection, in the virtual image again outlier removal and hole filling are

performed. Finally, the depth map is refined using all inverse virtual depth hypotheses of the

pixels within a certain neighborhood (Section 5.6.2).

5.6.1 Removing Outliers and Filling Holes in Micro Images

Due to the very small size of the micro images, the unfiltered depth map received from the

recording of a plenoptic camera generally suffers from a large number of outliers. However, the

high overlap of the micro images results in multiple depth observations for a certain virtual image

point. Therefore, a quite strict outliers removal strategy is carried out, followed by hole filling to

enhance the quality of the depth map.

Removing Outliers

Due to ambiguous structures in the micro images, wrong correspondences are occasionally estab-

lished between pixels in the micro images. In a first step pixels which are outliers with respect to

their neighborhood are removed. For each valid depth pixel x
(i)
R in the raw image, with the depth

hypothesis N (zi, σ
2
zi), an average inverse virtual depth zi and a corresponding variance σ2

zi of all

valid depth pixels NRvalid within a neighborhood N
(i)
R are defined:

zi =

∑
k∈N(i)

x ,k 6=i zk ·
(
σ2
zk

)−1∑
k∈N(i)

x ,k 6=i

(
σ2
zk

)−1 , (5.29)

σ2
zi =

|N (i)
x | − 1∑

k∈N(i)
x ,k 6=i

(
σ2
zk

)−1 . (5.30)

In eq. (5.30) N
(i)
x defines the intersection between the set of neighborhood pixels N

(i)
R of x

(i)
R and

the set of valid depth pixels NRvalid (N
(i)
x = N

(i)
R ∩NRvalid). Furthermore, |N (i)

x | is the cardinality

of the set N
(i)
x and defines the number of elements in the set. Equations (5.29) and (5.30) are

actually quite similar to the definition of z and σ2
z in eq. (5.25). The only difference is that the

sum of the inverse variances is multiplied by the number of valid neighbors (|N (i)
x | − 1).
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Each pixel x
(i)
R that has an inverse virtual depth estimate zi which does not satisfy the following

condition is classified as outlier:

(zi − zi)2 ≤ 4 · σ2
zi. (5.31)

For the implementation of the algorithm a squared neighborhood of 5 pixel× 5 pixel is defined.

Filling Holes

After removing the outliers in the micro images, pixels which have an absolute intensity gradient

higher than the threshold TH (same threshold as used for depth estimation, see eq. (5.4)) but

no valid depth estimate are filled based on the neighboring pixels. Therefore, again, the average

inverse virtual depth zi within a neighborhood region is calculated based on eq. (5.29). The inverse

virtual depth zi gives the new depth value for the invalid pixel x
(i)
R , while the corresponding

variance σ2
zi is initialized to a predefined high value. By setting the initial variance to a high

value, these interpolated depth values cannot negatively effect the later regularization by being

overweighted.

After removing outliers and filling holes in the micro images, all micro image pixels which have

a valid depth hypothesis are projected into the virtual image space, as described in Section 5.5.

5.6.2 Regularization of the Virtual Image

First, outliers in the virtual image space which were not detected in the micro images are removed.

Afterwards, the inverse virtual depth values are smoothed, taking into consideration the imaging

concept of the plenoptic camera.

For the regularization in the virtual image space, again a neighborhood region N
(i)
V is defined

for each pixel x
(i)
V . Each micro lens produces a central perspective projection and thus, objects

with a high virtual depth appear smaller on the sensor than objects with a small virtual depth.

At the same time virtual image points with a high virtual depth are observed by a higher number

of micro lenses. Vice versa back projected virtual image regions with a high virtual depth consist

of more points which are spread over a larger region. Hence, for virtual image regularization the

size of the neighborhood is defined as a function of the virtual depth vi of the pixel of interest

x
(i)
V . For each pixel x

(i)
V a radius r(vi) is defined as follows:

r(vi) = dn · vie. (5.32)

Here n defines a constant parameter. For lower complexity in calculation, the radius r(vi) de-

fines the maximum allowed Chebyshev distance L∞ to the pixel x
(i)
V , rather than the Euclidean

distance. For instance, the Chebyshev distanceL
(k)
∞ between the pixel x

(k)
V and the pixel x

(i)
V is

defined as follows:

L(k)
∞ = max

(
|x(i)
V − x

(k)
V |, |y

(i)
V − y

(k)
V |
)
. (5.33)

This defines a squared neighborhood N
(i)
V around x

(i)
V .

Removing Outliers

In order to remove outliers in the virtual image, as it is done for the micro images, the mean

inverse virtual depth zi and the mean inverse virtual depth variance σ2
zi of valid depth pixels

within the neighborhood region N
(i)
V are calculated. Again, these calculations are performed



58 5. PROBABILISTIC LIGHT FIELD BASED DEPTH ESTIMATION

based on eqs. (5.29) and (5.30), while the definition of the set N
(i)
x of valid depth pixels in the

neighborhood changes as follows:

N (i)
x = N

(i)
V ∩NV valid. (5.34)

Here, NV valid is the set of all pixels xV which have a valid depth estimate. Nevertheless, beside

fulfilling the condition defined in eq. (5.31), a pixel x
(i)
V has to have a density of valid depth pixels

in its neighborhood above a certain threshold TD.

TD ≤
|N (i)

x |
|N (i)

V |
(5.35)

As can be seen in eqs. (5.27) and (5.28), the calculated virtual image coordinates depend on the

estimated depth. Hence, a certain density of points is required for a particular region, since a low

number of isolated points very likely results from erroneous depth estimates. This is especially

true for regions with a high virtual depth, where points from many micro images are usually

projected to the same area. In the implementation the minimum density was set to TD = 0.25.

Filling Holes

At this point there are no intensities available for the virtual image. Furthermore, in order to

obtain the intensity for a certain virtual image pixel, its virtual depth value has to be known.

Thus, pixel validity is not defined based on the pixel’s intensity gradient, as it is done in the raw

image. Instead, a valid depth value is assigned to each pixel xV in the virtual image which has

at least one direct neighbor with a valid depth hypothesis. This depth value is calculated as a

weighted average of the depths of neighboring pixels, defined in a way similar to eq. (5.29). The

corresponding variance again is initialized by a predefined high value.

Refining Depth Estimates

In a final step, the actual correlation between neighboring pixels in the virtual image is established.

For this the same neighborhood N
(i)
V is employed, as it was used for outliers removal.

Two different states are defined to handle discontinuities in the depth map. A pixel x
(k)
V in

the neighborhood N
(i)
V belongs to either the same object as x

(i)
V or it belongs to a different object.

These two objects can be considered to be foreground and background. All neighboring pixels

x
(k)
V (k ∈ NV ) which have estimates similar to the pixel x

(i)
V are assigned to the set Nsim (same

object), while pixels with depth estimates strongly differing from the one of x
(i)
V are assigned to

the set Ndiff (different object). This assignment is defined as follows:

k ∈ Nsim if (zi − zk)2 ≤ 2(σ2
zi + σ2

zk),

k ∈ Ndiff else,
with k ∈ N (i)

V ∩NV valid. (5.36)

Furthermore, a function w(d) is defined which models the correlation between the depth

values in the neighborhood as a function of the distance d between the respective pixels. The

function argument d defines the Euclidean distance between the two pixels x
(i)
V and x

(k)
V . In the

implementation a Gaussian curve as given in eq. (5.37) was chosen to define the correlation.

w(d) = e
− d2

2σ2w (5.37)

The standard deviation σw is defined to be proportional to the virtual depth v, as it was already

done for the radius of the neighborhood NV , as defined in eq. (5.32).
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Figure 5.6: Synthesis of the intensity value for a point in the virtual image. Since only points
from focused micro images are used for synthesis, an intensity image with a very large DOF can
be calculated. This image is called a totally focused image.

The updated depth value of the pixel x
(i)
V is then calculated based on the larger one of the

two sets Nsim and Ndiff as follows:

zi =

∑
k∈Nx zk ·

wk
σ2
zk∑

k∈Nx
wk
σ2
zk

, (5.38)

σ2
zi =

∑
k∈Nx wk∑
k∈Nx

wk
σ2
zk

. (5.39)

Here, Nx is the one of Nsim and Ndiff with the higher cardinality (eq. (5.40)) and wk defines the

respective weight due to the correlation term defined in eq. (5.37).

Nx =

{
Nsim if |Ndiff| < |Nsim|,
Ndiff else.

(5.40)

5.7 Intensity Image Synthesis

The regularized virtual depth map can be used to synthesize a totally focused intensity image of

the virtual main lens image.

To receive a totally focused image for each virtual image point x
(i)
V , an intensity value IV (x

(i)
V )

must be calculated based on the intensities IML of the respective points in the focused micro

images. Prior to any geometric camera calibration there is no knowledge available about the

intrinsic camera parameters. Therefore, one has to assume that the micro image centers, which

can be detected from a recorded white image, are equivalent to the respective micro lens centers.

The presented depth estimation algorithm obtains depth estimates only for textured regions.

However, to synthesize a complete totally focused image, a dense depth map is needed. For image

synthesis the depth map is filled with a simple region growing algorithm. Advantage is taken of
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the fact that regions without depth estimates are homogeneous with respect to the intensity (or

else a depth could have been estimated).

To find all micro lenses which see a certain virtual image point x
(i)
V , a circle with radius Ri,

given in eq. (5.41), is defined.

Ri =
DM

2 · zi
(5.41)

This radius is specified by the diameter of a micro lens DM and the inverse virtual depth zi of

the virtual image point. For all micro lenses which have their center within the defined circle

around the orthogonal projection of the point x
(i)
V on the MLA, it is guaranteed that the point is

visible in the corresponding micro image. From eq. (5.41) one can see that a point with a large

virtual depth results in a large radius, since it is seen by more micro lenses, than a point with a

small virtual depth which is close to the MLA. After selecting all micro lenses within the circle,

the virtual image point x
(i)
V can be projected back to all focused micro images within this region

by the definition given in eqs. (5.27) and (5.28). Figure 5.6 visualizes the back projection on the

sensor for a single virtual image point x
(i)
V .

Based on the corresponding intensity in the focused micro images, a weighted mean is calcu-

lated:

IV (x
(i)
V ) =

∑
k IMLk · h2

k∑
k h

2
k

. (5.42)

Here, hk are the respective values from the recorded white image which define the weights for

the corresponding intensities IMLk. By calculating a weighted mean, using the information of the

white image for each pixel, the optimum signal to noise ratio (SNR) is obtained.

Figure 5.7 shows an example of the complete processing chain of the presented algorithm. Here,

Figure 5.7a shows the raw input image, Figure 5.7b shows the estimated inverse virtual depths

in the micro images, Figure 5.7c shows depth map in the virtual image space and Figure 5.7d the

corresponding regularized version. Figure 5.7e shows the inverse virtual depth variance for each

pixel in a logarithmic scale. Finally, Figure 5.7f shows the synthesized totally focused intensity

image. Figure 5.7e shows that on average the inverse virtual depth z is estimated with far more

confidence for close points than it is for points that are far away. This confirms the assumption

which was made above in Section 5.4. According to this assumption σ2
z improved with increasing

virtual depth v.
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(a) raw image (b) raw image depth map

(c) virtual image depth map (unfiltered) (d) virtual image depth map (filtered)

(e) inverse virtual depth variance (f) totally focused image

Figure 5.7: Exemplary result of the probabilistic depth estimation. Starting from the input raw
image in (a) and ending with the synthesized totally focused image in (f). While the filtered depth
map (d) contains valid depth information only in structured image regions, homogeneous regions
were filled to synthesize a complete intensity image (f). Additionally (e) shows the inverses virtual
depth variance corresponding to the filtered depth map in a logarithmic scale. For all color maps
red represents large values (virtual depth or variance) and blue represents small values.





6 Plenoptic Camera Calibration

In Chapter 5 a depth estimation approach for focused plenoptic cameras was presented. Depth

estimation can be performed without any prior calibration directly on pixel coordinates. Only

the micro lens centers have to be known. However, this approach supplies only a map of so-

called virtual depths. Without knowing the intrinsic camera model the relationship between the

virtual depths and the corresponding real object distances cannot be established. To transform

the virtual depths in metric distances, calibration of the camera is necessary. In order to improve

the depth estimates obtained from a single image of the plenoptic camera, a mathematical model

for the camera which can be used to find multiple view stereo correspondences was derived in

Chapter 4. This mathematical model relies on intrinsic camera parameters. For theses parameters

either approximate values are given in the datasheet of the camera (e.g. for the focal length),

or no values are available at all (e.g. the distance between MLA and sensor), and so, again,

calibration is necessary. Furthermore, real lenses deviate from their idealized model. This is a

third reason why camera calibration is mandatory to obtain accurate metric 3D reconstructions

from the recorded images.

In this chapter plenoptic camera models and calibration approaches at different levels of

abstraction are presented. It is started with simple depth conversion functions which allow to

transform the virtual depth measurements into metric distances (Section 6.1). Afterwards, it is

continued by defining complex camera models which describe the complete projection of a 3D

point on the image (Section 6.2). The parameters of these complex models are estimated in a

bundle adjustment based calibration approach (Section 6.3).

6.1 Depth Conversion Functions

The simplest way to convert the virtual depth v into a metric object distance zC is to follow the

theoretical relationship between object distance zC , image distance bL and virtual depth v, as

described in Section 2.4. Figure 2.7 shows that the image distance bL linearly depends on the

virtual depth v, as given in eq. (6.1).

bL = v ·B + bL0 (6.1)

Substituting the image distance bL in the thin lens equation (eq. (2.7)), by this definition, and

rearranging the terms yields the following for the objects distance zC(v):

zC(v) =

(
1

fL
− 1

v ·B + bL0

)−1

. (6.2)

This function depends on three unknown but constant parameters (fL, B, and bL0) which have

to be estimated. The estimation can be performed from a set of measured calibration points1 for

which the object distance zC is known.

1Calibration points are generally checkerboard corners or other interest points detected in the images.
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While it will be shown in Section 9.1.1 how one can calculate the object distance zC based on

a set of distance measurements o from an arbitrary but constant position in the line of sight of

the plenoptic camera, for the general case one has to assume that zC cannot be obtained directly.

For this case eq. (6.2) has to be extended by the constant distance offset z0 as follows:

o = zC − z0 =

(
1

fL
− 1

v ·B + bL0

)−1

− z0. (6.3)

The constant offset z0 defines the distance along the optical axis between a reference point from

which the distances o are measured (e.g. using a laser rangefinder (LRF)) and the optical main

lens center of the camera. Thus, for the general case a forth unknown parameter z0 has to be

added.

Two model-based approaches are presented to estimate this depth conversion function. For

comparison also a curve fitting approach is described to approximate the conversion function.

6.1.1 Physical Model

The first approach estimates the unknown parameters of eq. (6.3) explicitly. However, for eq. (6.3)

no unique set of the four unknown parameters to define o as a function of v exists. Instead, there

are infinite combinations which define the same curve o(v). Thus, to solve this equation, the focal

length of the main lens fL is set to a constant value prior to the estimation. Since fL is already

approximately known from the lens specification, it is set to the respective value. Afterwards, the

other three unknown parameters are estimated iteratively.

In the beginning the estimate of the object distance offset ẑ0 is set to an initial value. Based

on this initial value and the focal length fL, the corresponding image distance b
(i)
L is calculated for

each measured object distance o(i). Since the image distance bL linearly depends on the virtual

depth v (see eq. (6.1)), the calculated image distances b
(i)
L and the corresponding virtual depths

v(i) are used to estimate the Parameters B and bL0. Equations (6.4) to (6.6) show the least

squares estimation of the parameters.[
B̂

b̂L0

]
=
(
XT

Ph ·XPh

)−1 ·XT
Ph · yPh (6.4)

yPh =
[
b
(0)
L b

(1)
L b

(2)
L · · · b

(N)
L

]T
(6.5)

XPh =

[
v(0) v(1) v(2) · · · v(N)

1 1 1 · · · 1

]T
(6.6)

Based on the estimated parameters B̂ and b̂L0, for each virtual depth v(i) the corresponding object

distance ẑ
(i)
C is calculated. From the difference between the calculated object distances ẑ

(i)
C and

the measured object distances o(i) the estimated object distance offset ẑ0 is updated as given in

eq. (6.7).

ẑ0 =
1

N + 1
·
N∑
i=0

ẑ
(i)
C − o

(i) (6.7)

By using the updated value ẑ0, the image distances b
(i)
L are calculated once more and the pa-

rameters B̂ and b̂L0 are updated. The estimation procedure is continued until the variation of ẑ0

between two iteration steps is negligibly small.
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For this method the focal length of the main lens fL does not have to be precisely known.

There exists an optimum solution for any focal length greater than zero. However, the estimated

parameters change when the assumed focal length is changed to a different value. Although, if

the specified focal length does not correspond with the real one, the estimated parameters differ

from the real physical dimensions. Nevertheless, the estimated set of values is consistent and will

not affect the limits of accuracy of the object distance o, when it is calculated on the basis of the

estimated virtual depth v.

For the case that zC can be measured directly, one can skip the iterative optimization. How-

ever, it is still recommended to set fL to a constant value to prevent the estimation from becoming

instable due to noise in the measurements of v.

6.1.2 Behavioral Model

The second approach also relies on the function defined in eq. (6.2) or eq. (6.3) respectively.

However, this method does not estimate the physical parameters explicitly as done in the first

method, but instead estimates the parameters of a function which behaves similarly to the physical

model.

In the following the model is formulated based on the function zC(v) as defined in eq. (6.2).

However, exactly the same definition holds for o(v) as given in eq. (6.3). Equation (6.2) can be

rearranged to result in eq. (6.8).

zC = zC · v ·
B

fL − bL0
+ v · B · fL

bL0 − fL
+

bL0 · fL
bL0 − fL

(6.8)

Since the virtual depth v and the object distance zC both are observable dimensions, a third

variable u = zC · v can be defined. Thus, the term given in eq. (6.9) results from eq. (6.8). Here,

the object distance zC is defined as a linear combination of the measurable variables u and v.

zC = u · c0 + v · c1 + c2 (6.9)

The coefficients c0, c1, and c2 are defined as given in eqs. (6.10) to (6.12).

c0 =
B

fL − bL0
(6.10)

c1 =
B · fL
bL0 − fL

(6.11)

c2 =
bL0 · fL
bL0 − fL

(6.12)

Since for eq. (6.9) all three variables zC , v, and u are observable dimensions, the coefficients c0,

c1, and c2 can be estimated based on a number of calibration points. The coefficients c0, c1, and

c2 can be estimated in a least squares sense as given in eqs. (6.13) to (6.15).ĉ0

ĉ1

ĉ2

 =
(
XT

Be ·XBe

)−1 ·XT
Be · yBe (6.13)

yBe =
[
z

(0)
C z

(1)
C · · · z

(N)
C

]T
(6.14)

XBe =

z(0)
C v(0) z

(1)
C v(1) · · · z

(N)
C v(N)

v(0) v(1) · · · v(N)

1 1 · · · 1


T

(6.15)
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After rearranging eq. (6.9) the object distance zC can be described as a function of the virtual

depth v and the estimated parameters c0, c1, and c2 as given in eq. (6.16).

zC(v) =
v · c1 + c2

1− v · c0
(6.16)

The same formulation can be obtained from the function defined in eq. (6.3). The rearranged

function has the same structure as eq. (6.9) with the difference that zC is substituted by o,

resulting in u = o · v. Furthermore, the definitions of the constant coefficients c1, c2, and c3

change respectively.

6.1.3 Polynomial based Curve Fitting

The third method is presented for the purpose of comparison and is a common curve fitting

approach. It approximates the function between the virtual depth v and the object distance zC
while disregarding the function defined in eq. (6.2).

It is known that any differentiable function can be represented by a Taylor-series, i.e. by a

polynomial of infinite order. Hence, in the approach presented here, the function which describes

the object distance zC depending on the virtual depth v will be defined as a polynomial as well.

A general definition of this polynomial is given in eq. (6.17).

zC(v) ≈
K∑
k=0

lk · (v)k (6.17)

The polynomial coefficients l0 to lK are estimated based on a set of measured calibration points

in a least squares senses, as given in eqs. (6.18) to (6.20).
l̂0
l̂1
...

l̂K

 =
(
XT

Pol ·XPol

)−1 ·XT
Pol · yPol (6.18)

yPol =
[
z

(0)
C z

(1)
C · · · z

(N)
C

]T
(6.19)

XPol =


1 1 · · · 1

v(0) v(1) · · · v(N)(
v(0)
)2 (

v(1)
)2 · · ·

(
v(N)

)2
...

...
. . .

...(
v(0)
)K (

v(1)
)K · · ·

(
v(N)

)K



T

(6.20)

The function can also be defined with respect to o instead of zC , as it can be done for the previous

two methods.

For this method a trade-off between the accuracy of the approximated function and the order

of the polynomial has to be found. A high order of the polynomial results in a higher effort in

calculating the object distance from the virtual depth. Furthermore, for high orders the matrix

inversion as defined in eq. (6.18) results in numerical inaccuracies. From eq. (6.20) one can see

that with an increase in order, the range of the values in the matrix XPol, and therefore in the

approximated autocorrelation matrix XT
PolXPol, rises exponentially. For such cases a different

method for solving the least squares problem must be used (e.g. Cholesky decomposition).
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The three methods described here define functions which can be used to transform the esti-

mated virtual depth v into a metric object distance zC . However, these functions do not define a

complete camera model. Depending on the application it might be sufficient to combine such a

depth conversion function with a standard pinhole camera model to approximate the projection

of a plenoptic camera. This holds true especially for narrow FOV setups where only little per-

spective distortion is present in the images. Such a model was presented in Zeller et al. [2014d,

2016b]. There is was shown that it is possible to perform odometry estimation on a small scale

using such a model (Zeller et al. [2015c, 2016b]).

6.2 Intrinsic Models for Focused Plenoptic Cameras

While Section 6.1 presented different methods for converting the estimated virtual depths into

metric distances, in this section full intrinsic models for focused plenoptic cameras are presented.

As the plenoptic camera models were gradually refined and adapted for the task of plenoptic

odometry estimation during this thesis, ultimately three models at different levels of abstraction

are presented. The final model is a highly accurate focused plenoptic camera model, which is

used in the Direct Plenoptic Odometry (DPO) algorithm (presented in Chapter 7).

As in all existing plenoptic camera models, the main lens is modeled as a thin lens, while

the micro lenses are modeled as pinholes. In reality of course, the main lens does not satisfy

the model of a thin lens but is, in fact, a thick lens. Nevertheless, this simplification does not

affect the projection from object space to virtual image space, when both spaces are considered

to be decoupled from each other. By decoupled it is meant that the virtual image space is defined

with respect to the image sided principal plane of the thick main lens, while the object space is

defined with respect to the object sided principle plane. For the thin lens model it is considered

that both planes are in the same location. Furthermore, lens distortion models are introduced

to model imperfections of the main lens. Another effect, which is described for the first model

presented here (Section 6.2.1), is a plenoptic sensor (i.e. image sensor + MLA) which is tilted

with respect to the main lens, rather than being parallel to it.

