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Abstract

This thesis considers a class of semilinear parabolic evolution systems subject to a hysteresis
operator and a Bochner-Lebesgue integrable source term. The underlying spatial domain is
allowed to have a very general boundary.
In the first part of the work, we prove resolvent estimates for elliptic operators.
In the second part, we apply semigroup theory to prove well-posedness and boundedness of
the solution operator. Rate independence in the non-linearity complicates the analysis, since
locality in time is lost. We investigate in Lipschitz continuity and Hadamard differentiability of
the solution operator in the initial value and the source term. Using fixed point arguments, a
representation of the derivative as an evolution system is derived.
In the third part, the results are applied in the optimal control of hysteresis-reaction-diffusion
systems. We study a control problem with distributed control functions, or controls which act
on a part of the boundary of the domain. The state equation is given by a reaction-diffusion
system with the additional challenge that the reaction term includes a scalar stop operator.
First of all, we prove first order necessary optimality conditions for either type of control func-
tions. Under certain regularity assumptions we derive results about the continuity properties of
the adjoint system. For the case of distributed controls, we improve the optimality conditions,
show uniqueness of the adjoint variables and prove criteria for possible discontinuity points and
upper bounds for jumps of the adjoint variable which corresponds to the hysteresis. For the
general problem, we employ the optimality system to prove higher regularity of optimal solu-
tions. Finally, we derive regularity properties of the optimal value function and the optimal set
function of a perturbed control problem when the set of controls is restricted.

Zusammenfassung

Thema der Arbeit sind Systeme semilinearer parabolischer Differentialgleichungen, deren Nicht-
Linearität einen Hystereseoperator enthält. Das zugrundeliegende Definitionsgebiet ist möglicher-
weise nicht glatt. Im ersten Teil der Arbeit werden notwendige Resolventenabschätzungen für el-
liptische Operatoren bewiesen. Die Resultate werden anschließend genutzt um mit Hilfe von Hal-
bgruppentheorie die Wohlgestelltheit sowie die Beschränktheit des Lösungsoperators zu zeigen.
Außerdem werden Lipschitz Stetigkeit und Hadamard Differenzierbarkeit des Lösungsoperators
sowohl im Anfangswert als auch im Quellterm gezeigt. Insbesondere wird die Ableitung als
Lösung einer Evolutionsgleichung dargestellt. Ein Großteil der Beweise beruht auf Fixpunktar-
gumenten. Der Hystereseoperator bereitet Schwierigkeiten in vielen Abschätzungen, da dieser
nicht lokal in der Zeit arbeitet. Im dritten Teil der Arbeit werden die Resultate in einem Optimal-
steuerungsproblem umgesetzt. Zustandsgleichung ist ein Reaktions-Diffusions-System, dessen
Nicht-Linearität einen skalaren Stopp-Operator enthält. Wir betrachten verteilte Steuerungen
oder Kontrollfunktionen auf einem Teil des Randes. Zunächst werden notwendige Optimalitäts-
bedingungen erster Ordnung für Steuerungen beider Art hergeleitet. Unter einer geeigneten
Regularitätsannahme werden Aussagen zur Stetigkeit des adjungierten Systems erarbeitet. Für
verteilte Steuerungen können die Optimalitätsbedingungen in stärkerer Form bewiesen werden.
Außerdem werden für diesen Fall Eindeutigkeit des adjungierten Systems, sowie Kriterien für
mögliche Unstetigkeitspunkte und obere Schranken für Sprünge hergeleitet. Für das allgemeine
Problem zeigen wir mit Hilfe des Optimalitätssystems höhere Regularität der optimalen Lösun-
gen. Abschließend erarbeiten wir Regularitätseigenschaften der Optimalwertfunktion und der
zugehörigen Mengenfunktion für ein gestörtes Kontrollproblem.
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1 Introduction

A lot of research has been made in the analysis of (systems of) partial differential equations
(PDEs) and in particular in the field of non-linear and non-smooth PDEs. Moreover, many
optimal control problems are subject to PDEs which depend of a control function. Especially in
this context, the question of differentiability of the corresponding solution operator, the control-
to-state mapping, becomes interesting. The latter is essential in order to derive (necessary)
optimality conditions for the control problem at hand.
The concern of this work is the following. Firstly, we study systems of semi-linear PDEs which,
represented as abstract operator equations, take the form

d

dt
y(t) + (Tpy)(t) = (F [y])(t) + u(t) in X for t > 0,

y(0) = y0 ∈ X.
(1.1)

In particular, (1.1) is the weak formulation of a system of PDEs. Accordingly, the solution
y takes values in a Banach space X = W−1,p

ΓD
(Ω) which is decomposed as a product of dual

Sobolev spaces. All boundary conditions are included in the solution space in the way that each
test function satisfies homogeneous Dirichlet boundary conditions on ΓDj ⊂ ∂Ω, j ∈ {1, . . .m}.
Additionally, the domain Ω satisfies minimal smoothness assumptions. The semi-linear elliptic
operator Tp is unbounded on X and y0 is a prescribed initial value. The main difficulty comprises
of the non-linearity F , which is a Nemytski operator of the form (F [y])(t) = f(y(t),W[Sy](t)).
The function f is assumed to be locally Lipschitz continuous and directionally differentiable.
Moreover,W is a scalar stop operator or another hysteresis operator with appropriate properties.
Accordingly, the vector y has to be mapped to a scalar valued function by some linear operator
S ∈ X∗ in order to serve as an input for W. Solutions z =W[v] can not be written in a closed
form. There are several ways to represent z. The most useful formulation for this work turned
out to be the following variational inequality [cf. BK13]:

(ż(t)− v̇(t))(z(t)− ξ) ≤ 0 for ξ ∈ [a, b] and t ∈ (0, T ), (1.2)

z(t) ∈ [a, b] for t ∈ [0, T ], (1.3)

z(0) = z0. (1.4)

Lastly, the forcing term u ∈ Lq(JT ;X) is a Bochner integrable function.
The first aim of this work lies in the analysis of the solution operator G which maps each
pair (y0, u) to the solution y of (1.1). Before this question can be addressed, some semigroup
theory has to be developed. In particular, we prove resolvent estimates for the operator Tp,
which extends an existing result from [Hal+15] from scalar valued functions to vector fields.
Subsequently, those tools are applied to prove well-posedness of (1.1) and Hadamard directional
differentiability of G in y0 and u. Those results extend the findings in [Mün17a] from diffusion
operators to general elliptic operators and from zero initial value to arbitrary y0.
In the second part of the work, we apply the results from the first part to an optimal control
problem where (1.1) serves as the state equation and in which the forcing term takes the role
of a control function. Specifically, we focus on the subclass of diffusion operators Ap and initial
value y0 = 0. Moreover, the cost function at hand is of tracking type.
For i ∈ {1, 2}, the control problem to study takes the form

min
u∈Ui

J(y, u) :=
1

2
‖y − yd‖2U1

+
κ

2
‖u‖2Ui (1.5)
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subject to

ẏ(t) + (Apy)(t) = f(y(t), z(t)) + (Biu)(t) in W−1,p
ΓD

(Ω) for t ∈ (0, T ), (1.6)

y(0) = 0 in W−1,p
ΓD

(Ω),

z =W[Sy]. (1.7)

Hence, the state equations (1.6)–(1.7) take the form of (1.1) with Tp = Ap, y0 = 0 and Biu
instead of u.
We consider two different types of control functions. The first one corresponds to i = 1 and
includes controls which act distributed over the domain Ω. The corresponding control space

U1 := L2
(
(0, T ); [L2(Ω)]m

)
is embedded into L2

(
(0, T );W−1,p

ΓD
(Ω)
)

by a suitable operator B1.

The second control space U2 := L2
(

(0, T );
∏m
j=1 L2(ΓNj ,Hd−1)

)
consists of functions which act

exclusively on the Neumann boundary parts ΓNj ⊂ ∂Ω, j ∈ {1, . . .m}. Again, functions from

U2 are embedded into L2
(

(0, T );W−1,p
ΓD

(Ω)
)

by a suitable operator B2.

We derive necessary optimality conditions for (1.5)–(1.7). In particular, we show existence of an
adjoint system (p, q) and prove a maximum condition. For i = 1 we improve the latter condition
and show uniqueness of (p, q). Moreover, we show higher regularity of the optimal solutions and
study the optimal value function and the optimal set function of a perturbed control problem

min
u∈C⊂Ui

J(G(Bi(u− r, 0), u− r), (1.8)

where r ∈ Ui corresponds to the perturbation. Those results reflect the findings of [Mün17b],
but the theory and all proofs are carried out more detailed and in several parts more accurate.
The evolution of q and the optimality condition depend on an abstract measure dµ which could
not be characterized in [Mün17b]. This work extends the results from [Mün17b]. In particular,
for i = 1 we prove sign conditions and bounds for dµ and deduce sign conditions and bounds
for dq. We exploit this to prove conditions for discontinuity points of q as well as upper bounds
for possible jumps.
In the following, we compare this work to the literature.
A lot of the semigroup theory which we apply in this work can be found in [Paz83], [Lun95]
or [Hen81]. Also results on general non-linear abstract operator evolution equations without a
forcing term u can be found here. Typical non-linearities take the form f(t, y(t)), where f is
(locally) Lipschitz continuous. Semilinear parabolic problems similar to (1.1) above have been
studied in [Lun95] for example. Also here, the non-linearities f(t, y(t)) are Lipschitz continuous.
Recent results about differentiability of the solution mapping of non-linear operator equations
are due to [MS15]. So far, the non-linearity f is always defined locally in time, and no hysteresis
is considered.
Good progress has also been achieved with respect to optimal control of (systems of) PDEs.
Specifically, many results on semi-linear parabolic optimal control problems can be found in
[Trö10]. Early research in this direction is due to [BC85; RZ98; Cas97]. We also call the reader’s
attention to [HKR13], where a parabolic control problem with rough boundary conditions is
studied.
The particular subclass of optimal control problems with reaction-diffusion systems as state
equations has already been studied in [Gri03]. Particularly, parameter sensitivity analysis is the
focus of this work. Subsequently, the results have been broadened in [GV06] and several further
papers. A similar problem was also analyzed in [BJT10], where optimality conditions could be
shown.
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So far, all optimal control problems are subject to non-linear PDEs with smooth non-linearities.
Hence, continuous differentiability of the control-to-state operator - often up to second order -
could be shown. By linearity of the derivatives, first and often second order optimality conditions
could be derived.
Only few results have been established for the optimal control of infinite-dimensional rate-
independent processes. Early studies in this direction are due to [Rin08; Rin09]. In particular,
existence of optimal controls for problems subject to energetically driven processes has been
studied. An application of these results in the field of shape memory materials and in particular
to thermal control problems is due to [ELS13; EL14]. No optimality conditions can be found
in these works. In the infinite-dimensional setting, an optimal control problem in the field of
static plasticity has been studied in [HMW12; HMW13]. Subsequently, the theory was applied
in [HMW14]. Specifically, a quasi-static control problem was solved numerically with a time-
discretization approach. A class of time-continuous, infinite-dimensional, rate-independent con-
trol problems of quasi-static plasticity type was analyzed in [Wac12; Wac15; Wac16]. Again with
a time-discretization argument, optimality conditions could be derived. Finally, in [SWW16], a
time-continuous, infinite-dimensional optimal control problem of a rate-independent system is
studied. The state equation is considered in its energetic formulation, and necessary optimality
conditions are shown by viscous regularization.
To the best of our knowledge, the research of optimal control of hysteresis started with [Bro87;
Bro88; Bro91]. The optimal control problem here is subject to an ODE-system with hysteresis
and necessary optimality conditions could be shown. Moreover, a time discretization argument
has been applied to derive an adjoint system. Closely connected, research on optimal control of
sweeping processes has been done in [CMF14; Col+12; Col+16]. Comparable to this work, but
for a control problem of an ODE-system with a (vectorial) stop hysteresis operator, first order
optimality conditions were derived in [BK13]. Similar as (1.2)–(1.4), a variational inequality
is chosen to represent the hysteresis operator. The main difficulty which occurs with the stop
operator and with every other interesting hysteresis operator is its non-locality in time. As a
consequence, the state y(t) at each time t ∈ (0, T ] depends in general in a non-trivial way on the
whole history (0, t). Another problem is due to the fact that the stop operator is not differentiable
in the classical sense. Hence, classical differentiability of the control-to-state operator is lost.
In [BK13], regularization techniques were applied to overcome this problem, and finally an
optimality system could be derived. We take advantage of several of the ideas in this work.
However, since the state equation (1.6)–(1.7) is of reaction-diffusion type, we need additional
arguments. In particular, the state vector y : [0, T ] → W−1,p

ΓD
(Ω) which solves (1.6)–(1.7) takes

its values in an infinite-dimensional space. Moreover, our assumptions on the non-linearity
are much weaker since we only suppose f to be locally Lipschitz continuous and directionally
differentiable rather than continuously differentiable. As a consequence, we require techniques as
in [MS15]. Indeed, since the domain Ω has a rough boundary, the (1.6)–(1.7) can only be written
as a weak formulation and the domain of the unbounded diffusion operator Ap is contained in

W−1,p
ΓD

(Ω), i.e. in a product of dual spaces.
Only few substantial results are available on the control of hysteresis-reaction-diffusion systems,
and even less in the direction of optimal control. Particularly, some research on automatic
control problems governed by reaction-diffusion systems with feedback control of relay switch and
Preisach type has been done in [CC02]. In fact, global existence and uniqueness of solutions could
be shown. Closed-loop control of a reaction-diffusion system coupled with ordinary differential
inclusions is the subject of [DN11]. Assuming the number control devices to be finite, a feedback
law was derived.
Finally, the optimal control of general non-smooth semi-linear parabolic equations was analyzed
in [MS15]. Specifically, the non-linearity is Lipschitz continuous on bounded sets and direc-
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tionally differentiable. Hence, the control-to-state operator is not differentiable in the classical
sense. Nevertheless, necessary optimality conditions could be derived. The derivation of an ad-
joint system relies on regularization techniques. Although no hysteresis is considered in [MS15],
with additional arguments from [BK13], the approach can be adapted to work for problem (1.5)–
(1.7), where the hysteresis entails non-locality in time. For further research on optimal control
of non-smooth parabolic equations we refer to the references in [MS15].
As described in the beginning, this work considers non-smooth semi-linear parabolic systems
with hysteresis and the optimal control of non-smooth reaction-diffusion systems with hysteresis.
In particular, a scalar stop operator in the non-linearity F [y] = f(y,W[Sy]) implies non-locality
in time. Moreover, the function f is assumed to be locally Lipschitz continuous and directionally
differentiable. Finally, the domain Ω satisfies minimal smoothness assumptions.
The work is structured as follows:
In Chapter 2, we establish necessary tools to analyze the operator equation (1.1). We expand
the framework in [Mün17a; Mün17b] to the generality of this work.
Results from the literature on Sobolev Spaces with Dirichlet boundary conditions are collected

in Section 2.1. In particular, we define the space W1,p′

ΓD
(Ω) and its dual space W−1,p

ΓD
(Ω) for

p ∈ [2,∞) and 1
p′ + 1

p = 1, where the domain Ω is non-smooth.
In Section 2.2, we define a class of elliptic operators Tp and Tp. We prove resolvent estimates
for those operators for appropriate p which are necessary for the construction of analytic semi-
groups exp(−Tpt), t ≥ 0, see Theorem 2.14. This extends [Hal+15, Theorem 5.12] from scalar
valued function spaces to spaces of vector valued functions. In Subsection 2.2.3, we deduce the
corresponding results for the subclass of diffusion operators Ap and Ap as they were used in
[Mün17a; Mün17b]. Subsection 2.2.4 contains the necessary background on sectorial operators
and semigroups. We apply Theorem 2.14 to prove that Tp generates an analytic semigroup,
see Theorem 2.22. In Theorem 2.25, we prove that the resolvent set of Tp is contained in a

sector Sδ,Φ̃ =
{
λ : Φ̃ ≤ |arg(λ− δ)| ≤ π, λ 6= δ

}
, where δ > 0 and ϕ̃ ∈ (0, π2 ). This yields crucial

estimates for the semigroup exp(−Tpt), t ≥ 0. In Subsection 2.2.5, we collect the necessary
background on fractional powers of operators T θp and the corresponding spaces Xθ

Tp
, θ ≥ 0. In

particular, we show important embedding properties of Xθ
Tp

for θ ∈ [0, 1] and that X1
Tp

is topo-

logically equivalent to W1,p
ΓD

(Ω). We also deduce topological equivalence of Xθ
Tp

to a complex

interpolation space [W−1,p
ΓD

(Ω),W1,p
ΓD

(Ω)]θ for θ ∈ (0, 1) if Tp satisfies additional properties. The
latter hold for Ap. In Subsection 2.2.6, we introduce the concept of maximal parabolic Sobolev
regularity of an operator which is required to prove higher regularity of the solution y of (1.1).
Section 2.3 contains some embedding results on Bochner spaces which we need for several weak
compactness arguments.
Finally, in Section 2.4, we introduce the concept of hysteresis operators and define the scalar
stop and the scalar play operator.
In Chapter 3, we study the solution operator G of (1.1).
The main assumption of the chapter as well as some notation can be found in Section 3.1.
In Section 3.2, we show that (1.1) is well defined for u ∈ Lq((0, T );X) and y0 ∈ Xβ

Tp
for

appropriate q ∈ (1,∞) and β ∈ (0, 1], see Theorem 3.2. The corresponding result for diffusion
operators is stated in Corollary 3.4.
Afterwards, in Section 3.3, we define Hadamard directional differentiability and show that the
solution operator G of (1.1) is Hadamard directionally differentiable in y0 and u, see Theo-
rem 3.11. The corresponding result for diffusion operators can be found in Corollary 3.15.
In Chapter 4, we study the optimal control problem (1.5)–(1.7). In particular, we restrict
ourselves to diffusion operators Ap and zero initial value y0 = 0 in (1.6).
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Section 4.1 contains the main assumption of the chapter and some further notation in addition
to Section 3.1.
In Section 4.2, we exploit Corollary 3.4, Corollary 3.15 and the embedding results from Chapter 2
and prove that an optimal control for problem (1.5)–(1.7) exists, see Theorem 4.6.
Towards our main objective, which is an adjoint system for problem (1.5)–(1.7), we regularize
the control problem in Section 4.3. In particular, we introduce a regularization parameter ε > 0
and replace F [y] = f(y,W[Sy]) in (1.1) by Fε[y] = fε(y, Zε(Sy)), were fε and Zε are regular
enough and approximate f and W in the limit ε→ 0. Accordingly, this yields a regularization
of the state equation (1.6)–(1.7). In Subsection 4.3.1, we extend the results from [Mün17b] by
proving well posedness and regularity results for Zε. Corollaries 3.4, 3.15 imply that the solution
operators Gε of the regularized state equations are well defined and Gâteaux-differentiable on
Lq((0, T );X). For a fixed optimal solution u of (1.5)–(1.7), we add an additional term of the
form 1

2‖u − u‖X to the original cost function J and define a sequence of regularized optimal
control problems with state equations yε = Gε(Biu), zε = Zε(Syε). As for problem (1.5)–(1.7),
we obtain optimal solutions uε, yε = Gε(Biuε) and zε = Zε(Syε). By uniform-in-ε bounds and
weak compactness arguments, we prove that those functions converge to the optimal solution
(u, y, z) of the original problem in the limit ε→ 0, see Theorem 4.16. Even though the control-
to-state operators Gε are Gâteaux-differentiable, it remains challenging to derive adjoint systems
(pε, qε) for the regularized problems, since Gε is defined implicitly via Zε, similar as in (1.6).
Nevertheless, we establish an optimality system for those problems in Theorem 4.20.
In Section 4.4, we accomplish the original aim and derive an optimality system for problem (1.5)–
(1.7). In particular, we take the limit ε → 0 of (pε, qε) in Subsection 4.4.1 and prove necessary
optimality conditions. The evolution equation of the adjoint variable p which corresponds to
y follows without further effort. But the adjoint variable q which corresponds to z is of lower
regularity as it occurs frequently in optimal control problems which are subject to implicit state
constraints of variational inequality type. Indeed, q is only contained in BV(0, T ), the space
of functions with bounded total variation in [0, T ]. Hence, there exists no time derivative and
the evolution of q is only represented by a measure dq ∈ C([0, T ])∗. In order to understand
the optimality system for problem (1.5)–(1.7) completely, we study q and dq in more detail.
It turns out that dq depends on an abstract measure dµ ∈ C([0, T ])∗. Moreover, the measure
is part of the maximum condition for problem (1.5)–(1.7) which we prove in Subsection 4.4.2.
This makes it even more appealing to characterize dµ. For the general problem with i ∈ {1, 2}
and without any further assumptions, we prove that dµ has its support in the subset of times
J∂ ⊂ [0, T ] where z is located at the boundary points {a, b} of [a, b]. With an additional regularity
assumption on Sy we can further shrink the support of dµ. Example 4.32 provides an example
in which this assumption applies. The latter is not contained [Mün17b]. The first main results of
Section 4.4 are summarized in Theorem 4.38 and Corollary 4.39. Those contain all results about
the optimality system and the maximum condition for problem (1.5)–(1.7) for i ∈ {1, 2}. In
Sections 4.4.4–4.4.5 we continue to study the control problem with distributed control functions,
i.e. with i = 1, in more detail. It turns out that the optimality conditions for this particular
case can be improved, since B1 has dense range and hence B∗1 is one-to-one for p ≥ 2 close to
two. Corollary 4.40 contains the improved maximum condition. Moreover, in Corollary 4.41 we
again exploit injectivity of B∗1 and show uniqueness of p, q and dµ for i = 1. These together are
the second main result of Section 4.4. In Subsection 4.4.5 we extend the findings of [Mün17b]
by analyzing the measure dµ for the case i = 1 and for continuously differentiable f in more
detail. In particular, we partition the interval [0, T ] into different categories of times. In the
subset of times in which the support of dµ is located, we prove sign conditions and bounds for
dµ, see Lemma 4.46 and Theorem 4.47. With help of the optimality system in Corollary 4.40,
we transfer those results to the measure dq, see Corollary 4.48. In the case when the regularity
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assumption of Subsection 4.4.1 holds, we prove conditions for discontinuity points of q and upper
bounds for possible jumps, see Corollary 4.49.
In Section 4.5, we return to the general case i ∈ {1, 2}. We introduce an additional assumption
on Bi and exploit regularity of (p, q) in time and the relation between (p, q) and u in order to
establish higher regularity of the optimal control u and the optimal state y, see Theorem 4.51.
Example 4.52 provides an example in which Theorem 4.51 can be applied.
Finally, in Section 4.6, we study the perturbed problem (1.8). In Theorem 4.54, we prove that
the optimal value function v : r ∈ Ui → R is lower semi-continuous for C convex and closed. If C
is also compact, we prove that v is continuous and that the corresponding optimal set function
V : r ∈ Ui ⇒ C is upper semi-continuous.
Note that all results of Chapter 4 can be applied to control problems with general spaces of
control functions of the form U = L2

(
(0, T ); Ũ

)
. We only require the existence of a continuous

operator B : Ũ → X = W−1,p
ΓD

(Ω). If B satisfies the properties of B1, then also the improvements
of Sections 4.4.4–4.4.5 hold. Moreover, the cost function J(y, u) can be replaced by a general
differentiable functional J(y, u, z), as long as the corresponding reduced cost function remains
coercive in u ∈ U . Of course, this results in a different optimality system. In particular,
the evolution equations of the corresponding adjoint variables include the partial derivatives
Jy(y, u, z) and Jz(y, u, z). Finally, the diffusion operator Ap can be replaced by a general semi-

linear parabolic operator which satisfies maximal parabolic regularity on X = W−1,p
ΓD

(Ω).
Notation:
Depending on the chapter, the Banach spaces in this work consist of complex or real valued
functions. If Y is such a Banach space, then we denote by Y ∗ the corresponding (anti-)dual
space. In the complex case, the duality pairing between u ∈ Y ∗ and v ∈ Y will be denoted
by 〈u, v〉Y ∗,Y or 〈u, v〉Y , and the anti-duality pairing by 〈〈u, v〉〉Y ∗,Y or 〈〈u, v〉〉Y . Accordingly,
there holds

〈u, v〉Y ∗,Y = 〈u, v〉Y = 〈〈u, v〉〉Y = 〈〈u, v〉〉Y ∗,Y .
Moreover, we write L(Y, Z) for the space of linear operators between spaces Y and Z and L(Y )
for the space of linear operators on Y .

2 Establishment of necessary tools

2.1 Sobolev spaces including homogeneous Dirichlet boundary conditions

The setting and the theory of this section has appeared in a similar form in [Mün17a] and
[Mün17b]. Remember however, that we will not exclusively work with spaces of real valued
functions, but consider spaces of complex valued functions in parts of this work. The theory
in this section is strongly connected to [Hal+15]. We recall several definitions, results and
assumptions. In the following, Ω ⊂ Rd is assumed to be a bounded domain with d ≥ 2. The
boundary regularity is defined in Assumption 2.2. For some given m ∈ N\{0}, we want to define
a vector space as the product of m distinct Sobolev spaces of functions, which are complex or
real valued depending on the context.
For each component j ∈ {1, . . . ,m} of this space of vector valued functions, see Definition 2.4,
the boundary ∂Ω is the union of the corresponding Dirichlet part ΓDj ⊂ ∂Ω and the Neumann
boundary ΓNj := ∂Ω\ΓDj , see Assumption 2.2. The cases ΓDj = ∅ and ΓDj = ∂Ω are not
excluded [Hal+15, Comment after Definition 2.4] and [Aus+14, Remark 2.2 (iii)]. The definition
of Sobolev spaces of functions which are zero on a part of the boundary allows us to incorporate
homogeneous boundary conditions of a PDE already in the definition of the space of solutions.
In many problems, ∂Ω, ΓDj and ΓDj are assumed to be Lipschitz continuous manifolds. We
want to admit a much broader class of possible boundary decompositions in our setting.
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This leads us to the definition of an I-set, where I ∈ (0, d] is a fixed real number.

Definition 2.1. [Hal+15, Definition 2.1] For 0 < I ≤ d and a closed set M ⊂ Rd let ρ denote
the restriction of the I-dimensional Hausdorff measure HI to M . Then we call M an I-set if
there are constants c1, c2 > 0 such that

c1r
I ≤ ρ (BRd(x, r) ∩M) ≤ c2r

I

for all x in M and r ∈ (0, 1).

We assume throughout that the domain of existence satisfies the following:

Assumption 2.2. [Hal+15, Assumption 2.3] The domain Ω ⊂ Rd is bounded and its closure
Ω is a d-set. For j ∈ {1, . . . ,m}, the Neumann boundary part ΓNj ⊂ ∂Ω is relatively open and
the Dirichlet boundary part ΓDj = ∂Ω\ΓNj is a (d− 1)-set.

Remark 2.3. As already mentioned in the beginning of this section, note that the cases ΓDj = ∅
and ΓDj = ∂Ω are not excluded [Hal+15, Comment after Definition 2.4] and [Aus+14, Remark
2.2 (iii)]. Assumption 2.2 allows for very general domains. For example, Ω may be a Lipschitz
domain and for j ∈ {1, . . . ,m}, ΓDj can be a (d − 1)-dimensional manifold. But much more
general cases are possible: “In particular, the Dirichlet boundary part need not be (part of) a
continuous boundary in the sense of [Gri, Definition 1.2.1.1] and the domain is not required to
’lie on one side of the Dirichlet boundary part’.” [DER15, 1. Introduction]

As in [Hal+15, Definition 2.4] or [Mün17a, Definition 2.4] we define Sobolev spaces which include
Dirichlet boundary conditions on a part of the domain.

Definition 2.4. Let U ⊂ Rd be a domain and p ∈ [1,∞). All functions are either real or
complex valued.

• W1,p(U) denotes the usual Sobolev space of functions ψ ∈ Lp(U), whose weak partial
derivatives exist in Lp(U), normed by

‖ψ‖W1,p(U) =

(∫
U

(
|ψ|2 +

d∑
j=1

∣∣∣∣∣ ∂ψ∂xj
∣∣∣∣2
) p

2

dx

) 1
p

.

• For a closed subset M of U we define

C∞M (U) := {ψ|U : ψ ∈ C∞0 (Rd), supp(ψ) ∩M = ∅}

and denote by W1,p
M (U) the closure of C∞M (U) in W1,p(U).

Remark 2.5. [Mün17a, Remark 2.5] In W1,p
M (U) in Definition 2.4, we use the same norm as

in [Hal+15], which differs from the usual norm in Sobolev spaces. One reason for this choice

is that it simplifies estimates concerning the duality between W1,p
M (U) and W1,p′

M (U). We may

identify a function φ ∈ W1,p
M (U) with an element in W−1,p

M (U) since for any ψ ∈ W1,p′

M (U) the
Cauchy Schwarz inequality together with Hölder’s inequality yields∫

U

(
φψ +

d∑
j=1

∂φ

∂xj

∂ψ

∂xj

)
dx ≤

∫
U

(
|φ|2 +

d∑
j=1

∣∣∣∣ ∂φ∂xj
∣∣∣∣2) 1

2
(
|ψ|2 +

d∑
j=1

∣∣∣∣ ∂ψ∂xj
∣∣∣∣2) 1

2

dx

≤

(∫
U

(
|φ|2 +

d∑
j=1

∣∣∣∣ ∂φ∂xj
∣∣∣∣2) p

2

dx

) 1
p
(∫
U

(
|ψ|2 +

d∑
j=1

∣∣∣∣ ∂ψ∂xj
∣∣∣∣2) p′

2

dx

) 1
p′

.
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The results in [Hal+15, 3. Interpolation] about interpolation properties between spaces of the
form W1,p

ΓDj
(Ω) for different p ∈ (1,∞) are established under the assumption that a linear and

continuous extension operator E : W1,1
ΓDj

(Ω) → W1,1
ΓDj

(Rd) exists, which simultaneously defines

a continuous extension operator E : W1,p
ΓDj

(Ω) → W1,p
ΓDj

(Rd) for all p ∈ (1,∞) [cf. Hal+15,

Assumption 3.1]. This operator is used to carry over existing interpolation results from the
usual Sobolev spaces to W1,p

ΓDj
(Ω)-spaces. It is shown that such an extension operator can be

constructed under the following assumption.

Assumption 2.6. [Hal+15, Assumption 4.11] In the setting of Assumption 2.2 we suppose for
all j ∈ {1, . . . ,m} and any x ∈ ΓNj that there is an open neighborhood Ux of x and a bi-Lipschitz

mapping φx from Ux onto a cube in Rd such that φx(Ω ∩ Ux) equals the lower half of the cube
and such that ∂Ω ∩ Ux is mapped onto the top surface of the lower half cube.

Remark 2.7. Aside from the construction of an extension operator, as described above, As-
sumption 2.6 is important due to the following two reasons:

1. We will need Assumption 2.6 in Section 2.2.2 to prove resolvent estimates for elliptic
operators.

2. [Mün17a, Remark 2.7] Under Assumption 2.6 it can be shown that the embeddings

W1,p
ΓDj

(Ω) ↪−↪→ Lq(Ω)

are compact for q ∈ [1, dp
d−p) if p ∈ (1, d), and for arbitrary q ∈ [1,∞) if p ≥ d [Hal+15,

Remark 3.2]. The proof is almost equal to the proofs of [Eva10, Part II, 5.6.1, Theorem
2] and [Eva10, Part II, 5.7, Theorem 1].

The second remark will turn out to be very important when it comes to embedding proper-
ties of fractional power spaces and of Banach space valued functions, see Subsection 2.2.5 and
Section 2.3 below.

The following definition of vector valued Sobolev spaces which include homogeneous Dirichlet
conditions goes back to [Hal+15, Section 6], cf. also [Mün17a, Definition 2.8]:

Definition 2.8. With Assumption 2.2 and Assumption 2.6 and p ∈ [1,∞) we define a Sobolev
space of vector valued functions by the product space

W1,p
ΓD

(Ω) :=

m∏
j=1

W1,p
ΓDj

(Ω).

For p ∈ (1,∞) we denote its (componentwise) dual by W−1,p′

ΓD
(Ω), or the anti-dual in the complex

case respectively.

2.2 General elliptic operators

In this section, we define a class of elliptic operators Tp and Tp. We prove resolvent estimates
for those operators. In particular, with Theorem 2.14 below we are able to extend an existing
result for scalar valued function spaces to the vector valued case. As already mentioned in
the introduction, this implies that the operators are sectorial and therefore generate analytic
semigroups of operators, see Subsection 2.2.4. Since zero is contained in the resolvent sets ρ(Tp)
it can also be shown that the fractional powers T θp are well defined. This leads us to the definition
of fractional power spaces in Subsection 2.2.5. All spaces in this section are considered to be
complex.
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2.2.1 Definition of Tp and Tp

Before we introduce the elliptic operators Tp and Tp in Definition 2.11, we define two auxiliary
operators which we need for the construction. The definition of Tp below goes back to [Hal+15,
Section 6]. We extend the framework of this work in order to provide the reader a comprehensive
overview about the spaces between which the individual operators act.

Definition 2.9. With Assumption 2.2 and Assumption 2.6, let p ∈ [1,∞). We introduce

Jp : W1,p
ΓD

(Ω)→ Lp(Ω;Cm × Cm×d), Jp(u) := (u,∇u) and

Ip : W1,p
ΓD

(Ω)→W−1,p
ΓD

(Ω), 〈〈Ipu, v〉〉W1,p′
ΓD

(Ω)
:=

∫
Ω
u · v dx ∀v ∈W1,p′

ΓD
(Ω).

In the following lemma, we study the operator Ip in more detail. Amongst others, we prove that
Ip is well defined. This is necessary for the construction of Tp.

Lemma 2.10. In the framework of Definition 2.9, let p ∈ (1,∞). Then Ip is compact, one-to-one

and has dense range, i.e. ker(Ip) = {0} and ran(Ip) = W−1,p
ΓD

(Ω). Moreover, there holds

‖Ip‖L
(
W1,p

ΓD
(Ω),W−1,p

ΓD
(Ω)
) ≤ 1.

Proof. Because W1,p
ΓD

(Ω) is a product of W1,p
ΓΓDi

(Ω)-spaces, the embedding W1,p
ΓD

(Ω) ↪−↪→ [Lp(Ω)]m

is compact according to Remark 2.7. By Hölders inequality, one has

|〈〈Ipu, v〉〉W1,p′
ΓD

(Ω)
| ≤ ‖u‖[Lp(Ω)]m‖v‖[Lp′ (Ω)]m ≤ ‖u‖[Lp(Ω)]m‖v‖W1,p′

ΓD
(Ω)
,

for all u ∈ W1,p
ΓD

(Ω) and v ∈ W1,p′

ΓD
(Ω). So indeed, Ip maps every u ∈ W1,p

ΓD
(Ω) to a continuous

functional on W1,p′

ΓD
(Ω). Moreover, it follows

‖Ipu‖W−1,p
ΓD

(Ω)
≤ ‖u‖[Lp(Ω)]m ≤ ‖u‖W1,p

ΓD
(Ω)
.

This already implies ‖Ip‖L
(
W1,p

ΓD
(Ω),W−1,p

ΓD
(Ω)
) ≤ 1 and that Ip is compact as the concatenation

of a compact and a continuous operator. It remains to prove that Ip is one-to-one and has

dense range. The embedding W1,p
ΓD

(Ω) ↪−↪→ [Lp(Ω)]m is one-to-one, since ‖u‖[Lp(Ω)]m = 0 for

u ∈ W1,p
ΓD

(Ω) implies ∇u = 0 ∈ Lp(Ω;Cm×d) by definition of the weak derivative, so that

u = 0 in W1,p
ΓD

(Ω). Note that [C∞0 (Ω)]m is dense in [Lp(Ω)]m [W05, Lemma V.1.10]. Moreover,

〈〈Ipu, v〉〉W1,p′
ΓD

(Ω)
is equal to the anti-dual pairing between u ∈ [Lp(Ω)]m and v ∈ [Lp

′
(Ω)]m.

Hence, 〈〈Ipu, v〉〉W1,p′
ΓD

(Ω)
= 0 for any v ∈ [C∞0 (Ω)]m implies that u must be zero in [Lp(Ω)]m by

the Hahn-Banach theorem [W05, Korollar III.1.6]. In this case, u = 0 in W1,p
ΓD

(Ω) as well by the
above argument. Consequently, Ip is one-to-one.
To see that Ip has dense range, note first that W1,p′(Ω) is reflexive for p′ ∈ (1,∞) [AF03, 3.6

Theorem]. That is, also W1,p′

ΓD
(Ω) is reflexive as a closed subspace of a reflexive space [W05, Satz

III.3.4], so that we may identify
[
W−1,p

ΓD
(Ω)
]∗

=
[
W1,p′

ΓD
(Ω)
]∗∗

with W1,p′

ΓD
(Ω). This leads to the

representation

I∗p = Ip′ : W1,p′

ΓD
(Ω)→W−1,p′

ΓD
(Ω),

and also the adjoint operator I∗p of Ip is one-to-one. Now by [W05, Satz III.4.5], one has

ran(Ip) = (ker(I∗p ))⊥ = (ker(Ip′))⊥ = {0}⊥ = W−1,p
ΓD

(Ω),

which proves that Ip has dense range.
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Building up on the results of Lemma 2.10, we introduce elliptic operators Tp and Tp :

Definition 2.11. For a given coefficient function

T ∈ L∞(Ω;L(Cm × Cm×d,Cm × Cm×d))

and fixed p ∈ (1,∞), the operator Tp is defined by

Tp : W1,p
ΓD

(Ω)→W−1,p
ΓD

(Ω), Tp := J ∗p′TJp.

In particular, for u ∈W1,p
ΓD

(Ω) and v ∈W1,p′

ΓD
(Ω), Tpu acts on v as

〈〈Tpu, v〉〉W1,p′
ΓD

(Ω)
=

∫
Ω

T
(
u
∇u

)
:

(
v
∇v

)
dx and

〈Tpu, v〉W1,p′
ΓD

(Ω)
=

∫
Ω

T
(
u
∇u

)
:

(
v
∇v

)
dx,

where we denote

(
e1

E1

)
:

(
e2

E2

)
=

m∑
i=1

ei1e
i
2 +

m∑
j=1

d∑
k=1

Ejk1 Ejk2 ∀e1, e2 ∈ Cm,∀E1, E2 ∈ Cm×d.

We assume that T2 is elliptic, i.e. that there exists some ω > 0 such that for all v ∈ W1,2
ΓD

(Ω)
there holds the estimate

Re〈〈T2v, v〉〉W1,2
ΓD

(Ω)
≥ ω‖v‖2W1,2

ΓD
(Ω)
.

Since for p ∈ (1,∞), Tp corresponds to the restriction of the elliptic operator T2 to W1,p
ΓD

(Ω), we
call Tp elliptic. We define the unbounded operator

Tp := TpI−1
p : W−1,p

ΓD
(Ω)→W−1,p

ΓD
(Ω)

with dom(Tp) = ran(Ip) as its domain of definition, and also refer to this operator as elliptic.
The difference between Tp and Tp will become clear from the notation.

In the following remark, we introduce a representation of the matrix valued function T from
Definition 2.11 which will be helpful in the proof of Theorem 2.14. In particular, we write T
as a block diagonal matrix with four entries such that for u ∈ W1,p

ΓD
(Ω) and v ∈ W1,p′

ΓD
(Ω) the

expression 〈〈Tpu, v〉〉W1,p′
ΓD

(Ω)
separates into four terms which involve the pairings {u, v}, {∇u, v},

{u,∇v} and {∇u,∇v}.

Remark 2.12. The coefficient function T in Definition 2.11 can be represented in the form

T =

(
T11 T12Pm×d

P−1
m×dT21 P−1

m×dT22Pm×d

)
,

with matrix valued functions T11 ∈ L∞(Ω;Cm×m), T12 ∈ L∞(Ω;Cm×md), T21 ∈ L∞(Ω;Cmd×m)
and T22 ∈ L∞(Ω;Cmd×md). Written in this form (and omitting the dependence on x), the action
of T on (u,∇u)ᵀ is given by

T
(
u
∇u

)
=

(
T11 T12Pm×d

P−1
m×dT21 P−1

m×dT22Pm×d

)(
u
∇u

)
=

(
T11u+ T12Pm×d∇u

P−1
m×dT21u+ P−1

m×dT22Pm×d∇u

)
.
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Here, the mapping Pm×d : Cm×d → Cmd is defined by

(Pm×dE)j := E(b j−1
d c+1)(j−d·b j−1

d c) for 1 ≤ j ≤ md, ∀E1, E2 ∈ Cm×d.

Particularly, the entries of E are - row for row - written into a vector with md components.
Similarly P−1

m×d : Cmd → Cm×d is defined by

(P−1
m×de)kj := e(k−1)·d+j for 1 ≤ k ≤ m and 1 ≤ j ≤ d, ∀e1, e2 ∈ Cm.

Hence, the entries of e are - row for row - written into a Cm×d-matrix, starting with the first
row.

The following result is shown in [Hal+15, Theorem 6.2] and provides us the main tool to prove
resolvent estimates for Tp and Tp in Theorem 2.14 below:

Theorem 2.13. In the setting of Definition 2.9 let M be a set of coefficient functions as in
Definition 2.11 with a uniform upper L∞-bound c+ > 0 and a common lower bound ω for the
ellipticity constant of the corresponding operators. Then there exists an open interval JM with
2 ∈ JM such that for all p ∈ JM and all T ∈ M the corresponding operator Tp is a topological

isomorphism between W1,p
ΓD

(Ω) and W−1,p
ΓD

(Ω). Additionally, there exists a constant cM > 0 such

that for all p ∈ JM and f ∈W−1,p
ΓD

(Ω) the estimate

sup
T∈M

{
‖T −1

p f‖W1,p
ΓD

(Ω)

}
≤ cM‖f‖W−1,p

ΓD
(Ω)

holds.

2.2.2 Resolvent estimates for Tp

In the setting of Theorem 2.13, we prove resolvent estimates for the operators Tp. The proof
mainly follows the proof of [GR89, Theorem 2], which states the result for scalar valued function
spaces with regular domains. The latter is adapted in [Hal+15, Theorem 5.12] to apply for scalar
valued spaces with rough boundary. However, in the vectorial framework with rough boundary
we have to argue differently in several steps.

Theorem 2.14. In the setting of Definition 2.9 let M be a set of coefficient functions as in
Definition 2.11 with a uniform upper L∞-bound c+ > 0 and a common lower bound ω for the
ellipticity constant of the corresponding operators. Then there exists an open interval JM with
2 ∈ JM (in general smaller than the one in Theorem 2.13) such that for all p ∈ JM and all
T ∈ M, Tp is a densely defined and closed operator on W−1,p

ΓD
(Ω) which has compact resolvent.

Moreover, with C+ := {λ ∈ C : Re(λ) ≥ 0} there holds:

1. For all λ ∈ C+ and T ∈M, Tp+λIp is a continuous bijection from W1,p
ΓD

(Ω) onto W−1,p
ΓD

(Ω).

2. sup
T∈M, λ∈C+

‖(Tp + λIp)
−1‖
L
(
W−1,p

ΓD
(Ω),W1,p

ΓD
(Ω)
) <∞.

3. sup
T∈M, λ∈C+

‖λIp(Tp + λIp)
−1‖
L
(
W−1,p

ΓD
(Ω),W−1,p

ΓD
(Ω)
) <∞.

Proof. The proof is divided into two steps. First we show the statement for p ≥ 2 and afterwards
we deduce that the theorem holds for p < 2.
(I) p ≥ 2:
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Consider the interval JM from Theorem 2.13. Let first p ∈ JM be given with p ≥ 2. Moreover,
let T ∈M be arbitrary but fixed and recall the definition of the corresponding elliptic operator
Tp. W.l.o.g we assume ω

c+
< 1. For arbitrary but fixed λ ∈ C+ we define ρ := 1− ω

2c+
sgn(Imλ)i.

Note that |ρ| < 2. This and the definition of ρ will be important in Step I.i and Step I.ii.
The strategy of the proof is the following:
Steps I.i–I.ii show Statement 1 and that Tp is a densely defined and closed operator on W−1,p

ΓD
(Ω)

with compact resolvent. Compactness of Ip, see Lemma 2.10, will be crucial here.
In Step I.iii we add an artificial dimension to Rd and extend the domain Ω to Ω × (−1, 1).
Moreover, we introduce extensions for functions from W1,p

ΓD
(Ω) by multiplication with Ψ times

an exponential term which includes ρ, where Ψ is an appropriate smooth function which has
compact support in (−1, 1). We also define the restriction of a function of the extended domain
by multiplying Ψ times the exponential term as above and integrating over (−1, 1). Then we
estimate the norm of those new functions against the norm of the old functions. We also extend
the matrix T to a new matrix Tλ and obtain an elliptic operator Tλ,p, which now acts on the
extended function space. The strategy is to show that Theorem 2.13 holds for Tλ,p independently
of λ and to use this knowledge in order to prove Statement 2 of this theorem. Partial integration
and the correct choice of the extended and the restricted functions are crucial here.
In Step I.iv we conclude from Statement 2 that Statement 3 holds for p ≥ 2.
(I.i) Tp + λIp is one-to-one:

We show that T2 +λI2 : W1,2
ΓD

(Ω)→W−1,2
ΓD

(Ω) is one-to-one. For arbitrary u ∈W1,2
ΓD

(Ω), we first
observe |ρ| < 2, then insert ρ = 1− ω

2c+
sgn(Imλ)i and apply the estimates Reλ ≥ 0, ω

2c+
< 1 and

ω

2c+

∣∣∣∣Im〈T2u, u〉W1,2
ΓD

(Ω)

∣∣∣∣ ≤ ω

2
‖u‖2W1,2

ΓD
(Ω)
,

as well as ellipticity of T2 to compute:

2‖T2u+ λI2u‖W−1,2
ΓD

(Ω)
‖u‖W1,2

ΓD
(Ω)

≥2

∣∣∣∣〈T2u+ λI2u, u〉W1,2
ΓD

(Ω)

∣∣∣∣ ≥ |ρ|∣∣∣∣〈T2u+ λI2u, u〉W1,2
ΓD

(Ω)

∣∣∣∣
=

√∣∣∣∣Re

(
ρ〈T2u+ λI2u, u〉W1,2

ΓD
(Ω)

)∣∣∣∣2 +

∣∣∣∣Im(ρ〈T2u+ λI2u, u〉W1,2
ΓD

(Ω)

)∣∣∣∣2
≥Re

(
ρ〈T2u+ λI2u, u〉W1,2

ΓD
(Ω)

)
≥Re〈T2u, u〉W1,2

ΓD
(Ω)
− ω

2c+

∣∣∣∣Im〈T2u, u〉W1,2
ΓD

(Ω)

∣∣∣∣+ ‖u‖2[L2(Ω)]mReλ

+
ω

2c+
|Imλ|‖u‖2[L2(Ω)]m ≥

ω

2

(
‖u‖2W1,2

ΓD
(Ω)

+
|λ|
c+
‖u‖2[L2(Ω)]m

)
.

This shows

‖u‖W1,2
ΓD

(Ω)
≤ 4

ω
‖T2u+ λI2u‖W−1,2

ΓD
(Ω)
, (2.1)

which implies that T2 + λI2 : W1,2
ΓD

(Ω)→W−1,2
ΓD

(Ω) is one-to-one. Moreover, we obtain

Re

(
ρ〈T2u, u〉W1,2

ΓD
(Ω)

)
≥ ω

2
‖u‖2W1,2

ΓD
(Ω)
. (2.2)

We will need this estimate in Step I.iii below. Since Tp + λIp is the restriction of T2 + λI2, we
conclude that Tp + λIp is one-to-one.
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(II.ii) Tp is densely defined and closed with compact resolvent and Tp + λIp is surjective:
We show that Tp is densely defined and closed with compact resolvent. This yields us surjectivity

of Tp + λIp : W1,p
ΓD

(Ω)→W−1,p
ΓD

(Ω).

Theorem 2.13 entails that T −1
p : W−1,p

ΓD
(Ω) → W1,p

ΓD
(Ω) is continuous with norm less or equal

than cM. Since Ip is compact by Lemma 2.10, also T−1
p = IpT −1

p : W−1,p
ΓD

(Ω) → W−1,p
ΓD

(Ω) is
compact. In particular, the resolvent set ρ(Tp) contains zero. Tp is densely defined because

dom(Tp) = ran(Ip) which is a dense subset of W−1,p
ΓD

(Ω), see Lemma 2.10. To see that Tp is

closed, let (un)n∈N ⊂ dom(Tp) and v ∈ W−1,p
ΓD

(Ω) be given such that un → v with n → ∞. Let

further Tpun → y with n→∞ for some y ∈W−1,p
ΓD

(Ω). By continuity of T −1
p there holds

I−1
p un = T −1

p TpI−1
p un = T −1

p Tpun → T −1
p y in W1,p

ΓD
(Ω) with n→∞.

Because Ip is continuous, we deduce un → IpT −1
p y in W−1,p

ΓD
(Ω) with n → ∞ which yields us

v = IpT −1
p y ∈ ran(Ip) = dom(Tp). We also conclude

Tpv = TpI−1
p IpT −1

p y = y,

which implies the closedness of Tp. Hence. Tp is densely defined, closed with 0 ∈ ρ(Tp) and T−1
p

is compact. [Kat80, Chp.3, Theorem 6.2.9] yields that the spectrum of Tp exclusively consists of
isolated eigenvalues with finite multiplicities and that Tp has compact resolvent. Consequently,

Tp + λIp : W1,p
ΓD

(Ω)→W−1,p
ΓD

(Ω) can only fail to be surjective if λ is an eigenvalue of −Tp. But
because T2 is the restriction of Tp, this would imply that λ is also an eigenvalue of −T2. This
cannot be the case since T2 + λ = (T2 + λI2)I−1

2 and because T2 + λI2 is one-to-one by (2.1).
Note that Steps I.i–I.ii prove Statement 1 for the case p ≥ 2.
(I.iii) Statement 2 holds for p ≥ 2:
As in the proof of [Hal+15, Theorem 5.12], consider the extended domain Ω̃ := Ω × (−1, 1).
For 1 ≤ j ≤ m we define the extended open Neumann boundary part as the open set Γ̃Nj :=
ΓNj × (−1, 1) and the corresponding Dirichlet boundary part

Γ̃ΓDj
:= ∂Ω̃\Γ̃Nj = (Ω× {−1, 1}) ∪ (ΓΓDj

× (−1, 1)) = (Ω× {−1, 1}) ∪ (ΓΓDj
× [−1, 1]).

