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Abstract

Particle methods are very popular for the discretization of kinetic equations like the elec-

trostatic Vlasov–Poisson or the electromagnetic Vlasov–Maxwell system. They are easy to

implement and embarrassingly parallel. In plasma physics the high dimensionality (6D) of the

problems raises the costs of grid based codes, favoring the mesh free transport with particles

and its inherent adaptivity by following characteristics. The Particle-in-Cell (PIC) scheme

is a Monte Carlo method that couples the particle density to a grid based field solver. This

introduces an error that is comprised of three components: the time discretization error, the

field discretization error (bias) and the particle noise, given as the variance of a Monte Carlo

estimator.

This work discusses the application of stochastic methods providing a setting in which the

random particle noise is quantified and reduced, which includes measures of entropy and

variance propagation for the field solver also in unstructured grids. For variance reduction

control variates based on parametric shape functions and spectral expansions yield a signifi-

cant noise reduction. Solvers of kinetic models are improved using reduced fluid descriptions

by a purely particle based control variate scheme called Multilevel Monte Carlo. Conditional

Monte-Carlo is used to justify variance reducing coarse graining techniques for Fokker–Planck

collisions discretized as Ornstein Uhlenbeck process, and to improve control variates by strat-

ification. Such combinations between Monte Carlo and other quadrature rules improve the

particle gyroaverage and also the noise in linearized systems.

For physics governed by a small number of Fourier modes the mesh free Particle-in-Fourier

(PIF) method is presented, which conserves energy and momentum. It has a more favor-

able bias residing in Fourier space and exhibits different computational demands since every

particle contributes to every Fourier mode. The superb conservation and stability properties

of PIF are demonstrated for electrostatic Vlasov–Poisson and fully electromagnetic multi-

species Vlasov–Maxwell in multiple dimensions. Given the simplicity of PIF, benchmarks on

CPU and GPU using different interpreters (fortran, julia, python, MATLAB) are presented.

The relation between variance reducing Fourier filtered PIC, which is subject to aliasing and

the aliasing free PIF is discussed. Also PIC and PIF can be mixed in order to efficiently

describe the mode structure of physical instabilities in the curved geometry of toroidal fusion

devices in arbitrary curvilinear coordinates. With the Legendre and Chebyshev polynomials

the concept of spectral particle methods is fully generalized.

PIF and Eulerian solvers based on Fourier-spectral phase space share the same field discretiza-

tion thus being suitable for a comparison between Lagrangian and Eulerian methods. For

verification of the corresponding PIF implementation, a new fully Fourier-spectral Vlasov–

Maxwell solver based on a Hamiltonian splitting scheme is presented.
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Zusammenfassung

Für die Diskretisierung kinetischer Gleichungen, wie die des elektrostatischen Vlasov–Poisson

oder des elektromagnetischen Vlasov–Maxwell Systems sind Teilchenmethoden nach wie vor

die erste Wahl. Sie sind einfach zu implementieren und intrinsisch parallel. In der Plasma-

physik sind gitterbasierte Methoden aufgrund der hohen Dimensionalität der betrachteten

Probleme mit deutlich höheren Kosten verbunden. Dies begünstigt den gitterlosen Transport

mit Teilchen entlang der Charakteristiken, welcher dadurch zugleich inhärent adapativ ist.

Das Particle-in-Cell (PIC) Verfahren ist eine Monte Carlo Methode, welche die Teilchendichte

an einen gitterbasierten Feldlöser koppelt. Diese Kopplung ist eine Fehlerquelle die aus drei

Komponenten besteht: dem Zeitdiskretisierungsfehler, dem Felddiskretisierungsfehler (auch

systematischer Fehler) und dem Teilchenrauschen, welches durch die Varianz des Monte Carlo

Schätzers gegeben ist.

Diese Arbeit diskutiert die Anwendung von stochastischen Methoden, mit denen das zufällige

Teilchenrauschen quantifiziert und reduziert werden kann. Diese Methodik beinhaltet En-

tropieschätzer als auch Varianzpropagationsverfahren für Feldlöser, welche auch auf unstruk-

turierte Gitter anwendbar sind. Zur Varianzreduktion werden Control Variates verwen-

det, welche auf sowohl auf parametrisierten Funktionen als auch spektralen Entwicklungen

basieren, und das Teilchenrauschen signifikant vermindern. Ein ausschließlich auf Teilchen

basierendes Control Variate Verfahren, genannt Multilelevel Monte Carlo, kann Fluidmod-

elle an kinetische Modelle koppeln und somit das Lösen letzterer erleichtern. Mit bedingtem

Monte Carlo können varianzreduzierende coarse graining Verfahren für als Ornstein Uhlen-

beck Prozess diskretisierte Fokker–Planck Kollisionen gerechtfertigt werden. Dazu gehört

auch die Verbesserung von Control Variates durch Stratifikation. Derartige Kombinationen

zwischen Monte Carlo und anderen Quadraturregeln verbessern auch die Gyromittelung über

Teilchen und vermindern das Rauschen in linearisierten Systemen.

Für Physik, die sich durch eine geringe Anzahl von Fouriermoden charakterisieren lässt,

wird das gitterfreie Particle-in-Fourier (PIF) eingeführt, welches zugleich Energie und Impuls

erhält. Sein systematischer Fehler liegt im Fourierraum und es stellt eine andere rechnerische

Herausforderung als PIC dar, da jedes Teilchen zu jeder Fouriermode beiträgt. Die heraus-

ragenden Erhaltungs- und Stabilitätseigenschaften von PIF werden anhand des elektrostatis-

chen Vlasov–Poisson und elektromagnetischen Vlasov–Maxwell mit Ionen und Elektronen in

verschiedenen Dimensionen nachgewiesen. Aufgrund der Schlichtheit von PIF werden Vergle-

ichstests auf CPU und GPU unter verschiedenen Interpretern (fortran, julia, python, MAT-

LAB) gezeigt. Auch wird der Unterschied zwischen Fourier gefiltertem und damit varianzre-

duziertem PIC, welches noch Aliasing aufweist, und PIF diskutiert. Um die Modenstruktur

von physikalischen Instabilitäten in toroidalen Fusionsgeräten in beliebigen krummlinigen

Koordinaten effizient zu beschreiben wird PIC und PIF kombiniert. Mit den Legendre und

Chebyshev Polynomen lässt sich dann das Konzept der spektralen Teilchenmethoden verall-

gemeinern. PIF und eulersche Löser, welche auf einer Fourier-spektralen Diskretisierung des

Phasenraums basieren haben diesselbe Felddiskretisierung, was einen Vergleich zwischen La-

grange und Euler Methoden ermöglicht. Zur Verifizierung der Ergebnisse durch PIF wird mit

einem hamiltonischen Splittingverfahren ein neuer voll Fourier-spektraler Vlasov–Maxwell

Löser vorgestellt.
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Chapter 1.

Introduction

In a plasma, the fourth state of matter, atoms are decomposed into their nuclei and electrons

by a violent environment typically at a very high temperature. Examples include the sun, the

vastness of interstellar space, hot flames and fusion experiments here on earth. The motion

of the charged particles in such an ionized gas is subject to the Lorentz force stemming from

the surrounding magnetic B(x) and electric field E(x). The trajectory of a particle with

velocity v, position x, charge q and mass m is described by the following system of ordinary

differential equations

ẋ = v, v̇ =
q

m
(E(x) + v ×B(x)) .

When considering an abundance of particles (more than you can imagine) it is more conve-

nient to describe the evolution of their respective density f by the Vlasov equation,

∂tf(x, v, t) + v · ∇xf(x, v, t) +
q

m
[E(x, t) + v ×B(x, t)] · ∇vf(x, v, t) = 0.

This plain advection seems to pose no greater mathematical difficulty if it would not be for the

fact that the particles generate their own electric and magnetic field. We know from Gauss

Law that any charged particle generates an electric field E depending on its position x. On the

other hand Amperes Law states that any movement of a charge generates a magnetic field B

depending on the velocity v and position x. This introduces a nonlinear coupling between the

time evolution of the fields E and B and the density f , staging our mathematical challenge. A

more sophisticated model, including electric and magnetic fields, couples the Vlasov equation

to the electromagnetic Maxwell’s equations. Neglecting the magnetic contribution yields

the purely electrostatic Vlasov–Poisson system for electrons(γ = −1) with the electrostatic

potential Φ obtained by the Poisson equation.

∂tf + v∂xf + ∂xΦ∂vf = 0

γ∂xxΦ = 1−
∫
fdv

Depending on the sign of γ the model changes from the small scale electron dynamics subject

to the Coulomb force (γ = −1) to the large scale physics of interstellar gas clouds dominated

by gravity (γ = 1). Thus, despite its simplicity the Vlasov–Poisson system is worthwhile

investigating, since it exhibits unintuitive behavior like collision-less Landau damping [1][2].

1.1. Particle methods

For numerical resolution the phase space density f can be approximate on a grid yielding

Eulerian [3],[4] methods. Approximation of f by a density of markers results in Lagrangian

particle methods, see fig. 1.1. Three spatial and tree velocity components raise the dimension-

ality of the problems in computational plasma physics to six, rendering grid-based methods
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Nonlinear Landau damping (γ = −1)

Jeans instability (γ = 1)

Figure 1.1.: Lagrangian particle simulation of the one-dimensional Vlasov–Poisson system

(with PIC). The phase space markers transport the value of the initial condition f(x, v, t = 0)

along the trajectories given by the characteristics of the Vlasov equation. For identical initial

conditions, a mere sign change in γ lifts the simulation from the microscopic scale of a damped

electron Langmuir wave to the vast scale of interstellar gas clouds’ gravitational collapse.

less attractive due to the curse of dimensionality. Independent of the dimension, Lagrangian

particles provide diffusion free transport as they carry the values of the distribution f , such

that the favorite method for kinetics of plasmas is Particle-In-Cell (PIC) [5],[6]. In general

particle methods are very popular when it comes to the discretization of kinetic equations.

