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Abstract—In this work we present the Correlation Transverse
Wave Formulation (CTWF) method for direct computation of
the auto- and cross correlation functions (ACFs and CCFs)
of stationary stochastic electromagnetic fields. The transverse
wave formulation, in performing a modal expansion of the
electromagnetic fields in the homogeneous parts of the calculation
domain and solving the near field continuity on both sides of the
circuit surfaces, provides a direct derivation of the ACFs and
CCFs without hypothesis on the structure of radiated fields.

Index Terms—Stochastic electromagnetic fields, electromag-
netic interference, noisy electromagnetic fields, correlation trans-
verse wave formulation.
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I. INTRODUCTION

Radiated emissions in electromagnetic systems often orig-
inate from integrated circuits. An accurate near-field charac-
terization of radiating electromagnetic structures is required
along with modeling techniques which can efficiently handle
noisy electromagnetic fields generated by these structures in
order to facilitate an efficient computer aided development of
electric and electronic systems [1]. In typical RF integrated-
circuit (RFIC) structures, we encounter multilayer structures
including inhomogeneous layer stacks with arbitrary doping
profiles. The EM field in such structures can be efficiently mod-
eled for deterministic field sources using the transverse wave
formulation (TWF) [2]. Additionally to the field distributions
on all the circuit surfaces, TWF provides an explicit expansion
of the field at any level of the intermediate homogeneous parts
and the surrounding facilitating explicit determination of cross
correlation between sources.

For efficient EMI compliant design and optimization of
circuits and systems, simulation methodologies based on the
field autocorrelation and cross correlation spectral densities are
required. Semi-analytic numerical methods based on Green’s
function formalism were already presented in [1], [3], [4].
Expansion of characterization of stationary noisy fields with
Gaussian probability distribution to cyclostationary problems
has been discussed in [5]. Characterization of noisy fields
using field-field correlations opens new perspectives on signal
integrity, EMI analysis, for low noise energy sensing and EMI
source imaging [6]–[8]. Evolution of correlation information
of stationary noisy propagating EM fields and aspects for their
analysis by principal components are addressed in [9], [10].

In this work, we present a modeling approach based on TWF
which handles the transformation of auto- and cross correlation
information, which is necessary for the characterization of

stochastic electromagnetic fields. In the following we review
the TWF method. Then, we will present the correlation trans-
verse wave formulation (CTWF) method, which expands the
TWF method. Subsequently, we will demonstrate the method
based on a numerical example.

II. TWF - THE TRANSVERSE WAVE FORMULATION

TWF may be referenced as an integral method in which
EM fields are represented in Hilbert spaces. TWF solves
integral equations on surfaces, the printed surfaces on which
”the circuits” are defined, derived in terms of the tangential
fields, i.e. the transverse field in reference to the outgoing
and incoming normal of the circuit surface. Following [11],
the homology between network theory and integral equation
derivation is fully exploited and the Greens operator between
conjugate electromagnetic fields is associated to homogeneous
spaces on both sides or between circuit surfaces. An extension
of this formalism has been given in the transverse wave
formulation [2], [12]–[14]. More specifically, the TWF handles
an additive and subtractive combination of tangential electric
and magnetic fields, i.e. transverse waves, and in this sense
follows the Transmission Line Matrix (TLM) method which
may be considered as its differential counterpart. In the context
of integral operators, the choice to formulate the problem in
terms of waves has two major consequences: involved Green’s
operators are bounded integral operators which prevent any
singularity issues and, on the other hand, continuity conditions
across a surface have the general form of an optic-like transfer
condition. These properties are proven to be crucial when
establishing the computational scheme of the boundary value
problem defined by the circuit pattern [2], [12], [13].

As in any other integral formulations, in the TWF approach
only the surfaces defined by the circuit are discretized on
both faces, while the EM fields, once solved for, are explicitly
available at any point of the calculation domain through post-
processing of the Green’s function. This property allows to
contain the computational complexity of problems and is
decisive in calculating auto and cross correlations or coher-
ences between any points of the total volume. Moreover, the
Correlation Green’s Function (CGF) is obtained without any
hypothesis on field variations, according to the distance to
electric or magnetic current sources.

At the circuit surfaces, the EM fields are given in terms of an
expansion in the eigenfunctions of the Green’s operator used to
set the integral equation. Let us consider the modal expansion
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for a wave-guide as depicted in Fig. 1a). The field inside this
waveguide can be decomposed into its modal eigensolutions.
These modal solutions represent the spectral expansion of the
Green’s operator associated with the homogeneous domains.
They provide the ”analytical” expression for the expansion
of the fields in any parts of the calculation volume around
and in between the circuit surfaces, where the tangential field
components are explicitly discretized and solved.