Note that Ω̃ is a (d+ 1)-set and that each Γ̃ΓDj
is a d-set which still satisfies Assumption 2.6.

With a little abuse of notation we write Jp for the same operator as in Definition 2.9, now

defined from W1,p

Γ̃D
(Ω̃) to Lp(Ω̃;Cm×Cm×(d+1)). According to Definition 2.11 and Remark 2.12,

we consider the fixed value λ ∈ C+ from the beginning of Step I and define the extended operator

Tλ,p : W1,p

Γ̃D
(Ω̃)→W−1,p

Γ̃D
(Ω̃), Tλ,p := J ∗p′TλJp,

where the coefficient function Tλ ∈ L∞(Ω̃,L(Cm × Cm×(d+1),Cm × Cm×(d+1))) takes the form

Tλ =

(
Tλ,11 Tλ,12Pm×(d+1)

P−1
m×(d+1)Tλ,21 P−1

m×(d+1)Tλ,22Pm×(d+1)

)
.

For the definition of the single components Tλ,ij , i, j ∈ {1, 2}, remember the definition of the
parameter ρ = 1 − ω

2c+
sgn(Imλ)i. Then for a.e. x̃ := (x, t) ∈ Ω̃, the components of Tλ are
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defined by

Tλ,11(x̃) := ρT11(x),

(Tλ,12)kj(x̃) :=

{
ρ(T12)k(j−b j

d+1c)(x) if jmod (d+ 1) 6= 0,

0 else,

(Tλ,21)kj(x̃) :=

{
ρ(T12)(k−b k

d+1c)j(x) if kmod (d+ 1) 6= 0,

0 else
and

(Tλ,22)kj(x̃) :=
ρ(T22)(k−b k

d+1c)(j−b j
d+1c)(x) if kmod (d+ 1), jmod (d+ 1) 6= 0,

0, if kmod (d+ 1) = 0, xor jmod (d+ 1) = 0,
λ
|λ|(c+ − ω

2 sgn(Im(λ))i) if kmod (d+ 1) = jmod (d+ 1) = 0 and k = j,

0 else.

Note that c+ρλ
|λ| = λ

|λ|
(
c+ − ω

2 sgn(Im(λ))i
)
. By this choice of Tλ, Tλ,p essentially acts as ρTp.

The new spatial variable t is only influenced by the diffusive part

J ∗p′

(
0 0

0 P−1
m×(d+1)Tλ,22Pm×(d+1)

)
Jp

of Tλ,p and in such a way that derivatives in t are not mixed with derivatives in the variables

x1, . . . , xd. More precisely, for ũ ∈W1,p

Γ̃D
(Ω̃) and ṽ ∈W1,p′

Γ̃D
(Ω̃) there holds

〈〈Tλ,pũ, ṽ〉〉W1,p′
Γ̃D

(Ω̃)
=

∫ 1

−1

∫
Ω

Tλ
(
ũ
∇ũ

)
:

(
ṽ
∇ṽ

)
dxdt

=

1∫
−1

∫
Ω

ρ [T11ũ+ T12Pm×d∇xũ] · ṽ

+
m∑
j=1

d∑
k=1

ρ
[(
P−1
m×dT21ũ

)
jk

+
(
P−1
m×dT22Pm×d∇xũ

)
jk

]
(∇xṽj)k

+
c+ρλ

|λ|

m∑
j=1

∂ũj
∂t

∂ṽj
∂t

dxdt

=

1∫
−1

ρ

∫
Ω

[
T
(

ũ
∇xũ

)]
:

(
ṽ
∇xṽ

)
dx+

m∑
j=1

∫
Ω

c+ρλ

|λ|
∂ũj
∂t

∂ṽj
∂t

dxdt

=

1∫
−1

ρ〈〈Tp[ũ(·, t)], ṽ(·, t)〉〉W1,p′
ΓD

(Ω)
+

m∑
j=1

∫
Ω

c+ρλ

|λ|
∂ũj
∂t

∂ṽj
∂t

dxdt.

Remember that the norm of ρT is bounded by |ρ|c+ < 2c+. Hence, the norm of Tλ in
L∞(Ω̃,L(Cm × Cm×(d+1),Cm × Cm×(d+1))) is bounded by 2c+, i.e. independently of λ.
We show that Tλ,2 is elliptic with an ellipticity constant which is independent of λ. To this aim,

let ṽ ∈W1,2

Γ̃D
(Ω̃) be given. There holds

Re〈〈Tλ,2ṽ, ṽ〉〉W1,2

Γ̃D
(Ω̃)

=

1∫
−1

Re

(
ρ〈〈Tp[ṽ(·, t)], ṽ(·, t)〉〉W1,p′

ΓD
(Ω)

)
+

m∑
j=1

∫
Ω

Re

(
c+ρλ

|λ|

) ∣∣∣∣∂ṽi∂t
∣∣∣∣2 dxdt.
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For a.e. t ∈ (−1, 1), we apply (2.2) to the first integrand and estimate

ω

2
‖ṽ(., t)‖2W1,2

ΓD
(Ω)
≤ Re

(
ρ〈〈Tp[ṽ(·, t)], ṽ(·, t)〉〉W1,2

ΓD
(Ω)

)
.

Moreover, since we assumed ω
2 ≤ c+ in the beginning of Step I, there holds

ω

2
≤ ω

2

(
Re(λ)

|λ|
+
|Im(λ)|
|λ|

)
≤
(

Re(λ)

|λ|
c+ +

ω|Im(λ)|
2|λ|

)
= Re

(
c+ρλ

|λ|

)
.

Hence, we deduce uniform ellipticity of Tλ,2 from

Re〈〈Tλ,2ṽ, ṽ〉〉W1,2

Γ̃D
(Ω̃)
≥
∫ 1

−1

ω

2
‖ṽ(., t)‖2W1,2

ΓD
(Ω)

+
ω

2

m∑
j=1

∫
Ω

∣∣∣∣∂ṽi∂t
∣∣∣∣2 dxdt =

ω

2
‖ṽ‖2W1,2

Γ̃D
(Ω̃)
.

Consequently, we can apply Theorem 2.13 to the set of coefficient matrices M̃ := {Tλ : T ∈
M, λ ∈ C+}. Note that JM̃ ⊂ JM because the uniform upper bound 2c+ of M̃ is larger than c+

and the uniform ellipticity constant ω
2 ofM is smaller than ω. We assume w.l.o.g. that JM̃ is of

the form (p′0, p0) for some p0 > 2. Theorem 2.13 implies that Tλ,p is a topological isomorphism

between W1,p

Γ̃D
(Ω̃) and W−1,p

Γ̃D
(Ω̃) and that the operator norm of T −1

λ,p is bounded by a constant

cM̃ which is independent of Tλ ∈ M̃ . Let ψ ∈ C∞0 (−1, 1) be arbitrary with 0 ≤ ψ ≤ 1 and

ψ(t) = 1 for t ∈
[
−1

2 ,
1
2

]
. We introduce the constant µ :=

√
|λ|
c+

. There holds

ρλ

µ2
=

λ

|λ|

(
c+ −

ω

2
sgn(Im(λ))i

)
.

For p ∈ [2,∞) ∩ JM̃ and arbitrary u ∈W1,p
ΓD

(Ω) consider the extension

ũ(x̃) := u(x)ψ(t) exp(iµt).

Note that ũ ∈W1,p

Γ̃D
(Ω̃). Moreover, we can estimate

‖ũ‖p
W1,p

Γ̃D
(Ω̃)
≥

1/2∫
−1/2

∫
Ω

[(
u(x)
∇u(x)

)
:

(
u(x)
∇u(x)

)] p2
dxdt = ‖u‖p

W1,p
ΓD

(Ω)
. (2.3)

For arbitrary ṽ ∈W1,p′

Γ̃D
(Ω̃) we define the restriction v ∈W1,p′

ΓD
(Ω) as

v(x) :=

1∫
−1

ṽ(x, t)ψ(t) exp(iµt)dt.

Note that

‖v‖p
′

W1,p′
ΓD

(Ω)
=

∫
Ω

[(
v(x)
∇v(x)

)
:

(
v(x)
∇v(x)

)] p′2
dx ≤

∫
Ω


 1∫
−1

|ṽ(x, t)||ψ(t) exp(iµt)|dt

2

+
m∑
j=1

d∑
k=1

 1∫
−1

|(∇xṽj(x, t))k| |ψ(t) exp(iµt)|dt

2

p′
2

dx.

15



Hence, |ψ(t) exp(iµt)| ≤ 1 and Hölder’s inequality for the integration in t yields

‖v‖p
′

W1,p′
ΓD

(Ω)
≤
∫
Ω

2

1∫
−1

|ṽ(x, t)|2 +
m∑
j=1

d∑
k=1

|(∇xṽj(x, t))k|2 dt


p′
2

dx = 2p
′/2‖ṽ‖p

′

W1,p′
Γ̃D

(Ω̃)
.

This shows

‖v‖W1,p′
ΓD

(Ω)
≤ 2

p′
2p′ ‖ṽ‖W1,p′

Γ̃D
(Ω̃)

=
√

2‖ṽ‖W1,p′
Γ̃D

(Ω̃)
. (2.4)

We want to exploit ellipticity of Tλ,p to show Statement 2 of the theorem. To do this, we derive
a relation between Tλ,p and Tp + λIp. Consider the expression

〈Tλ,pũ, ṽ〉W1,p′
Γ̃D

(Ω̃)
= ρ

∫ 1

−1
〈Tpũ(·, t), ṽ(·, t)〉W1,p′

ΓD
(Ω)
dt+

ρλ

µ2

∫
Ω̃
∂tũ · ∂tṽdx̃ =: K + L. (2.5)

By definition of ũ(x̃) := u(x)ψ(t) exp(iµt) and v(x) :=
1∫
−1

ṽ(x, t)ψ(t) exp(iµt)dt there holds

K = ρ

∫ 1

−1
〈Tpũ(·, t), ṽ(·, t)〉W1,p′

ΓD
(Ω)
dt = ρ〈Tpu, v〉W1,p′

ΓD
(Ω)
. (2.6)

For L we compute

L =
ρλ

µ2

∫
Ω̃
∂tũ · ∂tṽdx̃ =

ρλ

µ2

∫
Ω̃
u(x)exp(iµt)[ψ′(t) + iµψ(t)] · ∂tṽ(x, t)dx̃ =: L1 + L2. (2.7)

Partial integration of L2 in t yields

L2 =
ρλ

µ2

∫
Ω̃
iµũ · ∂tṽdx̃ = −ρλ

µ2

∫
Ω̃

[exp(iµt)iµψ(t)]′u(x) · ṽ(x, t)dx̃

= −ρλ
µ2

∫
Ω̃

exp(iµt)iµ[iµψ(t) + ψ′(t)]u(x) · ṽ(x, t)dx̃ =: L2,1 + L2,2.

(2.8)

Again by definition of ũ and v we obtain

L2,1 = ρλ

∫
Ω̃

exp(iµt)ψ(t)u(x) · ṽ(x, t)dx̃ = ρ〈λIpu, v〉W1,p′
ΓD

(Ω)
. (2.9)

Another partial integration of L2,2 in t yields

L2,2 =
ρλ

µ2

∫
Ω̃

exp(iµt)u(x) · ∂t[ψ′(t)ṽ(x, t)]dx̃

=
ρλ

µ2

∫
Ω̃

exp(iµt)u(x) · [ψ′(t)∂tṽ(x, t) + ψ′′(t)ṽ(x, t)]dx̃ =: L2,2,1 + L2,2,2.

(2.10)

Note that L2,2,1 = L1 = ρλ
µ2

∫
Ω̃ u(x)exp(iµt)ψ′(t) · ∂tṽ(x, t)dx̃ by (2.7). This together with the

representations (2.6)–(2.10) implies that we can rewrite (2.5) as

〈Tλ,pũ, ṽ〉W1,p′
Γ̃D

(Ω̃)
= K + L = (K + L2,1) + (L1 + L2,2,1) + L2,2,2

= ρ

〈Tpu+ λIpu, v〉W1,p′
ΓD

(Ω)
+

λ

µ2

∫
Ω

u ·
1∫
−1

exp(iµt)

[
2ψ′(t)

∂ṽ

∂t
+ ψ′′(t)ṽ

]
dtdx

 .
(2.11)
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We estimate (2.11) from above. Note that |exp(iµt)| ≤ 1,
∣∣ρλ
µ2

∣∣ ≤ 2c+, ψ ∈ C∞0 (−1, 1) and

|ρ| ≤ 2. Moreover, remember (2.4). Hence, there exist constants c1, c2 > 0 which do not depend
on λ and T ∈M such that∣∣∣∣〈Tλ,pũ, ṽ〉W1,p′

Γ̃D
(Ω̃)

∣∣∣∣
≤
∣∣∣∣ρ〈Tpu+ λIpu, v〉W1,p′

ΓD
(Ω)

∣∣∣∣+ c1‖u‖[Lp(Ω)]m‖ṽ‖W1,p′
Γ̃D

(Ω̃)

≤ 2
√

2‖Tpu+ λIpu‖W−1,p
ΓD

(Ω)
‖ṽ‖W1,p′

ΓD
(Ω)

+ c1‖u‖[Lp(Ω)]m‖ṽ‖W1,p′
Γ̃D

(Ω̃)

≤ c2

[
‖Tpu+ λIpu‖W−1,p

ΓD
(Ω)

+ ‖u‖[Lp(Ω)]m

]
‖ṽ‖W1,p′

Γ̃D
(Ω̃)
.

Since ṽ ∈W1,p′

Γ̃D
(Ω̃) was arbitrary, we conclude

‖Tλ,pũ‖W−1,p

Γ̃D
(Ω̃)
≤ c2

[
‖Tpu+ λIpu‖W−1,p

ΓD
(Ω)

+ ‖u‖[Lp(Ω)]m

]
. (2.12)

From (2.3) we know ‖u‖W1,p
ΓD

(Ω)
≤ ‖ũ‖W1,p

Γ̃D
(Ω̃)

and Theorem 2.13 implies

‖ũ‖W1,p

Γ̃D
(Ω̃)
≤ cM̃‖Tλ,pũ‖W−1,p

Γ̃D
(Ω̃)

for all Tλ ∈ M̃.

Consequently, we conclude from (2.12) that

‖u‖W1,p
ΓD

(Ω)
≤ c3

[
‖Tpu+ λIpu‖W−1,p

ΓD
(Ω)

+ ‖u‖[Lp(Ω)]m

]
(2.13)

for some c3 > 0 which is independent of λ ∈ C+ and T ∈ M. Remark 2.7 and p ≥ 2 imply the
embeddings W1,p

ΓD
(Ω) ↪−↪→ [Lp(Ω)]m ↪→ [L2(Ω)]m. [Nec12, Lemma 2.6.1] (see also [GR89, p. 111])

entails for each ε > 0 the existence of a constant c(ε) > 0 such that

‖u‖[Lp(Ω)]m ≤ ε‖u‖W1,p
ΓD

(Ω)
+ c(ε)‖u‖[L2(Ω)]m ∀u ∈ [Lp(Ω)]m.

For ε < 1, this estimate in (2.13) yields some c4 > 0 with

‖u‖W1,p
ΓD

(Ω)
≤ c4

[
‖Tpu+ λIpu‖W−1,p

ΓD
(Ω)

+ ‖u‖[L2(Ω)]m

]
. (2.14)

Recall that ‖u‖[L2(Ω)]m ≤ ‖u‖W1,2
ΓD

(Ω)
≤ 4

ω‖T2u+λI2u‖W−1,2
ΓD

(Ω)
by (2.1). Moreover, p ≥ 2 implies

‖T2u + λI2u‖W−1,2
ΓD

(Ω)
≤ ‖Tpu + λIpu‖W−1,p

ΓD
(Ω)

. Both estimates applied in (2.14) finally yield us

some c5 > 0 with

‖u‖W1,p
ΓD

(Ω)
≤ c5‖Tpu+ λIpu‖W−1,p

ΓD
(Ω)
. (2.15)

Statement 1 for p ≥ 2 has been shown in Steps I.i–I.ii. Hence, we can replace u in (2.15) by
u = (Tp + λIp)

−1v for some v ∈ W−1,p
ΓD

(Ω), and (2.15) shows Statement 2 for p ≥ 2, since c5 is
independent of λ ∈ C+ and T ∈M.
(I.iv) Statement 3 of the theorem holds for p ≥ 2:
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For any v ∈W−1,p
ΓD

(Ω) and u = (Tp + λIp)
−1v, (2.15) implies

‖λIp(Tp + λIp)
−1v‖W−1,p

ΓD
(Ω)

= ‖λIpu‖W−1,p
ΓD

(Ω)

≤ ‖Tpu+ λIpu‖W−1,p
ΓD

(Ω)
+ ‖Tpu‖W−1,p

ΓD
(Ω)

≤ ‖Tpu+ λIpu‖W−1,p
ΓD

(Ω)
+ c+‖u‖W1,p

ΓD
(Ω)

≤ ‖v‖W−1,p
ΓD

(Ω)
+ c+c5‖v‖W−1,p

ΓD
(Ω)

= (1 + c+c5)‖v‖W−1,p
ΓD

(Ω)
.

(II) p < 2:
We deduce the statements for p < 2 from those for p ≥ 2. W.l.o.g. JM̃ in Step I was of the form

(p′0, p0). Hence, for each p ∈ JM̃ ∩ (−∞, 2) also p′ > 2 is contained in JM̃. Because W1,p′

ΓD
(Ω)

and W−1,p
ΓD

(Ω) are reflexive, one has

(Tp + λIp)
∗ = (T ∗p + λIp′) : W1,p′

ΓD
(Ω)→W−1,p′

ΓD
(Ω) = [W1,p

ΓD
(Ω)]∗.

By [W05, Satz III.4.2], T ∗p has the same operator norm as Tp. Hence, Theorem 2.14 can be

applied to T ∗p + λIp′ because p′ > 2. Let v ∈W1,p
ΓD

(Ω), u ∈W−1,p′

ΓD
(Ω) and λ ∈ C+ be arbitrary.

There holds

〈u, v〉W1,p
ΓD

(Ω)
= 〈(T ∗p + λIp′)(T ∗p + λIp′)

−1u, v〉W1,p
ΓD

(Ω)

= 〈u, (T ∗p + λIp′)
−1∗(Tp + λIp)v〉W1,p

ΓD
(Ω)
.

By a corollary of the Hahn Banach Theorem [W05, Korollar III.1.6] it follows

v = (T ∗p + λIp′)
−1∗(Tp + λIp)v,

so that Tp + λIp is one-to-one. Consequently, λ is no eigenvalue of −Tp = −TpI−1
p : ran(Ip) →

W−1,p
ΓD

(Ω). Tp is closed and T−1
p is compact by the same reasoning as in Step I.ii. We conclude

that the spectrum of −Tp consists only of eigenvalues so that λ ∈ ρ(−Tp). This implies that
Tp + λ is surjective. Because (Tp + λIp)I

−1
p = (Tp + λ), also (Tp + λIp) is surjective and hence

bijective. Since Tp + λIp is bounded and bijective, a corollary of the open mapping theorem,
[W05, Korollar IV.3.4], yields that also (Tp + λIp)

−1 is bounded which implies Statement 1 of
the theorem.
For Statement 2, note that (Tp+λIp)−1 = (T ∗p +λIp′)

−1∗ and that (T ∗p +λIp)
−1∗ and (T ∗p +λIp′)

−1

have the same operator norm. Statement 2 of the theorem holds for p′ ≥ 2. This implies that
the norm of (T ∗p + λIp′)

−1 is bounded by a constant which is independent of λ and T ∈ M.
Consequently, Statement 2 holds also for p < 2. Statement 3 follows analogous to the case
p ≥ 2.

Remark 2.15. If the coefficient matrices T ∈M of Tp are real-valued then Theorem 2.14 carries

over to real valued spaces W1,p
ΓD

(Ω) [cf. Hal+15, 7. Applications]. To see this, we compute for

arbitrary real valued u ∈W1,p
ΓD

(Ω), v ∈W1,p′

ΓD
(Ω) and λ ∈ C+:

〈(Tp + λIp)u, v〉W1,p′
ΓD

(Ω)
=

∫
Ω

[
T(x)

(
u(x)
∇u(x)

)]
:

(
v(x)
∇v(x)

)
+ λu(x)v(x)dx

= 〈(Tp + λIp)u, v〉W1,p′
ΓD

(Ω)
.
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For λ ∈ R+, this implies

〈(Tp + λIp)u, v〉W1,p′
ΓD

(Ω)
= 〈(Tp + λIp)u, v〉W1,p′

ΓD
(Ω)
∈ R.

Similarly, if Im(u) 6= 0 but v is real valued and λ ∈ R+, then

〈(Tp + λIp)u, v〉W1,p′
ΓD

(Ω)
= 〈(Tp + λIp)u, v〉W1,p′

ΓD
(Ω)

and

2Im〈(Tp + λIp)u, v〉W1,p′
ΓD

(Ω)
= 〈(Tp + λIp)u, v〉W1,p′

ΓD
(Ω)
− 〈(Tp + λIp)u, v〉W1,p′

ΓD
(Ω)

= 〈(Tp + λIp)(u− u), v〉W1,p′
ΓD

(Ω)
.

But then Im〈(Tp + λIp)u, v〉W1,p′
ΓD

(Ω)
= 0 does not hold for all v ∈ W1,p′

ΓD
(Ω), since Tp + λIp is

one-to-one and u − u is not the zero function. This implies that if ũ is contained in the real

valued dual space W−1,p
ΓD

(Ω) of W1,p′

ΓD
(Ω), i.e. if 〈ũ, v〉W1,p′

ΓD
(Ω)
∈ R for all real valued v ∈W1,p′

ΓD
(Ω),

then u := (Tp + λIp)
−1ũ ∈ W1,p

ΓD
(Ω) must be real valued to, since otherwise there exists some

real valued v ∈W1,p′

ΓD
(Ω) such that

0 = 2Im〈ũ, v〉W1,p′
ΓD

(Ω)
= 2Im〈(Tp + λIp)u, v〉W1,p′

ΓD
(Ω)
6= 0.

2.2.3 Diffusion operators

In this subsection, we define an important sub-category of elliptic operators as introduced in
Definition 2.11, which are diffusion operators. In particular, we specialize on diffusion operators
which have a diagonal, positive definite diffusion matrix. Those are considered throughout
[Mün17a] and [Mün17b]. All spaces in this subsection are assumed to be real valued. Before we
introduce diffusion operators in Definition 2.17, we define an operator similar to Jp and recall
Ip from Definition 2.9.

Definition 2.16. [Mün17a, Definition 2.8] With Assumption 2.2 and Assumption 2.6 and p ∈
(1,∞) we define the operators

Lp : W1,p
ΓD

(Ω)→ Lp(Ω,Rmd), Lp(u) := vec(∇u) = (∇u1, . . . ,∇um)ᵀ

and

Ip : W1,p
ΓD

(Ω)→W−1,p
ΓD

(Ω), 〈Ipu, v〉W1,p′
ΓD

(Ω)
:=

∫
Ω
u · v dx ∀v ∈W1,p′

ΓD
(Ω).

We introduce diffusion operators Ap as a sub-category of general elliptic operators Tp from
Definition 2.11:

Definition 2.17. [Mün17a, Definition 2.9] Let the constants d1, . . . , dm > 0 be given diffusion
coefficients and

D = diag(d1, . . . , d1, . . . , dm, . . . , dm) ∈ Rmd×md.

For p ∈ (1,∞) we set
Ap : W1,p

ΓD
(Ω)→W−1,p

ΓD
(Ω), Ap := L∗p′DLp.

We define the unbounded operator

Ap : W−1,p
ΓD

(Ω)→W−1,p
ΓD

(Ω), Ap := ApI−1
p

with domain
dom(Ap) = ran (Ip) ⊂W−1,p

ΓD
(Ω).
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Remark 2.18. Note first that Lp(u) in Definition 2.16 is nothing else than Pm×d∇u with Pm×d
from Remark 2.12. The relation between Ap in Definition 2.17 and Tp in Definition 2.11 is given
by Ap = L∗p′DLp = J ∗p′TJp = Tp, where T is represented as in Remark 2.12 by

T =

(
T11 T12Pm×d

P−1
m×dT21 P−1

m×dT22Pm×d

)
,

with T11 = 0 ∈ Rm×m, T12 = 0 ∈ Rm×md, T21 = 0 ∈ Rmd×m and T22 = D ∈ Rmd×md.
Note that Ap is not necessarily an elliptic operator in the sense of Definition 2.11. However,
Ap + 1 = (Ap + Ip)I

−1
p is elliptic. The corresponding coefficient matrices of Ap + Ip are obtained

by replacing T11 = 0 ∈ Rm×m by the identity matrix T̃11 = Id ∈ Rm×m. By Remark 2.12, for
the new coefficient matrices T̃ij , 1 ≤ i, j ≤ 2, which define T̃, and for the corresponding elliptic
operator T̃p there holds Ap + Ip = T̃p.

As a corollary of Theorem 2.14 we can prove the main statement of [Mün17a, Theorem 2.10],
cf. also [Hal+15, Theorem 5.12]:

Corollary 2.19. [Mün17a, Theorem 2.10] In the setting of Definition 2.16 and Definition 2.17
there exists an open interval J around 2 such that for all p ∈ J the operator Ap + Ip is a

topological isomorphism between W1,p
ΓD

(Ω) and W−1,p
ΓD

(Ω).
There is a constant c > 0 such that for all p ∈ J and λ ∈ C+ there holds the resolvent estimate

‖(Ap + 1 + λ)−1‖
L
(
W−1,p

ΓD
(Ω)
) ≤ c

1 + |λ|
.

Moreover, −Ap generates an analytic semigroup of operators on W−1,p
ΓD

(Ω).

Remark 2.20. In [Hal+15, Theorem 5.12], the corresponding statements are shown for the
scalar case, but with a non-constant coefficient matrix µ ∈ L∞(Ω;Cd×d) which defines an elliptic
operator∇·µ∇. The generalization to the vectorial setting is straight forward since Theorem 2.14
holds for non-constant coefficient matrices. We maintain the diffusion matrix in Definition 2.17
constant and diagonal because the main challenge in the analysis of reaction-diffusion systems
of this work is due to the hysteresis operator in the reaction term. Note however that most of
the results which hold for Ap can be generalized to the case of non-constant diffusion-matrices.

Proof of Corollary 2.19. By Remark 2.18, Ap + 1 is bounded and elliptic with

Ap + 1 = (Ap + Ip)I
−1
p = T̃pI−1

p ,

where T̃p is an elliptic operator. Hence, we can apply Theorem 2.14 to Ap + 1. We write

(1 + |λ|)‖(Ap + 1 + λ)−1‖
L
(
W−1,p

ΓD
(Ω)
)

= ‖(Ap + 1 + λ)−1‖
L
(
W−1,p

ΓD
(Ω)
) + |λ|‖(Ap + 1 + λ)−1‖

L
(
W−1,p

ΓD
(Ω)
).

The second term is finite by Statement 3 of Theorem 2.14. For the first term, note that

‖(Ap + 1 + λ)−1‖
L
(
W−1,p

ΓD
(Ω)
) = ‖Ip(T̃p + λIp)

−1‖
L
(
W−1,p

ΓD
(Ω)
)

≤ ‖Ip‖L
(
W1,p

ΓD
(Ω),W−1,p

ΓD
(Ω)
)‖(T̃p + λIp)

−1‖
L
(
W−1,p

ΓD
(Ω),W1,p

ΓD
(Ω)
) <∞

by Lemma 2.10 and Statement 2 of Theorem 2.14. This yields the required resolvent estimate.
The last statement of the theorem follows from Theorem 2.22 below. In fact, by Theorem 2.22,
−Tp = −(Ap + 1) generates an analytic semigroup exp(−(Ap + 1)t), t ≥ 0, of operators on

W−1,p
ΓD

(Ω). But then −Ap generates the semigroup exp(−(Ap + 1)t) exp(t) = exp(−Apt), t ≥
0.
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2.2.4 Generators of analytic semigroups of operators

In this subsection, we give a brief introduction into the theory of sectorial operators and semi-
groups of operators. We do not go into detail in many parts, but refer to the literature, see for
example [Paz83; Lun95; Hen81] to only name a few.
The motivation for this subsection is to get some insight into the connection between resolvent
estimates like in Theorem 2.14 and the property of an operator to be the generator of an analytic
semigroup of operators. The latter provides a powerful tool when it comes to the theory of non-
linear operator evolution equations.
We begin with defining what we mean by a semigroup of operators and its generator:

Definition 2.21. [Cf. Paz83, Definition 1.1.1, Definition 1.2.1] and [Hen81, Definition 1.3.3].
Let X be a Banach space. We call a family of bounded and linear operators {T (t)}t≥0 on X a
semigroup of bounded linear operators if

T (0) = Id and

T (s)T (t) = T (s+ t) for s, t ≥ 0.

We call {T (t)}t≥0 a strongly continuous semigroup or C0-semigroup of bounded linear operators
on X if in addition T (t)u→ u with t ↓ 0 for all u ∈ X.
A C0-semigroup {T (t)}t≥0 on X is called (real) analytic, if t 7→ T (t)u is real analytic on (0,∞)
for each u ∈ X.
We call A the infinitesimal generator of a semigroup of bounded linear operators {T (t)}t≥0 if

Au = lim
t↓0

1

t
(T (t)u− u)

for all u ∈ X, for which the limit exists, and if dom(A) is equal to the set of those u. We also
write T (t) = exp(At) in this case.

Theorem 2.22. Adopt the notation and the assumptions from Theorem 2.14 and for p ∈ JM
let Tp be the elliptic operator which corresponds to a coefficient matrix T ∈M. Then there exists
some δ ∈ (0, π2 ) such that

ρ(−Tp) ⊃ Σ =
{
λ : |argλ| < π

2
+ δ
}
∪ {0}, (2.16)

and there exists some C1 > 0 with

‖(−Tp − λ)−1‖
L
(
W−1,p

ΓD
(Ω)
) ≤ C1

|λ|
(2.17)

for all λ ∈ Σ\{0}. Moreover, −Tp is the generator of an analytic semigroup of operators

exp(−Tpt), t ≥ 0, on W−1,p
ΓD

(Ω) in the sense of Definition 2.21. exp(−Tpt) is uniformly bounded,
i.e. for some C2 > 0 and for all t ≥ 0,

‖exp(−Tpt)‖L
(
W−1,p

ΓD
(Ω)
) ≤ C2. (2.18)

exp(−Tpt) is differentiable for t > 0 and there exists some C3 > 0 with∥∥∥∥ ddt exp(−Tpt)
∥∥∥∥
L
(
W−1,p

ΓD
(Ω)
) = ‖(−Tp exp(−Tpt)‖L

(
W−1,p

ΓD
(Ω)
) ≤ C3

t
. (2.19)
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Proof. We want to apply [Paz83, Theorem 2.5.2], which states several properties of an un-
bounded, closed and densely defined operator A on a Banach space X which are equivalent to
the fact that A generates an analytic semigroup T (t), t ≥ 0. We adapt the notation in [Paz83,
Theorem 2.5.2] to that of Theorem 2.14, i.e. we replace A by −Tp and X by W−1,p

ΓD
(Ω) for some

T ∈ M and p ∈ JM . In [Paz83, Theorem 2.5.2] it is assumed that −Tp is the generator of a

uniformly bounded C0-semigroup of operators on W−1,p
ΓD

(Ω) and that 0 ∈ ρ(−Tp). We have to
prove this assumption in order to apply [Paz83, Theorem 2.5.2.b)]. Property [Paz83, Theorem
2.5.2.b)] is the following: There exists some c > 0 such that for all σ > 0 and τ 6= 0 the resolvent
estimate

‖(−Tp − (σ + iτ))−1‖
L
(
W−1,p

ΓD
(Ω)
) ≤ c

|τ |
(2.20)

holds. Property [Paz83, Theorem 2.5.2.c)] is exactly given by (2.16)–(2.17).
First of all we prove (2.20). By Theorem 2.14, Tp is densely defined and closed with 0 ∈ ρ(Tp)
and there exists some c > 0 such that for each λ ∈ C+\{0}, Tp + λ is continuously invertible
with

‖(Tp + λ)−1‖
L
(
W−1,p

ΓD
(Ω)
) ≤ c

|λ|
.

This already implies (2.20). To gain access to the full statement of [Paz83, Theorem 2.5.2],
we still have to prove that −Tp generates a uniformly bounded C0-semigroup of operators

on W−1,p
ΓD

(Ω). In the proof of [Paz83, Theorem 2.5.2, b) ⇒ c)], this property is not needed
though. Therefore, (2.16)–(2.17) follows from (2.20). But by an equivalence theorem about
C0-semigroups, [Paz83, Theorem 1.7.7], (2.16)–(2.17) already implies that −Tp is the generator

of a uniformly bounded C0-semigroup of operators exp(−Tpt), t ≥ 0, on W−1,p
ΓD

(Ω). Hence, we
conclude (2.18). Moreover, all the assumptions of [Paz83, Theorem 2.5.2] are satisfied and we
gain access to the complete statement of the theorem. By [Paz83, Theorem 2.5.2.a)], exp(−Tpt),
t ≥ 0, can be extended to an analytic semigroup of operators in a sector ∆δ = {z : |argz| < δ}
and ‖ exp(−Tpz)‖L

(
W−1,p

ΓD
(Ω)
) is uniformly bounded in every closed sub-sector ∆δ′ of ∆δ with

δ′ < δ. This is sufficient for {exp(−Tpt)}t≥0 to be an analytic semigroup of operators according
to Definition 2.21. Finally, [Paz83, Theorem 2.5.2.d)] implies that exp(−Tpt) is differentiable
for t > 0 and that (2.19) holds.

We want to improve the estimates (2.18)–(2.19) in Theorem 2.22. First of all, Theorem 2.22
shows that Tp is sectorial for a sector S0,φ in the following sense:

Definition 2.23. [Hen81, Definition 1.3.1] The linear operator Tp in W−1,p
ΓD

(Ω) is sectorial for

a sector Sa,Φ if it is densely defined and closed, and if for some φ ∈
(
0, π2

)
, M ≥ 1 and a ∈ R,

ρ(Tp) ⊃ Sa,Φ = {λ : φ ≤ |arg(λ− a)| ≤ π, λ 6= a} ,

and if for all λ ∈ Sa,φ,

‖(Tp − λ)−1‖
L
(
W−1,p

ΓD
(Ω)
) ≤ M

|λ− a|
.

Remark 2.24. Note first that each sector in Definition 2.23 contains a left half plain, but
λ is now subtracted in the resolvent estimate, i.e. the resolvent set of Tp is considered. In
Theorem 2.14 and Corollary 2.19, we always looked at right half plains and added λ in the
corresponding estimate. Also the statement in Theorem 2.22 contains a sector which includes
a right half plane, but the resolvent set of −Tp is considered there. We keep the notation from
[Hen81, Definition 1.3.1] in order to make it easier for the reader to compare our results to the
literature.
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Theorem 2.25. Adopt the assumptions and the notation from Theorem 2.14. Let p ∈ JM and
T ∈M be arbitrary and consider the corresponding elliptic operator Tp. Then Tp is sectorial in
the sense of Definition 2.23 for a sector Sδ,φ̃, with δ > 0 and φ̃ ∈

(
0, π2

)
. Let exp(−Tpt), t ≥ 0,

be the analytic semigroup generated by −Tp according to Theorem 2.22. Then there exists some
C > 0 such that for all t > 0 the norms of exp(−Tpt) and Tp exp(−Tpt) can be estimated by

‖ exp(−Tpt)‖L
(
W−1,p

ΓD
(Ω)
) ≤ C exp(−δt), ‖Tp exp(−Tpt)‖L

(
W−1,p

ΓD
(Ω)
) ≤ C

t
exp(−δt). (2.21)

Proof. Since Tp is closed by Theorem 2.14, ρ(Tp) is open [cf. Kat80, Chp. 4, Theorem 6.7].
Moreover, 0 ∈ ρ(Tp) by Theorem 2.14. Therefore there exist constants ε > 0 and Cε > 0 such

that Bε := BC(0, ε) ⊂ ρ(Tp) and for all λ ∈ Bε,

‖(Tp − λ)−1‖
L
(
W−1,p

ΓD
(Ω)
) ≤ Cε. (2.22)

We choose ε < 2√
13

. Theorem 2.22 entails that Tp is sectorial for a sector S0,φ with φ ∈(
0, π2

)
. We choose δ = ε cos(φ)

2 Then the circle ∂Bε intersects the angle legs of ϕ exactly at
the points z1 = (2δ, 2δ tan(ϕ)), z2 = (2δ,− tan(2δϕ)) in the complex plane. We define by ϕ̃
the angle between the line a = [(δ, 0), (2δ, 0)] and the line c = [(δ, 0), z1] in the complex plane.

The line b := [(2δ, 0), z1] closes the triangle 4((δ, 0), (2δ, 0), z1). Hence, ϕ̃ = arctan
(
|b|
|a|

)
=

arctan
(

2δ tan(ϕ)
δ

)
= arctan(2 tanφ) ∈

(
0, π2

)
. Moreover, |c| = ε.

The goal is to prove that Tp is sectorial for the sector Sδ,φ̃. First of all, consider the set

V2δ,ε := {λ : |Re|λ ≤ 2δ}∩Bε. Then V2δ,ε is defined such that V2δ,ε ⊂ Bε and (Sδ,φ̃\V2δ,ε) ⊂ S0,φ.
This way we obtain

Sδ,φ̃ = (Sδ,φ̃ ∩ V2δ,ε) ∪ (Sδ,φ̃\V2δ,ε) ⊂ ρ(Tp).

Hence, we are left to prove the correct resolvent estimates.
(I) Consider first the case λ ∈ (Sδ,φ̃ ∩ V2δ,ε):
By definition of δ and V2δ,ε there holds

|Re(λ)− δ|2 ≤ ||Re(λ)|+ δ| ≤ |3δ|2 ≤ (9/4)|ε|2.

Moreover, |Im(λ)|2 ≤ |ε|2 because V2δ,ε ⊂ Bε. Hence, we can estimate

0 < |λ− δ| =
√
|Re(λ)− δ|2 + |Im(λ)|2 ≤

√
13ε

2
< 1.

Because λ ∈ V2δ,ε ⊂ Bε, this together with (2.22) yields

‖(Tp − λ)−1‖
L
(
W−1,p

ΓD
(Ω)
) ≤ Cε ≤ Cε

|λ− δ|
.

(II) Consider now λ ∈ (Sδ,φ̃\V2δ,ε):
By definition of V2δ,ε, either |Re(λ)| > 2δ and hence |λ| > 2δ or |λ| > ε. In the second case,

the definition of δ = ε cos(ϕ)
2 yields |λ| > ε = 2δ

cos(φ) > 2δ. Consequently, δ
|λ| ≤ 1 holds for any

λ ∈ (Sδ,φ̃\V2δ,ε). Furthermore, as seen above, λ ∈ (Sδ,φ̃\V2δ,ε) ⊂ S0,φ ⊂ ρ(Tp), which of course
implies (λ − δ) ∈ S0,φ ⊂ ρ(Tp), since S0,φ − δ ⊂ S0,φ. By the first resolvent equation for closed
operators, [cf. Kat80, Chp. 1, (5.5)], and a remark after [Kat80, Chp. 3, Theorem 6.5], we
obtain

(Tp − λ)−1 = (Tp − (λ− δ))−1 + [λ− (λ− δ)](Tp − λ)−1(Tp − (λ− δ))−1

= (Tp − (λ− δ))−1 + δ(Tp − λ)−1(Tp − (λ− δ))−1.
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Hence, Theorem 2.25 yields

‖(Tp − λ)−1‖
L
(
W−1,p

ΓD
(Ω)
) ≤‖(Tp − (λ− δ))−1‖

L
(
W−1,p

ΓD
(Ω)
)

+ δ‖(Tp − λ)−1‖
L
(
W−1,p

ΓD
(Ω)
)‖(Tp − (λ− δ))−1‖

L
(
W−1,p

ΓD
(Ω)
)

≤ C

|λ− δ|

(
1 +

δC

|λ|

)
≤ C(C + 1)

|λ− δ|
.

(III) Conclusion:
Since Sδ,φ̃ = (Sδ,φ̃ ∩ V2δ,ε) ∪ (Sδ,φ̃\V2δ,ε), we conclude from Steps I–II that

‖(Tp − λ)−1‖
L
(
W−1,p

ΓD
(Ω)
) ≤ max {Cε, C(1 + C)}

|λ− δ|

for each λ ∈ Sδ,φ̃. This proves that Tp is sectorial for the sector Sδ,φ̃. Estimate (2.21) then
follows from [Hen81, Theorem 1.3.4].

2.2.5 Fractional powers and fractional power spaces

In this subsection, we define the fractional power of a sectorial operator and the corresponding
fractional power spaces. We mostly follow the definitions in [Hen81] but also refer to [Paz83]
and [Lun95]. For more results on sectorial operators we recommend the book [Haa06].

Definition 2.26. [Hen81, Definition 1.4.1] Adopt the assumptions and the notation from Theo-
rem 2.14. Let p ∈ JM and T ∈M be arbitrary and consider the corresponding elliptic operator
Tp. By Theorem 2.25, Tp is sectorial and the spectrum of Tp satisfies σ(Tp) ⊂ {λ ∈ C : Re(λ) > δ}
for some δ > 0. Hence, according to [Hen81, Definition 1.4.1], for θ > 0 we can define the frac-
tional power

T−θp :=
1

Γ(θ)

∞∫
0

tθ−1 exp(−Tpt)dt. (2.23)

By [Hen81, Theorem 1.4.2], T−θp is a bounded and linear operator on W−1,p
ΓD

(Ω). Moreover, T−θp

is one-to-one and for θ, β > 0 there holds T−θp T−βp = T
−(θ+β)
p .

We define the densely defined and closed operator T θp as the inverse of T−θp with domain

dom(T−θp ) = ran(T−θp ). We set T 0
p to the identity on W−1,p

ΓD
(Ω), i.e. T 0

p = Id.

The following corollary provides computation rules for fractional powers of operators and im-
portant norm estimates.

Corollary 2.27. Let Tp be an operator as in Definition 2.26. Then for γ, β ∈ R with θ ≥ β

there holds dom(T θp ) ⊂ dom(T βp ). Moreover, T θp T
β
p = T βp T θp = T θ+βp as operators on dom(T γp ),

where γ = max{θ, β, θ + β}. For all t > 0, T θp exp(−Tpt) = exp(−Tpt)T θp on dom(T θp ).
For t > 0 and θ ≥ 0 there exists some Cθ ∈ (0,∞) such that

‖T θp exp(−Tpt)‖L
(
W−1,p

ΓD
(Ω)
) ≤ Cθt−θ exp(−δt), (2.24)

and for θ ∈ (0, 1] and u ∈ dom(T θp ) we can estimate

‖(exp(−Tpt)− Id)u‖W−1,p
ΓD

(Ω)
≤ 1

θ
C1−θt

θ‖T θp u‖W−1,p
ΓD

(Ω)
. (2.25)

Cθ is bounded if θ is contained in a compact subinterval of (0,∞) and for θ ↓ 0.
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Proof. See the comments after [Hen81, Definition 1.4.1] and [Hen81, Theorem 1.4.3].

Definition 2.28. [Hen81, Theorem 1.4.7] Let Tp be an operator as in Definition 2.26. For θ ≥ 0,
we define the space

Xθ
Tp := dom(T θp ) with the graph norm

‖u‖Xθ
Tp

= ‖T θp u‖W−1,p
ΓD

(Ω)
∀u ∈ Xθ

Tp .

Remark 2.29. For θ ≥ 0, the space
(
Xθ
Tp
, ‖ · ‖Xθ

Tp

)
in Definition 2.28 is a Banach space [Hen81,

Theorem 1.4.8]. Moreover, continuity of T−θp – see Definition 2.26 – implies equivalence of the

norm ‖ · ‖Xθ
Tp

and the usual graph norm ‖u‖Xθ
Tp

= ‖T θp u‖W−1,p
ΓD

(Ω)
+ ‖u‖W−1,p

ΓD
(Ω)

, u ∈ Xθ
Tp

. By

Theorem 2.14, Tp has compact resolvent since p ∈ JM. Hence, again [Hen81, Theorem 1.4.8]

entails that the embedding Xθ
Tp
↪→ Xβ

Tp
is continuous and dense for 0 ≤ β ≤ θ. For 0 ≤ β < θ

it is compact.

Remark 2.29 implies the following topological equivalences and embeddings of fractional power
spaces.

Corollary 2.30. In the setting of Definition 2.28 let 0 < β < θ < 1. There holds

X1
Tp ↪−↪→ Xθ

Tp ↪−↪→ Xβ
Tp
↪−↪→ X0

Tp = W−1,p
ΓD

(Ω) (2.26)

and all embeddings are dense.
Furthermore, the spaces

(
X1
Tp
, ‖ · ‖X1

Tp

)
and

(
dom(Tp), ‖Tp · ‖W−1,p

ΓD
(Ω)

+ ‖ · ‖W−1,p
ΓD

(Ω)

)
are topo-

logically equivalent. Moreover, X1
Tp

can be identified with W1,p
ΓD

(Ω) in the following sense:

For each u ∈W1,p
ΓD

(Ω) let ũ ∈ X1
Tp

be defined by ũ := Ipu. There exist constants c1, c2 > 0, such
that

c1‖ũ‖X1
Tp
≤ ‖u‖W1,p

ΓD
(Ω)
≤ c2‖ũ‖X1

Tp
∀u ∈W1,p

ΓD
(Ω).

In particular, all of the spaces
(
dom(Tp), ‖Tp · ‖W−1,p

ΓD
(Ω)

+ ‖ · ‖W−1,p
ΓD

(Ω)

)
,
(
X1
Tp
, ‖ · ‖X1

Tp

)
and(

X1
Tp
, ‖I−1

p · ‖W1,p
ΓD

(Ω)

)
=
(
W1,p

ΓD
(Ω), ‖ · ‖W1,p

ΓD
(Ω)

)
are topologically equivalent.

Proof. Since T 0
p equals the identity on W−1,p

ΓD
(Ω),

(
X0
Tp
, ‖ · ‖X0

Tp

)
and

(
W−1,p

ΓD
(Ω), ‖ · ‖W−1,p

ΓD
(Ω)

)
coincide. From Remark 2.29 we conclude (2.26) and topological equivalence of

(
X1
Tp
, ‖ · ‖X1

Tp

)
and

(
dom(Tp), ‖Tp · ‖W−1,p

ΓD
(Ω)

+ ‖ · ‖W−1,p
ΓD

(Ω)

)
. Remember the definition Tp = TpI−1

p and let

u ∈ W1,p
ΓD

(Ω) be arbitrary. By Theorem 2.14, Tp is a topological isomorphism since p ∈ JM.
Hence, we conclude

‖ũ‖X1
Tp

= ‖TpIpu‖W−1,p
ΓD

(Ω)
= ‖Tpu‖W−1,p

ΓD
(Ω)
≤ ‖Tp‖L

(
W1,p

ΓD
(Ω),W−1,p

ΓD
(Ω)
)‖u‖W1,p

ΓD
(Ω)
.

Furthermore, there holds

‖u‖W1,p
ΓD

(Ω)
= ‖T −1

p TpI−1
p Ipu‖W−1,p

ΓD
(Ω)

≤ ‖T −1
p ‖L

(
W−1,p

ΓD
(Ω),W1,p

ΓD
(Ω)
)‖Tpũ‖W−1,p

ΓD
(Ω)

= ‖T −1
p ‖L

(
W−1,p

ΓD
(Ω),W1,p

ΓD
(Ω)
)‖ũ‖X1

Tp
.

Particularly, in X1
Tp

the norms ‖ ·‖X1
Tp

and ‖I−1
p · ‖W1,p

ΓD
(Ω)

are equivalent. Hence, all three spaces

are topologically equivalent under the identification of W1,p
ΓD

(Ω) with dom(Tp) = ran(Ip) = X1
Tp

via the bijective function Ip.
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In special cases, the fractional power spaces in Definition 2.28 can be characterized as complex
interpolation spaces. We adapt [Mün17a, Remark 2.11] to our setting and add more details:

Remark 2.31. For Tp as in Definition 2.26 and for z ∈ int(C+) = {ζ ∈ C : Re(ζ) > 0}, the
(complex) fractional power T zp can be defined by the inverse of T−zp [Yag09, Chapter 7]. For

θ ∈ R and for all u ∈W−1,p
ΓD

(Ω) for which the limit exists, one then defines

T iθp u := lim
z∈int(C+): z→iθ

T zp u.

The theory of purely imaginary powers of an operator goes beyond the scope of this work. For
further details we refer to [Yag09, Chapter 8]. We apply a result on bounded purely imaginary
powers of an operator to characterize the fractional power spaces from Definition 2.28. If the
imaginary powers of Tp are bounded, then [CA01, Theorem 11.6.1] entails that for all β ∈ R+

and θ ∈ (0, 1), the complex interpolation space
[
W−1,p

ΓD
(Ω), Xβ

Tp

]
θ

is topologically equivalent to

Xθβ
Tp

, i.e. [
W−1,p

ΓD
(Ω), Xβ

Tp

]
θ
' Xθβ

Tp
.

In particular, by Corollary 2.30, for θ ∈ (0, 1) there hold the topological identities[
W−1,p

ΓD
(Ω),W1,p

ΓD
(Ω)
]
θ
'
[
W−1,p

ΓD
(Ω), dom(Tp)

]
θ
'
[
W−1,p

ΓD
(Ω), X1

Tp

]
θ
' Xθ

Tp .

All fractional power spaces above are defined with the norm according to Definition 2.28 and
dom(Tp) is considered with the graph norm.

For appropriate choice of p and dimension d, embedding results for some fractional power spaces
of diffusion operators Ap are known:

Remark 2.32. Consider the assumptions and the notation in Corollary 2.19 and let Ap be a
diffusion operator according to Definition 2.17. Let J be the interval which corresponds to Ap+1
in Corollary 2.19 and assume p ∈ J. Then by Corollary 2.30, the spaces dom(Ap) and X1

Ap+1

can be identified with W1,p
ΓD

(Ω).
If p ∈ J ∩ [2,∞) then Ap + 1 has bounded imaginary powers according to [Aus+14, Theorem
11.5], cf. Remark 2.31. Consequently, for θ ∈ (0, 1) we obtain[

W−1,p
ΓD

(Ω),W1,p
ΓD

(Ω)
]
θ
'
[
W−1,p

ΓD
(Ω),dom(Ap)

]
θ
'
[
W−1,p

ΓD
(Ω), X1

Ap+1

]
θ
' Xθ

Ap+1.