They are easy to implement and embarrassingly parallel. Viewing the computational par-

ticles as macro-particles allows physicists an intuitive and descriptive modeling of physical

processes although this approach is formally incorrect, since e.g. the Vlasov–Poisson system

is merely a model for many particles represented by a density.1 In PIC the density f is

described by Monte Carlo markers called particles and coupled to a cell-based solver for the

Poisson or Maxwell’s equation, hence the name Particle in Cell. Every marker representing a

volume of phase space projects its charge onto a spatial grid, which corresponds to a marginal

density estimate of the density f . Once values on the grid are known, the desired field equa-

tions (Poisson or Maxwell) are typically solved with a finite difference approximation. The

obtained fields are then used to advance the markers for a short time step by solving the

respective equations of motion. Obtaining the spatially varying fields involves taking the

Monte Carlo integral over the velocity space, see fig. 1.2. In general the Monte Carlo error —

the variance — diminishes independently of the dimension with 1√
Np

, where Np is the number

of particles. Yet the variance itself again depends on the dimension, which introduces the

course of dimensionality also to PIC. The Monte Carlo error is of random nature such that

it is often observed and simply referred to as noise.

Hybrid methods like the Semi-Lagrangian scheme (SL) combine interpolation with Lagrangian

markers in order to benefit from the Lagrangian transport and the noiseless grid-based in-

tegration[7]. Lagrangian transport refers to the fact that every particle transports an initial

value of f depicted as its color in figs. 1.1 and 1.2. Instead of interpolating this color onto a

1For problems where the number of particles remains small, e.g. the celestial bodies in the solar system but

not in a plasma, particle-particle methods solve the actual N-body problem.
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1.2. Outline and contribution

Figure 1.2.: The marginal density
∫
f(x, v)dv required for the right hand side of the Poisson

equation is estimated from the particle density. Here, the Monte Carlo integral over the

velocity space (dv) can be taken by a histogram or by orthogonal series density estimation

(OSDE) using finite elements based on cubic B-Splines. The latter are then perfectly suited to

solve the Poisson equation. The histogram immediately raises the question for the suitable

number of particles per cell to avoid over or under-smoothing which can be answered by

elementary statistics.

grid at each time step like the SL method, this color can be also used to reduce the noise of

a particle simulation.

1.2. Outline and contribution

The first part, chapter 2, of this thesis covers the stochastic aspects of particle simulations

like PIC with the ultimate goal of establishing ties to the stochastic world. Since PIC is

already a long established Monte Carlo method the very basics can be found in [8, 5, 9,

10, 11, 12]. In the setting of a stochastic process general aspects include the measure of

error (variance), error propagation and entropy. After reviewing basic sampling steps we

present new variance reduction techniques. The control variate scheme first applied to PIC

by [13] is extensively discussed and new truly adaptive control variates are presented for non-

equilibrium cases. So far conditional Monte Carlo has only made it to the PIC community by

stratified sampling but it is actually the other pillar of variance reduction next to the control

variates and allows even the heuristic coarse graining techniques a place in the stochastic

world. Lagrangian methods are set in the most convenient coordinate system for variational

integrators giving way to true long term stability, which is of the highest importance in multi-

scale plasma physics, see [14]. Thus we review the problems arising from the combination

of variance reduction techniques with geometric integration. Then the gyroaverage operator

from gyrokinetic theory motivates us to mix Monte Carlo with deterministic quadrature rules

resulting in new formulas for variance reduction.

Linear analysis of the Vlasov–Poisson system provides damping and growth-rates on a semi-

analytical level, which are an essential verification step in numerical simulations. But lin-

earization does not necessarily result in variance reduction. Nevertheless matrix pencil allow

us to estimate entire dispersion relations from short time PIC simulations.

Collisions are introduced by the Fokker-Planck and transferred into the particle environment

as the Ornstein Uhlenbeck process in [15]. The basic mechanism of applying a control variate

in this setting is critically reviewed especially by numerical simulations where particles filters

like sequential importance re-sampling (SIR) are applied. Recently multi-level Monte Carlo
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Chapter 1. Introduction

is becoming quite popular [16], but instead of applying multi-level techniques on a time-step

or grid basis like Ricketson [17, 18], the door to the combination of multiple levels is opened

by the usage of different models such as fluid and kinetic descriptions. Although the concepts

are introduced in two-dimensional models, everything is defined such that the presented al-

gorithms can be implemented in almost every large Particle-In-Cell simulation.

The stochastic analysis has shown that increasing the degrees of freedom increases the back-

ground variance, such that we search for a rapidly converging representation of the fields

in order to approximate also the true eigenvalues of the system very well. Furthermore

anisotropies transported along the magnetic field lines can often be resolved with few Fourier

modes. Thus, spectral methods suggest themselves, which are introduced in chapter 3 begin-

ning with the review of Particle-in-Fourier (PIF) first formulated in a variational framework

in [10]. Contrary to PIC where each particle contributes locally to its cell, in PIF every

particle contributes to every Fourier mode. On the other hand for a global basis particles do

not need to be sorted simplifying code optimization. A micro-benchmark for a one dimen-

sional Vlasov–Poisson PIF skeleton code with various techniques implemented in MATLAB,

Fortran, julia, python and OpenCL for GPU and CPU is presented.

Fourier modes form eigenfunctions of the Laplace operator such that the higher local costs

of PIF can be seen as installing a pre-conditioner into the charge assignment. On a disc,

such eigenfunctions are the Fourier-Bessel functions yielding the first extension of spectral

particle methods onto non-periodic domains. But for arbitrary geometries eigenfunctions are

not available resulting in dense matrices, which remain small with the number of physically

relevant Fourier modes. The geometry of toroidally shaped devices is described with periodic

toroidal and poloidal coordinates and a bounded radial direction. In a PIC-PIF hybrid the

two periodic directions are discretized with PIF which is coupled to finite elements based on

arbitrary degree B-Splines in the radial direction. Since the magnetic field follows these co-

ordinates only the field aligned Harmonics are believed to be physically relevant. Established

PIC codes of the ORB5 family filter the field aligned modes from the three dimensional finite

element basis in order to reduce the presumably unphysical background noise. With the PIF-

PIC hybrid this filtering step is directly incorporated into the choice of Fourier modes. This

allows studying a (rather academic) drift kinetic ion temperature gradient instability (ITG)

in different domains using free coordinate transformations on a normal laptop. Although the

local B-Splines provide some sparsity, global but orthogonal polynomials (e.g. Chebyshev and

Legendre) take the place of Fourier modes in non-periodic domains, such that the concept of

spectral particle methods is fully generalized.

The setting in Fourier space adds some mathematical simplicity to PIF e.g. the absence of

particle self force such that it conserves both energy and momentum. Since PIF discretiza-

tions are so straightforward a geometric PIF for the Vlasov-Maxwell system is derived based

on the Hamiltonian splitting of [19]. Restricting a three dimensional domain onto to a line

perpendicular to the magnetic field results in a three dimensional (1d2v) model suited for

numerical studies of multi-species physics and implicit symplectic resolution of the v × B

drift.

Complementary to the Lagrangian PIF, a pseudo-spectral discretization is the most natural

choice. This alleviates comparisons and raises the confidence in obtained simulation results.

For Vlasov–Poisson the Fourier-Fourier method of Joyce and Knorr is used [20] resulting in

a geometric scheme, see [21]. Modifying the Hamiltonian splitting used for Vlasov–Maxwell

system in PIF yields, contrary to [22], a spectral solver. This Eulerian approach to the solu-

tion of the Vlasov-Maxwell system is provided in chapter 4.

In the two fusion devices at the Max Planck Institute for Plasma physics, the Tokamak AS-

DEX Upgrade and the Stellarator Wendelstein 7-X, the hot plasma is confined by strong ex-
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1.2. Outline and contribution

ternal magnetic fields. In this context the simple periodic electrostatic Vlasov–Poisson model

is limited in its application to real physics, such that more involved systems along with a

basic physics overview are introduced in the the appendix B. Adding self-consistent magnetic

effects, modeling and the necessary normalizations with a multi-species Vlasov-Maxwell sys-

tem are prepared for readers not familiar with plasma physics. Strong magnetization locks

the particles onto the field lines yielding a gyrating motion at such a high frequency that

the use of fully kinetic Vlasov models become unaffordable. Instead of solving asymptotic

models like [23, 24] the most popular option is to make a high frequency approximation of the

Vlasov–Maxwell system based on a coordinate transformation, which leads to a new model

called gyrokinetic [25, 26]. It is merely a five dimensional system, but the biggest advantage

is to remove the fast oscillations in the density, which allows for much larger time steps. Nev-

ertheless, there is a whole zoo of gyrokinetic models, and their derivation is based upon many

assumptions that are not always met in practice. Also the equations exhibit a much higher

level of complexity and may be even harder to solve. Inheriting the important structure,

the slightly reduced electrostatic four dimensional drift kinetic and two dimensional guiding

center models are used.