We introduce the electric and magnetic structure forms
ek(u, v) and hk(u, v), in order to express the transverse field
forms as products of these structure forms, with complex
amplitudes depending on the z-coordinate. For the exterior
differential form formalism applied in the following we refer
to [14]. The index k provides a compact notation for the double
index mn and the transverse TEmn and TMmn modes in the
case where the cross section of the cylindrical structure in
Fig. 1a) is homogeneous. The structure forms ek(u, v) and
hk(u, v) form a normalized biorthogonal basis in the more
general case where the cross section of the cylindrical structure
in Fig. 1a) is inhomogeneous

〈ek|hl〉A = −〈hk|el〉A = δkl . (1)

We can represent the complete electric and magnetic fields by
Hilbert space vectors as

|Et(z)〉 =
∑
k

(
V

(+)
k e−γkz + V

(−)
k eγkz

)
|ek〉 , (2a)

|Ht(z)〉 =
∑
k

1

ZW,k

(
V

(+)
k e−γkz − V (−)

k eγkz
)
|hk〉 . (2b)

Hence, the electric and magnetic field forms can be obtained
from the above Hilbert space vectors as

Et(x) =
∑
k

ek(u, v) 〈hk|Et〉 , (3a)

Ht(x) =
∑
k

1

ZW,k
hk(u, v) 〈ek|Ht〉 , (3b)

where x is the vector containing the space coordinates. With
this we introduce the wave amplitude vectors |Ã〉 and |B̃〉 as

|Ã〉 = 1

2
[|Et〉+ZW |Ht〉] , (4a)

|B̃〉 = 1

2
[|Et〉 −ZW |Ht〉] , (4b)

where we use the wave impedance operator defined as

ZW =

∞∑
k=1

ZW,k (|hk〉〈ek| − |ek〉〈hk|) . (5)

The amplitudes of the transverse electric and magnetic fields
are computed from the wave amplitudes via

|Et〉 = |Ã〉+ |B̃〉 , (6a)

|Ht〉 = Z−1W

(
|Ã〉 − |B̃〉

)
. (6b)

(a) A1

z

A1 B1

A2

A2 B2

z=0

z=l

(b)

p p+ 1

|Ãp〉
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Fig. 1: Wave amplitudes in the waveguide segment (a) and
multilayer structure with interfaces p . . . p + 1 and incident
and reflected waves (b).

We introduce the operator Γ(z) and its inverse as

Γ(z) =

∞∑
n=1

e−γkz (|hn〉〈en| − |en〉〈hn|) , (7a)

Γ−1(z) =

∞∑
n=1

eγkz (|hn〉〈en| − |en〉〈hn|) . (7b)

The direction of the wave amplitude vectors at the ports of
the waveguide segment are assigned as shown in Figure 1a).
For homogeneous layers between the interfaces p and p + 1,
see Fig. 1b), incident and reflected waves are related through
a reflection operator in a two port form [2], [14][ |Ã2p〉

|Ã2p+1〉

]
= Γ̃

[ |B̃2p〉
|B̃2p+1〉

]
, (8)

where the reflection operator Γ̃ is derived from the Green’s
admittance operator Ỹ of the homogeneous media and has
the form

Γ̃ =

[
Γ11(z1 − z2) Γ12(z1 − z2)
Γ21(z1 − z2) Γ22(z1 − z2)

]
. (9)

On a layer p (Fig. 1), which represents an inhomogeneous
layer of small thickness or printed surface of the circuit,
incident waves are scattered[ |B̃2p〉

|B̃2p+1〉

]
= S̃

[ |Ã2p〉
|Ã2p+1〉

]
, (10)

where S̃ is the scattering operator built from the continuuity
conditions of the tangential fields [2], [14]. Collecting all
the incoming and outgoing waves in (8) and (10) of all the
interfaces in the structure, the Hilbert space vectors of incident
and reflected waves are built and the problem is settled in the
form of coupled equations

|Ã〉 = Γ̃ |B̃〉 , (11)

|B̃〉 = S̃ |Ã〉+ |B̃0〉 , (12)

where |B̃0〉 describes all wave source terms. The resolution
scheme solves iteratively conditions (11) and (12) providing
the implicit inversion of the operator M associated to the
integral equation of the boundary value problem

|B̃〉 = (1− S̃ Γ̃)−1 |B̃0〉 ≡M |B̃0〉 . (13)



In this description of the layered electromagnetic structure,
the generalized voltages and currents and the wave ampli-
tudes are summarized in Hilbert space vectors describing the
complete transverse field distribution [2], [12], [15]. Using
this formalism we can analyze multilayer structures, where
homogeneous layers of finite extension in z-direction alternate
with thin structured layers. The structured layers are described
by the surface admittance matrices Yij(u, v) translated in scat-
tering operators as presented in (10). From this formulation,
we can describe multilayer structures consisting of thin layers,
with structured metalization, resistive layers, and impressed
voltage and current sources and thick homogeneous material.
For a detailed description of the method the reader is referred
to [2].