Note that p ∈ J is only required to obtain the identification of dom(Ap) and X1
Ap+1 with W1,p

ΓD
(Ω).

Remember that d denotes the dimension of Ω. For p ≥ 2 and for all θ > 1
2(1 + d

p), [TR12,

Theorem 3.3] entails that Xθ
Ap+1 is a subset of [L∞(Ω)]m. In particular, for p > 2 and d = 2

there holds 0 < 1
2(1 + d

p) = 1
2 + 1

p < 1 so that θ can be chosen in the interval
(

1
2(1 + d

p), 1
)
.

If p > 2 and d = 2 and if in addition Ω is regular enough – for example a Lipschitz domain –
then by [DER15, Theorem 4.5] there exists some θ ∈ (0, 1) such that Xθ

Ap+1 can be embedded
into a Hölder space.
The embedding results above will be crucial in order to prove higher regularity of solutions of
semi-linear parabolic evolution equations.
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2.2.6 Maximal parabolic Sobolev regularity

In this subsection, we introduce the concept of maximal parabolic regularity of an operator, see
e.g. [Ama95, Chapter III], [MS15, Definition 2.7] or [Aus+14, Definition 11.2].
Before we define maximal parabolic regularity, we explain what we mean by a solution of an
operator equation.

Definition 2.33. [Lun95, Definition 7.0.2] and [Hen81, Chapter 3.2] For p ∈ (1,∞) let Tp be an
elliptic operator in the sense of Definition 2.11. Consider a time interval (t0, T ) ⊂ R, an initial
state y0 ∈W−1,p

ΓD
(Ω) and a function g : (t0, T )→W−1,p

ΓD
(Ω). We say that y : (t0, T )→W−1,p

ΓD
(Ω)

is a mild solution of the evolution equation

d

dt
y + Tpy = g in (t0, T ), y(t0) = y0,

if y ∈ L1
(
(t0, T );W−1,p

ΓD
(Ω)
)

and if y solves the integral equation

y(t) = exp(−Tp(t− t0))y0 +

∫ t

t0

exp(−Tp(t− s))g(s) ds for a.e. t ∈ (t0, T ),

provided that the semigroup and the integral are well defined. We say that a mild solution
y : [t0, T ] → W−1,p

ΓD
(Ω) is a (strong) solution if it is continuous, continuously differentiable on

(t0, T ) with y(t) ∈ dom(Tp) for all t ∈ (t0, T ) and if lim
t↓t0

y(t) = y0.

In the following definition, we introduce the notion of maximal parabolic regularity of an op-
erator. Amongst others, this concept is a powerful tool for proving that a mild solution of an
operator equation is indeed a strong one. Moreover, higher regularity of the solution follows in
many instances. We also introduce some notation for different function spaces which is used in
[Mün17a; Mün17b].

Definition 2.34. [Aus+14, Definition 11.2] For p ∈ (1,∞) let Tp be an elliptic operator in
the sense of Definition 2.11. For q ∈ (1,∞) and (t0, T ) ⊂ R we say that Tp satisfies maximal

parabolic Lq((t0, T );W−1,p
ΓD

(Ω))-regularity if for all g ∈ Lq((t0, T );W−1,p
ΓD

(Ω)) there is a unique

solution y ∈W1,q((t0, T );W−1,p
ΓD

(Ω)) ∩ Lq((t0, T ); dom(Tp)) of the operator evolution equation

d

dt
y + Tpy = g in (t0, T ), y(t0) = 0.

The time derivative is taken in the sense of distributions. For t0 = 0 and t ∈ [0, T ] we introduce
the following spaces:

YTp,q := W1,q((0, T );W−1,p
ΓD

(Ω)) ∩ Lq((0, T ); dom(Tp)),

YTp,q,t := {y ∈ YTp,q : y(t) = 0},

Y ∗Tp,q,t := {y ∈W1,q(0, T ; [dom(Tp)]
∗) ∩ Lq((0, T );W1,p′

ΓD
(Ω)) : y(t) = 0}.

Remark 2.35. Different to other publications we decided to use a capital Y to define the
spaces YTp,q, YTp,q,t and Y ∗Tp,q,t in Definition 2.34. This choice is made already with regard to
applications in optimization problems in Section 4, where the state variable will always be the
solution of an operator equation. The following properties go along with maximal parabolic
regularity:

1. Maximal parabolic regularity is independent of q ∈ (1,∞) and of the interval (t0, T ) so that
we just say that Tp satisfies maximal parabolic regularity on W−1,p

ΓD
(Ω) [Aus+14, Remark

11.3].
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2. If Tp satisfies maximal parabolic regularity on W−1,p
ΓD

(Ω) then ( ddt + Tp)
−1 is bounded as

an operator from Lq
(
(0, T );W−1,p

ΓD
(Ω)
)

to YTp,q,0 [MS15, Proof of Proposition 2.8].

3. For p ∈ J ∩ [2,∞) with J from Corollary 2.19 consider a diffusion operator Ap in the
sense of Definition 2.17. Then by [Aus+14, Theorem 11.5], Ap + 1 satisfies maximal

parabolic Sobolev regularity on W−1,p
ΓD

(Ω). Hence, also Ap satisfies maximal parabolic

Sobolev regularity on W−1,p
ΓD

(Ω). Note again that p ∈ J is only needed for the identification

of dom(Tp) and X1
Tp

with W1,p
ΓD

(Ω). Maximal parabolic Sobolev regularity of Ap holds for

all p ∈ [2,∞).

2.3 Spaces of Banach space valued functions and embeddings

In this section, we collect embedding properties between spaces of functions in time which
take there values in different Banach spaces. Those embeddings will play a key role in several
convergence as well as regularity proofs later on in this work.
The following embedding properties are due to [Ama95, Theorem 3]:

Lemma 2.36. Consider the notation from Theorem 2.14. For a set of coefficient functions M,
let p ∈ JM be given. Assume that Tp is the elliptic operator which corresponds to some T ∈M.
Then for any q ∈ (1,∞) and YTp,q as in Definition 2.34 one has

YTp,q ↪−↪→ Cβ((0, T ); (W−1,p
ΓD

(Ω),dom(Tp))η,1) ↪→ Cβ((0, T ); [W−1,p
ΓD

(Ω),dom(Tp)]θ) and

YTp,q ↪−↪→ C([0, T ]; (W−1,p
ΓD

(Ω),dom(Tp))η,q) ↪→ C([0, T ]; [W−1,p
ΓD

(Ω),dom(Tp)]θ)

for every 0 < θ < η < 1 − 1/q and 0 ≤ β < 1 − 1/q − η. (·, ·)η,1 or (·, ·)η,q respectively denotes
real interpolation here.

Proof. By Corollary 2.30, dom(Tp) ↪−↪→ W−1,p
ΓD

(Ω). The rest follows from [Ama95, Theorem
3].

2.4 Hysteresis operators

We are interested in the analysis of non-linear, semi-linear parabolic evolution equations and
there solutions y which are functions of t ∈ [0, T ] with values in a Banach space X. In this
work, the non-linearity F [y] which enters the right side of the evolution equation is generally
non-smooth. In particular, F is usually of the form f(y, z) where z = W[Sy] is the output of
some scalar, rate-independent hysteresis operator W. Here, S ∈ X∗ so that (Sy)(t) := Sy(t),
t ∈ [0, T ], is a real-valued function which serves as the input map for W.
This section provides a short introduction to the concept of (scalar) rate-independent hysteresis,
cf. [KM17, Section 2.2]. Specifically, we will mostly consider the scalar play and the scalar stop
hysteresis operator. In many cases, those can be exchanged by an operator with appropriate
properties.
Hysteresis effects are spread over many fields in physics such as ferromagnetism, ferroelectricity
or plasticity [May03; BS96; Vis13; MR15; KP12]. Furthermore, they are used to model shape
memory effects of certain materials. Viscoplastic behaviour is a particular example here. Hys-
teresis models are also used to describe thermostats in engineering [Vis13], and certain effects
in mathematical biology follow some hysteretic law [GST13; HJ80; Kop06; Pim+12; CGT16].
Mathematically, among the most important hysteresis operators which appear in such models are
the relay switch [BS96], the scalar play [BK15], the scalar stop [BR05] or the Prandtl-Ishlinskǐı
operator [Kuh03].
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As mentioned, we will work with scalar hysteresis operators throughout. Given a time interval
[0, T ], scalar hysteresis operators take an admissible time-dependent input function y : [0, T ]→
R together with an initial value z0 ∈ R and return a time-dependent output function z =
z(y, z0) : [0, T ] → R. We will mostly keep z0 fixed and write z = z(y). Depending on the
hysteresis operator at hand and on the smoothness of y, the output map z : [0, T ] → R has
a certain regularity. All scalar rate-independent hysteresis operators have two properties in
common [Vis13; BS96]:

Definition 2.37. [KM17]

(Vol) The output function z(t) at time t ∈ [0, T ] may depend not only on the value of the input
function y(t) at time t, but on the whole history of y in the interval [0, t]. This non-locality
in time is often referred to as memory effect, causality or Volterra property: for all y1, y2

in the domain of the operator, for all initial values z0, and any t ∈ [0, T ] it follows that if
y1 = y2 in [0, t], then [z(y1, z0)](t) = [z(y2, z0)](t) cf. [Vis13, Chapter III].

(RI) The output function z is invariant under time transformations. This means that for any
monotone increasing and continuous function φ : [0, T ]→ [0, T ] with φ(0) = 0 and φ(T ) =
T and for all admissible input functions y there holds

[z(y ◦ φ, z0)](t) = z(y, z0)(φ(t)) ∀t ∈ [0, T ].

In [Vis13, Chapter III], the function φ is also assumed to be bijective, i.e., the defini-
tions differ in the literature. For our purpose one may consider either definition of ad-
missible time transformations. Invariance under time transformations is also called rate-
independence in the literature [MR15, Definition 1.2.1].

Since the most relevant hysteresis operators in this work are the scalar stop and the scalar
(generalized) play, we introduce those in the following [BK13; Vis13]:

Definition 2.38. Consider a fixed initial value z0 ∈ R together with an interval [a, b] ⊂ R.
Moreover, let a time interval [0, T ] be given. Then we denote byW :=W[·, z0] the corresponding
scalar stop operator. Since z0 is fixed we often write W[·]. If the input function v : [0, T ] → R
has a weak derivative, then z =W[v] is the unique solution of the variational inequality

(ż(t)− v̇(t))(z(t)− ξ) ≤ 0 for ξ ∈ [a, b] and t ∈ (0, T ), (2.27)

z(t) ∈ [a, b] for t ∈ [0, T ], (2.28)

z(0) = z0. (2.29)

Similarly, consider an input function v : [0, T ]→ R which has a weak derivative and any initial
value σ0 ∈ [v(0)−b, v(0)−a]. Then by [Vis13, Chapter III.2], the operator P[v, σ0] which assigns
to v and σ0 ∈ [v(0)− b, v(0)− a] the unique solution σ of

σ̇(t)(v(t)− σ(t)− ξ) ≥ 0 for ξ ∈ [a, b] and t ∈ (0, T ), (2.30)

v(t)− σ(t) ∈ [a, b] for t ∈ [0, T ], (2.31)

σ(0) = σ0, (2.32)

defines a scalar play operator. We denote by P the play operator defined by W [Vis13, Part 1
Chapter III Proposition 3.3], i.e. P is determined by

P +W = Id. (2.33)
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More precisely, (2.33) has to be understood as

P[v, v(0)− z0](t) +W[v, z0](t) = v(t) for t ∈ [0, T ].

If v(0) = v0 ∈ R is fixed and known from the context, we often write P[v] = P[v, v0 − z0].

Remark 2.39. We make a couple of remarks with respect to Definition 2.38:

1. The conditions (2.27)–(2.29) are equivalent to the differential inclusion

v̇(t) ∈ ż(t) + ∂I[a,b](z(t)) for t ∈ (0, T ),

z(0) = z0,

where I[a,b](v) = 0 if v ∈ [a, b] and I[a,b](v) = ∞ if v /∈ [a, b] [Vis13, Chapter III.3].
Similarly, conditions (2.30)–(2.32) are equivalent to the differential inclusion

σ̇(t) ∈ ∂I[a,b](v(t)− σ(t)) for t ∈ (0, T ),

σ(0) = σ0.

There are further possibilities to represent hysteresis operators. We will mostly work with
variational inequalities but refer to [Mie05, Chapter 2] for further equivalent formulations
such as dual variational inequalities, a subdifferential approach, an energetic formulation,
and a representation in form of a sweeping-process, see also [MR15].

2. W is a so called linear stop operator and P is a linear play operator. A generalization to
non-linear plays and stops is introduced e.g. in [Vis13, Chapter III].

3. In Section 4, we will analyze an optimal control problem of a hysteresis-reaction-diffusion
system where the hysteresis is given by a scalar stop operator. This is the reason why
we fix the initial value z0 of W in Definition 2.38 and introduce the corresponding play
operator P via (2.33) rather than defining the play and the stop operator separately.

The following regularity properties forW and P are needed. We refer to [Vis13, Part 1, Chapter
III] and [BK15] for a deeper analysis, see also [Mün17a, Subsection 2.4 and Subsection 4.2] or
[Mün17b, Lemma 2.9].

Theorem 2.40 (Stop and Play). The stop operator W and the play operator P from Defini-
tion 2.38 are Lipschitz continuous as mappings on C[0, T ]. In particular,

|W[v1](t)−W[v2](t)| ≤ 2 sup
0≤τ≤t

|v1(τ)− v2(τ)|, (2.34)

|W[v](t)| ≤ 2 sup
0≤τ≤t

|v(τ)|+ |z0|, (2.35)

|P[v1](t)− P[v2](t)| ≤ max

{
sup

0≤τ≤t
|v1(τ)− v2(τ)|, |v1(0)− v2(0)|

}
and (2.36)

|P[v](t)| ≤ sup
0≤τ≤t

|v(τ)|+ |z0| (2.37)

for all v, v1, v2 ∈ C[0, T ] and t ∈ [0, T ]. For q ∈ [1,∞), W and P are bounded and weakly con-
tinuous on W1,q(0, T ). As mappings from C[0, T ] into Lq(0, T ) they are Hadamard directionally
differentiable, see Definition 3.6 below.
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Proof. The estimates (2.34)–(2.37) as well as the boundedness in W1,q(0, T ) are shown in [Vis13,
Part 1, Chapter III] for example. For r > 0 let (v, σ0) 7→ Pr[v, σ0] denote the symmetric play
operator which is represented by (2.30)–(2.32) if the interval [a, b] is of the form [−r, r]. For Pr,
Hadamard directional differentiability from C[0, T ] × R to Lq(0, T ) is shown in [BK15]. Now
P can be constructed as follows: We set r = b−a

2 and define the affine linear transformation

T1 : [−r, r]→ [a, b], T1 : x 7→ x− b+a
2 , as well as the mapping T2 : C[0, T ]→ R, T1 : v → v(0)−z0.

Both maps are continuously differentiable. Then for v ∈ C[0, T ] there holds

P[v] = Pr[T1(v), T2(v)].

The chain rule yields that P is Hadamard directionally differentiable from C[0, T ]×R to Lq(0, T ),
see Lemma 3.7. By (2.33) and again the chain rule the same holds for W.

Remark 2.41. Note that we have to add |z0| in (2.35) and (2.37) because we fixed the initial
value of W, i.e. by (2.28) we have W[v](0) = z0 for any v ∈ C[0, T ].

3 Semilinear parabolic systems with hysteresis and Bochner-
Lebesgue integrable non-linearity

In this chapter, we analyze a semi-linear parabolic evolution equation of the form

d

dt
y(t) + (Tpy)(t) = (F [y])(t) + u(t) in X = W−1,p

ΓD
(Ω) for t > 0,

y(0) = y0 ∈ X.
(3.1)

In particular, the non-linearity F = f(y,W[Sy]) contains a scalar stop operator. The corre-
sponding Cauchy problem with a diffusion operator Ap instead of Tp and with zero initial value
has been studied in [Mün17a]. We extend the results to apply to Cauchy problems with a gen-
eral elliptic operator and non-trivial initial value y0. Section 3.1 contains the main assumption
of the chapter. In Section 3.2 we show well-posedness of (3.1). Moreover, we prove that the
solution operator G : (y0, u) 7→ y is linearly bounded and locally Lipschitz continuous on appro-
priate function spaces. In Section 3.3 we extend the results of [Mün17a] by showing that G is
Hadamard directionally differentiable in y0 and u rather than in u only.

3.1 Main assumption and notation

This section contains the main assumption of the chapter. We also introduce some short notation
for several spaces and functions.

Assumption 3.1. Cf. [Mün17a, Assumption 2.16] We always suppose that Assumption 2.2
and Assumption 2.6 hold. All spaces are supposed to consist of real-valued functions. Consider
the setting and notation from Theorem 2.14. We assume:

(A0) Ω ⊂ Rd for some d ≥ 2.

(A1) For a set of coefficient functions M⊂ L∞(Ω;L(Rm ×Rm×d)) there holds p ∈ JM ∩ [2,∞)
and 2 ≥ p

(
1− 1

d

)
. Moreover, Tp is the elliptic operator which corresponds to a matrix

T ∈M.

(A2) For some w ∈W1,p′

ΓD
(Ω) ' [W−1,p

ΓD
(Ω)]∗, w 6= 0, the operator S ∈ [W−1,p

ΓD
(Ω)]∗ is defined by

Sy := 〈y, w〉W1,p′
ΓD

(Ω)
∀y ∈W−1,p

ΓD
(Ω).

Note that S belongs to [Xθ
Tp

]∗ for all θ ≥ 0 because of the embedding Xθ
Tp
↪→W−1,p

ΓD
(Ω).
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(A3) We will need a fractional power space with exponent strictly smaller than one. Therefore,
we assume that for some α ∈ (0, 1) the function f : Xα

Tp
×R→W−1,p

ΓD
(Ω) is locally Lipschitz

continuous with respect to the Xα
Tp

-norm. This means that for every y0 ∈ Xα
Tp

there is a

constant L(y0) > 0 and a neighborhood

V (y0) =
{
y ∈ Xα

Tp : ‖y − y0‖Xα
Tp
≤ δ
}

of y0 such that

‖f(y1, x1)− f(y2, x2)‖X ≤ L(y0)
(
‖y1 − y2‖Xα

Tp
+ |x1 − x2|

)
for every y1, y2 ∈ V (y0) and all x1, x2 ∈ R. Moreover, f is assumed to have at most linear
growth along solutions, i.e.

‖f(y, x)‖W−1,p
ΓD

(Ω)
≤M

(
1 + ‖y‖Xα

Tp
+ |x|

)
for some constant M > 0.

In the setting of Assumption 3.1 we collect the notation for the rest of the chapter:

(N1) For the particular p from Assumption 3.1 we set

X := W−1,p
ΓD

(Ω)

with W−1,p
ΓD

(Ω) from Definition 2.8. We sometimes identify elements v ∈ X∗ with their

representation in W1,p′

ΓD
(Ω), i.e.

〈v, y〉X = 〈y, v〉W1,p′
ΓD

(Ω)
∀y ∈ X.

(N2) The operators Tp and the spaces Xθ
Tp

= dom(T θp ) are defined as in Definition 2.11 and
Definition 2.28.

(N3) The spaces YTp,q and YTp,q,t are defined as in Definition 2.34.

(N4) W is a scalar stop operator as defined in Definition 2.38 for some prescribed initial value
z0 ∈ [a, b].

(N5) We abbreviate JT = (0, T ).

3.2 Well-posedness of the evolution equation

We recap equation (3.1) from the beginning of the chapter which is

d

dt
y(t) + (Tpy)(t) = (F [y])(t) + u(t) in X = W−1,p

ΓD
(Ω) for t > 0,

y(0) = y0 ∈ X,

where (F [y])(t) := f(y(t),W[Sy](t)).
In this section, we show well-posedness of the problem. In particular, we prove that the solution
operator G : (y0, u) 7→ y is linearly bounded and locally Lipschitz continuous on Xβ

Tp
×Lq(JT ;X)

for β ∈ [α, 1) and q ∈
(

1
1−α ,∞

]
. The first aim is to show that for every u ∈ Lq(JT ;X) and for
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initial values y0 ∈ Xα
Tp

problem (3.1) has a unique mild solution y ∈ C(JT ;Xα
Tp

) in the sense of

Definition 2.33, where α is fixed by (A3). In particular, this means that (F [y]) + u is contained
in L1(JT ;X). If Tp satisfies maximal parabolic regularity and if β ∈ (α, 1], we prove that the

unique mild solution even belongs to YTp,s where s is arbitrary in the interval
(

1, 1
1−β

)
∩ (1, q]

if β ∈ (α, 1) and in the interval (1, q] ∩ (1,∞) if β = 1. Note that the latter intersection makes
sense since q =∞ is allowed.
The following Theorem 3.2 is a generalization of [Mün17a, Theorem 3.1] from diffusion operators
Ap to general elliptic operators Tp which do not necessarily satisfy maximal parabolic Sobolev

regularity. Moreover, we allow for initial values y0 ∈ Xβ
Tp

different from zero. We adapt the
proof of Theorem 3.2 to apply to this generalized setting.

Theorem 3.2. Let Assumption 3.1 hold. Then for all y0 ∈ Xα
Tp

and u ∈ Lq(JT ;X) with

q ∈
(

1
1−α ,∞

]
problem (3.1) has a unique mild solution y = y(y0, u) in C(JT ;Xα

Tp
). Note that

Xα
Tp
⊂ X = X0

Tp
since α ∈ (0, 1). The solution mapping

G : (y0, u) 7→ y(y0, u), Xα
Tp × Lq(JT ;X)→ C(JT ;Xα

Tp)

is locally Lipschitz continuous. G is linearly bounded with values in C(JT ;Xα
Tp

), i.e. for some

C = C(T ) > 0 there holds

‖G(y0, u)‖C(JT ;Xα
Tp

) ≤ C(T )(1 + ‖y0‖Xα
Tp

+ ‖u‖Lq(JT ;X)) (3.2)

for all y0 ∈ Xα
Tp

and u ∈ Lq(JT ;X) and C(T ) is independent of y0 and u. Suppose additionally

that Tp satisfies maximal parabolic regularity on X and y0 ∈ Xβ
Tp

where β ∈ [α, 1]. Then

all statements concerning G remain valid with C(JT ;Xα
Tp

) replaced by YTp,s and with ‖y0‖Xα
Tp

replaced by ‖y0‖Xβ
Tp

in (3.2). Here, s is arbitrary in the interval
(

1, 1
1−β

)
∩ (1, q] if β ∈ [α, 1)

and in the interval (1, q] ∩ (1,∞) if β = 1.

Proof. The theorem is shown with help of a fixed point argument. This technique is quite
common in the context of non-linear operator evolution equations, see e.g. [Lun95, Theorem
7.1.3], [Hen81, Chapter 3] or [Paz83, Section 6.3]. Several of the estimates below appeared
in [MS15, Appendix A] in a similar form. We extend the standard results in [Lun95; Hen81;
Paz83; MS15] by allowing for non-linearities which are only locally Lipschitz continuous and
not Lipschitz continuous on bounded sets. Moreover, the hysteresis operator, which appears in
the non-linearity F , acts non-local in time. This fact requires additional work in several steps.
We prove the theorem directly for u ∈ Lq(JT ;X) as it is done in [Lun95, Theorem 7.1.3]. In
[MS15, Appendix A] the corresponding statement is first shown for smooth right hand sides and
afterwards extended by a density argument.
We denote by c > 0 a generic constant which is adapted during the proof. The following
observation will be used several times: For ζ > −1 there holds∫ t

0
(t− s)ζ ds =

t1+ζ

1 + ζ
. (3.3)

The proof is divided into five steps. In Steps I–IV we assume w.l.o.g. that β = α.

(I) Local existence:
First we show the existence of local mild solutions of problem (3.1) for fixed y0 ∈ Xα

Tp
and

u ∈ Lq(JT ;X).
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The function vu(t) :=
t∫

0

e−Tp(t−s)u(s) ds is contained in C(JT ;Xα
Tp

) for arbitrary T > 0.

Moreover, since −q′α > −1⇔ q ∈
(

1
1−α ,∞

]
, we can apply (2.24) and (3.3) to estimate

‖vu‖C(JT ;Xα
Tp

) ≤
(∫ T

0
‖e−Tp(t−s)‖q

′

L(X,Xα
Tp

) ds

)1/q′

‖u‖Lq(JT ;X)

≤ cmax
t∈JT
{e−δt}T 1/q′−α‖u‖Lq(JT ;X) <∞.

(3.4)

The dependence of (3.4) on T 1/q′−α will be crucial for the contraction argument below. Let
r > 0 be small enough so that f is Lipschitz continuous in BXα

Tp
(y0, r)× R with a constant

L(y0) > 0. We denote by BC(JT ;Xα
Tp

)(y0, r) the ball in C(JT ;Xα
Tp

) with radius r > 0 around the

constant function y0, i.e.

BC(JT ;Xα
Tp

)(y0, r) = {y ∈ C(JT ;Xα
Tp) : ‖y(t)− y0‖Xα

Tp
≤ r ∀t ∈ JT }.

Moreover, we will identify y0 with the constant function y ≡ y0 in C(JT ;Xα
Tp

) several times.

We apply (A2) on S, (A3) on f and Lipschitz continuity of W from Theorem 2.40 to estimate

‖(F [y1])(t)− (F [y2])(t)‖X = ‖(f(y1(t),W[Sy1](t))− f(y2(t),W[Sy2](t))‖X

≤ L(y0)
(
‖y1(t)− y2(t)‖Xα

Tp
+ 2‖S‖[Xα

Tp
]∗ sup

0≤τ≤t
‖y1(τ)− y2(τ)‖Xα

Tp

)
≤ c sup

0≤τ≤t
‖y1(τ)− y2(τ)‖Xα

Tp

(3.5)

for all y1, y2 ∈ BC(JT ;Xα
Tp

)(y0, r) and t ∈ JT . Consider the mapping

Φy0,u(y)(t) := e−Tpty0 +

t∫
0

e−Tp(t−s) [f (y(s),W[Sy](s)) + u(s)] ds.

That Φy0,u is well defined on C(JT ;Xα
Tp

) can be shown as in [MS15, Appendix A (ii)]. We
prove that Φy0,u has a unique fixed point if T > 0 is small.

For y1, y2 ∈ BC(JT ;Xα
Tp

)(y0, r) we have by (2.24), (3.3) and (3.5) that

‖Φy0,u(y1)− Φy0,u(y2)‖C(JT ;Xα
Tp

) ≤
∫ T

0
‖e−Tp(t−s)‖L(X,Xα

Tp
) ds‖F [y1]− F [y2]‖C(JT ;X)

≤ cT 1−α‖y1 − y2‖C(JT ;Xα
Tp

) <
1

2
‖y1 − y2‖C(JT ;Xα

Tp
)

for T small enough. Consequently, in this case Φy0,u is a 1
2 -contraction.

Moreover, (e−Tpt − Id)Tαp y0 → 0 with t→ 0 since {e−Tpt}t≥0 is a C0-semigroup, according to

Definition 2.21. Together with (3.4) we obtain for y ∈ BC(JT ;Xα
Tp

)(y0, r) that

‖Φy0,u(y)(t)− y0‖Xα
Tp
≤ ‖Φy0,u(y)(t)− Φy0,u(y0)(t)‖Xα

Tp
+ ‖Φy0,u(y0)(t)− y0‖Xα

Tp

≤ r

2
+

(∫ T

0
‖e−Tp(t−s)‖q

′

L(X,Xα
Tp

) ds

)1/q′

‖F [y0] + u‖Lq(JT ;X) + ‖(e−Tpt − Id)y0‖Xα
Tp

≤ r

2
+ c

(
T 1/q′−α‖f (y0, z0) + u‖Lq(JT ;X) + ‖(e−Tpt − Id)Tαp y0‖X

)
≤ r
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if T is small enough. Note that W[Sy0] = z0 since y0 is a constant function.
Because BC(JT ;Xα

Tp
)(y0, r) is invariant under Φy0,u and since BC(JT ;Xα

Tp
)(y0, r) is a closed subset

of C(JT ;Xα
Tp

), Banach’s fixed point theorem yields a unique fixed point y of Φy0,u in

BC(JT ;Xα
Tp

)(y0, r). This fixed point defines a (local) mild solution of problem (3.1) in JT in the

sense of Definition 2.33.
(II) Global existence:
We show that global mild solutions for problem (3.1) exist and prove the statement about
linear boundedness of the mapping G along solutions. This part requires some cautiousness
because the hysteresis operator is non-local in time.
Remember that the local mild solution y of (3.1) has the form

y(t) = e−Tpty0 +

t∫
0

e−Tp(t−s) [f (y(s),W[Sy](s)) + u(s)] ds.

With (A2) and Theorem 2.40 we estimate for all t ∈ JT

|W[Sy](t)| ≤ 2‖S‖[Xα
Tp

]∗ sup
0≤τ≤t

‖y(τ)‖Xα
Tp

+ |z0|.

Moreover, by (2.24) there holds

‖Tαp exp(−Tpt)‖L(X) ≤ Cαt−α exp(−δt).

Equation (3.3) yields(∫ t

0
(t− s)−αq′ ds

)1/q′

=

(
t1−αq

′

1− αq′

)1/q′

=
t1/q

′−α

(1− αq′)1/q′−α .

That is, the norm of y(t) for t ∈ JT , can be bounded from above by

‖y(t)‖Xα
Tp

≤ c
[
‖y0‖Xα

Tp
+

∫ t

0
(t− s)−α

(
1 + 3 sup

0≤τ≤s
‖y(τ)‖Xα

Tp
+ |z0|

)
ds+ t1/q

′−α‖u‖Lq(JT ;X)

]
≤ c0

∫ t

0
(t− s)−α sup

0≤τ≤s
‖y(τ)‖Xα

Tp
ds+ c1(T )[1 + ‖y0‖Xα

Tp
+ ‖u‖Lq(JT ;X)],

(3.6)

for some constants c0, c1(T ) > 0. The solution of (3.1) which exists on [0, T [ can be continued
to a larger time interval if ‖y(t)‖Xα

Tp
remains bounded with t ↑ T . This argument has been

used in [Paz83, Theorem 6.3.3]. Boundedness of ‖y(t)‖Xα
Tp

with t ↑ T follows if

sup
0≤τ<T

‖y(τ)‖Xα
Tp
≤ C(T ) (3.7)

for some C(T ) > 0. We want to use a Gronwall argument in order to show (3.7). With
y ∈ C(JT ;Xα

Tp
) it follows that the function t 7→ sup

0≤τ<t
‖y(τ)‖Xα

Tp
is continuous on [0, T [. In

order to show (3.7) we apply that for t ∈ JT the function

g : τ 7→
τ∫

0

(τ − s)−α sup
0≤τ ′≤s

‖y(τ ′)‖Xα
Tp
ds, τ ∈ Jt
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is monotone increasing.
Indeed, let t0 ∈ Jt be given and suppose ε > 0 is arbitrary but small enough so that t0 + ε ∈ Jt.
Then shifting the integration interval (ε, t0 + ε) to (0, t0) we obtain

g(t0 + ε)− g(t0)

=

t0+ε∫
0

(t0 + ε− s)−α sup
0≤τ ′≤s

‖y(τ ′)‖Xα
Tp
ds−

t0∫
0

(t0 − s)−α sup
0≤τ ′≤s

‖y(τ ′)‖Xα
Tp

=

t0∫
0

(t0 − s)−α
(

sup
0≤τ ′≤s+ε

‖y(τ ′)‖Xα
Tp
− sup

0≤τ ′≤s
‖y(τ ′)‖Xα

Tp

)
ds

+

ε∫
0

(t0 + ε− s)−α sup
0≤τ ′≤s

‖y(τ ′)‖Xα
Tp
ds ≥ 0.

We make use of the fact that g is monotone increasing to take the supremum over τ ∈ [0, t] in
(3.6) on both sides. Then the right hand side remains the same so that

sup
0≤τ≤t

‖y(τ)‖Xα
Tp
≤ c0

∫ t

0
(t− s)−α sup

0≤τ≤s
‖y(τ)‖Xα

Tp
ds+ c1(T )[1 + ‖y0‖Xα

Tp
+ ‖u‖Lq(JT ;X)].

Finally, Gronwall’s lemma [Paz83, Lemma 6.7] shows (3.7) since

sup
0≤τ≤t

‖y(τ)‖Xα
Tp
≤ C(T )(1 + ‖y0‖Xα

Tp
+ ‖u‖Lq(JT ;X))

holds for some constant C(T ) > 0 and for all t ∈ JT .
(III) Local Lipschitz continuity:
We apply techniques similar to Step II in order to show local Lipschitz continuity of the
solution mapping G. While the linear growth condition on f holds globally, the non-linearity is
only locally Lipschitz continuous. In [MS15] it is Lipschitz continuous on bounded sets. Hence,
we require some additional arguments. First we prove that the function (y(·), v) 7→ f(y(·), v) is
locally Lipschitz continuous from C(JT ;Xα

Tp
)× R to C(JT ;X) with respect to the

C(JT ;Xα
Tp

)-norm. To this aim, let y ∈ C(JT ;Xα
Tp

) be given. Then because JT ⊂ R is compact

and since y is continuous, the set y(JT ) is compact in Xα
Tp

. Moreover, JT is separable. That is,

again because y is continuous we conclude that y(JT ) equipped with the subspace topology in
Xα
Tp

is separable as well. Hence, we can choose a dense subset {yi}i∈N ⊂ Xα
Tp
∩ y(JT ) of y(JT ).

By (A3), the function (ỹ, v) 7→ f(ỹ, v) is locally Lipschitz continuous from Xα
Tp
× R to X.

Consequently, there exist constants ε(yi) > 0 such that (ỹ, v) 7→ f(ỹ, v) is Lipschitz continuous
on BXα

Tp
(yi, ε(yi))× R with some modulus L(yi) > 0 for all i ∈ N. Remember that {yi}i∈N is

dense in y(JT ), so that y(JT ) ⊂ ∪i∈NBXα
Tp

(yi, ε(yi)). Since y(JT ) is compact in Xα
Tp

, we can

choose a finite subcover ∪ki=1BXα
Tp

(yi, ε(yi)) which still contains y(JT ). Notice that the

function (ỹ, v) 7→ f(ỹ, v) is Lipschitz continuous on ∪ki=1BXα
Tp

(yi, ε(yi))× R with modulus

L̃(y) := max
i∈{1,...,k}

L(yi). Consider the open set

Vy := {ỹ ∈ C(JT ;Xα
Tp) : ỹ(t) ∈ ∪ki=1BXα

Tp
(yi, ε(yi)) ∀t ∈ JT }

which defines a neighborhood of y in C(JT ;Xα
Tp

). Then (ỹ(·), v) 7→ f(ỹ(·), v) is Lipschitz

continuous from Vy × R ⊂ C(JT ;Xα
Tp

)× R to C(JT ;X). Hence, the function
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(y(·), v) 7→ f(y(·), v) is locally Lipschitz continuous from C(JT ;Xα
Tp

)× R to C(JT ;X) with

respect to the C(JT ;Xα
Tp

)-norm.
Moreover, we obtain a pointwise estimate of the form

‖f(y1(t), v1)− f(y2(t), v2)‖X ≤ L̃(y)(‖y1(τ)− y2(τ)‖Xα
Tp

+ |v1 − v2|) (3.8)

for all y1, y2 ∈ Vy, v1, v2 ∈ R and t ∈ JT .
We exploit Lipschitz continuity of W, see Theorem 2.40, and (A2) to obtain that the function
y 7→ F [y] = f(y,W[Sy]) is locally Lipschitz continuous from C(JT ;Xα

Tp
) to C(JT ;X).

Moreover, (3.8) implies that for y ∈ C(JT ;Xα
Tp

) and the neighborhood Vy of y there exists a

constant L(y) > 0 such that the pointwise estimate

‖F (y1)(t)− F (y2)(t)‖X ≤ L(y) sup
0≤τ≤t

‖y1(τ)− y2(τ)‖Xα
Tp

(3.9)

holds for all y1, y2 ∈ Vy and t ∈ JT . Note that we slightly overload the notation by using L(y)
as in (A3).
We continue by proving local Lipschitz continuity of G. To this aim, we denote by y = G(y0, u)
the solution of problem (3.1) corresponding to y0 and u. For this fixed y we choose r > 0 small
enough so that F is Lipschitz continuous in BC(JT ;Xα

Tp
)(y, r) with modulus L(y).

For R > 0 to be chosen let ỹ0 ∈ BXα
Tp

(y0, R) and ũ ∈ BLq(JT ;X)(u,R) be arbitrary. There holds

y(0) = y0 and G(ỹ0, ũ)(0) = ỹ0. Both, y and G(ỹ0, ũ) are continuous functions. Hence, we can
find some τ > 0 such that

sup
0≤t<τ

‖y(t)−G(ỹ0, ũ)(t)‖Xα
Tp

≤ sup
0≤t<τ

(‖y(t)− y0‖Xα
Tp

+ ‖y0 − ỹ0‖Xα
Tp

+ ‖ỹ0 −G(ỹ0, ũ)(t)‖Xα
Tp

) < r

if R > 0 is small enough. Hence, we can apply the pointwise Lipschitz estimate (3.9) to
‖F [y]− F [G(ỹ0, ũ)]‖X . Together with (2.24) and (3.3) we can then estimate

‖y(t)−G(ỹ0, ũ)(t)‖Xα
Tp

≤ c1‖y0 − ỹ0‖Xα
Tp

+ c2(T, y)

t∫
0

(t− s)−α[‖(F [y])(s)− (F [G(ỹ0, ũ)])(s)‖X

+ ‖u(s)− ũ(s)‖X ] ds

≤ L(y)c2(T, y)

t∫
0

(t− s)−α sup
0≤τ≤s

‖y(τ)−G(ỹ0, ũ)(τ)‖Xα
Tp
ds

+ c3(T, y)
[
‖y0 − ỹ0‖Xα

Tp
+ ‖u− ũ‖Lq(JT ;X)

]
for t ∈ [0, τ) and constants c1, c2(T, y), c3(T, y) > 0.
Similar as in Step II, taking the supremum over τ ∈ [0, t] on both sides leaves the right hand
side unchanged. Hence, Gronwall’s lemma yields some constant C(T, y) > 0 such that

sup
0≤t≤τ

‖y(t)−G(ỹ0, ũ)(t)‖Xα
Tp
≤ C(T, y)

[
‖y0 − ỹ0‖Xα

Tp
+ ‖u− ũ‖Lq(JT ;X)

]
< r
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if R is chosen small enough, since ỹ0 ∈ BXα
Tp

(y0, R) and ũ ∈ BLq(JT ;X)(u,R). Repeating the

argument shows that

sup
0≤t≤T

‖y(t)−G(ỹ0, ũ)(t)‖Xα
Tp
≤ C(T, y)

[
‖y0 − ỹ0‖Xα

Tp
+ ‖u− ũ‖Lq(JT ;X)

]
< r

for some appropriate R > 0 and all ỹ0 ∈ BXα
Tp

(y0, R), ũ ∈ BLq(JT ;X)(u,R). Consequently, G

maps BXα
Tp

(y0, R)×BLq(JT ;X)(u,R) into BC(JT ;Xα
Tp

)(y, r) and F is Lipschitz continuous on

BC(JT ;Xα
Tp

)(y, r). A similar computation then yields a constant C(T, y) > 0 such that for

arbitrary y
(1)
0 , y

(2)
0 ∈ BXα

Tp
(y0, R) and u1, u2 ∈ BLq(JT ;X)(u,R) there holds

sup
0≤t≤T

‖G(y
(1)
0 , u1)(t)−G(y

(2)
0 , u2)(t)‖Xα

Tp
≤ C(T, y)

[
‖y(1)

0 − y
(2)
0 ‖Xα

Tp
+ ‖u1 − u2‖Lq(JT ;X)

]
.

Consequently, G is Lipschitz continuous on BXα
Tp

(y0, R)×BLq(JT ;X)(u,R). Because y0 and u0

were arbitrary, this proves that G is locally Lipschitz continuous from Xα
Tp
× Lq(JT ;X) to

C(JT ;Xα
Tp

).

(IV) Uniqueness:
Uniqueness of the mild solution is already implied in local Lipschitz continuity of G since

G(y
(1)
0 , u1) = G(y

(2)
0 , u2) if one inserts y

(1)
0 = y

(2)
0 and u1 = u2 into the Lipschitz estimate in

Step III.
(V) Higher regularity:
For the last statement of the theorem assume that Tp satisfies maximal parabolic Sobolev

regularity on X, see Definition 2.34, and suppose y0 ∈ Xβ
Tp

for some β ∈ [α, 1]. Consider

y = G(y0, u) and let s ∈ (1, q] ∩ (1,∞) be arbitrary first. Then we apply ( ddt + Tp)
−1 to

F [y] + u ∈ Ls(JT ;X) to obtain a function ỹ ∈ YTp,s which solves the evolution equation

d

dt
ỹ(t) + Tpỹ(t) = F [y](t) + u(t) for t > 0, ỹ(0) = 0.

Furthermore, by Theorem 2.22 the mapping ỹ0 : t 7→ e−Tpty0 ∈ X is differentiable for all t > 0
with (

d

dt
+ Tp

)
e−Tpty0 = 0.

Consequently, there holds y = ỹ0 + ỹ. ỹ is contained in YTp,s and ỹ0 is absolutely continuous
with values in X, i.e. ỹ0 ∈ C(JT ;X). For the derivative of ỹ0 there holds∫ T

0

∥∥∥∥ ddte−Tpty0

∥∥∥∥s
X

dt =

∫ T

0

∥∥Tpe−Tpty0

∥∥s
X
dt

=

∫ T

0

∥∥∥T 1−β
p e−TptT βp y0

∥∥∥s
X
dt

≤
∫ T

0
‖T 1−β

p e−Tpt‖sL(X)‖y0‖sXβ
Tp

dt.

(3.10)

If β = 1 then the last expression can be estimated in the form csT‖y0‖s
Xβ
Tp

. This value is finite

for any s ∈ (1,∞) since y0 ∈ Xβ
Tp

. In this case, ỹ0 ∈ YTp,s and then also y ∈ YTp,s for any
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s ∈ (1, q] ∩ (1,∞). For β ∈ [α, 1) let s ∈
(

1, 1
1−β

)
∩ (1, q] be arbitrary. Note that there holds

−s(1− β) > −1. Hence, with (2.24) and (3.3) we obtain∫ T

0

∥∥∥T 1−β
p e−Tpt

∥∥∥s
L(X)

‖y0‖sXβ
Tp

dt ≤ c
∫ T

0
t−s(1−β) dt‖y0‖sXβ

Tp

<∞.

That is, ỹ0 ∈ YTp,s and therefore y ∈ YTp,s for any s ∈
(

1, 1
1−β

)
∩ (1, q]. Observe that s = q is

not possible for β = α since q > 1
1−α by assumption. We prove that the linear bound (3.2)

holds with C(JT ;Xα
Tp

) replaced by YTp,s and ‖y0‖Xα
Tp

replaced by ‖y0‖Xβ
Tp

. To this aim, we

choose s arbitrary in the interval (1, q] ∩ (1,∞) if β = 1 and in
(

1, 1
1−β

)
∩ (1, q] if β ∈ [α, 1).

Remember that W[Sy](t) ∈ [a, b] for all t ∈ JT . Hence, by (A3) and (3.2) there holds

‖F [y] + u‖Ls(JT ;X) ≤M
(∫ T

0
(1 + ‖y(t)‖Xα + ‖W[Sy](t)‖+ ‖u‖X)s dt

)1/s

≤ c0(1 + ‖y‖Ls(JT ;Xα
Tp

) + ‖u‖Ls(JT ;X)) ≤ c0(1 + ‖y‖C(JT ;Xα
Tp

) + ‖u‖Ls(JT ;X))

≤ c0(C(T ) + 1)(1 + ‖y0‖Xα
Tp

+ ‖u‖Ls(JT ;X))

for constants c0, C(T ) > 0. Moreover, notice that ( ddt + Tp)
−1 is linear and bounded as an

operator from Ls(JT ;X) to YTp,s,0 with some constant cTp > 0, see Remark 2.35. That is,
together with (3.10) and since ‖y0‖Xα

Tp
≤ ‖y0‖Xβ

Tp

and ‖u‖Ls(JT ;X) ≤ ‖u‖Lq(JT ;X) we obtain

‖G(y0, u)‖YTp,s ≤ ‖ỹ‖YTp,s + ‖ỹ0‖YTp,s

=

∥∥∥∥∥
(
d

dt
+ Tp

)−1

(F [y] + u)

∥∥∥∥∥
YTp,s

+ ‖ỹ0‖YTp,s

≤ c1(C(T ) + 1)(1 + ‖y0‖Xα
Tp

+ ‖u‖Ls(JT ;X)) + c2‖y0‖Xβ
Tp

≤ c3(T )(1 + ‖y0‖Xβ
Tp

+ ‖u‖Lq(JT ;X))

for constants c1 = c0cTp , c2 > 0 and c3(T ) = c1(C(T ) + 1) + c2. To prove that G is locally

Lipschitz continuous into YTp,s let V0 × V be a neighborhood of (y0, u) in Xβ
Tp
× Lq(JT ;X) such

that G is Lipschitz continuous from the embedding V0× V ↪→ Xα
Tp
×Lq(JT ;X) into C(JT ;Xα

Tp
)

with modulus L1(y0, u) > 0. We can choose V0 × V small enough such that F is Lipschitz
continuous on the set G(V0, V ) ⊂ C(JT ;Xα

Tp
) with modulus L2(y0, u) := L2(G(y0, u)) > 0. Let

y
(1)
0 , y

(2)
0 ∈ V0 and u1, u2 ∈ V be given and denote yi := G(y

(i)
0 , ui) for i ∈ {1, 2}. Then

‖F [y1]− F [y2] + u1 − u2‖Ls(JT ;X) ≤ L2(y0, u)‖y1 − y2‖C(JT ;Xα
Tp

) + ‖u1 − u2‖Ls(JT ;X)

≤ (1 + L1(y0, u)L2(y0, u))(‖y(1)
0 − y

(2)
0 ‖Xα

Tp
+ ‖u1 − u2‖Lq(JT ;X)).

Similar as for the proof of linear boundedness of G we write ỹi :=
(
d
dt + Tp

)−1
(F [yi] + ui) and

ỹ
(i)
0 : t 7→ e−Tptỹ

(i)
0 for i ∈ {1, 2} and obtain

‖ỹ1 − ỹ2‖YTp,s ≤ L3(y0, u))(‖y(1)
0 − y

(2)
0 ‖Xα

Tp
+ ‖u1 − u2‖Lq(JT ;X))
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for L3(y0, u) := cTp(1 + L1(y0, u)L2(y0, u)). This together with (3.10) and the embedding

Xβ
Tp
↪→ Xα

Tp
yields

‖y1 − y2‖YTp,s = ‖ỹ1 − ỹ2 + ỹ
(1)
0 − ỹ

(2)
0 ‖YTp,s ≤ ‖ỹ1 − ỹ2‖YTp,s + ‖ỹ(1)

0 − ỹ
(2)
0 ‖YTp,s

≤ L4(y0, u))(‖y(1)
0 − y

(2)
0 ‖Xβ

Tp

+ ‖u1 − u2‖Lq(JT ;X))

for some modulus L4(y0, u)) > 0.

Remark 3.3. As an alternative to the proof of Step V in Theorem 3.2, we make use of Propo-
sition [Ama05, Proposition] which states that maximal parabolic Ls(JT ;X)-regularity of Tp is
equivalent to the fact that

(
d
dt + Tp, γ0

)
is an isomorphism from YTp,s to Ls(JT ;X)×(X,X1

Tp
)s′,s.

Here, γ0 is defined as γ0(y) := y(0) for y ∈ YTp,s. We refer to [Ama95, Chapter III.4] for further
details. By [Haa06, Corollary 6.6.3] there holds

(X,X1
Tp)β,1 ↪→ Xβ

Tp
↪→ (X,X1

Tp)β,∞

for all β ∈ (0, 1). Moreover, by [Ama05, Section 1] we have

(X,X1
Tp)β,∞ ↪→ (X,X1

Tp)s′,1 ↪→ (X,X1
Tp)s′,s

if s′ < β ⇔ s < 1
1−β . Hence, for β ∈ [α, 1) and any s ∈

(
1, 1

1−β

)
∩ (1, q], Xβ

Tp
↪→ (X,X1

Tp
)s′,s

and
(
d
dt + Tp, γ0

)−1
is bounded as an operator from Ls(JT ;X)×Xβ

Tp
into YTp,s.

Now in the notation of Step V in Theorem 3.2 there holds
(
d
dt + Tp, γ0

)−1
(0, y0) = ỹ0 and(

d
dt + Tp, γ0

)−1
(F [y] + u, 0) = ỹ so that

G(y0, u) =

(
d

dt
+ Tp, γ0

)−1

(F [y] + u, y0) = ỹ0 + ỹ ∈ YTp,s.

The statement about local Lipschitz continuity then follows from boundedness of the operator(
d
dt + Tp, γ0

)−1
and local Lipschitz continuity of F in C(JT ;Xα

Tp
) and of G : Xα

Tp
×Lq(JT ;XTp)→

C(JT ;Xα
Tp

). The statement about the linear bound for G follows from (3.2) and boundedness of(
d
dt + Tp, γ0

)−1
.

Note that we need β to be strictly larger than α in order to obtain s = q. Indeed, q ∈
(

1
1−α ,∞

]
by assumption, so that q /∈

(
1, 1

1−α

)
=
(

1, 1
1−β

)
∩ (1, q] if β = α.

The following Corollary 3.4 is a generalization of [Mün17a, Theorem 3.1] from zero initial value

to initial values y0 ∈ Xβ
Ap+1.

