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Abstract—In this paper, we introduce a technique to learn
sensory-motor sequences in multiple consecutive stages, where
one stage bootstraps sequences serving as training data for the
subsequent stage. By introducing multiple interaction stages and
recording the generated sensory-motor sequences of a preceding
interaction stage, we obtain a system capable of self-generation
of training data to increase the skill performance over time.
At the beginning, our system uses a constrained degrees of
freedom (DOF) exploration to gather a simple and short set of
training data for a meaningful first-stage behavior. This minimum
amount of samples already enables the robot to generate a
reaching behavior for goals in the visual field. The generated
observed sensory-motor sequences are then used as training data
for a subsequent reaching phase. We are using the Predictive
Action Selector (PAS) as a system building block, which provides
bootstrapping of visual-proprioceptive predictions. Since our
system was already presented on a robot with 2 DOF and 5 DOF,
we proceed with the evaluation on a different robot with 6 DOF.
Thus, we demonstrate the generality of the approach on various
robotic platforms with different morphologies. By increasing
the number of DOF, we continue showing the scalability of
the presented system. Without any prior knowledge of neither
the forward nor the inverse kinematics, the experiments show
promising results with a reaching success rate of 66% during
the first-stage reaching. This result is obtained by using only
13 training sequences (349 samples) which have been obtained
during the constrained DOF exploration in only a few minutes.
The developmental process is then shown by taking the generated
sequences obtained during the first-stage reaching and using them
as training data for the second-stage reaching. With second-stage
reaching, the goal reaching times were reduced by up to 59% and,
in contrast to first-stage reaching, it allows continuous retraining
with increasing training data in subsequent stages.

I. INTRODUCTION

Learning processes start early in human’s lifetime and are
facilitated by exploring the own body and the environment [1].
Focusing on the ability to reach objects in the visual field,
we propose a system using the Predictive Action Selector
(PAS) [2], [3] as main building block. Our system enables
a robot to develop the skill of approaching selected goals
in the visual field with the end-effector without any prior
knowledge of the robot kinematics. The system is imple-
mented and validated on the Tactile Omnidirectional Mobile
Manipulator (TOMM) [4] (see fig. 1), while the PAS was
originally presented on the Aldebaran NAO robot [2], [3].

*W. Burger and E. Wieser had an equal contribution to this paper. Video
to the paper: https://youtu.be/okZz9HPRrZI
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Fig. 1. Robot TOMM and a structural overview of the proposed develop-
mental process. The system is self-generating training data for subsequent
execution stages to improve reaching performance.

With the integration of the PAS onto the new platform, we
show the general applicability of the method on different
robotic platforms with altered robot kinematics. On TOMM,
the number of degrees of freedom (DOF) increases from
5 DOF to 6 DOF, the camera setup allows stereo tracking, the
visual field is larger and the reachable workspace increases
with the size of the robot.

The proposed system uses multiple stages of development to
increase the reaching performance over time. At the beginning,
a constrained DOF exploration is used to gather a minimum
amount of training data. Then, the system reaches for different
static goals in the visual field by bootstrapping sequences
from the obtained knowledge. For each goal, the system uses
mental simulation to select and predict a sequence which is
then executed and validated on the robot. During the first-stage
reaching, new visual-proprioceptive sequences are recorded for
the consecutive stages. After the first stage, the second stage
uses the recorded observed sequences to compose new motion
sequences for further goal reaching attempts. In sum, we
present the different developmental stages available with the
first-stage and second-stage mode of the PAS, and introduce
its capability for mental simulation.

A. Related Work

In this section, we will present and distinguish some differ-
ent approaches of autonomous development of reaching skills
by two characteristics.

The first characteristic is the technique for the autonomous
initial acquisition of training data which can be divided into
three different approaches: motor babbling [5], [6], [7], [8],



[9], [10], goal babbling [11], [12], and constrained DOF
exploration [2], [3]. While motor babbling (also known as
body babbling) uses random DOF motions to record sequences
of joint states and the corresponding visual features, goal
babbling selects target goals in the task space and the system
tries to reach them by using goal directed motions in the task
space. Baranes and Oudeyer [13] show that for the learning of
inverse models, goal babbling with well-chosen goals is able
to generate sufficient data faster than motor babbling, which
needs to explore the whole joint space. The third method
also used in our approach is to execute a constrained DOF
exploration which moves each DOF one after the other in
the available directions with one DOF moving at a time, as
presented by Wieser and Cheng in [2], [3]. Emulating the pre-
structuring of the human biological motor system during the
early developmental stage, the constrained DOF exploration is
generating sufficient training data for an early sensory-motor
mapping within a distinctively short time [3].

