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Abstract

The application of impedance boundary conditions reduces the computational cost of CFD
(computational fluid dynamics) simulations. For example, if one is only interested in com-
bustion stability, it is possible to simulate the combustion chamber only. The remaining parts
of the engine up- and downstream of the combustion chamber are modelled by impedance
boundary conditions. The aim of this thesis is to evaluate the impedance boundary conditions
implemented in ANSYS Fluent. Therefore we investigate the non-reflecting outlet of laminar
and turbulent pipe flows. In another setup the influence of non-reflecting wall sections is ex-
amined for laminar and turbulent pipe flows. In addition, we prescribe an impedance at the
inlet and outlet of laminar and turbulent pipe flows. Finally, we evaluate non-reflecting walls
in combustion chambers.

Using impedance boundary conditions at inlets or outlets, one can model orifices. Setting
the reflection coefficient for acoustic waves by means of imposing an impedance on an in-
or outflow boundary is practicable in principle. However, when measuring the flow variables
on this boundary, thus determining the actual reflection coefficient, observed and imposed
reflection coefficient diverge. In contrast to the imposed reflection coefficient, the boundary
shows reflecting behaviour towards low frequencies. This behaviour is observed for laminar
and turbulent test cases. The reason is an additional constraint to prevent the mean fields
from drifting. Non-reflecting behaviour at low frequencies improves when the characteristic
domain length is larger.

Another part of this thesis is dedicated to the evaluation of the consequences when im-
posing a non-reflecting boundary condition on the walls of the domain, which can be used
to model mufflers. When changing the behaviour of a wall section from reflecting to non-
reflecting, the magnitude of downstream propagating acoustic waves decreases considerably.

Sequential combustors are prone to transverse thermal instabilities, which can be elim-
inated in a simulation using non-reflecting walls. Therefore we investigate the influence of
non-reflecting walls on a stable combustion simulation. Two combustion test cases are used
to determine the influence of the acoustic parameters of the combustion chamber wall on
the flame. It shows that setting the combustion chamber walls to non-reflecting has only a
marginal effect on mean flow fields. The flame position does not change when using non-
reflecting walls.
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Nomenclature

Roman Symbols

R̂ complex reflection coefficient [1]

Li characteristic wave amplitude [m/s]

c speed of sound [m/s]

cp specific heat capacity at constant pressure [J/(kg K)]

C F L Courant-Friedrich-Lewy number [1]

f frequency [Hz]

f (s) characteristic wave - downstream propagating [m/s]

g (s) characteristic wave - upstream propagating [m/s]

M Mach number [1]

Mw relative molecular weight [1]

p total pressure [Pa]

pabs absolute pressure [Pa]

pg aug e gauge pressure [Pa]

pop operating pressure [Pa]

R reflection coefficient [1]

Runi v universal gas constant [J/(mol K)]

s specific entropy [J/(kg K)]

T temperature [K]

u flow speed [m/s]
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CONTENTS

Greek Symbols

γ ratio of specific heat capacities [1]

λ thermal conductivity [W/(m K) ]

λi characteristic speed [m/s]

Ψi characteristic variable [depends]

ρ density [kg/m3]

σ Cauchy stress tensor [Pa]

Acronyms

ARX autoregressive with exogenous input

BC boundary condition

BJ Box-Jenkins

CBSBC characteristic based state-space boundary condition

CFD computational fluid dynamics

CFL Courant–Friedrichs–Lewy

FIR finite impulse response

LES large eddy simulation

NSCBC Navier-Stokes characteristic boundary conditions

OE output-error

PDE partial differential equation

TDABC time-domain admittance boundary condition

TDIBC time domain impedance boundary condition

UDF user defined function

WALE wall-adapting local-eddy-viscosity
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1 Introduction

1.1 Objectives

Impedance boundary conditions are of great importance for the investigation of thermoa-
coustic systems. In many cases, they allow for a reduction of the simulation domain. For ex-
ample, instead of simulating an entire engine, impedance boundary conditions allow for per-
forming a LES of the combustion chamber only. The parts which are not included in the CFD
simulation are modelled by impedance boundary conditions. Thus significantly reducing the
computational costs of the simulation and simplifying the design of the combustion cham-
ber, without however neglecting the acoustic behaviour of the rest of the system. Impedance
boundary conditions are implemented in ANSYS Fluent by convolution in the time domain.
Fig. 1.1 schematically shows a turbomachine and the simplified model of the combustion
chamber, in which the influence of the other components on thermoacoustic phenomena is
modelled by means of an appropriate acoustic impedance.

Figure 1.1: Schematic representation of the set-up of a LES of a combustion chamber while
modelling the other parts of the system by means of impedance boundary conditions.
Reprinted from Jaensch et al. [10].

This thesis aims to evaluate the built-in impedance boundary conditions in ANSYS Fluent
in laminar and turbulent flow conditions. Acoustic impedance is applied on the inlet and the
outlet of the chamber. The influence of a non-reflecting wall patch is investigated for non-
reacting laminar and turbulent flow conditions in a duct and for a turbulent swirl burner.
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Introduction

1.2 Outline

The theoretical principles of computational fluid dynamics are summarized in Sec. 2.1. This
includes the governing equations as well as an introduction to numerical methods. On this
basis, Sec. 2.2 introduces the basic principles of thermoacoustics, focussing on the principle
of acoustic waves. This section introduces the essential aspect of defining an acoustic reflec-
tion coefficient on a boundary. Therefore the concept of non-reflecting boundary conditions
is presented in Sec. 2.3. Based on this, the impedance boundary condition is introduced in
Sec. 2.4, whereas Sec. 2.5 gives an overview over the relevant theory of system identification,
which is used to identify the impedance.

In order to better understand the obtained simulation results, Sec. 3 gives an insight into
the algorithms and approaches typical for this finite-volume solver.

The various test cases used for the validation of the impedance boundary conditions are
presented in Sec. 4. This includes a description of the setups of laminar and turbulent test
cases and also discusses the results of the simulations and evaluates the possibilities of im-
plementing impedance boundary conditions in ANSYS Fluent with regards to the findings of
preceding studies on this subject. This section is divided into five subsections: At first, the re-
flecting behaviour of outflow boundaries specified as non-reflecting is presented for laminar
and turbulent flow conditions in Sec 4.1. The implementation of wall impedance is described
in Sec. 4.2. The investigation of the impedance boundary condition is treated in Sec. 4.3,
followed by the examination of the combustion test cases in Sec. 4.4. In addition, Sec. 4.4.3
summarises the examination of the reflecting behaviour of a combustion chamber wall set to
non-reflecting behaviour when applying a transverse excitation signal on the opposite wall in
presence of a combustion process. The overall conclusion as well as a perspective for further
studies in this area is given in Sec. 5.
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2 Theoretical principles

2.1 Computational fluid dynamics

2.1.1 Navier-Stokes equations

The Navier-Stokes equations are the foundation of the mathematical description of a fluid-
dynamics and heat-transfer problem. They are a system of partial differential equations (PDE)
[18]. As this thesis aims at investigating acoustic phenomena, a compressible solver is chosen.
The basic equations solved by ANSYS Fluent for compressible flows are the continuity, mo-
mentum, energy and, eventually, a species transport equation. The first PDE is the continuity
equation

∂ρ

∂t
+∇· (ρ~u) = Sm , (2.1)

where ρ denotes the density of the fluid, ~u is the velocity vector and Sm is a mass source
term. Another PDE which is part of the Navier-Stokes equations is the momentum conserva-
tion equation, here in its differential form

∂(ρ~u)

∂t
+∇· ((ρ~u)⊗~u) =−∇p +ρ~g +~F , (2.2)

where ρ~g is the gravitational body force and ~F designates external body forces. For each
chemical species, the species transport equation

∂

∂t

(
ρYi

)+∇· (ρ~uYi
)=−∇·~Ji +Ri +Si (2.3)

is solved. Where Yi designates the local mass fraction of species i , ~Ji is the diffusion flux of
each species as a result of concentration and temperature gradients. Ri describes the net rate
of production by chemical reaction and Si designates the rate of creation of species i from a
dispersed phase. The energy conservation equation in differential form

∂

∂t

(
ρE

)+∇· (~u (
ρE +p

))=−∇·
(∑

j
h j J j

)
+Sh (2.4)

completes the set of PDE which constitute the Navier-Stokes equations which ANSYS Flu-
ent solves for compressible flow problems. E denotes the total energy, h J is the enthalpy of
each species, J j is the mass flux of each species and Sh denotes an energy source term [1].

3



Theoretical principles

2.1.2 Numerical methods

The Courant–Friedrichs–Lewy (CFL) condition is represented for the one-dimensional case
by

C F L = u ·4t

4x
≤Cmax . (2.5)

Where C F L denotes the CFL number, u is the velocity amplitude, 4t is the discrete time
step size and 4x is the space increment. The maximum CFL number Cmax with which a con-
verged solution can be achieved, depends on the solver type and the simulation setup.

2.2 Acoustics

As this thesis examines the behaviour of acoustic waves in a straight and cylindrical pipe, the
theoretical principles of acoustics shall be briefly summarized in this chapter. The foundation
for describing a transport process is the scalar conservation law

∂φ

∂t
+∇·F (φ) = 0 (2.6)

for a scalarφ(x, t ) . F (φ) denotes a scalar field of the variableφ. In integral form, this equa-
tion yields ∫

V

∂φ

∂t
dV +

∫
V
∇·F (φ)dV = 0. (2.7)

Which can be transformed to ∫
V

∂φ

∂t
dV =−

∮
S

F (φ) ·~n dS (2.8)

applying the Gaussian theorem on the second term of Eq. (2.7). This equation represents the
conservation law on the level of control volumes. Restricting the observation to one dimen-
sion, the ∇ operator in Eq. (2.6) can be substituted with a space derivative, which yields

∂φ

∂t
+ ∂F (φ)

∂x
= 0. (2.9)

Applying the chain rule of calculus leads to the equation

∂φ

∂t
+ ∂F (φ)

∂φ
· ∂φ
∂x

= 0, (2.10)

which allows for drawing a conclusion by dimensional analysis:φ is a dimensionless value,
therefore the time derivative is in 1

s and the derivative in space is in 1
m . As a result, the unit of

the expression ∂F (φ)
∂φ

is m
s and thus a speed [17]. This term being of importance for the propa-

gation of acoustic waves is defined as

4



2.2 Acoustics

λ(φ) := ∂F (φ)

∂φ
. (2.11)

As a first step to understand the physical meaning of λ(φ), the total differential of φ(x, t )
in one dimension is determined to

dφ= ∂φ

∂x
·dx + ∂φ

∂t
·dt . (2.12)

Inserting Eq. (2.12) in (2.10) and (2.11) yields

dφ= ∂φ

∂x

(
dx −λ(φ) ·dt

)
, (2.13)

which leads to the conclusion that dφ is zero, if

dx

dt
=λ(φ). (2.14)

Which implies that φ(x, t ) is constant. In conclusion, if a scalar variable φ(x, t ), which sat-
isfies a differential equation as in (2.10), is constant along a curve x(t ), then this curve is re-
ferred to as a characteristic curve and λ(φ) as characteristic transport velocity [17].

