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Abstract. In this paper, we show that for any dimension d ≥ 3 there exists a body
of constant breadth C, such that its projection onto any 2-plane is non-spherical.
We call such a body totally non-spherical. The circumradius of the projection of
any totally non-spherical body C of constant breadth onto any 2-plane is bigger
than the half diameter of C. Showing the existence of such a body extends results
of Eggleston [4] and Weissbach [2], who showed it in the case d = 3.
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1. Introduction

This paper deals with the existence of convex bodies of constant breadth (sometimes also
called bodies of constant width) with a very special property: that is, on whichever 2-
space one (orthogonally) projects them, the projection will not be a disc (but surely again
of constant breadth). If d = 2 this is obviously the whole class of constant breadth sets,
except the disc itself. In 3-space however the most considered constant breadth bodies
(bodies of revolution of a 2-dimensional constant breadth body and the Meissner bodies) do
have spherical projections. Eggleston and Weissbach [4, 2] describe d-dimensional bodies of
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constant breadth without spherical (d−1)-projections (which are totally non-spherical if d =
3) and the totally isoradial body described by Brandenberg, Dattasharma, and Gritzmann
[5] can not be projected onto a disc either. But so far nothing was known about totally
non-spherical bodies in dimension d ≥ 4. Here we will show that totally non-spherical bodies
do exist in any dimension d ≥ 2 and therefore we complete the diagram about the general
’≤’-relations between the different radii given in [5].
In the construction of the non-spherical bodies in dimensions d ≥ 5 we use the concept

of dark clouds. This is work based on unpublished work of Danzer [6], who described the
concept in a much more general way. Here we only introduce it as much as needed.

2. Dark clouds

Let Ed = (Rd, || · ||) denote the d-dimensional Euclidean space and B, S the unit ball and the
unit sphere in Ed, respectively. We call a set C ⊂ Ed with a non-empty interior a body if
it is bounded, closed, and convex. For j ∈ {1, . . . , d} the inner j-radius of a body C is the
maximum rj(C) of the radii of j-balls of radius ρ which fit into C and the outer j-radius is
the minimum Rj(C) of numbers ρ ≥ 0 such that there exists a (d− j)-flat F in Ed for which
C ⊂ F + ρB. Here the ’+’ denotes the usual Minkowski sum. In this terms the bodies of
constant breadth are exactly the bodies with equal inner and outer 1-radius.

Definition 2.1. Suppose G is a lattice in Rd, rB is a ball of radius r ≤ 1
2
, such that rB+G

forms a packing of Rd. Let α > 0, ai ∈ Rd, i = 0, . . . , n − 1. A dark cloud in Rd+1 is a
packing

⋃n−1
i=0 (ai, αi) + rB + G such that no line, which meets the hyperplane xd+1 = 0 in a

single point, can miss all these translations. We call αn the width of the dark cloud.
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Figure 1. A sketch of a portion of a dark cloud for d = 1 and n = 5.

Lemma 2.2. Dark clouds exist for any d ∈ N and any radius r ≤ 1
2
.

Proof. As every line intersecting xd+1 = 0 in a single point can be determined by a pair of
points (x, 0), (y, 1) ∈ Rd+1, we want to investigate sets of the form

K(λ, a, i) := {(x, y) ∈ R2d : (i(y − x) + x, i) ∈ (a, i) + λrB+G},
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where λ ∈ {1
2
, 1}, a ∈ Rd, i ∈ 0, . . . , n − 1 for some n ∈ N, and G is the unit lattice. Hence

K(λ, a, i) is the subset of R2d of all points (x, y) such that the line through (x, 0) and (y, 1)
meets the packing (a, i) + λrB+G. Because G is the unit lattice we are able to restrict our
attention to x, y ∈ Id. So the density of our sets in Rd or R2d are simply their volumes in Rd
or R2d, respectively.
Note that the probability that (x, y) ∈ R2d is in K(λ, a, i) for any a is λdρ, where ρ

is the volume of rB. So, if a0, . . . , an−1 are chosen at random in Rd, the probability that
(x, y) 6∈

⋃n
i=1K(λ, ai, i) is (1− λ

dρ)n. Consequently there must exist a0, . . . , an−1 ∈ Rd such
that the density of R2d \

⋃n
i=1K(λ, ai, i) is at most (1− λ

dρ)n.
Now for (x0, y0) ∈ R2d consider the subset

T (x0, y0) := {(x, y) : x ∈ x0 +
1

15n
rB+G, y ∈ y0 +

1

15n
rB+G}.