The second characteristic is the method of the knowledge
acquisition and representation which is then used as forward
or inverse model of the robot. Most of the approaches are
different kinds of neural networks or purely mathematical
models. Saegusa ef al. [5] use a Multi Layer Perceptron
(MLP) to approximate the kinematics of a robot by using
the recorded visual-proprioceptive sequences obtained during
active motor babbling. An early study by von Hofsten [14]
analyzed the early development of pre-reaching and reaching
in infants between the ages of 1 to 19 weeks. This behavior
was reproduced on a humanoid iCub robot by Shaw et al. [8]
using direct field mappings between joint states and spatial
positions. Furthermore, the same study motivated Narioka and
Steil [11] to model a similar U-shaped learning on a simulated
robot using goal babbling with intrinsic motor noise to train
Local Linear Maps (LLMs). Another approach using goal
babbling is shown by Rayyes and Steil [12] to learn the
robots inverse kinematic also using LLLMs. Mahoor et al. [6]
utilize autoencoder to create a map between joint space and
visual space, and learn accurate and smooth goal reaching
on a Meka Robotics M3 humanoid robot. Another research
using autoencoders is presented by Luo et al. [9] where a
PKU-HR6.0 humanoid robot develops reaching and grasping
abilities. Srinivasa and Grossberg [7] use a self-organizing
neural model consisting of multiple layers encoding different
types of changes in the environment to generate saccades to
goal positions in two different redundant simulated robotic
systems. Dearden et al. [10] represent forward models with
Bayesian networks to imitate presented actions.

Compared to the presented related work, the main contri-
butions of our method are the following:

o Multi-stage developmental process with self-generation
of training data for subsequent stages.

o Mental simulation of planned trajectories using a closed
loop action selection system.

o General applicability on various robotic platforms with
different morphology and different number of DOF.

I Constrained DOF exploration I

training sequences |

| First-stage reaching |
training sequences

| Second-stage reaching |

|

First-stage training |

additional

*predictor used for .
training sequences

Second-stage training |

*pred\ctor used for

Fig. 2. Main phases during the developmental process. The arrows indicate
training data or a trained predictor which is used for the consecutive phase.

B. Robot Description

The Tactile Omnidirectional Mobile = Manipulator
(TOMM) [4] is a human sized robot developed at the
Institute for Cognitive Systems at the Technical University
of Munich. The ten RGB cameras in the robot head are
arranged in five stereo camera groups where each of them
is facing in a different direction. For our experiments, we
used one of the stereo camera pairs facing forward in a
45° angle towards the floor. We use stereo vision to obtain
the three-dimensional visual feature vector representing the
position of the end-effector in the robot’s field of view using
the coordinates in the left camera as v; and wvs, and the
disparity as wvs. Finally, two URS industrial robots with 6
DOF are mounted on the left and right side of the torso.
Since we are controlling 6 DOF for 3D visual feature goals,
the robot can be considered redundant for the given task.
There are several differences between TOMM on the one
hand and the NAO robot used in [2], [3] on the other hand.
First, the number of DOF increases from 5 DOF to 6 DOF.
Second, the camera system on TOMM allows stereo tracking
to obtain the distance of the tracked end-effector as third
visual feature. Finally, the accessible workspace of TOMM is
larger due to the increased size of the robot.

C. Developmental Process

Figure 2 shows the chain of phases during the development
and the following gives a description for each of the steps.

1) Constrained DOF Exploration: After moving to a fixed
home position, the robot starts to explore its own limb. Each
DOF is moved within a short motion range of the total
range starting from the home position for every available
motion. Due to the small motion range constraint, this process
is called constrained DOF exploration. The purpose of the
exploration is to record and store multiple sequences which
are later used for training. Each of the recorded sequences
consists of a series of visual-proprioceptive patterns which
contain the visual features of the tracked end-effector and
the corresponding DOF states of each joint. Additionally to
the available motions of each DOF, also one idle sequence is
recorded where the robot does not move. Figure 3 shows a
visualization of the constrained DOF exploration.