Corollary 3.4. Let Assumption 3.1 hold. Instead of (A1) suppose that Ap is a diffusion
operator in the sense of Definition 2.17 for some p ∈ J∩ [2,∞), with J as in Corollary 2.19. Let

q ∈
(

1
1−α ,∞

]
and s be arbitrary in the interval

(
1, 1

1−β

)
∩ (1, q] if β ∈ [α, 1) and in the interval

(1, q] ∩ (1,∞) if β = 1. Then for all y0 ∈ Xβ
Ap+1 and u ∈ Lq(JT ;X) the evolution equation

d

dt
y(t) + (Apy)(t) = (F [y])(t) + u(t) in X = W−1,p

ΓD
(Ω) for t > 0,

y(0) = y0 ∈ X,
(3.11)

40



has a unique solution y = y(y0, u) in YAp,s. The solution mapping

G : (y0, u) 7→ y(y0, u), Xβ
Ap+1 × Lq(JT ;X)→ YAp,s

is locally Lipschitz continuous. G is linearly bounded with values in YAp,s, i.e. for some C(T ) > 0
there holds

‖G(y0, u)‖YAp,s ≤ C(T )(1 + ‖y0‖Xβ
Ap+1

+ ‖u‖Lq(JT ;X)) (3.12)

for all y0 ∈ Xβ
Ap+1 and u ∈ Lq(JT ;X) and C(T ) is independent of y0 and u.

Proof. The proof follows the lines of Theorem 3.2. By Remark 2.35, Ap satisfies maximal
parabolic Sobolev regularity on X. The only difference to Theorem 3.2 is that (3.11) contains
only the diffusion operator Ap instead of the sectorial operator Tp = Ap + 1, cf. (3.1). Hence,
the estimates in (2.21) have to be exchanged by the estimates

‖ exp(−Apt)‖L(X) = ‖ exp(−(Ap + 1)t) exp(t)‖L(X) ≤ C exp((1− δ)t),
‖(Ap + 1) exp(−Apt)‖L(X) = ‖(Ap + 1) exp(−(Ap + 1)t) exp(t)‖L(X)

≤ C

t
exp((1− δ)t).

(3.13)

Similarly, (2.24)–(2.25) have to be replaced by

‖(Ap + 1)α exp(−Apt)‖X = et‖(Ap + 1)α exp(−(Ap + 1))‖X ≤ Cαt−α exp((1− δ)t), (3.14)

for α ≥ 0 and

‖(exp(−Apt)− Id)u‖X ≤ exp((1− δ)t)
(

1

α
C1−αt

α + Ct

)
‖(Ap + 1)αu‖X (3.15)

for α ∈ (0, 1] and u ∈ Xα
Ap+1. That the function t 7→ exp((1 − δ)t) is monotone increasing for

δ ∈ (0, 1) is not a problem, since the time interval JT is a priori fixed and bounded. However,
several more constants in the proof depend on T > 0 now.

3.3 Hadamard differentiability of the solution operator for the evolution
equation

Well-posedness of the evolution equation (3.1) and Lipschitz continuity of the solution operator
G have been shown in Theorem 3.2. The next natural question is whether G is differentiable in
the forcing term u and the initial value y0 in some sense. Moreover, with respect to the optimal
control problem to be studied in Section 4, a chain rule would be desirable. The stop operator
W is not differentiable in the classical sense, and hence G cannot be so either. Nevertheless, it
turns out that G is Hadamard directionally differentiable in the sense of [BS00; BK15].
Hadamard directional differentiability of G for the case of a diffusion operator Ap and trivial
initial value, i.e. for the mapping u 7→ G(0, u), u ∈ Lq(JT ;X), has already appeared in [Mün17a,
Section 4]. In this section, we extend those results to apply to general elliptic operators Tp and

non-trivial initial values, i.e. for G defined on Xβ
Tp
× Lq(JT ;X), β ∈ [α, 1), q ∈

(
1

1−α ,∞
)

.

First of all, we define the notion of directional differentiability of a mapping g : U ⊂ Z → Y
which is used in this work. Here, U ⊂ Z is an open set in Z and Z and Y are normed vector
spaces.
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Definition 3.5. [BS00, Definition 2.44] Let Z, Y be normed vector spaces. We call g direction-
ally differentiable at x ∈ U ⊂ Z in the direction h ∈ Z if

g′[x;h] := lim
λ↓0

g(x+ λh)− g(x)

λ

exits in Y . If g is directionally differentiable at x in every direction h we call g directionally
differentiable at x.

Based on this definition, we introduce the concept of Hadamard directional differentiability:

Definition 3.6. [BS00, Definition 2.45] If g is directionally differentiable at x ∈ U and if in

addition for all functions r : [0, λ0)→ Z with lim
λ→0

r(λ)
λ = 0 there holds

g′[x;h] = lim
λ↓0

g(x+ λh+ r(λ))− g(x)

λ

for all directions h ∈ Z, we call g′[x;h] the Hadamard directional derivative of g at x in the
direction h.
Note that g(x+λh+r(λ)) is only well defined if λ is already small enough so that x+λh+r(λ) ∈
U .

As already mentioned, the chain rule applies for Hadamard directionally differentiable mappings.
The latter will be crucial not only for the application in an optimal control problem, but already
in order to prove differentiability of the composed mapping G.

Lemma 3.7. [BS00, Proposition 2.47] Suppose that g : U ⊂ Z → Y is Hadamard directionally
differentiable at x ∈ U and that f : V ⊂ g(U) → Z is Hadamard directionally differentiable at
g(x) ∈ V . Then f ◦ g : U → Z is Hadamard directionally differentiable at x and

(f ◦ g)′[x;h] = f ′
[
g(x); g′[x;h]

]
.

The following lemma provides the main tool to prove Hadamard directional differentiability.

Lemma 3.8. [BS00, Proposition 2.49] Suppose that g : U ⊂ Z → Y is directionally differen-
tiable at x ∈ U and in addition Lipschitz continuous with modulus c(x) in a neighborhood of
x. Then g is Hadamard directionally differentiable at x and g′[x; ·] is Lipschitz continuous on Z
with modulus c(x).

Remark 3.9. [cf. Mün17a, Remark 4.5] Remember Theorem 2.40, which states that the stop
operator W is Hadamard directionally differentiable as a mapping C[0, T ]→ Lq(0, T ).
Furthermore, note that all the results in this section remain valid if the stop operator is exchanged
by P or by some other hysteresis operator with appropriate properties. We decided for W with
regard to the application in Chapter 4. There, equation (3.1) will serve as the state equation for
an optimal control problem. The derivation of an adjoint system for this problem will be based
on a regularization of the variational inequalities (2.27)–(2.29) which represent W.

In order to prove Hadamard directional differentiability of the solution operator for problem
(3.1) we need a further assumption on the non-linearity f .

Assumption 3.10. [cf. Mün17a, Assumption 4.6] In addition to Assumption 3.1 we assume
that f is directionally differentiable and therefore Hadamard directionally differentiable.
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The following theorem on Hadamard directional differentiability of G resembles [MS15, Theorem
3.2]. However, different techniques for the proof are required due to the hysteresis operator
and since f is only locally Lipschitz continuous. Moreover, other than [MS15, Theorem 3.2],
Theorem 3.11 below applies for non-trivial initial value. Theorem 3.11 is a generalization of
[Mün17a, Theorem 4.7] from diffusion operators Ap and zero initial value to general elliptic

operators Tp and initial values y0 ∈ Xβ
Tp

, β ∈ [α, 1].

Theorem 3.11. Let Assumption 3.10 hold and consider the notation from Theorem 3.2. Then

for any q ∈
(

1
1−α ,∞

)
, the solution operator G : Xα

Tp
× Lq(JT ;X) → C(JT ;Xα

Tp
) of problem

(3.1) is Hadamard directionally differentiable. Its derivative y(y0,u),(h0,h) := G′[(y0, u); (h0, h)] at
(y0, u) ∈ Xα

Tp
× Lq(JT ;X) in direction (h0, h) ∈ Xα

Tp
× Lq(JT ;X) is given by the unique mild

solution ζ ∈ C(JT ;Xα
Tp

) of

ζ̇(t) + (Tpζ)(t) = F ′[y; ζ](t) + h(t) in JT ,

ζ(0) = h0,
(3.16)

where F ′[y; ζ](t) = f ′[(y(t),W[Sy](t)); (ζ(t),W ′[Sy;Sζ](t))] and y = G(y0, u), see Theorem 3.2.
In particular, there holds

ζ(t) = e−tTph0 +

∫ t

0
e−Tp(t−s)(F ′[y; ζ](s) + h(s)) ds for t > 0.

Moreover, the mapping (h0, h) 7→ G′[(y0, u); (h0, h)] is Lipschitz continuous from Xα
Tp
×Lq(JT ;X)

to C(JT ;Xα
Tp

) with a modulus of continuity C = C(G(y0, u), T ).

If Tp satisfies maximal parabolic regularity on X and if β ∈ [α, 1], then all statements on G

remain valid for C(JT ;Xα
Tp

) replaced by YTp,s and with Xβ
Tp

instead of Xα
Tp

. Here, s is arbitrary

in the interval
(

1, 1
1−β

)
∩ (1, q] if β ∈ [α, 1) and s = q if β = 1.

We divide the proof of Theorem 3.11 into several lemmas. Those extend the five steps in the
proof of [Mün17a, Theorem 4.7] to our generalized framework.

Lemma 3.12 (Nemytski operator of f). Consider the assumptions and notation from Theo-
rem 3.11. Then the function

F̃ : C(JT ;Xα
Tp)× Lq(JT )→ Lq(JT ;X), (y, v) 7→ [t 7→ f(y(t), v(t))]

is Hadamard directionally differentiable.

Proof. The proof is divided into four steps.
(I) Well-posedness of F̃ :
We show that F̃ is well defined. The function x 7→ xq, x ∈ R, is convex since q > 1. Hence,
there holds

(x1 + x2)q = 2q
(x1

2
+
x2

2

)q
≤ 2q−1(xq1 + xq2) for x1, x2 ∈ R+. (3.17)

Let (y, v) ∈ C(JT ;Xα
Tp

) × Lq(JT ) be arbitrary. Measurability of F̃ (y, v) is a consequence of

measurability of y and v and continuity of f in both components. Furthermore, (3.17) implies

‖f(y(s), v(s))‖qX ≤M
q(‖y(s)‖Xα

Tp
+ |v(s)|+ 1)q ≤M q2q−1[(‖y(s)‖Xα

Tp
+ 1)q + |v(s)|q]
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for a.e. s ∈ JT with M from (A3) in Assumption 3.1. Consequently, F̃ (y, v) ∈ Lq(JT ;X) and F̃
is well defined.
(II) Local Lipschitz continuity of F̃ :
We show that F̃ is locally Lipschitz continuous with respect to the C(JT ;Xα

Tp
)-norm. Remember

Step III in the proof of Theorem 3.2 were we proved local Lipschitz continuity of the mapping
(y(·), v) 7→ f(y(·), v) from C(JT ;Xα

Tp
) × R to C(JT ;X) with respect to the C(JT ;Xα

Tp
)-norm.

Hence, for any y ∈ C(JT ;Xα
Tp

) we may choose constants r, L(y) > 0 such that the latter function

is Lipschitz continuous in BC(JT ;Xα
Tp

)(y, r) × R with modulus L(y). Moreover, by (3.8) the

corresponding Lipschitz estimates hold pointwise in time.
Let y1, y2 ∈ BC(JT ;Xα

Tp
)(y, r) and v1, v2 ∈ Lq(JT ) be arbitrary. Then (3.8) implies that for a.e.

s ∈ JT

‖F̃ (y1, v1)(s)− F̃ (y2, v2)(s)‖X ≤ L(y)
[
‖y1(s)− y2(s)‖Xα

Tp
+ |v1(s)− v2(s)|

]
.

We integrate over s ∈ JT , apply Minkowski’s inequality and estimate

‖y1 − y2‖Lq(JT ;Xα
Tp

) ≤ T 1/q‖y1 − y2‖C(JT ;Xα
Tp

)

to obtain

‖F̃ (y1, v1)− F̃ (y2, v2)‖Lq(JT ;X) ≤ L(y)
[
‖y1 − y2‖Lq(JT ;Xα

Tp
) + ‖v1 − v2‖Lq(JT )

]
≤ L(y)

[
T 1/q‖y1 − y2‖C(JT ;Xα

Tp
) + ‖v1 − v2‖Lq(JT )

]
≤ L(y)(1 + T 1/q)

[
‖y1 − y2‖C(JT ;Xα

Tp
) + ‖v1 − v2‖Lq(JT )

]
.

(3.18)

This proves local Lipschitz continuity of F̃ .
(III) Directional differentiability of F̃ :
We show that F̃ is directionally differentiable. Let y ∈ C(JT ;Xα

Tp
), r and L(y) be chosen as in

Step II and consider any v ∈ Lq(JT ). Moreover, let (h, l) ∈ C(JT ;Xα
Tp

) × Lq(JT ) be arbitrary

and choose λ0 > 0 small enough such that y + λh ∈ BC(JT ;Xα
Tp

)(y, r) for all λ ∈ (0, λ0].

For λ ∈ (0, λ0] consider the differential quotient

F̃λ :=
1

λ
[F̃ (y + λh, v + λl)− F̃ (y, v)] ∈ Lq(JT ;X).

By Assumption 3.10, f is directionally differentiable. Hence,

lim
λ→0

F̃λ(s) = f ′[(y(s), v(s)); (h(s), l(s))] ∈ X for a.e. s ∈ JT .

Moreover, for a.e. s ∈ JT and since λ0 is small enough, Step II implies

‖F̃λ(s)‖X ≤ L(y)
[
‖h(s)‖Xα

Tp
+ |l(s)|

]
.

Because the right side is contained in Lq(JT ), we conclude from Lebesgue’s dominated conver-
gence theorem that F̃λ converges to the function

s 7→ f ′[(y(s), v(s)); (h(s), l(s))] ∈ Lq(JT ;X)

in Lq(JT ;X) with λ→ 0, i.e. that F̃ is directionally differentiable.
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Note that this step was shown as [MS15, Lemma 3.1]. Steps I–II required additional work.
(IV) Hadamard directional differentiability of F̃ :
We exploit Lemma 3.8. F̃ is locally Lipschitz continuous and directionally differentiable by
Steps II–III. Hence, Lemma 3.8 implies that F̃ is Hadamard directionally differentiable. More-
over, it follows that the mapping (h, l) 7→ F̃ ′[(y, v); (h, l)] is Lipschitz continuous.

We apply the chain rule Lemma 3.7 and Lemma 3.12 to conclude that F is Hadamard direc-
tionally differentiable.

Lemma 3.13 (Hadamard differentiability of F ). Consider the assumptions and notation as in
Theorem 3.11 and Lemma 3.12. Then the function

F : C(JT ;Xα
Tp)→ Lq(JT ;X), (F [y])(t) = f(y(t),W[Sy](t)) = F̃ (y(t),W[Sy](t))

is Hadamard directionally differentiable and locally Lipschitz continuous. Moreover, for any
y ∈ C(JT ;Xα

Tp
) the mapping

F ′[y; ·] : C(JT ;Xα
Tp)→ Lq(JT ;X),

h 7→ F ′[y;h], where

F ′[y;h](t) = f ′[(y(t),W[Sy](t)); (h(t),W ′[Sy;Sh](t))] for a.e. t ∈ JT ,

is Lipschitz continuous with a modulus C(y).

Proof. First of all, the identity mapping Id on C(JT ;Xα
Tp

) and the operator S : C(JT ;Xα
Tp

) →
C(JT ) are linear and continuous and hence Fréchet differentiable. The derivatives are given
by Id and S. Moreover, W : C(JT ) → Lq(JT ) is Hadamard directionally differentiable by
Theorem 2.40. Hence, the chain rule Lemma 3.7 implies Hadamard directional differentiability
of the mapping

y 7→ (y,W[Sy])

from C(JT ;Xα
Tp

) into C(JT ;Xα
Tp

)× Lq(JT ) with derivative

h 7→ (h,W ′[Sy;Sh]).

Since F̃ is Hadamard directionally differentiable by Lemma 3.12 and because F = F̃ ◦(Id,W◦S),
another application of Lemma 3.7 implies that F is Hadamard directionally differentiable with

F ′[y;h](t) = f ′[(y(t),W[Sy](t)); (h(t),W ′[Sy;Sh](t))]

for y, h ∈ C(JT ;Xα
Tp

) and a.e. t ∈ JT .
In Step III in the proof of Theorem 3.2 we have shown that F is locally Lipschitz continuous from
C(JT ;Xα

Tp
) to C(JT , X) and hence from C(JT ;Xα

Tp
) to Lq(JT ;X) as well. Lemma 3.8 therefore

yields Lipschitz continuity of the mapping h → F ′[y;h] from C(JT ;Xα
Tp

) to Lq(JT ;X) for any

y ∈ C(JT ;Xα
Tp

).

Lemma 3.14 (Mild solutions for (3.16)). Consider the assumptions and notation as in Theo-
rem 3.11. Then for arbitrary y ∈ C(JT ;Xα

Tp
) and (h0, h) ∈ Xα

Tp
×Lq(JT ;X) there exists a unique

mild solution ζ = ζ(y, h0, h) of (3.16). Moreover, for y fixed the mapping

ζ(y, ·, ·) : Xα
Tp × Lq(JT ;X)→ C(JT ;Xα

Tp), (h0, h) 7→ ζ(y, h0, h)

is Lipschitz continuous with a modulus C = C(y, T ).
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Proof. We have to show that for arbitrary y ∈ C(JT ;Xα
Tp

) and (h0, h) ∈ Xα
Tp
× Lq(JT ;X) there

exists a unique fixed point ζ(y, h0, h) in C(JT ;Xα
Tp

) of the integral equation

ζ(t) = e−Tpth0 +

t∫
0

e−Tp(t−s)[F ′[y; ζ](s) + h(s)] ds.

Lipschitz continuity of the corresponding fixed point mapping g (see below) yields Lipschitz
continuity of the mapping (h0, h) 7→ ζ(y, h0, h) for fixed y, provided that ζ(y, h0, h) is well
defined. To prove the latter, we exploit the concrete Lipschitz modulus of g to prove the
existence of ζ first locally and continue the mild solution to the whole interval JT by induction.
Remember Lemma 3.13, namely that the function

F ′[y; ·] : C(JT ;Xα
Tp)→ Lq(JT ;X),

ζ 7→ F ′[y; ζ], where

F ′[y; ζ](t) = f ′[(y(t),W[Sy](t)); (ζ(t),W ′[Sy;Sζ](t))] for a.e. t ∈ JT ,

is Lipschitz continuous with a modulus C(y).
Moreover, recall (2.24) and (3.3) so that

‖Tαp exp(−Tpt)‖L(X) ≤ Cαt−α exp(−δt), and(∫ t

0
(t− s)−αq′ ds

)1/q′

=

(
t1−αq

′

1− αq′

)1/q′

=
t1/q

′−α

(1− αq′)1/q′−α .

Then as in Step II in Theorem 3.2 we apply Minkowski’s inequality to prove that for arbitrary
T̃ ∈ (0, T ] the function

g : ζ 7→

t 7→ e−Tpth0 +

t∫
0

e−Tp(t−s)[F ′[y; ζ](s) + h(s)] ds


is well defined on C([0, T̃ ];Xα

Tp
) and Lipschitz continuous with a modulus of the form

L(T̃ ) = C̃(y)T̃ 1/q′−α.

Similar as Steps IV–V of Theorem 3.2 about local Lipschitz continuity and uniqueness of G,
this observation and a Gronwall argument already imply uniqueness and the statement about
Lipschitz continuity for fixed y, assuming that the fixed point mapping (h0, h) 7→ ζ(y, h0, h) is
well defined.
It remains to show that g has a fixed point in C(JT ;Xα

Tp
). To this aim, we choose k ∈ N with

L

(
T

k

)
:= C(y)

(
T

k

)1/q′−α
<

1

2
.

Moreover, we define tj := jT
k for 1 ≤ j ≤ k and

H(t) := e−Tpth0 +

t∫
0

e−Tp(t−s)h(s) ds, t ∈ JT .
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We begin by proving that g has a fixed point in C(Jt1 ;Xα
Tp

) = C([0, t1];Xα
Tp

). Denote by

g1 := g : C(Jt1 ;Xα
Tp

)→ C(Jt1 ;Xα
Tp

) the restriction of g to C(Jt1 ;Xα
Tp

).

Consider N0 := ‖H‖C(JT ;Xα
Tp

) and the closed set BC(Jt1 ;Xα
Tp

)(H,N0). Note that g1 is a contrac-

tion on C(Jt1 ;Xα
Tp

) so that we can apply Banach’s fixed point theorem if BC(Jt1 ;Xα
Tp

)(H,N0)

is invariant under g1. By definition of g and H there holds g(0) = H. Hence, for any
ζ ∈ BC(Jt1 ;Xα

Tp
)(H,N0), because L

(
T
k

)
< 1

2 , we can estimate

‖g1(ζ)(t)−H(t)‖Xα
Tp

= ‖g(ζ)(t)− g(0)(t)‖Xα
Tp
≤ 1

2
‖ζ(t)‖Xα

Tp

≤ 1

2
‖ζ(t)−H(t)‖Xα

Tp
+

1

2
‖H(t)‖Xα

Tp
≤ N0.

This proves that BC(Jt1 ;Xα
Tp

)(H,N0) is invariant under g1, and we obtain a (unique) fixed point

ζ1 ∈ BC(Jt1 ;Xα
Tp

)(H,N0) of g1.

We continue by induction. Consider Nj := 2Nj−1 + N0 for 2 ≤ j ≤ k. Assuming that the
unique fixed point ζj−1 of gj−1 exists from the previous step let the mapping gj : C(Jtj , X

α
Tp

)→
C(Jtj , X

α
Tp

) be defined as

gj(ζ)(t) :=


ζj−1(t) if t ∈ [0, tj−1],

ζj−1(tj−1) + e−Tp(t−tj−1)h0 +
t∫

tj−1

e−Tp(t−s)[F ′[y; ζ](s) + h(s)] ds if t ∈ [tj−1, tj ]
.

We have to show that each gj has a fixed point.
As for g1 it follows from the definition that gj(0) = ζj−1(tj−1)+H−H(tj−1) in C([tj−1, tj ];X

α
Tp

).

Moreover, gj is a 1
2 -contraction on C(Jtj ;X

α
Tp

). Hence, Banach’s fixed point theorem implies

existence of a fixed point ζj of gj if we can prove that gj maps BC(Jtj ;Xα
Tp

)(H,Nj) into itself.

Let ζ ∈ BC(Jtj ;Xα
Tp

)(H,Nj) be arbitrary. Then on [0, tj−1] we can estimate

‖gj(ζ)(t)−H(t)‖Xα
Tp

= ‖ζj−1(t)−H(t)‖Xα
Tp
≤ Nj−1 ≤ Nj

by induction and definition of Nj = 2Nj−1 +N0. For t ∈ [tj−1, tj ] there holds

‖gj(ζ)(t)−H(t)‖Xα
Tp

= ‖ζj−1(tj−1)−H(tj−1) + gj(ζ)(t)− gj(0)(t)‖Xα
Tp

≤ ‖ζj−1(tj−1)−H(tj−1)‖Xα
Tp

+
1

2
‖ζ(t)‖Xα

Tp

≤ Nj−1 +
1

2
‖ζ(t)−H(t)‖Xα

Tp
+

1

2
‖H(t)‖Xα

Tp

≤ Nj−1 +
Nj

2
+

1

2
‖H‖C(JT ,X

α
Tp

)

= Nj−1 +
2Nj−1 + ‖H‖C(JT ;Xα

Tp
)

2
+

1

2
‖H‖C(JT ,X

α
Tp

)

= 2Nj−1 + ‖H‖C(JT ,X
α
Tp

) = Nj .

Consequently, BC(Jtj ;Xα
Tp

)(H,Nj) is invariant under gj and we obtain a (unique) fixed point

ζj ∈ BC(Jtj ;Xα
Tp

)(H,Nj) of gj .
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Lastly, we prove that ζk provides a fixed point of g. By definition of g1 there holds

ζ2(t) = ζ1(t) = g2(ζ1)(t)

for t ∈ Jt1 and by definition of g2 we obtain

ζ2(t) =e−Tpt1h0 +

t1∫
0

e−Tp(t−s)[F ′[y; ζ1](s) + h(s)] ds

+ e−Tp(t−t1)h0 +

t∫
t1

e−Tp(t−s)[F ′[y0; ζ2](s) + h(s)] ds

for t ∈ [t1, t2]. Hence,

ζ2(t) = e−Tpth0 +

t∫
0

e−Tp(t−s)[F ′[y; ζ2](s) + h(s)] ds = g2(ζ2)(t) for t ∈ Jt2 .

Inductively, it follows that ζ = ζ(h0, h) := ζk is the unique solution in C(JT , X
α
Tp

) of the integral
equation

ζ(t) = e−Tpth0 +

t∫
0

e−Tp(t−s)[F ′[y; ζ](s) + h(s)] ds,

i.e. a fixed point of g.

Lemmas 3.12–3.14 provide us the necessary background to prove Theorem 3.11.

Proof of Theorem 3.11. We prove the theorem in two steps.
(I): Hadamard directional differentiability into C(JT ;Xα

Tp
):

Let any (y0, u) ∈ Xα
Tp
× Lq(JT ;X) be given and consider y = G(y0, u). For (h0, h) ∈ Xα

Tp
×

Lq(JT ;X) and λ > 0 we denote yλ := G(y0 + λh0, u+ λh). Let ζ = ζ(y, h0, h) ∈ C(JT ;Xα
Tp

) be

the unique mild solution of (3.16) which exists according to Lemma 3.14.
We make use of (2.24) and (3.3) so that

‖Tαp exp(−Tpt)‖L(X) ≤ Cαt−α exp(−δt), and(∫ t

0
(t− s)−αq′ ds

)1/q′

=

(
t1−αq

′

1− αq′

)1/q′

=
t1/q

′−α

(1− αq′)1/q′−α .

Moreover, estimate (3.9) in Step III of the proof of Theorem 3.2 about local Lipschitz conti-
nuity of F from C(JT ;Xα

Tp
) to C(JT , X) and local Lipschitz continuity of G from Lq(JT ;X) to

C(JT ;Xα
Tp

) (see Theorem 3.2) lead to an estimate of the form∥∥∥∥(F [y + λζ])(t)− (F [yλ])(t)

λ

∥∥∥∥
X

=

∥∥∥∥(F [G(y0, u) + λζ])(t)− (F [G(y0 + λh0, u+ λh)](t)

λ

∥∥∥∥
X

≤ L(y) sup
0≤τ ′≤t

∥∥∥∥yλ(τ ′)− y(τ ′)

λ
− ζ(τ ′)

∥∥∥∥
Xα
Tp

(3.19)
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for a.e. t ∈ JT and λ small enough. Similar as in [MS15, Theorem 3.2], we employ the
representation formulas for y, yλ and ζ to estimate∥∥∥∥yλ(t)− y(t)

λ
− ζ(t)

∥∥∥∥
Xα
Tp

≤ c1 max
τ∈Jt
{e−δτ}

t∫
0

(t− s)−α
(∥∥∥∥(F [y + λζ])(s)− (F [y])(s)

λ
− F ′[y; ζ](s)

∥∥∥∥
X

+

∥∥∥∥(F [y + λζ])(s)− (F [yλ])(s)

λ

∥∥∥∥
X

)
ds

≤ c2

(
t1/q

′−α
∥∥∥∥F [y + λζ]− F [y]

λ
− F ′[y; ζ]

∥∥∥∥
Lq(JT ;X)

+L(y)

t∫
0

(t− s)−α sup
0≤τ ′≤s

∥∥∥∥yλ(τ ′)− y(τ ′)

λ
− ζ(τ ′)

∥∥∥∥
Xα
Tp

ds


for constants c1, c2 > 0 and λ > 0 small enough. The first term converges to zero with λ → 0
by Lemma 3.13. The estimate of the second term holds by (3.19).
We take the supremum over all τ ∈ Jt on both sides, which leaves the right hand side unchanged.
An application of Gronwall’s lemma then implies the convergence of yλ−y

λ to ζ in C(JT ;Xα
Tp

).

Consequently, ζ is the directional derivative of G at (y0, u) in direction (h0, h).
Because G is also locally Lipschitz continuous, we finally conclude from Lemma 3.8 that the
solution mapping for problem (3.1) is Hadamard directionally differentiable fromXα

Tp
×Lq(JT ;X)

to C(JT ;Xα
Tp

).

(II) Hadamard directional differentiability into YTp,s:
Assume that Tp satisfies maximal parabolic Sobolev regularity on X, see Definition 2.34, and

suppose y0 ∈ Xβ
Tp

for some β ∈ [α, 1]. Moreover, let s be arbitrary in the interval
(

1, 1
1−β

)
∩(1, q]

if β ∈ [α, 1) and s = q if β = 1. As in Step I we denote y = G(y0, u) and for (h0, h) ∈
Xβ
Tp
× Lq(JT ;X) and λ > 0 we write yλ := G(y0 + λh0, u+ λh). That the function

ζ(t) = ζ(y, h0, h)(t) = e−Tpth0 +

t∫
0

e−Tp(t−s)[F ′[y; ζ](s) + h(s)] ds

is contained in YTp,s follows as in Theorem 3.2 from F ′[y; ζ] + h ∈ Lq(JT ;X) and h0 ∈ Xβ
Tp

.

Indeed, ζ =
(
d
dt + Tp, γ0

)−1
(F ′[y; ζ] + h, h0) with γ0 from Remark 3.3. From Step I we know

that
yλ − y
λ

→ ζ ⇔ y + λζ − yλ → 0 in C(JT ;Xα
Tp),

with λ→ 0 and hence the convergence holds in Ls(JT ;X) as well. Moreover, note that

yλ − y
λ
− ζ

=

(
d

dt
+ Tp, γ0

)−1(F [yλ] + u+ λh− (F [y] + u)

λ
− (F ′[y; ζ] + h),

y0 + λh0 − y0

λ
− h0

)
=

(
d

dt
+ Tp, γ0

)−1(F [yλ]− F [y]

λ
− F ′[y; ζ], 0

)
.
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These observations and Lemma 3.13 on the Hadamard directional differentiability and local
Lipschitz continuity of F : C(JT ;Xα

Tp
)→ Lq(JT ;X) ↪→ Ls(JT ;X) yield that∥∥∥∥yλ − yλ

− ζ
∥∥∥∥
YTp,s

=

∥∥∥∥∥
(
d

dt
+ Tp, γ0

)−1(F [yλ]− F [y]

λ
− F ′[y; ζ], 0

)∥∥∥∥∥
YTp,s

≤

∥∥∥∥∥
(
d

dt
+ Tp, γ0

)−1
∥∥∥∥∥
L
(

Ls(JT ;X)×Xβ
Tp
,YTp,s

)
∥∥∥∥F [yλ]− F [y]

λ
− F ′[y; ζ]

∥∥∥∥
Ls(JT ;X)

≤ c

(∥∥∥∥F [y + λζ]− F [y]

λ
− F ′[y; ζ]

∥∥∥∥
Ls(JT ;X)

+

∥∥∥∥F [y + λζ]− F [yλ]

λ

∥∥∥∥
Ls(JT ;X)

)

≤ c

∥∥∥∥F [y + λζ]− F [y]

λ
− F ′[y; ζ]

∥∥∥∥
Ls(JT ;X)

+ L(y)

∥∥∥∥yλ − yλ
− ζ
∥∥∥∥

C(JT ;Xα
Tp

)

→ 0

with λ→ 0. [Cf. MS15, Theorem 3.2] for a similar argument with zero initial values.

The following Corollary 3.15 is a generalization of [Mün17a, Theorem 4.7] from zero initial value

to initial values y0 ∈ Xβ
Ap+1.

Corollary 3.15. Consider the assumptions and the notation as in Corollary 3.4. For q ∈(
1

1−α ,∞
)

let s be arbitrary in the interval
(

1, 1
1−β

)
∩(1, q] if β ∈ [α, 1) and s = q if β = 1. Then

the solution operatorG : Xβ
Ap+1×Lq(JT ;X)→ YAp,s of problem (3.11) is Hadamard directionally

differentiable. Its derivative y(y0,u),(h0,h) := G′[(y0, u); (h0, h)] at (y0, u) ∈ Xβ
Ap+1 × Lq(JT ;X) in

direction (h0, h) ∈ Xβ
Ap+1 × Lq(JT ;X) is given by the unique solution ζ ∈ YAp,s of

ζ̇(t) + (Apζ)(t) = F ′[y; ζ](t) + h(t) in JT ,

ζ(0) = h0,
(3.20)

where F ′[y; ζ](t) = f ′[(y(t),W[Sy](t)); (ζ(t),W ′[Sy;Sζ](t))] and y = G(y0, u), see Corollary 3.4.

Moreover, the mapping (h0, h) 7→ G′[(y0, u); (h0, h)] is Lipschitz continuous from Xβ
Ap+1 ×

Lq(JT ;X) to YAp,s with a modulus of continuity c = C(G(y0, u), T ).

Proof. The proof follows the lines of Theorem 3.11. As in Corollary 3.4 note that Ap satisfies
maximal parabolic Sobolev regularity on X. Again, instead of the estimates in (2.21) we have
to use the estimates in (3.13) and (2.24)–(2.25) have to replaced by (3.14)–(3.15).

4 Optimal control of hysteresis-reaction-diffusion systems

In this chapter, we apply the results from Corollary 3.4 and Corollary 3.15 to an optimal control
problem. In particular, we discuss the control problem from [Mün17a, Section 5] which was
further analyzed in [Mün17b]. Accordingly, in the whole section, we specialize on diffusion
operators Ap and zero initial value, i.e. y0 = 0. We adapt the results of [Mün17a, Section 5]
and [Mün17b] to the structure of this work. Moreover, several of the proofs are given in more
detail. As described in the introduction, we also extend [Mün17b] by Subsection 4.4.5.
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More precisely, we consider two spaces of control functions. In one case, the control u is contained
in

U1 := L2
(
JT ; Ũ1

)
:= L2

(
JT ; [L2(Ω)]m

)
.

Hence, u acts inside the domain. In the other case,

u ∈ U2 := L2
(
JT ; Ũ2

)
:= L2

(
JT ;

m∏
i=1

L2(ΓNi ,Hd−1)

)

is a Neumann boundary control.
U1 and U2 are embedded into L2(JT ;X) by continuous operators B1 : Ũ1 → X and B2 : Ũ2 → X,
see (A6) below.
For u ∈ Ui, i ∈ {1, 2}, the corresponding state equation will be defined by y = G(0, Biu). The
latter is well-posed by Corollary 3.4. Since the initial value will be zero in the whole chapter,
we abbreviate

G(0, ·) := G(·).

With the representation of z =W[Sy] as in Definition 2.38, y = G(Biu) is equivalent to

ẏ(t) +Apy(t) = f(y(t), z(t)) +Biu(t) in X for t ∈ JT , (4.1)

y(0) = 0 in X,

(ż(t)− Sẏ(t))(z(t)− ξ) ≤ 0 for ξ ∈ [a, b] and t ∈ JT , (4.2)

z(t) ∈ [a, b] for t ∈ JT ,
z(0) = z0.

For i ∈ {1, 2}, yd ∈ U1 and κ > 0 we define the tracking type optimal control problem

min
u∈Ui

J(y, u) :=
1

2
‖y − yd‖2U1

+
κ

2
‖u‖2Ui

=
1

2

∫ T

0
‖y(s)− yd(s)‖2[L2(Ω)]m ds+

κ

2

∫ T

0
‖u(s)‖2

Ũi
ds

(4.3)

subject to (4.1)–(4.2).

Remark 4.1. The functions y = G(Biu) ∈ Y2,0 ↪→ L2(JT ; dom(Ap)) in (4.3) are identified

with I−1
p G(Biu) ∈ L2(JT ;W1,p

ΓD
(Ω)) ↪→ U1 for u ∈ Ui, according to Corollary 2.30, see also

Remark 2.32. We often write G(Biu) for both functions.

The outline of this chapter is the following:
The main assumption and some further notation in addition to that of Section 3.1 are given in
Section 4.1.
In Section 4.2, we apply the continuity results onG(Bi·) from Corollary 3.4 and prove existence of
an optimal control u for (4.1)–(4.3), together with the optimal state y = G(Biu) and z =W[Sy],
see Theorem 4.6, cf. [Mün17a, Section 5].
Afterwards, we continue with the results from [Mün17b].
Our first main interest here is to derive an adjoint system (p, q) and first order necessary opti-
mality conditions for problem (4.1)–(4.3). Corollary 3.15 yields Hadamard directional differen-
tiability of the reduced cost function, but since the mapping h 7→ G′[Biu;Bih] is not linear, we
can not apply standard techniques to obtain (p, q).
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Hence, in Section 4.3, we regularize the non-linearity f and the stop operator W in dependence
of a parameter ε > 0 and consider a regularized control problem first. Since the regularization
y 7→ Zε(Sy) of y 7→ W[Sy] as well as fε are Gâteaux-differentiable, Corollary 3.15 implies that
the same holds for the control-to-state operator u 7→ Gε(Biu), i ∈ {1, 2}. Moreover, since fε
and Zε satisfy the properties of f and W (they are even smoother), we exploit Theorem 4.6
and conclude the existence of optimal solutions uε, yε = Gε(Biuε) and zε = Zε(Syε) of the
regularized problems, see Corollary 4.11.
In Section 4.4, we drive the regularization parameter to zero, i.e. we consider the limit ε → 0.
In particular, we use weak compactness arguments to derive a subsequence (uεk , yεk , zεk) which
converges to a solution (u, y, z) of the original problem. Nevertheless, even to derive optimality
systems for the regularized problems remains challenging. The main problem here appears to
characterize the adjoint operator [G′ε[u; ·]]∗, since the mapping G′ε[u; ·] is only defined implicitly
via the solution of a reaction-diffusion system. The adjoint equations, i.e. the evolution equations
of pε and qε and an optimality condition for the regularized problem are stated in Theorem 4.20.
In particular, Theorem 4.20 provides a relation between (pε, qε) and uε and u. Once the adjoint
systems (pε, qε) are obtained, driving the regularization parameter to zero yields an adjoint
system (p, q) for problem (4.1)–(4.3). The evolution equation for p is obtained without much
effort. Most of the difficulties are due to the low regularity of the adjoint variable q which belongs
to z. Unfortunately, uniform-in-ε bounds for q̇ε only hold in L1(JT ). Consequently, we have to
pass to weak star convergence in C(JT )∗. Accordingly, q is only contained in BV(JT ), the space
of functions with bounded total variation in JT . Hence, we cannot expect a time derivative of q,
but only obtain a measure dq ∈ C(JT )∗ which describes the evolution of q. In order to complete
the optimality system, we study q and dq in more detail. A lot of the properties of q and the
corresponding measure dq can be proven. But the measure equation for dq still depends on
an abstract measure dµ ∈ C(JT )∗. Furthermore, the optimality conditions for problem (4.1)–
(4.3) include dµ, which makes it even more interesting to characterize the measure completely.
Although it is shown in [Mün17b] that dµ has its support only in a part of JT , a complete
characterization could not be established. With an additional regularity Assumption 4.30, the
support of dµ can be further reduced. In extension to [Mün17b], we provide an example in
which Assumption 4.30 is satisfied, see Example 4.32.
In Subsection 4.4.3, we summarize the results from Subsections 4.4.1–4.4.2. In particular, Theo-
rem 4.38 contains the optimality conditions for problem (4.1)–(4.3) for i ∈ {1, 2} and for general
f . Corollary 4.39 states the optimality conditions for continuously differentiable f .
In the remaining part of Section 4.4, we concentrate on problem (4.1)–(4.3) with distributed
control functions.
In Subsection 4.4.4, the optimality conditions are improved for i = 1, see Corollary 4.40. More-
over, we show uniqueness of p, q and dµ in Corollary 4.41. To this aim, we exploit that B1

has dense range for appropriate p ≥ 2 which does not hold for B2 and which implies that the
operator B∗1 is one-to-one.
In Subsection 4.4.5, we extend the results from [Mün17b] on dµ. In particular, we investigate
in the analysis of dµ for the case i = 1. We characterize the sign of dµ(E) for subsets E ⊂ JT
of different categories and prove upper bounds for |dµ(E)|, see Lemma 4.46 and Theorem 4.47.
With help of the measure equation for dq we conclude sign conditions and bounds for dq on
subsets E ⊂ JT of different categories, see Corollary 4.48. Finally, we characterize the continuity
properties of q in Corollary 4.49.
In Section 4.5, we return to the general control problem (4.1)–(4.3) with i ∈ {1, 2}. We take
advantage of relation between (p, q) and u and exploit the continuity properties of the adjoint
variables to prove higher regularity of u, y and z, see Theorem 4.51. An application of Theo-
rem 4.51 is given in Example 4.52.
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In Section 4.6, we study the perturbed control problem (1.5)-(1.7), cf. [Mün17b, Section 6]. In
particular, the set of admissible control functions is restricted to a subset C ⊂ Ui, i ∈ {1, 2}, and
(4.1)–(4.3) is perturbed by a function r ∈ Ui. In Theorem 4.54, we prove lower semi-continuity
of the corresponding optimal value function v : Ui → C if C is convex and closed. If C is
also compact, we show that v is continuous, and that the corresponding optimal set function
V : Ui ⇒ C is upper semi-continuous.

4.1 Main assumption and further notation

Assumption 4.2. Cf. [Mün17b, Assumption 2.10] We adapt (A1)-(A3) in Assumption 3.1,
repeat Assumption 3.10 and introduce two more assumptions for the optimal control problem
(4.1)–(4.3):

(A0) Ω ⊂ Rd for some d ≥ 2.

(A1)’ Instead of (A1) suppose that Ap is a diffusion operator in the sense of Definition 2.17,
where p ∈ J ∩ [2,∞) with J as in Corollary 2.19. Moreover, assume 2 ≥ p

(
1− 1

d

)
.

(A2)’ Scalar projection: The function w ∈ W1,p′

ΓD
(Ω)\{0} in (A2) which defines the operator

S ∈ [W−1,p
ΓD

(Ω)]∗ by Sy = 〈y, w〉W1,p′
ΓD

(Ω)
∀y ∈W−1,p

ΓD
(Ω) is contained in the space dom([(1+

Ap)
1−α]∗).

(A3)’ (A3) holds for a coefficient α ∈
(
0, 1

2

)
. This assumption is needed in the proof of

Lemma 4.5.

(A4) In addition to (A3)’, f is directionally differentiable and therefore Hadamard directionally
differentiable.

(A5) B1 is defined by

B1 : [L2(Ω)]m → X, 〈B1u, v〉W1,p′
ΓD

(Ω)
:=

∫
Ω
u · v dx ∀v ∈W1,p′

ΓD
(Ω).

Since 2 ≥ p
(
1− 1

d

)
, the embeddings L2(ΓNj ,Hd−1) ↪→ W−1,p

ΓDj
(Ω), j ∈ {1, . . . ,m}, are

continuous [Hal+15, Remark 5.11]. Therefore,

B2 :

m∏
j=1

L2(ΓNj ,Hd−1)→ X, 〈B2y, v〉W1,p′ (Ω) :=

m∑
j=1

∫
ΓNj

yjvj dHd−1 ∀v ∈W1,p′

ΓD
(Ω)

is continuous.

(A6) The desired state yd in (4.3) is contained in U1 and κ > 0 is given.

Remark 4.3. We prove that B1 in Assumption 4.2 is well defined. To this aim, note that
p ∈ [2,∞) ⇔ p′ ∈ (1, 2]. Hence, either d = 2 = p′ or p′ < 2 < dp′

d−p′ . By Remark 2.7 and the

Riesz representation [L2(Ω)]m of [Ũ1]∗ we obtain the compact embedding

W1,p′

ΓD
(Ω) ↪−↪→ [L2(Ω)]m = [Ũ1]∗ and hence Ũ1 ↪→W−1,p

ΓD
(Ω).

More precisely, each function u ∈ Ũ1 defines an element in W−1,p
ΓD

(Ω) by the assignment

〈B1u, v〉W1,p′
ΓD

(Ω)
=

∫
Ω
u · v dx ∀v ∈W1,p′

ΓD
(Ω).
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B1 is well defined, since for u ∈ Ũ1 and W1,p′

ΓD
(Ω), the embedding W1,p′

ΓD
(Ω) ↪−↪→ [L2(Ω)]m together

with Hölders inequality imply∣∣∣∣〈B1u, v〉W1,p′
ΓD

(Ω)

∣∣∣∣ =

∣∣∣∣∫
Ω
u · v dx

∣∣∣∣ ≤ ‖u‖[L2(Ω)]m‖v‖[L2(Ω)]m ≤ ‖u‖[L2(Ω)]m‖v‖W1,p′
ΓD

(Ω)

= ‖u‖Ũ1
‖v‖W1,p′

ΓD
(Ω)
.

Since p and Ap are fixed by (A1)’, we extend the notation (N1)-(N5) in Section 3.1 to

(N1) For the particular p from Assumption 3.1 we set

X := W−1,p
ΓD

(Ω)

with W−1,p
ΓD

(Ω) from Definition 2.8. We sometimes identify elements v ∈ X∗ with their

representation in W1,p′

ΓD
(Ω), i.e.

〈v, y〉X = 〈y, v〉W1,p′
ΓD

(Ω)
∀y ∈ X.

(N2)’ We write Xβ := Xβ
Ap+1 for β ≥ 0.

(N3)’ For t ∈ [0, T ] we denote

Yq := YAp+1,q = W1,q((0, T );X) ∩ Lq((0, T ); dom(Ap)),

Yq,t := YAp+1,q,t = {y ∈ YAp+1,q : y(t) = 0},

Y ∗q,t := Y ∗Ap+1,q,t = {y ∈W1,q(0, T ; [dom(Ap)]
∗) ∩ Lq((0, T );W1,p′

ΓD
(Ω)) : y(t) = 0}.

Note that dom(Ap) is equipped with the operator norm of Ap, because Ap is not necessarily

one-to-one. Moreover, dom(Ap) can be identified with W1,p
ΓD

(Ω), see Remark 2.32.

(N4) W is a scalar stop operator as defined in Definition 2.38 for some prescribed initial value
z0 ∈ [a, b].

(N5) We abbreviate JT = (0, T ).

(N6) We write G(·) := G(0, ·) for G from Corollary 3.4.

Remark 4.4. [Mün17a, Remark 5.2] Corollary 3.15 yields Hadamard directional differentia-
bility of G ◦ Bi : Ui → Y2,0 for i ∈ {1, 2} and (y, z) = (G(Biu),W[SG(Biu)]) solves (4.1)–
(4.2) for u ∈ Ui. Therefore, the reduced cost function J : Ui → R, J (u) := J(G(Biu), u) is
Hadamard directionally differentiable. Remember Remark 4.1, namely that G(Biu) is identified
with I−1

p G(Biu) for u ∈ Ui.

4.2 Existence of an optimal control

We prove that an optimal control for problem (4.1)–(4.3) exists. To this aim, we show that the
mapping u 7→ G(Biu) is weakly continuous from Ui into Y2,0 and weak-strong continuous from
Ui into C(JT ;Xα).

Lemma 4.5. [Mün17a, Lemma 5.3], cf. [BK13, Lemma 2.3]. Let Assumption 4.2 hold. Suppose
that for {un}n∈N ⊂ Ui it holds un ⇀ u in Ui with i ∈ {1, 2}. Then yn = G(Biun) → G(Biu)
weakly in Y2,0 and strongly in C(JT ;Xα) and zn = W[Syn] → W[SG(Biu)] weakly in H1(JT )
and strongly in C(JT ). If the convergence of un is strong then yn → G(Biu) in Y2,0 strongly.
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Proof. The proof is a combination of the proofs of [MS15, Lemma 2.10] and [BK13, Lemma
2.3]. Let un ⇀ u in Ui with n → ∞. By (A3)’ in Assumption 4.2 we have α ∈ (0, 1

2) so that
1

1−α < 2 = q. We apply Corollary 3.4 and Corollary 3.15 with u and h replaced by Biu and Bih

and with L2(JT ;X) replaced by Ui. In particular, by (3.12) there exists some C(T ) > 0 such
that

‖yn‖Y2,0 ≤ C(T )(1 + ‖Biun‖L2(JT ;X)).

By uniform boundedness of {un}n∈N and weak compactness, there exists a subsequence ynk
which weakly converges in Y2,0 to some y with k → ∞. Lemma 2.36 and α < 1

2 entail
that Y2,0 is compactly embedded into the space C(JT ; [X,dom(Ap)]α) and Remark 2.32 yields
C(JT ; [X,dom(Ap)]α) ' C(JT ;Xα). Hence, ynk → y in C(JT ;Xα) strongly with k →∞. More-
over, Synk converges weakly to Sy in H1(JT ) because S ∈ X∗ by (A2)’. By Theorem 2.40, W is
weakly continuous on H1(JT ) ↪−↪→ C(JT ). Consequently, weak convergence of Synk to Sy implies
weak convergence of znk to W[Sy] = z in H1(JT ) with k →∞ and then also strong convergence
in C(JT ). It remains to prove y = G(Biu). Since d

dt , Ap and Bi are weakly continuous by
linearity [MS15, Lemma 2.10], we obtain

d

dt
ynk +Apynk ⇀

d

dt
y +Apy and Biunk ⇀ Biu in L2(JT ;X) with k →∞.

By strong convergence of ynk → y in C(JT ;Xα) with k → ∞ and local Lipschitz continuity of
f : C(JT ;Xα) × R → C(JT ;X) with respect to the C(JT ;Xα)-norm (see Step III in the proof
of Theorem 3.2), we can find k0 > 0 such that

‖f(ynk , znk)− f(y, z)‖C(JT ;X) ≤ L(y)(‖ynk − y‖C(JT ;Xα) + ‖znk − z‖C(JT ))

for all k ≥ k0. Consequently, f(ynk(·), znk(·)) converges to f(y(·), z(·)) in C(JT ;X) with k →∞.
We pass to the limit k → ∞ in (3.11) to see that y solves (3.11) with forcing term Biu. This
implies y = G(Biu) and z =W[Sy]. Since y = G(Biu) and z =W[Sy] are uniquely determined,
we conclude (weak) convergence of the whole sequence.
To complete the proof, assume now that un → u strongly in Ui with n→∞. In this case,

Biun → Biu in L2(JT ;X) with n→∞,

and hence, by maximal parabolic regularity of Ap (see Remark 2.35),

‖yn − y‖Y2,0 ≤

∥∥∥∥∥( ddt +Ap

)−1
∥∥∥∥∥
L(L2(JT ;X),Y2,0)

(
‖Bi(un − u)‖L2(JT ;X) + ‖F [yn]− F [y]‖L2(JT ;X)

)
.

Since the right side converges to zero with n→∞, we conclude yn → y in Y2,0 with n→∞.

With the preceding lemma, we can show existence of an optimal control.

