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Abstract—State synchronisation in clustered Software Defined
Networking controller deployments ensures that all instances
of the controller have the same state information in order to
provide redundancy. Current implementations of controllers use
a strong consistency model, where configuration changes must
be synchronised across a number of instances before they are
applied on the network infrastructure. For large deployments,
this blocking process increases the delay of state synchronisation
across cluster members and consequently has a detrimental effect
on network operations that require rapid response, such as fast
failover and Quality of Service applications. In this paper, we
introduce an adaptive consistency model for SDN Controllers
that employs concepts of eventual consistency models along with
a novel ’cost-based’ approach where strict synchronisation is
employed for critical operations that affect a large portion of
the network resources while less critical changes are periodically
propagated across cluster nodes. We use simulation to evaluate
our model and demonstrate the potential gains in performance.

Keywords - SDN, distributed control plane, scalability,
QoS, adaptive consistency, RAFT, OpenDaylight, ONOS

I. INTRODUCTION

In large networks, the scalability and resilience of the
SDN controller becomes important as it poses a single point
of failure for the entire network. A single node hosting the
controller may not scale well for hundreds of switches and
thousands of concurrent OpenFlow events. Similarly, a single
node cannot provide high reliability when it comes to hardware
failures. To address this problem, SDN controllers are clustered
over multiple nodes, where each instance of the controller is
responsible for a number of switches while also providing
redundant copies of the other instances’ state. When a node
fails, another controller instance takes over the failed node’s
tasks and resumes operation with minimal downtime.

In distributed computing, clustering refers to the loose or
tight coupling of nodes for purpose of reliability and load
balancing. Such systems can be scaled horizontally by adding
nodes to the cluster, however, as more nodes are added, the
overhead in state synchronisation between nodes increases.
There exist two main models for synchronising state across
a cluster. The strong consistency model [1] requires that the
distributed state across cluster members is replicated and,
following any single state-update at state leader, propagated
using mutual consensus to replicas. In contrast, the eventual
consistency model [2] omits the consensus procedure and guar-
antees that the at least one delivery invariant holds. However,
the advantage of non-blocking operations comes at the expense
of sacrificing the total ordering of state updates and sometimes

the system correctness. In eventually consistent systems, the
convergence to a single state is determined by two factors:
anti-entropy and reconciliation. Anti-entropy ensures that data
is synchronised in a timely manner and that the system will not
enter a state of complete de-synchronisation between instances
[3]. Reconciliation refers to the mechanisms that determine
the final system state by resolving conflicting updates from
different instances. Typically such conflicts are resolved by
the last-writer-wins approach, where the most recent change
of state is considered final [4].

In this paper, we introduce the concept of runtime adap-
tation of consistency levels in state synchronisation for a
distributed SDN control plane (DCP). A consistency level
is assigned to every resource state accessed by an SDN
application (e.g. routing, topology manager). The consistency
level is adapted based on the experienced effort of state
convergence after a non-synchronisation period has expired;
and the inefficiencies resulting from operations with stale state
as inputs. We define the application inefficiency as a qualitative
distance between the optimal and the computed result. The
proposed method enables the design of scalable SDN DCPs,
since the majority of state updates are executed as local non-
blocking, eventually consistent operations. The methodology
of changing the level of controller consistency on-the-fly
allows for maintaining a scalable system by sacrificing some
controllable amount of result optimality - and thus the blocking
overhead of cluster-wide synchronisation.

The rest of the paper is structured as follows: Section II
describes the problem of state synchronisation in distributed
SDN control plane, Section III investigates the state of the
art related to state synchronisation in distributed systems and
focuses on existing SDN DCP implementations, Section IV
presents the proposed solution for adaptive state consistency,
Section V presents and discusses the performance of the pro-
posed method using simulation. Finally, Section VI concludes
this paper.