6.2.1 Virtual Image Projection Model

In Chapter 5 it was described how a virtual depth map as well as a corresponding totally focused

image of the virtual main lens image can be calculated without performing any calibration (only

micro lens centers have to be known). Therefore, the first model defines the projection from

object space to the virtual image which is calculated prior to the calibration. Hence, unlike to

regular cameras, where a 3D object space is projected to a 2D image plane, in a focused plenoptic

camera a 3D object space is projected to a 3D image space.

In the previous chapters the absolute dimensions of image and object coordinates were not

of interest. However, the absolute dimension of a point is important for metric calibration.

While object points have metric dimensions, for the virtual image metric coordinates x′V =

[x′V , y
′
V , z

′
V = b, 1]T as well as the dimensionless coordinates xV = [xV , yV , v, 1]T , which are given

in pixels and virtual depths respectively, are defined. The origin for the metric virtual image

coordinates x′V is located at the intersection of the optical axis of the main lens with the MLA

plane. For xV the origin is shifted in x and y direction to the upper left pixel of the virtual image.

Using the ideal thin lens model for the main lens, a virtual image point x′V can be calculated
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based on the corresponding object point xC as follows:

x′V =
bL
zC
· xC y′V =

bL
zC
· yC z′V = b = bL − bL0, (6.21)

or in a compact matrix notation based on homogeneous coordinates, as given in eq. (6.22).

η · x′V = K · xC

η ·


x′V
y′V
z′V
1

 =


bL 0 0 0

0 bL 0 0

0 0 b 0

0 0 1 0

 ·

xC
yC
zC
1

 (6.22)

Unlike the projection in a standard pinhole camera model, the image distance bL (equivalent to

the focal length f in a pinhole camera) is not constant but depends on the corresponding object

distance zC . The image distance results from the thin lens (eq. (2.7)) as follows:

bL =

(
1

fL
− 1

zC

)−1

= b+ bL0 = B · v + bL0. (6.23)

Here, the parameters b, bL, and bL0 conform to the ones shown in Figure 2.7. The introduced

scaling factor η in the matrix notation is simply the object distance η = zC , as it is obtained from

the fourth row of eq. (6.22).

To receive the virtual image coordinates in the dimensions in which they are measured xV =

[xV , yV , v, 1]T , a scaling of the axis as well as a translation along the x- and y-axis has to be

performed, as defined in eq. (6.24).

xV = KS · x′V
xV
yV
v

1

 =


s−1
x 0 0 cLx
0 s−1

y 0 cLy
0 0 B−1 0

0 0 0 1

 ·

x′V
y′V
z′V
1

 (6.24)

Here sx and sy define the size of a pixel, while B is the distance between MLA and sensor.

By combining the matrices K and KS one can define the complete transformation from

camera coordinates xC to virtual image coordinates xV , as given in eq. (6.25).

η · xV = KS ·K · xC (6.25)

Since the pixel size (sx, sy) for a certain sensor is generally known, there are five parameters left

to be estimated. These parameters are the principal point cL = [cLx, cLy]
T expressed in pixels,

the distance B between MLA and sensor, the distance bL0 between the main lens’ principal plane

and the MLA, and the focal length fL of the main lens.

Distortion Models

Until now the projection of an object point xC to the corresponding virtual image point xV
is defined without considering any imperfection in the lens or the setup. To account for these

imperfections, a lens distortion model which corrects the position of a virtual image point xV in

x, y and z direction is defined.

To implement the distortion model, another coordinate system with the homogeneous coor-

dinates xI = (xI , yI , zI , 1) is defined. The coordinates xI actually define the pinhole projection
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which would be performed in a conventional camera. Here, an image point xI is defined as the

intersection of a central ray through the main lens with a common image plane which is parallel

to the main lens. In the presented model the image plane is chosen to be the same as the MLA

plane. Thus, by splitting up the matrix K into KI and KV (eq. (6.26)) the image coordinates

xI are obtained as defined in eq. (6.27).

K = KV ·KI

=


bL
bL0

0 0 0

0 bL
bL0

0 0

0 0 1 0

0 0 0 1

 ·

bL0 0 0 0

0 bL0 0 0

0 0 b 0

0 0 1 0

 (6.26)

η · xI = KI · xC (6.27)

By introducing the image coordinates xI one is able to define a lateral distortion model on this

image plane, similar to the one for a regular camera. From eqs. (6.26) and (6.27) one can see that

the z-coordinates in the spaces defined by xI and x′V are equivalent (zI = z′V = b).

By applying the distortion at the intersection of all central rays with a common plane, a con-

stant distortion is defined for each central ray through the main lens respectively. This differs from

previous models (Johannsen et al. [2013]; Heinze et al. [2015, 2016]), where distortion is defined

by performing an orthogonal projection on a plane, instead of a central perspective projection.

In the following the distortion model is defined. This model is split into lateral distortion

(similar to a regular camera) and depth distortion. A depth distortion is needed since, as described

in Chapter 5, virtual depth estimation is performed prior to any calibration and therefore based

on distorted image coordinates. Hence, the depth estimates will also be affected by the distortion

and must be corrected.

Lateral Distortion Lateral distortion is defined based on the well known model of Brown

[1966]. This model considers radial symmetric as well as tangential distortion.

The radial symmetric distortion is defined by a polynomial along the radius r in polar coor-

dinates, as defined in eq. (6.28).

∆rrad = A0r
3 +A1r

5 +A2r
7 (6.28)

Here, the radius r is the Euclidean distance of a point xI on the image plane to the main lens’

principal point:

r =
√
x2
I + y2

I . (6.29)

This results in the Cartesian correction terms ∆xrad and ∆yrad as given in eqs. (6.30) and (6.31).

∆xrad = xI
∆rrad
r

= xI ·
(
A0r

2 +A1r
4 +A2r

6
)

(6.30)

∆yrad = yI
∆rrad
r

= yI ·
(
A0r

2 +A1r
4 +A2r

6
)

(6.31)

For tangential distortion the terms given in eqs. (6.32) and (6.33) are defined.

∆xtan = B0 ·
(
r2 + 2x2

I

)
+ 2B1xIyI (6.32)

∆ytan = B1 ·
(
r2 + 2y2

I

)
+ 2B0xIyI (6.33)
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Based on the correction terms the distorted image coordinates xId and yId are calculated from

the ideal projection as follows:

xId = xI +∆xrad +∆xtan, (6.34)

yId = yI +∆yrad +∆ytan. (6.35)

Depth Distortion Models to compensate for the distortion which occurs in virtual depth

maps have already been presented. Johannsen et al. [2013], for instance, present a five parameter

polynomial based model, while Heinze et al. [2016] reduced the number of parameters to three.

For the camera model presented in this section, the depth distortion model of Heinze et al. [2016]

was chosen. This depth distortion is defined as follows:

∆v = (1 +D0 · v) ·
(
D1 · r2 +D2 · r4

)
. (6.36)

Here, ∆v defines the virtual depth correction term which depends on the virtual depth v, the

radius r and three distortion parameters D0, D1, and D2. The distorted depth is calculated as

follows:

vd = v +∆v or (6.37)

zId = bd = b+B∆v. (6.38)

In contrast to the publications of Johannsen et al. [2013] and Heinze et al. [2016], lateral as

well as depth distortion are defined based on the undistorted coordinates. This is the conventional

definition as described by Brown [1966].

Since the distortion is exclusively defined by additive terms, they can be represented by a

translation matrix KD as defined in eq. (6.39).

KD =


1 0 0 ∆xrad +∆xtan
0 1 0 ∆yrad +∆ytan
0 0 1 B∆v

0 0 0 1

 (6.39)

This matrix consists of up to eight distortion parameters (A0, A1, A2, B0, B1, D0, D1, and D2),

which have to be estimated in the calibration process.

Sensor Tilting

A sensor tilted with respect to the main lens plane can be modeled by a rotation around the x-

and y-axis of the virtual image space. Therefore, the matrix T has to be defined as follows:

T =


1 0 0 0

0 cos(α) − sin(α) 0

0 sin(α) cos(α) 0

0 0 0 1

 ·


cos(β) 0 sin(β) 0

0 1 0 0

− sin(β) 0 cos(β) 0

0 0 0 1



=


cos(β) 0 sin(β) 0

sin(α) sin(β) cos(α) − sin(α) cos(β) 0

− cos(α) sin(β) sin(α) cos(α) cos(β) 0

0 0 0 1

 . (6.40)
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Complete Projection Model

Taking into consideration both the ideal projection and the distortion, the complete projection of

an object point, in camera coordinates xC to the corresponding virtual image point in distorted

coordinates xV d, which are actually measured, is defined as follows:

ηxV d = KS · T ·KV ·KD ·KI · xC . (6.41)

6.2.2 Micro Images Projection Model

In Section 6.2.1 the plenoptic camera was considered to be, more or less, a RGB-D sensor, which

supplies a virtual depth map and a corresponding totally focused image from the same perspective.

However, the camera model presented in Section 4.1 defines a projection from object space directly

to the micro images on the sensor. Furthermore, as the intensities in the totally focused image

are not directly measured but calculated based on noisy virtual depth estimates, correspondences

established on the basis of the totally focused image will be affected by that additional noise.

Here a model is presented which defines the projection from object space directly to the micro

images on the sensor. Therefore, this model is basically wholly defined in Section 4.1 and will

only be extended by a distortion model.

Intrinsic Parameters

The plenoptic camera model consists of the following intrinsic parameters:

• fL – focal length of the main lens

• bL0 – distance between MLA and main lens

• B – distance between MLA and image sensor

• cL – principal point (intersection of the optical axis of the main lens with the image sensor)

• c(k)
ML – micro lens centers (k ∈ {1, 2, 3, . . .})

Thus, the intrinsic parameters without distortion are the same as for the previous model (Sec-

tion 6.2.1), where the micro lens centers are also needed to perform virtual depth estimation and

to synthesize the totally focused image.

Distortion Model

In contrast to the previous model (Section 6.2.1), for this model, an object point is projected

directly onto a 2D micro image or rather multiple micro images. Hence, the distortion model can

also be a applied to a 2D plane, and more importantly, before depth estimation is performed.

Due to the fact that depth estimation is performed based on corrected image and micro

lens coordinates, the virtual depth estimates will not be affected by distortion. Therefore, it is

sufficient to define only a lateral distortion model.

Again, the same lateral distortion terms as for the previous model (Section 6.2.1) are defined.

A practical aspect of this model is that it consists only of additive distortion terms which depend

on the undistorted coordinates. Due to the small size of a micro image, it suffices to consider the

distortion to be constant within a single micro image. Therefore only the micro lens centers cML

are corrected and not the point coordinates xML in the respective micro image.
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Figure 6.1: Relationship between micro image and micro lens centers. While the micro image
centers cI can be estimated from a recorded white image, the micro lens centers cML can only be
calculated if the intrinsic model of the camera is known.

Furthermore, the effect of a tilted plenoptic sensor is not considered explicitly in order to

maintain the structure of the model as described in Section 4.1. In this model the MLA is

considered to be parallel to the main lens and therefore the projected MLA (virtual camera

array) lies on a common plane at distance zC0 to the main lens (see Figure 4.2).

6.2.3 Extended Micro Images Projection Model

For all previous models as well as for the depth estimation presented in Chapter 5 it was considered

that the micro lens centers cML are known. There are various methods for estimating the centers

of the micro images formed on the sensor when placing a white balance filter in front of the camera

(e.g. Dansereau et al. [2013]; Cho et al. [2013]; Hog et al. [2017]). In the previous chapters we

assumed the center of a micro image to also be the center of the corresponding micro lens without

further examination of this assumption.

This claim is, in fact, not true, as can easily be seen in Figure 6.1. However, as will be shown

later in the evaluation, this assumption can be sustained as long as one is not interested in the

exact camera position. The error made in the position of a micro lens center is directly projected

to an error in the camera position and therefore results in a constant bias in the estimated camera

position.

To account for this offset between micro lens and micro image center the model presented

in the previous Section 6.2.2 is further extended. In addition to the micro lens centers cML the

micro image centers are by cI .

In Section 4.1 the micro lens centers were defined by 3D coordinates in the image space with its

origin at the intersection of the optical axis of the main lens with the main lens plane. Hence, the

micro image centers are defined in the same coordinate system. Thus, the following relationship

between micro image and micro lens centers results:

cI =

 cIx
cIy

B + bL0

 = cML ·
bL0 +B

bL0
=

cMLx

cMLy

bL0

 · bL0 +B

bL0
. (6.42)

Again the same distortion model as defined in Section 6.2.2 is applied. However, instead of

defining lateral distortion on the MLA plane, it is defined directly on the sensor plane. While in

Section 6.2.2 the distortion was applied only to the micro lens centers, here, distortion is applied

to each raw image point on the sensor.
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(a) 3D calibration target (b) recorded raw image (c) totally focused image

Figure 6.2: 3D target used for plenoptic camera calibration. (a) Entire calibration target (b)
Sample raw image recorded by the plenoptic camera. (c) Totally focused image synthesized from
the sample raw image.

The used radial symmetric distortion model (eqs. (6.28) to (6.30)) is defined such that for a

radius r = 0 the correction term ∆rrad is zero. Most real lenses generally show a barrel distortion

behavior, which means that the correction term ∆rrad increases with an increasing radius r. This

means that in the undistorted image pixel sizes will be enlarged with increasing radius r. Such

an enlargement of the pixel size will also affect the estimate of B, which therefore will differ from

its real physical value.

This could be compensated by adapting the distortion model in such a way that the integration

over all correction terms will be zero and thus the average pixel size in the undistorted image will

be equal to the real pixel size. This can be realized by introducing a radius offset r0 as described

by Luhmann et al. [2014] (Chapter 3.3.3). However, the overall projection accuracy does not

change by the introduction of r0. Only the FOV of the rectified image might be affected.

Compared to the model presented in Section 6.2.2, the number of parameters to be estimated

stays exactly the same. However, by refining the micro lens centers cML with respect to the micro

image centers cI , one is able to compensate a position bias in the estimation, as will be shown by

the results in Section 9.2.2. Furthermore, while previously it was assumed that the micro lenses

look straight ahead, now one can see that outer micro lenses actually squint.

6.3 Plenoptic Camera based Bundle Adjustment

In contrast to all existing calibration methods for plenoptic cameras, here the calibration is

performed in a bundle adjustment based on a set of unordered 3D points. The 3D structure of

the calibration target results in a better conditioning of the optimization problem when compared

to a standard 2D target. Furthermore, the calibration does not rely on any model constraints

(e.g. all points lying on a plane). Figure 6.2a shows the 3D target which is used for calibration.

The camera calibration consists of several steps. First, a set of images is recorded, showing the

calibration target from as many different perspectives as possible (see example in Figure 6.2). In

an initial stage, the marker points of the calibration target are detected are assigned to each other.

In addition, initial solutions for all model parameters (intrinsic and extrinsic camera parameters,

and 3D coordinates of the calibration markers) are established. This initial stage is the same

for all three presented camera models. Next, the energy function is defined depending on the
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Figure 6.3: Single calibration marker mapped to multiple micro images. Red crosses visualize the
detected center of the marker in the various micro images.

respective camera models and is optimized with respect to the intrinsic and extrinsic camera

parameters as well as the 3D coordinates of the calibration markers.

In the following, separately the definitions of the energy functions, both for the virtual image

based model as well as the two models which are based on micro images, are presented.

For the entire calibration approach the micro image centers are assumed to be already esti-

mated based on a recorded white image.

6.3.1 Initialization of Intrinsic and Extrinsic Parameters

In the initial stage, virtual depth maps are estimated and the corresponding totally focused images

are synthesized based on the methods described in Chapter 5 for the set of recorded images. In

the synthesized totally focused images one are able to detect the marker points of the calibration

target. Furthermore, initial point correspondences can be found for a set of uniquely coded marker

points (see Figure 6.2c).

Even though the marker point positions in the micro images are needed for the two later

models, the points are still detected in the totally focused images and then are project back onto

the micro images. Algorithms which are able to detect the round coded and uncoded marker

points reliably in the recorded images already exist. The detection in the micro images, however,

would be difficult since the markers of the calibration target are for the most part only partially

mapped to the micro images. Figure 6.3, by way of example, shows a single calibration marker

mapped to multiple micro images. The coordinates of the marker detected in the totally focused

image and projected to the micro images are shown as red crosses.

After the marker detection, intrinsic and extrinsic camera parameters as well as the 3D co-

ordinates of the calibration markers are initialized on the basis of the points detected in the set

of totally focused images. While one is able to build a closed form solution for such a structure

from motion (SfM) problem based on an uncalibrated monocular camera, this is not the case for

the model of a plenoptic camera, where the camera matrix K depends on the object distance

zC . Therefore, the fundamental matrix for a pair of virtual images will also depend on the object

distance zC and thus cannot be solved without knowing that distance. This makes the initial-

ization of the optimization problem more difficult. To initialize the bundle adjustment, it is first

considered that the totally focused image of the plenoptic camera results from a regular pinhole

camera. This way, the SfM problem is solved by using a standard photogrammetric software. For

initialization this approximation is sufficient, as only a rough estimate of all parameters is needed.
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In addition, initial parameters for B and bL0 are obtained by solving the physical model

defined in Section 6.1.1. In this way, initial values are received for all intrinsic and extrinsic

camera parameters as well as the 3D object points.

Along with the initial parameters, the photogrammetric software already provides the correct

correspondences for all marker points across all recorded images.

In the following the validity of using the pinhole camera model for initialization, at least for

fL � zC , is proved based on a specific example. The camera setup is as follows:

• main lens focal length fL = 16 mm

• size of the totally focused image: 1024 pixel× 1024 pixel

• principal point in the image center

The calibration target covers a depth range from zC min = 500 mm up to zC max = 1500 mm.

Based on the thin lens equation the following maximum, minimum and average image distances

can be calculated:

• bLmax = 16.53 mm

• bLmin = 16.17 mm

• bL = 16.35 mm

Thus, one receives a maximum projection error between the plenoptic and pinhole camera model

as follows:

∆xmax = xmax ·
(
bLmax

bL
− 1

)
= xmax ·

(
1− bLmin

bL

)
= 5.63 pixel. (6.43)

Here, the image plane of the pinhole camera model is considered to be at a distance bL from the

main lens. The maximum image coordinate xmax is considered to be at the image boundary and

therefore at xmax = 512 pixel. As can be seen from eq. (6.43), the error made for the initialization

is in the range of only a few pixels.

For larger object distances the error decreases further (i.e. for zC min = 1500 mm and zC max =

2500 mm it follows ∆xmax = 1.11 pixel). The variation in the average image distance bL results

in a small scaling error of the recorded image and therefore in a bias regarding the estimated

object distance. For fL � zC it follows bL ≈ fL and therefore the estimated principal distance of

the pinhole camera model provides a good initialization for the main lens focal length fL of the

plenoptic camera.

6.3.2 Bundle Adjustment on Virtual Image Space

To estimate the exact camera parameters for the virtual image based model (Section 6.2.1), we

formulate the following energy function E(Π,Ξ) over all recorded frames:

E(Π,Ξ) =
N∑
i=1

M∑
j=1

∥∥r(i,j)

∥∥2 · θ(i,j). (6.44)
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Here, Π is the set of all camera parameters (intrinsic and distortion parameters) and Ξ is the

set of all camera poses (Ξ := {ξ1, · · · , ξM}) with respect to a world frame. Each calibration

point in the totally focused image results in a 3D residual vector r(i,j) in the virtual image space.

Furthermore, θ(i,j) is a masking function which is 1 if the i-th object point is visible in the j-th

view of the plenoptic camera, or else is zero. To be robust against outliers, θ(i,j) can also be

extended by any robust loss function.

The projection of the i-th object point in world coordinates x
(i)
W to the corresponding camera

coordinates of the j-th view x
(i,j)
C is defined by a rigid body transformation G(ξj) ∈ SE(3), as

follows:

x
(i,j)
C = G(ξj) · x

(i)
W . (6.45)

Furthermore, the projection on the virtual image is defined in eq. (6.41). The complete projection

is combined in the warping function πV (·):

x
(i,j)
V d = πV

(
G(ξj)x

(i)
W , Π

)
. (6.46)

In the following a virtual image point xV d, which was calculated based on the projection given

in eq. (6.46) is denoted by the coordinates xproj, yproj, and vproj, while the corresponding reference

point measured from the recorded image is denoted by the coordinates xmeas, ymeas, and vmeas.

Instead of defining the residual vector r(i,j) as just the difference between the projected and

the measured virtual image point, it is defined as follows:

r(ij) =
[
r

(i,j)
x r

(i,j)
y r

(i,j)
v

]T
, with (6.47)

r(i,j)
x = x

(i,j)
proj − x

(i,j)
meas, (6.48)

r(i,j)
y = y

(i,j)
proj − y

(i,j)
meas, (6.49)

r(i,j)
v =

(
1

v
(i,j)
proj

− 1

v
(i,j)
meas

)
· v(i,j)

proj · ω. (6.50)

The residual of the virtual depth r
(i,j)
v is defined as given in eq. (6.50), since the virtual depth v is

inversely proportional to the disparity µ estimated from the micro images (see eq. (2.12)). Thus,

the inverse virtual depth can be considered to be Gaussian distributed (see eq. (5.2)). As already

stated in Section 6.2.1, the baseline distance ∆cML is, on average, proportional to the estimated

virtual depth v. Thus, the difference in the inverse virtual depth is scaled by the virtual depth

v itself. The parameter ω is simply a constant factor which defines the weight between r
(i,j)
x ,

r
(i,j)
y , and r

(i,j)
v . In general, the virtual depth residual r

(i,j)
v must be down weighted with respect

to the lateral residuals r
(i,j)
x and r

(i,j)
y , because compared to the noise in the coordinates of the

markers detected in the totally focused images, the noise in the virtual depth is higher by orders

of magnitude.

The optimal parameters (Π̂, Ξ̂) are the ones which minimize the cost function E(Π,Ξ):

{Π̂, Ξ̂} = arg minE(Π,Ξ). (6.51)

This highly nonlinear optimization problem is solved using the Levenberg-Marquardt algorithm

with respect to Π and Ξ. The initialization of Π and Ξ has to guarantee that the optimization

starts in the convex region around the optimum solution E(Π̂, Ξ̂).
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For this first model the coordinates of the 3D points x
(i)
W are not optimized in the final bundle

adjustment, since this way the optimization becomes more robust. The results presented in

Section 9.2.2 will show that the coordinates x
(i)
W are already estimated with high accuracy during

the initialization.