Physics following the twisted field lines of magnetic equilibrium requires complex geometries,

but coordinate systems are often hard-coded. Therefore, suitable coordinate systems are

reviewed in an elementary description providing also test cases for flexible solvers. Then

the usage of curvilinear coordinates for particle methods requires only the knowledge of an

appropriate sampling technique and the corresponding transformations of the introduced

systems.
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Chapter 2.

Stochastic aspects of Particle-In-Cell

When performing a stochastic simulation of the Vlasov–Poisson systems or some of its rela-

tives, we mix deterministic particle methods with a stochastic interpretation to create stochas-

tic processes. Their convergence by the strong law of large numbers is only given for a very

large particle limit, at high costs. We combine methods from the deterministic world with

stochastic ensembles to reduce these costs. The two key ingredients for a stochastic particle

simulation in plasma physics are the introduction of a control variate [13] and its combina-

tion with a collision operator to a time dependent stochastic process [15]. We give a full

introduction on how to write a state of the art particle simulation for the Vlasov–Poisson

problem. The main focus lies on the improvement of the particle mesh coupling. The parti-

cles describe random samples where Monte Carlo integration is used as the entry point [27]

into the stochastic world. Thus further improvements can be made by using variance reduc-

tion techniques and low discrepancy sequences for sample generation [28]. We start with the

definition of our problem in a stochastic setting and diagnose the sources of error, before

attempting improvement.

2.1. Vlasov–Poisson

A common model for an electron plasma with a constant ion background is the Vlasov

equation with a divergence free external magnetic field B, div(B) = 0

∂f

∂t
+ v · ∇xf − (E + v ×B) · ∇vf = 0. (2.1)

It can be coupled with the Poisson equation for the electric potential Φ. With the electron

charge density ρ = −
∫
f dv, the Poisson equation is defined as:

−∆Φ = ρion + ρ, E := −∇Φ. (2.2)

In most cases the ion charge density forms a uniform background which means ρion = 1. Let

the phase space be defined as Ω = Ωx × Ωv = [0, L] × R. The total energy of the system is

the sum of the kinetic energy and the electrostatic energy:

H(t) = HT (t) +HE(t) =
1

2

∫∫
f(x, v, t)v2 dxdv +

1

2

∫
Ωx

‖∇Φ(x, t)‖2 dx. (2.3)

2.1.1. Method of characteristics

Equation (2.1) describes a conservation law, which is solved by the methods of characteristics.

We define the characteristics (V (t), X(t)), as functions of time such that

d

dt
f (X(t), V (t), t) =

dX(t)

dt
∂xf (X(t), V (t), t)

+
dV (t)

dt
∂vf (X(t), V (t), t) + ∂tf (X(t), V (t), t) = 0. (2.4)
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Inserting ∂tf from (2.1) into (2.4) yields the equations of motions for the characteristics of

eqn. (2.1), which read

d

dt
V (t) = − (E(t,X(t)) + V (t)×B(t,X(t))) and

d

dt
X(t) = V (t). (2.5)

Then f as solution of eqn. (2.1) is constant along the characteristics (2.5), which means for

given initial position in phase space (X0, V0) we have

f(X(t = 0), V (t = 0), t = 0) = f(X(t), V (t), t) ∀t ≥ 0. (2.6)

In this way eqn. (2.1) can be solved with the method of characteristics. Given the fields B

and E we can follow the characteristics by solving eqn. (2.5) with a standard ODE integrator.

We can introduce a second density g(x, v, t) which solves

∂g

∂t
+ v · ∇xg − (E + v ×B) · ∇vg = 0 (2.7)

and call it the sampling density, prior or the law of (X,V ). By imposing
∫

Ω g(x, v, t =

0) dxdv = 1, g(x, v, t = 0) ≥ 0, ∀(x, v) the initial sampling distribution g(·, ·, t = 0) becomes

a probability density. Since g follows the same Vlasov equation (2.7) as f , see eqn. (2.1), it

is constant along the same characteristics (2.6).

The Vlasov equation (2.7) conserves positivity and volume, therefore, g stays a probability

density for all t ≥ 0. In order to verify that g(x, v, t) is the probability density of the

characteristics (X(t), V (t)) we rewrite the characteristics as a mapping ϕt. Since f is constant

along the characteristics, we can implicitly define a diffeomorphism ϕt : (x0, v0) 7→ (x, v) for

every t ≥ 0 such that

f(x, v, t) = f(ϕt(x0, v0), t) = f(x0, v0, 0). (2.8)

The same property then also holds for g, namely g(ϕt(x0, v0), t) = g(x0, v0, 0). We seek a

change in variables (x, v) := ϕt(x0, v0) and denote the Jacobi determinant of ϕt as Jϕt . For

any phase-space volume V equation (2.9) then holds under the change of variables; also for

f . ∫∫
ϕ(V )

g(x, v, t) dxdv =

∫∫
V
g (ϕt(x0, v0), t) Jϕt(x0, v0) dx0dv0

=

∫∫
V
g (x0, v0, 0) Jϕt(x0, v0) dx0dv0

(2.9)

This means that at time t, g (x0, v0, t = 0) Jϕt(x0, v0) is the probability density for the ran-

dom deviate (X(t), V (t)) = ϕ(X0, V0) and the Jacobian has to be taken into account. For

the Vlasov equation the Jacobi determinant is one Jϕt(x, v) = 1. Therefore the character-

istics transport the actual value of the probability density at every time t. This also holds

true for a symmetric integrator, e.g. one time step of the symplectic Euler scheme given in

equation (2.10).

ϕt(x, v) =
(
x+ tv, v + t

q

m
E(x+ tv, t)

)
,

∇ϕt(x, v) =

(
1 t

t qm∂xE(x+ tv, t) 1 + t2 q
m∂xE(x+ tv, t)

) (2.10)

We then see that the semi-discrete flow also has the right Jacobi determinant:

det(∇ϕt) = 1 + t2
q

m
∂xE(x+ tv, t)− t2 q

m
∂xE(x+ tv, t) = 1. (2.11)
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2.1. Vlasov–Poisson

Yet when we consider the standard explicit Euler scheme and its Jacobi determinant given

in eqn. (2.12) the determinant of the flow is not one.

ϕt(x, v) =
(
x+ tv, v + t

q

m
E(x, t)

)
, ∇ϕt =

(
1 t

t qm∂xE(x, t) 1

)
det(∇ϕt) = 1− t2 q

m
∂xE(x, t) 6= 1

(2.12)

Therefore the likelihood g has to be rescaled accordingly such that it continuously represent

the distribution of the random deviate (X(t), V (t)). Technically f should still stay constant

because of the method of characteristics, which leads ultimately to an inconsistency. Hence

in this thesis volume preserving integrators are used whenever possible. The Vlasov–Poisson

system is a Hamiltonian system in which our phase space coordinates (x, v) coincide with the

Hamiltonian coordinates (q, p). Without magnetic field the system can be written as

(ṗ, q̇) = J−1∇(p,q)H(p, q), J =

(
−I

I

)
. (2.13)

For different systems we will obtain a different matrix J and the coordinates (p, q) cannot be

identified as (x, v) much longer. An integrator is called symplectic if the mapping induced

by ϕt is symplectic with respect to J , which is checked by

∇ϕt(p, q)tJ∇ϕt(p, q) = J. (2.14)

See Hairer’s lecture notes for a short introduction to Hamiltonian systems [29]. Such sym-

plectic integrators always conserve phase space volume and can also conserve quantities like

energy but not every phase space volume preserving integrator is symplectic, see also [30].

But conservation of phase space is such an important property that schemes like the Boris

method perform so well although they cannot be symplectic for any system [31]. Many of

these integrators along with detailed theory for plasma physics can already be found here [14].

Here the third and fourth order symplectic Runge Kutta schemes from [32] are denoted by

rk3s and rk4s respectively. The standard second order scheme rk2s corresponds to the well

known leap frog, and the first order rk1s is the symplectic Euler. We saw that the likelihoods

f and g are propagated using the Jacobi determinant of the flow. This means nothing has

to be done here, since the Jacobian is always one when a suitable integrator is used. But we

cannot propagate other likelihoods, which are not constant such as the marginal densities,

sampled charge density gx and the sampled velocity density gv.

gx(x, t) =

∫
g(x, v, t) dv, gv(v, t) =

∫
g(x, v, t) dx (2.15)

Also for integrators which do not preserve phase space volume but are dissipative such as

asymptotically preserving schemes like [24, 23] the likelihoods have to be propagated accord-

ingly.

2.1.2. Stochastic process

We will now slightly deviate in notation from the standard Particle-In-Cell (PIC) method [5].

The introduction of the probability density function g allows us to define a corresponding

random variable Z(t) = (X(t), V (t)). As a time dependent variable Z(t) is a stochastic

process [33] describing the solution to eqn. (2.7). We also know that Z(t) is constant along

the characteristic (2.6). But we are interested in the solution of (2.7), subject to (2.2). And

not necessarily the complete distribution f but at least certain moments of f such as kinetic
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Chapter 2. Stochastic aspects of Particle-In-Cell

energy, momentum and electrostatic field energy emerging from (2.2). We suppose that the

initial conditions g(x, v, t = 0) and f(x, v, t = 0) are known for all (x, v) ∈ Ω, then we

immediately have a solution by following the characteristics

f(X(t = 0), V (t = 0), t = 0) = f(X(t), V (t), t)

g(X(t = 0), V (t = 0), t = 0) = g(X(t), V (t), t) ∀t ≥ 0.
(2.16)

Interesting moments of the plasma distribution are integrals of the form

θ(t) :=

∫
Ω

Θ(x, v)f(x, v, t) dxdv. (2.17)

Equation (2.17) can be rewritten as the expected value of a stochastic process since g is the

corresponding probability density for Z.