II. PROBLEM DEFINITION

In distributed deployments, individual controller instances
hold the application state necessary to fulfil the requirements
of controller applications (e.g. path finding, policy handler).
Assuming a partitioned DCP design, we distinguish between
global and local controller decisions. Global decisions necessi-
tate a response to events where an action modifies the configu-
ration of a switch that is outside the controller’s administrative
domain. Interaction between controller instances in the DCP is
necessary, resulting in additional latency overhead. In state of



the art scalable SDN DCPs [5], [6], a network is typically par-
titioned into multiple administrative sub-domains.To minimize
controller-to-controller (C2C) synchronisation efforts in the
DCP, our model supports transformation of global controller
decisions into local ones, by means of assigning all controllers
as masters of all switches and granular per-controller planning
of switch notification subscriptions for scalability. A global
route configuration that necessitates message passing across
the whole DCP in current controllers [5], [6], can be applied by
a single controller to all switches on path in our design, since
the administrative domain of the controller may stretch across
the whole network. The related OpenFlow-based controller
role configuration is introduced in Subsection IV-A.

Northbound Client

Leader

Replica-1

Replica-2

Request

Prepare

Promise

Accept-Request

Accept-Response

Request-Response

Fig. 1. Paxos workflow where leader requires confirmation only from cluster
majority to progress the state. Notice how Replica-2 delays its response.

Strong consistency systems always implement some con-
sensus algorithm to enable conflict-free distribution of state
updates. Paxos [7], a popular decentralized consensus algo-
rithm, proposes a four-delay state update method encompass-
ing Prepare-Request, Promise, Accept-Request and Accept-
Response delays, as depicted in Figure 1. In large-scale SDN
deployments, the amount of incoming controller requests can
reach up to 11 million requests per second [8]. In the worst
case, every state request may necessitate a state change and
hence a consensus run, thus preventing fast network recon-
figurations and introducing a bottleneck on control and data
planes. Although optimizations of Paxos, including the recent
RAFT [9] consensus algorithm, were proposed in literature,
the main concept of the algorithm remains unchanged.

Recently published industrial SDN use-cases introduce new
requirements on global QoS-aware route establishment across
WANs [10] and locally administered networks [11]. [10] intro-
duces the requirements of critical infrastructure operators for
on-demand service establishment in a software-defined WAN,
for purpose of interconnection of a large number of Internet-of-
Things (IoT) devices over the service provider’s infrastructure.
The described IoT use-case assumes QoS guarantees for in-
dividual IoT-device-to-Cloud application flows. Coupled with
the ever-growing number of IoT devices and need for dynamic
resource (de-)allocation for globally computed QoS-enabling
paths, current SDN controller solutions are not able to provide
the necessary degree of scalability in global configuration.
Some 5G use-cases [12] introduce the requirements of con-
nection setup times of <15-30ms for low-latency services in
converged backbone for arbitrary numbers of end-hosts. Initial
performance measurements of an SDN- and OpenDaylight-
enabled DCP in the test network of Telecom Italia [13] show
that the requirement of low setup time cannot be met in most
scenarios. The identified main cause of delay in end-to-end
path establishment lies in the C2C interactions, required in
order to reach consensus for distributed path establishment.
Our approach minimizes this response handling time in critical

path by adaptively lowering the frequency of C2C interactions,
hence enabling faster connection admissions than possible with
current strong consistent DCP models.

Alternative approaches to the strong consistency model
assume an eventually consistent state synchronisation where
changes made to a controller instance get propagated over time
across the cluster, thus solving the issue of blocking during
synchronisation period. This allows the active instance to apply
changes immediately and synchronise its state over time. Stale
updates can have a detrimental effect on the entire network
as the consistency of initial state determines the quality of
output delivered by the controller’s decisions. For example,
a path finder application which computes a globally optimal
path with regards to currently utilized resources and a given
set of constraints (e.g. on delay, bandwidth etc.), may produce
a suboptimal result due to stale information on the state
of reservations. We consider the amount of observed result
suboptimality as an input for our autonomous consistency
level adaptation algorithm. This online algorithm outputs the
consistency level required in order to provide an exactly
sufficient amount of experienced result-correctness.

This paper investigates the relation between overhead min-
imization in SDN DCP and associated system correctness. In
particular, we investigate the trade-off between low response-
time delays and inefficiencies resulting from operating with
stale data. Can strict requirements on low setup times be
supported for different topologies and traffic patterns, while
ensuring a sufficient degree of system correctness at all
times? A strong consistent DCP introduces critical overhead
in controller-to-controller synchronisation [13], while an even-
tually consistent DCP provides no correctness guarantees. We
hence introduce a consistency model that provides instanta-
neous response for most requests, while bounding the observed
correctness to a tunable threshold.

