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Abstract 

A knowledge-based automation concept, called automated copied driving, has been introduced for a special driving process. Thereby, a database 
of tool paths for component shapes is employed. New components are produced through the composition of appropriately transformed parts of 
the data pool. Up to now, building the database has been the main issue due to the complex cataloging of tool paths. 
This paper presents an automated approach for cataloging that is fast and universally applicable. Therefore, tool paths are parameterized by 
probabilistic density functions, which, subsequently, are used for tool path derivation. For the computation, a bivariate kernel density estimation 
is applied. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 
2015. 
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1. Introduction 

These days, businesses face a highly challenging backdrop 
driven by, increasing competition in the course of a progressive 
globalization and, the customers’ requests for more 
individualization [1]. In consideration of the altering 
conditions, the sheet metal forming industry quarries for 
efficient manufacturing systems that enable the production of 
individualized components. Precisely for that reason, 
incremental sheet forming (ISF) has been the subject of many 
studies and investigations. Particularly, asymmetric ISF 
methods allow for the production of almost any desired sheet 
component geometry. In this context, two-point incremental 
forming (TPIF) and single-point incremental forming (SPIF) 
are of primary interest for research, as these allow for the 
production of arbitrary asymmetric sheet metal shapes [2]. 
However, up to now, these processes have still struggled with 
open issues, e.g. the restricted geometric spectrum of the 
produced sheet parts, excessive material thinning and poor 
shape accuracy. 

Numerical approaches can enhance a better understanding 
and, thus, an improvement of the processes. Regrettably, the 
enormous number of forming steps and grave fluctuations in 

material and tool parameters during the process boost 
modelling effort and computation time. Therefore, such 
approaches cannot be applied adequately to asymmetric 
ISF [3]. Hence, typical research on TPIF and SPIF tries to 
deepen the fundamental understanding of the processes [4,5], 
whereas other results can be used to assist decision-making in 
the early stages of production, e.g. where and when is SPIF an 
appropriate technology for part manufacturing [6]. 
Furthermore, diverse tool path strategies are developed and 
applied to reduce occurring shape inaccuracies [7-10]. 
Alternative approaches locally differentiate material properties 
to improve the performance and accuracy of the process, e.g. 
through dynamic local heating [11]. These procedures are often 
supplemented by multi-stage strategies in order to overcome 
geometric restrictions of TPIF and SPIF [12-14]. The latest 
research makes use of feature-based approaches to increase 
geometric accuracy appreciably [15]. Further improvements 
and modifications lead to even better results in deviation 
reduction [16]. However, TPIF and SPIF still do not meet strict 
industry standards. In particular, for straightening usages, these 
processes are hardly applicable. 

Within this paper, we consider a specific type of driving 
process that is capable of remedying the geometric limitations 
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Fig. 1. Principles of local material stretching and shrinking for the utilized tool 

sets of the considered driving process 

 
of TPIF and SPIF. The process is carried out on simple C-frame 
presses in combination with cost-effective universal tool sets, 
whereas each tool set consists of a top and a bottom tool. For 
the investigations, we focus on the two most interesting tool 
sets, which are often used in practical applications: the 
stretching and the shrinking sets. Fig. 1 shows a schematic draft 
of the principles of stretching and the unique feature of 
shrinking, which also can be found in a more general context 
in [17,18]. 

In any case, the considered driving process involves one 
important issue that cannot be neglected. Because of the free 
forming character of the process, the degree of freedom is 
increased in comparison to TPIF and SPIF implementations. 
Actually, except for handling reasons, the sheet blank is not 
fixed in space while strokes are performed on it. Furthermore, 
the stroke impact, with respect to deformation, is highly 
dependent on the tool orientation when impinging upon the 
sheet surface. Hence, tool path generation turns out to be rather 
difficult. In general, the component shape is in no way 
connected to manufacturing strategies for the part production 

Fig. 2. Flow chart for an enhanced variation of components by automated 

driving with focus on efficient cataloging procedures 

and, thus, cannot be derived from CAD data, what makes path 
generation a challenging task. 

So far, there exists no strategy for tool path generation. In 
practice, part manufacturing rests upon worker experience and 
knowledge. In consideration of the facts, a knowledge-based 
automation concept utilizing a database of tool paths for 
component geometries is proposed. Based on this information, 
new geometries can be produced by composition of 
appropriately transformed parts of the database [19]. However, 
the main deficiency of the concept is the compilation process of 
the structured database. Currently, the cataloging of component 
geometries is done in a manual step, which proves to be highly 
complex, and has to be performed separately for every specific 
part to be added to the data pool [20]. 