θ(t) :=

∫
Ω

Θ(x, v)f(x, v, t) dxdv

=

∫
Ω

Θ(x, v)
f(x, v, t)

g(x, v, t)
g(x, v, t) dxdv

= E
[
Θ(X(t), V (t))

f(X(t), V (t), t)

g(X(t), V (t), t)

] (2.18)

Using eqn. (2.16) the weight process W (t) is defined as

W (t) :=
f(X(t), V (t), t)

g(X(t), V (t), t)
=
f(X(0), V (0), 0)

g(X(0), V (0), 0)
= W (0) ∀t ≥ 0, (2.19)

giving the relation between the sampling distribution g and the function f . This yields an

simplification of eqn. (2.18):

θ(t) := E [Θ(X(t), V (t))W (t)] . (2.20)

To make use of the standard Monte Carlo estimator we define Np independently and identi-

cally distributed (i.i.d.) samples - called markers or particles - of the initial random deviate

Z(0) using the knowledge of the probability density g(x, v, t = 0).

Zk(0) = (Xk(0), Vk(0)) i.i.d. ∼ Z(0) (2.21)

Every sample follows the same stochastic process, giving us the ability to calculate Z(t) from

Z(0) for all t ≥ 0 by following the characteristics (2.16). This corresponds to advancing the

markers in time, by use of a standard integrator for ordinary differential equations [34, 35].

Here we tend to use more sophisticated methods [36, 37], which are now also a growing field

in plasma physics [14]. Since the stochastic process Z(t) is defined by the characteristics and

every realization of z(t) ∈ R is a characteristic we call Z(t) a characteristic as well. The i.i.d.

duplicates (Zk)k=1,...,Np of Z allow us to define a new random deviate θ̂, which we call the

standard Monte Carlo estimator, see eqn. (2.22).

θ(t) = E [Θ(X(t), V (t))W (t)] = E
[ 1

Np

Np∑
k=1

Θ(Xk(t), Vk(t))Wk(t)︸ ︷︷ ︸
:=θ̂

]
(2.22)

The standard Monte Carlo estimators expectation coincides with θ = E
[
θ̂
]

but its variance

decreases with the number of particles Np.

V
[
θ̂
]

=
V [Θ(X(t), V (t))W (t)]

Np
(2.23)
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2.1. Vlasov–Poisson

If actual (zk)k=1,...,Np ∈ R samples as realizations of the random deviates (Zk)k=1,...,Np are

drawn the estimator in eqn. (2.22) is turned into an estimate for θ.

θ(t) = E [Θ(X(t), V (t))W (t)] ≈ 1

Np

Np∑
k=1

Θ(xk(t), vk(t))wk(t) (2.24)

In the following expectations are constantly approximated by the standard Monte Carlo

estimator such that we neglect the difference between estimator and estimate because of its

unnecessary notational overhead. The capital notation Zk = (Xk, Vk) is used when the focus

lies on the stochastic aspect, while the lower case notation zk = (xk, vk) is used when we

focus on the actual numerics.

Kinetic energy

We are interested in moments of the Vlasov equation such as the kinetic energy. An estimate

for the kinetic energyHT (t) can be computed by setting Θ(x, v) = 1
2v

2 such that the standard

Monte Carlo estimator ĤT (t) reads

HT (t) =
1

2

∫
Ω
f(x, v, t) v2 dxdv

=
1

2
E[V (t)2W (t)]

≈ ĤT (t) :=
1

Np

Np∑
k=1

Vk(t)
2Wk(t)

(2.25)

The deterministic approach, yielding the same estimator starts with the discretization of the

density g with Dirac masses as a Klimontovich density

g(x, v, t) ≈ gp(x, v, t) =
1

Np

Np∑
k=1

δ (x−Xk(t)) δ (v − Vk(t)) , (2.26)

yielding also an approximation to f

f(x, v, t) ≈ fp(t, x, v) =
1

Np

Np∑
k=1

δ (x−Xk(t)) δ (v − Vk(t))Wk(t). (2.27)

Inserting the discretization fp yields the same standard Monte Carlo estimator θ̂ for θ:

θ(t) :=

∫
Ω

Θ(x, v)f(x, v, t) dxdv

≈
∫

Ω
Θ(x, v)fp(x, v, t) dxdv

=

∫
Ω

Θ(x, v)
1

Np

Np∑
k=1

δ (x−Xk(t)) δ (v − Vk(t))Wk(t) dxdv

=
1

Np

Np∑
k=1

Θ(Xk(t), Vk(t))Wk(t) = θ̂(t).

(2.28)

Depending on the variance reduction and particle filtering techniques, the weight process

Wk(t) is not anymore only defined by the ratio between f and g. Therefore, as a starting

point we explicitly introduce the plasma probability f tk and the particle probability gtk:

f tk := f(Xk(t), Vk(t), t), gtk := g(Xk(t), Vk(t), t), (2.29)
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such that the standard Monte Carlo estimator reads

θ̂(t) =
1

Np

Np∑
k=1

Θ(Xk(t), Vk(t))
f tk
gtk
. (2.30)

For a marker ztk the quantity gtk denotes the likelihood of finding a marker at the given phase

space position due to the sampling density g. Since f is a probability density up to nor-

malization f tk, is also a likelihood but for the plasma density. It can be interpreted as the

likelihood of finding a plasma particle at zk.

Mass and Lp-norm

The mass
∫∫

f dxdv and the Lp-norm of f for p ∈ N are two conserved quantities of the

Vlasov–Poisson system, one encounters first and that are most easy to prove. They are also

intrinsically conserved by the standard particle method and therefore we give their definition,

also to be used with Fokker–Planck collisions. The mass reads∫∫
Ω
f(x, v, t) dxdv = E

[
f(Z(t), t)

g(Z(t), t)

]
≈ 1

Np

Np∑
k=1

f tk
gtk

(2.31)

and the Lp-norm is defined as∫∫
Ω
f(x, v, t)p dxdv = E

[
|f(Z(t), t)|p

g(Z(t), t)

]
≈ 1

Np

Np∑
k=1

∣∣f tk∣∣p
gtk

. (2.32)

Entropy

The Vlasov–Poisson system conserves entropy, also known as the differential entropy,∫
Ω
f ln(f) dxdv = E

[
f(Z(t), t) ln (f(Z(t), t))

g(Z(t), t)

]
≈ 1

Np

Np∑
k=1

f tk ln(f tk)

gtk
. (2.33)

The particle method will also conserve the discrete entropy, yet over time as the particles

represent less and less the true solution f . Thus the discrete entropy will differ from the

true solution. There are different ways to estimate the entropy from a sample, [38] gives an

overview, while in [39] mesh based examples ready for implementation can be found. Here, in

the spirit of grid less methods for particles, the author’s choice is the nearest neighbor estima-

tor for the Shannon entropy [40]. The nearest neighbor kernel density estimator [41][p.305] of

the sampling distribution g is given in eqn. (2.34). It gives us a value of the sampling density

g at every sample point

ĝ(xk, vk) =
1

Np

Γ
(
d
2 + 1

)
π
d
2 (Rk)d

. (2.34)

Rescaling the sampling density estimator in eqn. (2.34) by the weight, allows for estimation

of the plasma density f at every sample point by using eqn. (2.35)

f̂(xk, vk) =
1

Np

Γ
(
d
2 + 1

)
π
d
2 (Rk)d

fk
gk
. (2.35)

Corrections in the asymptotic limit of Np → ∞ result in the Shannon entropy estimator

from [41][p.304] for the sampling density, which reads

Ĥ(g) =

 d

Np

Np∑
k=1

ln (Rk)

 + ln

(
π
d
2

Γ(d2 + 1)

)
+ γ + ln(Np). (2.36)
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2.1. Vlasov–Poisson

Here d = 2 denotes the dimension, γ ≈ 0.5772156649 the Euler-Mascheroni constant and Rk
the euclidean distance to the nearest neighbor of the kth particle:

Rk := min
l 6=k,l=1,...,Np

∥∥∥∥(xkvk
)
−
(
xl
vl

)∥∥∥∥
2

. (2.37)

We want to obtain the Shannon entropy for the plasma density f given an arbitrary sampling

density g. Let w = f
g denote the weight function, we obtain

−
∫∫

ln(f)f dxdv = −
∫∫

ln(gw)gw dxdv = −
∫∫

w ln(g)g dxdv −
∫∫

ln(w)w g dxdv.

(2.38)

By using the entropy estimator (2.36) for the ln(g)g term in eqn. (2.38) we obtain a nearest

neighbor entropy estimator for the plasma density f in eqn. (2.39).

Ĥ(f) =
1

Np

Np∑
k=1

[
d ln (Rk) + ln

(
π
d
2

Γ(d2 + 1)

)
+ γ + ln(Np)

]
fk
gk
− 1

Np

Np∑
k=1

log

(
fk
gk

)
fk
gk
.

(2.39)

With above entropy estimates, the discretization error is already included.

In gyrokinetic theory, a different estimate for the entropy has been established. Since some

physicists [42], [43], [44] relate the entropy to the δf method we give an analytical treatment.

At first one is interested in the difference in Shannon’s entropy

F(f) :=

∫∫
Ω
f ln(f)− f0 ln(f0) dxdv, (2.40)

since it accounts for the change in entropy relative to an initial condition or an equilibrium.