2.2.1 Characteristic variables

For a transient, one-dimensional flow problem the Euler equations can be expressed as

∂ρ

∂t
+u · ∂ρ

∂x
+ρ · ∂u

∂x
= 0,

∂u

∂t
+u · ∂u

∂x
+ 1

ρ
· ∂p

∂x
= 0,

∂s

∂t
+u · ∂s

∂x
= 0,

(2.15)

whereas s denotes the specific entropy of the control volume. Using isotropy and the def-
inition of the speed of sound

c2 := ∂p

∂ρ

∣∣∣∣
s=const .

(2.16)

allows for transforming the derivatives of pressure in the Euler equations and leads to

∂ρ

∂t
+u · ∂ρ

∂x
+ρ · ∂u

∂x
= 0,

∂u

∂t
+u · ∂u

∂x
+ c2

ρ
· ∂ρ
∂x

= 0,

∂s

∂t
+u · ∂s

∂x
= 0.

(2.17)
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Theoretical principles

This system of equations can be expressed in matrix format in quasi-linear form

∂

∂t

ρu
s

+

 u ρ 0
c2

ρ
u 0

0 0 u

 · ∂
∂x

ρu
s

=
0

0
0

 , (2.18)

or in symbolic form
∂~φ

∂t
+ A(~φ) · ∂

~φ

∂x
=~0, (2.19)

whereas ~φ denotes the state vector. In the next step, the eigenvalues of A are determined
to

λ1 = u − c,

λ2 = u + c,

λ3 = u.

(2.20)

Then the matrix of the corresponding eigenvectors R and its inverse matrix R−1 can be
calculated as

R =
 1 1 0
−ρ

c
ρ
c 0

0 0 1

 (2.21)

and

R−1 = 1

2

1 −ρ
c 0

1 ρ
c 0

0 0 2

 . (2.22)

The derivative in time of the characteristic variablesΨ1,Ψ2 andΨ3 is defined as the vector
product of the inverse of the eigenmatrix and the state vector

R−1 · ∂
∂t

ρu
s

= 1

2

 ∂
∂t ρ−

ρ
c
∂
∂t u

∂
∂t ρ+

ρ
c
∂
∂t u

2 ∂
∂t s

=:
∂

∂t

Ψ1

Ψ2

Ψ3

 . (2.23)

The results of these considerations in condensed form are expressed by the equation

∂~Ψ

∂t
+

λ1 0 0
0 λ2 0
0 0 λ3

 · ∂
~Ψ

∂x
=~0, (2.24)

which relates the characteristic variables and corresponding characteristic propagation
speed [17].
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2.2 Acoustics

2.2.2 Characterisitc wave propagation

The general approach of describing acoustic waves presented in Sec. 2.2.1 can be expanded to
laminar or turbulent flows with transient flow velocity. The flow fields of pressure p(~x, t ), ve-
locity u(~x, t ) and density ρ(~x, t ) can be separated into mean value (.) and acoustic fluctuation
(.)′. In the case of a turbulent flow, there is turbulent fluctuation (.)′t as a third component. For
the linear one-dimensional case there is an analytical solution for the state of the fluctuation
of the flow fields as a function of time and space

p ′(x, t ) = ρc
(

f (x, t )+ g (x, t )
)

u′(x, t ) = f (x, t )− g (x, t ),
(2.25)

where the f wave propagates with u+c and the g wave propagates with u−c. f is the am-
plitude of a downstream propagating wave and g is the amplitude of an upstream propagating
acoustic wave. Analogously, the characteristic wave amplitudes f and g can be expressed as
a function of u′ and p ′ [21]

f (x, t ) = 1

2

(
p ′(x, t )

ρ c
+u′(x, t )

)
g (x, t ) = 1

2

(
p ′(x, t )

ρ c
−u′(x, t )

)
.

(2.26)

The ratio of reflection and transmission of the wave depends on the imposed boundary
conditions on the interface. Amplitude and phase of the reflected or transmitted wave dif-
fer from the parameters of the incoming wave. Fig. 2.1 schematically shows the propagation
behaviour of acoustic waves.

Figure 2.1: Schematic representation of acoustic waves entering and leaving a domain at the
in- and outflow boundary. Adapted from Sovardi et al. [20].

The impedance boundary conditions define amplitude and phase of the waves fu and gd ,
which are entering the domain. The fd wave, having propagated through the domain, arrives
at the outlet interface and is partially transmitted and partially reflected, so is the gu wave at
the inlet boundary.

Another notation for the acoustic fields is the harmonic wave form

7



Theoretical principles

p ′(x, t ) = Re
(
p̂(x)e iωt

)
u′(x, t ) = Re

(
û(x)e iωt

)
ρ′(x, t ) = Re

(
ρ̂(x)e iωt

)
,

(2.27)

whereas ω denotes the angular frequency and Re(.) indicates the real part of a complex
number. With these expressions, a reflection coefficient R̂ can be defined at the outflow and
inflow boundary following Tudisco et al. [22], using the ratio of reflected and incoming wave
in the frequency domain

R̂out f l ow = ĝ B
u

f̂ B
u

R̂i n f l ow = f̂ A
d

ĝ A
d

.

(2.28)

The description of characteristic waves presented in Sec. 2.2.1 can be extended to three
dimensions. The characteristic wave amplitudes Li and their characteristic speeds λi are
schematically represented in Fig. 2.2 for a three-dimensional domain.

The characteristic wave amplitudes can be expressed as functions of the primitive vari-
ables p, u and ρ

L1 =λ1

(
∂p

∂x1
−ρc

∂u1

∂x1

)
L2 =λ2

(
c2 ∂ρ

∂x1
− ∂p

∂x1

)
L3 =λ3

(
∂u2

∂x1

)
L4 =λ4

(
∂u3

∂x1

)
L5 =λ5

(
∂p

∂x1
+ρc

∂u1

∂x1

)
.

(2.29)

The corresponding characteristic speeds are

λ1 = u1 − c

λ2 =λ3 =λ4 = u1

λ5 = u1 + c

(2.30)

as derived for the one-dimensional case. The characteristic wave amplitudes f and g ,
as defined in Eq. (2.26), are per definition constant along the characteristic curves x +λi t =
const ., which is why they are referred to as Riemann-invariants [22].

8



2.3 Reflecting behaviour of an outflow boundary

Figure 2.2: Schematic three-dimensional representation of the direction, amplitude and
speed of characteristic waves entering (left) and leaving (right) the domain. Reprinted from
Tudisco et al. [22].

In case of a simulation, the characteristic waves presented in this section are set according
to a certain boundary condition type. This procedure is described in detail in the following
section.

2.3 Reflecting behaviour of an outflow boundary

The reflecting behaviour of a boundary depends on the type of the imposed boundary con-
dition. For instance, we consider the x2x3 outflow boundary at x1 = L in Fig. 2.2. For an up-
stream propagating acoustic wave g inside the domain at the considered boundary face, the
Riemann invariance can be expressed as

∂g

∂t
+ λ̄1

∂g

∂x1
= 0. (2.31)

This equation can be reformulated using the definition of the acoustic g wave in Eq. (2.26)
and the expression for the fluctuation of the characteristic wave L1 in (2.29) into

9



Theoretical principles

∂g

∂t
+λ1

∂g

∂x1
= ∂g

∂t
+ λ1

2

(
1

ρ̄c̄

∂p ′

∂x1
− ∂u′

∂x1

)
= ∂g

∂t
+ L ′

1

2ρ̄c̄
= 0. (2.32)

This expression can in turn be reformulated into

L ′
1 =−2ρ̄c̄

∂g

∂t
. (2.33)

This expression shows the direct correlation between the upstream propagating acoustic
wave g and the characteristic wave fluctuation L ′

1 on the outlet boundary. With the assump-
tion of harmonic waves

g (x, t ) = Re
(
ĝ e iωt

)
, (2.34)

where ĝ denotes the amplitude of the characteristic wave in the frequency domain and ω
is the angular frequency, Eq. (2.33) can be expressed as

L ′
1 =−2i ρ̄c̄ωĝ e iωt . (2.35)

This demonstrates, that the amplitude of the upstream propagating acoustic wave g on
the boundary depends directly on the imposed characteristic wave fluctuation L ′

1 [22].

2.3.1 Restrictions for non-reflecting boundary conditions

As a result, it is not possible to impose the mean flow quantities and to specify the charac-
teristic wave signal at the boundary at the same time. This restriction is described by Tudisco
et al. [22]. If a perfectly non-reflecting boundary condition is imposed, then the mean flow
quantities might drift as described by Poinsot et al. [8]. A trade-off between the mean flow
and impedance boundary conditions is needed. A linear relaxation coefficient K can be used
to calculate the characteristic wave L1 on the outlet. In the following, the concept of using a
relaxation factor is introduced for an outflow boundary, where the mean pressure is imposed.
Depending on the value of the relaxation coefficient, a correction term changes the pressure
value towards the constant target pressure p∞ imposed on the boundary. This algorithm is
explained in Sec. 3.2. The upstream propagating characteristic wave is defined as

L1 =−K
(
p −p∞

)
, (2.36)

where the term
(
p −p∞

)
describes the imposed pressure fluctuation on the boundary. Ap-

plying the relation between acoustic pressure fluctuation and acoustic waves given in Eq. (2.25)
after Fourier transform, the characteristic wave can be expressed in the frequency domain as

L̂1 = ρ̄c̄K
(

f̂ + ĝ
)

e iωt . (2.37)

This formulation is based on the assumption, that the pressure drift fluctuation
(
p −p∞

)′
can be described by characteristic linearised waves. Equating the expression with Eq. (2.35)
leads to

10



2.4 Impedance boundary conditions

−2i ρ̄c̄ωĝ = ρ̄c̄K
(

f̂ + ĝ
)

. (2.38)

Neglecting external excitation, the reflection coefficient on the outlet boundary can thus
be expressed as

R̂ = ĝ

f̂
= −1

2iω
K +1

. (2.39)

Therefore, the reflection coefficient R̂ is −1 for K 6= 0 and ω → 0, that is, the behaviour is
reflecting for acoustic waves at low frequencies. A completely reflecting boundary can also be
characterized by K → ∞. This corresponds to a reflection coefficient R̂ of −1 with an ampli-
tude of 1 and a phase value of 180◦, whereas K → 0 describes ideal non-reflecting acoustic
behaviour. But, as a relaxation coefficient of K = 0 does not prevent drift of the flow quanti-
ties, this ideal behaviour cannot be achieved. Thus making it necessary to find a compromise
between imposing the desired acoustic behaviour and the correct mean field quantities on
the boundary [22].