2) First-Stage Training: During this step, the PAS is trained
to learn the correlations of DOF movement and the result-
ing visual feature changes. For this purpose, the recorded
sequences from the constrained DOF exploration are used.



Fig. 3. Constrained DOF exploration starting from home position (A), then
moving one DOF after the other (B) in both directions until sequences of
each DOF are recorded (C).

Fig. 4. Planning and execution of sequences during the reaching phase.
(A) Internal mental simulation predicting sequence leading to received goal.
(B) Sequence execution and prediction comparison. (C) Generation of new
sequence after exceeding prediction error threshold until goal is reached or
aborted.

3) First-Stage Reaching: The reaching phase is used to
reach different goals in the robot’s visual field by using
the trained PAS in first-stage mode. Starting from the home
position, a goal position is selected and sent to the PAS.
The goals can be either selected in predefined patterns in
the visual field or generated randomly. Mental simulation
generates an imagined visual-proprioceptive sequence which
brings the tracked end-effector closer to the goal. The observed
visual-proprioceptive sequences during the reaching phase are
again recorded for later use in the second-stage training.
Figure 4 shows a visualization of the sequence planning and
execution with observation of the prediction error.

4) Second-Stage Training: During the second-stage train-
ing, the PAS is trained with multiple sequences to combine
them into more complex motions (see fig. 2 for source of
training data).

5) Second-Stage Reaching: After the training, the PAS is
able to recall the trained sequences and choose between them
at each step in order to compose a longer trajectory consisting
of parts of the trained sequences. The difference to the first-
stage mode is the method how the sequence is generated in
the PAS. Instead of using the relative changes in the visual
and proprioceptive features for selecting the motion of each
DOF independently, the PAS uses fragments of the absolute
trained sequences to compose the imagined trajectory. All the
observed sequences obtained during the second-stage reaching
phase are again recorded and can be used for subsequent
training. The second-stage PAS does not replace the first-stage
PAS. It serves as a complement for increasing the knowledge
of the overall system by generalizing across learned sequences.
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Fig. 5. Simplified example for two DOF: The figure shows the field of view of
the robot during first-stage action selection. The colored lines represent the up
and down motions of the two robot DOF learned during the constrained DOF
exploration starting from the home position. The desired motion in visual
space represents the delta between the current visual state and the desired
visual state. The delta is projected to the home position and used to select
the appropriate joint motions. In the given example the system selects an up
motion for the first DOF and a down motion for the second DOF.

II. SYSTEM DESCRIPTION
A. Mental Rehearsal and Mental Simulation

For action selection, a key capability is the prediction of
changes which occur as consequences of actions and their
real-world evaluation [15], [16]. The built-in MTRNN of the
PAS recalls learned sequences. We define this recall of learned
sequences as mental rehearsal. The recalled sequences are in
turn used by the PAS algorithm to select the action. Here,
we introduce the feedback of the (visual-proprioceptive) PAS
output pattern to its input, instead of sending the propriocep-
tive pattern immediately to the robot. We refer to this closed-
loop operation of PAS as mental simulation. In case a certain
prediction error threshold is reached, the system generates a
new sequence from the latest reached state.

B. Predictive Action Selector

1) MTRNN: In order to realize mental rehearsal, we use
the MTRNN [17] modified to work with sigmoid neurons as
explained in [3]. The MTRNN is trained using Backpropaga-
tion Through Time (BPTT) [18]. Mental rehearsal is realized
by initializing the context states with the learned initial states
and running the neural network for the desired number of
iterations. Since the MTRNN utilizes sigmoid neurons, an
interface layer to the PAS maps all inputs and outputs of the
robot to the range between 0.0 and 1.0.