6.3.3 Full Bundle Adjustment on Micro Images

To estimate the exact camera parameters for the two later models (Sections 6.2.2 and 6.2.3), we

define the following energy function, quite similar to eq. (6.44):

E(Π,Ξ, P ) =
N∑
i=1

M∑
j=1

L∑
k=1

∥∥r(i,j,k)

∥∥2 · θ(i,j,k). (6.52)

Here, Π is again the set of all camera parameters (intrinsic and distortion parameters), Ξ is the

set of all camera poses (Ξ := {ξ1, · · · , ξM}). In comparison to Section 6.3.2 the model parameters

are extended by the set P . This set contains all marker point coordinates (P := {x(1)
W , · · · ,x(N)

W }).
Each calibration point in a micro image results in a 2D residual vector r(i,j,k). The function θ(i,j,k)

is a masking function which is 1 if the i-th object point is visible in the k-th micro image of the

j-th view, or else is zero. Again, θ(i,j,k) can be extended by any robust loss function. In contrast

to the previous approach, here, the object point coordinates xW ∈ P are also defined as model

parameters which are refined in the optimization.

The residual vector for the calibration point with measured coordinates xMLd, corresponding

to the i-th object point which is seen in the k-th micro image of the j-th camera view, is defined

as follows:

r(i,j,k) = πML

(
G(ξj)x

(i)
W , c

(k)
ML, Π

)
− xMLd. (6.53)

The function πML(·) defines the projection from camera to micro image coordinates of the k-th mi-

cro image. Hence, πML(·) defines either of the two camera models (Section 6.2.2 or Section 6.2.3),

both of which rely on the same number of parameters. In eq. (6.52) the sum over i is the sum

over all object points, the sum over j is the sum over all camera poses and the sum over k is

the sum over all micro images. The vector ξj ∈ se(3) defines the rigid body transformation

G(ξj) ∈ SE(3) from world coordinates to camera coordinates of the j-th view.

The optimal parameters (Π̂, Ξ̂, P̂ ) are the ones which minimize the cost function E(Π,Ξ, P ):

{Π̂, Ξ̂, P̂} = arg minE(Π,Ξ, P ). (6.54)

Similarly as for the previous approach, this highly nonlinear optimization problem is solved using

the Levenberg-Marquardt algorithm. The initialization of Π, Ξ and P must guarantee that the

optimization starts in the convex region around the optimum solution E(Π̂, Ξ̂, P̂ ).

The scaling of the calibration object is obtained based on known distances between certain

object points. Those distances are used as additional constraints in the optimization problem.

In Chapter 9 the various methods and models, which were developed to calibrate a focused

plenoptic camera, and which were presented in this chapter, will be evaluated and assessed.





7 Full-Resolution Direct
Plenoptic Odometry

Our Direct Plenoptic Odometry (DPO) algorithm performs direct image alignment and semi-

dense mapping directly on the micro images recorded by a plenoptic camera. It makes use of the

geometric camera interpretation defined in Chapter 4. The geometric camera interpretation relies

on known intrinsic camera parameters as well as distortion corrected images. Therefore, prior to

running DPO, the plenoptic camera must be calibrated as described in Chapter 6.

7.1 Overview

Figure 7.1 shows the complete workflow of DPO. Furthermore, Algorithm 1 in Appendix B.1

shows a more detailed pseudo code of the approach. A brief overview of the algorithm is given

here and it will be focused on the individual steps of the workflow in later sections (Section 7.2

to 7.6). A new recorded light field frame is tracked based on a keyframe. Keyframes are selected

light field frames in respect to which tracking and mapping of all recorded frames takes place.

In addition to the light field (raw image), two depth maps (a micro image depth map and a

virtual image depth map) are established for each keyframe and a totally focused intensity image

is synthesized. After a successful tracking of a light field frame, the current keyframe is updated,

i.e. the depth maps are refined based on the tracked frame and the totally focused image is

recalculated.

While the DPO algorithm is in progress, the pose of a newly recorded frame differs more and

more from the one of the initially established keyframe. Based on a score, for each new frame we

check whether the old keyframe is still valid or whether the new frame has to be set as a new

keyframe. For a new keyframe, in-frame depth estimation is performed based on its recorded

light field. The in-frame depth map is merged with the one of last keyframe which is propagated

into the new perspective. Hence, only the depth maps of the current keyframe will be kept. To

adjust scale drifts, the absolute scale of the last keyframe is estimated before it is deleted. Using

the new scale estimate, the absolute scale along the entire trajectory is optimized and the poses

of all past keyframes are updated.

7.2 Depth Map Representation

For a plenoptic camera, the observed inverse virtual depth v−1 can be considered to result from a

Gaussian process, as was shown in Chapter 5. Therefore, due to eq. (4.21), the observed inverse

effective depth λ−1 = z′−1
C , which was introduced in Section 4.1, has to result from a Gaussian

process, too. This holds true, at least as long as the micro images, which are used to obtain the

observation, point in the same direction. Similar to the proposed probabilistic depth estimation

approach (Chapter 5), and similar to Engel et al. [2013], a probabilistic depth hypothesis is defined

79
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Figure 7.1: Workflow of the Direct Plenoptic Odometry (DPO) algorithm.
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for each image point with an absolute gradient above a certain threshold. For this the inverse

effective depth is modeled as a Gaussian process:

N
(
d, σ2

d

)
. (7.1)

Here, d = z′−1
C defines the mean, while σ2

d is the corresponding variance of the inverse effective

depth.

7.2.1 Micro Image Depth Map and Virtual Image Depth Map

Using the probabilistic depth model (eq. (7.1)) two different depth maps (DML(xR) and DV (xV ))

are defined for each keyframe (Figures 7.2b and 7.2c).

DML(xR) is defined with respect to raw image coordinates xR. Here, a point in the i-th micro

image, with micro image coordinates xML, has the raw image coordinates xR = xML + c
(i)
ML.

DV (xV ) as well as a totally focused intensity image IV (xV ) (Figure 7.2d) are defined on virtual

image coordinates xV (see Section 5.5), where micro image points observing the same object point

are merged (see Section 7.4).

These two distinct representations are considered because in the raw image one object point

is projected to multiple image points, while there is a one-to-one mapping from object space to

the virtual image. In the DPO algorithm, depth estimation is performed on the micro image

representation (DML(xR) and IML(xR)), while the virtual image representation (DV (xV ) and

IV (xV )) of a keyframe is only used for tracking new frames. Since DPO makes use of the focused

high resolution micro images (raw image) instead of, for instance, low resolution sub-aperture

images, it is called a full-resolution algorithm.

7.3 Estimating Depth Hypotheses

For each keyframe, in-frame depth estimation is performed based on stereo matching in its own

micro images as well as inter-frame depth estimation based on micro images of subsequent frames

using the epipolar gemometry defined in Section 4.2. For both in-frame and inter-frame depth

estimation, stereo matches are found by optimizing the sum of squared intensity differences (SSID)

over a one-dimensional pixel patch along the epipolar line, similar to Section 5.3. Here, prior

estimates are used to narrow the search range to d± 2σd.

7.3.1 Observation Uncertainty

Similar to Engel et al. [2013], the observation uncertainty, which results in the variance σ2
d of the

inverse effective depth d, is derived based on uncertainty propagation. In addition to a geometric

and a photometric disparity error, a focus disparity error, which regards unfocused micro images,

similar to Chapter 5, is defined.

Geometric Disparity Error

Because of inaccuracies in the camera model and uncertainties in the frame pose, one can expect

a misalignment of the epipolar line. Due to the very short search range, it is considered, similar

to Engel et al. [2013], that only the absolute epipolar line position l0 to be affected by isotropic

Gaussian noise εl and any rotational error is neglected. Since here the search range is always

limited by the micro lens dimension, the assumption of a short search range holds even better

than it does for the monocular case. Thus, the variance σ2
µ(ξ,π) of the geometric disparity error
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(a) raw intensity image (b) raw image depth map

(c) virtual image depth map (d) totally focused intensity image

Figure 7.2: Keyframe depth maps and intensity images. (a) Micro images IML(xR) (raw image
recorded by the plenoptic camera). (b) Micro image depth map DML(xR). (c) Virtual image
depth map DV (xV ). (d) Totally focused intensity image IV (xV ). For the pixels marked in red
no depth value, and therefore no intensity, was calculated.

can be defined as follows (Engel et al. [2013]):

σ2
µ(ξ,π) =

σ2
l

〈g, l〉2
. (7.2)

Here, g is the normalized image gradient, l is the normalized epipolar line direction, and is σ2
l

the variance of εl.
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Photometric Disparity Error

The photometric disparity error describes the effect of sensor noise εn on the estimated disparity.

It results in an error on the estimated disparity with variance σ2
µ(I), as derived in Section 5.3.1:

σ2
µ(I) =

2 · σ2
n

g2
I

. (7.3)

Here σ2
n is the variance of εn and gI the intensity gradient along the epipolar line.

Focus Disparity Error

The focus disparity error models the effect of differently focused micro images used for stereo

matching. The variance σ2
µ(v,k,j) of the focus disparity error is defined as follows, where eq. (5.21)

is restated:

σ2
µ(v,k,j) = σ2

x ·
(

1− σj
σk

)2

. (7.4)

Here, σ2
x defines the distribution of the position, in relation to an edge, on the epipolar line.

Furthermore, σj and σk define the blur radii in the respective micro images used for disparity

estimation. A detailed derivation of the focus disparity error is given in Section 5.3.1.

Though, as described in Chapter 5, the two micro images used for disparity estimation are

rectified in relation to each other for the case of in-frame depth estimation, this is not the case

for inter-frame depth estimation. Hence, the definition of the position x given in eq. (5.16) must

be modified as follows:

x = µk − µ0k = µj · γ − µ0j . (7.5)

The parameter γ =
z
′(j)
C

z
′(k)
C

defines the scaling factor between the two micro images of interest.

When considering all three error sources to be independent random variables, the overall

observation uncertainty is received as follows:

σ2
d = α2 ·

(
σ2
µ(ξ,π) + σ2

µ(I) + σ2
µ(v,k,j)

)
. (7.6)

The parameter α defines the derivative of d with respect to the disparity µ.

7.3.2 Estimating In-Frame Depth

In-frame depth estimation is performed similarly to the process that has been described previously

in Chapter 5. The only difference is that here directly the inverse effective depth z′−1
C is calculated

instead of the inverse virtual depth v−1. Nevertheless, since there is a linear connection, the overall

procedure remains the same.

7.3.3 Estimating Inter-Frame Depth

While for in-frame depth estimation the stereo baseline is limited by the camera dimensions, we

are able to improve the depth accuracy based on inter-frame depth observations. Inter-frame

depth estimation is performed based on the current keyframe and the newly tracked frames.

Therefore, the relative orientation between the frames ξ ∈ se(3) is considered to be known.

For each micro image point in the keyframe, stereo observations are obtained from all possible

micro images in the new frame1.
1Possible micro images are those which very likely see the respective object points.
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Defining Epipolar Lines

One is able to define the epipolar geometry between the micro images of two different frames as

given in Section 4.2. Due to the linear relation between projected micro image coordinates xp
and real micro image coordinates onto the sensor xML (or xR), the epipolar lines defined in the

projected micro images can be directly mapped onto the sensor. Therefore, stereo matching for

inter-frame depth estimation can be performed directly on the recorded raw images, in a way

similar to in-frame depth estimation.

7.3.4 Regularizing Depth Maps

Each time the depth maps are updated, a regularization step on DML(xR) and DV (xV ) is per-

formed. Outliers are removed and estimates are smoothed based on probabilistic metrics, as

stated in Section 5.6. In the virtual image, multiple micro image points are merged to a single

image point. Furthermore, the neighborhood of a point xV is not bounded by the micro image

borders as it is for a raw image point xR. Therefore, it is far easier to detect outliers in DV (xV )

and to mark the corresponding points in DML(xR) as outliers, too. The depth hypotheses in

DML(xR) themselves are not updated based on DV (xV ) in order to avoid loops in the filtering

process. After updating DV (xR), the totally focused intensity image IV (xR) is recalculated, too.

7.4 Merging Depth Hypotheses

Probabilistic depth values are updated in a Kalman-like fashion, in a similar as done by Engel

et al. [2013]. However, in contrast to the update step in Section 5.4 and to Engel et al. [2013], here

the variance of the merged depth hypothesis is limited to the variance of the best observation.

This has the effect that multiple depth observations of the same point are not considered to be

uncorrelated, which in the limit case would lead to zero variance. Thus, the following merging

routine is defined:

N

(∑
i∈O di ·

(
σ2
di

)−1∑
i∈O

(
σ2
di

)−1 ,min
(
σ2
di

))
, (7.7)

where O is the set of depth observations. This algorithm prevents points in the background which

are observed in numerous frames from receiving low variances.

7.5 Tracking

Newly recorded frames are tracked based on direct image alignment. Here, the current keyframe

(DV (xV ) and IV (xV )) is used as tracking reference. In the following, the relative pose, which

has to be estimated is denoted by ξkj , where k defines the keyframe index and i the index of the

current frame.

In the publication Zeller et al. [2017] a tracking approach is described which is based on an

initial tracking stage using a synthesized totally focused image of the new frame. To synthesize

this image, the depth map of the new frame has to be known. This depth map can either be

calculated or, as described by Zeller et al. [2017], an approximation of it can be obtained by

projecting the depth map from the current keyframe into the new frame. For this projection

an initial estimate of the relative pose ξkj must be used. However, this procedure is quite time

consuming and furthermore, the projected depth map might be incomplete and error-prone.
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A new tracking approach is presented which, again, works on pyramid levels. However, this

new approach does not rely on a depth map of the new frame. Furthermore, strategies are

presented to make the tracking more robust.

7.5.1 Tracking on Pyramid Levels in the Micro Images

In direct tracking approaches there exists no fixed point correspondences and therefore the region

of convergence around the optimal solution is quite limited. Hence, a good initialization of the

model parameters which have to be optimized, in this case ξkj , is needed. Kerl et al. [2013b],

for instance, showed that the region of convergence can be increased by performing tracking in a

coarse-to-fine approach.

In one of our previous publications (Zeller et al. [2017]), initial tracking was performed on

totally focused intensity images. Here it was shown that a course-to-fine approach can, in fact,

also be performed directly on the micro images of the new frame.

To do this, pyramid levels of the complete recorded raw image are built by simple pixel

binning. As long as the size of a pixel on a certain pyramid level is smaller than a micro lens,

the image of reduced size still represents a light field image. At coarse levels, where the pixel size

exceeds the size of a micro lens, the image turns into a standard central perspective image. In

a first assumption this can be viewed as integrating along the u and v domain in the two plane

parametrization (2PP) of the light field2.

For all pyramid levels, the following energy function is defined, which then is optimized with

respect to ξkj :

E(ξkj) =
∑
i

∑
l

∥∥∥∥∥∥
(
r

(i,l)
ML

σ
(i,l)
r

)2
∥∥∥∥∥∥
δ

, (7.8)

r
(i,l)
ML := IV k

(
x

(i)
V

)
− IMLj

(
πML

(
G(ξkj)π

−1
V (x

(i)
V ), c

(l)
ML

))
. (7.9)

Here πML(·, ·) defines the projection from camera coordinates xC to micro image coordinates xR,

through a certain micro lens cML. Furthermore, π−1
V (·) defines the projection from virtual image

coordinates xV to camera coordinates xC . The operation ‖ · ‖δ denotes the robust Huber norm

(Huber [1964]).

Initial Tracking

In the initial stage, each point in the tracking reference (frame k) x
(i)
V 7→ x

(i)
C is projected to only

a single micro image of the new frame (frame j). Hence, in eq. (7.8) the sum over l is dropped

for initialization.

For the sake of simplicity, the same energy function is also kept for the central perspective

images at coarse pyramid levels. Here, a micro lens consists only of one or even of only a fraction

of a pixel and therefore the projection becomes equivalent to a central perspective projection.

Starting from the coarsest pyramid level, the function E(ξkj) is optimized with respect to ξkj
for each pyramid level. This is done by the Levenberg-Marquardt as introduced in Section 2.5.3.

2This is true only on first assumption, since a 2PP of the light field can not be directly extracted from the raw
image of a focused plenoptic camera.
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(a) first iteration (b) 4th iteration (c) 9th iteration

Figure 7.3: Tracking residual after various numbers of iterations. The figure shows residuals in
virtual image coordinates of the tracking reference. The grey value represents the value of the
tracking residual. Black: negative residuals with high absolute values. White: positive residuals
with high absolute values. Red: regions without valid depth information and therefore without
tracking residuals.

Final Tracking

On the final (finest) pyramid level, a single point in the tracking reference is projected to all micro

images in the new frame which see this point. This is modeled by the sum over l in eq. (7.8). By

projecting the reference points to multiple micro images in the new frame, one is able to implicitly

incorporate the in-frame disparities of the new frame into the optimization problem. In this way,

the accumulated scale drifts, as they generally occur for monocular tracking, are kept small.

Figure 7.3, by way of example, shows the tracking residual for different iterations of the

Levenberg-Marquardt optimization.

7.5.2 Variance of Tracking Residual

The variance σ2
r of the photometric residual rML is obtained by uncertainty propagation. There-

fore, σ2
r consists of a photometric component, which results from noise on the intensities and a

geometric component, which results from noise on the depth estimate as follows:

σ2
r := σ2

n

(
1

Nk
+ 1

)
+

∣∣∣∣∂r(xV , ξkj)∂d(xV )

∣∣∣∣2 σ2
d(xV ). (7.10)

The noise on the intensities in the different micro images is considered to be uncorrelated. In the

totally focused image an intensity value is calculated as the average value over multiple micro

image points. Therefore, the variance of an intensity value in the totally focused image results

from the variance of the sensor noise σ2
n divided by the number of micro image points used to

calculate the intensity value: (
σ

(k)
I

)2
=
σ2
n

Nk
. (7.11)

Here, Nk is the number of micro image points used for calculation. Since micro image points are

measured directly on the sensor, their noise is equivalent to the sensor noise σ
(j)
I = σn.

The geometric term is received based on uncertainty propagation from the variance σ2
d of the

corresponding depth hypothesis.



7.5. TRACKING 87

7.5.3 Compensation of Lighting Changes

To compensate for changing lighting conditions in the recorded scene and for different exposure

times between the current keyframe and the frame to be tracked, the residual term defined in

eq. (7.9) is extended. Therefore, the residual term r
(i,l)
ML is modified as follows:

r
(i,l)
ML := IV k

(
x

(i)
V

)
· a+ b− IMLj

(
πML

(
G(ξkj)π

−1
V (x

(i)
V ), c

(l)
ML

))
. (7.12)

Here, a and b are scalars which compensate for lighting changes by an affine transformation of

the intensities in the totally focused image of the tracking reference. The coefficient a and b also

must be estimated in the optimization process.

For most cases, a = 1 and b = 0 is a good initialization for the lighting compensation. However,

especially for strong lighting changes between the reference and the new frame, this might be a

bad initialization and, in the worst case, leads to a tracking failure.

Hence, an initialization is formulated based on first- and second-order statistics calculated

from the intensity images IV k and IMLj . Obviously, the initial value of b results as follows:

binit = IMLj − IV k. (7.13)

In eq. (7.13) IMLj and IV k are the average intensity values over the complete images respectively.

The initialization of a can be defined as follows:

ainit =
σIMLj

σIV k
. (7.14)

Here, σIMLj
and σIV k are the empirical standard deviations over the image intensities respectively.

7.5.4 Motion Prior for Tracking Robustness

For a focused plenoptic camera, the depth accuracy is more or less proportional to the squared

focal length f2
L. Therefore, one chooses a large focal length and simultaneously tries to keep

a sufficiently wide FOV. However, the chosen FOV will be much narrower than the one of a

monocular camera used in VO. Because of the narrow FOV, the region of convergence in the

tracking approach will shrink.

It is taken advantage of the fact that sequences in general are recored with high frame rates

compared to the acceleration of the camera. Therefore, the motion vectors of subsequent frames

will be highly correlated. A motion prior is formulated based on a linear motion prediction to

constrain the optimization. In this way, one does not increase the region of convergence but shifts

it to an area where the optimal solution is more likely to be located.

A prediction ξ̃kj ∈ se(3) of the relative pose, between the tracking reference (k-th frame) and

the new frame (j-th frame) which is tracked, is obtained as follows:

ξ̃kj = ξ̇j−1 ◦ ξk(j−1). (7.15)

The vector ξk(j−1) ∈ se(3) is the relative pose estimate of the last frame and ξ̇j−1 the respective

motion vector. Using the new pose prediction ξ̃kj , the energy function E(ξkj) is extended as

follows:

E(ξkj) =
∑
i

∑
l

∥∥∥∥∥∥
(
r

(i,l)
ML

σ
(i,l)
r

)2
∥∥∥∥∥∥
δ

+ τ(δξ)T δξ, with

δξ = logSE(3)

(
expse(3)(ξkj) ·

(
expse(3)(ξ̃kj)

)−1
)

= ξkj ◦
(
−ξ̃kj

)
. (7.16)



88 7. FULL-RESOLUTION DIRECT PLENOPTIC ODOMETRY

Last Keyframe

estimate Scale
(Sec. 7.7.1)

Past Keyframe Poses
stored as Sim(3)

Scale Estimates

optimize Keyframe Scales
(Sec. 7.7.2)

New Keyframe

add Keyframe Pose

update Scale

update Scales

add Scale Estimate

Figure 7.4: Workflow of the scale optimization framework.

In eq. (7.16) τ weights the motion prior with respect to the photometric term. On coarse pyramid

levels the initial frame pose is very uncertain and can be far from the correct frame pose. Therefore

a hight weight τ is chosen. This weight is decreased as the optimization moves down in the

pyramid. On the finest pyramid level, the weight is set to τ = 0 such that an error in the

predicted pose does not influence the final estimate.

7.6 Selecting Keyframes

A new keyframe must be selected when the perspective of a new frame differs too much from the

one of the current keyframe. Therefore, a score is defined based on the translation between the

two frames and the overlap of the two views.

When a frame is selected to be the new keyframe, in-frame depth estimation is performed in

the new frame. Afterwards, the micro image depth map of the last keyframe is propagated to the

new one and the depth hypotheses are merged. Projected depths which are divergent from the

in-frame depth are rejected and not merged.

7.7 Optimizing Global Scale

From the micro images created by the MLA, one is able to estimate depth maps from a single

image of the camera. Due to the small stereo baseline between the micro images in a single frame,

the estimates have a high uncertainty, especially for large object distances. This high uncertainty

in the in-frame depth estimates will negatively affect the absolute scale of the trajectory and the

3D reconstruction estimated by the VO algorithm.

Here, a framework is proposed which estimates and optimizes the absolute scale. For each

keyframe which is finalized, a scale estimate is obtained (Section 7.7.1). These scale estimates

are fed to a probabilistic filter which optimizes the global scale of the complete trajectory (Sec-

tion 7.7.2). All past keyframe poses are stored in a list, to be able to update the scale of previous

keyframes based on the information gained from new scale estimates. This scale optimization

framework is visualized in Figure 7.4.

7.7.1 Keyframe based Scale Estimation

Scale estimation can be performed in a way similar to how tracking is performed. It can be

viewed as tracking a light field frame based on its own virtual image depth map D(xV ). However,
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instead of optimizing all pose parameters, the logarithmized scale (log-scale) ρ is optimized. The

parameter ρ is equivalent to the tangent space scale parameter for the Lie group of similarity

transformations Sim(3), which was introduced in Section 2.5.2.