If T (x0, y0) ∩ K(
1
2
, ai, i) 6= ∅ then there exist x, y, with ||x − x0|| <

r
15n
, ||y − y0|| <

r
15n
, and

(iy−(i−1)x, i) ∈ (ai, i)+
1
2
rB+G, i.e. ||ai−iy+(i−1)x|| < 1

2
r, mod G. So if (x′, y′) ∈ T (x0, y0),

then ||x′ − x|| < 2r
15n
, ||y′ − y|| < 2r

15n
, and therefore ||i(y − y′) − (i − 1)(x − x′)|| < 4

15
r.

Hence ||ai − (iy′ − (i − 1)x′)|| < r, i.e. T (x0, y0) ⊂ K(1, ai, i). Now, because the density of

T (x0, y0) =
4ρ2

225n2
, by choosing λ = 1

2
and n large enough, we get (1− 1

2d
ρ)n < 4ρ2

225n2
. Hence,

for all (x0, y0) ∈ R2d there exist ai, i = 0, . . . , (n− 1), such that T (x0, y0)∩K(12 , ai, i) 6= ∅ for
at least one i. But this means that T (x0, y0) ⊂ K(1, ai, i). In particular (x0, y0) ∈ K(1, ai, i),
so
⋃n
i=1K(1, ai, i) covers R2d and that means that the sets

⋃n
i=1(ai, i) + rB+G form a dark

cloud. �

Lemma 2.3. Let α ∈ (0, 1), and β, γ > 0. Then there exists a dark cloud in the region
0 ≤ xd+1 ≤ α, such that each ball in the cloud has radius r < β and any pair of balls is at
least e > γr apart.

Proof. By Lemma 2.2 there exists a dark cloud with n layers at 1 apart consisting of balls
of radius r < β in these layers. Now reduce everything by a factor α

n
. The layers are then in

the region 0 ≤ xd+1 ≤ α and their distance apart is
α
n
. The balls are now of radius α

n
r and in

their layers they are α
n
(2− 2r) apart, while the balls in different layers are α

n
(1− 2r) apart.

Hence the balls have radius α
n
r < r < β and their distance apart is at least α

n
(1 − 2r). So

picking r such that 1
r
− 2 > γ we get the desired result. �

Lemma 2.4. Suppose A is the annulus 1 ≤ ||x|| ≤ 1+ε, ε > 0 . Then there exists a collection
of dark clouds C such that any line meeting B meets at least one of the balls of C within A.

Proof. Suppose P is a polytope such that B ⊂ P and all vertices of (1 + α)P are contained
in (1+ ε)B for some α, with 0 < α < ε. Now we place dark clouds of width α along all of the
facets of P . Hence every line meeting B meets also P and because the vertices of (1 + α)P
are lying in the annulus every such line cuts through one of the dark clouds touching a ball
in the cloud within the annulus. �

Definition 2.5. Any packing of caps on the d-dimensional sphere S within the region α−ε ≤
xd+1 ≤ α, 0 < α < 1, is called a spherical dark cloud of width ε, if any great 2-circle on S
which meets the cap xd+1 ≥ α intersects at least one cap in the packing.



534 R. Brandenberg, David Larman: Dark Clouds and Totally Non-spherical Bodies

Lemma 2.6. Every cap of S of the form xd+1 ≥ α, 0 < α < 1 can be blocked by a spherical
dark cloud of any width 0 < ε < α.

Proof. If we project the region α − ε ≤ xd+1 ≤ α from 0 onto the hyperplane xd+1 = 2, it
forms an annulus.