III. RELATED WORK

In [14], authors investigate the performance of a strongly-
consistent replicated data store implementation in Floodlight.
While the results in a four-node cluster show promising
transaction throughput for data store requests made for simple
host-port mappings, significantly lower data-store performance
was measured for load balancing and device management
operations. The enforcement delays and blocking times in data-
plane were not considered in that study. The evaluated network
comprised a single OpenFlow switch, deployed in an out-of-
band control channel. A more realistic in-band control network
would cause higher variance in request inter-arrival times,
higher switch configuration latencies and possibly bottlenecks
in case all requests were destined for a centralized DCP leader.

OpenDaylight (ODL) [5] is a popular open-source SDN
controller platform that relies on strong synchronisation be-
tween all controller instances, where any changes made to a
particular instance have to be synchronised with a number
of other instances in the cluster before they can be applied
to the network. In ODL clustering implementation, a single
controller instance is the leader of any state shard at any point
in time and only the leader is allowed to make changes to
its state. Following a state modification, the leader propagates
the update to follower replicas that also hold the shard. The
leader and its followers make up a strong consistency cluster.



ODL Clustering implements RAFT [9], a consensus algorithm
similar to Paxos [7], which adds a leader election mechanism.
Inside a RAFT cluster of size N , each state update is initiated
by the leader, and propagated to at least N/2 followers. The
followers must acknowledge the state update before the leader
can continue processing further state changes. This blocking
period takes an arbitrary amount of time depending on leader
and follower placement, network and processing delays and
quorum size. The requirement that at least N/2 + 1 cluster
participants reflect the leader’s state update is a minimum re-
quirement for overlapping reads and writes in a reliable cluster
that tolerates bN/2c failures [7]. Stringent deployments may
require acknowledgement by a higher number of followers,
hence causing additional overhead.

ONOS [6] and ONIX [15] are alternative and more recent
controller designs that try to solve the issue of scalability by
providing the APIs for selection of either strong or eventual
consistency mode for its distributed state primitives. Appli-
cations which can operate correctly without strong consistent
state updates may synchronise in eventually consistent manner.
However, the active state consistency model does not change
at runtime and must be hard-coded in the SDN application
without knowing the exact constraints of the network it will
be deployed in. The application’s designer is unaware if the
application might run correctly even if its state was eventually
synchronised, which is the case when the probability of a state
conflict is small. This may lead to pessimistic estimations of
an application’s requirements in the deployed domain. For
example, routing applications may tolerate suboptimality if
maximized network utilization is not a concern.

Levin et al. [16] show that distributed network functions
such as load-balancers can work around eventual consistency
and still deliver performance sufficient for production deploy-
ments. The continuous consistency model for geo-replicated
services [17] allows application designers to bound the max-
imum distance between the local data state and final con-
sistent state. In [17], distance in actual and stale state view
is parametrized by the numerical and order error and state
staleness. In context of SDN, [1] argues that linearisability is
likely an unnecessary property for ensuring correct application
of most network policies as the investigated policies often have
simple correctness conditions. The authors state that determin-
ing a consistency model that is necessary and sufficient for
network policies is an important research problem.

IV. PROPOSED SOLUTION

In the following section, we introduce our adaptive consis-
tency model for SDN controllers, where state synchronization
occurs according to performance and consistency constraints
set by the application at runtime. We make use of triggers that
allow for dynamic switching of a consistency level (CL) on
a per-state-fragment basis, based on a defined local threshold.
This threshold could, for example, be specified as the allowed
suboptimality of path reservations, based on the consistency
of the reservation state of accepted paths. The suboptimality
of a result may have a source in the fact that concurrently
executed path reservations were not propagated to the instance
that established the suboptimal path. However, the trade-offs
of suboptimality and scalability might be tolerable in systems
that require high request throughput and low response time. In

our model, emphsynchronisation credits for state modifications
are assigned to controller replicas. The credit-based approach
bounds the data staleness which may arise as a consequence
of concurrent and non-synchronised modification of states in
cluster members. Consistency levels control the frequency
of DCP-wide state-updates and eventual reconciliation of
state-conflicts. Tight consistency levels lead to more frequent
synchronisation, hence causing more control plane overhead
compared to relaxed consistency levels, where synchronisation
overhead is lower but the probability of occurring state-
conflicts is raised. Our cost-aware algorithm is used to identify
the balance in between the two key performance indicators; the
synchronisation overhead and system correctness of DCP, by
adapting the consistency levels based on correctness thresh-
olds.