Theorem 4.6. [Mün17a, Theorem 5.4] Let Assumption 4.2 hold. Then for i ∈ {1, 2}, there
exists an optimal control u ∈ Ui for the optimal control problem (4.1)–(4.3). This means that u,
together with the optimal state y = G(u), which solves (4.1), are a solution of the minimization
problem (4.3). The solution of (4.2) is given by z =W[Sy].

Proof. The proof uses Lemma 4.5 and is similar to the proof of [MS15, Proposition 2.11]:
By definition, the cost function J is bounded from below by zero. Moreover, by the form of the
reduced cost function

J (u) = J(G(Biu), u) =
1

2
‖G(Biu)− yd‖2U1

+
κ

2
‖u‖2Ui ,
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every minimizing sequence {un} of J is bounded in Ui and thus has a weakly converging
subsequence, i.e. unk ⇀ u ∈ Ui with k → ∞ for some u ∈ Ui. By Lemma 4.5, ynk =
G(Biunk) → G(Biu) =: y weakly in Y2,0 and strongly in C(JT ;Xα) with k → ∞. Moreover,
Y2,0 ↪→ L2(JT ; dom(Ap)) ↪→ U1 according to Corollary 2.30, see also Remark 2.32. Note that
G(Biu) ∈ Y2,0 is always identified with I−1

p G(Biu) ∈ U1 here for u ∈ Ui, but we often write
G(Biu) for both functions. The cost function J : U1 ×Ui → R is weakly lower semi-continuous.
Consequently,

J (u) = J(y, u) ≤ lim inf
k→∞

J(ynk , unk) = min
u∈Ui

J(G(Biu), u) = min
u∈Ui
J (u)

as required.

4.3 Regularized control problem

As mentioned in the beginning of the chapter, the mapping h 7→ G′[Biu;Bih] is not linear so that
we can not apply standard theory in order to derive an adjoint system for problem (4.1)–(4.3).
As a remedy, we fix an optimal control u and regularize the cost function as well as the state
equation in dependence of a parameter ε > 0 to obtain an optimal control problem for which we
can derive an adjoint system. Hence, we regularize the variational inequality which defines W
and the non-linearity f and therewith obtain a regularization of the solution operator G(Bi·).
In order to regularize W we apply techniques from singular perturbation theory as in [BK13,
Section 3]. Our regularization of the semi-linear parabolic state equations is inspired by [MS15,
Section 4].
With regard to the limit ε→ 0, we derive uniform-in-ε-estimates for the norms of the solutions
of the regularized state equations in terms of the forcing term u. This is done in the end of
Subsection 4.3.1.
In Subsection 4.3.2, we investigate in the dynamics of the regularized state equations in depen-
dence of ε. For any weakly converging sequence uε, ε→ 0, the estimates from Subsection 4.3.1
together with a weak compactness argument yield us weakly converging subsequences yεk and
zεk .
In Subsection 4.3.3, we introduce regularized control problems. We apply the results from
Subsection 4.3.2 to conclude convergence of the corresponding solutions to an optimal solution
of problem (4.1)–(4.3) with ε→ 0, see Theorem 4.16.
In Subsection 4.3.4, we prove Gâteaux differentiability of the regularized solution operators Gε,
see Corollary 4.17.
Subsection 4.3.5 is contains the adjoint equations for the solutions of the regularized control
problems with ε > 0 fixed. The main result here is Theorem 4.20.
In Subsection 4.3.6, we prove uniform-in-ε bounds for the norms of the adjoint variables (pε, qε)
from Theorem 4.20.
The key step ε → 0 is established in Section 4.4. The uniform bounds on (pε, qε) from Subsec-
tion 4.3.6 give rise to weakly converging subsequences pεk and qεk and finally yield an adjoint
system for (4.1)–(4.3).
We begin with several assumptions on the functions which will enter the regularized problems.

Assumption 4.7 (Regularization). [Mün17b, Assumption 3.1] For ε∗ > 0 and ε ∈ (0, ε∗] we
assume that:

(A1)ε fε : Xα × R→ X is Gâteaux differentiable.

(A2)ε sup(y,z)∈Xα×R ‖fε(y, z)− f(y, z)‖X → 0 as ε→ 0.
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Ψ

xa1 a b b1

Figure 1: [Mün17b, Figure 1] Graph of Ψ

(A3)ε fε is locally Lipschitz continuous with respect to the Xα-norm and all the neighborhoods
and Lipschitz constants are equal to the ones of f in (A2) in Assumption 4.2, independently
of ε. The growth condition ‖fε(y, x)‖X ≤ M (1 + ‖y‖Xα + |x|) holds for all y ∈ Xα and
x ∈ R, with M from (A3) in Assumption 3.1.

(A4)ε Following the ideas of [BK13], we introduce a convex function Ψ : R → R with Ψ(x) ≡ 0
for x ∈ [a, b] and Ψ(x) > 0 for x ∈ R\[a, b]. We assume that Ψ is twice continuously
differentiable and Ψ′(x) ≤ m1|x−a| for some m1 > 0 and all x ∈ R. Moreover, Ψ′′(x) ≤ m2

for some m2 > 0 and all x ∈ R and Ψ′′ is assumed to be locally Lipschitz continuous. If a
concrete representation of Ψ is needed, we assume Ψ to be defined according to Remark 4.8
below.

Remark 4.8 (Construction of Ψ). Cf. [Mün17b, Remark 3.2] We construct a function Ψ which
satisfies (A4)ε in Assumption 4.7. The concrete structure of Ψ will be useful in several proofs.
In particular, Ψ is the concatenation of four functions, namely

Ψ = χ(−∞,a1]Ψ−2 + χ(a1,a]Ψ−1 + χ(b,b1]Ψ1 + χ(b1,∞)Ψ2,

where a1 < a < b < b1. Here, χ denotes the characteristic function. The functions Ψ−2 and Ψ2

are affine linear and Ψ−1 and Ψ1 are polynomials of order four with roots in a and b which are
at the same time saddle points and with turning points in a1 and b1.
More precisely, we choose a1 := a− 2, b1 := b+ 2 and define a function similar to Figure 1 by

Ψ−2(x) := −16(x− 1− a),

Ψ−1(x) := −(x− a)3(4− a+ x),

Ψ1(x) := (x− b)3(4 + b− x),

Ψ2(x) := 16(x− 1− b).

With this definition, Ψ fulfills the conditions (A4)ε in Assumption 4.7. Note that local Lipschitz
continuity of Ψ′′ holds also in the points where the functions Ψ−2,Ψ−1,Ψ1,Ψ2 are glued together.
Hence, Ψ′′ is Lipschitz continuous.

For i ∈ {1, 2} and ε > 0, the original state equations (4.1)–(4.2) are regularized as follows:

ẏ(t) + (Apy)(t) = fε(y(t), z(t)) + (Biu)(t) in X for t ∈ JT , y(0) = 0 in X, (4.4)

ż(t)− Sẏ(t) = −1

ε
Ψ′(z(t)) for t ∈ JT , z(0) = z0. (4.5)
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4.3.1 Regularization of (3.11) and uniform-in-ε estimates

In this subsection, we replace equation (3.11) by a regularized abstract evolution equation. The
latter is essentially equivalent to the regularized state equations (4.4)–(4.5), but with forcing
term u ∈ Lq(JT ;X) instead of u ∈ Ui. Hence, it can be transformed into (4.4)–(4.5) by choosing
the forcing term as Biu, u ∈ Ui. Once the appropriate regularity of all regularized functions
has been shown, well-posedness follows as for (3.11). Afterwards, we continue to estimate the
norms of the solutions in terms of the forcing term and independently of ε. The ideas for many
of the steps in this subsection were inspired by [BK13, Subsection 3.1].

Definition 4.9 (Regularized stop). Cf. [Mün17b, Definition 3.3] For ε ∈ (0, ε∗] we denote by
Zε : v 7→ Zε(v) the solution operator of

ż(t)− v̇(t) = −1

ε
Ψ′(z(t)) for t ∈ JT , z(0) = z0,

or of the corresponding integral equation

z(t) = z0 − v(0) + v(t)−
∫ t

0

1

ε
Ψ′(z(s)) ds for t ∈ JT .

The input v is a function defined on JT .

In extension to [Mün17b], we prove regularity results on Zε in Definition 4.9 which are required.

Lemma 4.10 (Regularized stop). Cf. [Mün17b, Remark 3.4] Zε in Definition 4.9 is well defined
and continuously differentiable on C(JT ). Its derivative at v in direction h is given by the unique
solution Z ′ε[v;h] = z of the integral equation

z(t) = −h(0) + h(t)−
∫ t

0

1

ε
Ψ′′(Zε(v)(s))z(s)ds for t ∈ JT .

Zε is bounded on W1,q(JT ) for all q ∈ (1,∞) with derivative Z ′ε[v;h] = z,

ż(t)− ḣ(t) = −1

ε
Ψ′′(Zε(v)(t))z(t) for t ∈ JT , z(0) = 0.

Proof. We show the lemma in three steps.
(I) Well-posedness and Lipschitz continuity:
Because Ψ′′ is globally bounded by (A4)ε, the mean value theorem entails that Ψ′ is Lipschitz
continuous with modulus m. Now it follows with Gronwall’s lemma and Schauder’s fixed point
theorem, that for each v ∈ C(JT ) there exists a unique local solution

zε = Zε(v) ∈ {q ∈ C([0, T0]) : q(0) = v(0) ∈ R},

satisfying the integral equation

zε(t) = z0 − v(0) + v(t)−
∫ t

0

1

ε
Ψ′(zε(s)) ds.

Because Ψ′(zε(s)) ≤ m1|zε(s)−a| on the interval of existence of zε, this solution can be extended
to the whole interval JT . That is, Zε : C(JT )→ C(JT ), v 7→ Zε(v) is well defined.
Again by (A4)ε and Gronwall’s lemma, Zε is Lipschitz continuous with modulus emT/ε and
because Ψ(z0) = 0 we have

|zε(t)| ≤ emT/ε sup
0≤s≤t

|v(t)|+ |z0| for t ∈ JT . (4.6)
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(II) Differentiability:
The mapping v 7→ Zε(v) is continuously differentiable on C(JT ):
Let v, h ∈ C(JT ) be given. Note that the set

Ev,h := ∪t∈JTEv,h(t) := ∪t∈JT {x ∈ R : x between Zε(v)(t) and Zε(v + h)(t)}

is a bounded subset of R, so that Ψ′′ is Lipschitz continuous on this set. Moreover, Step I entails
that for all s ∈ JT there holds

|Zε(v + h)(s)− Zε(v)(s)| ≤ emT/ε sup
0≤s′≤s

|h(s)|. (4.7)

Let q(h) be the unique solution in C(JT ) of the equation

q(t) = −h(0) + h(t)−
∫ t

0

1

ε
Ψ′′(Zε(v)(s))q(s) ds for t ∈ JT .

Existence of this solution follows from boundedness and local Lipschitz continuity of Ψ′′.
By the mean value theorem we have

−1

ε
[Ψ′(Zε(v + h)(t))−Ψ′(Zε(v)(t))] = −1

ε
Ψ′′(ξ(t))(Zε(v + h)(t)− Zε(v)(t))

for all t ∈ JT and for values ξ(t) ∈ Ev,h(t). Hence, we can split the following expression

Zε(v + h)(t)− Zε(v)(t)− q(t)
‖h‖C(JT )

= −
∫ t

0

1

ε
Ψ′′(Zε(v)(s))

(
Zε(v + h)(s)− Zε(v)(s)− q(s)

‖h‖C(JT )

)
ds

−
∫ t

0

1

ε
(Ψ′′(ξ(s))−Ψ′′(Zε(v)(s)))

(
Zε(v + h)(s)− Zε(v)(s)

‖h‖C(JT )

)
ds

=: J1 + J2.

Lipschitz continuity of Ψ′′ on bounded sets together with (4.7) and ξ(s) ∈ Ev,h(s) yield

|J2| ≤
c

‖h‖C(JT )

∫ t

0

1

ε
|Zε(v)(s)− Zε(v + h)(s)|2ds ≤ ce2mT/εT‖h‖C(JT )

for some c > 0. Gronwalls’s inequality hence implies that

|Zε(v)(t)− Zε(v + h)(t)− q(t)|
‖h‖C(JT )

→ 0

with ‖h‖C(JT ) → 0, uniformly in t ∈ JT . Because the mapping h 7→ q(h) = Z ′ε[v;h] is linear and

bounded on C(JT ), it follows that Zε is continuously differentiable on C(JT ).
(III) Zε is bounded on W1,q(JT ) for all q ∈ (1,∞):
First of all, note that W1,q(JT ) ↪→ C(JT ). Hence, (4.6) implies

‖Zε(v)‖Lq(JT ) ≤ c‖Zε(v)‖C(JT ) ≤ c1(ε, T )(‖v‖C(JT ) + |z0|) ≤ c2(ε, T )(1 + ‖v‖W1,q(JT ))

for constants c, c1(ε, T ), c2(ε, T ) > 0. Using this, (A4)ε and again (4.6) we estimate

‖Żε(v)‖Lq(JT ) =

∥∥∥∥v̇ − 1

ε
Ψ′(Zε(v))

∥∥∥∥
Lq(JT )

≤ ‖v̇‖Lq(JT ) +
1

ε
m1‖Zε(v)− a‖Lq(JT )

≤ c3(ε, T )(1 + ‖v‖W1,q(JT ))

for some constant c3(ε, T ) > 0.
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As for F in Section 3.2, we introduce the function (Fε(y))(t) := fε(y(t), Zε(Sy)(t)) and study
the abstract evolution equation

ẏ(t) + (Apy)(t) = (Fε(y))(t) + u(t) in X for t > 0,

y(0) = 0 ∈ X.
(4.8)

Corollary 4.11 (Existence of regularized problem). [Mün17b, Corollary 3.5] Let Assump-
tion 4.2 and Assumption 4.7 hold and let ε ∈ (0, ε∗] be arbitrary. Furthermore, assume
q ∈ ( 1

1−α ,∞] and let s ∈ (1, q]∩(1,∞) be arbitrary. Then for all u ∈ Lq(JT ;X) problem (4.8) has
a unique solution yε(u) in Ys,0. The solution mapping Gε : u 7→ yε(u) =: yuε is locally Lipschitz
continuous from Lq(JT ;X) to C(JT ;Xα) and to Ys,0. We denote zuε := zε(u) := Zε(Sy

u
ε ).

Proof. Existence of unique solutions of (4.8) and local Lipschitz continuity of the solution oper-
ator Gε are a consequence of Lemma 4.10, (A1)ε and (A3)ε. In particular, the functions Zε and
fε satisfy the properties of W and f so that Theorem 4.11 can be applied.

Having shown well-posedness of (4.8), we derive uniform-in-ε-estimates for the solutions Gε(u)
in terms of the forcing function u ∈ Lq(JT ;X). Those translate directly into uniform estimates
for the solutions of (4.4)–(4.5) if u is replaced by Biu.

Lemma 4.12 (Uniform bounds). [Mün17b, Lemma 3.6] Adopt the assumptions and the nota-
tion from Corollary 4.11. There exists a constant c > 0 which is independent of ε and u such
that the following holds true. For all q ∈ ( 1

1−α ,∞] and ε ∈ (0, ε∗] we have

‖yuε ‖Ys,0 ≤ c(1 + ‖u‖Lq(JT ;X)) and ‖zuε ‖C(JT ) ≤ c(1 + ‖u‖Lq(JT ;X)) (4.9)

with arbitrary s ∈ (1, q] ∩ (1,∞). Moreover, there holds

0 ≤
∫ T

0
|żuε (s)|2 ds+ sup

t∈JT

1

ε
Ψ(zuε (t)) ≤ c(1 + ‖u‖L2(JT ;X))

2. (4.10)

Proof. For any v ∈W1,s(JT ) and t ∈ JT we rewrite |Zε(v)(t)− z0| − |Zε(v)(0)− z0| as

|Zε(v)(t)− z0| − |Zε(v)(0)− z0| =
∫ t

0

d

ds
|Zε(v)− z0|ds =

∫ t

0

d
ds(Zε(v))(Zε(v)− z0)

|Zε(v)− z0|
ds.

According to Definition 4.9, we can replace z0 by Zε(v)(0) and d
ds(Zε(v)) by v̇ − 1

εΨ′(Zε(v)).
Moreover, Ψ is convex and z0 ∈ [a, b] implies Ψ′(z0) = 0 by (A4)ε. Hence,

Ψ′(x)(x− z0) = [Ψ′(x)−Ψ′(z0)](x− z0) ≥ 0 ∀x ∈ R.

All together, we arrive at

0 ≤ |Zε(v)(t)|+ 1

ε

∫ t

0

Ψ′(Zε(v))(Zε(v)− z0)

|Zε(v)− z0|
ds

≤ |Zε(v)(t)− z0|+ |z0|+
1

ε

∫ t

0

Ψ′(Zε(v))(Zε(v)− z0)

|Zε(v)− z0|
ds

= |z0|+
1

ε

∫ t

0

v̇(Zε(v)− z0)

|Zε(v)− z0|
ds ≤ |z0|+

∫ t

0
|v̇(s)|ds ∀t ∈ JT ,

and the second term on the left side is greater or equal than zero. Accordingly, we choose
v = Syuε and zuε = Zε(Sy

u
ε ) and conclude

0 ≤ |zuε (t)| ≤ |z0|+
∫ t

0
|Sẏuε (s)|ds ∀t ∈ JT . (4.11)
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To prove (4.9) we require a bound for SApy
u
ε since (4.4) includes the term Apy

u
ε . This is

possible due to the enforced assumption (A3)’ in Assumption 4.2 on the scalar projector S. In
particular, the representation w which defines S is contained in dom([(Ap+ 1)1−α]∗). Hence, for
any y ∈ dom(Ap) we can estimate

|SApy| =|S(Ap + 1)y − Sy| ≤ |〈w, (Ap + 1)y〉X |+ ‖S‖[Xα]∗‖y‖Xα

=|〈w, (Ap + 1)1−α(Ap + 1)αy〉X |+ ‖S‖[Xα]∗‖y‖Xα

=|〈[(Ap + 1)1−α]∗w, (Ap + 1)αy〉X + ‖S‖[Xα]∗‖y‖Xα

≤(‖[(Ap + 1)1−α]∗w‖X∗ + ‖S‖[Xα]∗)‖y‖Xα =: c1‖y‖Xα .

(4.12)

Since Syuε (t) ∈ dom(Ap) for a.e. t ∈ JT , we can choose y = Syuε (t) in (4.12) for a.e. t ∈ JT and
rewrite Sẏuε (t) according to (4.8). Finally, the triangle inequality yields

|Sẏuε (t)| ≤ c1‖yuε (t)‖Xα + |Sfε(yuε (t), zuε (t))|+ |Su(t)| for a.e. t ∈ JT .

The second term is bounded by the linear growth condition on fε, see (A3)ε in Assumption 4.7.
Hence, we continue to estimate (4.11) by

|zuε (t)| ≤ |z0|+
∫ t

0
c1‖yuε (s)‖Xα + |Sfε(yuε (s), zuε (s))|+ |Su(s)|ds

≤ |z0|+
∫ t

0
(M‖S‖X∗ + c1) [‖yuε (s)‖Xα + |zuε (s)|+ 1] + ‖S‖X∗‖u(s)‖Xds ∀t ∈ JT .

It remains to prove a bound for ‖yuε (t)‖Xα before we can apply Gronwall’s lemma. Equation (4.8)
implies that the initial value yuε (0) = 0 is fixed independently of ε ∈ (0, ε∗]. Moreover, the mild
solution yuε of (4.8) is determined by yuε (t) =

∫ t
0 e
−Ap(t−s)[fε(y

u
ε (s), zuε (s)) +u(s)]ds according to

Definition 2.33. Consequently, with help of the semigroup estimate (3.14) and the linear growth
condition (A3)ε on fε we arrive at

‖yuε (t)‖Xα =

∥∥∥∥∫ t

0
e−Ap(t−s)[fε(y

u
ε (s), zuε (s)) + u(s)]ds

∥∥∥∥
Xα

≤ Cαe(1−δ)T
∫ t

0
(t− s)−α[M(‖yuε (s)‖Xα + |zuε (s)|+ 1) + ‖u(s)‖X ]ds ∀t ∈ JT .

In order to use Hölder’s inequality for the last expression above remember that q < 1
1−α ⇔

−αq′ > −1. In particular,

(∫ t

0
(t− s)−αq′ ds

)1/q′

=

(
t1−αq

′

1− αq′

)1/q′

=
t1/q

′−α

(1− αq′)1/q′−α ,

so that

‖yuε (t)‖Xα ≤ c3

(∫ t

0
(t− s)−α[M(‖yuε (s)‖Xα + |zuε (s)|+ 1) ds+

t1/q
′−α

(1− αq′)1/q′−α ‖u‖Lq(JT ;X)

)

holds for c3 = Cαe
(1−δ)T and any t ∈ JT . Consequently, Gronwall’s lemma applied to the sum

of the estimates for |zuε (t)| and ‖yuε (t)‖Xα yields

‖yuε ‖C(JT ;Xα) ≤ c4(1 + ‖u‖Lq(JT ;X)) and ‖zuε ‖C(JT ) ≤ c4(1 + ‖u‖Lq(JT ;X))
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for all q ∈ ( 1
1−α ,∞]. Here, c4 > 0 depends on the fixed parameters T , q′ and α but not on ε

and u. Since yuε is the solution of (4.8), with maximal parabolic regularity of Ap according to
Remark 2.35 and assumption (A3)ε on Fε[y

u
ε ] = fε[y

u
ε , z

u
ε ] we conclude

‖yuε ‖Ys,0 ≤

∥∥∥∥∥
(
d

dt
+A

)−1
∥∥∥∥∥
L(Lq(JT ;X),Ys)

‖Fε[yuε ] + u‖Lq(JT ;X)

≤ c5(1 + ‖yuε ‖Lq(JT ;Xα) + ‖zuε ‖Lq(JT ) + ‖u‖Lq(JT ;X))

≤ c6(1 + ‖u‖Lq(JT ;X))

for all s ∈ (1, q] ∩ (1,∞), and again c5, c6 > 0 are independent of ε and u. This proves (4.9).
To prove (4.10) remember 2 > 1

1−α as a consequence of (A2)’ in Assumption 4.2. Moreover,
S ∈ X∗ and hence (4.9) implies ‖Sẏuε ‖L2(JT ) ≤ c7(1+‖u‖L2(JT ;X)) for c7 = c6‖S‖X∗ . We test the

equation for żuε according to Definition 4.9 by żuε and integrate over Jt for t ∈ JT . By Young’s
inequality this yields∫ t

0
|żuε (s)|2 ds =

∫ t

0
Sẏuε (s)żuε (s)ds− 1

ε

∫ t

0
Ψ′(zuε (s))żuε (s)ds

≤ 1

2

∫ t

0
|żuε (s)|2 ds+

1

2
‖Sẏuε ‖2L2(JT ) −

1

ε
[Ψ(zuε (t))−Ψ(zuε (0))]

≤ 1

2

∫ t

0
|żuε (s)|2 ds+

c2
7

2
(1 + ‖u‖L2(JT ;X))

2 − 1

ε
[Ψ(zuε (t))−Ψ(zuε (0))].

Note that Ψ(zuε (0)) = Ψ(z0) = 0 and remember Ψ ≥ 0 by (A4)ε. Hence, we conclude the proof
with

0 ≤
∫ T

0
|żuε (s)|2 ds+ 2 sup

t∈JT

1

ε
Ψ(zuε (t)) ≤ c2

7(1 + ‖u‖L2(JT ;X))
2.

Estimates (4.9)–(4.10) are the key argument for the proofs on the dynamics of (yuεε , z
uε
ε ) in

Subsection 4.3.2.

4.3.2 Dynamics of the regularized states

We apply techniques from [MS15, Section 4] and [BK13, Section 3.1] in this subsection. With
help of the uniform bounds from Lemma 4.12, we prove that Gε is weakly continuous for fixed
ε ∈ (0, ε∗], see Lemma 4.13. In Lemma 4.14, we apply weak continuity of Gε and a weak
compactness argument. Particularly, for an arbitrary weakly converging sequence {uε} ⊂ X, we
prove that a subsequence y

uεk
εk and z

uεk
εk converges weakly with k → ∞. By weak continuity of

Bi, i ∈ {1, 2}, all results apply for subsequences of {uε} ⊂ Ui, i ∈ {1, 2} and the corresponding
solutions of the regularized state equations (4.4)–(4.5).
A regularization of the control problem (4.1)–(4.3) is defined in Subsection 4.3.3. Lemma 4.14
is crucial to prove that optimal solutions of the regularized problems converge to an optimal
solution of problem (4.1)–(4.3) in the limit ε→ 0.
The following lemma is proved as Lemma 4.5.

Lemma 4.13 (Weak continuity of Gε). [Mün17b, Lemma 3.7] Let Assumption 4.2 and Assump-
tion 4.7 hold and consider the notation from Corollary 4.11. Suppose that un ⇀ u in L2(JT ;X)
with n → ∞ for some sequence {un} ⊂ L2(JT ;X). For ε ∈ (0, ε∗] fixed consider the solutions
yunε and yuε of (4.8), together with zunε and zuε . Then yunε → yuε with n→∞ weakly in Y2,0 and
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strongly in C(JT ;Xα) and zunε → zuε with n → ∞ weakly in H1(JT ) and strongly in C(JT ). If
the convergence of {un} is strong then the convergence of {yunε } in Y2,0 is also strong. The same
holds if L2(JT ;X) is replaced by Ui for i ∈ {1, 2} and if un and u are replaced by Biun and Biu.
In this case, (yBiunε , zBiunε ) and (yBiuε , zBiuε ) are the solutions of (4.4)–(4.5).

Proof. For fixed ε ∈ (0, ε∗], Gε satisfies the same properties as G in Corollary 3.4. Hence, the
proof is analogous to that of Lemma 4.5, using Corollary 4.11 and Lemma 4.12.

In the next lemma, we proof that any joint limit lim
ε→0

Gε(uε) of a weakly converging sequence

{uε} corresponds to a solution G(u) of (3.1).

Lemma 4.14. [Mün17b, Lemma 3.8] Let Assumption 4.2 and Assumption 4.7 hold and consider
the notation from Corollary 4.11. Suppose that uε ⇀ u in L2(JT ;X) as ε → 0. Consider the
solutions yuεε , together with zuεε . Then yuεε → yu with ε → 0 weakly in Y2,0 and strongly in
C(JT ;Xα) and zuεε → W[Syu] with ε → 0 weakly in H1(JT ) and strongly in C(JT ). If the
convergence of {uε} is strong then also the convergence of {yuεε } in Y2,0 is strong. The same
holds if L2(JT ;X) is replaced by Ui for i ∈ {1, 2} and if uε and u are replaced by Biuε and Biu.
In this case, (yBiuεε , zBiuεε ) are the solutions of (4.4)–(4.5).

Proof. The proof combines the proofs of [BK13, Lemma 3.2] and Lemma 4.5.
In Lemma 4.12, the bound for yuεε in Y2,0 and for zuεε in H1(JT ) is uniform in ε ∈ (0, ε∗]. Hence,
since both spaces are reflexive, we can extract a subsequence {εk} of the sequence {ε} and find
functions ỹ ∈ Y2,0 and z̃ ∈ H1(JT ) such that

yεk(uεk) ⇀ ỹ in Y2,0 and zεk(uεk) ⇀ z̃ in H1(JT ) with k →∞.

Due the compact embeddings Y2,0 ↪−↪→ C(JT ;Xα), see Lemma 2.36, and H1(JT ) ↪−↪→ C(JT ) the
convergence is strong in C(JT ;Xα) and in C(JT ) respectively. In the following, we abbreviate

yεk := yεk(uεk) and zεk := zεk(uεk).

We prove z̃ = W[Sỹ]. To this aim, we have to show that the conditions (2.27)–(2.29) hold for
v = Sỹ, i.e. that

( ˙̃z(t)− S ˙̃y(t))(z̃(t)− ξ) ≤ 0 for ξ ∈ [a, b] and t ∈ (0, T ), (4.13)

z̃(t) ∈ [a, b] for t ∈ [0, T ], (4.14)

z̃(0) = z0. (4.15)

Equation (4.15) follows from Definition 4.9 since z0 = zεk(0)→ z̃(0) with k →∞. The uniform
bound (4.10) implies Ψ(zεk(t)) → 0 with k → ∞ for t ∈ JT . Due to the assumptions on Ψ in
(A4)ε we conclude z̃(t) ∈ [a, b] for t ∈ JT which shows (4.14). Again by (A4)ε, Ψ is convex and
Ψ′(ξ) = 0 for ξ ∈ [a, b]. Consequently, for any x ∈ R and ξ ∈ [a, b] there holds Ψ′(x)(x− ξ) ≥ 0.
With those observations in mind, we choose ξ ∈ [a, b] arbitrary and insert the evolution equation
for zεk according to Definition 4.9 with v = Syεk and obtain∫ T

0
(żεk(t)− Sẏεk(t))(zεk(t)− ξ) dt =

∫ T

0
−1

ε
Ψ′(zεk(uεk(t))(zεk(t)− ξ) dt ≤ 0.

Taking the limit k → ∞ yields that z̃ solves the variational inequality (4.13) which implies
z̃ =W[Sỹ].
Next, we show ỹ = G(u). Weak continuity of d

dt and Ap from Y2,0 to L2(JT ;X) implies

d

dt
yεk +Apyεk ⇀

d

dt
ỹ +Apỹ in L2(JT ;X) with k →∞.

63



For εk small enough, (A3)ε yields the estimate

‖Fεk [yεk ]− F [ỹ]‖C(JT ;X) = ‖fεk(yεk(·), zεk(·))− f(ỹ(·), z̃(·))‖C(JT ;X)

≤ ‖fεk(yεk(·), zεk(·))− fεk(ỹ(·), z̃(·))‖C(JT ;X) + ‖fεk(ỹ(·), z̃(·))− f(ỹ(·), z̃(·))‖C(JT ;X)

≤ L(ỹ)(‖yεk − ỹ‖C(JT ;Xα) + ‖zεk − z̃‖C(JT )) + ‖fεk(ỹ(·), z̃(·))− f(ỹ(·), z̃(·))‖C(JT ;X).

Note that the right side converges to zero. Hence, we conclude that Fεk [yεk ] converges to F [ỹ]
in C(JT ;X) with k → ∞. Because z̃ = W[Sỹ], this proves ỹ = G(u). Since the limit G(u) is
unique, we conclude convergence of the whole sequence. The statement about strong convergence
follows by maximal parabolic Sobolev regularity of Ap, just as in Lemma 4.5.

4.3.3 The regularized optimal control problem

This subsection is inspired by [BK13, Section 3.2] and [MS15, Section 4]. We introduce regu-
larized optimal control problems for (4.1)–(4.3). In the subsequent sections, we will exploit first
order optimality conditions of those problems as a tool to derive an adjoint system for problem
(4.1)–(4.3).
Although proving adjoint equations of the regularized control problems remains challenging, see
Subsection 4.3.5 below, linearity of the derivatives of the solution operators of (4.4)–(4.5) allows
for a direct approach.
Remember that optimal solutions for problem (4.1)–(4.3) exist by Theorem 4.6. That is, let
i ∈ {1, 2} be given and consider an optimal control u ∈ Ui of problem (4.1)–(4.3) together with
the state y = G(Biu) and z =W[Sy]. For ε ∈ (0, ε∗], we define the regularized optimal control
problem

min
u∈Ui

Jreg(y, u;u) := min
u∈Ui

J(y, u) +
1

2
‖u− u‖2Ui (4.16)

subject to (4.4)–(4.5).

Remark 4.15. As for problem (4.1)–(4.3), in view of the embedding Y2,0 ↪→ L2(JT ; dom(Ap)),
for u ∈ Ui, the functions y = Gε(Biu) ∈ Y2,0 in (4.16) are identified with I−1

p Gε(Biu) ∈
L2(JT ;W1,p

ΓD
(Ω)) ↪→ U1 according to Corollary 2.30, see also Remark 2.32. We often write

Gε(Biu) for both functions.

Theorem 4.16 (Convergence of regularized solutions). [Mün17b, Theorem 3.9] Let Assump-
tion 4.2 and Assumption 4.7 hold. For i ∈ {1, 2} suppose that u ∈ Ui is an optimal control for
problem (4.1)–(4.3). Then for all ε ∈ (0, ε∗] problem (4.4),(4.5),(4.16) has an optimal control
uε ∈ Ui. This means that uε, together with yε = Gε(Biuε) and zε = Zε(Syε) (see Definition 4.9),
are a solution of the minimization problem (4.16). Furthermore, uε → u in Ui, yε → y = G(Biu)
in Y2,0 and in C(JT ;Xα) and zε → z = W[Sy] weakly in H1(JT ) and strongly in C(JT ) with
ε→ 0.

Proof. First of all, note that the embedding Y2,0 ↪→ U1 is continuous, because dom(Ap) '
W1,p

ΓD
(Ω) ↪→ [L2(Ω)]m, see Corollary 2.30. Existence of u has been shown in Theorem 4.6. That

optimal controls uε for the regularized problem (4.4),(4.5),(4.16) exist is shown in the same way
as Theorem 4.6. The proof requires weak continuity of Gε which was shown in Lemma 4.13
and that Jreg is bounded from below and weakly lower semi-continuous and coercive in u. For
all ε ∈ (0, ε∗], optimality of (yε, zε, uε) for problem (4.4),(4.5),(4.16) and of (y, z, u) for problem
(4.1)–(4.3) implies

J(Gε(Biu), u) = Jreg(Gε(Biu), u;u) ≥ Jreg(yε, uε;u)

= J(yε, uε) +
1

2
‖uε − u‖2Ui ≥ J(y, u).

(4.17)
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Moreover, for ε ∈ (0, ε∗], the uniform bound (4.9) from Lemma 4.12 for Gε(Biu) ∈ Y2,0 yields

J(Gε(Biu), u) =
1

2
‖Gε(Biu)− yd‖2U1

+
κ

2
‖u‖2Ui ≤ c1‖Gε(Biu)‖2Y2,0

+ c2 ≤ c3

for some constants c1, c2, c3 > 0. Note that c3 depends on u but this function is fixed. Hence,
with (4.17) we obtain

c3 ≥ Jreg(yε, uε;u) =
1

2
‖yε − yd‖2U1

+
κ

2
‖uε‖2Ui +

1

2
‖uε − u‖2Ui .

This yields a bound for uε in Ui which is independent of ε ∈ (0, ε∗]. Consequently, we can extract
a subsequence {uεk} which converges weakly in Ui to some ũ with k →∞. Lemma 4.14 implies
yεk = Gεk(Biuεk) → G(Biũ) with k → ∞ weakly in Y2,0. Also by Lemma 4.14, Gε(Biu) → y
with ε→ 0 strongly in Y2,0. Remember the embedding Y2,0 ↪→ U1 and that Jreg is weakly lower
semi-continuous. Hence, with (4.17) we conclude

J(y, u) = lim
k→∞

J(Gεk(Biu), u) ≥ lim inf
k→∞

Jreg(yεk , uεk ;u) ≥ J(ỹ, ũ) +
1

2
‖ũ− u‖2Ui ≥ J(y, u).

But this implies ũ = u and that the convergence of {uεk} in Ui is strong. Since the limit is
uniquely determined by u, the whole sequence {uε} converges to u in Ui with ε→ 0. All results
then follow by applying the statement about strong convergence in Lemma 4.14.

4.3.4 Gâteaux differentiability of the solution operator of the regularized state
equation

In this subsection, we apply Corollary 3.15 and show that Gε is Gâteaux differentiable for all
ε ∈ (0, ε∗].

Corollary 4.17 (Gâteaux differentiability of Gε). [Mün17b, Lemma 3.10] Let Assumption 4.2
and Assumption 4.7 hold and take the notation from Corollary 4.11. Then for any ε ∈ (0, ε∗]
and q ∈ ( 1

1−α ,∞) the solution operator Gε : Lq(JT ;X) → Yq,0 of problem (4.8) is Gâteaux
differentiable. The derivative G′ε[u;h] at u ∈ Lq(JT ;X) in direction h ∈ Lq(JT ;X) is given by

yu,hε , where yu,hε together with z = zu,hε = Z ′ε[Sy
u
ε ;Syu,hε ] ∈W1,q(JT ) are the unique solution of

ẏ(t) + (Apy)(t) =
∂

∂y
fε(y

u
ε (t), zuε (t))y(t) +

∂

∂z
fε(y

u
ε (t), zuε (t))z(t) + h(t) for t ∈ JT , (4.18)

y(0) = 0,

ż(t)− Sẏ(t) = −1

ε
Ψ′′(zuε (t))z(t) for t ∈ JT , (4.19)

z(0) = 0.

For i ∈ {1, 2} and u, h ∈ Ui the derivative of the solution mapping u 7→ Gε(Biu) at u in

direction h is given by yBiu,Bihε , i.e. by the unique solution of (4.18) with h replaced by Bih and

z = zBiu,Bihε = Z ′ε[Sy
Biu
ε ;SyBiu,Bihε ].

Proof. Gε is Hadamard directionally differentiable because Lemma 4.10 implies that Zε sat-
isfies the properties of W in Corollary 3.15. Gâteaux differentiability and the representa-
tion (4.18)–(4.19) then follows from linearity of all the derivatives. The representation for

zu,hε = Z ′ε[Sy
u
ε ;Syu,hε ] according to (4.19) and the regularity zu,hε ∈ W1,q(JT ) have been shown

in Lemma 4.10.
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4.3.5 Adjoint system for the regularized problem

In this subsection, we derive adjoint systems for the regularized problems (4.4),(4.5),(4.16)
with ε ∈ (0, ε∗] and i ∈ {1, 2}, see Theorem 4.20 below. We proceed in a similar way as in
[BK13, Sections 3.3 and 3.5] and [MS15, Section 4]. In the following lemma, we prove Gâteaux
differentiability of the Nemitskii operator of fε and show crucial (pointwise-in-time) estimates
for the derivatives f ′ε which are uniform in ε.

Lemma 4.18. [Mün17b, Lemma 3.11] Let Assumption 4.2 and Assumption 4.7 hold. With a
little abuse of notation we use the same symbol for the Nemitskii operator of fε, i.e. we write
fε : (y, z) 7→ fε(y(·), z(·)). Then fε is locally Lipschitz continuous and Gâteaux differentiable
from C(JT ;Xα)× Lq(JT ) to Lq(JT ;X) for all ε ∈ (0, ε∗] and q ∈ ( 1

1−α ,∞).

Moreover, the derivative f ′ε[(y, z); (·, ·)] at (y, z) ∈ C(JT ;Xα) × Lq(JT ) is Lipschitz continuous
with a modulus of the form K(y) = L(y)(1 + T 1/q), where L(y) > 0 only depends on y ∈
C(JT ;Xα). K(y) and L(y) are independent of ε and remain the same in a sufficiently small
neighborhood of y. For (v, h) ∈ C(JT ;Xα)× Lq(JT ) we can estimate∥∥∥∥ ∂∂yfε(y, z)v

∥∥∥∥
Lq(JT ;X)

+

∥∥∥∥ ∂∂z fε(y, z)h
∥∥∥∥

Lq(JT ;X)

≤ K(y)(‖v‖C(JT ;Xα) + ‖h‖Lq(JT )) (4.20)

For a.e. t ∈ JT , there also holds the pointwise estimate∥∥∥∥ ∂∂yfε(y(t), z(t))v(t)

∥∥∥∥
X

+

∥∥∥∥ ∂∂z fε(y(t), z(t))h(t)

∥∥∥∥
X

≤ K(y)(‖v(t)‖Xα + |h(t)|). (4.21)

Furthermore, ∂
∂yfε(y, z) = ∂

∂yfε(y(·), z(·)) is bounded by K(y) in L∞(JT ;L(Xα, X)). Moreover,
∂
∂zfε(y, z) = ∂

∂zfε(y(·), z(·)) is bounded by K(y) in L∞(JT ;X).

Proof. We prove the lemma in two steps.
(I): For all ε ∈ (0, ε∗] and for any q ∈ ( 1

1−α ,∞) the function fε : C(JT ;Xα)×Lq(JT )→ Lq(JT ;X)
is locally Lipschitz continuous and Gâteaux differentiable:
The proof follows the lines of Lemma 3.12. We recap the important steps:
Well-posedness of fε : C(JT ;Xα) × Lq(JT ) → Lq(JT ;X) follows with help of the linear growth
estimate in (A3)ε in Assumption 4.7.
Again (A3)ε yields that the mapping (y(·), v) 7→ fε(y(·), v) is locally Lipschitz continuous from
C(JT ;Xα) × R to C(JT ;X) with respect to the C(JT ;Xα)-norm. Indeed, for y ∈ C(JT ;Xα)
and some appropriate neighborhood BC(JT ;Xα)(y, r) of y, there even holds a pointwise-in-time
estimate of the form

‖fε(y1(t), z1)− f(y2(t), z2)‖X ≤ L(y)(‖y1(t)− y2(t)‖Xα + |z1 − z2|)

for all y1, y2 ∈ BC(JT ;Xα)(y, r), z1, z2 ∈ R and t ∈ JT , where L(y) > 0 is a Lipschitz modulus

which depends on y ∈ C(JT ;Xα). This local estimate implies the pointwise-in-time estimate

‖fε(y1, z1)(s)− fε(y2, z2)(s)‖X ≤ L(y) [‖y1(s)− y2(s)‖Xα + |z1(s)− z2(s)|]

for a.e. s ∈ JT , for any y1, y2 ∈ BC(JT ;Xα)(y, r) and z1, z2 ∈ Lq(JT ). With help of Minkowski’s

inequality this yields local Lipschitz continuity of fε : C(JT ;Xα) × Lq(JT ) → Lq(JT ;X) with
respect to the C(JT ;Xα)-norm. The Lipschitz constants are of the form K(y) = L(y)(1 +T 1/q).
In a second step one shows that fε is directionally differentiable, just as for f in Step III in the
proof of Lemma 3.12. Pointwise-in-time convergence of the difference quotients,

lim
λ→0

fε(y(s) + λv(s), z(s) + λh(s))

λ
= f ′ε[(y(s), z(s)); (v(s), h(s))] ∈ X
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for a.e. s ∈ JT and (y, z), (v, h) ∈ C(JT ;Xα) × Lq(JT ), holds by Gâteaux differentiability
of fε, see (A3)ε in Assumption 4.7. Lebesgue’s dominated convergence theorem finally yields
directional differentiability of fε : C(JT ;Xα) × Lq(JT ) → Lq(JT ;X) and the bounds (4.20)
and (4.21) for f ′ε[(y, z); (·, ·)]. Since f ′ε[(y, z); (·, ·)] is a bounded and linear operator, Gâteaux
differentiability of fε follows.
(II) L∞-bounds:
Let ỹ ∈ Xα with ‖ỹ‖Xα ≤ 1 be arbitrary. We test (4.21) with the constant function v ∈
C(JT ;Xα), v(t) = ỹ for t ∈ JT and h = 0 ∈ Lq(JT ). This implies∥∥∥∥ ∂∂yfε(y, z)

∥∥∥∥
L∞(JT ;L(Xα,X))

= ess sup
t∈JT

sup
ỹ∈BXα (0,1)

∥∥∥∥ ∂∂yfε(y(t), z(t))ỹ

∥∥∥∥
X

≤ K(y)

as required. Then we test (4.21) with v = 0 ∈ C(JT ;Xα) and the constant function h ∈ Lq(JT ),
h(t) = c > 0 for t ∈ JT and divide by c on both sides. Hence, we conclude∥∥∥∥ ∂∂z fε(y, z)

∥∥∥∥
L∞(JT ;X)

= ess sup
t∈JT

∥∥∥∥ ∂∂z fε(y(t), z(t))

∥∥∥∥
X

≤ K(y).

In the following lemma, we prove a key result on the way to an adjoint system for the regularized
problem (4.4),(4.5),(4.16). In particular, we derive the evolution equations of the adjoint system
corresponding to problem (4.18)–(4.19), see Corollary 4.17.
The most challenging part in the following proof is to find an explicit expression of the adjoint
operator [G′ε[u; ·]]−∗ : Lq

′
(JT ;X∗) → Y ∗q,0 of G′ε[u; ·]−1 which does not involve any abstract

solution operators. The reason is that G′ε[u; ·] is defined as the mapping which assigns to each

h ∈ Lq(JT ;X) the solution yu,hε = G′ε[u;h] ∈ Yq,0 of (4.18). The latter contains the solution

zu,hε = Z ′ε[Sy
u
ε ;Syu,hε ] of (4.19) only implicitly. Moreover, it turns out that zu,hε ∈W1,q(JT ) has

to be interpreted as a function in Lq(JT ). One carefully has to keep track of the correct spaces
which the involved operators are defined on.

Lemma 4.19. (Adjoint operators of the regularized solution operators) [Mün17b, Lemma 3.12]
Let Assumption 4.2 and Assumption 4.7 hold and adopt the notation from Corollary 4.17. For
ε ∈ (0, ε∗] and any q ∈ ( 1

1−α ,∞), h ∈ Lq(JT ;X) and ν ∈ Lq
′
(JT ; [dom(Ap)]

∗) there holds

〈ν, yu,hε 〉Lq(JT ;dom(Ap)) = 〈pνε + Sqνε , h〉Lq(JT ;X), (4.22)

where pνε ∈ Y ∗q′,T and qνε ∈ Lq
′
(JT ) are the unique solution of

−ṗ+A∗pp =

[
∂

∂y
fε(y

u
ε , z

u
ε )

]∗
p+ S

[
−Ap +

∂

∂y
fε(y

u
ε , z

u
ε )

]
q + ν for t ∈ JT ,

p(T ) = 0,

−q̇ = 〈p, ∂
∂z
fε(y

u
ε , z

u
ε )〉X + S

∂

∂z
fε(y

u
ε , z

u
ε )q − 1

ε
Ψ′′(zuε )q for t ∈ JT ,

q(T ) = 0,

and where yu,hε ∈ Yq,0 and zu,hε ∈W1,q(JT ) are the unique solution of (4.18)–(4.19). Moreover,

‖yu,hε ‖Yq,0 ≤ C(yuε )‖h‖Lq(JT ;X) and ‖zu,hε ‖C(JT ) ≤ C(yuε )‖h‖Lq(JT ;X) (4.23)

for some constant C(yuε ) > 0. C(yuε ) remains the same in a sufficiently small neighborhood of
yuε .
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Proof. We prove the lemma in four steps. Let q ∈ ( 1
1−α ,∞) be arbitrary.

(I) Auxiliary problem:
We introduce an auxiliary problem similar to (4.18)–(4.19). First of all, by Assumption 4.7,
the solution operator which maps any v ∈ Lq(JT ) to the solution z ∈ W1,q(JT ) of the Cauchy
problem

ż(t) = v(t) +

(
S
∂

∂z
fε(y

u
ε (t), zuε (t))− 1

ε
Ψ′′(zuε (t))

)
z(t) for t ∈ JT , z(0) = 0,

is well defined. We denote by T uz,ε : Lq(JT ) → Lq(JT ), v 7→ T uz,εv the corresponding solution
operator on Lq(JT ), i.e. we write T uz,ε for the solution operator of the integral equation

z(t) =

∫ t

0
v(s) +

(
S
∂

∂z
fε(y

u
ε (s), zuε (s))− 1

ε
Ψ′′(zuε (s))

)
z(s) ds for t ∈ JT .

Note that both mappings actually coincide, but we have to interpret T uz,ε as a mapping into
Lq(JT ) for the construction of the following operator. With Assumption 4.7 and the definition
of T uz,ε in mind, we introduce the operator

T uy,ε : Yq,0 → Lq(JT ;X),

T uy,ε := Ap −
∂

∂y
fε(y

u
ε , z

u
ε )− ∂

∂z
fε(y

u
ε , z

u
ε )T uz,εS

(
−Ap +

∂

∂y
fε(y

u
ε , z

u
ε )

)
.

Similar to (4.18)–(4.19), we then consider the problem

ẏ(t) + (T uy,εy)(t) = h(t) for t ∈ JT , y(0) = 0, (4.24)

z = T uz,εS

(
−Ap +

∂

∂y
fε(y

u
ε , z

u
ε )

)
y. (4.25)

Note that equations (4.24)–(4.25) are almost equivalent to (4.18)–(4.19), but the h-term is
missing in the second equation. However, similar as for (4.18)–(4.19), it is shown that for each

h ∈ Lq(JT ;X) there exists a unique couple of solutions (ỹu,hε , z̃u,hε ) in Yq,0 × Lq(JT ) of (4.24)–

(4.25). Hence, the operator
(
d
dt + T uy,ε

)−1
is bijective from Lq(JT ;X) to Yq,0.

(II) Uniform estimates:

Even though T uz,ε is defined as a mapping with values in Lq(JT ), z̃u,hε ∈ Lq(JT ) can be identified

with the corresponding function in W1,q(JT ). We estimate the norms of (ỹu,hε , z̃u,hε ). By definition

of z̃u,hε there holds

|z̃u,hε (t)| =
∫ t

0

˙̃zu,hε (s)z̃u,hε (s)

|z̃u,hε (s)|
ds =

∫ t

0

−S[(T uy,εỹ
u,h
ε )(s)]z̃u,hε (s)

|z̃u,hε (s)|
ds− 1

ε

∫ t

0
Ψ′′(zuε (s))|z̃u,hε (s)| ds

for any t ∈ JT . Remember the pointwise-in-time estimate (4.21) in Lemma 4.18. Moreover, the
definition of S by w ∈ dom([(1 + Ap)

1−α]∗) implies that ‖SApy‖X can be estimated by ‖y‖Xα

for all y ∈ dom(Ap), see also (4.12). It follows

0 ≤ |z̃u,hε (t)|+ 1

ε

∫ t

0
Ψ′′(zuε (s))|z̃u,hε (s)|ds

≤
∫ t

0
|SApỹu,hε (s)|+

∣∣∣∣S ∂

∂y
fε(y

u
ε (s), zuε (s))ỹu,hε (s)

∣∣∣∣+

∣∣∣∣S ∂

∂z
fε(y

u
ε (s), zuε (s))z̃u,hε (s)

∣∣∣∣ ds
≤ (c+ ‖S‖X∗K(yuε ))

∫ t

0
‖ỹu,hε (s)‖Xα + |z̃u,hε (s)|ds
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for a constant c > 0 which is independent of ε. Note that Ψ′′(zuε (s)) ≥ 0 because Ψ is convex by

(A4)ε. To estimate ỹu,hε , we exploit the representation as a mild solution and apply (3.14) and
(4.21). This implies

‖ỹu,hε (t)‖Xα

=

∥∥∥∥∫ t

0
e−Ap(t−s)

[
∂

∂y
fε(y

u
ε (s), zuε (s))ỹu,hε (s) +

∂

∂z
fε(y

u
ε (s), zuε (s))z̃u,hε (s) + h(s)

]
ds

∥∥∥∥
Xα

≤ Cα(1 +K(yuε ))e(1−δ)T
∫ t

0
(t− s)−α[‖ỹu,hε (s)‖Xα + |z̃u,hε (s)|+ ‖h(s)‖X ]ds.