This restriction regarding the concurrent specification of mean flow and reflecting be-
haviour, is of great importance when investigating impedance boundary conditions.

2.4 Impedance boundary conditions

By imposing an impedance boundary condition, the acoustic reflection coefficient of a bound-
ary can be specified according to the requirements. Typically, the reflection coefficient is frequency-
dependend. There are different methods of imposing impedance boundary conditions. Ei-
ther the acoustic impedance, or the reflection coefficient is imposed on the boundary. In
both cases, the expressions have to be transformed to the time domain. The transformation
from the frequency domain can be achieved by convolution integral of acoustic quantities
and reflection coefficient. The other method of modelling an impedance boundary condition
is the state space approach using CBSBC (characterisic based state-space boundary condi-
tions) [10].

In Fluent, impedance boundary conditions are implemented by means of a convolution
integral. For a description of the convolution method, the reader is referred to Sec. 3.3. We use
the convolution integral mehtod because it is implemented in Fluent.

2.5 System identification

A simple way to compute the relation between the acoustic waves anywhere in the compu-
tational domain is single frequency excitation. This has the drawback that a separate simula-
tion is necessary for each frequency at which the relation of two acoustic waves is of interest.
Broadband excitation is faster, as it allows to determine the response for a broad frequency
range in one simulation. When using this approach, a linear time invariant (LTI) system is
fitted using the resulting broadband signals.

11
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A set of models is necessary to identify the transfer functions between characteristic wave
amplitudes at different positions or of different waves. For this identification process, the
choice of a suitable single-input single-output model is essential. The system is assumed to be
linear. In this case, input-output models give reliable results. In thermoacoustics, commonly
used models are FIR (finite impulse response) [15], ARX (autoregressive with exogenious in-
put) [7], OE (output-error) [7] and BJ (Box-Jenkins) [19]. FIR is commonly used for the identi-
fication of the flame transfer function, whereas ARX, OE and BJ are typically used to identify
scattering matrices and reflection coefficients. In this evaluation we use the OE models to
identify the reflection coefficient.

The FIR (finite impulse response) is the simplest model of the above mentioned. The out-
put y is modelled based on the input u. The relation between input and output is

y(t ) = b1u(t −1)+ ...+bmu(t −m)+e(t ), (2.40)

where e(t ) is unknown white noise and m is the number of coefficients. The advantage of
this model is, that it is always stable. However, noise is fitted, which might cause oscillations.

In case of the ARX model (autoregressive with exogenous input), the relation between in-
put u and output y in the time domain is given by the equation

y(t )+a1 y(t −1)+ ...+ana y(t −na) = b1u(t −nk )+ ...+bnb u(t −nb −nk +1)+e(t ), (2.41)

whereas e(t ) designates the error in form of white noise, na is the number of poles, nb is
the number of zeros of the model and nk describes the time delay. In matrix form, the ARX
model can be expressed as

Ay(t ) = Bu(t −nk )+e(t ). (2.42)

In some cases, the disadvantage of this model type is, that the modelling of the error de-
pends on the input, namely 1

A compared to B
A for the input, this is, the poles for system dynam-

ics and the error model are the same. Fig. 2.3 gives a schematic overview of the ARX model, as
well as of the output-error (OE) and Box-Jenkins (BJ) model.

The OE model is similar to the ARX model. The matrix formulation is

y(t ) = B

F
u(t −nk )+e(t ), (2.43)

which shows, that the model only takes into account inputs. Furthermore, the description
of noise is neglected. The focus of this model type is the minimization of prediction error. The
BJ model is an extension of the ARX model, as input and input error are treated independently.
The model can be described in matrix form as

y(t ) = B

F
u(t −nk )+ C

D
e(t ). (2.44)

This model is very flexible and still gives good results when measurement noise is rela-
tively large [12], [13].
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2.5 System identification

Figure 2.3: Schematic representation of the linear input-output models ARX, OE and BJ. Each
with respective transfer functions. Adapted and reprinted from Ljung [12].

The accuracy of the thus estimated model can be defined in multiple ways. In this thesis,
accuracy is defined based on the weighted difference between the output of the model and
the measured output. For y − ȳ 6= 0, the accuracy value in percent a% is calculated in the time
domain as

a% =
(
1− ‖y − y∗‖

‖y − ȳ‖
)
·100%, (2.45)

where y designates the training set and y∗ is the estimated output signal. ȳ designates the
mean value of the validation data output signal [13].

Single frequency excitation

Two different means of imposing an excitation signal are used to validate the test cases. The
first approach consists of imposing a periodic signal of a certain constant frequency on the
boundary. This signal can be the velocity fluctuation u′ or the amplitude of an acoustic wave
entering the domain. In the first laminar test case, the imposed signal is the flow velocity on
the inlet, which oscillates around a mean value in form of a sinusoidal wave. The amplitude
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of velocity- or f wave fluctuation is 5% of the mean flow speed for the laminar case and cor-
responds to a 5 or 20% fluctuation of the mean flow speed ū for the turbulent test case. This
results in a good signal to noise ratio, which is important especially with regard to the tur-
bulent test case. The high computation cost restricts the number of simulations which can
be performed. Thus limiting the amount of frequencies which for which the reflection coeffi-
cient can be determined using single frequency excitation. These limitations can be avoided
by using a broadband excitation signal. However, single frequency excitation is used to vali-
date the results of the simulations performed with broadband excitation, because it does not
require any modelling.

The disadvantage of using single frequency excitation and identification is, that the con-
fidence region is not computed. Only the averaged frequency response over some periods is
calculated.

Broadband excitation

Broadband excitation allows for determining the thermoacoustic reflection behaviour of bound-
aries for a wide range of frequencies in a single simulation run, thus cutting the combined
computational cost to a minimum. The challenge is to provide a high-quality broadband sig-
nal. The generated signals should have high power spectral density in the specified frequency
range. We generate a signal bounded between −1 and 1, then we scale it appropriately to ob-
tain 5% and 20% excitation of the velocity or incoming wave. Additionally, the high magnitude
values should have the highest probability.

After generating the broadband fluctuation signal with maximum amplitudes of 1, oscil-
lating around a mean value of 0, the signal is multiplied by factor of 5% and 20% of the mean
value of the signal to be imposed on the boundary for laminar and turbulent test case, respec-
tively. This fluctuation is then added to the mean value and saved in form of a time-velocity
or time-wave amplitude profile. The generated signal is used as input for the inlet velocity or
outlet f wave fluctuation.

Most often, we use broadband excitation for the investigation of the test cases. In addition,
single frequency excitation for some frequencies is used to validate the identified model.
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3 Flow simulation with ANSYS Fluent

3.1 Flow solvers

For all our investigations, we used ANSYS Fluent. In the following, we describe this finite vol-
ume solver. It offers a choice between two numerical methods: a pressure- and a density-
based solver. While the former is mainly used for low-speed incompressible flows, the latter
approach is used for high-speed compressible flows. For both methods, the calculation of the
velocity field is based on the momentum equation, whereas the means of determining den-
sity and pressure fields differ: the pressure-based approach consists of extracting the pressure
field by solving a pressure correction equation, which itself is derived from the continuity and
momentum equations. In contrast to this, the density-based method uses the equation of
state to obtain the pressure field and the continuity equation is the foundation for the calcu-
lation of the density field. Fluent solves the governing integral equations for the conservation
of mass, momentum and energy as introduced in Sec. 2.1.1, and, if necessary, for turbulence
and other scalar variables [2].

Dealing with pressure, Fluent uses the concept of operating pressure to minimise numeri-
cal round-off error. For a detailed explanation of this concept, the reader is referred to Appx. F.
In the following, only the pressure-based solver is explained, as this solver is used for all sim-
ulations performed in the course of this thesis. Pressure-based solvers are more commonly
used in the CFD community. Typically, they converge faster than density-based solvers.

Pressure-based solver

The pressure-based solver is based on an algorithm of the projection method. The conser-
vation of mass in the velocity field is ensured by solving the pressure equation, which is de-
rived from the continuity and momentum equation. Iterations are necessary in the solution
process, because the governing equations are non-linear and coupled. The whole set of equa-
tions is solved iteratively for each time step until convergence is detected. There is a choice
between a segregated and a coupled algorithm.

In the segregated algorithm the governing equations are solved separately one from an-
other. Each equation is considered separately for each solution variable. This approach is
memory-efficient, but convergence is slow for challenging cases compared to the coupled
approach. Fig. 3.1 shows the algorithm for the segregated algorithm.

In the first step, the fluid properties are updated according to the current solution. Then
all momentum equations are solved, using actual values of pressure and face mass flux. Af-
ter that, the pressure correction equation is solved using the calculated velocity field. The

15



Flow simulation with ANSYS Fluent

Figure 3.1: Schematic comparison of the algorithms of the segregated and the coupled algo-
rithm of the pressure-based solver. Reprinted from the Fluent manual [2].

pressure correction is then used to correct face mass flux values, pressure and velocity field.
Then, the equations for additional scalars such as energy, species and turbulent quantities
are solved if the option is active. These steps are run through repetitively until convergence is
reached.

In contrast, the coupled algorithm solver is based on a coupled system of momentum and
continuity equations. The solution process is similar, except that the steps of solving the mo-
mentum and the pressure correction equation are combined. The other governing equations
are solved in a segregated approach. The coupled algorithm improves solution convergence
significantly. However, memory requirements rise accordingly and the computation time for
one time step is longer [2].
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3.2 Non-reflecting boundary conditions in Fluent

3.2 Non-reflecting boundary conditions in Fluent

In Sec. 2.2.1 we introduced the concept of characteristic waves. In Fluent, non-reflecting bound-
ary conditions are implemented using these characteristic waves, which are in turn calculated
from the primitive flow variables pressure, temperature and x-, y- and z-velocity components.
These flow quantities are obtained by solving the Euler equations on the boundary. Therefore,
the Euler equations are transformed to a coordinate system with the x1 axis being orthogo-
nal to the boundary. A schematic representation of the coordinate transformation is shown in
Fig. 3.2.

Figure 3.2: Schematic representation of global Cartesian (X,Y,Z) and local orthogonal
(x1, x2, x3) coordinate system on the boundary. Reprintend from the Fluent manual [3].

For certain boundary types, no information about the waves propagating into the com-
putational domain from the outside is available. In this case, a special treatment of the Euler
equations is necessary. Poinsot and Lele [8] derived a means of defining soft boundary con-
ditions for non-reflecting boundary conditions. Therefore, on an non-reflecting boundary, in
addition to the Navier-Stokes equations of the interior, a second system of equations is solved
on the boundary:
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∂ρ

∂t
+d1 + ∂(ρu2)

∂x2
+ ∂(ρu3)

∂x3
= 0

∂(ρu1)

∂t
+u1d1 +ρd3 + ∂(ρu1u2)

∂x2
+ ∂(ρu1u3)

∂x3
= 0

(∂ρu2)

∂t
+u2d1 +ρd4 +

∂(ρu2
2)

∂x2
+ ∂(ρu2u3)

∂x3
+ ∂p

∂x2
= 0

∂(ρu3)

∂t
+u3d1 +ρd5 + ∂(ρu3u2)

∂x2
+ ∂(ρu2

3)

∂x3
+ ∂p

∂x3
= 0

∂ρE

∂t
+ 1

2
|~u|2 d1 + d2

(γ−1)
+ρu1d3 +ρu2d4 +ρu3d5 + ∂(ρEu2 +pu2)

∂x2
+ ∂(ρEu3 +pu3)

∂x3
= 0.