We use a quadratic Taylor expansion in f around f0, the difference δf := f − f0 and keep

only the leading order in δf :

f ln(f)− f0 ln(f0) ' (f − f0)2

2f0
+ (ln(f0) + 1)(f − f0)

=
(δf)2

2f0
+ δf (ln(f0) + 1) ∼ (δf)2

2f0
.

(2.41)

Inserting the particle discretization this yields:

F(f) =

∫
Ω

(δf)2

2f0
dxdv ≈ 1

2

1

Np

Np∑
k=1

(f(t, xk(t), vk(t))− f0(xk(t), vk(t)))
2

g(t, xk(t), vk(t))f0(xk(t), vk(t))
. (2.42)

In the literature [43], [44] the δ-weights are defined as

δwk :=
f(t, xk(t), vk(t))− f0(xk(t), vk(t))

g(t, xk(t), vk(t))
(2.43)

including the normalization by the sampling density g, yielding an additional layer of misun-

derstanding when estimating with

1

2

1

Np

Np∑
k=1

δw2
k

f0(xk(t), vk(t))
. (2.44)

This is often mixed with the methods of control variates and linearization, but we will not

investigate this further.
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Chapter 2. Stochastic aspects of Particle-In-Cell

We turn to a better estimate for an entropy difference, namely the Kullback-Leibler diver-

gence, or relative entropy [45]. It can be defined with respect to an equilibrium feq(x, v),

similar to (2.40) as

∫
Ω
f ln

(
f

feq

)
dxdv = E

[
f(Z(t), t)

g(Z(t), t)
ln

(
f(Z(t), t)

feq(Z(t))

)]
≈ 1

Np

Np∑
k=1

f tk
gtk

ln

(
f tk

feq(xtk, v
t
k)

)
.

(2.45)

Here a quadratic Taylor expansion in f around f0 yields

f ln

(
f

f0

)
' (f2 − f2

0 )

(2f0)
, (2.46)

which lacks the f0f term.

Entropy estimates are widely used as a measure of error [46] in particle simulations and are

often related to the particle noise. This makes it hard to distinguish between discretization

errors and new physics and therefore, we employ stochastic error estimates.

2.1.3. Measure of error (MSE)

We can quantify the error of the estimator θ̂ by the definition of the mean squared error

(MSE) which is the expectation of the `2 error

MSE
[
θ̂
]

=E
[(
θ̂(t)− θ(t)

)2
]

= V
[
θ̂(t)

]
+
(
E
[
θ̂(t)

]
− θ(t)

)2

=
V [Θ(X(t), V (t))]

Np
+
(
E
[
θ̂(t)

]
− θ(t)

)2
.

(2.47)

The MSE consists of the variance and the square bias which varies for different estimators.

In the case of the kinetic energy (2.25), the bias vanishes as E
[
V (t)2W (t)

]
= HT (t).

MSE
[
ĤT (t)

]
=

V
[
V (t)2W (t)

]
Np

+
(
E
[
V (t)2W (t)

]
−HT (t)

)2︸ ︷︷ ︸
=0

(2.48)

This means ĤT (t) is an unbiased estimator for the kinetic energy and will converge by the

strong law of large numbers for Np →∞ almost surely to HT (t).

So far we can estimate any moment Θ of the phase space density f by following the

characteristics with the randomly drawn markers Z0
k , k = 1, . . . , Np forming samples Ztk of

the stochastic process Z(t) by time integration. But this requires the knowledge of the electric

field E(x, t) stemming from the Poisson equation, which we have to solve given the samples

of Z(t).

2.1.4. Finite elements for the Poisson equation

For PIC codes, it is very common to use finite elements to solve for the fields [15, 47, 19,

48]. Therefore, we provide a brief example for the Poisson equation. The same Ansatz

and test functions ψn ∈ H1([0, L],R) = V, n = 1, . . . , Nh are chosen for the variational

formulation. In many cases these are B-splines because of their partition of unity and good

approximation properties, see [49, 50]. Nevertheless any other set of function like Fourier

modes or orthogonal polynomials suitable for a Galerkin discretization can be chosen. Define

mass Mn1,n2 := 〈ψn1 , ψn2〉L2([0,L]) and stiffness matrix Kn1,n2 := 〈∇ψn1 ,∇ψn2〉L2([0,L]) for
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2.1. Vlasov–Poisson

n1, n2 = 1, . . . , Nh. The corresponding finite element or discretized Galerkin subspace is

denoted as Vh = span
(
{ψ1, . . . , ψNp}

)
⊂ V . The weak form of the Poisson equation (2.2)

without ion contribution using only the electron charge density ρ(x, t) =
∫
f(x, v, t) dv reads

〈∇Φ(t),∇ψ〉L2([0,L]) = 〈ρ(t), ψ〉L2([0,L]) ∀ψ ∈ V. (2.49)

But before we solve the weak Poisson equation (2.49), let us start by the L2 projection of

ρ(x, t) into the discrete space Vh. In general ρ is not contained in Vh thus one searches for

the L2 projection ρh ∈ Vh of ρ onto the space Vh given by

〈ρh(t), ψ〉L2([0,L]) = 〈ρ(t), ψ〉L2([0,L]) ∀ψ ∈ Vh. (2.50)

In the particle environment ρ is not available but a particle discretization, given by the

stochastic process X(t) or the Klimontovich density

ρp(x, t) =
1

Np

Np∑
k=1

δ (x−Xk(t))Wk(t). (2.51)

In the following, let ψ := (ψ1, . . . , ψNh)t be the vector valued function containing all Ansatz

functions, then the discretized right hand side b(t) with its estimator b̂(t) is defined as

b(t) := 〈ρ(x, t), ψ〉L2([0,L])

=

∫
ψ(x)ρ(x, t) dx = E

[
ψ (X(t))W (t)︸ ︷︷ ︸

B(t):=

]
= E [B(t)]

≈
∫
ψ(x)ρp(x, t) dx =

1

Np

Np∑
k=1

Wk(t)ψ(Xk(t)) =: b̂(t).

(2.52)

Using the mass matrix M we denote the L2 projection as a linear operator M : b 7→ M−1b,

which allows us to use the linearity of the expectation later. Then the L2 projection of

ρ(x, t) using the finite element space yields a discrete approximation ρh(x, t), see eqn. (2.53)

depending on the right hand side vector b(t) ∈ RNh .

ρ(x, t) ≈ ρh(x, t) = (Mb(t))t · ψ(x) (2.53)

≈ ρ̂h(x, t) =
(
Mb̂(t)

)t
· ψ(x) (2.54)

This vector is also defined by the expectation b(t) = E [B(t)] and therefore, can be estimated

from samples of Z(t) by the estimator b̂(t). Introducing this estimator into the purely mesh

based description of ρ yields a stochastic estimator ρ̂h, see eqn. (2.54). The introduction of

the multivariate random deviate b(t) is precisely the point, where the particles are coupled

to the mesh. Hence equations (2.53) and (2.54) describe the particle mesh coupling. The

first approximation is made by the basis functions in Vh and the second one by the Monte

Carlo estimator. Staying in the Galerkin framework we can also solve the Poisson equation

in the same manner by use of the stiffness matrix K and a linear operator Ky := K−1(y).

The approximations on the field yield then

Φ(x, t) ≈ Φh(x, t) = (Kb(t))t · ψ(x)

≈ Φ̂h(x, t) =
(
Kb̂(t)

)t
· ψ(x).

(2.55)

Reintroducing the ion contribution is notationally cumbersome, thus we define

ρion,h =

∫ L

0
ρion(x)ψ(x) dx =

∫ L

0
ψ(x) dx (2.56)
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Chapter 2. Stochastic aspects of Particle-In-Cell

In the following the affine linear operator

Kx := K−1(ρion,h + x) (2.57)

shall incorporate the complete field solve including the boundary conditions. Because these

are periodic the operator K is supposed to deal with the singular Poisson solve also on a

numerical level. Incorporating the ion background ρion = 1 in all the following theory is

more confusing than helpful such that, without loss of generality, we chose to ignore it in the

following discussions. The electric field E(x, t) at a given position x ∈ [0, L] is approximated

by its estimator Êh(x, t):

E(x, t) = −∇Φ(x, t) ≈ Eh(x, t) = −∇Φh(x, t)

≈ Êh(x, t) = −∇Φ̂(x, t) =
(
Kb̂(t)

)t
(−∇ψ(x)).

(2.58)

2.1.5. Particle mesh coupling by KDE

Any basic statistics course will cover kernel density estimation (KDE), which uses a smoothing

kernel in order to construct a continuous function from a marker density [51, 52, 53]. This

is most certainly the reason why the earliest PIC codes used KDE for the particle mesh

coupling [5]. A smoothing kernel K is a symmetric and mostly hat shaped function satisfying

at least the following constraints

K(x) ≥ 0 ∀x,
∫
xK(x) dx = 0,

∫
x2K(x) dx 6= 0. (2.59)

A mollified version ρh of the charge density, now subject to a discretization error is obtained

by convolution with the kernel

ρh(x, t) =

∫ L

0
f(y, v, t)K

(
x− y
h

)
1

h
dydv. (2.60)

Here h denotes the width of the smoothing kernel. With increasing h the small oscillations

are lost, which is mostly desirable. Inserting the Klimontovich density fp into eqn. (2.60)

yields the KDE ρ̂ for ρ.