2) First-Stage Prediction: In the first-stage prediction, the
PAS uses three separate motions for each DOF to compose
complex motions: First, the idle motion which resembles no
movement of the DOF at all, then an up motion where the
DOF moves in the positive direction, and lastly a down motion
in the negative direction. Algorithm 1 shows the process
of generating sequences by first-stage prediction. In first-
stage prediction, each DOF is analyzed separately to choose
between the available motions. In order to select the best
motion of a single DOF, the trained sequences resembling the
three (k) available motions (up,down,idle) are recalled from
the MTRNN. The resulting visual-proprioceptive sequences
are then used to calculate the predicted relative feature changes
(Avg, Apy). By comparing the predicted changes (Avy) to the



Algorithm 1 Generate sequence using first-stage prediction
1: input: visual goal v,, init. visual end-effector state vy and joint state pg
2: [v,p] = [vo, po]
3: initialize empty generated sequence seqgen = [|
4: for i < prediction_length do

5 Av =0y —v

6 if Awv < reached_threshold then

7 break

8 end if

9 for each DOF do

10: for motion k € [up, down, idle] do

11: calculate [Avy, Apy] by recalling from MTRNN
12: end for

13: select winning motion w by choosing k with min(Av — Avy)
14 p=p+ Apy

15: v =0+ Avy

16:  end for

17: S€qgen = [SG(Igcn' [U7p]]

18: end for

19: return seqgen

Algorithm 2 Generate sequence using second-stage prediction

1: input: visual goal v, init. visual end-effector state vy and joint state pg

2 [v,p] = [vo, po]

3: initialize empty generated sequence seqgep = ||

4: for i < prediction_length do

5: Av = Vg — U

6: if Aw < reached_threshold then

7 break

8 end if

9:  for k € trained sequences do

10: recognize context [cpc, csc] by recalling k from MTRNN
11: initialize MTRNN context layers with cpc and cgo

12: set MTRNN IO layer activations using [v, p|

13: run MTRNN to generate prediction [vpycd, Ppredl;,

14: compute predicted Euclidean distance to goal Avy, = [vg — Upred

15:  end for
16:  select winning sample w where Av,, == min (Avy)

17: [’Uap] = [Upred-,ppred]w
18: S€qgen = [squen: [’UsPH
19: end for

20: return seqgen

desired visual feature changes (Av = v, — v), the best suited
motion for the current DOF is selected and the relative feature
changes are applied to the current state. After repeating this
motion selection for each DOF, the current state is appended
as new sample to the generated sequence. The PAS cycles
through this generation of samples until the set sequence
prediction length is reached or until the generated sample is
close enough to the goal. Figure 5 shows the simplified motion
selection process of a 2 DOF robot. For a detailed description
of the first-stage PAS algorithm we refer to [3].

3) Second-Stage Prediction: In contrast to the first-stage
prediction mode, the second-stage prediction mode uses abso-
lute trained sequences instead of computed relative changes.
Figure 6 shows the generation of a sequence leading to the goal
by using the five trained sequences which were, for example,
recorded during a first-stage reaching phase. Furthermore,
algorithm 2 shows the process of sequence generation in the
second-stage mode. In second-stage prediction, each trained
sequence is checked separately to select a new sample that is
then appended to the generated sequence. For each sequence,
the closest context in the MTRNN is found by recalling the

Fig. 6. The figure shows the field of view of the robot during second-stage
sequence generation. The colored lines represent five different observed and
learned sequences. By using the PAS in a closed-loop circuitry in second-
stage mode for multiple steps, the red sequence is generated as an imagined
trajectory leading to the goal.

sequence and comparing the predicted Input/Output activations
to the current visual-proprioceptive sample. This process,
which is called context recognition, initializes the activation of
each context neuron in the neural network for the prediction.
Then, for each trained sequence, the MTRNN is computed for
one iteration to generate a predicted sample and the Euclidean
distance of the visual features to the goal is computed. The
predicted sample closest to the goal is chosen as winning
sample and added to the generated sequence. For the next
generation step, the predicted sample is set as new current
visual-proprioceptive state. The PAS then cycles through this
generation of samples until the set sequence prediction length
is reached or until the generated sample is close enough to the
goal.

III. EXPERIMENTAL RESULTS

The following sections present the results of the experiments
conducted on TOMM. First, the training data obtained from
the constrained DOF exploration is shown. Then, the obtained
training data is used for a first-stage reaching experiment of
378 goals in the visual field. Finally, the second-stage reaching,
using training data obtained during first-stage reaching, is
compared to the first-stage reaching for a test set of 27 goals.
The selected goals are distributed using a grid pattern in the
visual space. A color blob tracker is used to track the end-
effector in both camera images to obtain the 3D visual feature
vector which is given to the PAS. During the experiments
a goal was considered reached when the Euclidean distance
to the current state falls below 0.05 which corresponds to
approximately 35mm in the center of the workspace. The
maximum sequence prediction length for the mental simula-
tion was set to 10 samples. Furthermore, the prediction error
threshold used to regenerate a new predicted sequence was
set to 0.15. We set a slow velocity for security reasons and to
avoid problems with the industrial robot position control. As
a result of this, the reaching times are much higher than the
necessary computation time of the system.