(3.1)

The velocity components ui give the velocity in xi direction of the local coordinate system,
~u designates the velocity vector in the same coordinate system and E is the total energy of the
control volume. The di terms

d1 = 1

c2

[
L2 + 1

2
(L1 +L5)

]
d2 = 1

c2 (L1 +L5)

d3 = 1

2ρc
(L5 −L1)

d4 =L3

d5 =L4.

(3.2)

are calculated from the characteristic wave amplitudes Li which were defined in Eq. (2.29)
in Sec. 2.2.1.

Under subsonic flow conditions, four waves each are entering and leaving the domain on
a boundary face. For an inflow boundary, the waves are entering the domain with the charac-
teristic speeds λ1,λ2,λ3 and λ4 in negative x1 direction. For an outflow boundary, the speeds
corresponding to the outgoing acoustic waves are λ2,λ3,λ4 and λ5 in positive x1 direction.
The acoustic waves entering and leaving are shown in Fig. 3.3 for inflow and outflow bound-
ary face respectively.

To implement a non-reflecting boundary condition at an inflow or outflow boundary con-
dition, at first the flow derivatives parallel to the boundary from Eq. (3.1) are extrapolated from
the interior of the domain using the relations from Eq. (3.2) to determine the amplitudes of
waves leaving the domain. Then, incoming waves are determined by setting the characteristic
waves L3 and L4 to zero. The linear relaxation method is used to determine the amplitudes
of pressure and entropy wave entering the domain. This method is based on the assumption,
that the amplitude of waves entering the computational domain is proportional to the relative
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Figure 3.3: Schematic representation of characteristic waves entering (left) and leaving (right)
the domain on a boundary with amplitudes Li and characteristic speeds λi for subsonic
flows. Reprintend from the Fluent manual [3].

distance between the local value of the primitive flow quantity and the value imposed on the
boundary. The relation between imposed and local value is different for every type of in- or
outflow boundary type. In this thesis, the examined in- and outflow boundaries are restricted
to velocity inlets and pressure outlets. Therefore the expressions are only presented for these
two boundary types.

For a pressure outlet, the incoming wave L1 is calculated as

L1 = K
(
p −pi mposed

)
, (3.3)

where pi mposed denotes the imposed pressure value on the outflow boundary, p is the
local pressure value in the boundary-adjacent cell, and K is a relaxation factor. As shown in
Sec. 2.3.1, K → 0 corresponds to ideal non-reflecting behaviour, whereas K → ∞ corre-
sponds to completely reflecting behaviour with zero offset.

Depending on this relaxation factor, the average pressure on the boundary can either be
shifted towards a specified target value pi mposed or relaxed towards the local pressure p. In
the first case, the relaxation factor is calculated as

K =σ2c, (3.4)
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where the default value of σ2 is 5.0. This is only possible when using the density-based
solver. We do not consider the density-based solver in this investigation. In the second case, if
the average pressure shall relax towards p on the boundary, the relaxation factor is

K =σ1
(
1−M 2

max

) c

h
, (3.5)

whereσ1 is an under-relaxation factor with a default value of 0.15, Mmax denotes the max-
imum Mach number in the domain and h is the characteristic domain size, e.g. the length of a
duct with axial flow. It is clear from Eq. (3.5), that the relaxation factor depends on the length
of the domain. With increasing domain length, the relaxation factor becomes smaller and the
behaviour of the boundary changes towards non-reflecting.

For a velocity inlet, the incoming waves L1 and L2 are calculated as

L1 =−Kρc
(
U1 −U1,i mposed

)
L2 = K c2 (

ρ−ρder i ved
)

,
(3.6)

where U1,i mposed is the the velocity imposed on the boundary and ρder i ved is the density
on the boundary. The density is calculated using the imposed temperature on the boundary
and the extrapolated pressure from the domain [3].

3.3 Impedance boundary conditions in Fluent

Fluent allows to impose an impedance boundary condition on inflow and outflow bound-
aries. The acoustic impedance Ẑ is defined in the frequency domain as

Ẑ (ω) = p̂ ′

ρcû′ , (3.7)

where ω is the angular frequency, p̂ ′ designates the acoustic pressure fluctuation in the
frequency domain and û′ is the velocity fluctuation in the frequency domain. However, Fluent
being a time domain solver, the impedance has to be be transformed to the time domain. After
the transformation, the relation between pressure and velocity fluctuation can be expressed
in form of an integral as

p ′(t ) =
∫ ∞

−∞
Z (τ) u′(t −τ) dτ. (3.8)

Fluent uses the concept of a reflection coefficient instead of impedance, which might be
unbounded. For example, the impedance Z → ∞ at a velocity inlet with zero velocity fluc-
tuation. The reflection coefficient in the frequency domain can be expressed as a function of
the acoustic impedance as

R̂(ω) = Ẑ (ω)−1

Ẑ (ω)+1
, (3.9)
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which allows to rewrite Eq. (3.8) as

p ′(t )−ρcu′(t ) =
∫ ∞

−∞
R(τ)

(
p ′(t −τ)+ρcu′(t −τ)

)
dτ. (3.10)

Fluent uses a discretised form of this convolution integral to link normal velocity fluctu-
ation with the pressure fluctuation in the solving process. The determined acoustic fluctua-
tions are added to the pressure and velocity computed from the equations for non-reflecting
boundary conditions.

The impedance boundary condition has to be specified in the frequency domain with
s = jω in the form

R̂(s) = D +
N1∑

k=1

Ak

(s +λk )
+

N2∑
l=1

(
Bl + iCl

(s +αl − iβl )
+ Bl − iCl

(s +αl + iβl )

)
, (3.11)

where D depicts a real term, N1 and N2 are the number of real and imaginary poles, λk

depicts a real pole with the amplitude Ak . αl and βl constitute real and imaginary part of a
complex conjugate pole with real and imaginary part of the amplitude Bl and Cl [4].
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4 Test cases

4.1 Non-reflecting outflow boundary condition

In this section, the reflecting behaviour of outflow boundaries is examined under laminar
and turbulent flow conditions. The aim is to determine to which extent boundaries set to
non-reflecting show the prescribed behaviour by determining the acoustic reflection coeffi-
cient from monitored flow variables. It is essential to understand this behaviour as imposing
a complex acoustic impedance on a boundary in ANSYS Fluent is based on non-reflecting
behaviour which is then superimposed with the specified impedance.

4.1.1 Laminar pipe flow with non-reflecting outflow boundary

Setup

To evaluate the reflecting behaviour under laminar flow conditions, the setup of the laminar
case from Jaensch et al. [10] is used. Their original mesh consisting of 40320 hexahedral cells
is used for this investigation. The diameter of the duct is 30 mm and the length is 70 mm. The
walls are modelled as standard slip-walls with a constant temperature of 300 K. The mean
flow speed is 5 m

s and a pressure of 101325 Pa is imposed at the outflow boundary. The out-
flow boundary is set to non-reflecting, whereas the inflow boundary is reflecting for acoustic
waves. At the inflow boundary, an excitation signal in form of an inflow velocity fluctuation is
applied. We are interested in frequencies from 0 to 5 kHz, therefore we use a broadband signal
with corresponding frequencies. The monitored stream-wise velocity and static pressure data
at the outflow boundary are used to calculate the down- and upstream propagating acous-
tic waves on this boundary. The outlet reflection coefficient is determined from the acoustic
waves by means of system identification. Results from single frequency excitation are used to
validate the identified system. Therefore sinusoidal mono-frequent excitation is used in addi-
tional simulation runs. The time step size is 2.5 ·10−6 in order to limit the CFL number to 0.8.
Simulation time is 0.05 s.

Results

The reflection coefficient determined by post-processing the monitored data is shown in Fig. 4.1.
The post-processing steps are described in detail in Appx. C. The dashed line indicates the
reflection coefficient as identified by means of system identification with an accuracy of 96%
using an OE model. This is why the confidence regions, depicted as shaded regions in the plot,
are relatively small. The confidence regions are given by ±2.580σ, which correspond to 99%
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4.1 Non-reflecting outflow boundary condition

confidence for normal distribution with standard deviation σ. Results from single frequency
validation runs are in good accordance with the identified reflection coefficient.

Figure 4.1: Reflection coefficient as determined at the centre of the outflow boundary for the
laminar test case.

The amplitude of the reflection coefficient is below a value of 0.05 for frequencies between
500 and 5000 Hz. However, towards lower frequencies the amplitude of the reflection coeffi-
cient approaches a value of 1. Similar behaviour can be observed for the phase curve. The
phase shift between incoming and outgoing acoustic wave at the outflow boundary is rela-
tively steady at 75◦, but approaches a value of 180◦ for frequencies approaching zero. There-
fore the complex-valued reflection coefficient is −1 at f = 0 which corresponds to a standard
pressure outlet. In conclusion, the behaviour at the outflow boundary is reflecting for low fre-
quencies, whereas the specified non-reflecting behaviour can be observed to a limited extent
above a certain frequency threshold. This problem was addressed in Sec. 2.3.1 and Sec. 3.2. For
low frequencies, the non-reflecting boundary condition is reflecting to prevent mean value
drift. Eq. (3.5) suggests that the non-reflecting behaviour could be improved for low frequen-
cies by increasing the domain length. Such a study was indeed performed and can be seen in
Appx. E.
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4.1.2 Turbulent pipe flow with non-reflecting outflow boundary

Setup

The setup to examine impedance boundary conditions under turbulent flow conditions de-
veloped by Jaensch et al. [10] is used to test a non-reflecting boundary condition. Their mesh
consisting of 517293 hexahedral cells was kindly provided. This number of cells ensures an ad-
equate resolution for LES. As in the laminar case, a cylindrical duct with a diameter of 30 mm
is used. The length is 150 mm for this setup. The walls are modelled as no-slip walls with a
temperature of 300 K. The outflow boundary is modelled as a standard pressure outlet where
the pressure is set to 101325 Pa. Non-reflecting behaviour is prescribed at the outflow bound-
ary, whereas the inflow boundary is reflecting. The inflow boundary is modelled as a velocity
inlet. The mean flow speed is 9 m

s . In addition, turbulence intensity is set to

(
u′

tur b

)
r ms

ū
= 1 m

s

9 m
s

= 11.11%, (4.1)

where
(
u′

tur b

)
r ms

is the root-mean-square value of the turbulent velocity fluctuations and
ū designates the mean flow speed. At the inflow boundary, an acoustic excitation signal is
imposed in the form of a velocity fluctuation with a maximum amplitude of 20% of the mean
flow speed. A broadband velocity signal with high power spectral density for frequencies up
to 10 kHz is used. The reflection coefficient calculated from the broadband axial velocity and
density signal at the outlet is validated by additional simulation runs with single frequency
excitation signals. A time step size of 2.5 ·10−6 results in a CFL number below 0.8. Simulation
time is restricted to 0.1 s due to high computational cost.