Finally, Gronwall’s lemma yields a constant C1(yuε ) > 0 which depends only on yuε ∈ C(JT ;Xα)
such that

‖ỹu,hε ‖C(JT ;Xα) ≤ C1(yuε )‖h‖Lq(JT ;X) and ‖z̃u,hε ‖C(JT ) ≤ C1(yuε )‖h‖Lq(JT ;X)

for q ∈ ( 1
1−α ,∞). Moreover, the only constant which depends on yuε is K(yuε ). Hence, by

Lemma 4.18 there holds C1(yuε ) = C1(y) for ε small enough if {yuε } converges to y with ε → 0.
Hence, C1(yε) = C1(y) for small enough ε by Theorem 4.16. As several times before we use
maximal parabolic regularity of Ap and (4.20) in

ỹu,hε =

(
d

dt
+Ap

)−1 [ ∂
∂y
fε(y

u
ε , z

u
ε )ỹu,hε +

∂

∂z
fε(y

u
ε , z

u
ε )z̃u,hε + h

]
to conclude

‖ỹu,hε ‖Yq,0 ≤ C2(yuε )‖h‖Lq(JT ;X),

where C2(yuε ) > 0 has the same dependence on yuε as C1(yuε ). The inequalities in (4.23) are

shown analogous to the estimates which we derived for (ỹu,hε , z̃u,hε ). We also conclude from

ỹu,hε =
(
d
dt + T uy,ε

)−1
h that there exists a constant C(yuε ) > 0 with∥∥∥∥∥

(
d

dt
+ T uy,ε

)−1
∥∥∥∥∥
L(Lq(JT ;X),Yq,0)

≤ C(yuε ).

This proves maximal parabolic Lq(JT ;X)-regularity of T uy,ε for q ∈ ( 1
1−α ,∞). Again, the values

C(yuε ) can be chosen independently of ε for ε ∈ (0, ε∗] small enough and if {yuε } converges to
some function y with ε→ 0, which is the case for the sequence {yε} in Theorem 4.16.
(III) Adjoint operators and representation of [T uy,ε]

∗:

Maximal parabolic Lq(JT ;X)-regularity of T uy,ε for q ∈ ( 1
1−α ,∞) implies maximal parabolic

Lq
′
(JT ; [dom(Ap)]

∗)-regularity of [T uy,ε]
∗ [MS15, Lemma 4.10], see also [HMS15, Lemma 36]. We

have to find a representation of [T uy,ε]
∗. To this aim, we derive the adjoint mappings of the single

components which define T uy,ε. Lemma 4.18 yields that multiplication with ∂
∂zfε(y

u
ε , z

u
ε ) is well

defined as a mapping from Lq(JT ) into Lq(JT ;X). Moreover, there holds
[
∂
∂zfε(y

u
ε , z

u
ε )
]∗

=

〈·, ∂∂zfε(y
u
ε , z

u
ε )〉X . Again by Lemma 4.18, ∂

∂yfε(y
u
ε , z

u
ε ) is a linear continuous mapping from

Lq(JT ;Xα) into Lq(JT ;X). The mapping
[
S ∂
∂yfε(y

u
ε , z

u
ε )
]∗

: Lq
′
(JT ) → Lq

′
(JT ; [Xα]∗) is given

by multiplication with S ∂
∂yfε(y

u
ε , z

u
ε ). The adjoint operator of T uz,ε maps any v ∈ Lq

′
(JT ) to the

function q ∈ Lq
′
(JT ) which may be identified with the unique solution of

−q̇(t) = v(t) + S
∂

∂z
fε(y

u
ε (t), zuε (t))q(t)− 1

ε
Ψ′′(zuε (t))q(t) for t ∈ JT , q(T ) = 0.
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The operators S∗ and [SAp]
∗ are defined by multiplication with S and SAp respectively. All

bounds are independent of ε for the optimal states yε and zε according to Theorem 4.16 and if
ε is small enough. All together, we obtain the representation

[T uy,ε]
∗ = A∗p −

[
∂

∂y
fε(y

u
ε , z

u
ε )

]∗
−
[
∂

∂z
fε(y

u
ε , z

u
ε )T uz,εS

(
−Ap +

∂

∂y
fε(y

u
ε , z

u
ε )

)]∗
= A∗p −

[
∂

∂y
fε(y

u
ε , z

u
ε )

]∗
+

[
[SAp]

∗ −
[
S
∂

∂y
fε(y

u
ε , z

u
ε )

]∗]
[T uz,ε]

∗
[
∂

∂z
fε(y

u
ε , z

u
ε )

]∗
= A∗p −

[
∂

∂y
fε(y

u
ε , z

u
ε )

]∗
+ S

[
Ap −

∂

∂y
fε(y

u
ε , z

u
ε )

]
[T uz,ε]

∗〈., ∂
∂z
fε(y

u
ε , z

u
ε )〉X .

(4.26)

(IV) Adjoint system and adjoint equation:
Due to maximal parabolic Lq

′
(JT ; [dom(Ap)]

∗)-regularity of [T uy,ε]
∗ there exists for each ν ∈

Lq
′
(JT ; [dom(Ap)]

∗) a unique function pνε ∈ Y ∗q′,T with
(
− d
dt + [T uε,y]

∗) p = ν. For fixed ν ∈
Lq
′
(JT ; [dom(Ap)]

∗) we define qνε := [T uz,ε]
∗〈pνε , ∂∂zfε(y

u
ε , z

u
ε )〉X . As seen in Step III, qνε is the

representative in Lq
′
(JT ) of the solution of

−q̇(t) = 〈pνε(t),
∂

∂z
fε(y

u
ε (t), zuε (t))〉X + S

∂

∂z
fε(y

u
ε (t), zuε (t))q(t)− 1

ε
Ψ′′(zuε (t))q(t) for t ∈ JT ,

q(T ) = 0.

Consider the solutions (yu,hε , zu,hε ) of (4.18)–(4.19) for some given h ∈ Lq(JT ;X). Then (4.18)
and partial integration in time imply∫ T

0
〈pνε + Sqνε , h〉Xdt

=

∫ T

0
〈pνε , ẏu,hε +Apy

u,h
ε − ∂

∂y
fε(y

u
ε , z

u
ε )yu,hε − ∂

∂z
fε(y

u
ε , z

u
ε )zu,hε 〉X + 〈Sqνε , h〉Xdt

=

∫ T

0
〈−ṗνε +A∗pp

ν
ε −

[
∂

∂y
fε(y

u
ε , z

u
ε )

]∗
pνε , y

u,h
ε 〉dom(Ap) + 〈Sqνε , h〉X

− 〈pνε ,
∂

∂z
fε(y

u
ε , z

u
ε )〉Xzu,hε dt.

By definition of qνε we can replace the last term on the right side by∫ T

0

(
q̇νε + S

∂

∂z
fε(y

u
ε , z

u
ε )qνε −

1

ε
Ψ′′(zuε )qνε

)
zu,hε dt.

Hence, after another partial integration in time together with the evolution equation (4.19) of

zu,hε we arrive at∫ T

0
〈pνε + Sqνε , h〉Xdt =

∫ T

0
〈−ṗνε +A∗pp

ν
ε −

[
∂

∂y
fε(y

u
ε , z

u
ε )

]∗
pνε , y

u,h
ε 〉dom(Ap) + 〈Sqνε , h〉X

− qνεS
[(
−Ap +

∂

∂y
fε(y

u
ε , z

u
ε )

)
yu,hε + h

]
dt

=

∫ T

0
〈−ṗνε +A∗pp

ν
ε −

[
∂

∂y
fε(y

u
ε , z

u
ε )

]∗
pνε , y

u,h
ε 〉dom(Ap)

+ S

[
Ap −

∂

∂y
fε(y

u
ε , z

u
ε )

]
qνε y

u,h
ε dt.
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Since qνε = [T uz,ε]
∗〈pνε , ∂∂zfε(y

u
ε , z

u
ε )〉X , this together with the representation (4.26) for [T uy,ε]

∗ from

Step III and
(
− d
dt + [T uε,y]

∗) p = ν finally yields∫ T

0
〈pνε + Sqνε , h〉Xdt =

∫ T

0
〈−ṗνε + [T uy,ε]

∗pνε , y
u,h
ε 〉dom(Ap)dt =

∫ T

0
〈ν, yu,hε 〉dom(Ap)dt.

Lemma 4.19 provides us the main tool towards an optimality system for the optimal control
problem (4.4),(4.5),(4.16).

Theorem 4.20 (Optimality system for the regularized problem). [Mün17b, Theorem 3.13]
Adopt the assumptions of Theorem 4.16 and the notation from Lemma 4.19. For i ∈ {1, 2} and
ε ∈ (0, ε∗] let uε ∈ Ui be an optimal control for problem (4.4),(4.5),(4.16). Then the adjoint

variables for yε ∈ Y2,0 and zε ∈ H1(JT ) are given by pε := p
yε−yd
ε ∈ Y ∗2,T and qε := q

yε−yd
ε ∈

H1(JT ). There holds the optimality condition B∗i (pε + Sqε) = −(κ + 1)uε + u in Ui and the
following system of evolution equations is satisfied by pε and qε:

−ṗε +A∗ppε =

[
∂

∂y
fε(yε, yε)

]∗
pε + S

[
−Ap +

∂

∂y
fε(yε, zε)

]
qε + yε − yd for t ∈ JT , (4.27)

pε(T ) = 0,

−q̇ε = 〈pε,
∂

∂z
fε(yε, zε)〉X + S

∂

∂z
fε(yε, zε)qε −

1

ε
Ψ′′(zε)qε for t ∈ JT , (4.28)

qε(T ) = 0.

Proof. By (A3)’ in Assumption 4.2 there holds 2 > 1
1−α ⇔ α < 1

2 . Hence, Lemma 4.19 holds
for q = q′ = 2. We have to characterize the Gâteaux derivative of the reduced cost function
Jreg(u). To this aim, we prove that

〈yε − yd, yBiuε,Bihε 〉L2(JT ;dom(Ap)) =

∫ T

0

∫
Ω

(I−1
p yε − yd) · I−1

p yBiuε,Bihε dxdt

is well defined. By Corollary 2.30, the embedding Y2,0 ↪→ U1 is continuous because dom(Ap) '
W1,p

ΓD
(Ω) ↪→ [L2(Ω)]m, see also Remark 2.32. In particular, there holds I−1

p yε − yd ∈ U1. Note

that B1 is the extension of Ip from W1,p
ΓD

(Ω) to [L2(Ω)]m. Hence, I−1
p yε − yd can be identified

with yε −B1yd ∈ L2(JT ;X).

By Corollary 4.17 there holds yBiuε,Bihε ∈ Y2,0 ↪→ L2(JT ; dom(Ap)). Again according to Corol-

lary 2.30, this allows us to identify yBiuε,Bihε with I−1
p yBiuε,Bihε ∈ L2(JT ;W1,p

ΓD
(Ω)). Since

p′ ≤ 2 ≤ p, I−1
p yBiuε,Bihε is contained in L2(JT ;W1,p′

ΓD
(Ω)) ' L2(JT ;X∗).

Furthermore, Corollary 2.19 entails (Ap + Ip)
−1 ∈ L

(
X,W1,p

ΓD
(Ω)
)
. Consequently, for some c > 0

and for a.e. t ∈ JT , there holds∥∥∥I−1
p yBiuε,Bihε (t)

∥∥∥
W1,p′

ΓD
(Ω)
≤ c

∥∥∥I−1
p yBiuε,Bihε (t)

∥∥∥
W1,p

ΓD
(Ω)

= c
∥∥∥(Ap + Ip)

−1 (Ap + Ip) I
−1
p yBiuε,Bihε (t)

∥∥∥
W1,p

ΓD
(Ω)

≤ c
∥∥∥(Ap + Ip)

−1
∥∥∥
L
(
X,W1,p

ΓD
(Ω)
) ∥∥∥yBiuε,Bihε (t)

∥∥∥
dom(Ap)

.
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All together, we obtain∣∣∣∣∫ T

0

∫
Ω

(I−1
p yε − yd) · I−1

p yBiuε,Bihε dxdt

∣∣∣∣ =

∣∣∣∣∫ T

0
〈yε −B1yd, I

−1
p yBiuε,Bihε 〉W1,p′

ΓD
(Ω)
dt

∣∣∣∣
≤ ‖yε −B1yd‖L2(JT ;X)

∥∥∥(Ap + Ip)
−1
∥∥∥
L
(
X,W1,p

ΓD
(Ω)
) ‖yBiuε,Bihε ‖L2(JT ;dom(Ap)).

The Gâteaux derivative of the reduced cost function

Jreg(u) := Jreg(I−1
p Gε(Biu), u;u) = J(I−1

p Gε(Biu), u) +
1

2
‖u− u‖2Ui

with respect to u has to be zero at uε by optimality.
Let J1, J2 be defined by

J1 : Y2,0 → R, y 7→ 1

2
‖I−1
p y − yd‖2U1

=
1

2
〈I−1
p y − yd, I−1

p y − yd〉L2(JT ;dom(Ap)),

J2 : Ui → R, u 7→ κ

2
‖u‖2Ui +

1

2
‖u− u‖2Ui .

Then Jreg(y, u) = J1(y) + J2(u). Consider y ∈ Y2,0 and ỹ ∈ Y2,0\{0}. The difference quotient
J1(y+ỹ)−J1(y)
‖ỹ‖Y2,0

satisfies

J1(y + ỹ)− J1(y)− 〈y − yd, ỹ〉L2(JT ;dom(Ap))

‖ỹ‖Y2,0

=
〈ỹ, ỹ〉L2(JT ;dom(Ap))

2‖ỹ‖Y2,0

. (4.29)

Moreover, similar as for 〈yε − yd, y
Biuε,Bih
ε 〉L2(JT ;dom(Ap)) we estimate

〈ỹ, ỹ〉L2(JT ;dom(Ap)) ≤ c‖ỹ‖L2(JT ;X)

∥∥∥(Ap + Ip)
−1
∥∥∥
L
(
X,W1,p

ΓD
(Ω)
) ‖ỹ‖L2(JT ;dom(Ap)) ≤ c‖ỹ‖2Y2,0

for some c > 0. For fixed y, similar arguments imply that the function

ỹ 7→ 〈y − yd, ỹ〉L2(JT ;dom(Ap))

defines a linear and continuous functional on Y2,0. That is, letting ‖ỹ‖ → 0 in (4.29), it follows
that J ′1[y; ỹ] = 〈y − yd, ỹ〉L2(JT ;dom(Ap)) is the derivative of J1 at y in direction ỹ. By standard
techniques one shows J ′2[u;h] = κ〈u, h〉Ui + 〈u − u, h〉Ui for u, h ∈ Ui. Hence, for h ∈ Ui, the
chain rule and optimality of uε implies

0 = J ′reg[uε;h] = J ′1[yε;G
′
ε[uε;h]] + J ′2[uε;h]

= 〈yε − yd, yBiuε,Bih〉L2(JT ;dom(Ap)) + κ〈u, h〉Ui + 〈uε − u, h〉Ui .
(4.30)

We replace the first term in (4.30) by the adjoint equation (4.22) with ν = yε− yd and compute

0 = J ′reg[uε;h] = 〈yε − yd, yBiuε,Bihε 〉L2(JT ;dom(Ap)) + κ〈uε, h〉Ui + 〈uε − u, h〉Ui
= 〈pε + Sqε, Bih〉L2(JT ;X) + 〈(κ+ 1)uε − u, h〉Ui = 〈B∗i (pε + Sqε) + (κ+ 1)uε − u, h〉Ui .

Since h ∈ Ui was arbitrary, this concludes the proof.

Corollary 4.21. Adopt the assumptions of Theorem 4.16 and the notation from Theorem 4.20.
There holds

〈yε − yd, yBiuε,hε 〉L2(JT ;dom(Ap)) = 〈pε + Sqε, h〉L2(JT ;X) ∀h ∈ L2(JT ;X), (4.31)

where

〈yε − yd, yBiuε,hε 〉L2(JT ;dom(Ap)) =

∫ T

0

∫
Ω

(I−1
p yε − yd) · I−1

p yBiuε,Bihε dxdt.

In particular, (4.31) holds for all Bih, h ∈ Ui.
Proof. (4.31) follows from (4.22) in Lemma 4.19.
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4.3.6 Estimates for the adjoints of the regularized problem

In this subsection, we proceed similar as in [BK13, Section 3.5] and [MS15, Lemma 4.14]. In par-
ticular, we estimate the norms of the adjoint states pε and qε from Theorem 4.20 independently
of ε and of the norms of the optimal controls uε. In Section 4.4, we drive the regularization
parameter ε to zero. As already for optimal solutions (uε, yε, zε) of problem (4.4),(4.5),(4.16),
a weak compactness argument yields weakly (star) converging subsequences of pε and qε. As a
consequence, we obtain an adjoint system for problem (4.1)–(4.3), see Theorem 4.38 below.

Lemma 4.22 (Uniform bounds). [Mün17b, Lemma 3.14] Adopt the assumptions and the no-
tation of Theorem 4.20. There exists a constant c > 0 which is independent of ε and some
ε0 ∈ (0, ε∗] such that the following holds true. If ε ∈ (0, ε0), then

0 ≤ ‖qε‖C(JT ) +
1

ε

∫ T

0
Ψ′′(zε(s))|qε(s)|ds ≤ c, (4.32)∫ T

0
|q̇ε(s)|ds ≤ c, (4.33)

‖pε‖Y ∗2,T ≤ c, (4.34)∥∥∥∥[ ∂∂yfε(yε, zε)
]∗
pε

∥∥∥∥
L2(JT ;[Xα]∗)

≤ c, (4.35)∥∥∥∥S ∂

∂y
fε(yε, zε)qε

∥∥∥∥
L2(JT ;[Xα]∗)

≤ c, as well as (4.36)

‖SApqε‖C(JT ;[Xα]∗) ≤ c. (4.37)

Proof. Remember Theorem 4.16, where we proved that uε → u in Ui, yε → y in Y2,0 and
in C(JT ;Xα) and zε → z weakly in H1(JT ) and strongly in C(JT ). As seen in the proof of
Theorem 4.20, yε − yd is well defined as an element of L2(JT ; [dom(Ap)]

∗) with the assignment

〈yε − yd, v〉L2(JT ;dom(Ap)) =

∫ T

0

∫
Ω

(I−1
p yε − yd) · I−1

p v dxdt ∀v ∈ L2(JT ; dom(Ap).

Moreover, there holds

‖yε − yd‖L2(JT ;[dom(Ap)]∗) = sup
v∈BL2(JT ;dom(Ap))(0,1)

〈yε − yd, v〉L2(JT ;dom(Ap)

≤ c‖yε −B1yd‖L2(JT ;X)

∥∥∥(Ap + Ip)
−1
∥∥∥
L
(
X;W1,p

ΓD
(Ω)
) =: c0.

Since yε converges to y in Y2,0 and because Y2,0 ↪→ L2(JT ;X), we can choose the constant

c0 > 0 independently of ε. Remember the definition (pε, qε) = (p
yε−yd
ε , q

yε−yd
ε ). Hence, for any

ξ ∈ L2(JT ;X), we make use of equation (4.31) in Corollary 4.21 and the uniform estimate (4.23)

in Lemma 4.19 applied to yBiuε,ξε . We obtain

〈pε + Sqε, ξ〉L2(JT ;X) = 〈yε − yd, yBiuε,ξε 〉L2(JT ;dom(Ap)) ≤ c0C(yε)‖ξ‖L2(JT ;X).

Moreover, because yε → y in Y2,0 we can find some ε0 > 0 such that C(yε) = C(y) for all
ε ∈ (0, ε0). Reflexivity of L2(JT ;X) finally yields

‖pε + Sqε‖L2(JT ;X∗) ≤ c0C(y) =: c1 ∀ε ∈ (0, ε0). (4.38)
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In the next step we prove (4.32). To this aim, we test the evolution equation (4.28) with
qε/|qε|. Afterwards, for arbitrary t ∈ JT we integrate over (t, T ). With the bound (4.20) from
Lemma 4.18 for the derivative f ′ε[yε, zε] and (4.38) we arrive at

|qε(t)|+
1

ε

∫ T

t
Ψ′′(zε(s))|qε(s)|ds =

∫ T

t
〈pε(s) + Sqε(s),

∂

∂z
fε(yε(s), zε(s))〉X

qε(s)

|qε(s)|
ds

≤ c1

∥∥∥∥ ∂∂z fε(yε, zε)
∥∥∥∥

L2(JT ;X)

≤ c1K(yε).

(4.39)

Again by Lemma 4.18 and the convergence of yε there holds c1K(yε) = c1K(y) =: c2 for all
ε ∈ (0, ε0). W.l.o.g. we can choose ε0 as above. Convexity of Ψ implies Ψ′′(zε) ≥ 0, see (A4)ε.
This proves (4.32) because

0 ≤ ‖qε‖C(JT ) +
1

ε

∫ T

0
Ψ′′(zε(s))|qε(s)|ds ≤ c2 ∀ε ∈ (0, ε0). (4.40)

With S ∈ X∗, we conclude Sqε ∈ L2(JT ;X∗). Hence, by (4.38) also pε ∈ L2(JT ;X∗) holds and
both of the norms ‖pε‖L2(JT ;X∗) and ‖Sqε‖L2(JT ;X∗) are bounded independently of ε ∈ (0, ε0).
We continue with the proof of (4.33). The representation (4.28) for q̇ε yields∫ T

0
|q̇ε(s)|ds ≤

∫ T

0
|〈pε(s) + Sqε(s),

∂

∂z
fε(yε(s), zε(s))〉X |ds+

1

ε

∫ T

0
Ψ′′(zε(s))|qε(s)|ds.

From (4.39) we deduce that the right side is bounded by 2c2 and hence (4.33) follows from∫ T
0 |q̇ε(s)|ds ≤ 2c2 =: c3 for ε ∈ (0, ε0).

It remains to prove the estimates concerning pε. To show (4.34), note that maximal parabolic
regularity of Ap on X implies maximal parabolic L2(JT ; [dom(Ap)]

∗)-regularity of A∗p [HMS15,
Lemma 36]. With the evolution equation (4.27) for pε we estimate

‖pε‖Y ∗2,T ≤

∥∥∥∥∥
(
− d

dt
+A∗p

)−1
∥∥∥∥∥
L(L2(JT ;[dom(Ap)]∗),Y ∗2,T )∥∥∥∥[ ∂∂yfε(yε, zε)

]∗
pε + S

[
−Ap +

∂

∂y
fε(yε, zε)

]
qε + yε − yd

∥∥∥∥
L2(JT ;[dom(Ap)]∗)

≤

∥∥∥∥∥
(
− d

dt
+A∗p

)−1
∥∥∥∥∥
L(L2(JT ;[dom(Ap)]∗),Y ∗2,T )(∥∥∥∥ ∂∂yfε(yε, zε)

∥∥∥∥
L(L2(JT ;Xα),L2(JT ;X))

‖pε + Sqε‖L2(JT ;X∗)

+‖SAp‖[Xα]∗‖qε‖C(JT ) + ‖yε − yd‖L2(JT ;[dom(Ap)]∗)

)
.

Note that we used [Xα]∗ ↪→ [dom(Ap)]
∗ which follows from dom(Ap) ↪→ Xα, see Corollary 2.30.

We apply the bound (4.20) from Lemma 4.18 for f ′ε[yε, zε] together with the estimate (4.38) and
remember (4.40) and ‖yε − yd‖L2(JT ;[dom(Ap)]∗) ≤ c0. Finally, we conclude (4.34) from

‖pε‖Y ∗2,T ≤

∥∥∥∥∥
(
− d

dt
+A∗p

)−1
∥∥∥∥∥
L(L2(JT ;[dom(Ap)]∗),Y ∗2,T )

(
c1K(y) + ‖SAp‖[Xα]∗c2 + c0

)
=: c4
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for ε ∈ (0, ε0). The proofs of (4.35)–(4.37) are similar. They require the estimates∥∥∥∥[ ∂∂yfε(yε, zε)
]∗
pε

∥∥∥∥
L2(JT ;[Xα]∗)

≤
∥∥∥∥ ∂∂yfε(yε, zε)

∥∥∥∥
L(L2(JT ;Xα),L2(JT ;X))

‖pε‖L2(JT ;X∗),∥∥∥∥S ∂

∂y
fε(yε, zε)qε

∥∥∥∥
L2(JT ;[Xα]∗)

≤
∥∥∥∥ ∂∂yfε(yε, zε)

∥∥∥∥
L(L2(JT ;Xα),L2(JT ;X))

‖Sqε‖L2(JT ;X∗), and

‖SApqε‖C(JT ;[Xα]∗) ≤ ‖SAp‖[Xα]∗‖qε‖C(JT ).

4.4 Adjoint system and optimality conditions for the optimal control problem

In Theorem 4.16 we proved convergence of solutions (uε, yε, zε) of problem (4.4)–(4.16) to solu-
tions (u, y, z) of problem (4.1)–(4.3) with ε→ 0.
In this section, we consider the limit ε → 0 in Theorem 4.20 in order to derive first order
optimality conditions for the original optimization problem (4.1)–(4.3) from the adjoint systems
(pε, qε) of the regularized control problems. Moreover, we clarify the type of convergence and
analyze the limit system (p, q). The proceeding is oriented at [BK13, Section 4] and [MS15,
Theorem 4.15].
In Subsections 4.4.1–4.4.2 we study the general problem with spatially distributed or boundary
controls, i.e. with i ∈ {1, 2}. In the first part of Subsection 4.4.1 we derive an adjoint system
(p, q) for problem (4.1)–(4.3) for the optimal control u from Theorem 4.16. The main result
here is Lemma 4.23. While the evolution of p is determined by the limit ε→ 0 of the evolution
equations for pε, the characterization of the limit function q is more involved. Hence, in the
second part of Subsection 4.4.1, we analyze the evolution behaviour and the continuity properties
of q.
In Subsection 4.4.2, we complete the discussion of the general problem i ∈ {1, 2} by proving
optimality conditions for problem (4.1)–(4.3) for the optimal control u in terms of p and q, see
Lemma 4.37.
The results from Subsections 4.4.1–4.4.2 are summarized in Theorem 4.38 in Subsection 4.4.3.
Moreover, an improvement of the optimality condition (4.48) from Theorem 4.38 for the partic-
ular case when f is continuously differentiable is derived in Corollary 4.39.
Both optimality conditions (4.48) and (4.56) are weak in the sense that they are restricted to
test functions yBiu,Bih with h ∈ Ui, i ∈ {1, 2}.
Accordingly, the next question to ask is whether they hold in a strong way, i.e. if the functions
yBiu,Bih can be replaced by arbitrary elements v ∈ dom(Ap) and if the corresponding inequalities
hold a.e. in time? This is not possible without Bi having dense range. Furthermore, the
evolution of q in Subsections 4.4.1–4.4.2 is not completely understood. In particular, on the
subset I∂ ⊂ JT of times where the hysteresis z touches the boundary points {a, b} of the interval
[a, b], the measure dq ∈ C(JT ) which determines q still depends on a measure dµ which we
cannot characterize completely for i ∈ {1, 2}.
That is, in Subsections 4.4.4–4.4.5, we focus on the control problem with i = 1 for which the
control functions are distributed in Ω.
Indeed, in Subsection 4.4.4, we exploit the fact that B1 has dense range for appropriate p ≥ 2
in order to improve the optimality conditions from Theorem 4.38 and Corollary 4.39. More
precisely, while the non-locality in time of W hinders us to extend the variational inequalities
(4.48) and (4.56) to strong maximum conditions, we are able to prove optimality conditions for
test functions of the form vϕ with v ∈ dom(Ap), Sv > 0 and ϕ ∈ C∞0 (JT ), see Corollary 4.40.
Dividing by Sv on both sides yields, at least in the case (4.56), an optimality condition with
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arbitrary test functions ϕ ∈ C∞0 (JT ) and independent of v. The result is a variational inequality
in time only. For i = 1, we also apply injectivity of B∗1 to prove uniqueness of p and q if f is
continuously differentiable, see Corollary 4.41.
In Subsection 4.4.5, we return to the question of characterizing dµ and therewith of dq. This
part extends the results in [Mün17b]. We introduce different categories of times E ⊂ I∂ , see
Definition 4.24. Depending on the category of the set E, we characterize the sign of dµ(E)
and prove upper bounds for |dµ(E)|, see Lemma 4.46 and Theorem 4.47. Afterwards, we ex-
ploit the relation between dµ and dq and conclude sign conditions and bounds for dq(E), see
Corollary 4.48. Finally, we characterize the continuity properties of q in Corollary 4.49.

4.4.1 Adjoint system for distributed or boundary controls

In this subsection, we derive an adjoint system (p, q) for problem (4.1)–(4.3) for i ∈ {1, 2}. The
evolution equation and the regularity properties of p are obtained by a standard compactness
argument as the limit ε → 0 of pε, see Lemma 4.23. The limiting procedure for qε is more
involved, since Lemma 4.22 provides a uniform-in-ε-bound of the norm of q̇ε only in L1(JT ).
Hence, we only obtain weak star convergence of qε, see Lemma 4.23. Low regularity of the limit
q ∈ BV(JT ) complicates the characterization of its time evolution. To get more insight into the
behaviour of q, it turns out useful to split the interval JT into the set I0 of times t where the
limit z(t) is contained in the open interval (a, b) and the rest I∂ where z(t) ∈ {a, b}. Indeed, in
open subintervals of I0, q is an H1-function and can be described by an evolution equation, see
Lemma 4.25 below. On I∂ , there remains a measure dµ ∈ C(JT )∗ which corresponds to the limit
ε→ 0 of 1

εΨ′′(zε)qε in the evolution equation of qε. The result is an equality for dq in the sense
of measures on I∂ which depends on dµ, see Lemma 4.28. Although the abstract measure dµ
has its support only in I∂ , this is not quite satisfying since I∂ is a-priori unknown. Moreover, dµ
appears in the optimality conditions for problem (4.1)–(4.3). Hence, to characterize dµ would
not only complete the description of q, but also help to interpret the optimality condition. With
this regard, we introduce a regularity Assumption 4.30 which essentially supposes that Sy(t)
is strictly monotone for t ∈ I∂ . In extension to [Mün17b], we provide an example for a case
in which Assumption 4.30 is satisfied, see Example 4.32. With Assumption 4.30 we can shrink
the support of dµ to a subset of I∂ . In particular, we are able to describe the evolution of q in
open subintervals of I∂ and we can prove that q is continuous at so-called (0, ∂)-switching times,
see Lemma 4.35. Since a deeper analysis of dµ is more involved and technical, we dedicate the
whole Subsection 4.4.5 to this question.

Lemma 4.23 (Adjoint system in the limit). [Mün17b, Lemma 4.1] Adopt the assumptions and
the notation of Theorem 4.20. For i ∈ {1, 2} let u ∈ Ui, y = G(u) and z = W[Sy] be defined
as in Theorem 4.16. Then every sequence {ε} with ε→ 0 has a subsequence {εk} such that the
following holds true. There exist functions functions p ∈ Y ∗2,T and λ1, λ2 ∈ L2(JT ; [Xα]∗) such
that as k →∞, pεk ⇀ p in Y ∗2,T and[

∂

∂y
fεk(yεk , zεk)

]∗
pεk ⇀ λ1 in L2(JT ; [Xα]∗),

S
∂

∂y
fεk(yεk , zεk)qεk ⇀ λ2 in L2(JT ; [Xα]∗).

Moreover, there exists a function q which has bounded variation, i.e. q ∈ BV(JT ), such that qεk
converges pointwise to q with k →∞. There holds Var(q) ≤ lim infεk→0 Var(qεk). Alternatively,
q̇εk → dq weak star in C(JT )∗ with k →∞ for some signed regular Borel measure dq ∈ C(JT )∗.
The relation between q and dq is given by q(t−)−q(s+) = dq((s, t)) and q(t+)−q(s−) = dq([s, t])
for [s, t] ⊂ JT .
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The function p solves the evolution equation

−ṗ+A∗p = λ1 + λ2 − SApq + y − yd for t ∈ JT , p(T ) = 0. (4.41)

If f is continuously differentiable from Xα × R into X then λ1 =
[
∂
∂yf(y, z)

]∗
p and λ2 =

S ∂
∂yf(y, z)q. Furthermore,

B∗i (p+ Sq) = −κu in Ui. (4.42)

Proof. We exploit the uniform estimates in Lemma 4.22 and apply a weak compactness argu-
ment. First of all, remember the convergence results of Theorem 4.16, i.e. that uε → u in Ui,
yε → y in Y2,0 and in C(JT ;Xα) and zε → z uniformly and weakly in H1(JT ) with ε → 0.
The spaces Y ∗2,0 and L2(JT ; [Xα]∗) are reflexive. Hence, because the estimates (4.34)–(4.36) in

Lemma 4.22 are uniform in ε, there exist functions p ∈ Y ∗2,0 and λ1, λ2 ∈ L2(JT ; [Xα]∗) together

with a subsequence {εk} such that pεk ⇀ p in Y ∗2,T ,
[
∂
∂yfεk(yεk , zεk)

]∗
pεk ⇀ λ1 in L2(JT ; [Xα]∗)

and S ∂
∂yfεk(yεk , zεk)qεk ⇀ λ2 in L2(JT ; [Xα]∗) with k → ∞. Note that p(T ) = 0 by definition

of Y ∗2,T . Estimate (4.33) provides us a uniform-in-ε bound of q̇ε in L1(JT ). This implies that
qε has uniformly bounded variation, i.e. qε ∈ BV(JT ), with a norm which is bounded indepen-
dently of ε. A weak form of Helly’s theorem in Banach spaces [BP12, Theorem 1.126] implies
that (w.l.o.g. the same) subsequence qεk converges pointwise to some q ∈ BV(JT ) with k →∞
and Var(q) ≤ lim infεk→0 Var(qεk). Alternatively, by Alaoglu’s compactness theorem, q̇εk → dq
weak star in C(JT )∗ with k → ∞ for some signed regular Borel measure dq ∈ C(JT )∗. The
relation between q and dq is given by q(t−)− q(s+) = dq((s, t)) and q(t+)− q(s−) = dq([s, t])
for [s, t] ⊂ JT , see [BP12, Chapter 1.3.3] or [BK13, Section 4]. The operator − d

dt + A∗p is linear
and continuous from Y ∗2,T to L2(JT ; [dom(Ap)]

∗) and hence weakly continuous. Therefore, we
obtain

0 = −ṗεk +A∗ppεk −
[
∂

∂y
fεk(yεk , zεk)

]∗
pεk + SApqεk − S

∂

∂y
fε(yεk , zεk)qεk − (yεk − yd)

⇀ −ṗ+A∗p − λ1 − λ2 + SApq − (y − yd)

in L2(JT ; [dom(Ap)]
∗) with k →∞. Consequently, p ∈ Y ∗2,T solves equation (4.41).

Assume now that f is continuously differentiable from Xα × R into X, so that we can define
fε ≡ f in Assumption 4.7. Remember the strong convergence of yεk to y in C(JT ;Xα) and of zεk
to z in C(JT ). Moreover, pεk ⇀ p in Y ∗2,T and qεk → q pointwise and hence Sqεk ⇀ Sq weakly in

L2(JT ;X∗) with k → ∞. Since f is continuously differentiable, there holds
[
∂
∂yf(yεk , zεk)

]∗
→[

∂
∂yf(y, z)

]∗
in L(L2(JT ;X∗),L2(JT ; [Xα]∗)) with k →∞. This implies[

∂

∂y
f(yεk , zεk)

]∗
pεk ⇀

[
∂

∂y
f(y, z)

]∗
p and[

∂

∂y
f(yεk , zεk)

]∗
Sqεk ⇀

[
∂

∂y
f(y, z)

]∗
Sq = S

∂

∂y
f(y, z)q

in L2(JT ; [Xα]∗) with k → ∞. Consequently, λ1 =
[
∂
∂yf(y, z)

]∗
p and λ2 = S ∂

∂yf(y, z)q if f is

continuously differentiable.
In the general case, weak continuity of B∗i implies

0 = B∗i (pεk + Sqεk) + (κ+ 1)uεk − u ⇀ B∗i (p+ Sq) + κu in Ui with k →∞.

This proves (4.42).
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In order to study q it turns out that a splitting of the interval JT as in [BK13, Section 4] is
helpful.

Definition 4.24 (Partition of JT ). [Mün17b, Definition 4.2] Let z be as in Theorem 4.16. We
split JT into I0 := {t ∈ JT : z(t) ∈ (a, b)} and I∂ := JT \I0 = {t ∈ JT : z(t) ∈ {a, b}}. We further
introduce Ia∂ := {t ∈ JT : z(t) = a} and Ib∂ := {t ∈ JT : z(t) = b}.

Observe that the set I0 is open as the pre-image of the continuous function z. Hence, every time
t ∈ I0 ∩ I∂ on the boundary between I0 and I∂ is contained in I∂ but not in I0.

Lemma 4.25 (q in I0). [Mün17b, Lemma 4.3] Adopt the assumptions and the notation of
Lemma 4.23 and consider the subdivision of JT from Definition 4.24. For any interval (c, d) ⊂ I0

the limit q in Lemma 4.23 belongs to H1(c, d) and there exist ν1, ν2 ∈ L2(JT ) such that −q̇ =
ν1+ν2 in L2(c, d). If f is continuously differentiable from Xα×R into X then ν1 = 〈p, ∂∂zf(y, z)〉X
and ν2 = 〈Sq, ∂∂zf(y, z)〉X .

Proof. Remember that zε → z uniformly in JT , see Theorem 4.16. Let (c, d) ⊂ I0 be an arbitrary
but fixed interval and consider any closed subinterval [s, t] ⊂ (c, d). By definition of I0, uniform
convergence of zε to z implies zε([s, t]) ⊂ (a, b) for all ε small enough. We assume w.l.o.g that
this is the case for all ε ∈ (0, ε0) with ε0 from Lemma 4.22. But then (A4)ε in Assumption 4.7
implies Ψ′′(zε) ≡ 0 on [s, t] for all ε ∈ (0, ε0). Hence, for ε ∈ (0, ε0), this term drops out in the
evolution equation (4.28) of qε in Theorem 4.20. We integrate over [s, t] and obtain

qε(t)− qε(s) =

∫ t

s
−〈pε(s) + Sqε(s),

∂

∂z
fε(yε(s), zε(s))〉Xds ∀ε ∈ (0, ε0).

Consider the subsequence {εk} from Lemma 4.23 and let k0 > 0 be chosen such that εk < ε0 for
all k > k0. Note that ε0 in Lemma 4.22 was chosen such that ∂

∂zfε(yε, zε) is bounded uniformly
in L∞(JT ;X) for all ε ∈ (0, ε0), see also Lemma 4.18. This together with the estimates from
Lemma 4.22 and Hölder’s inequality then implies uniform boundedness of 〈pε, ∂∂zfε(yε, zε)〉X
and 〈Sqε, ∂∂zfε(yε, zε)〉X in L2(JT ) if ε ∈ (0, ε0). Hence, by reflexivity of L2(JT ), there exist
functions ν1, ν2 ∈ L2(JT ) along with a subsequence of {εk} (still denoted by {εk}) such that

〈pεk ,
∂

∂z
fεk(yεk , zεk)〉X ⇀ ν1 and 〈Sqεk ,

∂

∂z
fεk(yεk , zεk)〉X ⇀ ν2 in L2(JT ) with k →∞.

If f is continuously differentiable from Xα × R into X then a similar argument as for λ1, λ2 in
the proof of Lemma 4.23 implies ν1 = 〈p, ∂∂zf(y, z)〉X and ν2 = 〈Sq, ∂∂zf(y, z)〉X .
In the general case we obtain

qεk(t)− qεk(s) =

∫ T

0
−〈pεk + Sqεk ,

∂

∂z
fεk(yεk , zεk)〉Xχ[s,t]ds→

∫ t

s
−ν1 − ν2ds with k →∞.

This implies that −(ν1 + ν2) is the weak derivative of q in L2(c, d).

Lemma 4.25 describes the evolution of q in I0. In a next step, we investigate in the analysis of
q in I∂ . It turns out that q and d

dtP[Sy] are pointwise orthogonal.

Lemma 4.26 (q in I∂ : Relation to P(Sy)). [Mün17b, Lemma 4.4] Adopt the assumptions and
the notation of Lemma 4.23 and consider the subdivision of JT from Definition 4.24. With
P = Id−W according to Theorem 2.40, there holds

[
d
dtP[Sy](t)

]
q(t) = 0 for a.e. t ∈ I∂ .
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Proof. By (A4)ε, Ψ is defined according to Remark 4.8. We denote by c > 0 and ε0 > 0 the
constants from Lemma 4.22. Theorem 4.16 implies zε → z uniformly in JT . Hence,

zε(t)→ b for t ∈ Ib∂ and zε(t)→ a for t ∈ Ia∂ with ε→ 0.

We show the statement for Ib∂ first. Since zε(t) → b for t ∈ Ib∂ , there exists some ε1 ∈ (0, ε0]
such that

a < zε(t) < b+ 1 for t ∈ Ib∂ , ∀ε ∈ (0, ε1). (4.43)

By Remark 4.8, Ψ satisfies Ψ(x) = Ψ1(x) = (x− b)3(4 + b− x) for x ∈ (b, b+ 2] and Ψ ≡ 0 on
[a, b]. For ε ∈ (0, ε1) and t ∈ Ib∂ , this yields

Ψ′(zε(t)) = Ψ′1(zε(t))χ{b<zε≤b+2}(t)

= 4(3− (zε(t)− b))(zε(t)− b)2χ{b<zε≤b+2}(t), (4.44)

Ψ′′(zε(t)) = 12(zε(t)− b)[2− (zε(t)− b)]χ{b<zε≤b+2}(t). (4.45)

We insert (4.45) into the uniform estimate (4.32) from Lemma 4.22 and apply (4.43) to obtain

c ≥ 1

ε

∫ T

0
Ψ′′(zε(s))|qε(s)|ds ≥

1

ε

∫
Ib∂

Ψ′′(zε(s))|qε(s)|ds

=
1

ε

∫
Ib∂

12(zε(t)− b)[2− (zε(t)− b)]χ{b<zε≤b+2}|qε(s)|ds

≥ 1

ε

∫
Ib∂

12(zε(t)− b)χ{b<zε≤b+2}|qε(s)|ds ∀ε ∈ (0, ε1).

(4.46)

Remember the representation W +P = Id from Theorem 2.40 and the evolution equation (4.5)
of zε = Zε(Sy). Weak convergence of Syε ⇀ Sy and of zε ⇀ z =W[Sy] in H1(JT ) with ε→ 0
according to Theorem 4.16 hence yields

1

ε
Ψ′(zε) = Sẏε − żε ⇀ Sẏ − ż =

d

dt
(Sy −W[Sy]) =

d

dt
P[Sy] in L2(JT ) with ε→ 0.

Furthermore, Lemma 4.23 implies the strong convergence |qεk | → |q| in L2(JT ) with k → ∞.
Moreover, by the variational inequality (4.2) which determines z = W[Sy] and because of the
definition of Ib∂ there holds

0 ≤ Sẏ = Sẏ − ż =
d

dt
P[Sy] a.e. in Ib∂ ,

and hence d
dtP[Sy] =

∣∣ d
dtP[Sy]

∣∣ a.e. in Ib∂ . This together with (4.44) and (4.46) yields

0 ≤
∫
Ib∂

∣∣∣∣ ddtP[Sy]

∣∣∣∣ |q(s)|ds = lim
k→∞

1

εk

∫
Ib∂

Ψ′(zεk(s))|qεk(s)|ds

= lim
k→∞

1

εk

∫
Ib∂

4(3− (zε(t)− b))(zε(t)− b)2χ{b<zεk≤b+2}|qεk(s)|ds

≤ lim
k→∞

12

εk

∫
Ib∂

(zεk(s)− b)2χ{b<zεk≤b+2}|qεk(s)|ds ≤ c lim
k→∞

sup
s∈Ib∂

(zεk(s)− b) = 0.

It follows
[
d
dtP[Sy](t)

]
q(t) = 0 for a.e. t ∈ Ib∂ .

Similar estimates for Ia∂ conclude the proof because I∂ = Ia∂ ∪ Ib∂ .
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Remark 4.27. Note that Lemma 4.26 can be trivially extended to I0. Indeed, it follows from
the variational inequality (4.2) which determines z = W[Sy] and from the definition I0 = {t ∈
JT : z(t) ∈ (a, b)} that

d

dt
P[Sy](t) = Sẏ(t)− ż(t) = 0 for a.e. t ∈ I0.

Hence,
[
d
dtP[Sy](t)

]
q(t) = 0 for a.e. t ∈ I0.

Remember the low regularity of q ∈ BV(JT ). Hence, in general q has no weak derivative on the
whole interval JT . The next lemma provides an equation for dq in the sense of measures on I∂ .

Lemma 4.28 (q in I∂ : Relation to dµ). [Mün17b, Lemma 4.5] Adopt the assumptions and the
notation of Lemma 4.23 and let ν1 and ν2 be as in Lemma 4.25. Consider the subdivision of JT
from Definition 4.24. We denote dµε := 1

εΨ′′(zε)qε. There exists a measure dµ ∈ C(JT )∗, such
that a subsequence {dµεk} (w.l.o.g we may consider {εk} from Lemma 4.23) converges weak star
to dµ in C(JT )∗ with k → ∞. The support of dµ is contained in I∂ . For any ϕ ∈ C(JT ) there
holds ∫ T

0
−ϕ(t)dq(t) +

∫
I∂

ϕ(t)dµ(t) =

∫ T

0
ϕ(t)(ν1(t) + ν2(t))dt. (4.47)

This implies dµ = dq + (ν1 + ν2)dt as measures on I∂ .

Proof. Estimate (4.32) in Lemma 4.22 provides a uniform-in-ε bound in L1(JT ) for the func-
tions dµε for all ε ∈ (0, ε0). Consequently, by Anaoglu’s compactness theorem [W05, Korol-
lar VIII.3.12], we can extract a subsequence of {dµε} which converges weakly star in C(JT )∗ to
some measure dµ. Let ϕ ∈ C(JT ) have compact support in I0. Then the uniform convergence of
zε to z implies the existence of some εϕ ∈ (0, ε0) such that zε(t) ∈ (a, b) for all t ∈ supp(ϕ) b I0

and ε ∈ (0, εϕ). By (A4)ε in Assumption 4.7, this implies ϕ 1
εΨ′′(zε)qε ≡ 0 on JT for ε ∈ (0, εϕ).

Since ϕ ∈ C(JT ) was arbitrary, the support of the limit measure dµ is contained in I∂ [BK13,
p.343]. The other statements are shown similar as [BK13, Lemma 4.6] and [BK13, Lemma 4.7].
Indeed, testing (4.28) with an arbitrary test function ϕ ∈ C(JT ) and taking the limit ε→ 0 im-
plies (4.47). To see that dµ = dq+(ν1 +ν2)dt as measures on I∂ , choose ϕ ∈ C(I∂) arbitrary and
consider any extension ϕ̃ ∈ C(JT ) of ϕ. Then we define ϕk(t) := max{0, 1− kdist(t, I∂)}ϕ̃(t) for
k ∈ N. All ϕk are uniformly bounded in C(JT ). Moreover, ϕk(t)→ 0 for t ∈ I0 and ϕk(t)→ ϕ(t)
for t ∈ I∂ with k →∞. Hence, testing (4.47) with ϕk and taking the limit k →∞ implies∫

I∂

−ϕ(t)dq(t) +

∫
I∂

ϕ(t)dµ(t) =

∫
I∂

ϕ(t)(ν1(t) + ν2(t))dt.

In the next lemma, we study the continuity properties of q. Moreover, we prove that the absolute
value of q can only jump downwards in reverse time.

Lemma 4.29 (Discontinuity properties of q). [Mün17b, Lemma 4.6] Adopt the assumptions
and notation of Lemma 4.23. The absolute value of q can only jump downwards in reverse time.
Consequently, for any t ∈ JT there holds |q(t−)| ≤ |q(t+)| and q(T−) = q(T ) = 0. Moreover, q
is right-continuous in [0, T ) and left-continuous at T .

Proof. Lemma 4.23 implies the existence of some subsequence {εk} such that qεk converges to q
in L1(JT ) and dqεk = q̇εkdt to dq weak star in C(JT )∗ respectively with k →∞. Equivalently, by
[Vis13, Chapter XII.7], there exist representatives qεk and q in the space BVr(JT ) of functions
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with bounded total variation which are right-continuous in [0, T ) and left-continuous at T such
that qεk converges weak star to q in BVr(JT ). Moreover, BVr(JT ) is isometric to BV(JT ).
Hence, it follows that q is bounded in BV(JT ), right-continuous in [0, T ) and left-continuous at
T . The rest of the statements are shown just as [BK13, Lemma 4.4]: Let t ∈ JT be arbitrary.
Similar as in (4.39), we test the evolution equation (4.28) with qε/|qε|. Afterwards, we integrate
over (s1, s2) with t ∈ (s1, s2) and obtain

|qε(s1)| − |qε(s2)|+ 1

ε

∫ s2

s1

Ψ′′(zε(s))|qε(s)|ds

=

∫ s2

s1

〈pε(s) + Sqε(s),
∂

∂z
fε(yε(s), zε(s))〉X

qε(s)

|qε(s)|
ds.

The second term on the left side is non-negative and 〈pε(s) + Sqε,
∂
∂zfε(yε, zε)〉X is bounded in

L1(JT ) by (4.20) and (4.38). Hence, in the limit s1 ↑ t and s2 ↓ t we obtain |q(t−)| ≤ |q(t+)|.
q(T−) = q(T ) = 0 follows similarly and q(t+) = q(0) holds because q is right-continuous at
0.