A. System Model

We model our DCP as a set of N controllers with
each switch in the data plane configured to register with
all controllers in the administrative domain (i.e. using OF-
PCR ROLE EQUAL mode in OpenFlow). Hence, each con-
troller has full access to the switch and is equal to other
controllers of the same role. Controllers react to external
events (i.e. northbound requests and packet-ins) locally without
synchronisation. While northbound requests are directed and
hence handled by a single controller instance, the invariant
of the exactly-once response must hold for asynchronous data
plane events as well. By default with OpenFlow, all registered
controllers receive all switch asynchronous messages. Hence,
for scalability, the OFPCR EQUAL mode would be combined
with per-controller Asynchronous Configuration [18] to expose
notifications only to a subset of controllers.

To circumvent the need for a strictly consistent cluster syn-
chronisation, a resource state S in our system is associated with
a maximum synchronisation credit amount CS

total. Every credit
value CS represents a smallest non-divisible element of state
S, allocated to an SDN controller instance KN for concurrent
and non-synchronised modification of the shared resource state
S. By bounding the amount of concurrent modifications for
state S per controller, staleness of a concurrently modified
state S can be controlled. The total sum of synchronisation
credits CS

total represents the maximum number of concurrent
modifications to state S during a non-synchronisation cycle
(introduced below). We distribute the total synchronisation
credits across P controllers so that CS

total =
∑P

KN=1 C
S
KN

.

Resource representation S can encompass physical or vir-
tual network resources - e.g. bandwidth or flow table elements
available for reservation. Depending on the required granu-
larity of state management, limitations for bounded number
of modifications may be configured either per state or per
operation which affects multiple states. Hence we distinguish
between resource state credits CS

total for state S, and execution
credits COp

total for operation Op that modifies the state S. Isola-
tion of state modifications per controller allows for concurrent,
unsynchronised modifications of the state S. In Figure 2, the
resource credit CSBW

total for bandwidth resource SS1→S2
BW for

edge S1 → S2, and the execution credit Cadd−flow
total for

operation add-flow that operates on SS1→S2
BW , are distributed



across all controllers.

Fig. 2. An exemplary assignment of synchronisation credits to controllers
in DCP. As add-flow operation modifies the resource state SS1→S2

BW . Notice
that both the execution credits Cadd−flow , and granular resource credits
CSS1→S2

BW limit the maximum duration of the non-synchronisation period for
the bandwidth resource SS1→S2

BW . Hence, it is expected that for state S the
controller tracks a single type of synchronisation credit - CS at granularity
of state S; or COp at granularity of operation Op that modifies S.

Controller KN modifies the resource state S in a man-
ner where each update is handled locally for some non-
synchronisation period TS , without cluster-wide synchronisa-
tion. TS is thus the time period elapsed in-between cluster-
wide synchronisations of controllers’ views of state S. In
some cases, the strategy of concurrent modifications of a state
S may result in global inefficiencies and suboptimality of
a result. Quality of a result relates to the staleness of the
input state S. To limit the effect of asynchronous access to
a state, we introduce the notion of consistency levels. The
choice of a consistency level CLS for the state S, defines
the maximum duration of non-synchronisation period TS

max. In
our model, the actual elapsed non-synchronisation period TS

i
is not the same for all synchronisation cycles i and may vary
based on the occurrence frequency of synchronisation triggers.
Observed system KPIs such as the encountered number of state
synchronisation conflicts, are used as triggers for cluster-wide
synchronisation procedure. The triggers that lead to adaptation
of CLS are explored further in Subsection IV-C. Consistency
model adaptation results in a new active consistency level.
In addition to TS

max, a consistency level also governs the
maximum number of locally executed, non-synchronised state
updates by tightening or relaxing the resource/execution credit
set CS

KN
/ COp

KN
.