Results

The reflection coefficient determined from the velocity and pressure data at the centre of the
outflow boundary is shown in Fig. 4.3. The accuracy of the reflection coefficient determined
by system identification from the broadband signals is at 71% using an OE model. The results
from simulations with single frequency excitation signals confirm the identified model. The
amplitude of the reflection coefficient is below 0.05 for frequencies above 600 Hz. However,
for frequencies below this threshold, an increase of the amplitude value can be observed and
at frequencies towards 0, the amplitude value approaches 1. Towards lower frequencies, start-
ing at a frequency of 2000 Hz, the phase lag approaches a value of 180◦. The explanation for
this behaviour is the same as in the laminar case. The behaviour of the phase curve is different
than the behaviour observed in the laminar case, nevertheless the boundary shows ideal re-
flecting behaviour at low frequencies despite imposing a non-reflecting boundary condition.

The boundary shows reflecting behaviour for low frequencies, despite specifying a non-
reflecting boundary condition.
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4.2 Wall impedance

Figure 4.2: Reflection coefficient as determined at the centre of the outflow boundary for the
turbulent test case.

4.2 Wall impedance

4.2.1 Laminar pipe flow with non-reflecting walls

Setup

In this chapter, laminar and turbulent test cases are investigated with the aspect of observing
the influence of a non-reflecting wall section on the decrease of the magnitude of the f wave
between inlet and outlet. The inflow boundary is defined as reflecting, whereas the outflow
boundary is set to non-reflecting. The mean flow speed is 5 m

s . Fig. 4.3 shows the position of
the non-reflecting wall section, which is used to study the effects of absorbing walls on acous-
tic wave propagation. The non-reflecting section of the cylinder wall represents one third of
the total length.

A broadband signal is imposed at the inlet as excitation in form of velocity fluctuation. The
BC an the outlet is a static pressure of 101325 Pa. Excitation signal and mesh are described in
detail in Sec. 4.1.1, the mesh is taken from Jaensch et al. [10]. To calculate the transfer function
between f wave at the outlet and f wave at the inlet, velocity and pressure are measured
at several positions throughout the cylinder length in form of weighted face averages. The
positions, where these values are observed during the simulation are shown in Fig. 4.4.

Average values over the cross section area of the pipe at inlet and outlet are used to calcu-
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Figure 4.3: Schematic representation of the setup adapted from Jaensch et al. [10].

late the ratio of the in- and outgoing f waves in the frequency domain. The monitoring faces
at the interfaces between tube sections with reflecting and non-reflecting walls are used to
further examine the behaviour of f and g waves inside the domain.

Simulations with single frequency excitation are performed in order to show the accuracy
of the results obtained by system identification based on the measured broadband signal of
velocity magnitude and pressure on in- and outlet. Single frequency excitation is used to val-
idate the results of the estimated transfer functions.

Results

The ratio of the amplitude with which a certain f wave leaves the domain at the outlet and
enters the domain at the inlet is shown in Fig. 4.5(a) for a frequency spectrum up to 5000 Hz.

The phase is not depicted in the figure, because the section with non-reflecting walls does
not change the phase at all. The acoustic propagation speed is not changed in the region
of the duct that has non-reflecting walls. The amplitude of acoustic waves decreases while
propagating through the duct. This decrease depends on different factors. For both, rigid and
non-reflecting walls, the observed decrease in amplitude increases towards higher frequen-
cies. The non-reflecting wall section causes a significant decrease of the propagating f wave.
The good accordance between the estimated transfer functions from broadband data and the
validation with excitation with one sinusoidal frequency indicates reliable estimates. An OE
model is used for system identification.

Non-reflecting walls act as an acoustic damper absorbing acoustic energy even if the waves
propagate parallel to these walls. Using wall impedance one could model perforated walls as
it was done by [9]. The authors also stated the loss of acoustic energy.
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4.2 Wall impedance

Figure 4.4: Overview over the positions where the flow information is monitored during the
simulation to describe the influence of non-reflecting walls on characteristic wave propaga-
tion.

4.2.2 Turbulent pipe flow with non-reflecting walls

Setup

To examine the influence of flow conditions on the decrease in magnitude, a similar simula-
tion setup is tested under turbulent flow conditions. Again, the influence of a non-reflecting
wall section is investigated. The inlet is reflecting, the outlet is non-reflecting, the excitation
signal ui n is imposed at the inlet. Excitation signal, turbulence parameters and mesh are de-
scribed in detail in Sec. 4.3.3. The mesh is taken from Jaensch et al. [10]. The mean flow speed
is 9 m

s .

Results

Fig. 4.5(b) shows the relation between the decrease of the magnitude of an f wave propa-
gating through a duct in turbulent flow conditions. The resulting curves are plotted with 99%
confidence intervals. Simulation time is 0.25 s. Additionally, single frequency analysis was per-
formed at frequencies of 1500, 5000 and 8500 Hz to validate the results from the simulations
with broadband excitation. A simulation with a single-frequency excitation signal at 80 Hz is
used to validate the sudden increase towards low frequencies in the case with a non-reflecting
wall section. This behaviour might be caused by the same effect as the discrepancy between
imposed and measured impedance at low frequencies in Sec. 4.3.1.

The decrease in magnitude towards higher frequencies is only marginal compared to the
laminar test case. Remarkably, in the case of rigid walls, the magnitude of the propagating f
waves does not decrease perceptibly for frequencies below 5000 Hz. The offset between the
magnitude ratio of leaving to entering f wave is relatively steady at a value of 60%.

The decline in magnitude has the same slope for laminar and turbulent case. The sud-
den increase of the ratio towards low frequencies in case of the non-reflecting wall section
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(a) laminar test case (b) turbulent test case

Figure 4.5: Comparison of the magnitude of the transfer function T (s) = f out
f i n

for non-reflecting
and rigid (reflecting) wall for laminar and turbulent test case.

for both, laminar and turbulent test case, indicates that the amplitude of acoustic f waves
entering and leaving the domain does not differ. The ratio shows the same behaviour as for
reflecting walls at low frequencies. This observation is validated by single frequency excitation
at 80 Hz, this is, the decrease in amplitude approaches zero for frequencies approaching 0 Hz.

The sudden increase of the ratio between outgoing and incoming wave towards low fre-
quencies occurring at lower frequencies in the turbulent case might be due to the longer duct
length in the turbulent case of 150 mm instead of 70 mm in the laminar case. The influence of
the domain length on the reflection behaviour is demonstrated in Appx. E.

This allows the conclusion, that non-reflecting boundary conditions have to be handled
with care in ANSYS Fluent when investigating acoustic waves at low frequencies. This obser-
vation is important for the following consideration of imposed impedance.

4.3 Imposed impedance boundary condition test cases

4.3.1 Laminar pipe flow with imposed impedance at the outlet

Setup

In this test case, we impose an impedance boundary condition at the inlet. The implemen-
tation of this test case is used to transfer the simulations of Jaensch et al. [10], who used the
CFD solver AV BP , to another finite volume solver and thereby to show the applicability of
impedance boundary conditions in a laminar flow problem with ANSYS Fluent. The same
mesh as for the test case with laminar pipe flow and a non-reflecting boundary condition at
the outlet is used. The inlet is defined as a standard velocity inlet. At the inlet a velocity fluctu-
ation with a magnitude of 5% is imposed. The flow velocity is imposed by means of a broad-
band profile. In case of single frequency excitation, the signal is a sine wave with a mean value
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4.3 Imposed impedance boundary condition test cases

of 5 m
s at a single frequency f . The outlet of the tube is defined as a pressure outlet with a con-

stant pressure of 101325 Pa. This is the actual pressure, whereas Fluent uses the concept of
operating pressure. This concept is described in Appx. F.

An impedance boundary condition is imposed at the outlet. Tab. A.1 in Appx. A gives an
overview of the coefficients of the rational polynome which is used to define an impedance
boundary condition using Eq. (A.1). Therefore the poles of the rational polynomial of the re-
flection coefficient have to be determined. For lack of access to the input data used by Jaensch
et al. [10] the reflection coefficient data is extracted from the figure depicting the Bode plot
covering frequencies up to 5000 Hz. For more details about the scanning process, the reader
is referred to Appx. B, where the single digitisation steps are further explained.

Results

For this laminar test case, the inlet boundary is defined as reflecting for acoustic waves, be-
cause simulations performed with a non-reflecting inlet result in fluctuations of very limited
amplitude, despite the fact that the usual 5% fluctuation is imposed. Non-reflecting boundary
conditions and imposed velocity interfere resulting in a lower fluctuation amplitude. A non-
reflecting inlet combined with an impedance BC at the outlet leads to velocity amplitudes of
less than 1% of the mean flow velocity, despite imposing a 5% excitation signal.

The results of the runs with single frequency excitation are depicted as blue crosses in
Fig. 4.6.

For frequencies above 1000 Hz, the measured gain and phase values of the complex reflec-
tion coefficient at the outlet show good accordance with the imposed impedance. For lower
frequencies, that is 100 and 250 Hz, the gain and even more so the phase values differ from the
expected behaviour. The simulation runs with single frequency excitation were performed for
a duration of at least 0.7s.

Processing the simulation results from the case with broadband excitation, the built-in
Matlab function oe(·) leads to a model that determines a transfer function between g and f
wave signals with an accuracy of 96%. The thus estimated model is shown in the figure with
a 99% confidence interval is depicted as shaded area, though very small in span as a result
of the high accuracy of the model. As in the case of single frequency excitation, the reflec-
tion coefficient determined by analysing the response to the broadband signal shows good
accuracy for frequencies above 1000 Hz. It can be noted, that the approximated transfer func-
tion is in good accordance with the results from single frequency excitation, but differs from
the imposed impedance at the outlet. This is especially the case for frequencies below 1200
Hz. Appx. D contains a summary of the multiple factors that can be excluded as cause for
this offset. The observed behaviour at low frequencies can be seen as a direct result of the ob-
served reflecting behaviour at low frequencies of boundaries which are set to non-reflecting as
has been shown in Sec. 4.1.1. This can be concluded from the fact that impedance boundary
conditions are implemented in ANSYS Fluent as a superposition of NSCBC and the imposed
acoustic impedance. As NSCB show reflections at low frequencies, this behaviour can also be
observed when investigating imposed impedance. The reflecting behaviour at low frequen-
cies is to be considered in the same manner as for the test cases with non-reflecting boundary
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Figure 4.6: Comparison of the results obtained by single frequency and broadband excitation
at the inlet of the laminar case setup, when determining the reflection coefficient at the out-
flow boundary. Excitation with velocity fluctuation u′

i n at the inlet.

condition at the outlet.