The scale estimation works on the log-scale ρ to transform the scale s = eρ into a Euclidean

space. The scale operation actually forms a 1D Lie group with the tangent space ρ. Better yet,

it forms a commutative Lie group which means that any concatenation of scale results in a linear

operation on the tangent space, without any approximation.

Similar to the tracking approach described in Section 7.5, an energy function E(ρ) is defined

as follows:

E(ρ) =
∑
i

∑
l 6=0

∥∥∥∥∥∥
(
r

(i,l)
ML

σ
(i,l)
r

)2
∥∥∥∥∥∥
δ

, (7.17)

r
(i,l)
ML := IMLk
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πML
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π−1
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(i)
V , ρ), c
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− IMLk

(
πML

(
π−1
V (x

(i)
V , ρ), c
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. (7.18)
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∂σd(x
(i)
V )
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2

σ2
d(x

(i)
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Instead of defining the photometric residual rML with respect to the intensities of the totally

focused image, residuals are defined as the differences between the intensity of the centered micro

image and those of all surrounding micro images which still see the same virtual image point

xV . The residual is defined this way, since a wrong scale also slightly affects the intensity in the

totally focused image, while the micro image coordinates and therefore the respective intensities

are refined in each iteration of the optimization.

A central perspective projection, as it is performed in a pinhole camera, is completely scale

invariant. This is not the case for the plenoptic camera, where the totally focused image is not

formed on a plane. Changing the scale in the zC domain by a scale factor s = eρ, while at the

same time keeping the virtual image coordinates xV and yV unchanged, will result in the following

scaled 3D camera coordinates xCs = [xCs, yCs, zCs]
T :

zCs = eρ · zC , xCs =
zCs − fL
zC − fL

· xC , yCs =
zCs − fL
zC − fL

· yC . (7.20)

One can see that for zC � fL or for |ρ| � 1, eq. (7.20) simplifies to the scale invariant case:

xCs ≈ eρ · xC for zC � fL or |ρ| � 1. (7.21)

In eq. (7.18), the term π−1
V (x

(i)
V , ρ) defines a warping function which firstly performs the

inverse projection from the virtual image to the object space and then does the scaling as defined

in eq. (7.20).

In conjunction to the log-scale estimate ρ, its variance σ2
ρ is calculated. This variance is defined

as follows:

σ2
ρ =

N∑N−1
i=0 σ−2

ρi

with σ2
ρi =

∣∣∣∣∂ρ∂d
∣∣∣∣2 · σ2

di. (7.22)

Here, σ2
di is the inverse virtual depth variance of a certain virtual image point x

(i)
V . Far points do

not contribute to a reliable scale estimate, since the ration between the stereo baseline ∆cML and

the effective object distance z′C of those points becomes negligibly small. Hence, the N points

used to define the scale variance are only the closest N points or, in other words, the points with

the largest inverse effective depth d.
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7.7.2 Scale Optimization

In the DPO algorithm the depth map of a new keyframe is initialized by the depth map of the last

keyframe. Thus, the scale of a new keyframe is also indirectly initialized by the scale of the last

keyframe. Hence, one can expect that the scales of subsequent keyframes are highly correlated

and scale drifts between them are marginal. Therefore the absolute log-scale of the complete

trajectory is modeled as a random process over time with an autocorrelation function Lρρ(m) as

follows:

Lρρ(m) = c|m|. (7.23)

In eq. (7.23), the variablem is the discrete time index in keyframes and the parameter c (0 ≤ c ≤ 1)

defines the correlation between subsequent keyframes. As a high correlation is considered, c will

be close to one.

On the basis of the stochastic process with the autocorrelation function Lρρ(m), the maximum

likelihood estimator for the expected value of the logarithmized scale (log-scale) ρ̂(l) at a certain

keyframe with time index l is formulated as follows:

ρ̂(l) =

 N∑
m=−N

ρ(m+l) · c|m|(
σ

(m+l)
ρ

)2

 ·
 N∑
m=−N

c|m|(
σ

(m+l)
ρ

)2


−1

. (7.24)

While each log-scale estimate ρ(i) (i ∈ {0, 1, . . . , k}) is weighted by its inverse variance, estimates

of keyframes which are farther from the keyframe of interest (index l) are down weighted by the

respective power of c. In general, the influence length N → ∞ can be chosen, although in the

implementation N is truncated.

The proposed scale optimization realizes a non-causal finite impulse response (FIR) filter.

Thus, the final estimate ρ̂(l) is not available until the index k of the current keyframe k ≥ l +N

holds. In Appendix B.2 a recursive formulation of the estimator defined in eq. (7.24) is presented.

Instead of solving the complete sum for each new keyframe multiple times, the existing estimates

ρ̂(l) merely have to be updated.

7.8 Finding Micro Lenses of Interest

For several tasks in the DPO algorithm, one has to find the set of micro images in which an

object point (or virtual image point respectively) is visible. In Section 5.7, it was previously

described how these micro images are found for the case that they are looking straight ahead in

the virtual image space. Corresponding micro images lie within a cone, spanned from the virtual

image point, as shown in Figure 5.6.

However, this criteria changes for the case of squinting micro lenses, as is the case in a plenoptic

camera. In this case, the cone is distorted. Similar to Section 5.7, a radius R = 0.5DM · v can

be defined, which gives a circular area of micro lenses which see the respective virtual image

point xV . Instead of having a micro lens center cML within the radius R around the orthogonal

projection of the virtual image point xV onto the MLA, the point has to be projected along the

central ray through the main lens. Hence, the following condition has to be fulfilled:

‖(cI − cML) · v + cML − xV ‖ ≤ R. (7.25)

Here, all coordinates cI , cML, and xV are considered to be 2D coordinates in the x-y-domain

with the same origin.
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For all micro lenses with center coordinates cML which fulfill the condition of eq. (7.25), it is

guaranteed that the virtual image point xV is projected onto the respective micro image. This

condition is needed for inter-frame depth estimation, virtual intensity image synthesis, tracking

and scale estimation, since in all of these tasks an object point xC , or respective virtual image

point xV , has to be projected onto all micro images which actually see that point.





8 Experiments – Probabilistic
Light Field based Depth
Estimation

8.1 Data

Capturing ground truth depth data for images of real scenes is quite complex and requires the

registration of the images with highly accurate 3D data, e.g. the registration of images and 3D

data obtained from a laser scanner (e.g. Schöps et al. [2017]). This makes it challenging to asses

the quality of depth information gained from images, be they stereo image pairs or, as in this case,

plenoptic images. However, while for stereo data there exist several synthetic datasets for which

a pixel-wise ground truth is available, there are no such datasets available for focused plenoptic

cameras. There are some synthetic light field datasets (Wanner et al. [2013]; Honauer et al. [2017])

available. However, the algorithm proposed in Chapter 5, which is designed to perform depth

estimation directly from the raw data of a plenoptic camera, is not fitted to used these synthetic

4D light field representations.

The proposed plenoptic camera based probabilistic depth estimation algorithm is evaluated on

a quantitative basis by calculating statistics of the estimated virtual depth for a planar checker-

board pattern which is recorded in various object distances. In addition to this, the algorithm

is evaluated qualitatively using available public datasets as well as own recordings for which no

ground truth is available.

8.1.1 Checkerboard Recorded by the Plenoptic Camera Raytrix R5

To compare the proposed depth estimation algorithm quantitatively to already existing methods,

different light field images were recorded by a Raytrix R5 camera with main lens focal length

fL = 35 mm, while placing a planar checkerboard in various distances to the camera. Figure 8.1

shows three images with the checkerboard placed in various object distances: zC1 = 1.2 m, zC2 =

3.1 m, and zC3 = 5.1 m. In the evaluation section the different algorithms are compared based on

statistics calculated from the depth estimates across the checkerboard.

8.1.2 Plenoptic Images of Real Scenes

As mentioned before, most light field based depth estimation algorithms do not work on the raw

data recorded by a plenoptic camera, but do work on some kind of 4D light field representation

which can be resampled from this raw data. However, there is only a small number of public

datasets available which were recorded by focused plenoptic cameras. These few public dataset

as well as self-recorded images are used to evaluate the proposed algorithm and to compare it to

the state-of-the-art on a qualitative basis. In the following, totally focused images is shown to

visualize all recorded datasets.

93
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(a) zC1 = 1.2 m (b) zC2 = 3.1 m (c) zC3 = 5.1 m

Figure 8.1: Checkerboard dataset recorded by a Raytrix R5 camera with main lens focal length
fL = 35 mm. A planar checkerboard pattern was placed in front of the plenoptic camera and
recorded at various object distances. The quality of the estimated depth map can be evaluated
by analyzing the scattering of the depth estimated across the checkerboard.

(a) Headphones (b) Desk

Figure 8.2: Own focused plenoptic camera dataset. Both images were recorded by a Raytrix R5
camera with main lens focal length fL = 35 mm. The figures show the totally focused images
synthesized from the recorded light fields.

Figure 8.2 shows two real scenes recorded by us. Both images were captured with the camera

Raytrix R5 using a main lens focal length of fL = 35 mm. Here, real scenarios were captured

which show a large depth range, to see how the algorithms behave for different object distances.

Furthermore, Hog et al. [2017] have also recorded a dataset based on a Raytrix R5 camera

and presented the results obtained by their algorithm in the paper1. The three scenes recorded

by Hog et al. [2017] show artificial scenarios as shown in Figure 8.3. Another dataset is made

publicly available by the manufacturer Raytrix itself, consisting of four different scenes shown in

Figure 8.4. The scenes have been recorded with a Raytrix R11 camera.

While the Raytrix R5 camera has a sensor resolution of 2048 pixel× 2048 pixel, the Raytrix

R11 has a sensor resolution of 4016 pixel× 2688 pixel.

1At this point we want to thank Matthieu Hog who kindly supplied us with their dataset as well as the results
of their algorithm (Hog et al. [2017]).
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(a) Donkey (b) Tiger (c) Lion

Figure 8.3: Focused plenoptic camera dataset published by Hog et al. [2017]. All three images
were recorded with a Raytrix R5 camera. The figures show the totally focused images synthesized
from the recorded light fields.

(a) Andrea (b) Forest

(c) Pilot (d) Watch

Figure 8.4: Raytrix dataset. All four images were recorded by a Raytrix R11 camera. The figures
show the totally focused images synthesized from the recorded light fields.
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Method
depth pixel density std. dev. mean
zC1 zC2 zC3 zC1 zC2 zC3 zC1 zC2 zC3

Ours (unfiltered) 0.23 0.37 0.44 0.027 0.044 0.033 0.182 0.276 0.321
Ours (σ2

z < T (z)) 0.14 0.31 0.39 0.009 0.014 0.015 0.186 0.287 0.326
Ours (filtered) 0.35 0.53 0.69 0.003 0.005 0.007 0.185 0.289 0.326
RxLive(0.1) 0.06 0.08 0.10 0.084 0.086 0.098 0.234 0.260 0.286

RxLive(0.25) 0.16 0.30 0.42 0.077 0.064 0.068 0.216 0.267 0.306

RxLive(0.5) 0.14 0.26 0.48 0.066 0.059 0.053 0.204 0.279 0.317

Table 8.1: Inverse virtual depth statistics obtained from the checkerboard dataset. The table
shows the depth pixel density, the standard deviation and the mean of the inverse virtual depth
z = v−1 calculated on the basis of all depth pixels across the checkerboard pattern.

Based on the presented data, the proposed plenoptic camera based depth estimation algorithm

will be evaluated and will be compared to the method implemented in the RxLive software

(Raytrix GmbH [2013]) and the one recently published by Hog et al. [2017].

8.2 Results

This section states the results which were obtained based on the dataset presented in the previous

section. The proposed method (presented in Chapter 5) is compared to two other algorithms:

• the algorithm implemented in the RxLive software from the company Raytrix GmbH [2013]

• the algorithm of Hog et al. [2017], which was recently published

Both of these algorithms work, as the proposed method does, directly on the raw images recorded

by a focused plenoptic camera and do not rely on any resampled light field representation such as

sub-aperture images or EPIs. For the RxLive algorithm no details are available. It seems that the

method performs traditional block matching on the micro images followed by strong filtering and

hole filling. Hog et al. [2017] extract a, what they call stereo focal stack of image pairs. Using this

stack of images, Hog et al. [2017] apply a standard stereo matching algorithm (Drazic and Sabater

[2012]) to find point correspondences and estimate a focus map based on these correspondences.

The results of Hog et al. [2017] are available for their own dataset as well as for the Raytrix

R11 dataset. Unfortunately, the dataset supplied by Hog et al. [2017] is not compatible with the

RxLive software. Hence, results are presented only for the respective combination of data and

algorithm. However, results for the RxLive algorithm based on the dataset of Hog et al. [2017]

can be found in their publication. Due to the same reason, quantitative results based on the

checkerboard dataset are only obtained for the method proposed by us and the RxLive algorithm.

The RxLive algorithm calculates, as the proposed method does, a map of virtual depth values

v. It is not obvious how the focus parameter gf of Hog et al. [2017] is connected to the virtual

depth v. However, in Appendix A.1 a proof is given for the fact that gf = v actually holds true

by definition.

8.2.1 Quantitative Results

The proposed algorithm as well as the RxLive algorithm, using three different settings, are applied

to the checkerboard dataset. The RxLive algorithm works on a regular sub-pixel grid. Hence, three

different sub-pixel resolutions were used for this algorithm. These are: RxLive(0.1) = 0.1 pixel,
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(a) our unfiltered depth map (b) our filtered depth map (c) depth map RxLive(0.25)

Figure 8.5: Virtual depth maps calculated for the checkerboard dataset exemplary for the object
distance zC1 = 1.2 m. (a) Unfiltered depth map calculated by our algorithm. (b) Filtered depth
map calculated by our algorithm. (c) Unfiltered depth map calculated by RxLive at a disparity
resolution of 0.25 pixel (RxLive(0.25)). The color range was set to 2 ≤ v ≤ 6.5. Due to the Galilean
configuration far objects result in a low virtual depth v (blue) and close objects in a high virtual
depth v (orange). Pixels without depth and outside the color range are marked in black.

RxLive(0.25) = 0.25 pixel, and RxLive(0.5) = 0.5 pixel. No post-processing is applied to the RxLive

algorithm.

In addition to the virtual depth v = z−1, our algorithm offers an inverse virtual depth variance

σ2
z . Thus, for this algorithm, in addition to the completely unfiltered depth map, a second depth

map is evaluated in which only those depth pixels are considered which have a variance σ2
z lower

than a certain threshold T (z), as defined in eq. (8.1).

σ2
z(xV ) < T (z) = β · z(xV )3 (8.1)

The threshold T (z) is chosen as a third order function of z, corresponding to the assumptions laid

out in Section 5.4. In eq. (8.1), β is just a scaling factor, which defines the point density of the

resulting depth map. In the experiments, a scaling factor β = 0.1 was chosen. Furthermore, the

depth map results after applying the filtering approach (presented in Section 5.6) are evaluated.

Figure 8.5, by way of example, shows the depth maps calculated for the object distance

zC1 = 1.2 m. Figure 8.5a and 8.5b show the unfiltered and filtered depth maps calculated by the

proposed algorithm while Figure 8.5c shows the depth map received from RxLive(0.25).

From Figure 8.5 one can already see that the outliers in our method are drastically reduced

in the filtered depth map, while most of the details are retained. Furthermore, one can see that

the depth map of RxLive(0.25) is significantly more sparse than the raw depth map resulting from

our algorithm. It seems that the outliers of RxLive(0.25), especially on the checkerboard plane,

are not statistically independent but occur in clusters.

Table 8.1 presents a complete list of statistics calculated for all algorithms based on the

checkerboard dataset. This table shows the depth pixel density, the empirical standard deviation

of the inverse virtual depth z, and the mean of the inverse virtual depth z, across the checkerboard

pattern respectively. The depth pixel density is defined as the ratio between the number of valid

depth pixels and the total number of pixels within the region of interest.

One can see that without removing any outliers our method has a higher depth pixel density

than the RxLive algorithm for all object distances. At the same time, the standard deviation



98 8. EXPERIMENTS – PROBABILISTIC LIGHT FIELD BASED DEPTH ESTIMATION

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

·104

virtual depth v

o
cc

u
rr

en
ce

zC1 = 1.2 m
zC2 = 3.1 m

(a) our algorithm (unfiltered)

2 3 4 5 6 7 8
0

0.5

1

·104

virtual depth v

o
cc

u
rr

en
ce

zC1 = 1.2 m
zC2 = 3.1 m

(b) RxLive (unfiltered)

Figure 8.6: Virtual depth histograms of unfiltered virtual depth maps. (a) Histograms of the
unfiltered virtual depth maps calculated by our algorithm for zC1 = 1.2 m and zC2 = 3.1 m. (b)
Histograms of the unfiltered virtual depth maps calculated by RxLive for zC1 and zC2.

of our algorithm is lower for all object distances. Introducing the threshold on the variance σ2
z

of course slightly reduces the pixel density. However, at the same time, the standard deviation

is significantly reduced. Applying the probabilistic filtering approach improves the standard

deviation by one order of magnitude with respect to the unfiltered one. Of course filtering on a

planar object does not offer any insight into the quality of the resulting depth map. However,

Figure 8.5 shows that the filter retains most of the details and seems to preserve edges quite

well. Furthermore, the following Section 8.2.2 will give more details about the performance of the

filtering process.

Figure 8.6 shows an example of the virtual depth histograms across the checkerboard target, for

our algorithm and RxLive(0.25), for the object distances zC1 = 1.2 m and zC2 = 3.1 m. Especially

for zC1 one can see that the outliers of the RxLive(0.25) have some systematic characteristics as it

was already visible in Figure 8.5c.

8.2.2 Qualitative Results

The algorithm of Hog et al. [2017] performs pixel-wise depth estimation for all pixels in the virtual

image. Hence, even for points which do not carry any information at all, an estimate is obtained.

This often results in implausible estimates, e.g. negative values. Thus, the estimates are limited

to a plausible range. In the following figures showing depth maps, black pixels represent pixels

which are either outside the virtual depth range or do not carry any information at all. For the

RxLive algorithm, all settings were set to “high” to obtain reproducible results. For some cases,

this might result in over-smoothed depth maps.

Figure 8.7 shows the results for our own recorded dataset. The figure shows the totally focused

images synthesized by our algorithm and the filtered depth maps of our method as well as the

RxLive algorithm. While the “Headphone” scene contains large textured regions, the “Desk”

scene has many homogeneous regions for which no stereo matching can be performed.

Figure 8.8 shows the results for the dataset of Hog et al. [2017]. All three scenes show a

small figure in front of a dark background. Hog et al. [2017] supply the raw data for all three
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Figure 8.7: Results for our own Raytrix R5 dataset. The figure shows, from left to right, the
totally focused image synthesized by our method, the filtered virtual depth map of our algorithm
and the refined virtual depth map of the RxLive algorithm. The color range (from blue to red)
was set to 2 ≤ v ≤ 12. Pixels without depth and outside the color range are marked in black.

scenes as well as a recorded white image. This white image which was recorded by mounting

a white balance filter in front the camera’s main lens. However, the recorded white image is

quite underexposed and therefore the resulting vignetting-corrected and demosaiced images are

quite noisy. For the “Lion” one can see in Figure 8.8Bb that there are many outlying estimates

around the head of the lion. Furthermore, by our algorithm no depth estimates were obtained

at the back of the lion, even though there are textured image regions. The reason for this can

be seen in Figure 8.9, which shows the recoded raw image for this dataset. From the close-up

(Fig. 8.9b), one can see that the micro lenses actually produce micro images which are mirrored

with respect to the real scene. While in the real scene the edge produced by the lion’s back goes

from left (background) to right (foreground), the edge in the micro images runs in the opposite

direction. This indicates that for this region, the plenoptic camera operates in the Keplerian

mode, rather than in the Galilean mode. This means that the main lens image is formed in front

of the MLA and is captured as a real image by the micro lenses. This case, which results in

negative virtual depths, is not covered by our algorithm. Furthermore, Raytrix cameras are not

designed to perform in the Keplerian mode and therefore will produce out-of-focus micro images.

The algorithm of Hog et al. [2017] seems to be able to deal with this case. Though, as can be

seen from the results in their publication, it also produces obviously erroneous estimates.

Finally, Figure 8.10 and Figure 8.11 show the results for the R11 dataset supplied by the

company Raytrix. While Figure 8.10 shows the synthesized totally focused images of our method
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Figure 8.8: Results for the Raytrix R5 dataset of Hog et al. [2017]. The figure shows, from left to
right, the totally focused image synthesized by our method, the refined virtual depth map of our
algorithm and the virtual depth map (or focus map) of Hog et al. [2017]. The color range (from
blue to red) was set to 2 ≤ v ≤ 6. Pixels without depth and outside the color range are marked
in black.



8.3. CONCLUSION 101

(a) processed raw image (b) marked subsection of (a)

Figure 8.9: Processed raw image of the “Lion” dataset of Hog et al. [2017]. (a) Complete image.
(b) Zoomed subsection of (a). At the back of the lion the micro lenses produces mirrored micro
images, as one can see at the transition from the lion to the background. This indicates that here
the micro images were formed by the Keplerian mode, which means that the main lens image was
formed in front of the MLA.

along with our refined depth maps as well as the depth maps of Hog et al. [2017], Figure 8.11

shows the unfiltered depth maps of our method and the RxLive algorithm, as well as the refined

depth maps of the RxLive approach.

Figure 8.12 shows once more the results of our algorithm for the “Tiger” dataset of Hog

et al. [2017]. While Figure 8.12b shows the refined virtual depth map, Figure 8.12c shows the

corresponding inverse virtual depth variance σ2
z in a logarithmic scale. The blue regions represent

a low variance, while red regions correspond to high variances. The figure shows quite clearly

that our algorithm is very certain about its estimates in regions of high intensity gradients. This

is the case, for instance, around the nose and the eyes of the tiger, where dark spots are on a

bright ground, or at the stripes on the tiger’s back. Instead, in regions of less texture such as

the floor, the algorithm is quite uncertain about its estimates. One also can see that the average

variance increases with increasing distance (decreasing virtual depth). This is due to smaller

stereo baselines as well as fewer stereo observations.

In the Figures 8.7, 8.8, and 8.10 the left column shows the totally focused images synthesized

by our method for the respective dataset. This implementation produces grayscale images but

can be easily extended to the calculation of color images.

8.3 Conclusion

Regarding the quantitative numbers which are obtained from the checkerboard dataset, our

method significantly outperforms the RxLive algorithms. However, as these numbers represent

only depth estimates from a planar surface, no statement can be made about the overall quality

of the depth map. Nevertheless, from the histograms in Figure 8.6 one can see that the unfiltered

depth estimates of our algorithm are more symmetrically distributed than the results from the

RxLive algorithm and have a much lower variance.