For example, SDN applications utilizing the edge-cost state
for purposes of routing on a network graph may tolerate low
consistency for edge-cost values. By decoupling the synchroni-
sation and routing operations, scalability of routing execution
is raised at the expense of result optimality.

B. Allocation of Synchronisation Credits

Manipulation of local resources allows for management
of the resource reservations without a cluster-wide state syn-
chronisation required, as long the reservations are conducted
within the assigned credit boundaries. We distinguish between
execution credit sets associated with the operation executions;
and resource state credit sets associated with actual network
resources.

Bounded execution credit sets. Credit set COp
KN

represents
the number of executions of operation Op that may run locally
on controller KN , without the cluster-wide synchronisation
of states modified by the operation. Following a depletion of
execution credits, cluster-wide synchronisation leads to view
convergence for all states modified by the operation Op.

Bounded resource state credit sets. Credit set CS
KN

represents the total number of modifications of state S that
may occur locally on controller KN , without the cluster-
wide synchronisation of the state. Following a depletion of
resource state credits, cluster-wide synchronisation leads to
view convergence for the state S on all replicas. All resources
whose reservations may be represented as counter objects can
also be modeled as resource state credits, an example being
the per-edge bandwidth shares.

C. Adaptation of Consistency Levels

The choice of a consistency level governs the maximum
non-synchronisation period TS

max for state S. In case of a
resource state credit set, it also bounds the number of allowed
isolated modifications CS

KN
of state S in SDN controller KN .

In case of an execution credit set, it governs both TS
max (where

S may be modified by operation Op) and the number of
allowed isolated executions COp

KN
of Op. Consistency level

change is state-/operation-specific, hence CSA

KN
6= CSB

KN
for

resources SA and SB , and COp1
KN
6= COp2

KN
for operations Op1

and Op2. Following triggers lead to tightened consistency level
CLS , which result in shorter duration of TS

max and a lower-
than-current number of allowed isolated state modifications:

• Cost of result suboptimality of an eventually-consistent
execution of an operation is above a threshold. If
a path finding application computes paths which are
considerably more suboptimal than would be the case
with strong consistency, CLS is set to a stricter level.

• Cost of state-update conflicts is above a specified
threshold. If all controllers are able to run operations
that modify the shared resource state set S, following a
conflict detection (same state modified concurrently),
controllers may raise the CLS to a stricter level. A
conflict resolution strategy must be deployed in order
to reconcile a diverged state into a consistent state.

• Setup-failures wherein the callback associated with
resource reservation does not result in a successful
configuration of an external network device. Histor-
ical information of steps leading to setup failures is
required for conflict detection and state reconciliation.

Following triggers lead to relaxation of CLS , which, depend-
ing on type of resource, result in longer TS

max and a higher-
than-current number of allowed isolated state modifications:

• Cost of result suboptimality of an eventually-consistent
execution of an operation is below a specific threshold
- the result could on average be close-to-optimal even
in case of a more relaxed consistency model.

• Cost of consistency-related conflicts is below a specific
threshold and the observed probability of incurred
state-update-related conflicts is small.

D. State Synchronisation Triggers

Various events may trigger the state synchronisation pro-
cedure. Based on the locality of an event, we distinguish local
and external synchronisation triggers in SDN controller.

Locally activated Triggers. Following the exhaustion of
execution credit set COp

KI
or resource state credit set CS

KI
;



or expiration of maximum duration of non-synchronisation
period TS

max, the controller KI broadcasts its state to all
other replicas. In case of unsuccessful device configuration
or identified divergent state, the controller should assume a
conflict has happened. It can then retrieve the current state of
other cluster participants to identify and resolve the conflict.

Externally activated Triggers. Following an exhaustion of
the execution credit set COp

KI
or resource state credit set CS

KI
;

or expiration of maximum duration of non-synchronisation
period TS

max in controller KI , all other controller replicas are
triggered to update their copy of update history for state S.