0

Figure 2. Projecting the region between two parallel caps onto an annulus

Now we apply Lemma 2.4 to obtain a collection of dark clouds which blocks every line meeting
the ball surrounded by the annulus. But, because every great 2-circle on S which meets the
cap xd+1 ≥ α is projected onto such a line on xd+1 = 2, we receive, by back projection, a
blocking of great 2-circles on the sphere. So far the projected collection of dark clouds does
not necessarily consist of disjoint caps, but because of Lemma 2.3 we can choose the distance
of the balls within one cloud to be arbitrary large. So, by replacing the disjoint parts of
the projection onto the sphere by equally sized disjoint caps we receive our spherical dark
cloud. �

3. Totally non-spherical bodies

Lemma 3.1. For any dimension d ≥ 3 there exists a finite set of closed caps ±C1, . . . ,±Cm
on S with disjoint relative interior such that every great 2-circle on S (and therefore any great
j-circle with 2 ≤ j ≤ d− 1) meets the relative interior of at least one pair ±Ci.

Proof. Every point x on S has ||x|| = 1. Hence every great 2-circle meets the hyperplane
xi =

1√
d
for some i. Now we block all these hyperplanes, as described in Lemma 2.6 in the
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region 1√
d
− ε ≤ xi ≤

1√
d
and handle overlapping caps as we handled it already in the proof of

that lemma. But now, as no great 2-circle can be parallel or approximately parallel to all of
this hyperplanes they all hit at least one antipodal pair of the clouds and therefore at least
one antipodal pair of caps within the clouds. �

Also the above proof holds for all d ≥ 3 we will give a special one for d ∈ {3, 4}:

Proof. This time we start with the caps ±Ci, i = 1, . . . , d as follows:

Ci := {x ∈ S : xi ≥
1
√
2
}.

If d = 3 every great circle must intersect through this caps as the biggest disc which fits into
a cube of edge length

√
2 has radius

√
3
2
[3], which is strictly less than 1.

Hence we can assume that d ≥ 4 and concentrate on great circles which do not entirely
lay in a hyperplane of the form xi = 0 (otherwise we can reduce the problem to the d = 3
case).
The intersection sets of ±Ci∩±Cj are only the points with i-th and j-th coordinate ±

1√
2

and the rest zero.
Let us now seek a great circle Σ not cutting through the relative interior of the 8 caps.

Suppose Σ meets the hyperplane x4 = 0 at the points ±(x1, x2, x3, 0). So, we have |xi| ≤
1√
2
,

i = 1, 2, 3. Now let ±y be the points on Σ perpendicular to ±x. Then |yi| ≤
1√
2
, i = 1, . . . , 4.

Now, every point z ∈ Σ is given by z = x cos θ + y sin θ with θ ∈ [0, 2π), and we require
|xi cos θ + yi sin θ| ≤

1√
2
, i = 1, . . . , 4 for all θ. But as |xi cos θ + yi sin θ| ≤

√
x2i + y

2
i for all

θ it must hold
√
x2i + y

2
i ≤

1√
2
and therefore x2i + y

2
i ≤

1
2
, i = 1, . . . , 4. By adding these

inequalities over all i and using x, y ∈ S we receive that x2i + y2i = 1
2
, i = 1, . . . , 4. As x4 = 0

it follows |y4| =
1√
2
and therefore that Σ touches ±C4 in ±y. By symmetry, Σ touches each

of ±Ci, i = 1, . . . , 4. But this means that for all i = 1, 2, 3 there must also exist some θi
such that xi cos θi + yi sin θi =

1√
2
. Without loss of generality we can assume that xi, yi ≥ 0

for a fixed i. Hence |xi cos θi + yi sin θi| < max{|xi cos θi|, |yi sin θi|} ≤ max{xi, yi} <
1√
2
, if

θ ∈ (π
2
, π) ∪ (3π

2
, 2π). On the other hand if θ ∈ [0, π

2
] ∪ [π, 3π

2
] then |xi cos θi + yi sin θi| =

|xi cos θi| + |yi sin θi| which is the 1-norm of the point in R2 with coordinates xi cos θi and
yi sin θi. But as the 2-norm of this point is

1√
2
the only possibilities for θi are θ ∈ {

kπ
2
: k ∈ Z}

and xi, yi ∈ {0,
1√
2
} such that xi + yi =

1√
2
.