4.3.2 Laminar pipe flow with imposed impedance at the outlet with non-
reflecting boundary condition at the inlet

The same configuration of the laminar test case is used for another simulation, solely the
broadband excitation method is changed from imposing the velocity to imposing the f wave
directly. The signal is imposed using a transparent flow forcing boundary condition at the in-
let, which makes it non-reflecting. At the outlet, the same impedance is imposed. Simulation
time is 0.80 s with a time step size of 5 ·10−6 s.

The measured reflection coefficient when directly specifying the f wave at the inlet shows
the same behaviour as for the case with a velocity excitation signal. Therefore the result is
not depicted. As in the first laminar test case, accordance between imposed and measured
reflection coefficient above 1500 Hz is very good. However, just as for the first laminar test
case, magnitude and phase of the measured reflection coefficient approach values 1 and 180◦
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4.3 Imposed impedance boundary condition test cases

respectively towards low frequencies. This corresponds to a standard outlet BC with zero pres-
sure fluctuation.

Applying a non-reflecting boundary condition at the inlet results in a significant increase
in computation time. For this test case, the computation time almost doubles.

4.3.3 Turbulent pipe flow with imposed impedance at the outlet

Setup

The mesh is the same as used in the setup with a non-reflecting outlet boundary condition
presented in Sec. 4.1.2. At the walls, an isothermal no-slip BC is applied. The mean flow veloc-
ity is 9 m

s with an imposed broadband fluctuation of 5% in a first run to evaluate the effect of
signal-to-noise ratio, and 20% afterwards. In addition, turbulence intensity is set to 11.11%.

Given that broadband excitation is validated in the laminar test case and because of the
high computational cost of the turbulent test case, the analysis is restricted to broadband
excitation. The signal is composed of frequencies up to 12 kHz to ensure that the reflection
coefficient can be determined for the whole spectrum. The simulation time is 1 s.

In a first simulation, the excitation is imposed at the inlet and the impedance at the outlet,
which corresponds to the configuration of the laminar test case but differs from the approach
taken by Jaensch et al. [10]. The reflection coefficient is determined as the ratio of g wave to f
wave at the outlet. Pressure and velocity fluctuation are measured at the centre of the outlet.
These signals are then used to calculate the acoustic fluctuation and finally the f and g waves.
Analogously to the laminar test case, a comparison to these two signals in the frequency do-
main allows for determining an approximated model for the transfer function.

Results

The reflection coefficient is determined by the transfer function between g and f wave at
the outlet, just as in the laminar case. This allows for determining a transfer function which
shows an accordance of 76% to the two acoustic wave signals using an OE model. Fig. 4.7
shows the imposed reflection coefficient and the reflection coefficient derived from the simu-
lation results with different excitation signal amplitudes. The curve that fits the sample points
obtained by image scanning from Jaensch et al. [10] is the imposed reflection coefficient in
the turbulent test case.

Whereas the phase of the complex reflection coefficient is in good agreement to the im-
posed impedance in case of the 5% excitation signal, the approximated amplitude determined
from f and g wave differs considerably. However, the amplitude curve of the determined re-
flection coefficient is continuously below the imposed curve by an offset of about 0.2.

The acoustic wave signal is of the same order of magnitude as turbulent fluctuation. There-
fore, the turbulent test case with velocity excitation at the inlet is repeated with a higher exci-
tation amplitude of 20 instead of 5% of the mean flow velocity. This results in a measured re-
flection coefficient with good accordance to the imposed impedance. The estimate with oe(·)
gives the best accuracy of all tested transfer function estimates. However, with an accuracy of
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Figure 4.7: Results obtained by broadband excitation at the inlet of the turbulent case setup,
when determining the reflection coefficient at the outlet boundary.

only 62%, confidence intervals are large. Thus, increasing the velocity amplitude variation of
the excitation signal from 5 to 20% eliminates the offset that could be observed in the first sim-
ulation. An explanation for the better accordance between imposed and measured reflection
coefficient is the higher signal-to-noise ratio. The noise is caused by turbulence. Turbulence
fluctuations at the inlet were estimated to 11.11%.

Increasing the excitation amplitude variation is not an ideal solution, as this investigation
is based on linearity. Another approach would be to filter the turbulence values using plane
wave masking as proposed by Polifke et al. [16]. However, this concept cannot be applied in
our case, because this type of boundary condition is not available in ANSYS Fluent and the
types of built-in boundary conditions cannot be changed.

4.3.4 Turbulent pipe flow with imposed impedance at the inlet

Setup

In another turbulent test case, the impedance BC is imposed at the inlet, whereas the excita-
tion signal is imposed at the outlet by means of transparent flow forcing. The imposed g wave
has an amplitude variation of 20% and corresponds to a mean velocity of 9 m

s with this am-
plitude variation. In this case, the reflection coefficient is determined as the ratio of f wave
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4.3 Imposed impedance boundary condition test cases

to g wave at the inlet. This is the configuration used by Jaensch et al. [10]. The mesh and wall
boundary conditions are the same as in for the setup presented in Sec. 4.3.3.

Results

The procedure to obtain the f and g wave at the inlet is analogous to the above described
setup with excitation at the inlet. Due to the slow convergence in this simulation, the sim-
ulation time was restricted to 0.13 s. Fig. 4.8 shows the results of the second turbulent test
case.

Figure 4.8: Results obtained by broadband excitation at the outlet of the turbulent case setup,
when determining the reflection coefficient at the inlet boundary.

Accordance between imposed and measured reflection coefficient at the inlet is good for
frequencies above 1500 Hz. For frequencies approaching zero, the amplitude of the reflection
coefficient approaches a value of 1, whereas the phase approaches a value of 0◦. This corre-
sponds to a standard inlet, the imposed impedance is not being applied.

In all three test cases with imposed impedance in turbulent flow conditions, the deflection
of imposed and measured amplitude of the reflection coefficient occurs at lower amplitudes,
than for the investigated laminar test cases. An explanation for this behaviour could be the
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longer domain length of 150 mm in the turbulent cases, compared to 70 mm in the laminar
test cases. The results of an investigation of the relation between frequency-dependent be-
haviour and domain length can be found in Appx. E.

4.4 Combustion test cases

4.4.1 2D auto-ignition burner

Setup

This 2D test case is a simplified version of a 3D reheat combustor at high pressure developed
by Zellhuber [23]. At the inflow boundary a mixture of air, fuel and first-stage combustion
products enters the domain with an axial velocity of 55 m

s . See Tab. 4.1 for the species mass
fractions Yi .

YC H4 [-] YO2 [-] YCO2 [-] YH2O [-]
0.01 0.145 0.0555 0.0455

Table 4.1: Species mass fractions at the inflow boundary of the reheat combustor. Reprinted
from [23].

The premixed gas ignites after a characteristic time delay due to the high inflow temper-
ature of 1270.7 K. Turbulence intensity at the inflow is 5%. The combustion is modelled us-
ing stochastic fields, namely the progress variable approach developed by Kulkarni and Po-
lifke [11]. In the first comparison case, the three wall sections along each side of the combus-
tion chamber are modelled as no-slip walls with zero heat flux. In order to test the influence of
non-reflecting walls on the combustion process, the two wall sections adjacent to the outflow
boundary are modelled as non-reflecting walls in another test case. Non-reflecting walls are
modelled as velocity inlets with a mean flow velocity of 0 m

s with the additional condition that
the surface is non-reflecting for acoustic waves.

The position of the investigated walls is indicated in Fig. 4.9. The behaviour of the walls
marked with crosses is changed from reflecting to non-reflecting. The boundary conditions
on the four remaining rigid wall sections are not changed. The outlet is non-reflecting and an
outlet pressure of 1.8 MPa is imposed, whereas the inflow boundary is reflecting. The mesh
consists of 9504 quadrilateral cells and the constant time step size is 5 ·10−6 s.

The flow statistics are averaged over 13 ms to calculate mean fields. The same procedure
is used to obtain mean flow fields in the setup with non-reflecting walls.

Results

The resulting mean flow fields for static pressure, heat release rate and velocity components
are shown in Fig. 4.10. The figure gives the contour plots of each mean field. To facilitate com-
parison, the upper half of each sub-plot shows the standard case with rigid walls, and below,

34



4.4 Combustion test cases

Figure 4.9: Schematic representation of the position of the non-reflecting walls for the auto-
ignition test case.

mirrored at the symmetry line and with reversed y-axis, the results for the case with non-
reflecting walls.

Comparing the mean flow fields of axial and tangential velocity, heat release rate and static
pressure shows that the reflecting behaviour of the combustor walls is only of marginal influ-
ence on the combustion process. This observation might be due to the fact, that the flame is
located relatively far from the combustor walls.

4.4.2 3D swirl burner

Setup

In order to examine the behaviour of a flame that is located closer to the combustor wall, a
premixed swirl burner is investigated [6]. The swirl burner consists of several parts: At the
non-reflecting inlet, a mixture of air and methane with an equivalence ratio of 0.77 enters the
tube with an axial swirler with an axial velocity of 11.3 m

s and a temperature of 293 K. Fig. 4.11
gives an overview over the components of the swirl burner model and their positions.

The walls of the tube are modelled as no-slip walls with a temperature of 293 K. At the entry
plane of the tube into the combustion chamber, the inner wall of the tube extends further
into the chamber. This section is called lance and is modelled in Fluent as a no-slip wall with
a temperature of 600 K. The walls of the combustion chamber are modelled as standard no-
slip walls in a first simulation run, and later as non-reflecting walls. The outflow boundary is
non-reflecting and an outlet pressure of 101325 Pa is imposed.

In the test case with non-reflecting walls, only the combustor walls aligned with the stream-
wise direction are modelled as non-reflecting. Tube and lance walls remain unchanged. An
under-resolved hexa mesh consisting of 653984 hexahedral cells. This under-resolved mesh is
sufficient for our purposes as we do not aim at resolving the combustion dynamics in detail.
The aim is to capture the main trend. LES with a constant time step size of 1 ·10−5 s is used to
determine the mean flow fields. The maximum CFL number is 0.9 in the swirler and 0.5 in the
combustion chamber.

35



Test cases

(a) mean heat release rate [ W
m3 ] (b) mean static pressure [Pa]

(c) mean axial velocity [ m
s ] (d) mean tangential velocity [ m

s ]

Figure 4.10: Comparison of selected mean flow fields for the auto-ignition test case with rigid
walls (upper half of each subplot) and with non-reflecting walls (lower half of each subplot).