102 8. EXPERIMENTS – PROBABILISTIC LIGHT FIELD BASED DEPTH ESTIMATION
(A

)
A

n
d
re

a
(B

)
F

o
re

st
(C

)
P

il
o
t

(D
)

W
a
tc

h

(a) our totally focused image (b) our filtered depth map (c) depth map Hog et al. [2017]

Figure 8.10: Results for the Raytrix R11 dataset. The figure shows, from left to right, the totally
focused image synthesized by our method, the refined virtual depth map of our algorithm and
the virtual depth map (or focus map) of Hog et al. [2017]. The color range (from blue to red) was
set to 2 ≤ v ≤ 6 for the first three datasets and to 2 ≤ v ≤ 14 for the “Watch” dataset. Pixels
without depth and outside the color range are marked in black.
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Figure 8.11: Further results for the Raytrix R11 dataset. The figure shows, from left to right,
the unfiltered virtual depth map of our algorithm, the unfiltered virtual depth map of the RxLive
algorithm and the refined virtual depth map of the RxLive algorithm. The color range (from
blue to red) was set to 2 ≤ v ≤ 6 for the first three datasets and to 2 ≤ v ≤ 14 for the “Watch”
dataset. Pixels without depth and outside the color range are marked in black.
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(a) totally focused image (b) virtual depth map (c) inverse virtual depth variance

Figure 8.12: Estimation uncertainty obtained by our depth estimation algorithm. (a) Totally
focused image, (b) virtual depth map, (c) logarithmic inverse virtual depth variance ln(σ2

z). In
(c) blue represents low variances while red shows high variances.

Perhaps the first thing one recognizes when comparing the depth maps is that our algorithm

does not supply a complete depth map at any stage of refinement. The algorithm by Hog et al.

[2017] instead calculates a dense, pixel-wise depth map, while the RxLive algorithm aims to

fill holes entirely in a refinement stage. Even though the dense depth maps might look more

appealing, they are not beneficial for the purpose of camera tracking. A plenoptic camera is a

passive sensor, which means that no depth can be obtained for homogeneous regions. For these

regions depth values are only obtained when the depth map is constrained to be smooth. However,

there is no guarantee that this smoothness is also fulfilled by the recorded scene. For the purpose

of camera tracking, it is, in fact, preferable to have undefined regions rather than wrong depth

estimates.

In some regions, the filled and refined depth maps calculated by the RxLive software show

large clusters of false estimates (see Figures 8.7 and 8.11). This seems to be especially true for

regions with discontinuities in depth and in regions of low texture. The algorithm proposed in

this thesis seems to perform better with regard to those regions. Based on the foreground to

background segmentation in our filtering method (Section 5.6.2) discontinuities in the depth map

are preserved very well. Furthermore, noisy estimates in low textured regions are reliably detected

as outliers.

Comparing the raw depth maps of the method proposed in this thesis with the RxLive ap-

proach (Figure 8.11) shows that the proposed method performs significantly better at object

boundaries. This is probably due to the 1D pixel patch which is used in our algorithm compared

to the 2D patch used in the RxLive approach. Our algorithm obtains depth estimates for the

faces of persons, which are quite low textured regions. However, it is interesting to notice that

our algorithm does not obtain any depth for the black hair in the “Andrea” and “Forest” dataset.

This might due to the fact that the raw data is stored as 8 bit grayscale images after performing

vignetting correcting and debayering. Hence, the corresponding intensity differences might fall

below the quantization threshold.

The algorithm of Hog et al. [2017] produces much smoother and, as previously mentioned,

dense depth maps. However, it produces large clusters of outliers in certain regions. Wrong

estimates are obtained for specular reflecting surfaces, as can be seen in the case of the eyes in the

“Andrea” dataset and the steering wheel in the “Pilot” dataset. False estimates are also visible

along the stripes in the “Tiger” dataset as well as on the whisker in the “Lion” dataset. The
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method of Hog et al. [2017] seems to also produce false estimates for very close regions, as can be

seen in the “Watch” dataset. On explanation for this effect could be that here, due to the very

high virtual depth (v ≈ 13), all micro images are out of focus which in turn creates problems for

the algorithm.

However, in the end one must state that both the method by Hog et al. [2017] as well as

our method have their advantages. The depth maps of Hog et al. [2017] have less stochastic

noise, while our method produces fewer outliers. With respect to the task of camera tracking, an

algorithm can deal much better with stochastic noise as long as it is symmetrically distributed

and uncorrelated.

Another advantage of our algorithm compared to the others is that an uncertainty measure is

obtained for each estimate (see Figure 8.12) which allows for weighting estimates in a probabilis-

tically correct manner.





9 Experiments – Plenoptic
Camera Calibration

9.1 Data

In Chapter 6 plenoptic camera calibration algorithms at different stages of complexity were pre-

sented. Depth conversion functions were defined (Section 6.1), which can be calculated based

on a set of range measurements using a planar target. Furthermore, complete plenoptic camera

models at different levels of abstraction were presented (Section 6.2) which can be solved in a

bundle adjustment (Section 6.3).

A set of images at different object distances was recorded to estimate the depth conversion

functions. Furthermore, recordings from a 3D calibration target were made to perform bundle

adjustment based calibrations.

Since basically all state-of-the-art algorithms rely on the recordings of a planar calibration

target, in addition a set of images from a planar checkerboard pattern was recorded to compare

our approach to the one presented by Bok et al. [2014, 2017].

All experiments were performed with a Raytrix R5 camera (image resolution:

2048 pixel× 2048 pixel, sensor size: 11.264 mm× 11.264 mm, diameter of micro-lenses: ∼23 pixel,

aperture: f/2.8). For some experiments datasets were recorded using various main lens focal

lengths for the plenoptic camera: fL = 12 mm, fL = 16 mm, and fL = 35 mm.

9.1.1 Series of Range Measurements

A series of range measurements was recorded based on the setup shown in Figure 9.1a. As shown

in the figure, a checkerboard pattern is placed perpendicularly to the optical axis of the plenoptic

camera’s main lens at various distances. The distance to the pattern is measured from a reference

point behind the camera using a laser rangefinder (LRF). For the plenoptic camera, a main lens

focal length fL = 35 mm was used.

For this series, the checkerboard pattern shown in the figure was recorded at 48 different

object distances in the range from zC = 0.85 m to zC = 5.02 m. All object distances are more

or less uniformly distributed across the entire range, while the spacing between two distances

ranges from 5 cm to 10 cm. Since the pattern on the calibration target has 54 reference points,

54 measurement points are received for each recorded target.

Even though the checkerboard pattern was precisely aligned to the plenoptic camera, one

cannot guarantee that the optical axis of the plenoptic camera’s main lens stand precisely per-

pendicularly on the checkerboard. Hence, the range measurements obtained by the LRF are

refined as described below.

One is able to detect the checkerboard corners in the totally focused image of the plenoptic

camera and one knows their position on the target, with the exception of a scaling factor s.

107
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(a) range series setup (b) 3D calibration target

Figure 9.1: Setups for plenoptic camera calibration. (a) Setup to obtain a series of range measure-
ments. A checkerboard target is moved along the optical axis of the plenoptic camera. The target
distance is measured by a laser rangefinder (LRF). (b) 3D calibration target used to perform
camera calibration based on a bundle adjustment. The target consists of unordered, uniquely
coded and uncoded calibration markers.

Thus, the relation between coordinates on the checkerboard xCB = [xCB, yCB, zCB]T and the

undistorted virtual image coordinates xV = [xV , yV ]T can be defined as given in eq. (9.1). For

the sake of simplification, the totally focused images of the plenoptic camera are considered to

conform to those of a pinhole camera.

η

xVyV
1

 =

f 0 cx
0 f cy
0 0 1

 · [sR t
]
·


xCB
yCB
zCB

1

 (9.1)

The matrix R ∈ SO(3) defines the 3D rotation and t ∈ R3 the 3D translation from checkerboard

coordinates to camera coordinates. Since the intrinsic camera parameters (f , cx, and cy) are

known, based on the undistorted recorded image point xV , the matrix R and the vector with

respect to the scaling factor t̃ = t · s−1 can be estimated. For the case that the checkerboard

coordinates xCB are defined with the x-y-plane being on the checkerboard plane (zCB = 0), the

third coefficient of the translation vector equals the object distance [t]3 = zC . Between the scaled

object distance z̃C = zC · s−1 and the target distances measured by the LRF dLRF , the following

linear relation can be defined:

dLRF = s · z̃C + z0. (9.2)

Both the scaling factor s and the offset z0 (between LRF and camera) are constant and thus can

be estimated based on all measured target distances.

9.1.2 Recordings of 3D Calibration Target

Figure 9.1b shows the 3D target which is used for our bundle adjustment based calibration

approaches. A 3D target is used, since it results in a better conditioned optimization in comparison
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Figure 9.2: Raw image samples of a checkerboard pattern used for the calibration method of Bok
et al. [2017].

to a 2D target, for instance. Our calibration target consists of an unordered set of markers. For all

of these markers, the positions in the 3D space are estimated during the calibration and therefore

the calibration does not rely on any model assumptions. The only model assumption which is

made on the calibration target is that six distances between certain marker points are known1.

In this way, the scale of the calibration target can be retrieved. Since multiple of these reference

distances are used, possible errors in the distances will level each other out.

Images of the calibration target were recorded using three different main lenses with different

focal lengths (fL = 12.5 mm, fL = 16 mm, fL = 35 mm). For each focal length between 70 and

94 images were recorded from views that are as different as possible from each other. The images

were recorded in a distance of approximately 0.3 m up to 4.5 m in front of the calibration target.

Our calibration approaches are also supposed to be compared to other algorithms. For this

purpose, two further sets of images were recorded based on the fL = 16 mm main lens focal length.

On the one hand, another set based on our calibration target (Figure 9.1b) and on the other hand

a set of a planar checkerboard pattern were recorded. These images of the checkerboard pattern

conform to the type of data used by Bok et al. [2017]. Figure 9.2 shows sample images of the

checkerboard pattern. For both targets a set of 64 images was recorded which will be used to

perform a statistical evaluation of our calibration approaches in comparison to the one by Bok

et al. [2017].

9.2 Results

Based on the recorded datasets different experiments were performed. Section 9.2.1 presents the

results of the depth conversion functions which were introduced in Section 6.1. In Section 9.2.2

the bundle adjustment based approaches are investigated. The results show how the calibration

behaves on one side for the different camera models and on the other side for different camera

parameters (i.e. different main lenses). The presented results also show the depth accuracy of

the camera by using different models and camera parameters. Furthermore, the results of the

bundle adjustment based calibration approaches presented in this thesis are compared to the

results obtained by the method of Bok et al. [2017]. We explicitly show how the consideration of

squinting micro lenses in the camera model affect the entire projection model.

1Distances are obtained from accurate scale standards mounted on the calibration target.
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Figure 9.3: Estimated depth conversion functions. Based on a series of range measurements, the
physical model, the behavioral model and two polynomials are fitted to the data. (a) estimated
functions using only five distinct object distances. (b) estimated function using only the lower
half of the range measurements.

9.2.1 Depth Conversion Functions

Based on the recorded series of range measurements different experiments were performed to

evaluate the depth conversion functions presented in Section 6.1.

In a first experiment, only the measured object distances of five recorded targets were used

for calibration. This experiment was performed to evaluate whether a low number of calibration

points is sufficient to estimate the respective function reliably.

In a second experiment, only the measured points with an object distance of less than 2.9 m

were used for calibration. In this experiment, the objective was to investigate how strong the

estimated functions drift from the measured data outside the range of calibration.

Figure 9.3a shows the results corresponding to the first experiment. The red dots represent the

calibration points of the five object distances which were used for calibration. The gray dots are

the remaining measured points which were not used for calibration. As one can see, the physical

model as well as the behavioral model are almost congruent. Both curves match the measured

distances very well over the entire range of 0.85 m to 5.02 m. For the polynomials of orders three

and five however, five object distances are not sufficient to approximate the conversion function

from virtual depth v to object distance zC accurately. Both functions fit to the points used for

calibration but do not reflect the underlying model properly between the calibration points.

Figure 9.3b shows the results of the second experiment. Again, the points used for calibration

are represented as red dots and the gray dots represent the remaining points. Both model based

calibration approaches are, again, almost congruent and describe the measured distances in the

range of calibration up to 2.9 m very well. In this range the estimated polynomials also fit the

measured distances very well. Nevertheless, for object distances larger than 2.9 m especially the

third-order, but also the fifth-order polynomial, drift from the measurements. The functions of

both model-based approaches still match the measured values very well up to an object distance

of 5.02 m. Nevertheless, the physical model still fits the data slightly better than the behavioral
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model which has one more degree of freedom. The results show that both model-based functions

are able to convert the virtual depth to an object distance even outside the range of calibration

points with good accuracy.

9.2.2 Bundle Adjustment based Plenoptic Camera Calibration

Based on the datasets recorded from our 3D calibration target different experiments were per-

formed. This section presents the intrinsic parameters for all introduced camera models estimated

on the basis of the datasets described in Section 9.1.2. Furthermore, the accuracy of the 3D points

of the calibration target which are estimated in the bundle adjustment is measured. In addition,

the measurement accuracy of the plenoptic camera for the different main lens focal lengths and

for different model parameters is evaluated. The robustness of the calibration approach proposed

in this thesis is compared to the method of Bok et al. [2017]. For the sake of simplicity, numbers

are assigned to the various camera models. These numbers are as follows:

1. virtual image projection model (Section 6.2.1)

2. micro images projection model (Section 6.2.2)

3. extended micro images projection model (Section 6.2.3)

A fourth model is defined which is not taken into consideration for all experiments. Instead, this

model is used to show the effect of applying a distortion model to micro image points as done by

model #3. Hence, this fourth model is defined as follows:

4. micro images projection model which considers squinting micro lenses but no pixel distortion

Estimated Parameters

For each of the three lenses the camera parameters are estimated and the reprojection error as

well as the accuracy of the 3D points estimated during the bundle adjustment are evaluated.

This allows to assess the validity of the camera models and the robustness of the calibration

approaches.

Table 9.1 shows the estimated intrinsic parameters for all three lenses and the corresponding

reprojection errors using the three models introduced in Section 6.2. Here, sx and sy are the root

mean square (RMS) values of the reprojection error in the x- and y-coordinate respectively.

From Table 9.1 one can see that for all three main lenses the reprojection errors are significantly

smaller than one pixel. This confirms the validity of the complete projection model. It seems that

the reprojection error is correlated with the main lens focal length fL. Another indication for the

validity of the defined projection model is that the estimated main lens focal length fL is quite

close to the nominal focal length of the respective lens. In addition, the estimated parameter B

is similar for all three lenses. The parameter B is a constant of the plenoptic sensor and therefore

does not depend on the main lens.

To evaluate the accuracy of the estimated 3D object coordinates, the point clouds received from

the bundle adjustment for all three main lenses are registered with a reference point cloud using

the Iterative Closest Point (ICP) algorithm (Besl and McKay [1992]). The reference point cloud is

received from a bundle adjustment using a standard monocular camera (standard SfM approach

on the basis of the calibration markers). For this a professional photogrammetric measurement

software was used to estimate a highly accurate reference point cloud. Table 9.2 shows the root
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Model Lens
fL bL0 B cLx cLy sx sy

[mm] [mm] [mm] [pixel] [pixel] [pixel] [pixel]

#1
12.5 mm 12.619 11.702 0.389 1006.2 1042.7 0.093 0.092

16 mm 16.277 15.427 0.380 1018.2 1053.9 0.076 0.078
35 mm 34.837 33.968 0.366 1022.4 1034.1 0.079 0.084

#2
12.5 mm 12.614 11.787 0.353 1003.3 1044.0 0.213 0.221

16 mm 16.273 15.482 0.357 1015.7 1056.3 0.123 0.126
35 mm 34.869 33.993 0.367 1023.8 1042.3 0.063 0.067

#3
12.5 mm 13.181 12.209 0.399 1006.5 1041.5 0.202 0.208

16 mm 16.748 15.893 0.376 1018.7 1054.2 0.108 0.109
35 mm 35.368 34.471 0.370 1022.0 1031.0 0.058 0.062

Table 9.1: Estimated intrinsic camera parameters and reprojection errors for three different main
lens focal lengths.

Lens
12.5 mm 16 mm 35 mm

#1
RMSE 0.282 mm 0.308 mm 0.333 mm
MAE 2.160 mm 2.345 mm 2.371 mm

#2
RMSE 0.290 mm 0.301 mm 0.332 mm
MAE 2.124 mm 2.352 mm 2.409 mm

#3
RMSE 0.282 mm 0.310 mm 0.335 mm
MAE 2.147 mm 2.339 mm 2.399 mm

Table 9.2: Accuracy of 3D object coordinates estimated during the bundle adjustment.

mean square error (RMSE) and the maximum absolute error (MAE) between the point clouds

received from the plenoptic camera based bundle adjustment and the reference point cloud. For

all three main lenses a RMSE of the point cloud of less than 1 mm was measured. The MAE is

less than 2.5 mm for all three lenses.

Depth Accuracy of the Plenoptic Camera

In this section the depth accuracy of the plenoptic camera with respect to the parameters received

from the bundle adjustment is evaluated. The depth accuracy is evaluated only based on model

#1, since this is the only model for which the virtual depth can be estimated beforehand. For all

other models, which define the projection directly to the micro images, the virtual depth would

have to be estimated after the calibration. However, the results are expected to be similar to the

ones presented here.

From the bundle adjustment the camera orientation for each recorded image is obtained.

Furthermore, the precise 3D positions of all markers on the calibration target are known. To

obtain the depth accuracy, a marker point detected in the totally focused image is projected to

the object space, using the intrinsic camera model and the estimated virtual depth. In the object

space, the error along the zC domain between the projected and the real marker is calculated.

Statistical values are calculated on the basis of all points within a range of ±10 cm around the

object distance zC of interest.

Figure 9.4a shows the depth accuracy while choosing various depth distortion models. As

one can see, the accuracy is drastically improved when a depth distortion model is introduced.
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Figure 9.4: Depth accuracy of a focused plenoptic camera for different model parameters and
camera setups. (a) Depth accuracy for various depth distortion models. (b) Depth accuracy with
and without modeling a tilted plenoptic sensor with respect to the main lens. For both (a) and
(b) the fL = 16 mm dataset was used. (c) Depth accuracy for various main lens focal lengths.
Here, the complete model as described in Section 6.2.1 was used.
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fL bL0 B cLx cLy fx fy K1 K2[mm] [mm] [mm] [pixel] [pixel] [pixel] [pixel]

#1
mean 16.30 15.34 0.441 1019 1047 2869 2869 2.100 552.6
st. dev. 0.016 0.068 0.033 0.726 0.434 6.372 6.372 0.020 47.13
rel. std. 0.10% 0.44% 7.41% 0.07% 0.04% 0.22% 0.22% 0.97% 8.53%

#2
mean 16.28 15.53 0.358 1015 1047 2889 2889 2.039 689.4
st. dev. 0.003 0.018 0.007 0.708 0.395 2.071 2.071 0.007 14.93
rel. std. 0.02% 0.12% 1.98% 0.07% 0.04% 0.07% 0.07% 0.32% 2.17%

#3
mean 16.93 15.76 0.509 1019 1048 2959 2959 2.195 504.9
st. dev. 0.040 0.024 0.023 0.510 0.452 0.241 0.241 0.015 23.55
rel. std. 0.24% 0.15% 4.58% 0.05% 0.04% 0.01% 0.01% 0.67% 4.66%

#4
mean 16.68 15.93 0.350 1015 1047 2960 2960 2.089 740.3
st. dev. 0.011 0.008 0.007 0.708 0.395 0.589 0.589 0.008 14.70
rel. std. 0.07% 0.05% 1.93% 0.07% 0.04% 0.02% 0.02% 0.38% 1.99%

Bok
et al.

mean – – – 1000 1049 2963 2963 1.925 767.4
st. dev. – – – 13.65 11.05 6.406 6.577 0.094 20.99
rel. std. – – – 1.37% 1.05% 0.22% 0.22% 4.91% 2.74%

Table 9.3: Robustness of the estimated intrinsic camera parameters using a main lens focal length
of fL = 16 mm.

However, one can also see that the model proposed by Heinze et al. [2016] supplies an accuracy

similar to that of the model defined by Johannsen et al. [2013], even though it contains only three

rather than five parameters.

Figure 9.4b shows how the depth accuracy is improved when the effect of a plenoptic sensor

tilted with respect to the main lens is modeled. However, this model seems to have less impact

on the depth accuracy than the depth distortion model. The estimated tilting angle is only about

0.25°.

Figure 9.4c shows the depth accuracy using various main lens focal lengths. Here, the complete

model as described in Section 6.2.1 was used. As expected, the depth accuracy of the camera

significantly increases with increasing focal length. In Zeller et al. [2016b], it was shown that the

improvement is proportional to f2
L as long as zC � fL holds.

Calibration Robustness

Another important factor for a calibration approach is the robustness of the estimated model

parameters. Here, our calibration approaches are compared to the one presented by Bok et al.

[2017] using the second dataset presented in Section 9.1.2. The method of Bok et al. [2017] also

defines the complete projection from object space to the recorded micro images on the sensor.

While the overall projection from object space to the micro images is quite similar to the model

presented by us, we mainly hope to prove that the robustness of the calibration significantly

benefits from the 3D calibration target in comparison to the planar checkerboard used by Bok

et al. [2017].

To evaluate the robustness of the calibration approaches, the calibration was performed for

each method 10 times by randomly picking a set of 20 images out of the complete collection of

64 images. The means and the standard deviations of all intrinsic parameters are given for all

methods in Table 9.3.
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The parameters fx, fy, K1 and K2 need not be calculated in our calibration approaches.

However, for comparison purposes these parameters were calculated (numbers in italic font) on

the basis of our calibration results using the definitions given by Bok et al. [2017].

If one compares only the camera models proposed in this thesis, one can see that the virtual

image based model (#1) has the most problems in reproducing the estimation of the distance B

between sensor and MLA. This is very likely due to the fact that in this model the parameter B

can only be estimated from the noisy virtual depth estimates, while the virtual image coordinates

in x and y direction are basically independent of these parameters. The models based on the

projection to the micro images are better suited to estimate these parameters, since each micro

image point adds information. The parameter B is also less robust for model #3 in comparison

to model #2. Due to the additional pixel distortion, there is more variability in the model, which

makes the estimation of B less robust. This actually can be improved by adding more views, with

more variations in depth, to the bundle adjustment. Table 9.1, for instance, shows that B was

estimated quite reliably for all three lenses using model #3.

For the purpose of comparison, model #4 was added, in which the squinting micro lenses

are considered, as in model #3 but not the pixel distortion on the sensor. As one can see from

Table 9.3, for this model the parameters are estimated with a robustness similar to #2. However,

it will be shown below why it still makes sense to choose model #3 over model #4.

Furthermore, the results for the method of Bok et al. [2017] are shown, which also defines the

projection on the micro images but performs calibration based on a planar checkerboard pattern.

From Table 9.3, one obtains that all models proposed thesis, except for the parameter K2, show

parameter variations which are by an order of magnitude smaller than those from the methods of

Bok et al. [2017]. A scattering similar to that of the parameter B is received for K2, since both

parameters are highly correlated (see Bok et al. [2017] for definition).