Even though the abstract measure dµ in Lemma 4.28 has its support only in I∂ , it still remains
present in the equation dµ = dq+(ν1 +ν2)dt of measures on I∂ . Hence, even if f is continuously
differentiable so that ν1 = 〈p, ∂∂zf(y, z)〉X and ν2 = 〈Sq, ∂∂zf(y, z)〉X according to Lemma 4.25,
the characterization of dq is still not fully understood. That is, with Lemma 4.26 in mind, we
make the following regularity assumption in order to analyze q also in I∂ , cf. [BK13, p.344]:

Assumption 4.30 (Regularity assumption). [Mün17b, Assumption 4.7] Let y be as in Theo-
rem 4.16 and consider the subdivision of JT from Definition 4.24. We suppose that the function
P[Sy] satisfies d

dtP[Sy] 6= 0 a.e. in I∂ . Equivalently, Sẏ > 0 a.e. in Ib∂ and Sẏ < 0 a.e. in Ia∂ .

Remark 4.31. [Cf. Mün17b, Remark 4.8] Assumption 4.30 is reasonable if Sy is the size of
interest. Assume for instance that S computes approximately the mean value of I−1

p y, y ∈
dom(Ap). More precisely, let w in (A2)’ in Assumption 4.2 have the form w = 1

m|Ω|ϕ, where the

components ϕj , j ∈ {1, . . . ,m}, of ϕ ∈
∏m
j=1 C∞ΓDj

(Ω) are equal to 1 within most of Ω, except

for a neighborhood of ΓDj of measure 0 < ε << 1. For

y ∈ dom(Ap) = ran (Ip) = Ip(W1,p
ΓD

(Ω)) ⊂W−1,p
ΓD

(Ω),

this implies

Sy = 〈y, w〉X =
1

m|Ω|

m∑
j=1

∫
Ω

(I−1
p y)jϕjdx.

Hence, Sy is approximately the mean value of the function I−1
p y in Ω. If the optimal control

problem (4.1)–(4.3) enforces this value to vary (in I∂), then it becomes very unlikely that Sẏ = 0
in a subset of I∂ with positive measure, so that Assumption 4.30 is justified.

In extension to [Mün17b, Remark 4.8], we provide an example for Remark 4.31, when S computes
approximately the mean value of I−1

p y for y ∈ dom(Ap). Assumption 4.30 can be enforced by a
special choice of the tracking term yd.

Example 4.32. We assume i = m = |Ω| = T = 1 in this example. Note that the solution
mapping G : L2(JT ;X) → Y2,0 is surjective. Indeed, if y ∈ Y2,0 is arbitrary, then h := ( ddt +
Ap)y − F [y] is contained in L2(JT ;X) and G(h) = y. As will be shown in Subsection 4.4.4, B1

has dense range in X for 1
2 > 1− 1

p −
1
d which we assume in this example. Hence, the mapping
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u ∈ U1 7→ G(B1u) has dense range in Y2,0. For 0 < ε << 1, let ϕ ∈ C∞ΓD(Ω) with |ϕ| ≤ 1 be
chosen such that

|Ωε| = |{x ∈ Ω : ϕ(x) = 1}| = 1 +O(ε3) and |Ω\Ωε| = |{x ∈ Ω : ϕ(x) 6= 1}| < ε3.

Moreover, let w in (A2)’ in Assumption 4.2 be defined by w = ϕ and choose the tracking
term yd(x, t) := tϕ(x) for (x, t) ∈ Ω × JT . Since C∞ΓD(Ω) ⊂ W1,p

ΓD
(Ω) ↪→ dom(Ap), there holds

Ipyd ∈ Y2,0. Hence, there exists some function u ∈ U1 such that ‖G(B1u) − yd‖2U1
≤ ε3. We

further choose κ of order O(ε3). Consequently, the minimal value in (4.1)–(4.3) is of order O(ε3).
Let y be an optimal state for problem (4.1)–(4.3) and assume that there exist k > 0 disjoint
intervals (tj , tj+1) ⊂ I∂ , j ∈ {1, . . . , k}, such that Sẏ = 0 a.e. in ∪kj=1(tj , tj+1) and Sẏ 6= 0 a.e.

in I∂\ ∪kj=1 (tj , tj+1). For j ∈ {1, . . . , k}, we denote by mj := Sy(tj) the value of Sy in [tj , tj+1].
We prove that |tj+1 − tj | is of order O(ε) for each j ∈ {1, . . . , k}.
Let j ∈ {1, . . . , k} be given. Since w = ϕ, there holds

Sy(t) = 〈y(t), ϕ〉X =

∫
Ω
I−1
p y(x, t)ϕ(x) dx =

∫
Ωε

I−1
p y(x, t) dx+O(ε3) for a.e. t ∈ JT .

Hence, for a.e. t ∈ (tj , tj+1), we can estimate∫
Ωε

|y(x, t)|2 dx ≥
∣∣∣∣∫

Ωε

I−1
p y(x, t) dx

∣∣∣∣2 = |Sy(t)|2 +O(ε) = m2
j +O(ε3).

This implies

‖I−1
p y − yd‖2U1

≥
∫

(tj ,tj+1)

∫
Ωε

|[I−1
p y](x, t)− yd(x, t)|2 dxdt+O(ε3)

=

∫
(tj ,tj+1)

∫
Ωε

|[I−1
p y](x, t)|2 − 2t[I−1

p y](x, t) + t2 dxdt+O(ε3)

≥
∫

(tj ,tj+1)
m2
j − 2tmj + t2|Ωε| dt+O(ε3)

=

∫
(tj ,tj+1)

(mj − t)2 dt+O(ε3).

Note that ∫
(tj ,tj+1)

(mj − t)2 dt

=

∫
(mj−ε,mj+ε)∩(tj ,tj+1)

(mj − t)2 dt+

∫
(tj ,tj+1)\(mj−ε,mj+ε)

(mj − t)2 dt

≥
∫

(mj−ε,mj+ε)∩(tj ,tj+1)
(mj − t)2 dt+ ε2|(tj , tj+1)\(mj − ε,mj + ε)|.

The first term is of order O(ε3). Hence,

‖I−1
p y − yd‖2U1

≥ ε2|(tj , tj+1)\(mj − ε,mj + ε)|+O(ε3),

where the left side is of order O(ε3). Consequently, |(tj , tj+1)\(mj − ε,mj + ε)| is of order O(ε)
and because |(tj , tj+1) ∩ (mj − ε,mj + ε)| ≤ 2ε we conclude that |tj+1 − tj | is of order O(ε).
Under the assumption that I∂ is decomposed into intervals in which Sẏ = 0 almost surely and
intervals in which Sẏ 6= 0 almost surely, a small choice of ε implies that Sẏ 6= 0 can only be
violated in a small subset of every connected component of I∂ .
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Remark 4.33. Note that under Assumption 4.30, Lemma 4.26 implies q(t) = 0 for a.e. t ∈ I∂ .
Clearly, this does not mean that q vanishes everywhere in I∂ . But since q is right-continuous in
[0, T ) and left-continuous at T , we conclude q(t) = 0 for all t ∈ [c, d) for arbitrary subintervals
[c, d] ⊂ I∂ . Hence, for a full characterization of q, the only remaining question is how dq behaves
on the set of switching times between I0 and I∂ , i.e. on I0 ∩ I∂?

With regard to Remark 4.33, we introduce the following categories of times as in [BK13]:

Definition 4.34 (Switching times). [Mün17b, Definition 4.9] Consider the subdivision of JT
from Definition 4.24. We call a time t ∈ JT a (0, ∂)-switching time if t ∈ I0 ∩ I∂ and if there is
some ε > 0 such that (t− ε, t) ⊂ I0 and [t, t+ ε) ⊂ I∂ . We say that t is a (∂, 0)-switching time
if t ∈ I0 ∩ I∂ and if for some ε > 0 we have (t− ε, t] ⊂ I∂ and (t, t+ ε) ⊂ I0.

With the same argument as in Remark 4.33, we can characterize dq at (0, ∂)-switching times:

Lemma 4.35 (q at (0, ∂)-switching times). [Mün17b, Lemma 4.10] Adopt the assumptions and
the notation of Lemma 4.23. If t is a (0, ∂)-switching time in the sense of Definition 4.34 and if
Assumption 4.30 holds then there exits some ε > 0 such that q ≡ 0 on [t, t + ε). Moreover, q
is continuous at t with t = 0. Furthermore, for every open interval (c, d) ⊂ I∂ there holds that
q ≡ 0 in [c, d).

Proof. Let Assumption 4.30 hold. As seen in Remark 4.33, this implies q ≡ 0 in [c, d) for any
subinterval [c, d) ⊂ I∂ . Hence, for any subinterval [β, γ] ⊂ (c, d) ⊂ I∂ we obtain 0 = q(γ−) −
q(β+) = dq((β, γ)), see Lemma 4.23. This implies dq = 0 as a measure on (c, d). We are left to
prove that q is continuous at (0, ∂)-switching times. To this aim, remember that the absolute
value of q can only jump downwards in reverse time by Lemma 4.29. Furthermore, for any
interval (e, c) ⊂ I0 there holds q ∈ H1(e, c) ↪→ C([e, c]) according to Lemma 4.25. Consequently,
whenever there exist intervals (e, c) ⊂ I0 and [c, d] ⊂ I∂ , then |q(c−)| ≤ |q(c+)| = |q(c)| = 0 and
q is right-continuous at e so that q is absolutely continuous on [e, d) with q(c) = 0.
If t is a (0, ∂)-switching time then (t − ε, t) ⊂ I0 and [t, t + ε) ⊂ I∂ for some ε > 0. Hence,
continuity of q at t follows from the general case with e = t− ε, c = t and d = t+ ε.

Remark 4.36. Even if Assumption 4.30 implies continuity of q at (0, ∂)-switching times, the
characterization of dq on I0 ∩ I∂ is still not complete. Indeed, there might exist (∂, 0)-switching
times for example, see Definition 4.34, and other categories of times in I0 ∩ I∂ are possible.
Those include isolated times t ∈ I0 ∩ I∂ for example.
Moreover, if Assumption 4.30 does not hold then we can not apply Lemma 4.26 to show that
q vanishes on half-open intervals [c, d) where [c, d] ⊂ I∂ . That is, it would be interesting to
understand the behaviour of dq on so-called waiting slots, i.e. on subintervals of I∂ in which
Sẏ = 0 a.e.
We will return to these open questions in Subsection 4.4.5, since we can only answer them for
the case of distributed control functions, i.e. for i = 1. Also the definition of isolated times and
waiting slots can be found in that subsection, see Definition 4.42.

4.4.2 Optimality conditions for distributed or boundary controls

In this subsection, we prove an optimality condition for problem (4.1)–(4.3) for the optimal
control u ∈ Ui, i ∈ {1, 2}, with help of the adjoint system (p, q) from Lemma 4.23. As already
explained in the beginning of Section 4.4, we begin with the general case i ∈ {1, 2} and derive
optimality conditions of weak type. Those will be improved for i = 1 in Subsection 4.4.4 below.
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Lemma 4.37 (Optimality condition). [Mün17b, Lemma 4.12] Adopt the assumptions and the
notation of Lemma 4.23 and let ν1 and ν2 be as in Lemma 4.25. For any h ∈ Ui, yBiu,Bih =
G′[Biu;Bih] and F ′[y; yBiu,Bih](t) = f ′[(y(t),W[Sy](t)); (yBiu,Bih(t),W ′[Sy;SyBiu,Bih](t))] (see
Corollary 3.15), there holds the optimality condition∫ T

0
〈λ1 + λ2 + S(ν1 + ν2), yBiu,Bih〉dom(Ap)dt

≤
∫
I∂

SyBiu,Bihdµ+

∫ T

0
〈p+ Sq, F ′[y; yBiu,Bih]〉Xdt.

(4.48)

Proof. We denote yBiu,Bih = G′[Biu;Bih] ∈ Y2,0 as in Corollary 3.15.
Since u solves the minimization problem min

u∈Ui
J(I−1

p G(u), u), the directional derivative of the

reduced cost function J (u) := J(I−1
p G(u), u) has to be greater or equal than zero in each

direction. The derivative of J can be computed with the same techniques as in the proof of
Theorem 4.20. For arbitrary h ∈ Ui there holds

0 ≤ J ′[u;h] = 〈y − yd, yBiu,Bih〉L2(JT ;dom(Ap)) + κ〈u, h〉Ui . (4.49)

Moreover, yBiu,Bih solves the evolution equation (3.20) in Corollary (3.15) with y replaced by y
and with h replaced by Bih. If we test that equation with p + Sq and integrate over JT , then
equation (4.42) implies∫ T

0
〈p+ Sq, ẏBiu,Bih +Apy

Biu,Bih〉Xdt−
∫ T

0
〈p+ Sq, F ′[y; yBiu,Bih]〉Xdt

=

∫ T

0
〈p+ Sq,Bih〉Xdt = −κ〈u, h〉Ui .

(4.50)

Note that the right side in (4.50) is just the negative partial derivative of J with respect to u,
evaluated at u and in direction h. We integrate the first term on the left side of (4.50) by parts
and insert the evolution equation (4.41) for p, see Lemma 4.23. Moreover, we replace −dq by
the measure −dµ+ (ν1 + ν2)dt according to Lemma 4.28. Finally, we end up with∫ T

0
〈p+ Sq, ẏBiu,Bih +Apy

Biu,Bih〉Xdt

=

∫ T

0
〈λ1 + λ2 − SApq + y − yd, yBiu,Bih〉dom(Ap)dt

−
∫ T

0
SyBiu,Bihdq +

∫ T

0
〈SApq, yBiu,Bih〉dom(Ap)dt

=

∫ T

0
〈λ1 + λ2 + y − yd, yBiu,Bih〉dom(Ap)dt−

∫ T

0
SyBiu,Bihdq

=

∫ T

0
〈λ1 + λ2 + y − yd, yBiu,Bih〉dom(Ap)dt−

∫
I∂

SyBiu,Bihdµ

+

∫ T

0
(ν1 + ν2)SyBiu,Bihdt.

(4.51)

Now we replace κ〈u, h〉Ui in (4.49) according to (4.50) and insert the right hand side of (4.51)
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for
∫ T

0 〈p+ Sq, ẏBiu,Bih +Apy
Biu,Bih〉Xdt to obtain

0 ≤
∫ T

0
〈y − yd, yBiu,Bih〉dom(Ap)dt+ κ〈u, h〉Ui

= −
∫ T

0
〈λ1 + λ2, y

Biu,Bih〉dom(Ap)dt+

∫
I∂

SyBiu,Bihdµ−
∫ T

0
(ν1 + ν2)SyBiu,Bihdt

+

∫ T

0
〈p+ Sq, F ′[y; yBiu,Bih]〉Xdt.

4.4.3 Summary: Adjoint system and optimality conditions for distributed- or
boundary controls

In this subsection, we summarize the results about the optimality system for problem (4.1)–(4.3)
for i ∈ {1, 2}. The optimality condition can be improved if f is continuously differentiable, see
Corollary 4.39 below.

Theorem 4.38 (Adjoint system and optimality condition). [Mün17b, Theorem 4.13] Let As-
sumption 4.2 and Assumption 4.7 hold. For i ∈ {1, 2} suppose that u ∈ Ui is an optimal control
for problem (4.1)–(4.3) together with the optimal state y ∈ Y2,0 and z =W[Sy] ∈ H1(JT ). Con-
sider the subdivision of JT from Definition 4.24. Then there exist adjoint states p ∈ Y ∗2,T and
q ∈ BV(JT ) of the following kind: There holds

B∗i (p+ Sq) = −κu in Ui. (4.52)

For some functions λ1, λ2 ∈ L2(JT ; [Xα]∗) we have

−ṗ+A∗pp = λ1 + λ2 − SApq + y − yd for t ∈ JT , p(T ) = 0.

q is right-continuous in JT , left-continuous at T and absolutely continuous in I0. There exist
ν1, ν2 ∈ L2(JT ) such that q solves −q̇ = ν1 +ν2 in every open subinterval of I0. d

dtP[Sy](t)q(t) =
0 for a.e. t ∈ I∂ and there is a measure dµ ∈ C(JT )∗ with support in I∂ such that dµ = dq+(ν1+
ν2)dt as measures on I∂. For all h ∈ Ui and with yBiu,Bih = G′[Biu;Bih] (see Theorem 3.11)
there holds the optimality condition∫ T

0
〈λ1 + λ2 + S(ν1 + ν2), yBiu,Bih〉dom(Ap)dt

≤
∫
I∂

SyBiu,Bihdµ+

∫ T

0
〈p+ Sq, F ′[y; yBiu,Bih]〉Xdt,

(4.53)

where F ′[y; yBiu,Bih](t) = f ′[(y(t),W[Sy](t)); (yBiu,Bih(t),W ′[Sy;SyBiu,Bih](t))]. The absolute
value of q can only jump downwards in reverse time so that q(T−) = q(T ) = 0 and |q(t−)| ≤
|q(t+)| for all t ∈ JT . If the regularity Assumption 4.30 is valid then q is continuous at every
(0, ∂)-switching time t (see Definition 4.34) with q(t) = 0. In this case, for every open interval
(c, d) ⊂ I∂ it follows q ≡ 0 on [c, d).

If f is continuously differentiable, then the functions λ1, λ2 and ν1, ν2 have been computed in
Lemma 4.23 and Lemma 4.25. With the concrete form of F ′[y; yBiu,Bih], λ1, λ2 in (4.53) cancel
out and we obtain an improved optimality condition:
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Corollary 4.39 (Adjoint system and optimality condition for regular f). [Mün17b, Corol-
lary 4.14] Let Assumption 4.2 and Assumption 4.7 hold. Moreover, suppose that f is continu-
ously differentiable from Xα×R into X. For i ∈ {1, 2} assume that u ∈ Ui is an optimal control
for problem (4.1)–(4.3) together with the optimal state y ∈ Y2,0 and z = W[Sy] ∈ H1(JT ).
Consider the subdivision of JT from Definition 4.24. Then there exist adjoint states p ∈ Y ∗2,T
and q ∈ BV(JT ) of the following kind: There holds

B∗i (p+ Sq) = −κu in Ui. (4.54)

We have

−ṗ+A∗pp =

[
∂

∂y
f(y, z)

]∗
(p+ Sq)− SApq + y − yd for t ∈ JT , p(T ) = 0. (4.55)

q is right-continuous in JT , left-continuous at T and absolutely continuous in I0. q solves the
evolution equation −q̇ = 〈p+ Sq, ∂∂zf(y, z)〉X in every open subinterval of I0. d

dtP[Sy](t)q(t) =
0 for a.e. t ∈ I∂ and there is a measure dµ ∈ C(JT )∗ with support in I∂ such that dµ =
dq + 〈p+ Sq, ∂∂zf(y, z)〉Xdt as measures on I∂ . For all h ∈ Ui and with yBiu,Bih = G′[Biu;Bih]
(see Corollary 3.15) and P = Id−W (see Theorem 2.40) there holds the optimality condition∫ T

0
〈p+ Sq,

∂

∂z
f(y, z)〉XP ′[Sy;SyBiu,Bih]dt ≤

∫
I∂

SyBiu,Bihdµ. (4.56)

The absolute value of q can only jump downwards in reverse time so that q(T−) = q(T ) = 0 and
|q(t−)| ≤ |q(t+)| for all t ∈ JT . If the regularity Assumption 4.30 is valid then q is continuous
at every (0, ∂)-switching time t (see Definition 4.34) with q(t) = 0. In this case, for every open
interval (c, d) ⊂ I∂ it follows q ≡ 0 on [c, d).

Proof. Since f is continuously differentiable, the functions λ1, λ2 and ν1, ν2 in Theorem 4.38

can be computed. In particular, by Lemma 4.23 there holds λ1 =
[
∂
∂yf(y, z)

]∗
p and λ2 =

S ∂
∂yf(y, z)q. Moreover, Lemma 4.25 entails ν1 = 〈p, ∂∂zf(y, z)〉X and ν2 = 〈Sq, ∂∂zf(y, z)〉X . It

remains to prove (4.56). With λ1, λ2, ν1, ν2 as above, (4.53) takes the form∫ T

0
〈
[
∂

∂y
f(y, z)

]∗
(p+ Sq), yBiu,Bih〉dom(Ap) + 〈p+ Sq,

∂

∂z
f(y, z)〉XSyBiu,Bihdt

≤
∫
I∂

SyBiu,Bihdµ+

∫ T

0
〈p+ Sq,

∂

∂y
f(y, z)yBiu,Bih +

∂

∂z
f(y, z)W ′[Sy;SyBiu,Bih]〉Xdt.

Note that the first term on the left side and the second term on the right side cancel out.
Rearranging yields

〈p+ Sq,
∂

∂z
f(y, z)

(
SyBiu,Bih −W ′[Sy;SyBiu,Bih]

)
〉Xdt ≤

∫
I∂

SyBiu,Bihdµ.

Now remember P = Id−W (see Theorem 2.40). Consequently,

SyBiu,Bih −W ′[Sy;SyBiu,Bih] = P ′[Sy;SyBiu,Bih],

and the optimality condition (4.56) follows.
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4.4.4 Improved optimality conditions and uniqueness for distributed controls

In this subsection, we study the question whether the weak optimality conditions (4.53) and
(4.56) in Theorem 4.38 and Corollary 4.39 hold in a strong sense? In particular, we would like
to replace yBiu,Bih in (4.53) and (4.56) by arbitrary functions v ∈ dom(Ap) and prove that both
conditions hold a.e. in t ∈ JT . As described in the beginning of Section 4.4, this is not possible
since the hysteresis operator W acts non-local in time. Nevertheless, we follow the strategy of
[MS15, Section 5] as long as possible. In a first step, we replace yBiu,Bih in (4.53) and (4.56) by
an arbitrary function y ∈ Y2,0. Unfortunately, this requires that Bi has dense range, which is
not the case for B2.
Hence, throughout this subsection, we consider problem (4.1)–(4.3) with i = 1, i.e. the control
problem with distributed controls u ∈ U1.
For appropriate choice of p in (A1)’ in Assumption 4.2, the operator B1 which maps U1 =
L2(JT ; [L2(Ω)]m) into L2(JT ;X) has dense range. Indeed, in (A1)’ in Assumption 4.2 one can

choose p with 1
2 > 1 − 1

p −
1
d . Equivalently, 2 < dp′

d−p′ . Hence, in this case Remark 2.7 yields

W1,p′

ΓD
(Ω) ↪−↪→ [L2(Ω)]m. Moreover, the embedding is one-to-one which implies that the embedding

[L2(Ω)]m ↪→W−1,p
ΓD

(Ω) = X is dense so that B1 has dense range.
In Subsection 4.4.4.1 we improve the optimality conditions (4.53) and (4.56) from Theorem 4.38
and Corollary 4.39 for i = 1, see Corollary 4.40. If f is continuously differentiable, this results
in a variational inequality in time only.
The latter can be used to prove uniqueness of p, q and dµ. This is done in Subsection 4.4.4.2,
see Corollary 4.41 below.

4.4.4.1 Improved optimality conditions

The following corollary states an improvement of the optimality conditions (4.53) and (4.56) in
Theorem 4.38 and Corollary 4.39 for i = 1.

Corollary 4.40 (Optimality condition for distributed controls). [Mün17b, Corollary 4.15] Let
Assumption 4.2 and Assumption 4.7 hold and let 1

2 > 1− 1
p−

1
d . Assume that u ∈ U1 is a solution

of problem (4.1)–(4.3) with i = 1, together with the state y ∈ Y2,0 and z = W[Sy] ∈ H1(JT ).
Let v ∈ dom(Ap) with Sv > 0 and ϕ ∈ C∞0 (JT ) be arbitrary. Then in addition to (4.53) in
Theorem 4.38 there holds∫ T

0
〈λ1 + λ2,

v

Sv
ϕ〉dom(Ap) + (ν1 + ν2)ϕdt

≤
∫
I∂

ϕdµ+

∫ T

0
〈p+ Sq, f ′[(y, z); ((v/Sv)ϕ,W ′[Sy;ϕ])]〉Xdt.

If f is continuously differentiable then in addition to (4.56) in Corollary 4.39 there holds∫ T

0
〈p+ Sq,

∂

∂z
f(y, z)〉XP ′[Sy;ϕ]dt ≤

∫
I∂

ϕdµ for all ϕ ∈ C∞0 (JT ).

Proof. As seen in Subsection 4.4.4, 1
2 > 1− 1

p −
1
d ⇔ 2 < dp′

d−p′ implies that B1 has dense range
according to Remark 2.7. As in [MS15, Lemma 5.2], this fact can be used to prove that the
set {yB1u,B1h : h ∈ U1} is dense in Y2,0. We adapt the proof to our framework: For arbitrary
η ∈ Y2,0 one defines ξ such that η = yB1u,η = G′[B1u; ξ], see Corollary 3.15, i.e.

η̇(t) + (Apη)(t) = F ′[y; η](t) + ξ(t) in JT ,

η(0) = 0.
(4.57)
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Since B1 has dense range, one can approximate ξ by a sequence of functions {B1hn}n, hn ∈ U1

for n ∈ N, which means B1hn → ξ with n → ∞. Because G′[B1u; ·] is Lipschitz continuous by
Corollary 3.15, it follows

yB1u,B1hn = G′[B1u;B1hn]→ G′[B1u; ξ] = yB1u,ξ = η with n→∞.

In [MS15, Theorem 5.3], density of {yB1u,B1h : h ∈ U1} in Y2,0 is applied to proof a pointwise
optimality condition which holds for all v ∈ dom(Ap) and a.e. t ∈ JT . This is not possible in
our case: For ζ ∈ C(JT ;Xα), the values of the function W ′[Sy;Sζ](t) at time t ∈ JT depend on
the previous values W ′[Sy;Sζ](s), s ∈ Jt = [0, t]. Hence, the function is non-local in time and
this translates to the composition

F ′[y; ζ](t) = f ′[(y(t),W[Sy](t)); (ζ(t),W ′[Sy;Sζ](t))].

Nevertheless, both functionsW ′[Sy; ·] and f ′[(y(t),W[Sy](t)); ·], and hence also F ′[y; ·], are posi-
tive homogeneous. Let η ∈ Y2,0 be arbitrary. Then there exists a sequence {ηn} := {yB1u,B1hn} ⊂
{yB1u,B1h : h ∈ U1} which converges to η with n → ∞. Since F ′[y; ·] is Lipschitz continuous
from C(JT ;Xα) to L2(JT ;X) according to Lemma 3.13, we can pass to the limit n→∞ in the
sequence of inequalities (4.53), where yB1u,B1h is replaced by yB1u,B1hn . Hence, there holds∫ T

0
〈λ1 + λ2 + S(ν1 + ν2), η〉dom(Ap)dt ≤

∫
I∂

Sηdµ+

∫ T

0
〈p+ Sq, F ′[y; η]〉Xdt,

where F ′[y; η](t) = f ′[(y(t),W[Sy](t)); (η(t),W ′[Sy;Sη](t))]. For arbitrary v ∈ dom(Ap) with
Sv > 0 and ϕ ∈ C∞0 (JT ), the product vϕ is contained in Y2,0. Moreover, since W ′[Sy; ·] and
f ′[(y(t),W[Sy](t)); ·] are positive homogeneous, there holds W ′[Sy;S(vϕ)] = SvW ′[Sy;ϕ] and
then f ′[(y, z); (vϕ, SvW ′[Sy;ϕ])] = Svf ′[(y, z); (vϕ/Sv,W ′[Sy;ϕ])]. Hence, choosing η = ϕv
and rearranging some terms we obtain∫ T

0
〈λ1 + λ2, ϕv〉dom(Ap) + ϕ(ν1 + ν2)Svdt

≤
∫
I∂

ϕSvdµ+

∫ T

0
〈p+ Sq, Svf ′[(y, z); (vϕ/Sv,W ′[Sy;ϕ])]〉Xdt.

Dividing by Sv on both sides yields the first inequality in the corollary. The proof of the second
inequality if f is continuously differentiable follows the same lines.

4.4.4.2 Uniqueness of the adjoint variables

In the following corollary, we exploit density of B1 for appropriate p ≥ 2 to prove that the
adjoint system (p, q) and the measure dµ are unique in the case i = 1 and when f is continuously
differentiable.

Corollary 4.41 (Unique adjoint system for distributed controls). [Mün17b, Corollary 4.16] Let
Assumption 4.2 and Assumption 4.7 hold and let 1

2 > 1 − 1
p −

1
d . Moreover, suppose that f is

continuously differentiable from Xα × R into X. Assume that u ∈ U1 is a solution of problem
(4.1)–(4.3) with i = 1, together with the state y ∈ Y2,0 and z = W[Sy] ∈ H1(JT ). Then in the
setting of Corollary 4.39 the adjoint couple p ∈ Y ∗2,T and q ∈ BV(JT ) together with the measure

dµ in C(JT )∗ is unique.
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Proof. Remember that B1 has dense range because 1
2 > 1 − 1

p −
1
d . Therefore, ker(B∗1) =

ran(B1)
⊥

= {0}, i.e. B∗1 is one-to-one. That is, we can take the inverse (B∗1)−1 on both sides in
equation (4.54), which was

B∗1(p+ Sq) = −κu in U1,

see Corollary 4.39. Hence, there holds

p+ Sq = −κ(B∗1)−1u in X∗ a.e. in JT , (4.58)

cf. [MS15, Theorem 4.15]. Now suppose that there are two adjoint couples (p1, q1) and (p2, q2)
which both satisfy the conditions of Corollary 4.39.
First we prove p1 = p2. To this aim let ζ ∈ L2(JT ; dom(Ap)) be an arbitrary test function. We
subtract the evolution equation (4.55) for p1 from that of p2 and test the result with ζ. Note
that the term

(p1 + Sq1)− (p2 + Sq2)

cancels out by (4.58). We end up with

〈ṗ2 − ṗ1, ζ〉L2(JT ;dom(Ap))

= 〈
[
∂

∂y
f(y, z)

]∗
(p1 + Sq1 − (p2 + Sq2))−A∗p(p2 − p1)− SAp(q2 − q1), ζ〉L2(JT ;dom(Ap))

= 〈p1 + Sq1 − (p2 + Sq2),
∂

∂y
f(y, z)ζ〉L2(JT ;X) − 〈p2 + Sq2 − (p1 + Sq1), Apζ〉L2(JT ;X) = 0.

Since ζ ∈ L2(JT ; dom(Ap)) was arbitrary, this implies ṗ2 = ṗ1 in L2(JT ; [dom(Ap)]
∗). Moreover,

by definition of Y ∗2,T there holds p1(T ) = p2(T ) = 0 ∈ [dom(Ap)]
∗. Because the functions

pj ∈ L2(JT ; [dom(Ap)]
∗), j ∈ {1, 2}, satisfy

pj(t) = pj(T )−
∫ T

t
ṗj(s) ds for t ∈ JT ,

this shows p1 = p2 in L2(JT ; [dom(Ap)]
∗). Density of the embedding dom(Ap) ↪→ X implies

that the embedding of X∗ into [dom(Ap)]
∗ is one-to-one, which translates to the embedding

L2(JT ;X∗) ↪→ L2(JT ; [dom(Ap)]
∗). But this implies p1 = p2 also in L2(JT ;X∗). By the definition

of Y ∗2,T , we conclude p1 = p2 ∈ Y ∗2,T .
We are left to prove q1 = q2. Since p1 = p2 in X∗ a.e. in JT , (4.58) yields S(q1 − q2) =
0 in X∗ a.e. in JT . Now let v ∈ dom(Ap) with Sv > 0 be arbitrary but fixed. Then we obtain

q1 − q2 =
(q1 − q2)Sv

Sv
=
〈S(q1 − q2), v〉X

Sv
= 0 in R a.e. in JT .

Hence, q1 = q2 in L1(JT ). That is, there holds∫
[0,T ]
|dq1 − dq2| = sup

{∫ T

0
(q1 − q2)ϕ̇dt : ϕ ∈ C1

0(JT ), |ϕ| ≤ 1

}
= 0.

Consequently, dq1 − dq2 = 0 as measures on JT , cf. [Vis13, p. XII.7]. We conclude q1 = q2 ∈
BV(0, T ). Subtracting the equality of measures of dq1 in Corollary 4.39 from that of dq2 finally
yields dµ1 = dµ2.
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4.4.5 Properties of the measures dµ and dq for distributed controls

In this subsection, we return to the question of c haracterizing the measures dµ and dq. As
mentioned in the introduction of Section 4.4, this part extends the results in [Mün17b]. All the
proofs rely on the improved optimality condition in Corollary 4.40 for continuously differentiable
f and i = 1. That is, throughout this subsection we consider the control problem (4.1)–(4.3)
with distributed control functions.
In Definition 4.42 below, we define the category of isolated times t ∈ I∂ in addition to the
switching times from Definition 4.34. Moreover, we introduce the category of waiting slots,
which includes all isolated times and switching times. In Lemma 4.46, we prove sign properties
and bounds for dµ{t} for all isolated times t ∈ I∂ . Afterwards, we generalize Lemma 4.46
by proving similar results for dµ on the category of waiting slots, see Theorem 4.47. With
help of the measure equation for dq according to Corollary 4.39 we conclude the corresponding
behaviour of dq on the category of waiting slots, see Corollary 4.48. In case of the regularity
Assumption 4.30, all waiting slots are either isolated times or switching times. Hence, in this
case Corollary 4.48 determines the direction of a jump of q at any time t ∈ I∂ ∩ I0. Moreover,
we can derive an upper bound for the absolute value of a jump of q at time t. The results on
the continuity properties of q are summarized in Corollary 4.49.

Definition 4.42. Consider the setting of Corollary 4.39. Let (0, ∂)-switching times and (∂, 0)-
switching times be defined as in Definition 4.34. We introduce two more categories of times in
I∂ :

• We call t ∈ I∂ an isolated time if there exists some open interval (c, d) ⊂ JT with t ∈ (c, d)
such that (c, d)∩ I∂ = t. The time t = 0 is called isolated if [0, d)∩ I∂ = 0 for some d ∈ JT
and t = T is isolated if (c, T ] ∩ I∂ = T for some c ∈ JT .

• A time interval [d, e] ⊂ I∂ is called a waiting slot if Sy = 0 a.e. in (d, e). A waiting
slot [d, e] is called isolated from below if there exists some constant ε > 0 such that
(d− ε, d) ⊂ I0. [d, e] is called isolated from above if there exists some constant ε > 0 such
that (e, e+ε) ⊂ I0. If [d, e] is isolated from below and above, then the waiting slot is called
isolated. All waiting slots are defined maximal in the sense that there exists no waiting
slot [d′, e′] with [d, e] ⊂ (d′, e′). The case [d, e] = [d, d] := {d} is included in this definition,
but we only call {d} a waiting slot if {d} is isolated from below and/or from above.

We suppose in the whole subsection that I∂ is good natured in the following sense.

Assumption 4.43. The set I∂ = {t ∈ JT : z(t) ∈ {a, b}} from Definition 4.24 consists only of
waiting slots and intervals in which Sẏ 6= 0 almost surely. There are at most countably many
waiting slots in I∂ . Note that (0, ∂)-switching times, (∂, 0)-switching times and isolated times
are included in the definition of a waiting slot.

For the characterization of dµ we need one more definition:

Definition 4.44. Consider the subdivision of I∂ from Definition 4.42 and let t ∈ JT be given.
Then we define the unique time t+ = t+(t) ∈ JT according to the following hierarchical distinc-
tion of cases:

• t+ ∈ Ia∂ and (t, t+) ∩ I∂ is empty or contains only waiting slots in Ib∂ .

• t+ is the smallest time in Ib∂ ∩ [t, T ] such that Sẏ > 0 a.e. in (t+, t+ + ε) for some ε > 0.

• t+ = T.
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Similarly, we define t− = t−(t) by the following hierarchical distinction of cases:

• t− ∈ Ib∂ and (t, t−) ∩ I∂ is empty or contains only waiting slots in Ia∂ .

• t− is the smallest time in Ia∂ ∩ [t, T ] such that Sẏ < 0 a.e. in (t−, t− + ε) for some ε > 0.

• t− = T.

We will frequently apply two properties which are characteristic for the play operator P:

Lemma 4.45. Let P denote the play operator from Definition 2.38. Then P satisfies the
concatenation property

P[v](t2) = P[v, v(0)− z0](t2) = P[v(t1 + .),P[v](t1)](t2 − t1) (4.59)

for all v ∈ C(JT ) and all 0 ≤ t1 ≤ t2 ≤ T . Here, the second input variable denotes the initial
value, see Definition 2.38. Moreover, the play operator satisfies the monotonicity property: For
v1, v2 ∈ C(JT ) and for all s ∈ JT for which v1(t) ≤ v2(t) for all t ∈ Js = [0, s] there holds

P[v1, v1(0)− z0](t) ≤ P[v2, v2(0)− z0](t) ∀t ∈ Js. (4.60)

Proof. (4.59) follows for example from [Vis13, III. (1.4)] and (4.60) is for example shown in the
comment before [Vis13, III. Proposition 2.5].

4.4.5.1 Isolated times and waiting slots

In the following Lemma 4.46, we study dµ at isolated times. Subsequently, we generalize
Lemma 4.46 to the more general category of waiting slots, see Theorem 4.47. In Corollary 4.48,
we then conclude the behaviour of dq on the category of waiting slots.

Lemma 4.46 (dµ at isolated times). With the assumptions as in Corollary 4.40 suppose that
f is continuously differentiable and that Assumption 4.43 holds. Let t ∈ I∂ be an isolated
time in the sense of Definition 4.42 and let t+ = t+(t) and t− = t−(t) be defined according to
Definition 4.44.
If dµ({t}) = 0 then q is absolutely continuous in some interval [t− ε, t+ ε).
t ∈ Ib∂ is only possible if ∫ t+

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xds ≤ dµ({t}) ≤ 0.

If in addition (t, t+) ⊂ I0, then q(t+) < q(t+−) if dµ({t}) < 0 and q(t) ≤ q(t+−) if dµ({t}) = 0.
t ∈ Ia∂ is only possible if ∫ t−

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xds ≥ dµ({t}) ≥ 0.

If in addition (t, t−) ⊂ I0, then q(t+) > q(t−−) if dµ({t}) > 0 and q(t) ≥ q(t+−) if dµ({t}) = 0.

Proof. Let t ∈ I∂ be an isolated time. We prove the lemma for t ∈ Ib∂ ∩JT . The prove for t ∈ Ia∂
and for t ∈ I∂ ∩ {0, T} is analogous. By the definition of isolated times there exists a constant
ε0 > 0 such that (t − ε0, t) ∪ (t, t + ε0) ⊂ I0. Hence, continuity of Sy and P[Sy] implies the
existence of a constant c > 0 such that

Sy(τ)− P[Sy](τ) =W[Sy](τ) ∈ (a+ c, b) for τ ∈ (t− ε0, t) ∪ (t, t+ ε0) and

Sy(t)− P[Sy](t) =W[Sy](t) = b.
(4.61)
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Consequently,
Sy − P[Sy] ∈ (a+ c, b) for a.e. τ ∈ (t− ε0, t+ ε0), (4.62)

and (2.30) implies that P[Sy] is constant in [t− ε0, t+ ε0].
Let ϕ ∈ C∞0 (JT ) be chosen with supp(ϕ) ⊂ (t− ε0, t+ ε0). Moreover, consider

Pλ[Sy;ϕ] :=
1

λ
(P[Sy + λϕ]− P[Sy]) for λ > 0.

P : C(JT )→ L2(JT ) is Hadamard directionally differentiable according to Theorem 2.40. Hence,
Pλ[Sy;ϕ]→ P ′[Sy;ϕ] in L2(JT ) with λ→ 0.
Let s ≥ t + ε0 be arbitrary. For v := Sy + λϕ, t1 := t + ε0 and t2 := s, the concatenation
property (4.59) and supp(ϕ) ⊂ (t− ε0, t+ ε0) imply

P[Sy + λϕ](τ) = P[Sy] for τ ∈ [0, t− ε0] and (4.63)

P[Sy + λϕ](s) = P[(Sy + λϕ)(t+ ε0 + ·),P[Sy + λϕ](t+ ε0)](s− (t+ ε0))

= P[Sy(t+ ε0 + ·),P[Sy + λϕ](t+ ε0)](s− (t+ ε0)). (4.64)

We have to distinguish three cases.
(I) dµ({t}) = 0:
If dµ({t}) = 0 then dq({t}) = 0 by the equation of measures for dq, see Corollary 4.39. Moreover,
q|(t−ε0,t) ∈ H1(t − ε0, t), q|(t,t+ε0) ∈ H1(t, t + ε0) and q(t+) = q(t) since q is right-continuous.
Hence, q is absolutely continuous in [t−ε0, t) and [t, t+ε0). Since q(t−) = q(t+)−dq({t}) = q(t),
we conclude that q is continuous at t and hence absolutely continuous in [t− ε0, t+ ε0).
(II) dµ({t}) > 0:
We assume dµ({t}) > 0 and prove that this contradicts the maximum condition in Corollary 4.40.
Let ϕ ∈ C∞0 (JT ) be chosen such that

supp(ϕ) ⊂ (t− ε0, t+ ε0), ϕ ≤ 0 and ϕ(t) < 0.

We prove P ′[Sy;ϕ] = 0 ∈ L2(JT ). To this aim, we show

P[Sy + λϕ](τ) = P[Sy](τ) = P[Sy](t− ε0)

for all τ ∈ [t− ε0, t+ ε0] if λ is small enough.
P satisfies the monotonicity property (4.60) and P is Lipschitz continuous with modulus 1
according to (2.36) in Theorem 2.40. Hence, ϕ ≤ 0 implies

P[Sy](τ)− P[Sy + λϕ](τ) ∈ [0, λ max
s∈[t−ε0,τ ]

|ϕ(s)|] ∀τ ∈ JT .

We choose λ0 > 0 such that c + λ min
τ∈(t−ε0,t+ε0)

ϕ(τ) > 0 for all λ ∈ (0, λ0). By (4.62) we can

estimate
a < a+ c+ λϕ(τ) + P[Sy](τ)− P[Sy + λϕ](τ)

< Sy(τ)− P[Sy](τ) + λϕ(τ) + P[Sy](τ)− P[Sy + λϕ](τ)

= Sy(τ) + λϕ(τ)− P[Sy + λϕ](τ)

for all τ ∈ [t− ε0, t+ ε0] and for all λ ∈ (0, λ0). By (2.30), this implies d
dt(P[Sy + λϕ]) ≥ 0 and

hence P[Sy + λϕ](τ) ≥ P[Sy + λϕ](t − ε0) = P[Sy](t − ε0) for all τ ∈ [t − ε0, t + ε0] and all
λ ∈ (0, λ0). But since P[Sy + λϕ](τ) ≤ P[Sy](τ) = P[Sy](t − ε0) for all τ ∈ [t − ε0, t + ε0], we
conclude

P[Sy + λϕ](τ) = P[Sy + λϕ](t− ε0) = P[Sy](t− ε0) = P[Sy](τ)
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for all τ ∈ [t − ε0, t + ε0] and for all λ ∈ (0, λ0). But then the equations (4.63)–(4.64) yield
P[Sy + λϕ] = P[Sy] in JT and hence Pλ[Sy;ϕ] = 0 in JT for all λ ∈ (0, λ0).
Because Pλ[Sy;ϕ] → P ′[Sy;ϕ] in L2(JT ) with λ → 0, we conclude P ′[Sy;ϕ] = 0 ∈ L2(JT ).
Consequently, the maximum condition in Corollary 4.40 implies

0 ≤
∫
I∂

ϕdµ = ϕ(t)dµ({t}) < 0,

which is a contradiction.
(III) dµ({t}) ≤ 0:
This time we chose a function ϕ ∈ C∞0 (JT ) with supp(ϕ) ⊂ [tϕ, t̃ϕ] ⊂ (t− ε0, t+ ε0) such that

ϕ ≥ 0, ϕ̇ > 0 in (tϕ, t), ϕ̇ < 0 in (t, t̃ϕ) and ϕ(t) = 1.

As in (4.63), note that P[Sy+λϕ](τ) = P[Sy](τ) for τ ∈ [0, tϕ]. Recall the monotonicity property
(4.60) and that P is Lipschitz continuous with modulus 1. Since ϕ ≥ 0, there holds

P[Sy + λϕ](τ)− P[Sy](τ) ∈ [0, λ max
s∈[t−ε0,τ ]

ϕ(s)] ⊂ [0, λ] for τ ∈ [t− ε0, T ]. (4.65)

Hence,

Sy(t) + λϕ(t)− P[Sy + λϕ](t) = Sy(t)− P[Sy](t) + λ− P[Sy + λϕ](t) + P[Sy](t)

= b+ λ− P[Sy + λϕ](t) + P[Sy](t) ≥ b.

Since Sy(τ) + λϕ(τ)− P[Sy + λϕ](τ) ∈ [a, b] for all τ ∈ JT , this implies

Sy(t) + λϕ(t)− P[Sy + λϕ](t) = b. (4.66)

Recall equation (4.62) and that P[Sy] is constant in [t − ε0, t + ε0]. We choose λ0 ∈ (0, c) so
that c− λ > 0 for all λ ∈ (0, λ0). Then by (4.62) and (4.65) and because ϕ ≥ 0 we obtain

a < a+ c+ λϕ(τ)− λ
≤ a+ c+ λϕ(τ) + P[Sy](τ)− P[Sy + λϕ](τ)

< Sy(τ)− P[Sy](τ) + λϕ(τ) + P[Sy](τ)− P[Sy + λϕ](τ)

= Sy(τ) + λϕ(τ)− P[Sy + λϕ](τ)

(4.67)

for all τ ∈ [t−ε0, t+ε0] and for all λ ∈ (0, λ0). For λ ∈ (0, λ0), (2.30) thus yields that P[Sy+λϕ]
is monotone increasing in [t− ε0, t+ ε0], which implies that Pλ[Sy;ϕ] is monotone increasing in
[t− ε0, t+ ε0] as well because P[Sy] is constant in this interval.
Moreover, λϕ ≥ 0 and λϕ̇ < 0 in (t, t̃ϕ). Hence,

Sy(τ) + λϕ(τ)− P[Sy + λϕ](t) < Sy(t) + λϕ(t)− P[Sy + λϕ](t) = b

for τ ∈ (t, t̃ϕ) and λ ∈ (0, λ0). According to (2.30), this together with (4.67) implies P[Sy +
λϕ](τ) = P[Sy + λϕ](t) for τ ∈ [t, t̃ϕ] and λ ∈ (0, λ0).
Moreover, (4.66) yields

P[Sy + λϕ](t)− P[Sy](t) = Sy(t) + λϕ(t)− b− (Sy(t)− b) = λ.

Hence, for all λ ∈ (0, λ0) there holds

Pλ[Sy;ϕ](τ) = 1 for τ ∈ [t, t̃ϕ]. (4.68)
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For λ ∈ (0, λ0), let tλ ∈ JT be defined by the maximal time in (t, T ] which satisfies

Sy(τ)− P[Sy](τ) > a+ λ for all τ ∈ [t, tλ] and

[t, tλ) ∩ I∂ contains at most waiting slots.
(4.69)

Then (4.65) implies for λ ∈ (0, λ0) and τ ∈ [t, tλ] that

a ≤ a+ λ+ P[Sy](τ)− P[Sy + λϕ](τ)

< Sy(τ)− P[Sy](τ) + P[Sy](τ)− P[Sy + λϕ](τ) = Sy(τ)− P[Sy + λϕ](τ).

Moreover, for λ ∈ (0, λ0) and τ ∈ [t, tλ] there holds

Sy(τ)− P[Sy + λϕ](τ) = Sy(τ)− P[Sy](τ) + P[Sy](τ)− P[Sy + λϕ](τ)

≤ Sy(τ)− P[Sy](τ) ≤ b.

According to (4.69), Sy(τ) − P[Sy](τ) = b holds only at isolated times τ ∈ [t, tλ] or in time
intervals in which Sy remains constant. This implies Sy(τ)−P[Sy+λϕ](τ) ∈ (a, b) for τ ∈ [t, tλ],
and we can apply (2.30) to conclude that P[Sy], P[Sy+λϕ] and then also Pλ[Sy;ϕ] are constant
in [t, tλ]. Together with (4.68) we conclude

Pλ[Sy;ϕ](τ) = 1 for τ ∈ [t, tλ] and λ ∈ (0, λ0). (4.70)

We prove that tλ = t+ holds for small λ ∈ (0, λ0). To this aim, we have to distinguish two cases.
In a last step, we finally prove the statement of the lemma.
(III.i) t+ ∈ Ib∂ :
If t+ ∈ Ib∂ , then continuity of Sy−P[Sy] =W[Sy] implies the existence of a constant ε1 ∈ (0, λ0)
such that Sy−P[Sy] > a+ ε1 in [t, t+]. Hence, for λ ∈ (0, ε1), t+ satisfies the conditions (4.69)
which implies tλ ≥ t+. Consequently, Pλ[Sy;ϕ] = 1 in [t, t+] follows from (4.70).
According to the definition of t+, there either exists some constant ε > 0 such that Sẏ > 0 a.e.
in (t+, t+ + ε) or t+ = T . If t+ = T , then T ≥ tλ ≥ t+ = T for λ ∈ (0, ε1). Otherwise, tλ = t+

for λ ∈ (0, ε1) holds because (4.69) equals the definition of t+ ∈ Ib∂ .
Assume that t+ < T . Then Sy is continuous and strictly increasing in some interval (t+, t+ + ε)
and Sy(t++ε) > Sy(t+)+ε1 holds w.l.o.g. Hence, for λ ∈ (0, ε1) there exist times sλ ∈ (t+, t++ε)
such that sλ ↓ t+ with λ→ 0 and

Sy(τ) < Sy(t+) + λ for τ ∈ [t+, sλ) and Sy(sλ) = Sy(t+) + λ.

Note that P[Sy](τ) = Sy(τ) − b holds for all τ ∈ [t+, sλ] ⊂ Ib∂ . Moreover, (2.30) implies
P[Sy + λϕ](τ) = P[Sy + λϕ](t+) for τ ∈ (t+, sλ] as long as Sy(s)− P[Sy + λϕ](t+) < b for all
s ∈ [t+, τ). But for λ ∈ (0, ε1), (4.69) implies P[Sy + λϕ](t+) = P[Sy](t+) + λ and hence

Sy(s)− P[Sy + λϕ](t+) = Sy(s)− P[Sy](t+)− λ = Sy(s)− Sy(t+) + b− λ < b

for all s ∈ [t+, τ) ⊂ [t+, sλ] according to the definition of sλ. Moreover, we obtain

P[Sy + λϕ](sλ) = P[Sy](t+) + λ = Sy(t+)− b+ λ = Sy(sλ)− b = P[Sy](sλ).

Hence,
Pλ[Sy;ϕ](τ) = 0 for τ ∈ [sλ, T ].