E. Algorithm

Algorithm 1 depicts the state synchronisation procedure
for state SA and adaptation of active consistency level CLSA

.
The algorithm assumes resource credits assigned for isolated
modifications of SA. If instead execution credits were assigned
for an operation that modifies SA, the algorithm would adapt
the size of the execution credit set. On observed state SA

modification in a remote controller Krem, controller Kloc pro-
ceeds to adapt the consistency level CLSA

for state SA based
on locally identified conflict-resolve and result suboptimality
costs (Ccflct and Csbptml, respectively) and given reference
CL-cost threshold maps maxSA

[CLcurr
SA

] and minSA
[CLcurr

SA
].

For simplicity, cost thresholds are manually specified by the
SDN application which operates on the state. In Algorithm
1, controller Krem triggers a state synchronisation event by
sending a state update to controller Kloc. Kloc then initiates
the local state synchronisation as follows:

1) Lines 2-5: Any obvious state-conflicts are detected
by controller Kloc (e.g. by using version vector [17]
comparison to determine state-update causality). If
version conflict is identified, conflict resolution cost
Ccflct is computed depending on conflict-resolve
strategy needed to converge the views for SA.

2) Lines 6-8: The SDN application computes the in-
duced suboptimality of local result in previous non-
synchronisation period and outputs the cost of subop-
timality Csbptml. Computation of this cost is specific
to application logic. We show an exemplary routing
application that provides this cost in Section V.

3) Line 9-15: Based on frequency and amplitude of
Ccflct and Csbptml for observation interval n, the
active CL is adapted. The depicted approach assumes
a threshold-based assignment of CLs, where the cost
thresholds associated with a CL are predefined.

After the state synchronisation procedure has identified the
new consistency level, all controllers that hold SA modify
their resource state credit set size CSA

Kloc
and timers TSA

max
accordingly.

V. IMPLEMENTATION

A. Simulation of Concurrent Path Computations and Resource
Reservations with Multiple SDN Controllers

To evaluate the effect of consistency level (CL) adaptation,
we have developed a cluster-aware path-finding SDN controller
application which measures and logs the suboptimality of
routing results, where suboptimality is a function of execution
credit set size (active CL), number of controller replicas,

Algorithm 1: Pseudocode for state synchronisation pro-
cedure and adaptation of active state consistency level
CLSA

for state SA in an SDN controller.
Input :
State update SKrem,Vrem

A with version vector Vrem;
Initially active consistency level CLSA

;
Mapping of maximum non-synchronisation durations to
various consistency levels mapSyncPeriod[ ];
Mapping of synchronisation credit set sizes to various
consistency levels mapResourceCredits[ ];
Output : Adapted consistency level CLnew

SA

1 upon updated(stateUpdateQueue):
2 (SKloc,Vloc

Anew ) ← merge(SKloc,Vloc

A , SKrem,Vrem

A )
3 if conflictDetected(SKloc,Vloc

A ) = true then
4 Ccflct ← handleConflict(SKloc,Vloc

Anew )
5 end
6 if subOptimalityDetected(SKloc,Vloc

Anew ) = true then
7 Csbptml ← handleSuboptimality(SKloc,Vloc

Anew )
8 end
9 CSA

accum.push(Ccflct + Csbptml)

10 CSA

hist ← mean(CSA
accum[CSA

accum.size− n :
CSA

accum.size])

11 CLnew
SA
← adaptCL(CSA

hist, CLSA
)

12 TSA
max ← mapSyncPeriod[CLnew

SA
]

13 CSA

Kloc
← mapResourceCredits[CLnew

SA
]

14 genClusterEvent(CLnew
SA

, CL MOD)

15 Function adaptCL (measuredCost, CLcurr
SA

)
16 if measuredCost > maxSA

[CLcurr
SA

] then
17 return CLcurr.tighten()
18 else if measuredCost < minSA

[CLcurr
SA

] then
19 return CLcurr.relax()
20 else
21 return CLcurr

traffic model and network topology size. The application
utilizes a bandwidth-constrained Dijkstra implementation to
identify and reserve paths for uniformly selected source and
destination pairs in a variable-size grid network. As the un-
derlying network design and traffic patterns may bias the
results experienced in practice, various topology sizes and
traffic models were evaluated. The grid topology size was
scaled between 5x5 to 25x25 vertices, with directed edges
modeled as 1GbE links. The traffic models consider uniform
specification of a flow bandwidth requirements in [1,30] Mbps
range. We include an access control mechanism for new flow
requests, which ensures that the edges whose 1GbE bandwidth
capacities are exceeded during the reservation procedure are
pruned before the routing procedure execution can take place.
Pruning of links is done in order to guarantee that the new
flows are may be embedded only on those paths which fulfil the
bandwidth requirement. For simplification, the cost function
which provides the cost input CE for an edge E, considers only
the sum of flows configured on that edge CE = #flowsE .