This research presents an efficient approach for completely 
automated parameterized cataloging that further enhances the 
proposed knowledge-based automated driving concept. 
Thereby, the component shape is characterized by an analysis 
of the manufacturing strategy. The specific tool path is mapped 
onto a stroke distribution function on a blank that can be utilized 
for further geometric shape modeling and variation, which are 
needed for the cataloging routines. 

2. Automated driving concept and problem formulation 

In general, driving is a highly complex and strongly 
interactive manual process. Changing material parameters and 
process conditions make it very difficult to model the complete 
procedure. Thus, a model-free idea is proposed that allows fully 
automated manufacturing of new parts by composing geometric 
variants of known components stored in a data pool. The 
fundamentals of such an automated copied driving approach are 
fast processing and user-independent routines, which allow for 
an efficient database preparation in terms of cataloging 
parameterized sheet metal part geometries.  

In [20], the component variation by such an automated 
database concept succeeded. Nevertheless, the parameterized 
characterization of components, the essential cataloging step, is 
user-dependent and very inefficient. Thus, the main objective 
of this paper is to present an efficient automated cataloging 
procedure. For validation and verification purposes, we embed 
the procedure in a framework for an enhanced variation of 
components by automated driving. Exemplifying, we will pick 
out a scaling application to demonstrate the approach. The 
associated flow chart for reaching this target is shown in Fig. 2. 

The desired part geometry is given as well as an associated 
tool path, respectively. Utilizing this input, the component 
geometry has to be cataloged in a parameterized way, so as to 
be able to produce different geometric variations of the sample 
part. As we focus on the cataloging, the input step (1) will not 
be considered within our studies as this represents the available 
knowledge we assume to be given. Thus, we use a known 
sample sheet metal component with an appropriate tool path for 
production. The used part is depicted in Fig. 3. 

At the core, we focus on the parameterized cataloging 
module (2) with its sub-modules. We will start by mapping the 
given discrete tool path onto a stroke density function using the 
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Fig. 3. Sample component used for the investigations; the associated tool path 

for the production is already available and can be utilized for the research 

 
theory of kernel density estimation (A). Afterwards, we will 
take a look at the tool path generation sub-module (B), which 
will be followed by a brief introduction of the parameter 
interpolation principle (D). The target-actual-comparison sub-
module (C) is not considered in particular. However, relevant 
results, e.g. the analysis of error tolerances of digitized parts, 
are integrated into the section dealing with sub-module (D). The 
production of component variants (3) is considered in terms of 
a conceptual evaluation. 

Consequently, the main objective is the development of an 
automated user-independent cataloging concept for the 
proposed automated copied driving process. For this purpose, 
the focus of this paper is the representation of discrete tool paths 
by analytic stroke density functions. Furthermore, the 
transformation back is of central importance, i.e. the derivation 
of discrete tool paths out of probabilistic density functions. 

3. Parameterized characterization 

The automated driving process is strongly based on an 
analytical description of tool paths in order to apply component 
variations. The main goal is to find a general approach for 
including parameterized characterizations of standard elements 
into the part catalog. 

3.1. Stroke density function 

Manufacturing strategies for the considered driving process 
are described by tool paths, which are the discrete positions of 
the strokes performed during part production. This empirical 
data set is a reasonable base when cataloging comes into play, 
as the tool path is the central process influencing parameter for 
a specific component geometry. One option for handling 
empirical data is by deploying models of probability calculus. 

A probabilistic density function (pdf) contributes to the 
treatment of continuous probability distributions. Let  be a 
probability measure and let  be a -dimensional continuous 
random variable with the associated pdf . 
Furthermore, assume the addressed problem is limited to a 
finite dimensional real vector space. According to [21], for 

, …,  the pdf on the -dimensional interval 
 =  …  is given as 
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A sheet metal part can be regarded as a regular 2-manifold 
in . For the tool path analysis, the discrete stroke positions 
are referred to the plane sheet blank as suggested in [20]. We 
define two continuous random variables  and , which 
represent the stroke coordinates on the plate for generating the 
predetermined standard part and are combined in the vector . 

 and  are independent and restricted by the dimensions of 
the blank geometry  = . This is determined 
by the length  =  and the width  =  of the 
sheet blank. Applying (1), the corresponding pdf , a stroke 
density function (sdf), can be written as follows 
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Such a description of discrete tool paths by sdfs is 
independent from the complexity of the considered tool path. 
Hence, this approach enables an automated procedure for any 
kind of stroke pattern. 