III. CTWF - THE CORRELATION TWF

We consider stationary noisy fields with Gaussian probabil-
ity distribution. A Gaussian process can be fully described by
its mean value and its second-order moments. Hence, in order
to describe stationary stochastic EM fields, we introduce the
correlation dyadics

CB0 = |B̃0〉〈B̃0| , (14a)

CB = |B̃〉〈B̃| , (14b)

where the overline denotes the ensemble average. The diagonal
elements of (14), i.e. the autocorrelation terms, represent the
spectral power. With the structure forms introduced above, the
spectral energy density can be obtained at defined ports of the
structure. From (13) and (14) we obtain (see also [1], [16])
the bilinear equation

CB = M CB0M † . (15)

This relation governs the transformation of the correlation
dyadics describing the stochastic EM field.

IV. NUMERICAL EXAMPLE AND APPLICATION

A numerical example is presented with an arrangement of
two sources. Five observation points S1 . . . S5 are arranged in
a linear array with a spacing of 5 mm. The two sources S6 and
S7 are placed in a distance of 15 mm from this linear array
as depicted in Fig. 2. Correlation data are computed for the
five observation points receiving EMI from two sources with
chosen degree of correlation. The excitation signal is given by
rectangular function in the frequency domain with 10 GHz
bandwidth. Upon determining M via the transverse wave
formulation, the field correlation at the observation points
S1 . . . S5 is determined applying (15). The real part of the
frequency domain auto correlation function for the observation
points is plotted in Fig. 3 for two type of source correlations.
The upper plot shows a correlated in-phase excitation of the
sources S6 and S7 yielding a maximum in spectral energy
density for the observation point S3. The second plot shows a
correlated anti-phase excitation resulting, as anticipated, in a
minimum for the spectral energy density for observation point
S3. With this formulation, arbitrary degrees of correlations

Fig. 2: Arrangement of source and observation points.
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Fig. 3: In-phase (left) and anti-phase excitation (right).

between the source terms can be considered, also determined
from measurement, and the resulting energy densities can be
computed at the observation points.

Two practical applications are investigated namely near-field
propagation of noisy Gaussian sources and radiated emissions
from a CPW transmission line structure. The Gaussian sources
are modeled in TWF using modal representation expanded
in pixel-like basis functions with a resolution δx as illus-
trated in Fig. 4(a). The reference noisy Gaussian sources
are extracted from measurement using coupled horn antenna
elements (Fig. 4(a)) and imported in TWF based on mode-
pixel transform. Fig. 4(b) presents the comparison between
the measurement of the normalized transverse field and the
model generated for incorporation in TWF resolution process.
The CPW line is modeled using delta-gap excitation sources.
In Figs. 4(a) and (b), correlation between modeling results
and measurement for the variation of the transverse magnetic
field at 3 GHz as function of the height and as function of
the y-coordinate is presented showing good agreement. Both
applications are suitable for using auto-correlation and cross-
correlation functions as means for analyzing effects of near-
field propagation accounting for diffraction and dislocation
effects [17].

V. CONCLUSION

In this work, we introduced and applied the Correlation
Transverse Wave Formulation (CTWF) method for direct
computation of the auto and cross correlation functions of
stationary stochastic electromagnetic fields.

The TWF method is an efficient tool for modeling inhomo-
geneous layer stacks. It works with spatial and spectral expan-
sions of the field problem and provides a natural framework



(a)

(b)

Fig. 4: Experimental setup using two noisy Gaussian sources
A and B (a). Comparison between measurement of the nor-
malized transverse field and the generated noisy model incor-
poration in TWF resolution process (b).

(a)

(b)

Fig. 5: Measured and simulated variations of normalized
magnetic field at the center of the CPW line at 3 GHz as
function of height (a) and y-coordinate (b).

for handling multi-resolution and multi-scale problems.
Correlation analysis provides a basis for accurate modeling

of noisy electromagnetic fields and we have demonstrated
its direct incorporation to the transverse wave approach. The
CTWF method provides an efficient technique to compute
stochastic electromagnetic fields in layer stacks.
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