ρ̂(x, t) =

∫ L

0

1

Np

Np∑
n=1

δ (y − xn(t)) δ (v − vn(t))wnK

(
x− y
h

)
1

h
dydv

=
1

Np

Np∑
n=1

K

(
x− xn(t)

h

)
1

h
wn

(2.61)

In the Klimontovich density each particle is represented by a δ function, but after the con-

volution with the smoothing kernel K it appears as if every particle has the physical shape

S(x) = K
(
x
h

)
1
h . Thus it is very common in the community to denote ρ̂ by

ρ̂(x, t) =
1

Np

Np∑
n=1

S(x− xn(t))wn. (2.62)

Now (2.62) can be evaluated on any grid consisting of arbitrary grid points (x̄m)m=1,...,M ∈
[0, L], yielding

ρ̄m := ρ̂(x̄m, t). (2.63)
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2.1. Vlasov–Poisson

The grid does not have to be regular. It is only important that we are able to solve the

Poisson equation with a collocation or Galerkin based method on this grid. This includes the

discrete Fourier transformation (DFT), Chebyshev transform (see [54]) and finite differences

as the standard choice. It is very important to note that although the smoothing window

width h disappeared somewhere around eqn. (2.62) into the shape function S it is still a free

parameter not linked in any way to the cell size of the used grid. But if B-splines, see fig. 2.1,

are used as a smoothing kernel K it is numerically more efficient and also much easier to

implement to chose the same h for the cell size and the smoothing window width. An optimal

smoothing window width h depends of course on the number of samples [51], but since it is

now also linked to the cell size the well known particle per cell criterion is obtained.

The Poisson equation can be solved on the grid in Fourier space using the DFT F , inverse

DFT F−1 and the discrete wave vector k̄ yielding

Φ̄ = F−1 1

(ik̄)2
F ρ̄. (2.64)

Note that the ion background can be subtracted by manually setting the zeroth Fourier mode

to zero. The historically most common choice is a second order finite difference approxima-

tion, where the potential is obtained by solving

Φ̄m−1 − 2Φ̄m + Φ̄m+1

h2
= ρ̄m, (2.65)

for Φ̄. However the potential Φ(x̄m) = Φ̄ is obtained at the grid points it can be evaluated

again at the particle positions by interpolation using the original shape function S and a

corresponding mass matrix M for the interpolation

Φ̂(xn(t), t) =
∑
m

(
M−1Φ̄

)
m
S(x̄m − xn(t)). (2.66)

The electric field can then be obtained by the derivative

Ê(xn(t), t) = −
∑
m

(
M−1Φ̄

)
m
S′(x̄m − xn(t)). (2.67)

Many popular PIC codes based in some form on Birdsall’s ES-PIC [5] employ an additional

discretization for obtaining the electric field from the potential at the grid points by e.g.

Ê(xn(t), t) = −
∑
m

ĒmS(x̄m − xn(t)) with Ēm = − Φ̄m+1 + Φ̄m−1

2h
. (2.68)

An analog projection can also be made on the level of the discrete Fourier transform. Such ad-

hoc discretizations do mostly not fit in a variational framework thus giving rise to unnatural

long term effects, such as e.g. the finite grid instability[55]. However it is shown in [10], that

a discretization with linear shape functions and linear finite elements can coincide with the

second finite difference approximation. It can be summarized that finite elements are closer

to orthogonal series density estimation (OSDE) and collocation methods use kernel density

estimation (KDE).

In [51] estimates for variance and bias of the KDE are obtained by Taylor expansion and an

optimal smoothing window width, balancing variance an bias, is found as

h∗ =

[ ∫
K(x)2 dx(∫

K(x)x
)4 ∫

ρ′′(x) dx

] 1
5

N
− 1

5
p . (2.69)
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Chapter 2. Stochastic aspects of Particle-In-Cell

(a) Arbitrary degree B-splines (b) Epanechnikov efficiency

Figure 2.1.: Arbitrary degree B-splines as smoothing kernels and their stochastic efficiency

relative to the Epanechnikov kernel with efficiency one. Note that the difference in efficiency

is marginal.

Therefore, h should be chosen proportional to N
− 1

5
p , which is a very slow convergence com-

pared to grid based methods. In PIC the indefinite integral of a KDE is used, which can be

compared with estimating the cumulative distribution function (CDF ), thus alleviating this

problem, see [56]. Different smoothing kernels can be discussed and the Epanechnikov kernel,

given in eqn. (2.70) is found to be the MISE optimal one [51] with respect to the quadratic

expansion

Ke(x) :=

{
3

4
√

5

(
1− 1

5x
2
)
−
√

5 ≤ x ≤
√

5

0 otherwise
(2.70)

Thus, we can compare compare any smoothing kernel K satisfying eqn. (2.59) to the Epanech-

nikov kernel. This is done by defining the efficiency of a smoothing Kernel relative to the

Epanechnikov kernel, which has by definition efficiency one according to eqn. (2.71).

eff(K) :=
3

5
√

5

√∫
x2K(x) dx∫
K(x)2 dx

(2.71)

Because arbitrary degree B-splines are so popular in PIC codes the Epanechnikov efficiency

was calculated in fig. 2.1. Although the most efficient B-spline appears to be the quadratic

the difference to the ones of higher order is rather small.

2.1.6. Stochastic errors in the particle mesh coupling

Note that in both cases (spectral and finite elements) there are two kinds of discretization

errors. The first is, of course, the plain discretization error of the finite element space Vh and

the finite number of Fourier modes. The second is the statistical error when estimating the

coefficients b(t) by the estimator b̂(t), also referred to as the particle noise.

Mean squared error (MSE)

For a fixed coordinate x0 ∈ Ωx the squared error for the Galerkin approximation ρh of ρ reads

(ρh(x0, t)− ρ(x0, t))
2 . (2.72)
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2.1. Vlasov–Poisson

The expectation of the estimator of the Galerkin approximation is the Galerkin approxima-

tion, since the expectation is linear

E [ρ̂h(x, t)] = E
[(
Mb̂(t)

)t
· ψ(x)

]
=
(
ME

[
b̂(t)
])t
· ψ(x) = (Mb(t))t · ψ(x) = ρh(x, t).

(2.73)

This describes the fact that b̂ is an unbiased estimator for b. Comparing the particle mesh

approximation ρ̂h with the actual function ρ yields the squared error

(ρ̂h(x0, t)− ρ(x0, t))
2 . (2.74)

This describes how well the combination of the mesh based approximation and the Monte

Carlo estimation approximates the density ρ. It is also possible to measure, how well the

Monte Carlo estimator ρ̂h approximates the Galerkin discretization ρh by taking another

squared error

(ρ̂h(x0, t)− ρh(x0, t))
2 . (2.75)

In the stochastic theory there is a fundamental difference between the errors (2.74) and (2.75)

such that we make a naming distinction here. Another estimator is denoted as ρ̂(x, t) :=

ρ̂h(x, t). In the following we call ρ̂(x, t) the estimator of the charge density ρ, and ρ̂h the

estimator of the Galerkin approximation of the charge density ρ. Thus, we denote the error

of the particle mesh coupling as

(ρ̂(x0, t)− ρ(x0, t))
2 , (2.76)

clarifying our incentive to compare to the actual density ρ. Since ρ̂(x0) is a random deviate,

we take the expectation of (2.76) and define the mean squared error (MSE) as the expectation

of (2.76) by

MSE [ρ̂(x0, t)] := E
[
(ρ̂(x0, t)− ρ(x0, t))

2
]

= E
[
(ρ̂(x0, t)− E [ρ̂(x0, t)])

2
]

+ (E [ρ̂(x0, t)]− ρ(x0, t))
2

= V [ρ̂(x0, t)] + (E [ρ̂(x0, t)]− ρ(x0, t))
2

= V [ρ̂h(x0, t)]︸ ︷︷ ︸
V ariance

+ (ρh(x, t)− ρ(x0, t))
2︸ ︷︷ ︸

Bias2

.

(2.77)

It measures how well ρ̂ = ρ̂h is expected to approximate ρ. The stochastic component of the

MSE is the variance, which decreases with the number of particles Np. The bias is the plain

error of the Galerkin approximation at x0 without any stochastic contribution. Increasing

the number or order of finite elements or the number of Fourier modes reduces the bias, but

potentially changes the variance depending on h.

This variance-bias-trade-off for kernel density estimation is extensively discussed in [51] when

it comes to finding optimal smoothing parameters. There is also theory available which

focuses on the expectation of the L1 error, which is discussed in [52][pp. 40-48].

Calculating the MSE of ρ̂h implies by the chosen notation that one should take the expectation

of eqn. (2.75). We find it to be unbiased because of eqn. (2.73):

MSE [ρ̂h(x0, t)] := E
[
(ρ̂h(x0, t)− ρh(x0, t))

2
]

= V [ρ̂h(x0, t)] + (ρh(x0, t)− ρh(x0, t))
2 = V [ρ̂h(x0, t)] . (2.78)

To summarize, the estimator ρ̂h is an unbiased estimator for ρh but a biased estimator for

ρ. For systems that rely on the Galerkin discretization we still converge with a large number

29



Chapter 2. Stochastic aspects of Particle-In-Cell

of particles. For PIC based on a finite element subspace Vh ⊂ V the orthogonal space V ⊥h is

rather hard to imagine. When following the characteristics of the Vlasov equation (2.5) not

the charge density ρ, but the electric field E = −∇Φ is essential. Using the estimator ρ̂ in

the Poisson equation yields in the same way estimators Φ̂ and Ê = −∇Φ̂ for the potential

Φ and the electric field E. We provide the definition of the other estimators using the same

notational convention:

MSE
[
Φ̂(x, t)

]
:= E

[(
Φ̂(x, t)− Φ(x, t)

)2
]

= V
[
Φ̂h(x, t)

]
+ (Φh(x, t)− Φ(x, t))2 ,

(2.79)

MSE
[
Ê(x, t)

]
:= E

[(
Ê(x, t)− E(x, t)

)2
]

= V
[
Êh(x, t)

]
+ (Eh(x, t)− E(x, t))2 .