For deriving sdfs for stroke positions on the sheet metal, we 
utilize bivariate kernel density estimation. In general, for a 
statistical analysis we assume that discrete data are subject to a 
certain probability distribution. Kernel density estimation is a 
nonparametric statistical method, which approximates the 
underlying distribution in form of a pdf. It relies exclusively on 
the underlying data and no further assumptions are 
required [22]. 

Let  be a number of -dimensional random variables 
,  a symmetric, positive definite, banded 

matrix and  the -dimensional Gauss kernel 
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A function  is a kernel density estimator of the 
random variables  if the following representation holds 
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For the 2-dimensional sheet metal blank, the coordinates of 
the  stroke positions are given by random variables , 
 = {1, …, }. Thus, the sdf of a stroke pattern on the blank can 

be expressed as given in (3) with  and the two-
dimensional Gauss kernel. Note that  is the essential 
parameter in estimating the pdf when it comes to accuracy. 

In this research, for the bivariate kernel density estimation 
of pdfs, the robust formulation based on the heat equation was 
utilized [22]. Consequently, now we are able to derive analytic 
characterizations of arbitrary tool paths in an efficient way. As 
an example, in Fig. 4, the derived sdf from the discrete tool path 
of the sample component presented in Fig. 3 is illustrated as in 
surface design. 

Up to now, we offered an automated possibility for an 
analytic description of sheet parts in terms of the underlying 
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Fig. 4. 2D-projection in the sheet metal part coordinate system of the tool path 

for crafting the sample component (left), where circles indicate stroke positions 

on the sheet blank with the shrinking tool set, and the derived sdf for this tool 

path (right) 
 
production tool path. In the next step, a concept has to be 
developed to generate tool paths utilizing the sdf of stroke 
patterns. 

3.2. Tool path generation 

As an alternative to the introduction of pdfs following (1), a 
pdf can be defined as the derivation of an underlying 
probability distribution function. From this point of view, we 
can easily observe that information gets lost in the process of 
the characterization. Due to the loss of information concerning 
discrete stroke position and order, a reproduction of the initial 
tool path is impossible. However, a predetermined number of 
strokes can be distributed onto the sheet blank according to the 
estimated pdf . 

For robot control, the 6-dimensional series of coordinates is 
mandatory, which consists of the three translational 
coordinates for positioning and the three Euler angles for 
orientation. Following [20], the complete series is computed 
from the distributed strokes on the blank through a coordinate 
interpolation approach, utilizing a functional dependency of the 
coordinates. 

Let  be the given sdf for a specific component shape and 
 = ,  = {1, …, }, are the desired  stroke positions 

for the tool path on the sheet blank with sdf . Assuming 
that equal distributions lead to equal components, we call for 
the following condition to hold 

)(ˆ~
iXff .                                                                           (5) 

For that reason, a predefined number  of sdf contour 
lines are chosen and projected onto the blank. These 
projections partition the sheet blank into ( +1) sections. Hence, 
the surface is divided into disjoint areas ,  = {0, …, }, of 
different densities, allowing for the distribution of the  
striking points according to the following correlation 

h
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jj
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Thereby,  is the quotient of the area  to the total area  of 
the sheet and  represents the number of points allocated in . 
A scaling is realized by the weighting factor  = {1, …, +1}. 

Fig. 5. 2D-projection in the sheet metal part coordinate system of a generated 

tool path computed according to the sdf of the sample component for crafting 

the sample component (left), where circles indicate stroke positions on the sheet 

blank with the shrinking tool set, and the derived sdf for this tool path (right); 

the strong similarity between the sdf derived from the original tool path (Fig. 4) 

and the generated one show the validity of the path generation concept 

 
Based on the calculated number of points for each area , 

the distribution within  is performed randomly. Fig. 5 shows 
a generated tool path for the sample component depicted in 
Fig. 3. 

For allocating higher numbers of strokes, Monte Carlo 
methods can be applied, e.g. implementations of the acceptance 
rejection method. 

3.3. Sheet metal part production 

Up to now, we have introduced an automated possibility for 
handling tool paths for sheet components in the sense of an 
analytic description by sdfs and the derivation of new tool paths 
from these representations. Before we are able to produce sheet 
metal part variations of components in the database, one more 
step is necessary for cataloging. We need to set up a 
parameterization of the part geometry to be cataloged. As 
mentioned before, we depict the procedure for part scaling with 
varying scaling factor . 