Results

Fig. 4.12 gives the contour plots of selected mean fields in the middle cut plane of the com-
bustor. The section of the tube upstream of the swirler is cut off as this section is not relevant
for our investigations.

The comparison of the mean flow fields of axial and tangential velocity, heat release rate
and static pressure for the setups with rigid and non-reflecting walls shows that the reflecting
behaviour of the combustor walls does not perceptibly influence the combustion process. The
position of the flame, which is located close to the walls, does not change. Together with the
observation from the 2D combustion test case, this allows the conclusion that non-reflecting
walls can be simulated as zero mean flow inlets with NSCBC.
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Figure 4.11: Schematic representation of the parts constituting a model of a swirl burner used
as 3D test case. Reprinted from [14].

4.4.3 3D swirl burner with transverse excitation

Setup

The model of the swirl burner as described in the previous section is used for another simu-
lation setup. All walls are standard walls. Except two opposite walls: on the upper wall of the
combustion chamber, transparent flow forcing is used to impose a transverse acoustic wave
entering the domain. The amplitude of the acoustic wave is equivalent to a pressure fluctu-
ation of 100 Pa. This yields a sufficient signal to noise ratio at the lower wall. A broadband
signal with high power spectral density up to 10 kHz is used as excitation signal.The esti-
mated model from broadband identification is validated using a simulation setup with single
frequency excitation at 100, 1000 and 5000 Hz. The bottom wall of the combustion chamber
is set to non-reflecting. Turbulence intensity at the non-reflecting walls is set to zero. The rest
of the setup is not changed, namely the mesh, the other boundary conditions and the com-
bustion parameters. A time step size of 2.5 ·10−6 s is chosen and the simulation time is 0.03 s
for all setups. The time step size was decreased due to stability problems.

Following the definition of plane acoustic waves in stream-wise direction in Eq. (2.25),
transverse acoustic waves are defined based on the transverse velocity v as

f T (x, t ) = 1

2

(
p ′(x, t )

ρ c
+ v ′(x, t )

)
g T (x, t ) = 1

2

(
p ′(x, t )

ρ c
− v ′(x, t )

)
,

(4.2)

where the superscript T marks the transverse wave. The f T wave propagates in the direc-
tion, in which v is defined positive. The g T wave propagates in the reverse direction. Fig. 4.13
schematically shows the transverse acoustic waves at top and bottom wall of the combustion
chamber.

37



Test cases

(a) mean heat release rate [ W
m3 ] (b) mean static pressure [Pa]

(c) mean axial velocity [ m
s ] (d) mean tangential velocity [ m

s ]

Figure 4.12: Comparison of selected mean flow fields in the middle cut plane of the 3D swirler
with rigid walls (upper half of each subplot) and with non-reflecting combustion chamber
walls (lower half of each subplot).

At several points at the bottom wall of the combustion chamber, covering its whole breadth
and length, the actual reflection coefficient is determined as the transfer function

R̂ = f T
b

g T
b

, (4.3)

where the subscript b indicates the bottom wall as the position of evaluation, whereas
t would indicate the top wall. The reflection coefficient is evaluated at points only, because
the combustion process causes large temperature and thus sound speed gradients along the
bottom combustion chamber wall in axial direction. Local wall temperatures differ to such
an extent, that averaging over the bottom wall is not possible. Therefore, the characteristic
density and sound speed values at each point are used to calculate the acoustic waves.
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Figure 4.13: Schematic representation of transverse waves at top (t) and bottom (b) wall of the
combustion chamber.

Results

Fig. 4.14 schematically shows the positions where point data is monitored during the simula-
tion.

Figure 4.14: Schematic top view of the bottom combustion chamber wall with the positions
where the reflection coefficient is determined.

The reflection coefficient at the centre point of the lower combustion chamber wall as
determined from simulation data is shown in Fig. 4.15. The reflection coefficient is shown at
this point, as the results obtained for all investigated positions at the bottom wall do not differ

significantly. At this position, the sound speed c is 825 m
s and the density ρ is 0.188 kg

m3 .
The measured reflection coefficient is below 0.1 for frequencies above 500 Hz. Below this

threshold, the amplitude approaches a value of 1, and the phase a value of 180◦. The phase
shift of 180◦ for frequencies approaching zero and an amplitude of the reflection of 1 represent
a perfectly reflecting wall. The accuracy of the estimated model is 75% using an OE model. The
results obtained from simulations with single frequency excitation at the upper wall validate
the identified system.

The mean fields of heat release rate, static pressure and axial and tangential velocities do
not show a perceptible change compared to the setup with non-reflecting combustor walls
and without transverse excitation.
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Figure 4.15: Determined reflection coefficient at the centre of the bottom wall of the combus-
tion chamber.

In conclusion, a non-reflecting boundary condition with zero mean flow in ANSYS Fluent
indeed results in non-reflecting walls. However, the reflecting behaviour depends on the fre-
quency of the incoming wave. At low frequencies the reflection coefficient approaches that of
a rigid wall. This is due to the restriction for non-reflecting walls explained in Sec 2.3.1 and
Sec. 3.2. This limitation has to be kept in mind when modelling mufflers as non-reflecting
walls.
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5 Conclusion and outlook

Conclusion

Non-reflecting walls modelled by NSCBC are reflecting at low frequencies. The reason is an
additional constraint to prevent the mean fields from drifting. Non reflecting behaviour at
low frequencies improves when the characteristic domain length is larger.

An impedance boundary condition is a superposition of a non-reflecting boundary con-
dition and a transformation in form of a convolution integral with the imposed impedance.
Therefore we get wrong results for low frequencies where the non-reflecting boundary condi-
tions do not work.

Non-reflecting walls do not influence the flame position of a stable configuration. Non-
reflecting walls were validated with transverse excitation. There is the same problem at low
frequencies as for inlet and outlet boundaries.

Outlook

One could try to find an optimal set of parameters for better results at low frequencies. How-
ever, as this approach is associated with restrictions, we recommend to use plane wave mask-
ing in further studies as this would allow for higher identification quality and lower excita-
tion amplitudes. Furthermore, the investigation of the interaction of non-reflecting walls and
boundary layer development is still outstanding. This should include an evaluation of the in-
fluence on the reattachment point. Future research should treat a test case with self excited
transverse oscillations in which the instability is damped using non-reflecting walls.
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A Specifying an impedance boundary
condition in Fluent

αl [-] βl [-] Bl [-] Cl [-] λk [-] Ak [-]
complex pole 1 7969.8 32494 -1728 1958.5 – –
complex pole 2 2271 11306 -1217.2 1083.3 – –

real pole 1 – – – – 151890 160310
real pole 2 – – – – 17640 -7261.1

Table A.1: Coefficients of the rational polynome describing the reflection coefficient in the
frequency domain imposed as boundary condition at the pressure-outlet in the laminar case.

αl [-] βl [-] Bl [-] Cl [-] λk [-] Ak [-]
complex pole 1 28979 59348 -30866 -25842 – –
complex pole 2 9632.4 33392 -3074 3865.8 – –
complex pole 3 2074 11694 -832.81 1115.8 – –

real pole 1 – – – – 230850 367620
real pole 2 – – – – 31525 -37482

Table A.2: Coefficients of the rational polynome describing the reflection coefficient in the
frequency domain imposed as impedance boundary condition in the turbulent case.

The coefficients can be used in Fluent following the nomenclature of the Impedance Bound-
ary Condition Toolbox in the Fluent user manual [4] using the formulation

R̂(s) = D +
N1∑

k=1

Ak

(s +λk )
+

N2∑
l=1

(
Bl + iCl

(s +αl − iβl )
+ Bl − iCl

(s +αl + iβl )

)
. (A.1)
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B Digitisation with Matlab

For the digitisation of the figure, the functions were sampled at 30 points and the collected
data points were used to make a least-square fit. The determined function was transformed
into a model in the frequency domain and finally into a rational polynomial.

The frequency-dependent reflection coefficient at the boundaries are imposed in both,
laminar and turbulent test cases. Due to restricted access to the raw data of Jaensch et al.
[10], the imposed impedance boundary coefficient is derived from their figure in by means
of data digitisation. Therefore, the built-in Matlab function di g i t i ze2 is used to digitise the
magnitude and phase values at 28 equidistant points on the curve between 0 and 5000 Hz. The
procedure is analogous for their figure depicting amplitude and phase curve for the turbulent
case. Again, the curve of the imposed reflection coefficient is scanned. For the figure of the
turbulent case, 26 points are used.

The digitised samples with magnitude and phase value are used to determine a fit. For
this purpose, the built-in function r ati onal f i t is used. To avoid overfitting, the number of
poles is limited to 6, which shows very good accordance with the original curve from Jaensch
et al. [10]. For the fit of the curve of the turbulent case, the number of poles is set to 8, which
allows to fit the curves smoothly for magnitude and phase curves. The resulting curve fits are
rational functions. For the turbulent case, the derived complex rational function is

R̂(s) = 367620

s +230850
+ −37482

s +31525
+

−30866−25842i

s +28979−59348i
+ −30866+25842i

s +28979+59348i
+

−3074+3865.8i

s +9632.4−33392i
+ −3074−3865.8i

s +9632.4+33392i
+

−832+1115i

s +2074.4−11694
+ −832−1115i

s +2074.4+11694
,

(B.1)

where s =ωi = 2π f i . For the laminar case, the complex function describing the reflection
coefficient in the frequency domain is

R̂(s) = 160310

s +151890
+ −7261.1

s +17640
+

−1728+1958.5i

s +7969.8−32494i
+ −1728−1958.5i

s +7969.8+32494i
+

−1217.2+1083.3i

s +2271−11306i
+ −1217.2−1083.3i

s +2271+11306i
.

(B.2)

The derived real and complex pole and zero values can be implemented in ANSYS Fluent
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after a slight change in notation, namely the convention of signs.
Fig. B.1 shows the scanned data points and the fitted rational function representing the

reflection coefficient at the outlet in the laminar case.

Figure B.1: Comparison of sampled data from input used by Jaensch et al. [10] and the least-
square fit with 6 poles to be used for imposing the impedance in the laminar test case. Fol-
lowing Jaensch et al. [10].

Comparing the sampled data from the original figure and the fitted function shows very
good accordance for magnitude and phase data.