(III.ii) t+ ∈ Ia∂ :
tλ = t+ for λ ∈ (0, ε1) follows similar as in Step III.i. Moreover, for t+ < T , analogous to
Step III.i one can show the existence of times sλ of the following kind:
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There holds sλ ↓ t+ with λ→ 0. For λ ∈ (0, ε1), P[Sy + λϕ] is strictly decreasing and P[Sy] is
constant in (t+, sλ). Moreover, Pλ[Sy;ϕ](τ) = 0 for τ ∈ [sλ, T ].
(III.iii) Conclusion:
By (4.63),(4.70) and Steps III.i–III.ii we have Pλ[Sy;ϕ](τ) = 1 for τ ∈ [t, t+], Pλ[Sy;ϕ](τ) ≤ 1
for τ ∈ [t+, sλ] and Pλ[Sy;ϕ](τ) = 0 for τ ∈ [0, t− tϕ] ∪ [sλ, T ] for all λ ∈ (0, ε1). Consequently,
because sλ ↓ t+ with λ→ 0, Pλ[Sy;ϕ] converges pointwise a.e. to 0 in [0, t− tϕ]∪ [t+, T ] and to
1 in [t, t+]. Since P ′[Sy;ϕ] is the L2(JT )-limit of Pλ[Sy;ϕ] we conclude

P ′[Sy;ϕ] = 0 a.e. in [0, t− tϕ] ∪ [t+, T ] and P ′[Sy;ϕ] = 1 a.e. in [t, t+]. (4.71)

Remember that P ′[Sy;ϕ] ≤ 1 holds a.e. in JT . Moreover, supp(ϕ) ⊂ [tϕ, t̃ϕ] ⊂ (t − ε0, t + ε0).
Hence, for arbitrary ε3 > 0 we can choose tϕ = tϕ(ε3) close enough to t such that∫ t

0
〈p+ Sq,

∂

∂z
f(y, z)〉XP ′[Sy;ϕ]ds =

∫ t

tϕ

〈p+ Sq,
∂

∂z
f(y, z)〉XP ′[Sy;ϕ]ds < ε3.

Since ε3 > 0 is arbitrary, (4.71) and the maximum condition in Corollary 4.40 finally yield∫ t+

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xds ≤ ϕ(t)dµ({t}) = dµ({t}).

If (t, t+) ⊂ I0, then 〈p+ Sq, ∂∂zf(y, z)〉X = −q̇ a.e. in (t, t+). For dµ({t}) < 0 this implies

q(t+) = q(t+−)−
∫ t+

t
q̇(s)ds = q(t+−) +

∫ t+

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xds < q(t+−).

Similarly, we obtain q(t) = q(t+) ≤ q(t+−) for dµ({t}) = 0.

Note that isolated times are isolated waiting slots [d, e] where d = e. Moreover, the definition
of a waiting slot includes (0, ∂)-switching times and (∂, 0)-switching times. Accordingly, we
generalize Lemma 4.46 by studying dµ on the category of waiting slots in Theorem 4.47.

Theorem 4.47 (dµ on waiting slots). Adopt the assumptions of Lemma 4.46. Let dµ+ and dµ−

be the positive and negative variation of dµ together with the positive and negative sets P and N
[cf. Els11, Chapter VII]. Let [d, e] ⊂ I∂ be a waiting slot and consider the times t+(e) and t−(e)
according to Definition 4.44. If [d, e] ⊂ Ib∂ then dµ+([d, e]) = 0 and −dµ is a positive measure
on [d, e]. Moreover, [d, e] ⊂ Ib∂ is only possible if∫ t+(e)

h1

〈p+ Sq,
∂

∂z
f(y, z)〉X ds ≤ dµ([h1, h2]) = dµ−([h1, h2]) ≤ 0 ∀[h1, h2] ⊆ [d, e].

If [d, e] ⊂ Ib∂ is not isolated from above then t+(e) = e and dµ({e}) = 0.
If [d, e] ⊂ Ia∂ then dµ−([d, e]) = 0 and dµ is a positive measure on [d, e]. Moreover, [d, e] ⊂ Ia∂ is
only possible if∫ t−(e)

h1

〈p+ Sq,
∂

∂z
f(y, z)〉X ds ≥ dµ([h1, h2]) = dµ+([h1, h2]) ≥ 0 ∀[h1, h2] ⊆ [d, e].

If [d, e] ⊂ Ia∂ is not isolated from above then t−(e) = e and dµ({e}) = 0.
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Proof. We prove the theorem for [d, e] ⊂ Ib∂ . The proof for [d, e] ⊂ Ia∂ is analogous.
(I) dµ+((d, e)) = 0:
We show dµ+((d, e)) = 0. Assume A := (d, e) ∩ P 6= ∅ and that dµ+(A) = c > 0. By regularity
of dµ and dµ+ we can find a compact set K ⊆ A and an open set U with A ⊆ U ⊆ (d, e) such
that

dµ+(U)− c

2
< dµ+(A) < dµ+(K) +

c

2
and |dµ|(U\K) <

c

2
.

Furthermore, by the C∞-Urysohn-Lemma [KP99, Theorem 1.1.3] we can find a function ϕ̃ ∈
C∞(JT ) with

χK ≤ ϕ̃ ≤ χU .

We set ϕ := −ϕ̃. Since ϕ ≤ 0, the same techniques as in Step II of Lemma 4.46 yield that
P ′[Sy;ϕ] = 0 ∈ L2(JT ). Moreover, we can estimate∫

I∂

ϕdµ =

∫
I∂

ϕdµ+ +

∫
I∂

ϕdµ− =

∫
U
ϕdµ+ +

∫
U\A

ϕdµ−

≤ −dµ+(K)− dµ−(U\A) ≤ −dµ+(K) +
c

2

< −dµ+(A) + 2
c

2
= −c+ c = 0.

All together, Corollary 4.40 yields the contradiction

0 ≤
∫
I∂

ϕdµ < 0.

Therefore, dµ+((d, e)) = 0 and −dµ is a positive measure on (d, e).
(II) dµ+({d, e}) = 0:
(II.i) [d, e] is isolated from below and/or above:
If [d, e] is isolated from below then there exists a constant ε > 0 such that (d − ε, d) ⊂ I0. In
this case, dµ((d − ε, d)) = 0. Accordingly, we replace the sets K, A and U by Kd ⊆ Ad :=
P ∩ [d, e) ⊆ Ud ⊆ (d− ε, e) such that

dµ+(Ud)−
dµ+(Ad)

2
< dµ+(Ad) < dµ+(Kd) +

dµ+(Ad)

2
and |dµ|(Ud\Kd) <

dµ+(Ad)

2
.

The rest of the proof remains as in Step I and we conclude dµ+([d, e)) = 0. Similarly, if [d, e] is
isolated from above then there exists ε > 0 such that (e, e + ε) ⊂ I0 and dµ((e, e + ε)) = 0. In
this case, we replace the sets K, A and U by Ke ⊆ Ae := P ∩ (d, e] ⊆ Ue ⊆ (d, e+ ε) such that

dµ+(Ue)−
dµ+(Ae)

2
< dµ+(Ae) < dµ+(Ke) +

dµ+(Ae)

2
and |dµ|(Ue\Ke) <

dµ+(Ae)

2
.

We obtain dµ+((d, e]) = 0. Finally, if [d, e] is isolated, then we replace K, A and P by Kd ∪Ke,
Ad ∪ Ae and Ud ∪ Ue. Again the rest of the proof remains as in Step I and we conclude
dµ+([d, e]) = 0.
(II.ii) [d, e] is not isolated from below:
If [d, e] is not isolated from below then there exists ε > 0 such that (d− ε, d) ⊂ I∂ and Sẏ > 0
a.e. in (d− ε, d). We choose ϕ ∈ C∞0 (JT ) with supp(ϕ) ⊂ [tϕ, t̃ϕ] such that

d ∈ (tϕ, t̃ϕ), tϕ ∈ (d− ε, d), t̃ϕ ∈ (d, e), −1 ≤ ϕ ≤ 0 and ϕ(d) = −1.
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[d, e] isolated from above [d, e] not isolated from above

[h1, h2] ⊂ [d, e) A.1 A.2

h1 = h2 = e B.1 B.2

h1 ∈ [d, e), h2 = e C.1 C.2

Table 1: Case division for [h1, h2]

With the techniques as in Step II of Lemma 4.46 one can show that P ′[Sy;ϕ] = 0 a.e. in
(0, tϕ) ∪ (t̃ϕ, T ). Moreover, P ′[Sy;ϕ] ≥ −1 almost surely. Hence, the maximum condition in
Corollary 4.40 yields

−
∫ t̃ϕ

tϕ

|〈p+ Sq,
∂

∂z
f(y, z)〉X | ds ≤

∫ t̃ϕ

tϕ

〈p+ Sq,
∂

∂z
f(y, z)〉XP ′[Sy;ϕ] ds

≤
∫
I∂

ϕdµ ≤ −dµ−((tϕ, t̃ϕ))− dµ+({d}).

For arbitrary ε1 > 0, regularity of dµ− implies that (tϕ, t̃ϕ) can be chosen small enough such

that
∫ t̃ϕ
tϕ
|〈p + Sq, ∂∂zf(y, z)〉X | ds < ε1

2 and |dµ−((tϕ, t̃ϕ)\{d})| < ε1
2 . Hence, if dµ+({d}) > 0

then dµ−({d}) = 0 and |dµ−((tϕ, t̃ϕ)| = |dµ−((tϕ, t̃ϕ)\{d})| < ε1
2 .

Consequently, dµ+({d}) = 0 or

− ε1 ≤ −
∫ t̃ϕ

tϕ

|〈p+ Sq,
∂

∂z
f(y, z)〉X | ds+ dµ−((tϕ, t̃ϕ)) ≤ −dµ+({d}) < 0.

This proves dµ+({d}) ≤ ε1, and since ε1 is arbitrary we conclude dµ+({d}) = 0.
(II.iii) [d, e] is not isolated from above:
If [d, e] is not isolated from above then there exists ε > 0 such that (e, e + ε) ⊂ I∂ and Sẏ > 0
a.e. in (e, e + ε). Hence, q|[e,e+ε) = 0 by Lemma 4.26 and because q is right-continuous. By
Corollary 4.39, the absolute value of q can only jump downwards in reverse time. Consequently,
dq({e}) = 0. But then the measure equation for dq yields

0 = dq({e}) = dµ({e}) +

∫
{e}
〈p+ Sq,

∂

∂z
f(y, z)〉X ds = dµ({e}).

(III) We prove the lower bound for dµ([h1, h2]):
Let [h1, h2] ⊂ [d, e] be given. By Steps I–II there holds dµ([d, e]) = dµ−([d, e]) ≤ 0. Moreover,
there exists ε > 0 of the following kind: Either (d − ε, d) ⊂ I0 or Sẏ > 0 a.e. in (d − ε, d).
Furthermore, (e, e+ ε) ⊂ I0 or Sẏ > 0 a.e. in (e, e+ ε).
Consider the division of cases in Table 1.
(III.i) Case B.2:
If [d, e] is not isolated from above then dµ{e} = 0 by Step II.iii so that t+(e) = e. Consequently,

0 =

∫ e

e
〈p+ Sq,

∂

∂z
f(y, z)〉X ds = dµ({e})

as required.
(III.ii) Other cases:
If Case B.2 does not apply, then we proceed as follows:
For arbitrary h1 ∈ [d, h2] we choose tϕ ∈ (d− ε, h1) and define u1 := tϕ, k1 := h1.
In the Cases A.1–C.1 we choose t̃ϕ ∈ (h2, e+ ε) and define u2 := t̃ϕ, k2 := h2.
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1 2

A U = (tϕ, t̃ϕ), K = [h1, h2] U = (tϕ, h2), K = [h1, h2]

B U = (tϕ, t̃ϕ), K = [h1, h2] Does not apply

C U = (tϕ, t̃ϕ), K = [h1, h2] U = (tϕ, h2), K = [h1, t̃ϕ]

Table 2: Definition of U and K

In Case A.2 we choose t̃ϕ ∈ (h2, e). Again we define u2 := t̃ϕ, k2 := h2.
Finally, in Case C.2 we choose t̃ϕ ∈ (h1, e) and define u2 := e = h2, k2 := t̃ϕ.
The definition of U := (u1, u2) and K := [k1, k2] is summarized in Table 2.
Let ε1 > 0 be arbitrary and remember that dµ is regular. Hence, tϕ and t̃ϕ can be chosen such
that U = (u1, u2) and K = [k1, k2] satisfy

|dµ|(U\K) < ε1.

Let ϕ ∈ C∞0 (JT ) with supp(ϕ) ⊂ U and with 0 ≤ ϕ ≤ 1, ϕ̇ > 0 in (u1, k1), ϕ̇ < 0 in (k2, u2) and
ϕ = 1 in K. Since ϕ ≤ 1, this implies∫

I∂

ϕdµ =

∫
U
ϕdµ =

∫
U\K

ϕdµ+ dµ(K) ≤ dµ(U\K) + dµ(K) < dµ(K) + ε1

As in Step III in the proof of Lemma 4.46 one can show that P ′[Sy;ϕ] = 0 holds a.e. in
(0, u1) ∪ (t+(k2), T ) and that P ′[Sy;ϕ] = 1 holds a.e. in (k1, t

+(k2)). Hence, the maximum
condition in Corollary 4.40 yields∫ k1

u1

〈p+ Sq,
∂

∂z
f(y, z)〉XP ′[Sy;ϕ] ds+

∫ t+(k2)

k1

〈p+ Sq,
∂

∂z
f(y, z)〉X ds

=

∫ T

0
〈p+ Sq,

∂

∂z
f(y, z)〉XP ′[Sy;ϕ] ds ≤

∫
I∂

ϕdµ < dµ(K) + ε1.

Note that P ′[Sy;ϕ] ≤ 1 almost surely. Consequently, for arbitrary ε2 we can choose u1 = tϕ =
tϕ(ε2) close to k1 to obtain∣∣∣∣∫ k1

u1

〈p+ Sq,
∂

∂z
f(y, z)〉XP ′[Sy;ϕ] ds

∣∣∣∣ < ε2.

For this choice and since h1 = k1 we can therefore estimate∫ t+(k2)

h1

〈p+ Sq,
∂

∂z
f(y, z)〉X ds < dµ(K) + ε1 + ε2.

Since ε2 was arbitrary we conclude∫ t+(k2)

h1

〈p+ Sq,
∂

∂z
f(y, z)〉X ds ≤ dµ(K) + ε1.

Remember that dµ = dµ− on [d, e] by Steps I–II.
In Case C.2 we have U = (tϕ, h2) = (tϕ, e) and K = [h1, ϕ̃]. Consequently,

dµ([h1, ϕ̃]) = dµ(K) < dµ([h1, e)) + ε1
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since (tϕ, h1) = (u1, k1) ⊂ U\K. Moreover, Step II.iii yields dµ({u2}) = dµ({e}) = 0 if [d, e] is
not isolated from above. Hence, in Case C.2 there holds

dµ(K) < dµ([h1, e]) + ε1 = dµ−([h1, e]) + ε1

and t+(h1) = t+(tϕ̃) = t+(e) = e.
In all other cases we have U = (tϕ, tϕ̃) and K = [h1, h2] and we obtain t+(h1) = t+(h2) = t+(e)
and

dµ(K) = dµ([h1, h2]) = dµ−([h1, h2]).

Since ε1 was arbitrary, this concludes the proof.

Corollary 4.48 (dq on waiting slots). Consider the assumptions from Theorem 4.47. Let [d, e]
be a waiting slot. If [d, e] ⊂ Ib∂ then∫ t+(e)

h2

〈p+ Sq,
∂

∂z
f(y, z)〉X ds ≤ min{0, dq([h1, h2])} ∀[h1, h2] ⊆ [d, e].

If [d, e] ⊂ Ib∂ is not isolated from above then t+(e) = e, q(e) = 0, dq({e}) = 0,

0 ≤ dq([h, e]) ∀h ∈ [d, e] and q|[d,e] ≤ 0.

If [d, e] ⊂ Ia∂ then∫ t−(e)

h2

〈p+ Sq,
∂

∂z
f(y, z)〉X ds ≥ max{0, dq([h1, h2])} ∀[h1, h2] ⊆ [d, e].

If [d, e] ⊂ Ia∂ is not isolated from above then t−(e) = e, q(e) = 0, dq({e}) = 0,

0 ≥ dq([h, e]) ∀h ∈ [d, e] and q|[d,e] ≥ 0.

Proof. We prove the Corollary for [d, e] ⊂ Ib∂ . The proof for [d, e] ⊂ Ia∂ is analogous. Let
[h1, h2] ⊆ [d, e] be arbitrary. By Theorem 4.47 and the measure equation for dq from Corol-
lary 4.39 we can estimate∫ t+(e)

h2

〈p+ Sq,
∂

∂z
f(y, z)〉X ds =

∫ t+(e)

h1

〈p+ Sq,
∂

∂z
f(y, z)〉X ds−

∫ h2

h1

〈p+ Sq,
∂

∂z
f(y, z)〉X ds

≤ dµ([h1, h2])−
∫ h2

h1

〈p+ Sq,
∂

∂z
f(y, z)〉X ds = dq([h1, h2]).

Moreover, ∫ t+(e)

h2

〈p+ Sq,
∂

∂z
f(y, z)〉X ds ≤ dµ([h2, e]) ≤ 0.

If [d, e] is not isolated from above then t+(e) = e by definition of t+. In this case, q(e) = 0 is
a consequence of Lemma 4.26 because q is right-continuous. dq({e}) = 0 then follows from the
fact that the absolute value of q can only jump down in reverse time, see Corollary 4.39.
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4.4.5.2 Continuity properties of q in I∂ with the regularity assumption

In this subsection, we assume that the regularity Assumption 4.30 applies and we consider the
assumptions of Lemma 4.46. We apply Corollary 4.48 and characterize the continuity properties
of q in I∂ . Under Assumption 4.30, all waiting slots consist of a single point. Moreover, by
Assumption 4.43, I∂ decomposes into intervals in which Sẏ 6= 0 almost surely, isolated times,
(0, ∂)-switching times and (∂, 0)-switching times.

Corollary 4.49 (Continuity properties of q in I∂). With the assumptions as in Lemma 4.46
let Assumption 4.30 hold true. Then all waiting slots consist of a single point. For any time

t ∈ I∂ consider t− = t−(t) and t+ = t+(t) from Definition 4.44. We set
0∑
1

:= 0. The index set

1 ≤ i ≤ k has to be replaced by 1 ≤ i < ∞ and k by ∞ if the number of isolated times in the
following is infinite.
The properties of q and dq at t ∈ I∂ can be characterized as follows:
1. t is a (0, ∂)-switching time or not contained in a waiting slot:
In this case, q is continuous at t with q(t) = 0.
2. (∂, 0)-switching times:
If t is a (∂, 0)-switching time then three cases can occur.
2.1. q is continuous at t with q(t) = 0.
2.2. q jumps up at t:
In this case, t ∈ Ia∂ . Moreover, all isolated times ti, 1 ≤ i ≤ k, in the interval (t, t−) are contained
in Ia∂ so that δi := dq({ti}) ≥ 0. Furthermore,

0 < dq({t}) ≤
∫ t−

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xdt and q(t+) > 0 = q(t−) ≥ −

k∑
i=1

δi + q(t−−).

2.3 q jumps down at t:
In this case, t ∈ Ib∂ . Moreover, all isolated times ti, 1 ≤ i ≤ k, in the interval (t, t+) are contained
in Ib∂ so that δi := −dq({ti}) ≥ 0. Furthermore,

0 > dq({t}) ≥
∫ t+

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xdt and q(t+) < 0 = q(t−) ≤

k∑
i=1

δi + q(t+−).

3. Isolated times in Ia∂ :
In this case, all isolated times ti, 1 ≤ i ≤ k, in the interval (t, t−) are contained in Ia∂ so that
δi := dq({ti}) ≥ 0. Moreover, q may only jump up at t. If q is discontinuous at t then q(t+) > 0,

0 < dq({t}) ≤
∫ t−

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xdt and

q(t+) > q(t−) ≥ max

{
−q(t+),−

k∑
i=1

δi + q(t−−)

}
.

4. Isolated times in Ib∂ :
In this case, all isolated times ti, 1 ≤ i ≤ k, in the interval (t, t+) are contained in Ib∂ so that
δi := −dq({ti}) ≥ 0. Moreover, q may only jump down at t. If q is discontinuous at t then
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q(t+) < 0 and there holds

0 > dq({t}) ≥
∫ t+

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xdt and

q(t+) < q(t−) ≤ min

{
−q(t+),

k∑
i=1

δi + q(t+−)

}
.

Proof. We prove the corollary in three steps.
(I) t is a (0, ∂)-switching time or not contained in a waiting slot:
If t is not contained in a waiting slot then t is contained in an interval in which Sẏ 6= 0 almost
surely. In this case, the claim follows from Corollary 4.39. If t is a (0, ∂)-switching time then
Corollary 4.48 proves the statement since the regularity Assumption 4.30 implies that each
(0, ∂)-switching time t corresponds to a waiting slot {t} which is not isolated from above.
(II) (∂, 0)-switching times and isolated times:
(II.i) Statement 2.1:
The regularity Assumption 4.30 implies that each (∂, 0)-switching time t corresponds to a waiting
slot {t} which is not isolated from below.
Hence, for each such time there exists a constant ε > 0 such that (t− ε, t] ⊂ I∂ , Sẏ 6= 0 almost
surely in (t − ε, t) and (t, t + ε) ⊂ I0. Corollary 4.39 entails dq((t − ε, t)) = 0 and q(τ) = 0 for
all τ ∈ [t− ε, t). Consequently, q(t) = 0 if q is continuous and we conclude Statement 2.1.
(II.ii) q jumps up at t:
Let t be a (∂, 0)-switching time or an isolated time. If q jumps up at t, then dq({t}) > 0.
Moreover, t ∈ Ia∂ and

max{0, dq({t})} ≤
∫ t−

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xdt

follow from Corollary 4.48 with d = e = h1 = h2 = t.
This shows Statement 2.2 except of the last inequality. The latter will be proven in Step III.ii
below.
(II.iii) q jumps down at t:
Let t be a (∂, 0)-switching time or an isolated time. If q jumps down at t, then dq({t}) < 0.
Moreover, t ∈ Ib∂ and

min{0, dq({t})} ≥
∫ t+

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xdt

follow from Corollary 4.48 with d = e = h1 = h2 = t. This proves Statement 2.3 except of the
last inequality. The latter will be proven in Step III.i below.
(III) Discontinuity points of q:
The behaviour of q at discontinuity points can be described by one of the following two cases.
(III.i) t is a (∂, 0)-switching time or an isolated time and q jumps down at t:
Note that t+ is the first (0, ∂)-switching time after t. We denote by ti ∈ Ib∂ , 1 ≤ i ≤ k, the i-th
isolated time in Ib∂ ∩ (t, t+) after t. If there are infinitely many such times then the index set
1 ≤ i <∞ has to be considered and k has to be replaced by∞ in the following proof. We define
by

δi := |dµ({ti})| = −dq({ti}) ≥ 0

the height of the jump of q at time ti for 1 ≤ i ≤ k. Note that dq({ti}) ≤ 0 follows from
Step II.iii. Suppose that q jumps down at t so that δ := |dq({t})| = −dq({t}) > 0. In this case
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Step II.iii proves t ∈ Ib∂ and ∫ t+

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xds ≤ −δ.

For t0 = t and tk+1 = t+ there holds (ti−1, ti) ⊂ I0 for 1 ≤ i ≤ k + 1. By Corollary 4.39, this
implies q ∈ H1(ti−1, ti). Hence, we compute

q(t−) = q(t−)− q(t+) + q(t+) = δ + q(t1−) +

∫ t1

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xdt

= · · · = δ +

k∑
i=1

δi + q(t+−) +

∫ t+

t
〈p+ Sq,

∂

∂z
f(y, z)〉Xdt ≤

k∑
i=1

δi + q(t+−).

Moreover, Corollary 4.39 implies that the absolute value of q can only jump downwards in reverse
time. Consequently, q can only jump down at t if q(t+) < 0. All together, q can only jump
down at t if q(t+) < 0 and in this case we have

q(t+) < q(t−) ≤ min

{
−q(t+),

k∑
i=1

δi + q(t+−)

}
.

This shows Statement 4. If t is a (∂, 0)-switching time, then q(t−) = 0. Hence, we also conclude
Statement 2.3.
(III.ii) t is a (∂, 0)-switching time or an isolated time and q jumps up at t:
The result for this case follows analogous to Step III.i and proves Statement 2.1 and Statement 3.

4.5 Higher regularity of the solutions of the optimal control problem

In this section, we return to the general control problem (4.1)–(4.3) with i ∈ {1, 2}. The following
results have been published in [Mün17b] in a similar form.
The aim of this section is to apply equation (4.52) from Theorem 4.38 and the regularity of
the adjoint system (p, q) to increase the regularity of the optimal control u ∈ Ui, i ∈ {1, 2}.
The forcing term Biu ∈ L2(JT ;X) in the state-equation (4.1) is responsible for the low a-priori
regularity of y = G(Biu), see Corollary 3.4. Hence, we can use the higher regularity of Biu in
order to improve the regularity of y, and therewith also of z =W[Sy].
Remember the notation U1 = L2(JT ; Ũ1) and U2 = L2(JT ; Ũ2) with

Ũ1 := [L2(Ω)]m and Ũ2 :=
m∏
j=1

L2(ΓNj ,Hd−1).

Equation (4.52) in Theorem 4.38 implies the pointwise-in-time condition

B∗i (p+ Sq) = −κu in [Ũi]
∗ a.e. in JT .

Unfortunately, we can not exploit the high time-regularity of p+Sq directly. The problem is that
p is continuous only as a mapping into [dom(Ap)]

∗ but not into X∗, while B∗i is only continuous
as a mapping from X∗ into [Ũi]

∗, but not necessarily as an operator defined on [dom(Ap)]
∗, see

(A5) in Assumption 4.2.
Since, the regularity of p is limited, we enforce the assumptions on Bi in order to prove higher
regularity of the optimal solutions in Theorem 4.51 below. Afterwards, in Example 4.52 we
provide an example in which the following Assumption 4.50 applies.

102



Assumption 4.50. [Mün17b, Assumption 5.1] For i ∈ {1, 2}, the operator Bi : Ũi → X in (A5)
is also continuous as a mapping into Xγ for some γ ∈ (0, 1]. We denote by I(γ) the canonical

embedding from Xγ into X. Then the assumption is equivalent to the fact that Bi = I(γ)B̃i for

a linear and continuous function B̃i : Ũi → Xγ .

Theorem 4.51 (Higher regularity). [Mün17b, Theorem 5.2] In the setting of Theorem 4.38 let
Assumption 4.50 hold for some γ ∈ (0, 1].
If γ > 1

2 , then u ∈ L∞(JT ; Ũi), y ∈ Ys,0 and z ∈ W1,s(JT ) for arbitrary s ∈ (1,∞). If
1
2(1 + d

p) < 1, which is the case when d = 2 and p > 2 in (A1)’ in Assumption 4.2, this implies

y ∈ C(JT ; [L∞(Ω)]m). If in addition Ω is a Lipschitz domain then y is Hölder continuous in
time and space.

If γ ≤ 1
2 , then u ∈ L

2
1−2s (JT ; Ũi), y ∈ Y2/(1−2s),0 and z ∈ W1, 2

1−2s (JT ) for arbitrary s ∈ (0, γ).

This implies y ∈ C(JT ;Xθ) for any θ ∈ (0, 1
2 + γ). If γ > d

2p applies for d and p in (A1)’ in

Assumption 4.2, this implies y ∈ C(JT ; [L∞(Ω)]m). If in addition Ω is a Lipschitz domain then
y is Hölder continuous in time and space.

Proof. In Corollary 2.30 we proved the compact embeddings

Xγ ↪−↪→ Xβ ↪−↪→ X for 0 < β < γ ≤ 1.

Consequently, there holds

X∗ ↪→ [Xγ ]∗ ↪→ [Xβ]∗ for 0 < β < γ ≤ 1.

With the representation Xγ ' [X,dom(Ap)]γ according to Remark 2.31 and Remark 2.32 and by
general calculus for complex interpolation spaces [cf. Ama95, Chp. 2.5 and Chp. 2.6] we obtain

[[dom(Ap)]
∗, X∗]1−γ ' [X∗, [dom(Ap)]

∗]γ ' [X,dom(Ap)]
∗
γ ' [Xγ ]∗. (4.72)

(I) Suppose γ > 1
2 in Assumption 4.50:

(I.i) Higher regularity of u:
Because the embedding dom(Ap) ↪−↪→ X is one-to-one and dense, the the same holds for the
embedding X∗ ↪→ [dom(Ap)]

∗. Moreover, 1 − γ < 1
2 . Hence, as in Lemma 2.36, [Ama95,

Theorem 3] together with (4.72) yield the injective embedding

Y ∗2,T ⊂ H1(JT ; [dom(A)]∗) ∩ L2(JT ;X∗) ↪→ C(JT ; [[dom(A)]∗, X∗]1−γ) ' C(JT ; [Xγ ]∗).

By Theorem 4.38, the adjoint function p is contained in Y ∗2,T . Consequently, the function p̃ :=

I∗(γ)p ∈ C(JT ; [Xγ ]∗) can be uniquely identified with p ∈ L2(JT ;X∗). Hence,

B∗i p = B̃∗i I
∗
(γ)p = B̃∗i p̃ ∈ C(JT ; [Ũi]

∗),

so that B̃∗i p̃ ∈ C(JT ; [Ũi]
∗) is a representative of B∗i p ∈ L2(JT ; [Ũi]

∗). Moreover, since the adjoint
function q in Theorem 4.38 has bounded total variation, q is essentially bounded in JT . By (A2)’
in Assumption 4.2, S is contained in X∗. This implies that the product Sq can be interpreted as
an element of L∞(JT ;X∗), which implies B∗i Sq ∈ L∞(JT ; [Ũi]

∗). All together, equation (4.52)
in Theorem 4.38 yields

B̃∗i p̃+B∗i Sq = B∗i (p+ Sq) = −κu in [Ũi]
∗, a.e. in JT .

We identify [Ũi]
∗ in this equation with Ũi according to its Riesz representation. Since the

function on the left side is then contained in L∞(JT ; Ũi), it follows that the optimal control
u ∈ L2(JT ; Ũi) has a representative in L∞(JT ; Ũi).

103



(I.ii) Higher regularity of y:
We exploit the higher regularity of u from Step I.i in order to increase the regularity of the
optimal state y. Since Biu ∈ L∞(JT ;X) is the forcing term of the evolution equation (4.1)
of y = G(Biu), Corollary 3.4 implies y ∈ Ys,0 for arbitrary s ∈ (1,∞). Hence, the embedding
Lemma 2.36 yields y ∈ C(JT ;Xθ) for arbitrary θ ∈ [0, 1). Moreover, Remark 2.32 entails that Xθ

is a subset of [L∞(Ω)]m if θ > 1
2(1 + d

p). Corollary 2.19 ensures that p ∈ J∩ [2,∞) can be chosen

strictly larger than 2. Hence, if Ω ⊂ Rd for d = 2 and p > 2 then 1
2(1 + d

p) = 1
2 + 1

p ∈ (0, 1) so

that there exists some θ ∈ (0, 1) with θ > 1
2(1+ d

p). In this case, we obtain y ∈ C(JT ; [L∞(Ω)]m).

Finally, again for p ∈ J∩(2,∞) and Ω ⊂ R2 suppose that Ω satisfies the assumptions of [DER15,
Theorem 4.5], which enforce Assumption 2.6, see Remark 2.32. Those assumptions include
Lipschitz domains [DER15, Remark 2.1], see also [ER14, Theorem 1.1] and the subsequent
comments. Then [DER15, Theorem 4.5] yields that y is Hölder continuous in time and space.
(II) Suppose γ ≤ 1

2 in Assumption 4.50:
(II.i) Higher regularity of u:
As seen in Step I.i, the embedding X∗ ↪→ [dom(Ap)]

∗ is one-to-one and dense. Hence, [Ama05,
Theorem 3 and (22)] together with (4.72) entail

Y ∗2,T ⊂ H1(JT ; [dom(A)]∗) ∩ L2(JT ;X∗) ↪→ L
2

1−2s (JT ; [[dom(A)]∗, X∗]1−γ) ' L
2

1−2s (JT ; [Xγ ]∗)

for any s ∈ (0, γ). By similar arguments as in Step I.i we exploit the regularity of the adjoint
function p ∈ Y ∗2,T in Theorem 4.38 to uniquely identify p ∈ L2(JT ;X∗) with p̃ = ˜I(γ)

∗
p ∈

L
2

1−2s (JT ; [Xγ ]∗). Hence, B̃∗i p̃ ∈ L
2

1−2s (JT ; [Ũi]
∗) is a representative of B∗i p ∈ L2(JT ; [Ũi]

∗).

With the same proof as in Step I.i we obtain u ∈ L
2

1−2s (JT ; Ũi) for arbitrary s ∈ (0, γ).
(II.i) Higher regularity of y:

Similar to Step I.ii, Biu ∈ L
2

1−2s (JT ;X) and Corollary 3.4 imply y ∈ Y2/(1−2s),0 for arbitrary

s ∈ (0, γ). Consequently, the embedding Lemma 2.36 yields y ∈ C(JT ;Xθ) for arbitrary θ ∈[
0, 1−

(
2

1−2s

)−1
)

= [0, 1
2 + s). Because s ∈ (0, γ) can be chosen arbitrary, y ∈ C(JT ;Xθ) for

all θ ∈ [0, 1
2 + γ). The remaining statements are shown analogous to those of Step I.ii.

We close this subsection with an example in which Theorem 4.51 applies.

Example 4.52. [cf. Mün17b, Remark 5.3] We provide an example in which Assumption 4.2 is
valid for B1 and for any γ ∈ (0, 1

2). Theorem 4.51 then entails that u and y are more regular.
Suppose that the domain Ω is contained in R2, i.e. d = 2. Moreover, we choose p ∈ J ∩ (2,∞)
in (A1)’ in Assumption 4.2, i.e. p > 2. Let the assumptions and the notation be the same as in
Theorem 4.38.
First of all, remember that B1 defines an embedding Ũ1 ↪→W−1,p

ΓD
(Ω), see Remark 4.3.

In particular, there holds

W1,p′

ΓD
(Ω) ↪−↪→ [L2(Ω)]m = [Ũ1]∗ and B1 : Ũ1 ↪→W−1,p

ΓD
(Ω). (4.73)

Before we can apply Theorem 4.51 we have to enforce Assumption 2.6 on the domain Ω in order
to achieve that Assumption 4.50 is valid.
[Gri+02, cf. Assumption 2.2] In the setting of Assumption 2.2 we suppose for all j ∈ {1, . . . ,m}

and any x ∈ ∂Ω that there is an open neighborhood Ux of x and a bi-Lipschitz mapping φx from
Ux onto some open set V ∈ Rd such that φx((Ω∪ΓDj )∩Ux) equals either the whole unit ball or
the union of the lower unit half ball and its top surface. Moreover, the functional determinant
of each bi-Lipschitz transformation φx is a.e. constant.
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Note that it does not matter if we consider the unit ball or the unit cube in the above as-
sumption on the domain. Furthermore, the two restrictions of [Gri+02, Assumption 2.2] in
comparison to Assumption 2.6 are that [Gri+02, Assumption 2.2] is supposed to hold for all
x ∈ ∂Ω and that each bi-Lipschitz transformation φx has a.e. constant functional determinant.
By [Gri+02, Remark 2.3], this stronger assumption still includes all Lipschitz domains. The rest
of Assumption 4.2 remains the same.
With this enforced assumption, [Gri+02, Theorem 3.1] entails the topological equivalences[

W−1,p1

ΓD
(Ω), [L2(Ω)]m

]
θ
'W−θ,pΓD

(Ω) ∀θ ∈ (0, 1), θ 6= 1

p′
,

1

p
=

1− θ
2

+
θ

p1
.

Together with (4.73) and p′1 ≤ 2, this yields an embedding

Ũ1 ↪→W−θ,pΓD
(Ω) ∀θ ∈ (0, 1), θ 6= 1

p′
. (4.74)

Moreover, [Gri+02, Theorem 3.5] implies the equivalences

W−θ,pΓD
(Ω) ' [W−1,p

ΓD
(Ω),W1,p

ΓD
(Ω)]γ for γ =

1− θ
2

∀θ ∈ (0, 1).

With Remark 2.31, Remark 2.32 and (4.74) we conclude

W−θ,pΓD
(Ω) ' [W−1,p

ΓD
(Ω),W1,p

ΓD
(Ω)]γ ' Xγ and Ũ1 ↪→ Xγ for γ =

1− θ
2

∀θ ∈ (0, 1)\
{

1

p′

}
.

Note that θ = 1 − 2γ ∈ (0, 1) for arbitrary γ ∈ (0, 1
2) and θ = 1 − 2γ ⇔ γ = 1−θ

2 . Hence,

we obtain an embedding B̃1 : Ũ1 ↪→ Xγ for any γ ∈ (0, 1
2)\
{

1
2p

}
. Therefore, Assumption 4.50

holds for B1 = I(γ)B̃1 for any γ ∈ (0, 1
2)\
{

1
2p

}
. Consequently, we conclude from Theorem 4.51

the increased regularity u ∈ L
2

1−2s (JT ; Ũ1), y ∈ Y1/(1−2s),0 and then z = W[Sy] ∈ W1, 2
1−2s (JT )

for arbitrary s ∈ (0, γ). Note that because d = 2 and p > 2, γ ∈ (0, 1
2) can be chosen such that

γ > d
2p . Hence, Theorem 4.51 yields y ∈ C(JT ; [L∞(Ω)]m). As mentioned above, all Lipschitz

domains still satisfy the assumption of this example. If we consider Ω to be a Lipschitz domain,
then Theorem 4.51 entails that y is Hölder continuous in time and space.

4.6 The value function of a perturbed control problem

In this section, we consider a family of perturbed control problems similar to (4.1)–(4.3). All
results have already been published in [Mün17b], but we provide the proofs in more details. We
consider the same notation as in Section 4, and the main assumption during this whole section
is Assumption 4.2. For i ∈ {1, 2} and r ∈ Ui, the control problem of interest is the following:

min
u∈C

J(G(Bi(u+ r)), u+ r) = ‖G(Bi(u+ r))− yd‖2U1
+
κ

2
‖u+ r‖2Ui . (4.75)

Remark 4.53. As in Remark 4.1, note that the functionsG(Bi(u+r)) ∈ Y2,0 ↪→ L2(JT ; dom(Ap))

in (4.75) are identified with I−1
p G(Bi(u + r)) ∈ L2(JT ;W1,p

ΓD
(Ω)) ↪→ U1 for u + r ∈ Ui, see also

Corollary 2.30 and Remark 2.32. Accordingly, (4.75) has to be understood as

min
u∈C

J(I−1
p G(Bi(u+ r)), u+ r) = ‖I−1

p G(Bi(u+ r))− yd‖2U1
+
κ

2
‖u+ r‖2Ui .
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The set of admissible control functions C is assumed to be a convex and closed subset of Ui.
Note that if C = Ui and if u is an optimal control for problem (4.1)–(4.3), then u = u − r is
admissible for problem (4.75) for any perturbation r ∈ Ui. Hence, in this case the minimal value
in problem (4.75) for any r ∈ Ui equals the minimal value in (4.1)–(4.3). Therefore, we assume
C 6= Ui throughout this section.
We are interested in the optimal value function

v : Ui → R, r 7→ v(r) := min
u∈C

J(G(Bi(u+ r)), u+ r). (4.76)

Closely related to v is the multifunction V , which assigns to each r ∈ Ui the set of controls
u ∈ Ui for which the minimal value v(r) is obtained:

V : r ∈ Ui 7→ V (r) := {u ∈ C : J(G(Bi(u+ r)), u+ r) = v(r)}. (4.77)

We refer to [BS00, Chp. 4.1] for a broader introduction into sensitivity and stability analysis.
Our interest is to understand the stability properties of v and V .

Theorem 4.54 (Optimal value function and optimal set function). [Mün17b, Theorem 6.1] Let
Assumption 4.2 hold. For i ∈ {1, 2}, let C ⊂ Ui be convex and closed. Consider the optimal
control problem (4.75) for r ∈ Ui together with the corresponding minimal value function v,
defined by (4.76), and the multifunction V from (4.77). Then v is weakly lower semi-contiuous.
If C is compact in Ui then v is upper semi-contiuous and therefore continuous. In this case, also
the multifunction V is upper semi-continuous, i.e. for each r0 ∈ Ui and for any neighborhood
UV (r0) of V (r0) there exists a neighborhood Ur0 of r0 such that V (r) ⊂ UV (r0) for all r ∈ Ur0, cf.
[BS00, Chapter 4.1].

Proof. We prove the theorem in four steps.
(I) Well-posedness of problem (4.75) for all r ∈ Ui:
That problem (4.75) is well-posed is shown in the same way as Theorem 4.6, where existence of
an optimal control for the unperturbed problem (4.1)–(4.3) was proven. The latter problem is
equal to the perturbed problem with r = 0 and C = Ui. In the proof, we used results about weak
continuity of the solution operator G of the generalized state equation (3.11), see Lemma 4.5.
The fact that C is closed and convex - and hence weakly closed - is necessary to obtain that the
weak limit u of each minimizing sequence {un} ⊂ C of (4.75) is admissible, i.e. that u ∈ C.
(II) v : Ui → R is weakly lower semi-contiuous:
Note first that weak lower semi-continuity implies strong lower semi-continuity, since every
strongly convergent sequence converges in the weak sense as well. We prove that the optimal
value function v is weakly lower semi-contiuous. To this aim, we show that

v(r0) ≤ lim inf
n→∞

v(rn) (4.78)

for any r0 ∈ Ui and for each sequence {rn} ⊂ Ui for which rn ⇀ r0 in Ui with n → ∞. Let
r0 ∈ Ui be arbitrary and suppose that {rn} ⊂ Ui converges weakly to r0 with n→∞. In order
to prove (4.78) we show that for any ε > 0 there exists some n0 ∈ N such that

v(r0)− ε ≤ v(rn) for all n ≥ n0.

First of all, note that the sequence {rn} is bounded by some constant c0 > 0 because it converges
weakly to r0. By definition of the cost function J and the multifunction V , it follows that the
union of optimal controls ∪n∈N V (rn) ⊂ C is contained in some ball BUi(0, R) with R > 0, i.e.

∪n∈N V (rn) ⊂ BUi(0, R).
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Suppose in contradiction to the assumption that for some ε > 0 there exists a subsequence {rnk}
of {rn}, together with optimal solutions unk ∈ V (rnk) of the perturbed problems, such that

v(r0)− ε > v(rnk) = J(I−1
p G(Bi(unk + rnk)), unk + rnk) for all nk with k ≥ 0.

Since C is a convex and closed subset of the reflexive space Ui, it is weakly closed and even weakly
compact by Alaoglu’s compactness theorem [W05, Satz VIII.3.18]. Moreover, the sequence
{unk} ⊂ C is bounded by R > 0. Hence, there exists yet another subsequence, for which we
maintain the index nk, and some u ∈ C such that unk ⇀ u with k → ∞. By Lemma 4.5,
G(unk + rnk) converges to G(u+ r0) even strongly in Y2,0 and hence I−1

p G(unk + rnk) converges
to I−1

p G(u + r0) in U1 by the embedding Y2,0 ↪→ L2(JT ; dom(Ap)) ↪→ U1. Moreover, J is
continuous and weakly lower semi-continuous on U1×Ui. This implies that J(I−1

p G(Bi(·+r0)), ·)
is continuous and weakly lower semi-continuous on Ui. Consequently, there holds

v(r0) ≤ J(I−1
p G(Bi(u+ r0)), u+ r0) ≤ lim inf

k→∞
J(I−1

p G(Bi(unk + rnk)), unk + rnk) ≤ v(r0)− ε,

which is a contradiction. Therefore, v(r0) ≤ lim infn→∞ v(rn), so that v is weakly lower semi-
continuous.
(III) v : Ui → R is upper semi-continuous if C is compact:
Let C be convex and compact. We apply techniques from [BS00, Proposition 4.4]. We have to
show that

v(r0) ≥ lim
n→∞

v(rn)

holds for any r0 ∈ Ui and for each sequence {rn} ⊂ Ui for which rn → r0 in Ui with n → ∞.
Equivalently, v is upper semi-continuous if for any ε > 0 there exists a neighborhood Ur0 of r0

such that
v(r) ≤ v(r0) + ε for all r ∈ Ur0 . (4.79)

To prove (4.79), we show that there exist neighborhoods UV (r0) of V (r0) and Ur0 of r0 such that

J(I−1
p G(Bi(u+ r)), u+ r) < v(r0) + ε for all (u, r) ∈ UV (r0) × Ur0 . (4.80)

Note that by definition of v, v(r) ≤ J(I−1
p G(Bi(u+ r)), u+ r) holds in (4.80) for all u ∈ UV (r0)

and r ∈ Ur0 , so that (4.80) indeed implies (4.79). As seen in Step II, the mapping (r, u) 7→
J(I−1

p G(Bi(r + u)), r + u) is continuous on Ui × C. Hence, the set

Sε := {(r, u) ∈ Ui × C : J(I−1
p G(Bi(u+ r)), u+ r) < v(r0) + ε}

is open. Moreover, {r0}×V (r0) ⊂ Sε by definition of v and V . For each u ∈ V (r0), this implies
the existence of neighborhoods Ur0,u ⊂ Ui of r0 and Wu ⊂ C of u such that Ur0,u×Wu ⊂ Sε. The
union ∪u∈V (r0)Wu provides an open cover of V (r0). Since J(I−1

p G(Bi(· + r0)), ·) is continuous
on Ui, V (r0) = {u ∈ C : J(I−1

p G(Bi(u+ r0)), u+ r0) = v(r0)} is closed and therefore compact
as a closed subset of the compact set C. Hence, there exist u1, . . . , uk ∈ V (r0) such that
UV (r0) := ∪kj=1Wuj defines a subcover of V (r0) which is the union of finitely many open sets. But

then the set Ur0 :=
k⋂
j=1

Ur0,uj is open as the intersection of finitely many open sets. Consequently,

Ur0 defines a neighborhood of r0. Moreover, (4.80) holds for Ur0×UV (r0) since Ur0×UV (r0) ⊂ Sε.
This proves (4.79) and that v is upper semi-continuous.
(IV) V : Ui ⇒ C ⊂ Ui is upper semi-continuous if C is compact:
The proof is oriented at [BS00, Proposition 4.4] but more detailed. Let UV (r0) be a neighborhood
of V (r0). We have to show that there exists a neighborhood Ur0 of r0 such that V (r) ⊂ UV (r0)
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for all r ∈ Ur0 . By (4.80) in Step III there exist ε > 0 and a neighborhood U1
r0 of r0 such that

the open set

U εV (r0) := {u ∈ C : J(I−1
p G(Bi(u+ r), u+ r)) < v(r0) + ε ∀r ∈ U1

r0}

is contained in UV (r0). Note that U εV (r0) defines a neighborhood of V (r0). Because of the inclusion

C\UV (r0) ⊂ C\U εV (r0), this implies

J(I−1
p G(Bi(u+ r)), u+ r) ≥ v(r0) + ε for all (r, u) ∈ U1

r0 × C\UV (r0).

By Steps II–III, v is continuous because C is compact. Hence, we can find a neighborhood U2
r0

of r0 such that |v(r)− v(r0)| ≤ ε
2 for all r ∈ U2

r0 . We define Ur0 := U1
r0 ∩ U

2
r0 . By this choice we

obtain
J(I−1

p G(Bi(u+ r)), u+ r) ≥ v(r) +
ε

2
for all (r, u) ∈ Ur0 × C\UV (r0).

If u ∈ V (r), then J(I−1
p G(Bi(u+ r)), u+ r) = v(r). Hence, there holds V (r)∩C\UV (r0) = ∅ for

all r ∈ Ur0 . We conclude V (r) ⊂ UV (r0) for all r ∈ Ur0 .
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Technical University of Munich for the good cooperation and to Dr. Joachim Rehberg from the
Weierstrass Institute in Berlin for the helpful discussions.

I had the great opportunity to be a member of the IGDK. The generous support of the IGDK
gave me the possibility to travel to workshops and conferences. This has been fundamental for
my personal development not only in science. I enjoyed my time at the annual summer work-
shops and the graduate seminars together with the other members of the IGDK.

Finally, I would like to thank my family. Without you this would not have been possible and it
would not be worth it. Thank you.

109



Bibliography

[AF03] R. Adams and J. Fournier. Sobolev spaces. 2nd ed. Vol. 140. Academic press, 2003.

[Ama95] H. Amann. Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear
Theory. Vol. 1. Springer Science & Business Media, 1995.

[Ama05] H. Amann. “Nonautonomous parabolic equations involving measures”. In: Journal
of Mathematical Sciences 130.4 (2005), pp. 4780–4802.

[Aus+14] P. Auscher et al. “The square root problem for second-order, divergence form oper-
ators with mixed boundary conditions on Lp”. In: Journal of Evolution Equations
15 (2014), pp. 165–208.

[BP12] V. Barbu and T. Precupanu. Convexity and Optimization in Banach Spaces. Vol. 161.
Springer Monographs in Mathematics. Springer Netherlands, 2012. isbn: 978-94-007-
2246-0.
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[HMS15] R. Herzog, C. Meyer, and A. Schäfer. “Existence of solutions of a (nonsmooth)
thermoviscoplastic model and associated optimal control problems”. In: Ergebnis-
berichte des Instituts für Angewandte Mathematik 521. TU Dortmund, Faculty for
Mathematics, 2015.

[HMW12] R. Herzog, C. Meyer, and G. Wachsmuth. “C-stationarity for optimal control of
static plasticity with linear kinematic hardening”. In: SIAM Journal on Control
and Optimization 50.5 (2012), pp. 3052–3082.

[HMW13] R. Herzog, C. Meyer, and G. Wachsmuth. “B-and strong stationarity for optimal
control of static plasticity with hardening”. In: SIAM Journal on Optimization 23.1
(2013), pp. 321–352.

[HMW14] R. Herzog, C. Meyer, and G. Wachsmuth. “Optimal Control of Elastoplastic Pro-
cesses: Analysis, Algorithms, Numerical Analysis and Applications”. In: Trends in
PDE Constrained Optimization. Ed. by G. Leugering et al. Springer International
Publishing, 2014, pp. 27–41. isbn: 978-3-319-05083-6. doi: 10.1007/978-3-319-
05083-6_4. url: http://dx.doi.org/10.1007/978-3-319-05083-6_4.
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