(2.80)

The bias depends entirely on the Galerkin discretization, therefore, a lot of theory is available

for its estimation. For example a-posteriori estimates of the bias can be obtained from h or p

refinement. Here we focus on the stochastic part such that the unknown variances V [ρ̂(x, t)],

V
[
Φ̂h(x, t)

]
and V

[
Êh(x, t)

]
have to be examined.

Variance-, covariance-estimation and propagation

With the PIC estimate the uncertainty lies within the determination of the right hand side

b(t) = E [B(t)] by the Monte Carlo estimator b̂(t). This uncertainty also propagates, thus,

making the solution vector a(t) = Kb(t) a multivariate random deviate. Since the single

entries bi(t) stem from test functions with overlapping support, the Bi(t) are not indepen-

dent random variables and therefore, besides the plain variance V [Bi(t)] knowledge of the

covariance COV[Bi(t), Bj(t)] is essential.

We start with the variance σbn of the nth entry in the coefficient vector estimator b̂(t), which

can be estimated as

σbn := V
[
b̂n(t)

]
=

V [Bn(t)]

Np
=

V [ψn (X(t))W (t)]

Np

≈ 1

Np

1

Np − 1

Np∑
k=1

ψn(xtk)w
t
k −

1

Np

Np∑
k=1

ψn(xtk)w
t
k

2

=
1

Np

1

Np − 1

Np∑
k=1

(
ψn(xtk)w

t
k − b̂n(t)

)2

︸ ︷︷ ︸
:=σ̂bn

=
σ̂bn
Np

. (2.81)

Here the estimator σ̂bn is the unbiased sample variance and thus and unbiased estimator for

V [Bn(t)]. Its uncertainty can be checked with a re-sampling method such as the jackknife [57].

In complete analogy we estimate the covariance matrix σb of B

(Σb)i,j(t) = COV[Bi(t), Bj(t)] = E
[
(Bi(t)− E[Bi(t)]) (Bj(t)− E[Bj(t)])

†
]

= E
[
Bi(t)Bj(t)

†
]
− E[Bj(t)]E[Bj(t)]

†

= E
[
Bi(t)Bj(t)

†
]
− bi(t)bj(t)†

(2.82)
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with the unbiased covariance estimator, also known as the unbiased sample covariance

(Σ̂b)i,j(t) =
1

Np − 1

Np∑
k=1

(
ψi (xk(t))w

t
k − b̂i(t)

)(
ψj (xk(t))w

t
k − b̂j(t)

)†
, ∀i, j = 1, . . . , Nf .

(2.83)

The † denotes the Hermite adjoint, which is for a matrix the transpose and complex conjugate.

Compared to the estimate of the mean in eqn. (2.52), estimating the full covariance matrix

(2.83) can be rather expensive because it is always a dense matrix. Thus for an orthogonal

basis ψ it is then more efficient to store the sparse matrix (E [Bi(t)Bj(t)])i,j=1,...,Nf
and the

right hand side b(t).

We a present rather crude method to gain estimates for the covariance matrix and drop the

time dependence for sake of notation. If the marginal probability density of X denoted by

pX(x) =
∫
R g(x, v) dv is given, and the the sampling density g coincides with f up to a

constant g ·m = f then Σb is known. The constant m normalizing the density f is

m :=

∫∫
f(x, v) dxdv =

∫
ρ(x) dx. (2.84)

Then the entries of Σb reduce to

(Σb)i,j = COV[Bi, Bj ] = COV[Wψi(X),Wψj(X)] = COV[mψi(X),mψj(X)]

= E
[
mψi(X)mψj(X)†

]
− E [mψi(X)]− E [mψi(X)]

= m2E
[
ψi(X)ψj(X)†

]
− bib

†
j .

(2.85)

The estimator b̂ provides an estimate for b but for the second moment there is nothing so far.

Using the probability density pX yields another expression for the second moment

E
[
ψi(X)ψj(X)†

]
=

∫
Ωx

ψi(x)ψj(x)pX(x) dx. (2.86)

Here of course pX is not given but it can be approximated using the discretized charge density

ρh provided b that is estimated anyhow in the simulation.

p(x) =
ρ(x)

m
≈ ρh(x)

m
=

1

m
(Mb)†ψ(x)

≈ ρ̂h(x)

m
=

1

m
(Mb̂)† · ψ(x)

(2.87)

The finite element approximation of the second moment reads then

E
[
ψi(X)ψj(X)†

]
≈
∫

Ωx

ψi(x)ψj(x)
1

m
(Mb)† · ψ(x) dx =

Nf∑
k=1

1

m

∫
Ωx

ψi(x)ψj(x)ψk(x) dx (Mb)k.

(2.88)

The approximation of the second moment requires only an estimate of b and the integrals∫
Ωx
ψi(x)ψj(x)ψk(x) dx which only involves the basis functions. This means that one obtains

by exploiting the Galerkin Ansatz the covariance matrix in eqn. (2.85) directly as a function

of the estimator b̂ without any additional operation on the samples. Dropping the component

wise notation yields the following notation

Σb = COV [mψ(X)] = m2COV [ψ(X)] = m2E
[
ψ(X)ψ(X)†

]
− E [mψ(X)]E [mψ(X)]†︸ ︷︷ ︸

=bb†

(2.89)
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Chapter 2. Stochastic aspects of Particle-In-Cell

Inserting the finite element approximation for ρX yields the corresponding matrix for the

second moment

E
[
ψ(X)ψ(X)t

]
=

∫
Ωx

ψ(x)ψ(x)†p(x) dx

≈
∫

Ωx

ψ(x)ψ(x)†
1

m
ρh(x) dx =

1

m

∫
Ωx

ψ(x)ψ(x)†(Mb)†ψ(x) dx. (2.90)

This can by simplified by defining a matrix Q as

Qi,j :=

∫
Ωx

ψ2
i (x)ψj(x) dx, i, j = 1, . . . , Nf . (2.91)

For orthogonal basis functions the matrix Q has the same sparsity pattern as the mass matrix

M and is therefore cheap to obtain. If there is not enough memory available to store Q this

tensor also can be calculated by a finite element assembly for every b. The second moment

reads then

E
[
ψ(X)ψ(X)t

]
≈ 1

m

(
(QMb) + (QMb)†

)
, (2.92)

which inserted into eqn. (2.89) yields

Σb = COV [mψ(X)] ≈ m
(

(QMb) + (QMb)†
)
− bb†. (2.93)

For a special case of a uniform charge density and a uniform sampling the covariance matrix

can be directly obtained from the mass matrix M. Denote the volume of the domain Ωx by

|Ωx| =
∫

Ωx
dx. The covariance under uniform sampling is then given in eqn. (2.97).

|Ωx| :=
∫

Ωx

dx (2.94)

c =

∫
Ωx

ψ(x) dx (2.95)

M =

∫
Ωx

ψ(x)ψ(x)t dx (2.96)

COV [ψ(X)] =
1

|Ωx|
M − 1

|Ωx|2
bbt (2.97)

Whether reconstructing the charge density (M) or solving the Poisson equation (K), both

operations on b(t) are linear. Let Y = (Y1, . . . YN )t be a multivariate random deviate with

covariance matrix ΣY = COV [Y ] and let A ∈ RN×N denote a linear operator in form of

a matrix. By linear covariance propagation [58][p. 16] ΣY can be propagated through the

linear operation by

COV [AY ] = ACOV [Y ]A† = AΣYA
† (2.98)

Note that nonlinear covariance propagation through a nonlinear function ϕ with Jacobian Jϕ
can be approximated by use of the Taylor expansion as

COV [ϕ(Y )] ≈ JϕCOV [Y ] J†ϕ. (2.99)

By linear covariance propagation, the covariance matrix of the solution vector a(t) = Kb(t)
is given as

Σa(t) = KΣb(t)K† ⇔ Σa(t) = K
(
KΣ†b(t)

)†
. (2.100)
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2.1. Vlasov–Poisson

Note that the variance of the standard Monte Carlo estimator decreases with Np such that

we denote

Σb̂ =
1

Np
Σb and Σâ =

1

Np
Σa. (2.101)

This allows, with more linear algebra from [58], to calculate the variance of the field estimator

for x ∈ Ω.

V[Φ̂h(x)] = V
[
â(t)tψ(x)

]
= ψ(x)†Σâψ(x) = ψ(x)ψ(x)† ◦ Σâ (2.102)

Here A ◦ B =
∑

i,j Ai,jBi,j denotes the Hadamard product. The same is possible for the

vector valued electric field

V[Êh(x)] = V[−∇Φ̂h(x)] = V
[
â(t)t∇ψ(x)

]
= ∇ψ(x)†Σâ∇ψ(x) (2.103)

and the charge density estimator

V[ρ̂h(x)] = V
[
(Mb̂(t)) · ψ(x)

]
= ψ(x)†MΣb̂(t)M

†ψ(x). (2.104)

For estimation of these quantities during the simulation we just plug in the covariance esti-

mates. We go one step further and expand the calculations from the local error at x to the

more global L2 norm.