Following an execution of a path finding algorithm in
operation add-flow, bandwidth resources are reserved at the



edges of the computed path. Whenever bandwidth utilization
on an edge exceeds 80%, for every new flow, an existing,
uniformly and randomly selected flow is removed, hence
allowing for embedding of a large number of sequential flow
requests and realistic results. To introduce concurrency in
execution, multiple SDN Controller instances execute the path
finding algorithm add-flow in isolation from other instances.
Hence their local values of CE might differ during the non-
synchronisation period. The synchronisation trigger fires after
an assigned set of execution credits COp

KN
is exceeded on

every controller instance KN . The controllers then synchronise
the costs of edges CE and converge to the same state. We
vary the execution credits Cadd−flow

KN
, allocated for the path-

finding operation add-flow and focus on identifying the trade-
off between the frequency of cluster-wide synchronisations
and the result suboptimality which is formally defined as the
approximation factor Dsubopt =

Ooptimal

Omeasured
, where Ooptimal is

the cost of true optimal path (computed as if all reservation
updates in system were serialized); and Omeasured is the
actual measured cost of a sampled path identified by an
isolated controller instance during the non-synchronisation
period. As each path computation in a controller instance KN

only considers the reservation updates made during the non-
synchronisation period on the local executor instance, in terms
of total path cost, non-optimal paths with Dsubopt < 1 could
be determined. The suboptimality Dsubopt is computed after
the synchronisation trigger fires, followed by a cluster-wide
synchronisation of CE . In the simulation, isolated reservations
made by different controller instances have often lead to con-
current reservation of bandwidth resources on the same edge,
hence sacrificing the optimality of cheapest path finding. For
reference, a set of SDN controllers which operate in the strong
consistent mode, and hence serialize each resource reservation,
would lead to optimal reservations and Dsubopt = 0 in
each scenario. While the cluster-wide synchronisation at the
end of a non-synchronisation period must be implemented
as a blocking task, all intermediate local state changes are
instantaneous updates, hence providing obvious response time
benefits compared to a strong consistent approach.
B. Experimental results

In this simulation, consistency levels (CLs) are defined by
the amount of execution credits assigned to controller instances
for isolated execution of operation add-flow. To evaluate the
effects of different deployed topologies and traffic models on
experienced suboptimality, we vary the CL and hence the num-
ber of isolated executions Cadd−flow

KN
per controller KN . An

exemplary mapping of amount of isolated executions of add-
flow operations to CLi is shown in Table I. By manipulating
the active CL, controllers execute a variable number of path
finding executions in isolation from other instances.

Consist.Lvl CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9 CL10 CL11

Cadd−flow
KN

2 3 5 9 17 25 33 41 49 57 65

TABLE I. MANUAL MAPPING OF CLS TO EXECUTION CREDIT SET
Cadd−flow

KN
, FOR THE OPERATION add-flow THAT MAY RUN IN ISOLATION.

According to Figure 3, compared to smaller topology
sizes, large topologies lead to higher result suboptimality
Dsubopt. Possible explanation lies in the fact that the state
synchronisation is triggered only after the execution credit set
is exceeded. With large topologies, an add-flow execution on

Consistency Level CLN
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Fig. 3. Measured routing inefficiency for variable topology sizes T , variable
consistency levels CLN (as per Table I), and traffic flows with uniformly
distributed bandwidth requirement P = [1, 10] Mbps. The cost suboptimality
scales with the strictness of active CL and topology size. Our cost function
considers the sum of flows placed on edges as edge cost, and bandwidth
capacity is chosen as admission constraint.