A. Constrained DOF Exploration

Figure 7 shows the twelve motion sequences recorded
during the constrained DOF exploration executed on TOMM.
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Fig. 7.  Visualization of the sequences recorded during the constrained
DOF exploration used as training data for the first-stage PAS. Plots show the
sequences recorded during up and down motion of each joint in two different
views. Left: v1,v2. Right: v1,v3. The motion direction indications are only
added for three DOF to avoid clutter.

TABLE I
MTRNN PARAMETERS USED FOR THE EXPERIMENTS WITH 378 GOALS
AND 27 GOALS.

Reaching Goals N]o NFC NSC TIO TFC TSC
Ist-stage 378 9 10 10 7 20 20

Ist-stage 27 9 10 10 5 10 100
2nd-stage 27 9 10 10 5 10 100

Each DOF was moved for 10% of the total available motion
range in both directions which leads to an exploration of only
20% of the full joint range. Additionally, an idle sequence was
recorded.

B. First-Stage Reachability

For the first-stage reaching the training set consisted of only
13 sequences with up to 29 samples each, which covered 20%
of the motion range for each DOF around a selected home
position. The constrained DOF exploration and the consecutive
MTRNN training, with the parameters shown in table I, took
only a total of 10 minutes. Part A of fig. 8 shows the resulting
reachability map. From the 378 generated goals, a total of
66% were reached in the set reaching time limit of 180
seconds. Most of the missed goals are located farther away
from the home position and closer to the borders of the images.
Especially on the left side of the visual field, the tracking was
often lost due to the simple design of the used color blob
tracker. The average reaching time of the successfully reached
goals was 72 seconds.

C. Development of Second-Stage Reaching

Following the first-stage reaching, the developmental pro-
cess is continued by training the observed sequences to a
second-stage PAS and using it for second-stage reaching. To
validate this approach and the functionality of the second-stage
PAS, this section presents the results and reachability maps
from two different reaching experiments with a test set of
27 goals. Both experiments used identical settings except for
the PAS mode (first-stage or second-stage) and thus different
training data. The maximum goal reaching time was set to
180 seconds and the end-effector returned to the home position
after each successful or canceled goal reaching attempt. Table I
shows the parameters of the MTRNN used for the first-stage
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Fig. 8. Visual reachability maps obtained during first-stage reaching of 378
goals (A) as well as during the first-stage (B) and second-stage (C) reaching
for a test set of 27 goals in the visual field. Each visual state goal is represented
by a red dot (not reached) or a gradually colored dot depending on the reaching
time. The first-stage PAS was trained with 13 sequences with a maximum
of 29 samples each, obtained during the constrained DOF exploration. The
second-stage PAS was trained with 57 sequences consisting of a total of 449
samples recorded during first-stage reaching. The axes of the plots represent
the normalized three dimensional visual space.

PAS as well as for the second-stage PAS. When running in
second-stage mode, the system falls back to first-stage mode
with the first generated sequence after exceeding the reaching
time of 60 seconds. As described in the last section, the first-
stage PAS was again trained using the 13 sequences obtained
during the constrained DOF exploration. The second-stage
PAS on the other hand was trained using 57 sequences with a
total of 449 samples observed and recorded during first-stage
reaching of various goals.