There is quite a large difference of the estimates in the intrinsic parameters fx, fy, K1 and

K2, when comparing the methods under examination. Our method estimates fx and fy to have

the same value, since the pixels are considered to be square. This is confirmed by the estimates

of the method Bok et al. [2017]. There do not exist any absolute reference values and thus one

cannot make any statement about the correctness of these values. All methods resulted in similar

reprojection errors of less than 0.2 pixel which confirms the validity of all models.

Up to this point, none of the presented results explain why it is preferable to choose model #3

(with pixel distortion) instead of model #4 (without pixel distortion). The reason for choosing

model #3 is shown in Figure 9.5. For the case that the distortion model is only applied to the

micro image centers and not to the pixels in the respective micro images, the reprojection errors

increase towards the image corners, as shown in Figure 9.5a. If additional pixel distortion is

considered, the reprojection errors are more homogeneously distributed over the complete image,

as shown in Figure 9.5b. However, Figure 9.5b still shows a slightly increasing error towards the

bottom left and top right corner, which might be due to the slightly titled sensor, which was not

considered in the model.

Effect of Squinting Micro Lenses

The previously presented calibration results did not point out the effect of correcting the micro

lens centers with respect the micro image centers, which was called the squinting of the micro

lenses. This effect can only be seen from the estimated extrinsic orientation of the plenoptic

camera. In Figure 9.6 the relative translations from the extrinsic orientations received by model

#2 (without squinting micro lenses) to the extrinsic orientations received by model #3 (with

squinting micro lenses) are drawn. As one can see from the figure, along the x and y domain
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Figure 9.5: Reprojection error map with and without the consideration of pixel distortion. The
maps represent the distribution of the reprojection error over the complete image. (a) Reprojec-
tion error map for model #4 where no pixel distortion is considered. (b) Reprojection error map
for model #3 where both micro lens center and pixel distortion are considered.

the estimated camera position is equivalent (with the exception of some noise) for both models.

However, model #3 results in a camera closer to the object than model #2. This shift, of course,

depends on the intrinsic camera parameters as they also define the amount of squinting.

Unfortunately, there is no possibility of measuring the correct position of the camera (which is,

in fact, the position of the main lens’ principal plane). However, the effect, that the measurements

of the plenoptic camera have a constant negative offset with respect to the ground truth, has

been observed by Johannsen et al. [2013] and Heinze et al. [2016]. Both measure the ground truth

relative to the sensor plane.

Heinze et al. [2016] explain this effect with the fact that they use a thin lens model rather

than a thick lens. This explanation is inconsistent, as disregarding the extent of a real lens would

result in measurements of the object distance with respect to the position of the sensor plane,

which in turn are smaller than the real distances and not larger, as is, in fact, the case here.

As mentioned previously, disregarding the thickness of the real lens is not actually an issue

with respect to camera tracking, as the object sided principal plane of the main lens will still be

in the correct position.

9.3 Conclusion

In Chapter 6 a variety of plenoptic camera models and different calibration approaches was

presented. Those were extensively evaluated in the previous sections.

The depth conversion functions presented in Section 6.1 can be used to convert the virtual

depths estimated from the images of a focused plenoptic camera into metric object distances. The

two model-based approaches proposed in this thesis are far more accurate and better suited for

this purpose than the polynomial based function which was defined as reference. Thus, for the

model-based approaches, only a small number of calibration points is needed and yet they are

still valid beyond the range of calibration data. In combination with a standard pinhole camera

model, these depth conversion functions may be sufficient for rough 3D measurement applications.

However, the pinhole camera model only approximates the model of a focused plenoptic camera
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Figure 9.6: Position offset between camera model #2 (without squinting micro lenses) and model
#3 (with squinting micro lenses). (a) Relative offset on the fL = 35 mm dataset. (b) Relative
offset on the fL = 35 mm dataset.

well for object distances which are significantly larger than the focal length. Furthermore, the

introduced depth conversion functions do not consider any depth distortion, which limits the

accuracy of the converted depth map.

For accurate 3D reconstruction purposes a complete intrinsic model of the plenoptic camera

is needed. Essentially two different types of camera models were presented. In the first model the

reconstructed virtual image is considered to be more or less the image of a RGB-D camera, which

supplies a totally focused intensity image and a virtual depth map from the same perspective. The

second type directly models the projection on the micro images. Both models supply accurate and

plausible results. However, for the virtual image based model, in addition to lateral distortion,

a depth distortion model has to be defined. For the micro images based model depth estimation

can instead be performed based on already corrected micro images, which results in undistorted

depth estimates. However, due to the reason that the image distortion is corrected beforehand,

the regular grid of the MLA is lost.

A major advantage of the micro images based models is that they preserve the structure

presented in Section 4.1. Therefore, the micro images based models enable plenoptic camera based

multiple view geometry, as described in Section 4.2. To preserve the structure from Section 4.1,

the fact that the plenoptic sensor might by tilted with respect to the main lens was neglected.

However, the tilting angles estimated by model #1 are quite small. Furthermore, the error made

in the model is compensated for quite well by the remaining parameters, as the reprojection error

map in Figure 9.5b shows. Another advantage in comparison to the virtual image based models

is that the micro images based models are estimated more robustly, as the results in Table 9.3

show.

In contrast to all previously published methods, the bundle adjustment based calibration

approaches proposed in this thesis use a 3D target instead of a planar one. This, in turn, makes

the proposed calibration approaches more robust than the previous methods.

Another crucial difference is that we were able to point out that the micro lens centers are,

in fact, not equivalent to the micro image centers, which can be estimated from a white image,

as has been done in most previous publications. This misalignment of the micro lens centers
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results in a bias in the camera position with respect to the real one. While this bias has also been

observed in previous publications, it had not been correctly interpreted until now.

Finally, it was pointed out that for the purpose of plenoptic camera based VO model #3,

which performs projection directly on the micro images while simultaneously considering the

squinting micro lenses, is the most suitable model and was used for the experiments presented in

Chapter 10.



10 Experiments – Full-Resolution
Direct Plenoptic Odometry

10.1 Data

Currently, there are no public datasets available for plenoptic camera based visual odometry (VO).

The few existing algorithms (Dansereau et al. [2011]; Dong et al. [2013]) were only tested on very

simple and short sequences. Our goal is to evaluate the versatility of plenoptic VO algorithms and

rank these algorithms with respect to methods based on other sensors (e.g. monocular or stereo

cameras). Therefore, a new dataset was acquired by us to evaluate the DPO algorithms presented

in this dissertation. There already exists a variety of different VO algorithms for monocular and

stereo systems. Since all the systems are intended to perform robust tracking and mapping, we are

of the opinion that plenoptic camera based algorithms also have to compete with those existing

methods.

10.1.1 Data Acquisition Setup

To be able to compare plenoptic with stereo or monocular algorithms, a handheld platform was

developed. On this platform a plenoptic camera and a stereo camera system are assembled. This

platform is shown in Figure 10.1.

Figure 10.1: Handheld platform to acquire time synchronized image sequences from a focused
plenoptic camera and a stereo camera system.

119
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plenoptic camera stereo system

cameras 1 2
pixel size 5.5 µm 5.3 µm
resolution 2048× 2048 1280× 1024
color channels 3 1
focal length 16 mm 4 mm
aperture f/2.8 f/1.8
stereo baseline – 100 mm

Table 10.1: Camera specifications for the plenoptic camera and the stereo camera system.

The stereo camera system is based on two monochrome, global shutter, industrial cameras by

IDS Imaging Development Systems GmbH (model: UI-3241LE-M-GL). On both cameras, a lens

from Lensation GmbH (model: BM4018S118) with 4 mm focal length is mounted. Furthermore,

the stereo system has a baseline distance of 100 mm.

The utilized plenoptic camera is a R5 by Raytrix GmbH. This camera is based on a xiQ sensor

from Ximea GmbH (model: MG042CG-CM-TG). The xiQ is also a global shutter, industrial grade

sensor. To achieve a suitable trade-off between a wide FOV and a high angular resolution of the

captured light field, a main lens with focal length fL = 16 mm from Kowa (model: LM16HC) was

mounted on the camera. Table 10.1 lists all important specifications for the plenoptic camera and

the stereo camera system.

To receive synchronized image sequences from all three cameras, one camera of the stereo

systems runs in master mode and generates a signal which in turn triggers the other two cameras

(second camera of the stereo system and plenoptic camera) running in slave mode. To record

the data, all three cameras are connected to a single laptop. Using this platform, one is able

to record synchronized image sequences for all three cameras running at the maximum image

resolution and 8 bit quantization with frame rates of more than 30 fps. Because of the small FOV,

the images of the plenoptic camera in particular are affected by motion blur. To keep the motion

blur in an acceptable range, for all cameras the exposure time is upper bounded at 8 ms. Below

this boundary, the automatic exposure adjustment of the respective camera controls the exposure

time1.

10.1.2 A Synchronized Stereo and Plenoptic Visual Odometry Dataset

Based on the platform presented in Section 10.1.1, a synchronized dataset was recorded for the

quantitative comparison of plenoptic and stereo VO systems. The inspiration for this dataset

was taken from the Benchmark for monocular VO presented by Engel et al. [2016]. Especially for

long, large scale trajectories, it is impossible to obtain reference measurements which are accurate

enough to serve as ground truth. Hence, guided by the idea of Engel et al. [2016], all sequences

in the dataset were performed as a single very large loop, for which beginning and end of the

sequence capture the same scene.

For all recorded sequences geometric camera parameters and vignetting data for both the

stereo camera system and the plenoptic camera are supplied. Furthermore, for each sequence,

reference poses are obtained from the loop closure between beginning and end. This loop closure

information can be used to measure the tracking accuracy of a certain algorithm.

1For the stereo cameras, automatic exposure adjustment is only performed for the master (left) camera, while
the slave (right) camera adopts the master setting.
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Geometric Camera Calibration

For the VO dataset the plenoptic camera was calibrated exactly as described in Section 6.3.3.

Here, the most complete model, which considers micro lens center correction (squinting of micro

lenses) as well as pixel distortion on the sensor, as described in Section 6.2.3, is applied. For the

applied distortion model, two radial symmetric parameters (A0, and A1) and tangential distortions

are considered. From the calibration is resulted that using only two radial symmetric distortion

parameters is sufficient to accurately define the lens distortion.

While most monocular and stereo datasets perform camera calibration based on a planar

calibration target, stereo camera calibration was performed based on the 3D target presented in

Section 9.1.2 as well, due to the same reasons as for the plenoptic camera. For the two monocular

cameras in the stereo setup, the pinhole camera model as given in eq. (10.1) is defined.

η

xIyI
1

 =

fx 0 cx
0 fy cy
0 0 1

 ·
xCyC
zC

 (10.1)

In contrast to the plenoptic camera model, different focal lengths (fx, fy) in x- and y-direction

are taken into account. Thereby, the camera model us able to deal with rectangular, instead of

squared, sensor pixels.

Lens distortion is applied on normalized image coordinates as given in eq. (10.2).

xId =

[
xId
yId

]
=

[
fx(x+∆xdist) + cx
fy(y +∆ydist) + cy

]
with x =

xC
zC

and y =
yC
zC

(10.2)

Due to the much larger FOV, rather than two, one has to consider three parameters for radial

symmetric distortion. Furthermore, the effect of tangential distortion is negligible.

∆xdist = x(A0r
2 +A1r

4 +A2r
6) (10.3)

∆ydist = y(A0r
2 +A1r

4 +A2r
6) (10.4)

The variable r =
√
x2 + y2 defines the distance to the principal point on the sensor in nor-

malized image coordinates. In addition to the intrinsic parameters, the orientation of the slave

(right) camera with respect to the master (left) camera is defined by a rigid body transformation

G(ξMS) ∈ SE(3), which is represented by the respective tangent space element ξMS ∈ se(3).

As for the plenoptic camera model, the stereo camera model is estimated by performing a

complete bundle adjustment using the 3D calibration target shown in Figure 9.1b.

Vignetting Correction

Especially for direct VO approaches, vignetting has a negative effect on the performance. The

model parameters are estimated based on photometric measurements and therefore the measured

intensity of a point must be independent of its location on the sensor. Indirect methods are more

robust to vignetting, as extracted feature points generally rely on corners in the images, which

are invariant to absolute intensity changes.

While in a monocular camera vignetting generally results in a continuously increasing atten-

uation of pixel intensities from the image center towards the boundaries, in a plenoptic camera

further vignetting effects are present for each single micro lens.

Mathematically the vignetting can be described as follows:

I(x) = τ · (V (x) ·B(x) + εI) . (10.5)
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Figure 10.2: White balance filter used to record white images for the plenoptic camera and the
stereo camera system. The white images are used for vignetting correction.

The function I(x) is the observed intensity value measured by the sensor, while B(x) is the

irradiance image which represents the scene in a photometrically correct way. The vignetting

V (x) defines a pixel-wise attenuation, with V (x) ∈ [0, 1]. Furthermore, the variable τ denotes

the exposure time while εI is the sensor noise. In this simplified model, the image sensor is

considered to have a linear transfer characteristic which is, in fact, not the case for a real sensor.

While the nonparametric vignetting compensation based on white images recorded with a

white balance filter is commonly applied to plenoptic cameras, the vignetting of the two cameras

in the stereo system is corrected in the same way. For each camera a set of 10 white images was

recorded and an average attenuation image was calculated from this set. Figure 10.2 shows the

used white balance filter. For the two cameras of the stereo system, the attenuation images are

additionally filtered using a Gaussian kernel. This cannot be done for the attenuation image of

the plenoptic camera, as in this case, the MLA produces quite high frequent components in the

attenuation image which must be preserved.

Engel et al. [2016] describe a different method, where the attenuation map is calculated based

on a sequence of images capturing a white wall. However, the method of Engel et al. [2016]

is quite time consuming and, in our experience, error prone. It was found that reflections and

shadows on the white wall negatively affect the results. For the method of Engel et al. [2016],

one has to capture a sequence of hundreds of images and then run the estimation for up to one

hour. The attenuation map based on the white balance filter, by contrast, is obtained in just a

few seconds. Furthermore, the goal was to apply comparable calibrations to both systems; the

plenoptic camera as well as the stereo cameras.

Figure 10.3 shows the vignetting for the plenoptic camera. As one can see, vignetting is visible

in each individual micro image. Furthermore, outer image regions are attenuated stronger than

the image center. This is due to the influence of the main lens. In addition, there are some small

irregularities visible in the map resulting from defect micro lenses and dirt on the MLA.

Figure 10.4 shows the attenuation maps estimated for the left camera of the stereo system.

Figure 10.4a shows the result using the white balance filter, while Figure 10.4b shows the one

obtained from the method of Engel et al. [2016]. From Figure 10.4c one can clearly see that for
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Figure 10.3: Estimated attenuation image for the plenoptic camera. (a) Complete attenuation
image. (b) Horizontal cross section through the attenuation map. Vignetting is visible in each
micro image as well as across the complete image resulting from the main lens.

the white balance filter the attenuation is sightly stronger at the sensor boundaries than for the

method of Engel et al. [2016]. However, the deviation is quite small and furthermore, it is difficult

to evaluate which map describes the vignetting of the camera in a more accurate way.

Ground Truth and Evaluation Metric

As already stated before, it is almost impossible to obtain ground truth trajectories for long and

large-scale sequences recorded by handheld cameras. We decided to obtain reference measure-

ments for the dataset in a similar way as suggested by Engel et al. [2016], where the accuracy

of a VO algorithm is evaluated based on a single, larger loop closure. Each trajectory in the

dataset starts with a winding sequence while capturing a nearby object. This starting sequence

is followed by the actual trajectory which finally leads back to the starting point in a large loop,

followed by a short, winding, finishing sequence.

Using the winding sequence at the beginning and at the end, both segments can be aligned to

each other using a standard SfM approach. These aligned segments then can be used as ground

truth information. In contrast to monocular datasets, also reference data for the absolute scale

of the trajectory is needed. The absolute scale of the trajectory is obtained from stereo images.

Since the stereo cameras have a much larger stereo baseline than the micro images in the plenoptic

camera, the observed scale is accurate enough to serve as reference for the plenoptic sequences.

While one can basically use any SfM algorithm to align the start and end segment to each other,

here a modified version of ORB-SLAM2 (stereo) was applied. Instead of selecting keyframes, a

frame-wise pose graph was build up which is then optimized in a global bundle adjustment.

Figure 10.5 shows the aligned segments for the beginning and the end of the sequence in blue

and red respectively, overlaid with the point cloud calculated from DPO.

Using the aligned reference poses, based on each recorded trajectory two similarity transfor-

mations T gt
s and T gt

e (∈ Sim(3)) with respect to the start and the end segment of the sequence
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Figure 10.4: Estimated attenuation images for the left camera of the stereo camera system. (a)
Attenuation image recorded with the white balance filter. (b) Attenuation image calculated based
on the method described by Engel et al. [2016]. (c) Horizontal cross section through the resulting
attenuation images.

can be calculated, as given in eqs. (10.6) and (10.7).

T gt
s := arg min

T∈Sim(3)

∑
i∈S

(Tpi − p
gt
i )2 (10.6)

T gt
e := arg min

T∈Sim(3)

∑
i∈E

(Tpi − p
gt
i )2 (10.7)

The vectors pi ∈ R3 are the estimated points of the trajectory while pgt
i ∈ R3 are the respective

points of the ground truth. S and E define the sets of indices of the start end and segment

respectively.

Using the similarity transformations T gt
s and T gt

e evaluation metrics are defined similar to

that of Engel et al. [2016]. From the two transformations the accumulated drift T drift ∈ Sim(3)

from the start to the end of the trajectory can be calculated as follows:

T drift :=

[
esR t

0 1

]
= T gt

e (T gt
s )−1 =

[
seRe te

0 1

] [
ssRs ts

0 1

]−1

. (10.8)
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Figure 10.5: Semi-dense point cloud generated by DPO overlaid with the loop closure trajectory
of the start and end segment, used as ground truth, and obtained from SfM on the stereo images.
Start segment of the trajectory is marked in red and the end segment in blue.

From T drift one can directly extract the scale drift es, the rotational drift er, and the translation

drift et := ‖t‖. The rotational drift er is defined by the rotation angle around the Euler axis

corresponding to the rotation matrix R:

er := ‖w‖ · 180°
π

with w = logSO(3)(R). (10.9)

For an easier interpretation of the scale drift e′s := max{es, e−1
s } is defined.

The drift metrics e′s, er, and et define more or less independent quality measures. Looking at

just one of these values offers only a very limited insight into the overall quality of the estimated

trajectory. Furthermore, et as it is defined here, is proportional to the absolute scale of the

estimated trajectory and therefore is not meaningful at all without considering the absolute scale.

Engel et al. [2016] already defined the alignment error ealign as a more meaningful combined

metric:

ealign :=

√√√√ 1

N

N∑
i=1

∥∥T gt
s pi − T gt

e pi
∥∥2

2
. (10.10)

The parameter N is the number of points (frames) in the complete trajectory. In comparison to

et, ealign is always scaled with respect to the ground truth and implicitly incorporates all drifts

e′s, er, et in a single number.

All these metrics consider only the relative drift from the beginning to the end of the trajectory,

but not the error of the absolute scale. Hence, the absolute scale difference ds of the front and

end segment is defined as another metric:

ds :=

√
scale(T gt

e T
gt
s ) =

√
se · ss. (10.11)

Similar to the scale drift e′s, the metric d′s := max{ds, d−1
s } is defined.
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(a) sample images from the sequence of the left camera in the stereo camera system

(b) sample images from the sequence of the plenoptic camera

Figure 10.6: Sample images for one sequence of the synchronized stereo and plenoptic VO dataset.
(a) Sample image from the left camera of the stereo camera system. (b) Sample images from the
plenoptic camera. The images of both cameras correspond to exactly the same point in time.

Of course, ds must be considered only for plenoptic and stereo algorithms and not for monoc-

ular approaches. Furthermore, ds has significance only in combination with the scale drift e′s:

smax = ds ·
√
e′s, (10.12)

smin =
ds√
e′s
. (10.13)

To obtain reliable ground truth data, all sequences start and end in a scene showing objects

in a distance of several meters, which are easy to track. However, for these nearby objects it is

easier to estimate the correct scale. To consider only the scale drift e′s or the absolute scale ds
might be misleading. In combination with the alignment error ealign, these values become more

meaningful.

Following the scheme described above, a set of 11 sequences in versatile environments was

recorded. The recorded scenes range from large scales to small scales, from man-made environ-

ments to environments with abundant vegetation. The sequences capture moving objects like

pedestrians, bikes or cars. The sequences also cover difficult and changing lighting conditions due

to shadows, moving clouds, and automatic exposure adjustment.

Figure 10.6 shows a set of sample images extracted from a single sequence. The corresponding

trajectory is shown in Figure 10.7, while Figure 10.5 visualizes the registered start and end

segments to calculate the metrics. As one can see, the monocular images of the stereo system

(Fig. 10.6a) have a much wider FOV than the images of the plenoptic camera (Fig. 10.6b). In

Figure 10.6b, the images of the plenoptic camera seem to be a bit blurred. This is not, in fact, the

case and is only due to the multiple projections of a point in neighboring micro images. Due to

the narrower FOV and the higher number of pixels on the sensor, images of the plenoptic camera

actually have a much higher spatial resolution than those from the monocular cameras.

Figure 10.8 shows a magnified subsection of the trajectory and the point cloud of Figure 10.7b.

This subsection shows the beginning and end of the sequence. One can clearly see the drift

accumulated over the complete sequence, resulting in the same scene being reconstructed twice

in slightly different locations.
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(a) top view real scene (b) estimated trajectory and 3D point cloud

Figure 10.7: Example sequence of the dataset used for evaluation. (a) Top view of the real scene.
(b) Trajectory (green) and 3D point cloud estimated by DPO.

Figure 10.8: Example of the drift accumulated by DPO from the beginning to the end of a
sequence. Due to the drift in the trajectory, the same scene is reconstructed twice at different
locations. The green line represents the camera trajectory estimated by the algorithm.
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Known Limitations

While the two monocular cameras of the stereo system both have a monochromatic sensor, the

plenoptic camera has a RGB sensor. Even though all image sensors have a similar pixel size, a

pixel of the plenoptic camera captures only approximately a third of the light energy compared to

a pixel of the monocular cameras2, when we, in fact, assume that all other parameters are similar.

For the plenoptic camera the F-number is predefined by construction, due to the aperture of the

micro lenses. This F-number is higher than the one of the lenses used for the two monocular

cameras. For this reason, the monocular cameras gather even more light energy on the same

sensor area compared to the plenoptic camera. To compensate for these two issues, a hardware-

sided amplification of 6 dB was set for the plenoptic camera. Thus, for all cameras the exposure

times are within the same order of magnitude, although they do not match exactly. Due to the

amplification, the images of plenoptic cameras will contain more noise when compared with the

monocular cameras of the stereo system.

For the stereo camera system, it is important that both cameras run synchronized and with

the same exposure time. For this reason, the automatically calculated exposure time of the master

camera must be used to set the exposure time of the slave camera. It can happen that if the

exposure time changes, an image pair is captured for which the two cameras had slightly different

exposure times.