average updates a higher number of edge reservations than in
the case of smaller topologies. Consistency management using
resource state credit sets might possibly lead to lower, uniform
suboptimality for variable topology sizes. As expected, the
Dsubopt of a routing operation scales linearly with the duration
of non-synchronisation period during which the routing opera-
tions are executed in isolation. In the 3-controller setup with 65
concurrent flow additions, compared to a strongly consistent
setup, mean result suboptimality for the eventually consistent
setup measures at 2.22%.
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Fig. 4. Measured routing inefficiency for variable traffic models P , variable
consistency levels CLN (as per Table I), and a static 25x25 nodes grid
topology. The cost suboptimality scales with the strictness of consistency
levels and traffic models. Flows that request higher bandwidth are more often
evaluated as cost-inefficient paths, as larger amount of resource is reserved on
every admission and the edge capacity invariant is invalidated more frequently.

Figure 4 depicts similar behaviour but also shows how
variation in traffic patterns influences performance of an even-
tually consistent system. By intelligent variation of assignment
of execution credit amount and consistency level, bounding
of experienced suboptimality to an arbitrary target value is
possible, regardless of active traffic patterns.

Concurrent execution of an operation allows for faster
handling of a large set of same-type requests. Figure 6 depicts
the mean suboptimality when handling a batch of 140k path
requests for all combinations of traffic models and topology
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Fig. 5. Probability that during the non-synchronisation period a flow is
embedded suboptimally. Cumulative probability is determined over all possible
combinations of traffic models and topology sizes. With the relaxation of
applied consistency level CLN (as per Table I), probability rises that a
sampled reference path is suboptimal at end of its non-synchronisation period.
With more relaxed CLN > CL6, as many as 34% of sampled paths are
marked as suboptimal. Regardless of this probability, the inefficiency of a
suboptimal path cost remains low (see Figures 3 and 4).
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Fig. 6. Load-balancing of path requests over a variable-size cluster of SDN
controllers. The average suboptimality of sampled flows is determined over
all possible combinations of traffic models and topology sizes. For different
consistency levels CLN (as per Table I), each controller instance executes a
variable number of add-flow operations in isolation. The state of admissioned
flows on every edge E (and hence the cost CE ) is distributed to all controller
instances at the end of non-synchronisation period.

sizes. We vary the size of cluster between 3 to 15 replicas. The
CL defines the number of concurrent path finding executions at
each controller instance. The suboptimality is shown to scale
with the number of concurrent path finding executions, and
peaks at 25% for the largest cluster size of 15 controllers. This
evaluation shows that a cluster of 6 SDN controllers is able
to cope with CL8 (41 isolated requests per instance), while
limiting the path cost difference to less than 6% compared to
similar but strong consistent setup. In scenarios where flows
are short-lived and higher cost inefficiencies can be tolerated,
adaptation of the CL assigns higher shares of execution credits
to controllers. Results hence show that a CL adaptation mech-
anism, such as our threshold-based approach (see Algorithm
1), can oscillate the experienced result suboptimality around a
target value, while minimizing the flow setup latency indepen-
dent of network topology and traffic models.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduce an algorithm for adapta-
tion of consistency levels that leverages observed frequency
and weight of synchronisation conflicts in order to find a
consistency level appropriate for targeted system optimality

and correctness. In terms of response delay, enabling non-
synchronised global switch configurations is especially effi-
cient when working with short-lived flows that require fast
response. By not relying on costly consensus after every re-
source state update, end-hosts benefit from shortened request-
handling time in the SDN controller. If state synchronisation
conflicts occur and correctness is endangered, our system
adapts autonomously to a more appropriate consistency level.
We have shown by simulation that adaptive consistency in an
SDN DCP can provide acceptable inefficiency compared to its
strong consistent counterpart, while keeping the response-time
benefits of the eventual consistency model. Hence, we firmly
believe that our model can pave the way for a scalable SDN
DCP design. While strong and eventually consistent DCPs
were compared in terms of correctness metrics, time-response
analysis is left for later comparison. To this end, trade-offs
between short execution time and blocking period incurred by
conflict resolve procedure require further attention.

This work has received funding from the EC’s Horizon
2020 programme under grant agreement #671648 VirtuWind.
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