The scanned data points and the fitted rational function representing the reflection coef-
ficient at the outlet in the turbulent case are shown in Fig. B.2.
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Digitisation with Matlab

Figure B.2: Comparison of sampled data from input and the least-square fit with 8 poles for
the impedance BC of the turbulent case. Following Jaensch et al. [10].
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C Post-processing of Fluent data

When running a simulation, the flow velocity and the static pressure of the flow on the in-
and outlet are monitored and saved. For every time step, the velocity and pressure values of
the converged solution are saved for the center of the in- and outflow boundary and in form
of the mass-weighted average for the velocity, and the area-weighted average for the pressure
on these surfaces. The values on the centreline are used to validate the data calculated from
the averaged values. Averaged velocity magnitude and pressure data are then processed for
the boundary face, on which a reflection coefficient has been imposed and is to be compared
with the simulation data. At first, the mean values in time of these mass-flow averaged velocity
magnitude and area-weighted pressure are determined for the complete simulation time on
the velocity-inlet or pressure-outlet of interest. Then, the fluctuation of velocity and pressure
is determined as the difference between the value of the flow variable at each time step, and
the determined mean value over the simulation time. Using the mean density ρ and a mean
speed of sound c of the mean flow field, the vectors containing the amplitudes of the acoustic
f and g wave for each time step are determined as

f = 1

2

(
p ′

ρc
+u′

)
g = 1

2

(
p ′

ρc
−u′

)
,

(C.1)

applying Eq. (2.26) to vectors containing velocity amplitude and pressure fluctuation value
for every time step. Further processing steps are different for analysing simulation results with
single frequency and broadband excitation.

Broadband signal processing

The first 0.04 s of the signals are cut off to avoid transient effects. This interval proved suf-
ficient to develop regular flow in the whole domain. The restricted time interval of f and g
waves, together with the constant time step size is then combined to an i dd at a object in Mat-
lab. The position at which the reflection coefficient is to be determined defines which wave
amplitude is the input and which is the output of this object. The final step consists of esti-
mating a transfer function between in- and output of this system. The different approaches
of estimating transfer functions are presented in Sec. 2.5. The accuracy of the thus estimated
model is then determined by comparing the output of the model with the measurement data.
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Post-processing of Fluent data

Single frequency signal processing

To determine the reflection coefficient from simulation data in case of single frequency ex-
citation, the first 0.05 s of the ~f and ~g vectors are cut off to ignore transient processes. The
remainder of the vectors containing wave amplitude data, together with the corresponding
time vector ~t are cut to a length that corresponds to a multiple of an oscillating period of
the excitation signal. A fast Fourier transformation is performed with these signals. In the fre-
quency domain, the transfer function between F (ω) and G(ω) or vice-versa is determined as
the ratio between the in- and outgoing wave on the boundary face of interest. The thus deter-
mined magnitude and phase is then compared to the values of gain and phase of the imposed
reflection coefficient at the same frequency. Single frequency excitation is used to validate the
identified model.
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D Tentatives to improve non-reflecting
behaviour at low frequencies

D.1 Relaxation factors: parameter study

Fig. D.1 shows the measured reflection coefficient on the outflow boundary for the laminar
test case with velocity excitation on the inlet. The time step size is 1 ·10−5 s for all cases, with a
total simulation time of 0.7 s. The first 0.04 s of the measured signals are cut off. The accuracy
of the models estimated from the resulting f and g wave signals is above 80% in each case.

Figure D.1: Measured reflection coefficients for different relaxation factors r el ax, compared
to the imposed impedance. One test case with variation of the relaxation factors σ and σ2.
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Tentatives to improve non-reflecting behaviour at low frequencies

Apparently, better accordance of the measured reflection coefficient magnitude at low fre-
quencies can only be achieved using a low relaxation factor of r el ax = 0.1. However, this is
only possible at the cost of a significant offset at higher frequencies.

The figure implies that the phase curve of the measured reflection coefficient does not de-
pend on the relaxation factor r el ax. Decreasing the relaxation factorsσ andσ2 to a fifth of the
default value leads to a resulting phase curve with lower phase values than in the preceding
test cases. This suggests, that σ values in between would achieve good accordance between
imposed and measured reflection coefficient. However, exclusively with r el ax values which
have proven to result in a large offset at high frequencies. This conclusion, together with the
observation that calculation time is considerably larger for low relaxation factor values, are
the reason why all test cases in this thesis are simulated with the default relaxation factors for
non-reflecting boundaries. This is

r el ax = 0.5,

σ= 0.15,

σ2 = 5.

(D.1)

D.2 Poles of impedance function

In order to determine, whether the diverging behaviour at low frequencies is a result of the
function describing the imposed impedance in the form of a sum of rational polynomials,
another impedance function is imposed on the outlet of the laminar test case. The inlet is
reflecting and the inflow velocity is imposed. The imposed reflection coefficient in the fre-
quency domain is

R̂(s) = 2457+873.18i

s +2785.1−13296i
+ 2457−873.18i

s +2785.1+13296i
. (D.2)

The imposed impedance is shown in Fig. D.2, compared to the reflection coefficient as
obtained from simulation data with 99% confidence interval, which is shown as a shaded re-
gion. In addition to the estimated model derived from broadband excitation, a test case using
single frequency velocity excitation is performed to validate the accuracy of the estimated
model at a frequency of 100 Hz.

Simulation time is 0.30 s with a constant time step size of 1 ·10−5 s. The reflection coeffi-
cient is estimated from f and g wave signals using t f est (·) with an accuracy of 96%, which
accounts for the relatively small 99% confidence intervals for magnitude and phase.

Towards low frequencies, imposed and measured magnitude of the reflection coefficient
diverge considerably, which is confirmed by the results from single frequency analysis. How-
ever, it can be observed that an imposed phase value of 180◦ at frequencies approaching zero,
is in accordance to simulation results.
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D.3 CFL number

Figure D.2: Imposed and measured reflection coefficient on the outlet for the laminar test case
with an impedance with one complex conjugate pole pair.

D.3 CFL number

Fig. D.3 shows a comparison of the results obtained when using different time step sizes.
The simulation of the laminar test case with velocity excitation on the inflow boundary was
performed for a CFL number of 3.36, which is decreased to 0.84 by dividing the original time
step size of 1 ·10−5 s by four. The simulation time for all test cases is set at 0.7 s. In the case
of the simulations with high CFL number, a broadband signal is used for excitation. For the
simulations with low CFL number, single-frequency excitation signals at frequencies of 100
and 3000 Hz are used. All the simulations are repeated for relaxation factors r el ax of 0.4 and
0.1.

Comparing the results allows to conclude that performing simulations at the above men-
tioned CFL numbers gives results with negligible differences. Therefore, all further simula-
tions of the laminar test case are calculated with the higher CFL number. This allows to gather
more low frequency data at the same computational cost without significantly impairing the
accuracy of the results.
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Tentatives to improve non-reflecting behaviour at low frequencies

Figure D.3: Reflection coefficient estimated from broadband data from laminar test case with
C F L = 3.36 (continuous lines with small markers) compared to results from single frequency
excitation with C F L = 0.84 (large markers) for three different relaxation factor values.

D.4 Power spectral density

Low power spectral density of the f and g wave signals calculated from monitored velocity
and pressure on the outlet during simulation is not the case. Fig. D.4 shows the single-sided
power spectral density for the laminar test case with a simulation time of 0.90 s, a CFL number
of 3.36 and the default value of 0.5 for the relaxation parameter r el ax.

As the intensity at low frequencies is comparable to that at the rest of the examined spec-
trum, power spectral density can be excluded as cause for the deviation of the measured from
the imposed reflection coefficient at low frequencies.

D.5 Laminar versus turbulent flow

The influence of the relaxation factor r el ax under turbulent flow conditions is similar to the
laminar test case, as the comparison in Fig. D.5 clearly shows. This is the second turbulent
test case, with excitation on the outlet with the upstream propagating wave gi n .The outlet is
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D.5 Laminar versus turbulent flow

(a) f wave signal (b) g wave signal

Figure D.4: Power spectral density (single-sided amplitude spectrum) of f and g wave signals
as calculated from velocity and pressure fluctuation for the laminar test case.

non-reflecting and the impedance is imposed on the inlet.
The reflection coefficient determined from the results of the simulation with lower relax-

ation factor show a significant offset of the magnitude value over the whole spectrum. Solely
the behaviour at low frequencies is closer to the imposed impedance than for the case with
default relaxation parameter value.
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Tentatives to improve non-reflecting behaviour at low frequencies

Figure D.5: Comparison of the estimated and imposed reflection coefficient on the inlet for
the turbulent test case with transparent flow forcing boundary condition on the outlet.
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E Variation of duct length

In order to examine the influence of the duct length on the measured reflection coefficient,
the laminar test case is compared with similar laminar test cases, in which the domain length
was changed from 70 to 35 and 140 mm respectively. The inlet is reflecting, whereas the
impedance from the standard laminar test case is imposed on the outlet. A velocity fluctu-
ation of 5 % for the 35 and 70 mm cases, and of 20 % for the 140 mm case is used as excitation
signal on the inlet. The walls are modelled as slip walls. Simulation time is 200 ms for each
case. Fig. E.1 shows imposed and measured reflection coefficient on the outlet for all three
test cases.

Figure E.1: Comparison of the estimated and imposed reflection coefficient on the outlet for
various duct lengths.
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Variation of duct length

It shows, that a longer duct length results in higher accordance of imposed and measured
reflection coefficient at low frequencies. However, a even in this case the measured reflection
coefficient differs considerably from the imposed curve towards low frequencies. Calculation
time increases considerably with higher duct length. When using the same excitation signal
amplitude as for the 35 and 70 mm test case, the amplitude of the f wave decreases signifi-
cantly during the propagation from the inlet to the outlet. The small amplitude values result in
a large offset between imposed and measured reflection coefficient at the outlet in this case.
To prevent this, the amplitude of the excitation signal has to be increased.

Therefore, increasing the duct length is not an acceptable solution for the problem of di-
vergence between measured and imposed reflection coefficient at low frequencies.
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F Operating pressure

Numerical round-off error occurs especially when calculating the pressure in low-Mach-number
compressible flow. This is the result of the small relative size of the overall pressure drop ∆p
in comparison to the absolute static pressure p. The pressure change ∆p is proportional to
the dynamic head 1

2γpM 2, where γ designates the ratio of specific heat capacities at constant

pressure and constant volume
cp

cV
. M is the Mach number with M ¿ 1. This yields the relation

∆p

p
∼ M 2 (F.1)

and therefore ∆p
p → 0 for M → 0. This shows the need for taking measures to reduce the

round-off error in the pressure calculation in low-Mach-number flow. In Fluent, the problem
of round-off error is significantly reduced by diminishing the absolute pressure pabs by the
operating pressure pop

pg aug e = pabs −pop , (F.2)

whereas the resulting pressure is defined as the gauge pressure. The operating pressure is
usually of a level similar to the absolute pressure in the flow. the default value for the oper-
ating pressure is 101325Pa. Pressure input and output variables in Fluent are always gauge
pressures. The significance of setting an adequate operating pressure can be explained by the
direct link between the computation of the density by the ideal incompressible gas law

ρ = pop

Runi v
Mw

T
, (F.3)

whereas Runi v is the universal gas constant and Mw designates the mean molecular weight
of the material. For high-Mach-number compressible flows, it is recommended not to use an
operating pressure, because the pressure changes are significant and round-off error is thus
strongly limited. In these cases, the user manual suggests to set the operating pressure to zero,
in order to equalize gauge and absolute pressure [5].
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