Currently, there exists no plenoptic camera based VO algorithm which performs loop closures.

Therefore, the loop closure ground truth, calculated on the basis of the stereo images, is also used

as ground truth for the plenoptic camera. With respect to the plenoptic camera, the ground truth

might be slightly inaccurate due to the slightly different positions of the master camera of the

stereo system and the plenoptic camera. Furthermore, there is a shift of few milliseconds between

the recording times of the plenoptic and stereo cameras which, again, leads to slight inaccuracies.

The superior way would be to calculate separate reference poses on the basis of the plenoptic

images – which is currently not possible because no appropriate algorithm exists.

Due to the reason that different sensors and lenses which have different properties are used,

and the fact that the cameras see the scene from sightly different perspectives, one has to keep

in mind that even though one is able to perform quantitative evaluations based on the presented

dataset, these quantities are only valid up to a certain degree. However, the dataset helps to

emphasize the strength of VO based on a certain sensor with respect to the other sensors.

10.2 Results

This section presents the results which were obtained based on the dataset introduced in the

previous section. First quantitative results are presented which are measured with respect to

the ground truth. Both the light field and stereo sequences are used to evaluate on one side the

proposed DPO algorithm and on the other side to compare it to a variety of state-of-the-art VO

algorithms. In the second part of this section the results of the presented DPO algorithm are

investigated from a qualitative perspective.

2For indoor sequences the light energy gathered by the plenoptic camera is even less than a third, since the
ambient light here contains almost no infrared components and thus, red pixel are totally underexposed.



10.2. RESULTS 129

10.2.1 Quantitative Results

The DPO algorithm is compared to several other VO algorithms which are either based on monoc-

ular, stereo or RGB-D data3. These algorithms are:

• monocular:

– LSD-SLAM (Engel et al. [2014])

– DSO (Engel et al. [2018])

– ORB-SLAM2 (Mur-Artal et al. [2015]; Mur-Artal and Tardós [2017])

• stereo:

– ORB-SLAM2 (Mur-Artal and Tardós [2017])

• RGB-D:

– RGBD-VO4

For none of the algorithms real time processing was enforced. For the algorithms which include a

full SLAM framework (ORB-SLAM2 and LSD-SLAM), large scale loop closure detection and relo-

calization was disabled. The implementations of Direct Sparse Odometry (DSO) and LSD-SLAM

are not able to handle the high image resolution of 1.3 megapixel of the monocular images. Thus,

for DSO, LSD-SLAM and RGBD-VO the image resolution is reduced to 960 pixel× 720 pixel.

Both versions of ORB-SLAM2 run at the full image resolution of 1280 pixel× 1024 pixel.

In Section 7.7 a global scale optimization framework was presented which enhances the scale

awareness of DPO. The scale optimization can either be performed online or offline. Thus, for

the DPO algorithm each sequence was evaluated in three different settings:

1. DPO: algorithm is running without scale estimation and scale optimization

2. DPO (offline): scale optimization is performed only after the complete trajectory is finished

3. DPO (online): scale is optimized and updated online when a new keyframe is created

In this section only a subsection of meaningful results will be presented. All calculated eval-

uation metrics for all sequences can be found in Table B.1 in Appendix B.3. Table B.2 contains

the lengths of all trajectories.

Depending on the implementation a VO algorithm either signals a tracking failure or results

in an abnormally high tracking error. Therefore, in the following Figures 10.9 and 10.11 appro-

priate graph limits were chosen. All values at the upper graph border signify that the respective

algorithm either failed, and therefore no metric could be measured, or that the measured metric

exceeds the upper graph limit.

Scale Awareness and Scale Drift

Figure 10.9 shows the results for the estimated absolute scale and the scale drift for a selection

of algorithms based on all sequences in the dataset. In Figure 10.9a, the estimated absolute scale

3RGB-D data is obtained from the stereo images using Semi-Global Matching (SGM) (Hirschmüller [2008]).
4RGBD-VO is a VO formulation based on RGB-D data. The algorithm performs keyframe based tracking using

a modified version of the LSD-SLAM framework without pose graph optimization. The principle of this method is
similar to Kerl et al. [2013b] and Klose et al. [2013].



130 10. EXPERIMENTS – FULL-RESOLUTION DIRECT PLENOPTIC ODOMETRY

1 2 3 4 5 6 7 8 9 10 11
1

1.1

1.2

1.3

1.4

sequence number

d
′ s

DPO (offline) DPO (online) DPO RGBD-VO

(a) absolute scale error

1 2 3 4 5 6 7 8 9 10 11
1

1.1

1.2

1.3

sequence number

e′ s

DPO (offline) DPO (online) DSO RGBD-VO

(b) scale drift

Figure 10.9: Measured absolute scale errors d′s and scale drifts e′s. (a) Absolute scale measured
for different settings of DPO and RGBD-VO. (b) Scale drift from the beginning to the end of a
sequence measured for different settings of DPO, DSO and RGBD-VO.
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is drawn for all three settings of DPO as well as for the RGBD-VO. No other algorithms are

plotted here since the monocular approaches are not able to observe the absolute scale, while

ORB-SLAM2 (stereo) essentially uses the same data from which the ground truth was obtained

and therefore will have a similar scale accuracy as the ground truth.

Figure 10.9a shows that DPO without performing any scale optimization is able to observe the

absolute scale with an accuracy of 10–20 %. By introducing the scale optimization, in both the

offline and online mode a scale uncertainty of less than 10 % is obtained for most of the sequences.

It seems that the results in the offline mode are slightly better than in the online mode. The

reason for this might be that the scale estimation is not completely invariant of the current scale

of a keyframe. However, running DPO in the offline mode is not necessarily a disadvantage. The

correct scale still can be calculated online and merely the new keyframe will not be updated (see

update scale path to new keyframe in Figure 7.4).

Of course, RGBD-VO shows a better absolute scale accuracy than DPO since the approach

takes advantage of the large baseline of the stereo camera system. However, for sequence #4,

where the object distances are in the range of only a few meters, DPO (online) estimated an

absolute scale similar to RGBD-VO. For sequence #1, DPO (online) again shows an absolute

scale error similar to that of RGBD-VO, even though this sequence consists of larger object

distances.

The anomalous results for sequence #7 can be explained, as this is an indoor sequence with a

narrow staircase showing mostly white walls. Here, especially tracking on the plenoptic images is

difficult due to the narrow FOV. Some of the images in the sequence contain only little amounts

of texture which makes tracking very difficult. In these regions of poor tracking conditions, the

assumption that scales of subsequent keyframes are highly correlated is violated, which results in

a suboptimal performance of the scale optimization.

Figure 10.9b shows the scale drift for all sequences for different algorithms. From the figure

one can see that DPO in the offline mode outperforms DSO, which represents the state-of-the-art

in monocular VO, in most of the sequences. Furthermore, due to the possibility that the scale

can be estimated from the stereo baselines between micro lenses, it can be expected that for long

sequences, the scale drift of DPO is bounded, while a scale drift which happens in a monocular

approach cannot be compensated and in the limit case will strive to infinity.

In Figure 10.10, by way of example, the measured and optimized scale is shown as a function

of the keyframe index calculated by DPO in the offline mode. As one can see, the measured scale

contains a high amount of noise. Our optimization framework drastically filters out that noise,

resulting in a smooth scale estimate along the sequence. Even though the optimized absolute scale

shows a high variation, the overall scale drift is approximately an order of magnitude smaller (see

Figure 10.9b). The scale drift of DPO without scale optimization is 18 % for sequence #1 and

5 % for sequence #6. This conforms quite well to the result of the scale optimization when the

first scale in the graphs is compared to the last one.

Rotational Drift and Alignment Error

The results presented in the previous section confirmed what was expected from a plenoptic

camera based VO algorithm. DPO forms a scale aware VO framework which mostly outperforms

monocular approaches with respect to scale drifts. However, one challenge of DPO is the narrow

FOV which was chosen for the plenoptic camera. Therefore tracking becomes much more difficult

and due to little perspective distortion in the image, ambiguities between rotation and translation

have to be expected.
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Figure 10.10: Measured and optimized scale for DPO as a function of the keyframe index.

Figure 10.11 shows the rotational drifts (Figure 10.11a) and the alignment error (Figure 10.11b)

for different algorithms. For a better comparison of the different sequences, the alignment error is

plotted as percentages of the respective sequence length. From the presented algorithms it cannot

be pointed out one method that performs best for all the sequences. However, the monocular DSO

has an accuracy similar to ORB-SLAM2 (stereo) and even performs better on some sequences.

With respect to the alignment error, DPO shows results better than ORB-SLAM2 (mono) and is

competitive to DSO and ORB-SLAM2 (stereo) for most of the sequences.

LSD-SLAM is the algorithm most closely related to DPO. Thus it is interesting to note that

DPO significantly outperforms LSD-SLAM (see Table B.1 in Appendix B.3).

The dataset contains two sequences for which DPO was not able to track the complete se-

quence. For sequence #5, the tracking failed due to a van moving through the scene. For a short

period of time large parts of the image are covered by the moving van which causes the algorithm

to fail. Figure 10.12 shows some sample images of the respective part in the plenoptic sequence

and the images for the same points in time of the left camera in the stereo system. Here, the

monocular and stereo approaches benefit from the wider FOV. The second failure was due to

badly exposed images in a dark sequence (sequence #8).

At this point it again has to be emphasized that this quantitative comparison of algorithms,

which are based on different sensor systems, offers no absolute ranking of the algorithms among

each other. However, it states the benefits of plenoptic camera based VO in comparison to

traditional methods. All results are based on a single run of each algorithm for every sequence.

Hence, no conclusion about the statistical behavior of the algorithms can be made.

To give an impression of the kind of sequences that were recorded, Appendix B.4 presents

top views of the trajectories and point clouds calculated by DPO, for all sequences for which the

algorithm succeeded.
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Figure 10.11: Measured rotational drift and alignment error. (a) Rotational drift measured
for various settings of DPO, DSO and the monocular and stereo version of ORB-SLAM2. (b)
Alignment error measured for different settings of DPO, DSO and the monocular and stereo
version of ORB-SLAM2. The alignment error is given as percentages of the respective sequence
length.
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(a) sequence recorded by the plenoptic camera

(b) sequence recorded by the left camera of the stereo system

Figure 10.12: Sample images of sequence #5 recorded by the plenoptic camera and the left stereo
camera. The images show the sequences at a fifth of the frame rate. Tracking of DPO fails for
this sequence due to a van driving through the scene.

10.2.2 Qualitative Results

The previous section compared DPO quantitatively to existing state-of-the-art VO algorithms.

In this section, the algorithms are supposed to be rated on a qualitative basis, and particularly

based on the calculated point clouds. For all DPO point clouds presented in this section, the

visualizations show the point clouds only at a point density of 20 %. This setting was chosen to

be able to better handle the large amount of data in the point cloud viewer.

Because of the narrow FOV, the plenoptic camera offers a much smaller ground sampling

distance than the monocular cameras in the stereo system. This is shown in Figure 10.13. While

Figure 10.13a shows the point cloud generated by DPO, Figure 10.13b shows the point cloud of

the same scene generated by LSD-SLAM. Furthermore, one must add that Figure 10.13a shows

only 20 % of the points of the actual point cloud, while Figure 10.13b shows the complete set of

points. The point cloud calculated by DPO is far more detailed than the one received from LSD-

SLAM. At the same time one can see, for instance, from the edge of the desk that LSD-SLAM

results in a more complete point cloud. This is due to the wider FOV of the monocular camera,

when compared to the plenoptic camera. For comparison, Figure 10.14 shows the totally focused

image (Figure 10.14a) calculated by DPO and the monocular image (Figure 10.13b) from the

same point in time. Figure 10.14c shows a magnified subsection of the monocular image, showing

the portion of the scene similar to the totally focused image of the plenoptic camera, though at

a much lower resolution.

For each 3D point in the point cloud estimated by DPO, a corresponding inverse effective

depth variance is available. Figure 10.15 shows how noisy points can be removed from the point

cloud based on a threshold for the variance. While the high threshold results in a point cloud

with high point density, but also a significant amount of noise, the low threshold removes noisy

points and consequently results in a much lower point density.

Figure 10.16 shows the point could and the trajectory calculated by DPO for a sequence

with abundant vegetation, where the camera was moved through bushes. Even though the point

cloud looks quite random, the camera trajectory was estimated accurately. Furthermore, from

Figure 10.16 one can clearly see the nature of point clouds received in VO and SLAM algorithms.
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(a) DPO (b) LSD-SLAM

Figure 10.13: Comparison of point clouds received from DPO and LSD-SLAM (sequence #4).
(a) Point cloud calculated by DPO visualized with a point density of 20 % compared to the actual
point cloud. (b) Point cloud calculated by LSD-SLAM at full point density.

(a) totally focused imge (b) monocular image (c) monocular image (magnified)

Figure 10.14: Comparison of image details for the plenoptic and the monocular camera (se-
quence #4). (a) Totally focused image synthesized by the DPO algorithm. For red regions no
intensities are synthesized, since they contain no depth information. (b) Image recorded by the
left camera of the stereo camera system. Both images shown in the figure have a resolution of
1024 pixel× 1024 pixel. (c) Magnified subsection of (b) showing approximately the same portion
of the scene as (a). (c) has a resolution of 512 pixel× 512 pixel.

For large object distances, with respect to the effective stereo baseline, the noise of the obtained

3D points is dominant in the zC direction with respect to the camera orientation. For nearby

objects the noise is drastically reduced as one can see from the bicycle in the figure.

Figure 10.17 shows the reconstruction of a hallway calculated by DPO. Such straight walks

are generally very challenging for monocular VO approaches and result in significant scale drift.

However, due to additional parallax gained from the micro images, DPO is able to compensate

for scale drifts and performs quite well for such sequences, as can be seen in Figure 10.17.

Figure 10.18 shows the reconstructions of two different staircases. These sequences are espe-

cially challenging for DPO, since at the end of the stairs there is usually a narrow corridor with

untextured walls where the camera has to turn. Due to the narrow FOV, the recorded images

generally contain only few textured areas and tracking has to be performed mainly based on the

little texture on the floor. However, our algorithm is still able to perform quite well for these se-

quences. However, as one can already see from the intensities of the point cloud in Figure 10.18a,

the recorded sequence is quite underexposed. Therefore, the intensity gradient threshold in the

algorithm is decreased. While this makes the algorithm capable of performing in such a dark
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(a) high threshold (b) low threshold

Figure 10.15: Point cloud reconstructed by DPO while considering only points with an inverse
virtual depth variance below a certain threshold (sequence #4). (a) High threshold: While the
point cloud contains most of the points estimated by DPO, it shows a significant amount of noise.
(b) Low threshold: While the point cloud results in a much lower point density, by reducing the
threshold, especially noisy points are removed.

Figure 10.16: Complete trajectory and point cloud calculated by DPO for a scene with abundant
vegetation (sequence #3). Even though the point cloud looks quite random, the camera trajectory,
which has a length of approximately 80 meters, was estimated accurately.
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Figure 10.17: Point cloud of a hallway reconstructed by DPO (sequence #7). Due to the additional
parallax gained from the micro images, DPO results in only a marginal scale drift for a sequence
which is quite challenging for monocular approaches. LSD-SLAM, for instance, failed completely
for this sequence.

sequence, it also adds noise to the point cloud. The algorithm still failed in a dark spot with next

to no texture.

Further samples of the point clouds calculated by DPO are shown in Figure 10.19. The point

cloud samples show the versatility of the DPO algorithm, which is able to perform on large

scale outdoor and small scale indoor scenes using the same camera setup. Sequence #4 was

recorded in our laboratory. For short object distances in the range of few meters, as is the case

for this sequence, DPO estimates the absolute scale with an uncertainty of about 1 % and shows

only marginal pose drift over the complete sequence. In this laboratory sequence, the camera

performed many turns. Hence, baselines used for stereo matching are rather small and certain

areas of the scene are observed only for a short period of time. This can be seen from the point

cloud in Figure 10.19d, where points far away from the camera trajectory are very noisy. However,

nearby objects are reconstructed accurately, as can be seen from Figure 10.19c. This figure shows

the starting segment of the trajectory. Here, the camera captured measurement equipment placed

on a table. Since the camera was in a range of around 0.5 m to the table, the point cloud contains

many details, such as the buttons on the measurement devices.

For the outdoor sequences with object distances of several meters, DPO is still able to calculate

accurate point clouds with an absolute scale uncertainty of 5–10 %. DPO especially benefits from

objects which are observed for a long period of time and for which the respective depth estimates

are refined over multiple keyframes. Figures 10.19a and 10.19b show subsections of the point

cloud obtained from such an outdoor sequence. From Figure 10.19a one can clearly see that the

point clouds calculated by DPO have a strong variation in terms of accuracy of the 3D points.

While the cars in the scene were directly observed by the camera over a long period of time and

therefore are reconstructed accurately, the bike racks in the bottom right region of Figure 10.19a

are reconstructed very noisily. Sequence #2, for which a subsection of the DPO reconstruction is

shown in Figure 10.19d, was recorded on the campus of Karlsruhe University of Applied Sciences.

The figure shows stairs which were remodeled very accurately.
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(a) front part of sequence #8

(b) back part of sequence #7

Figure 10.18: Point clouds of stairways reconstructed by DPO.
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(a) part of sequence #1 (b) part of sequence #2

(c) part of sequence #4

(d) complete trajectory of sequence #4

Figure 10.19: Samples of the point clouds calculated by DPO. The point cloud samples show the
versatility of DPO, which is able to perform on large scale outdoor and small scale indoor scenes
using the same camera setup.
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10.3 Conclusion

On the basis of the results presented in this chapter, it can be concluded that DPO or plenoptic

VO generally supplies a promising alternative to VO based on classical camera systems. Especially

with respect to monocular approaches, DPO has the ability to estimate the absolute scale with

acceptable accuracy. Depending on the application, an absolute scale uncertainty of 10 % might

already be sufficient. However, by shifting to larger focal lengths and larger sensor sizes this

uncertainty can be significantly improved. In scenes with object distances in the range of few

meters, DPO already shows a scale uncertainty of as low as 1-2 %.

To rate the quality of the estimated absolute scale while taking the small stereo baseline

between the micro images into account, one can use eq. (4.27) to calculate the uncertainty of a

single disparity value for a keyframe. For this calculation an average object distance zC = 4 m is

assumed, which is considered to be a plausible value. For the given average object distance, a scale

error of 5 % means that the pixel disparity has an uncertainty of 0.036 pixel. In this calculation,

the intrinsic parameters presented in Table 9.1 were used. Furthermore, one can argue that if the

system is able to reach a disparity uncertainty of 0.036 pixel, it would also be able to obtain a

scale uncertainty of 1.55 % if the main lens focal length would be doubled. This expected scale

uncertainty is again obtained based on eq. (4.27). For this assessment all camera parameters are

kept unchanged and only fL and bL0 respectively are adapted. The parameter bL0 is adapted,

since, for a larger focal length, the main lens image also moves farther away from the main lens.

Thus, one can claim that if the main lens focal length is increased and simultaneously larger

sensor is used (e.g. to full-frame), one will be able to significantly improve the performance of

DPO.

In addition to the awareness of the absolute scale, DPO benefits from the scale optimization,

especially for long sequences. Due to the fact that a scale estimate is obtained for every keyframe,

scale drifts can be compensated for. While a monocular camera based algorithm is not able to

compensate for scale drifts which occured in the earlier part of the sequence, the scale drift of

DPO is bounded. Hence, for long sequences it seems that the drift in the absolute position benefits

from the bounded scale error. Monocular approaches instead may, in the limit case of an infinite

sequence length, result in an infinite scale difference between start and end of a sequence.

A bottleneck of plenoptic VO is the narrow FOV. This is yet another reason to use larger

sensors to obtain a wider FOV, while maintaining the scale awareness. Using a focal length

fL = 32 mm in combination with a full-frame sensor would result in a FOV of 59° and a scale

awareness superior to the one presented here. At the same time, the narrow FOV of the plenoptic

camera results in a small ground sampling distance when compared to the monocular cameras.

Thus, the point cloud calculated by DPO shows more details than the one obtained from the

monocular LSD-SLAM (Engel et al. [2014]), for instance.

A way to further improve the scale awareness of DPO without affecting the FOV would be to

increase the aperture of the micro lenses. This would also come with the positive side effect that

a sensor pixel gathers more light energy during the same exposure time. The resulting smaller

depth of field (DOF) might be acceptable for most applications.

With respect to the overall tracking accuracy and tracking robustness, there are other algo-

rithms, like ORB-SLAM2 and DSO, which perform better than DPO. Although, both ORB-

SLAM2 and DSO use much longer motion stereo baselines between keyframes for mapping and

pose optimization. DPO instead performs keyframe based tracking without pose optimization,

using motion stereo baselines that range from several centimeters up to only few meters. The

missing pose optimization back end, in combination with the small FOV, is also the reason why

DPO generally has a rotational drift which is larger than those of DSO and ORB-SLAM2 (mono).



11 Summary and Prospects

11.1 Summary

In this dissertation the benefits of plenoptic cameras with respect to the task of visual odometry

(VO) were investigated. To accomplish the task of plenoptic camera based VO a multiple view

geometry (MVG) for plenoptic cameras was derived. A probabilistic depth estimation algorithm

was introduced which searches for stereo correspondences in the micro images recorded by the

camera. The algorithm models observation uncertainties and merges multiple depth observations

to a single hypothesis. In order to use the depth estimation approach in the proposed VO

algorithm, it was extended by the introduced MVG. In this way, depth can also be estimated

based on micro image pairs between subsequent frames. Different plenoptic camera models were

derived and examined and calibration approaches were developed based on these models. This

enables plenoptic cameras to be used for metrical 3D reconstruction tasks such as VO. The

calibration methods perform a bundle adjustment based on a 3D calibration target. Finally, all

insights previously gained were combined in a plenoptic camera based VO algorithm called Direct

Plenoptic Odometry (DPO). DPO estimates the frame-wise camera position on the basis of a set

of selected keyframes as well as a 3D point cloud of the surroundings.

The main advantage of the depth estimation algorithm proposed in this thesis is that it leads

to a low number of false estimates. While the method of Hog et al. [2017] produces smooth depth

maps, which at first glance look much more appealing than the ones of the proposed algorithm,

it also produces clearly visible false estimates. The proposed method instead produces only very

few false estimates. At the same time, the depth estimates of this method are noisier than those

of the method of Hog et al. [2017]. In terms of its later use in the VO algorithm, stochastic

noise is much better tempered than clusters of false estimates. With respect to the algorithm

implemented in the software of Raytrix GmbH [2013], RxLive, algorithm proposed in this thesis

performs better in all respects. Another advantage, especially with respect to the DPO algorithm,

is that the proposed method supplies uncertainties in conjunction with the depth estimates. These

uncertainties are used to correctly weight the residuals of the respective 3D points during tracking

in the DPO algorithm and to merge multiple depth observations.