Now this means for all i = 1, 2, 3 the coordinates xi, yi have to be 0 or ±
1√
2
with one being

0 and the other one being ± 1√
2
. But now as x, y ∈ S there can only be one i ∈ {1, 2, 3} such

that yi = ±
1√
2
. Hence there are only 6 different choices for Σ. But now as cos π

4
= sin π

4
= 1√

2

all possible Σ run through 4 of the points (±1
2
,±1
2
,±1
2
,±1
2
) which are far away from the

caps xi ≥
1√
2
. So by adding caps ±Ci =, i = 5, . . . , 12 of the form

∑4
j=1±xj ≥ 2 − ε, for a

sufficiently small ε we get the desired set of closed caps. �

As used in the second proof for d ∈ {3, 4} it would be always possible to avoid a dark clouds
construction if one knows a symmetric d-polytope P such that P does not contain a disc of
radius 1 and the intersection of P and B does only contain points p on any (d− 2)-face of P
with p ∈ S.
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Definition 3.2. Suppose C is a d-dimensional body of constant breadth. If none of the
orthogonal projections of C onto 2-planes are discs, we call C totally non-spherical.

Theorem 3.3. For all d ≥ 3 there exists a totally non-spherical body.

Proof. The basic idea of this proof was already used by Danzer [1] and it is to replace the
pairs of caps Ci and −Ci, i = 1, . . . ,m in Lemma 3.1 by asymmetric sets D

+
i and D

−
i which

preserve the constant breadth property for the resulting body. How to do this?

ei(π−α)

pi

e−iα eiα

B(L)

A(L)

D(L)

ei(π+α)

Consider any pair ±Ci, their line of symmetry li passing through 0 (the center of B), and a
2-plane L containing li. Let the bounding points of −Ci ∩ L be e−iα and eiα. We construct
the point p on li lying above 0 relative to −Ci, at distance 2 from both e−iα and eiα. Hence

p = (
√
2− sin2 α − cosα)eiα but is the same for any choice of L through li. p lies outside

L ∩ B but below the intersection of the tangents to L ∩ B at ei(π+α) and ei(π−α) respectively.
Now consider the three circular arcs of radius 2
(i) A(L) with center in p and end points e−iα and eiα within −Ci ∩ L,

(ii) B(L) with center in e−iα and end points ei(π−α) and p, and

(iii) D(L) with center in eiα and end points ei(π+α) and p.
Now we define D+i as the union over all 2-planes L of the regions bounded by B(L), D(L),
and the arc on S between ei(π+α) and ei(π−α) and D−i as the union over all 2-planes L of the
regions bounded by A(L) and the arc on S between eiα and e−iα.
Now the resulting body K is again of constant breadth and because of Lemma 3.1 every

great 2-circle on S intersects at least one of the regions ±Ci, i = 1, . . . ,m. Hence the
orthogonal projection of K onto any 2-plane can not be a disc. �
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Theorem 3.3 allows us also to state below a corollary which generalizes results from Eggleston
[4] and Weissbach [2], who showed it for d = 3.

Corollary 3.4. For all d ≥ 3 there exists a convex body C such that

rd(C) ≤ . . . ≤ r2(C) < r1(C) = R1(C) < R2(C) ≤ . . . ≤ Rd(C).

Proof. Follows from Theorem 3.3 and that the circumradius of a non-spherical 2-dimensional
body of constant breadth is bigger than its half diameter. �

Because of Corollary 3.4 the diagram from [5] (see Figure 3) is complete in the sense that
for any two radii which are not connected by a directed path there are bodies where the
’<’-relationship holds in one (totally non-spherical bodies) or the other (ellipsoids with all
axis of different length) direction.

R6

R4

R5

3r3

r 4

r1

r 2

1

R2

R

R5r

r6

Figure 3. The edges imply a generally smaller-than relationship between the two correspond-
ing radii.
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