Therefore, we follow the procedure presented in [20]. First, 
we have to clone the sample part within given tolerances by a 
generated strategy to prove the validity of the approach. If we 
are able to recreate the component successfully, it is replaced 
by the new one wrought with the generated strategy. 

Utilizing the representation of manufacturing strategies by 
sdfs and the generation of new tool paths from these analytic 
equivalents, a recreation of the sample sheet succeeded within 
a tolerable accuracy with a standard deviation of 0.22 mm. This 
deviation level is completely feasible since some influencing 
factors cannot be neglected: the positioning accuracy of the 
handling robot, tribological effects during the process, 
uncertainty of measurement results when digitizing the sheet 
metal parts, etc. In Fig. 6, the deviation analysis for ten parts 
produced with a generated tool path for sample part recreation 
is compiled, where the recreated sample part corresponds to 
scaling factor  = 1. 

Afterwards, we recreate digitally scaled variations of the 
sample shape the same way, where some process parameter 
variation and manufacturing steps are required. 

For this study, digitally scaled components were reproduced 
for factors  = {0.90, 1.50} employing generated tool paths of 
varying stroke numbers. For a scaling factor of  = 0.9, a 
recreation with a standard deviation of 0.22 mm is successfully 
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Fig. 6. Deviation analysis for the recreation of the original sample component 

size (  = 1); alongside the illustration of the maximal (max), the minimal (min) 

and the average distances (avg) between the compared parts, the standard 

deviation (std) is displayed 

 
achieved and for  = 1.50 a standard deviation of 0.50 mm 
succeeded. All in all, considering the enlarged surface of the 
component the obtained deviation level appears to be feasible 
for  = 1.50. 

These recreated shape variations with their associated 
parameter configurations are applied as supporting points for a 
process parameter interpolation (see Fig. 7). As the only 
process parameter is the number of strokes, the search for 
properly generated strategies for the recreation of part 
variations is straightforward. After interpolation, the user is 
able to generate tool paths for the sample component of 
arbitrary scaling by demand. 

In conclusion, the presented approach is a strong 
enhancement for the automated driving concept as it allows for 
fully automating the complex cataloging step. For clarity, it 
should be stated that the concept enables variance even for big 
scaling factors and no further error analysis is required since the 
interpolation ensures high geometric conformance assuming 
sufficient supporting points are provided [20]. 

4. Conclusion 

A knowledge-based automation approach allows for the 
automation of the driving process. Utilizing a database of tool 
paths for component shapes, new geometries can be produced 

Fig. 7. Process parameter interpolation principle: reproduced variations of the 

sample component with their associated parameter settings are utilized as 

supporting points for an interpolation; the interpolation enables generating tool 

paths for arbitrary scaling factors 

by composing appropriately transformed elements of the data 
pool. Therefore, the ability to produce geometric variations of 
the database elements is mandatory. To achieve this ambition, 
the preparation of the database is of outstanding importance, as 
tool paths and components need to be cataloged in a 
parameterized form. Up to now, the cataloging step has turned 
out to be highly complex and is done manually. This has 
impeded an effective realization of the automation concept. 

In this paper, we presented a technique for the efficient 
implementation of a cataloging routine. For this purpose, a 
parametric representation of tool paths based on probabilistic 
density functions is derived. A bivariate kernel density 
estimation is applied to compute a specific stroke density 
function (sdf) on the sheet blank, which is stored in the 
database. Following these sdfs for the database elements with 
respect to the required component shape, variations of the part 
shapes are produced by generating suitable tool paths with 
matching stroke numbers. 

In particular, the presented method makes the previous 
obligatory analytical replication of manual tool paths obsolete, 
which had to be performed explicitly for every sheet metal part 
geometry. The concept of sdfs is fast and universally 
applicable, as it is not dependent upon any specific component 
features, but on the strokes, which enables a simple control of 
process parameters. Thus, a comprehensive application and a 
significant increase in the degree of automation are achieved. 

Further research will turn focus toward an improved 
modeling of the stroke order, as it is not considered in detail for 
the presented cataloging concept by sdfs. Nevertheless, it will 
strongly improve the accuracy of the produced parts or highly 
simplify the recreation steps for supporting point generation, 
respectively. 
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