The most significant contribution in terms of camera calibration is the bundle adjustment

based on a 3D calibration target. Compared to existing methods based on a 2D target, the

robustness of the calibration is improved by one order of magnitude. It was also pointed out that

the models, which define the complete projection of a single object point to multiple micro images,

are estimated more reliably than the ones which are based on the virtual image. Furthermore, the

importance of modeling the effect of squinting micro lenses, which was rather neglected in most

previous works, is illustrated. The micro image centers received from a recorded white image, in

contrast to the assumption often made in previous models (Johannsen et al. [2013]; Heinze et al.

[2016]), do not directly represent the centers of the respective micro lenses.

The results obtained for DPO show that a plenoptic camera based VO system provides a
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promising alternative to existing systems based on monocular or stereo cameras. DPO, based on

the current camera setup, is able to estimate the camera trajectory with a scale uncertainty of

around 5 % for most of the sequences in the recorded dataset. For close range sequences with

object distances in the range of only few meters, the uncertainty is even better. With respect

to scale drifts, DPO outperforms state-of-the-art monocular algorithms. Due to the proposed

scale optimization strategy, scale drifts for DPO are bounded, as long as good tracking conditions

are assured. This is not the case for monocular approaches. Regarding the absolute tracking

drifts, DPO is competitive to existing monocular algorithms. Though, the images recorded by

the plenoptic camera have a much smaller FOV than the images used by the monocular and stereo

algorithms.

11.2 Future Work

We hope that the presented work is only the beginning of visual odometry (VO) and SLAM based

on plenoptic (or light field) cameras. There are plenty of ideas left on how to proceed in this field

of research.

Plenoptic Camera

This work focused on plenoptic camera based VO from a methodical perspective. Hence, the

complete research is based on a standard plenoptic camera available on the market. Even though

it was shown that based on this camera promising results already are obtained using the proposed

DPO algorithm, this camera is not optimized for the presented task.

To improve the capabilities of DPO, one would need to increase the main lens focal length and

simultaneously the FOV of the camera. The only way to achieve this is to increase the sensor size.

One suggestion would be to switch to a full frame sensor and simultaneously to double the focal

length to approximately fL = 32 mm. This would lead to a FOV of approximately 57°, which is

about 20° more than for the setup used in this thesis.

Another way to improve the FOV of a plenoptic camera was recently proposed by Dansereau

et al. [2017], who built a monocentric light field camera with a FOV of approximately 140°. A

monocentric lens supplies a wide FOV, while still having a large aperture as it is needed for

light field capturing. While the camera proposed by Dansereau et al. [2017] is at a very early

prototype stage, such a camera would push the limits of plenoptic camera based VO. However,

for a monocentric lens the focused image is formed on a sphere, instead of on a plane, which

demands completely new sensor designs and camera models.

For some indoor sequences, the plenoptic cameras suffers from underexposed images. One

method to overcome this is to replace the RGB sensor with a monochromatic sensor. Furthermore,

one can increase the F-number of the plenoptic camera to gather more light. The F-number of

a plenoptic camera is given by the MLA dimensions and thus has to be adjusted at the stage

of construction. Increasing the micro image aperture while keeping all other camera parameters

unchanged will also result in a better depth accuracy and therefore in a better scale awareness.

The tradeoff for this would be a smaller DOF, which should actually not be an issue for the

purpose of VO.

A problem for all kinds of cameras is the limited dynamic range, which may cause trouble for

scenes with very bright and dark areas in the same frame. One option would be to build a high

dynamic range plenoptic camera as proposed by Georgiev et al. [2009]. Georgiev et al. [2009] use

an MLA with different micro lens apertures to produce micro images with different brightness.
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Due to the redundancy in the micro images, a well exposed image of the scene can be extracted

from the micro images.

Plenoptic Camera Calibration

In the calibration of the plenoptic camera, it was focused on a camera model which conforms to

the MVG presented in Chapter 4. In this camera model, the main lens aberration is approximated

by distortions defined on the sensor, or MLA plane. A next step would be to relax the constrains

given by the MVG in its current form, where the projected MLA is placed on a plane parallel to

the main lens. Instead, the lens aberration could be included directly in the main lens projection.

This would result in a MLA projected on a curved surface rather than a plane.

Since one will never be able to reliably detect the centers of the calibration markers directly in

the micro images, one way to obtain measurements directly from the micro images is to perform

a final optimization of the model parameters based on a photometric, instead of a geometric,

optimization term. In this way, the geometric camera calibration could even be extended by a

photometric calibration.

Plenoptic VO

The DPO algorithm showed that based on a plenoptic camera, accurate odometry can be esti-

mated which is aware of the true scale. To further improve plenoptic camera based VO, strategies

known from monocular VO can be adopted. Consequently, the next step would be to apply a

pose graph optimization to the keyframes received from DPO. First investigations with respect

to pose graph optimization were done already. For this a pose optimization framework similar

to the one of Engel et al. [2014] was tested. The results were unsatisfactory and affected the

estimated trajectory negatively, especially for long straight walks. Instead, the proper way to do

the optimization would be a way similarly as done by Engel et al. [2018]. Here, all model pa-

rameters are optimized simultaneously, including depth. If one considers the improvements made

from LSD-SLAM (Engel et al. [2014]) to DSO (Engel et al. [2018]) one gets motivated to test

such strategies with a plenoptic camera. For certain applications, it might also be desirable to

implement SLAM components like loop closure detection or relocalization after tracking failures.

The next step will be to implement DPO such that the algorithm runs in real-time. The

prospects for this step are quite promising, as the depth estimation approach presented in Chap-

ter 5 is already running in real time on a CUDA device (Vasko et al. [2015]), while direct image

alignment is known to be able to run with very high frame rates on a standard CPU (Kerl et al.

[2013b]).
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A Light Field based Depth
Estimation

A.1 Relationship between Virtual Depth and Focus Parameter

of Hog et al. [2017]

This section states the prove that the focus parameter gf introduced by Hog et al. [2017] is equiv-

alent to the virtual depth v estimated by the depth estimation algorithm proposed in Chapter 5

and the one implemented in the RxLive software. This means that gf = v holds by definition.

One can see that eq. (7) in Hog et al. [2017] (restated in eq. (A.1)) is equivalent to eqs. (5.27)

and (5.28) when g is substituted with v = z−1.

(X,Y ) = (s (g (x− cx) + cx) , s (g (y − cy) + cy)) (A.1)

The coordinates X and Y given in eq. (A.1) are equivalent to the virtual image coordinates xV
and yV defined in Section 5.5. The coordinates x and y are the raw image coordinates xR and yR,

and cx and cy correspond to the micro lens center coordinates cMLx and cMLy. The parameter

s is a scaling factor which is omitted by the definition in Section 5.5, but is actually used in the

implementation.

Hog et al. [2017] show that the correct focus parameter gf is the value g for which the following

equation is fulfilled (restatement of eq. (10) in Hog et al. [2017]):

g =
D

D − δ
. (A.2)

Hog et al. [2017] consider only the case of two directly adjacent micro lenses. Hence, D represents

the diameter of a micro lens and can be substituted by the baseline distance ∆cML = DM . From

the derivations in Section 2.4 it results that δ, which is defined by Hog et al. [2017] as the distance

between two corresponding raw image points, is equivalent to ∆cML − µ (see Hog et al. [2017]

for detailed definitions of D and δ), where µ is the disparity in the micro images. Thus, after

substitution eq. (A.2) can be rearranged as follows:

g =
∆cML

∆cML − (∆cML − µ)
=
∆cML

µ
. (A.3)

Thus, by definition the focus parameter gf is equivalent to the virtual depth v (see eq. (2.12) for

comparison).
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B Direct Plenoptic Odometry

B.1 Pseudo Code of the DPO Algorithm

Algorithm 1: Direct Plenoptic Odometry

〈1〉 Initialization:
〈2〉 currenKeyFrame ← get first light field frame in sequence IML0(xR);

/* frame initially consists only of raw intensity image IML(xR) */

〈3〉 DML(xR) ← do in-frame depth estimation on currentKeyFrame; /* see Sec. 7.3.2

*/

〈4〉 DV (xV ) ← calculate virtual image depth map from DML(xR);
〈5〉 DV (xV ) ← regularize depth map DV (xV ) and remove outliers; /* see Sec. 7.3.4

*/

〈6〉 DML(xR) ← remove outliers in DML(xR) which were detected in DV (xV );
〈7〉 IV (xV ) ← calculate totally focused image for currentKeyFrame using DV (xV ) and

IML(xR);
/* indices of current keyframe depth maps and intensity images are

ignored since they exist once only */

〈8〉 for j = 1 → end of sequence do
〈9〉 currentFrame ← get next light field frame in sequence IMLj(xR);
〈10〉 Tracking:
〈11〉 {ξkj , pointUsage, trackingResidual} ← estimate pose from currentKeyFrame to

currentFrame using DV (xV ), IV (xV ), IMLj(xR), ξk(j−1) and ξ̇j−1; /* see

Sec. 7.5 */

〈12〉 Depth Estimation:
〈13〉 DML(xR) ← estimate inter-frame depth from currentKeyFrame to currentFrame

using IML(xR), DML(xR), IMLj(xR) and ξkj ; /* see Sec. 7.3.3 */

/* new depth estimates are merged into existing depth map DML(xR)
as described in Sec. 7.4 */

〈14〉 DV (xV ) ← recalculate virtual image depth map from DML(xR);
〈15〉 DV (xV ) ← regularize depth map DV (xV ) and remove outliers; /* see

Sec. 7.3.4 */

〈16〉 DML(xR) ← remove outliers in DML(xR) which were detected in DV (xV );
〈17〉 IV (xV ) ← recalculate totally focused image for currentKeyFrame using DV (xV )

and IML(xR);
/* loop continues on next page */
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Algorithm 1: Direct Plenoptic Odometry (cont.)

〈19〉 cont. for
〈20〉 Keyframe Selection:
〈21〉 newKeyFrameScore ← calculate new keyframe score using ξkj and pointUsage;

/* see Sec. 7.6 */

〈22〉 if newKeyFrameScore > keyFrameSelectionThreshold then
〈23〉 Scale Optimization:

〈24〉 {ξ(0)
s , ξ

(1)
s , · · · , ξ(k)

s } ← add keyframe pose ξ
(k)
s ∈ sim(3) to keyFramePoseList ;

〈25〉 {ρ(k), (σ
(k)
ρ )2} ← estimate log-scale for currentKeyFrame; /* see Sec. 7.7.1

*/

〈26〉 {ρ̂(0), ρ̂(1), · · · , ρ̂(k)} ← optimize keyframe scale based on estimates

{{ρ(0), (σ
(0)
ρ )2}, {ρ(1), (σ

(1)
ρ )2}, · · · , {ρ(k), (σ

(k)
ρ )2}}; /* see Sec. 7.7.2 */

〈27〉 {ξ(0)
s , ξ

(1)
s , · · · , ξ(k)

s } ← update keyFramePoseList based on optimized scales

{ρ̂(0), ρ̂(1), · · · , ρ̂(k)};
〈28〉 {DML(xR), DV (xV )} ← update scale of currentKeyFrame based on ρ̂(k);

/* optional operation, not performed in offline mode (see

Sec. 10.2.1) */

〈29〉 Replacing Keyframe:
〈30〉 newKeyFrame ← currentFrame;
〈31〉 DMLtmp(xR) ← estimate in-frame depth on newKeyFrame; /* see

Sec. 7.3.2 */

〈32〉 DML(xR) ← propagate DML(xR) from currentKeyFrame to newKeyFrame
using ξkj ;

〈33〉 DML(xR) ← merge DML(xR) with DMLtmp(xR);
〈34〉 currentKeyFrame ← newKeyFrame;
〈35〉 DV (xV ) ← recalculate virtual image depth map from DML(xR);
〈36〉 DV (xV ) ← regularize depth map DV (xV ) and remove outliers; /* see

Sec. 7.3.4 */

〈37〉 DML(xR) ← remove outliers in DML(xR) which were detected in DV (xV );
〈38〉 IV (xV ) ← recalculate totally focused image for currentKeyFrame using

DV (xV ) and IML(xR);

〈39〉 end

〈40〉 end
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B.2 Recursive Solution of the Global Scale Estimator

Equation (B.1) restates the global scale estimator proposed in eq. (7.24).

ρ̂(l) =

 N∑
m=−N

ρ(m+l) · c|m|(
σ

(m+l)
ρ

)2

 ·
 N∑
m=−N

c|m|(
σ

(m+l)
ρ

)2


−1

(B.1)

To avoid confusions, in this section, the log-scale estimates ρ(l) obtained for each keyframe

(with index l), as described in Section 7.7.1, will be called log-scale measurements and the outputs

of the scale estimator ρ̂
(l)
k log-scale estimates.

In the following a recursive formulation of this estimator is presented. Therefore, instead of

solving the complete sum (eq. (B.1)) multiple times for each new keyframe, the existing estimates

ρ̂(l) merely have to be updated.

Here, l defines the index of the keyframe for which the estimate is calculated, while k is the

index of the current keyframe. Thus, the final estimate ρ̂(l) is not available before k ≥ l +N .

For k ≤ l + N , the estimates can be refined in the following recursive structure. Here ρ̂
(l)
k

is the log-scale estimate for the l-th keyframe at the current keyframe index k, while w
(l)
k is the

corresponding weight. The estimate ρ̂
(l)
k can be calculated based on the previous estimate ρ̂

(l)
k−1

as well as the current log-scale measurement ρ(k), and corresponding variance, as follows:

ρ̂
(l)
k =

ρ̂(l)
k−1 · w

(l)
k−1 + ρ(k) · ck−l(

σ
(k)
ρ

)2

 · (w(l)
k

)−1

w
(l)
k = w

(l)
k−1 +

ck−l(
σ

(k)
ρ

)2

for k > l, k − l ≤ N , (B.2)

ρ̂
(l)
k = ρ̂

(l)
k−1 = ρ̂(l), w

(l)
k = w

(l)
k−1 = w(l) for k − l > N . (B.3)

However, there exists no estimate ρ̂
(l)
k−1 for k ≤ l. Nevertheless, the initial estimate ρ̂

(k)
k can be

initialized based on the previous estimate of the previous keyframe ρ̂
(k−1)
k−1 as follows:

ρ̂
(k)
k =

ρ̂(k−1)
k−1 w

(k−1)
k−1 c− ρ(k−N−1)cN+1(

σ
(k−N−1)
ρ

)2 +
ρ(k)(
σ

(k)
ρ

)2

 · (w(k)
k

)−1
,

w
(k)
k = w

(k−1)
k−1 c− cN+1(

σ
(k−N−1)
ρ

)2 +
1(

σ
(k)
ρ

)2 . (B.4)

For the formulation given in eq. (B.4) it is considered that σ
(k)
ρ →∞ holds for k < 0.

In this way, for each new keyframe one only has to update N + 1 estimated instead of solving

the complete eq. (B.1) N + 1 times.
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B.3 Results from the Stereo and Plenoptic VO Dataset

Alg. Metric
Sequence number

1 2 3 4 5 6 7 8 9 10 11

DPO

d′s 1.12 1.07 1.19 1.02 xx 1.24 1.23 xx 1.03 1.03 1.15
e′s 1.18 1.08 1.34 1.06 xx 1.05 1.34 xx 1.01 1.08 1.08
er [◦] 2.30 1.61 0.75 3.57 xx 2.34 8.03 xx 5.53 3.84 1.33
ealign [%] 3.63 1.41 4.82 2.93 xx 1.09 3.17 xx 0.91 1.56 1.67

DPO
(offline)

d′s 1.02 1.04 1.10 1.02 xx 1.14 1.27 xx 1.02 1.01 1.10
e′s 1.06 1.02 1.02 1.04 xx 1.01 1.14 xx 1.01 1.05 1.02
er [◦] 2.15 1.59 0.74 3.69 xx 2.34 8.11 xx 5.50 3.74 1.29
ealign [%] 3.13 2.25 1.26 1.75 xx 0.55 2.28 xx 1.23 1.20 0.59

DPO
(online)

d′s 1.00 1.07 1.16 1.01 xx 1.17 1.35 xx 1.02 1.03 1.08
e′s 1.01 1.07 1.14 1.07 xx 1.09 1.22 xx 1.01 1.01 1.03
er [◦] 2.24 1.54 0.74 1.53 xx 2.28 8.54 xx 4.31 3.85 1.25
ealign [%] 2.54 2.07 2.41 0.80 xx 1.46 2.78 xx 0.76 1.08 0.76

DSO

d′s – – – – – – – – – – –
e′s 1.13 1.15 1.11 1.00 1.15 xx 1.06 1.50 1.01 1.09 1.19
er [◦] 1.01 0.07 0.61 0.87 1.11 xx 0.57 1.93 0.23 3.05 0.37
ealign [%] 1.66 2.07 1.24 0.32 2.02 xx 0.65 2.21 0.06 1.60 2.68

LSD-
SLAM

d′s – – – – – – – – – – –
e′s 2.19 2.66 10.5 1.68 1.88 xx xx xx 1.44 1.42 7.88
er [◦] 2.80 9.67 27.5 9.49 33.2 xx xx xx 9.96 30.8 1.13
ealign [%] 11.6 26.8 19.1 9.76 29.0 xx xx xx 2.99 10.2 39.0

ORB2
(mono)

d′s – – – – – – – – – – –
e′s 1.56 1.34 1.34 1.10 1.84 xx 1.22 xx 1.09 1.09 1.27
er [◦] 0.81 0.58 0.47 1.05 1.92 xx 1.14 xx 1.17 2.15 0.30
ealign [%] 6.00 4.47 3.76 0.88 9.19 xx 1.87 xx 0.71 1.51 3.67

ORB
(stereo)

d′s 1.01 xx 1.00 1.01 1.00 1.00 1.00 1.04 1.00 1.00 1.00
e′s 1.00 xx 1.00 1.00 1.01 1.01 1.02 1.02 1.00 1.01 1.01
er [◦] 4.21 xx 0.92 4.71 1.22 1.25 6.10 18.0 2.40 2.37 0.62
ealign [%] 1.37 xx 0.69 1.85 0.32 0.49 1.06 1.51 0.47 0.86 0.17

RGBD-
VO

d′s 1.01 1.01 1.00 1.00 1.00 xx 1.02 1.03 1.00 1.00 1.01
e′s 1.00 1.00 1.01 1.03 1.01 xx 1.02 1.02 1.01 1.00 1.01
er [◦] 5.06 4.58 69.2 2.08 22.3 xx 38.1 76.0 4.67 4.42 3.94
ealign [%] 2.65 1.27 18.3 1.16 8.68 xx 6.21 4.69 0.83 5.45 1.35

Table B.1: All results from the stereo and plenoptic VO dataset. For all monocular algorithms
no absolute scale d′s can be estimated. The alignment error ealign is given in percentages of the
respective sequence length. xx means that the respective algorithm failed on a sequence and
therefore no metric is obtained.

Sequence number 1 2 3 4 5 6 7 8 9 10 11

Length in meter 240 195 81 25 274 229 149 161 29 117 248

Table B.2: Path lengths for all sequences in the stereo and plenoptic VO dataset.
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B.4 Trajectories Estimated by DPO

Figures B.1 to B.9 show the trajectories and corresponding point clouds calculated by DPO of all

sequences for which the algorithm succeeded.

Figure B.1: Top views of the trajectory of sequence #1 calculated by DPO. Path length: 240 m.

Walk around “Mensa Moltke” in Karlsruhe. On the top left, one can see the parked cars which

were shown in Figure 10.19a. Both views were rendered from exactly the same point cloud data.
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Figure B.2: Top views of the trajectory of sequence #2 calculated by DPO. Path length: 195 m.
Walk on the campus of Karlsruhe University of Applied Sciences. On the right side, one can see
stairs and parts of a building (Building A).

Figure B.3: Top views of the trajectory of sequence #3 calculated by DPO. Path length: 81 m.
Walk through bushes on the campus of Karlsruhe University of Applied Sciences.
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Figure B.4: Top views of the trajectory of sequence #4 calculated by DPO. Path length: 25 m.
Walk though the laboratory of communications engineering at Karlsruhe University of Applied
Sciences (room: LI-013a).

Figure B.5: Top views of the trajectory of sequence #6 calculated by DPO. Path length: 229 m.
Walk on the campus of Karlsruhe University of Applied Sciences (behind Building LI, at Knielinger
Allee and Adenauerring). In the top left corner, one can see cars parking in the street.
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Figure B.6: Top views of the trajectory of sequence #7 calculated by DPO. Path length: 149 m.
Walk through building B at Karlsruhe University of Applied Sciences.

Figure B.7: Top views of the trajectory of sequence #9 calculated by DPO. Path length: 29 m.
Walk through my office (room LI-036) at Karlsruhe University of Applied Sciences.
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Figure B.8: Top views of the trajectory of sequence #10 calculated by DPO. Path length: 117 m.
Walk across parking lot at Karlsruhe University of Education.

Figure B.9: Top views of the trajectory of sequence #11 calculated by DPO. Path length: 248 m.
Walk around Scheffelplatz in Karlsruhe.
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Wanner S, Meister S, and Goldlücke B (2013). Datasets and Benchmarks for Densely Sampled 4D Light
Fields. In Vision, Modelling and Visualization (VMV).

Whelan T, Johannsson H, Kaess M, Leonard JJ, and McDonald J (2013a). Robust Real-Time Visual
Odometry for Dense RGB-D Mapping. In IEEE International Conference on Robotics and Automation
(ICRA), pages 5724–5731.

Whelan T, Kaess M, Fallon M, Johannsson H, Leonard J, and McDonald J (2012). Kintinuous: Spatial
Extended KinectFusion. In RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras.

Whelan T, Kaess M, Leonard JJ, and McDonald J (2013b). Deformation-based Loop Closure for Large
Scale Dense RGB-D SLAM. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 548–555.

Whelan T, Leutenegger S, Moreno RS, Glocker B, and Davison AJ (2015). ElasticFusion: Dense SLAM
without a Pose Graph. In Robotics: Science and Systems.

Wu G, Masia B, Jarabo A, Zhang Y, Wang L, Dai Q, Chai T, and Liu Y (2017). Light Field Image
Processing: An Overview. IEEE Journal of Selected Topics in Signal Processing.

Yu J, McMillan L, and Gortler SJ (2004). Surface Camera (SCAM) Light Field Rendering. International
Journal of Image and Graphics, 4(4):605–625.

Yu Z, Guo X, Ling H, Lumsdaine A, and Yu J (2013). Line Assisted Light Field Triangulation and Stereo
Matching. In IEEE International Conference on Computer Vision (ICCV), pages 2792–2799.

Yu Z, Yu J, Lumsdaine A, and Georgiev T (2012). An Analysis of Color Demosaicing in Plenoptic Cameras.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 901–908.

Yucer K, Kim C, Sorkine-Hornung A, and Sorkine-Hornung O (2016). Depth from Gradients in Dense
Light Fields for Object Reconstruction. In 4th International Conference on 3D Vision (3DV), pages
249–257.



166 BIBLIOGRAPHY

Zeller N, Noury CA, Quint F, Teulière C, Stilla U, and Dhôme M (2016a). Metric Calibration of a Focused
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