The results of the two experiments are shown in the
reachability maps (Fig. 8) and the reaching times (Table II).
During both experiments, 92% of the target goals were reached
after an average of approximately 77 seconds. On the one
hand, the second-stage PAS was able to reach 9 goals before
falling back to the first-stage mode (¢,cqcn, < 60s) which
reduced their average reaching time by 21%. Furthermore, the
reaching times of other goals were reduced by up to 59%
using the second-stage PAS and the consecutive first-stage
fallback and one goal was reached that was missed before
in the first-stage reaching. On the other hand, the second-
stage PAS seems to have insufficient knowledge to generate
appropriate sequences for some of the goals. For 10 goals,
the reaching time significantly increased (> 15s) and one
goal, which was reached in pure first-stage mode, could not
be reached anymore. Due to the simple fallback strategy, the
reaching time increases when the second-stage predictor does
not have sufficient knowledge to reach the goal. Since the
maximum total reaching time for one goal is not increased, this
can evidently also lead to missed goals which were reached



TABLE 11
REACHING TIME RESULTS FOR SMALL TEST SET OF 27 GOALS EXECUTED
WITH FIRST-STAGE PAS AND SECOND-STAGE PAS USING FALLBACK TO
FIRST-STAGE MODE AFTER 60 SECONDS. THE SHORTEST REACHING TIME
IS COLORED GREEN.

Tst stage 2nd stage
Vg1 Vg2 Vg3 (13 trained sequences) | (57 trained sequences)
0.25 | 0.25 | 0.20 89.33 106.05
0.25 | 0.25 | 0.40 60.95 67.13
0.25 | 0.25 | 0.60 34.63 71.82
0.25 | 0.50 | 0.20 55.12 43.11
0.25 | 0.50 | 0.40 38.47 34.27
0.25 | 0.50 | 0.60 missed missed
0.25 | 0.75 | 0.20 147.74 137.46
0.25 | 0.75 | 0.40 81.73 98.23
0.25 | 0.75 | 0.60 missed 68.27
0.50 | 0.25 | 0.20 63.79 152.17
0.50 | 0.25 | 0.40 13.50 14.67
0.50 | 0.25 | 0.60 59.48 58.65
0.50 | 0.50 | 0.20 40.86 29.90
0.50 [ 0.50 | 0.40 11.62 43.12
0.50 | 0.50 | 0.60 64.96 32.08
0.50 | 0.75 | 0.20 56.74 88.16
0.50 | 0.75 | 0.40 51.44 80.75
0.50 | 0.75 | 0.60 104.66 59.85
0.75 | 0.25 | 0.20 92.73 134.86
0.75 | 0.25 | 040 104.76 missed
0.75 | 0.25 | 0.60 170.09 123.51
0.75 | 0.50 | 0.20 72.68 73.49
0.75 | 0.50 | 0.40 44.03 89.49
0.75 | 0.50 | 0.60 119.85 65.00
0.75 | 0.75 | 0.20 88.44 124.28
0.75 | 0.75 | 0.40 84.62 56.05
0.75 | 0.75 | 0.60 176.07 72.18
mean(treach) 77.13 76.98
Nyeached/Ngoals 92.59% 92.59%

priorly. A possibility for improvement may include predictor
switching, where the best suited PAS is selected depending on
given goals.

IV. CONCLUSION

We presented a method for multi-stage developmental learn-
ing for reaching. The proposed system uses the Predictive
Action Selector (PAS) by Wieser and Cheng [2], [3] as main
building block for bootstrapping of goal-directed sequences.
We extended the original system by introducing the second-
stage mode and the mental simulation as two new features
of the PAS. With the second-stage mode we gain a multi-
stage developmental process with self-generation of training
data for subsequent stages. After each stage, the knowledge of
the system increases for improving the reaching performance.
Including this work, our proposed system was evaluated on
different robots with 2 DOF [2], 5 DOF [3] and now 6 DOF.
Thus, we continued showing the DOF scalability and the gen-
eral applicability of the system on different robotic platforms
with altered kinematics. The validation on TOMM showed
promising results for the proposed system. During the first-
stage reaching of 378 goals in the visual field, a reachability
rate of 66% was achieved using the 13 sequences recorded
during the constrained DOF exploration. With a total of 349
visual-proprioceptive samples, these first training sequences
covered only 20% of each DOF motion range around the initial
home position. The second-stage reaching used a training set
of 57 sequences containing 449 visual-proprioceptive samples

obtained during first-stage reaching. Compared to the first-
stage mode, the second-stage mode of the PAS was able to
reduce the goal reaching times by up to 59%. In contrast to
the first-stage PAS, the second-stage PAS can be continuously
retrained with increasing training data in subsequent stages.
Future work includes the further analysis of how the increase
of training data influences the performance of the second-stage
PAS.
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