Mean integrated squared error (MISE)

The mean integrated squared error (MISE) [51][p. 35] of the density estimator ρ̂ is given as

the expectation of the squared L2 error, also referred to as the integrated squared error ISE.

The MISE is, by Fubinis theorem, equivalent to the L2 error of the expectation (IMSE). Here

we can split up the MISE into two parts.

MISE(ρ̂) :=E
[∫

(ρ̂(x, t)− ρ(x, t))2 dx

]
=

∫
V [ρ̂(x, t)] dx +

∫
(ρ(x, t)− E [ρ̂h(x, t)])2 dx

= IVAR [ρ̂(x, t)]︸ ︷︷ ︸
integrated variance

+

∫
(ρ(x, t)− ρh(x, t))2 dx︸ ︷︷ ︸

integrated bias2

(2.105)

As the variance V [ρ̂(x, t)] is known from (2.104) we can calculate the integrated variance ac-

cordingly. The definition can be applied on the potential and its gradient using the definition

in (2.105).

MISE
[
Φ̂
]

=

∫
V
[
Φ̂(x, t)

]
dx +

∫
(Φ(x, t)− Φh(x, t))2 dx (2.106)

MISE
[
Ê
]

= MISE(∇Φ̂)

=

∫
V
[
∇Φ̂(x, t)

]
dx +

∫
‖∇Φ(x, t)−∇Φh(x, t)‖2 dx

(2.107)

Here as an extension to Parzen windows [51][p. 40], the main interest lies not in estimating

the charge density ρ but in obtaining the electric field after solving the Poisson equation.

For the sake of notation set M†Σb(t)M = Σ = (σi,j)i,j=1,...,Nh and recall the sparse mass
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Chapter 2. Stochastic aspects of Particle-In-Cell

matrix Mi,j =
∫

Ω ψi(x)ψj(x)dx, then the integrated variance of the charge density is given as

IVAR[ρ̂h(x)] =

∫
Ωx

V [ρ̂h(x)] dx =

∫
Ωx

ψ(x)†Σψ(x) dx

=

∫
Ωx

Nh∑
i,j=1

ψj(x)†σi,jψi(x) dx =

∫
Ωx

Nh∑
i,j=1

ψj(x)†σi,jψi(x) dx

=

Nh∑
i,j=1

σi,j

∫
Ωx

ψi(x)ψj(x)† dx =

Nh∑
i,j=1

σi,j Mi,j = Σ ◦M. (2.108)

Here A ◦ B is called the Hadamard product of two matrices. Applying the same method as

in (2.108) yields the integrated variance of the potential estimator

IVAR[Φ̂h(x)] = Σa(t) ◦Mi,j . (2.109)

Using Ki,j =
∫

Ω∇ψi(x)∇ψj(x)†dx and setting Σ = Σa(t), the integrated variance of the

electric field reads

IVAR[∇Φ̂h(x)] =

Nh∑
i,j=1

σi,j

∫
Ω
∇ψi(x)∇ψj(x)† dx =

Nh∑
i,j=1

σi,j Ki,j = Σa(t) ◦Ki,j . (2.110)

In a last step we can extend this to the variance of the electric field energy (2.3). With

a(t) := Kb(t) and the corresponding covariance matrix Σa(t).

ĤE(t) =

∫
‖∇Φ̂(x, t)‖2 dx =

∫
‖a(t)t∇ψ(x)‖2 dx = â(t)†Kâ(t) (2.111)

The electrostatic energy is a quadratic form and its expected value [59][pp. 51] reads

E
[
ĤE(t)

]
= E [â(t)]†KE [â(t)]† = a(t)†Ka(t) + tr

(
KΣa(t)

)
(2.112)

and the corresponding variance [59][pp. 75] is

V
[
b†Kb

]
= 2tr

(
KΣa(t)KΣa(t)

)
+ 4E [â(t)]†KΣa(t)KE [â(t)] . (2.113)

The variance of the electrostatic field energy (2.113) can be an additional useful diagnostic.

2.1.7. Mean field theory and the Vlasov–McKean equation

So far we have learned that each individual particle follows a stochastic process which needs

an electric field. Yet now this electric field suffers from some error because it is obtained

by taking a sample mean. So it is an open question whether this system of particles will

converge to the right electric field. A stochastic answer can be found by considering this

propagation of chaos in [60]. Our discretized Vlasov–Poisson system is then merely a special

case of a Vlasov–McKean equation. We need some additional form of diffusion, a Brownian

motion on the particle trajectories, yet this can be arbitrarily small. The remaining work is

the translation of the notations from the laboratory problem in [60] and the Vlasov McKean

equation in [17]. A theoretical overview on Vlasov–McKean can be found in [61] along with

an detailed explanation concerning the propagation of chaos. This property just states, that

for Np → ∞ the particles become less and less correlated which is the ultimate justification

for all Monte Carlo discretizations of Vlasov equations used in this thesis. In this thesis we

are interested in the fluctuations, the small discrepancy to the true solution for a finite but

34



2.1. Vlasov–Poisson

large Np. From Section 5. Convergence of the fluctuations for the McKean-Vlasov model

in [61] we learn that these fluctuations, live in an exotic Sobolev space, have the martingale

property and converge to an Ornstein–Uhlenbeck process (diffusion) and can be exponentially

bounded by the overall simulation time. This means the simulation gets worse over time and

we can only assume for the large particle limit diffusion like error propagation. Because all

this work is done in the large particle limit it is safe to say that a badly resolved simulation

does not simply correspond to a model with large diffusion.

The electric field obtained with the finite elements and the mean over all particles can be

written as

E(x, t) ≈ Ê(x, t,X1(t), . . . , Xn(t)) =

K 1

Np

Np∑
n=1

ψ (Xn(t))

t ψ(x), x ∈ [0, L]. (2.114)

The Particle-In-Fourier method provides us with a much more accessible formula because the

Poisson equation an be solved directly in Fourier space. The electric field is then directly

obtained by the convolution of Fourier modes with the density f . This also works for the

finite elements, or any other orthogonal series resulting in a messy notation. Note that we

remove the zeroth Fourier mode k = 0 because of the constant density background. We leave

the series untruncated, but it can be truncated at any time without loss of generality.

E(x, t) =
∑
k 6=0

eikx 1

ik

1

2π

∫ ∞
−∞

∫ 2π

0
eikyf(y, v, t) dxdv

=
∑
k 6=0

1

ik

1

2π

∫ ∞
−∞

∫ 2π

0
eik(x−y)f(y, v, t) dxdv

=
∑
k 6=0

[(
(x, v) 7→ eikx

ik2π

)
∗ f(·, ·, t)

]
(x)

(2.115)

We continue discretizing eqn. (2.115) with the markers Xn(t) yielding the interaction term

Ê in eqn. (2.116).

Ê(x, t,X1, . . . , Xn) =
1

Np

Np∑
n=1

∑
k 6=0

eikXn(t)

ik2π
(2.116)

Note that Ê(x, t,X1, . . . , XNp) is bounded and Lipschitz continous thus fulfilling the require-

ments for propagation of chaos in [60][p.172], which can actually be relaxed. We add some

small diffusion σx, σv ≥ 0 onto the trajectories by defining an independent Brownian motion

Bm,x
t , Bm,v

t for the velocity and spatial component of every particle. For physical collisions

of particles the diffusion only acts in velocity space, yielding the special case σx = 0, which

will not be treated separately here.

dXm(t) = V m(t) + σxB
m,x
t

dV m(t) = Ê(Xm(t), t,X1, . . . , XNp) + σvB
m,v
t , m = 1, . . . , Np

(2.117)

As the number of markers increases Np → ∞ the trajectories in eqn. (2.117) converge

to (2.118) according to eqn. (2.119).

dX̄m(t) = V̄ m(t) + σxB
m,x
t

dV̄ m(t) = E
[
Ê(X̄m(t), t, X̄1, X̄2, . . . )|X̄m

]
+ σvB

m,v
t , m = 1, 2, . . .

(2.118)

sup
Np

√
Np

[
sup
t≤T

∣∣(Xm(t), V m(t))− (X̄m(t), V̄ m(t))
∣∣] <∞ (2.119)
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In the next step we revert to the original stochastic process (X(t), V (t)) with distribution

f(x, v, t), also called the law of (X(t), V (t)).

dX(t) = V (t)dt+ σBx
t

dV (t) = E(X(t), t)dt+ σBv
t =

∑
k 6=0

1

ik

1

2π

∫ ∞
−∞

∫ 2π

0
eik(X(t)−y)f(y, v, t) dxdv dt+ σBv

t

(2.120)

The stochastic differential equation in eqn. (2.120) is equivalent to the Vlasov–Poisson system

with diffusion in

∂tf(x, v, t) + v∇xf(x, v, t) + E(x, t)∇vf(x, v, t) =
σ2

2
4 f(x, v, t) (2.121)

∂xE(x, t) =

∫ ∞
−∞

f(x, v, t) dv − 1. (2.122)

Note that we can also set the diffusion to zero σ = 0 in order to obtain the standard Vlasov

equation [60]. Instead of adding diffusion one can regularize the Vlasov equation such that

some moments are conserved, see [62] for a detailed treatment of the Vlasov–Maxwell system.

Here we will not go deeper into mean field theory, but note two things. There exists a

stochastic description of our particle method such that it converges to the Vlasov equation

we wanted to approximate. It is actually a strong convergence [17]. Second, if the interaction

field is modified without changing the assumptions and the mean then the method still

converges. This allows the use of variance reduction methods and even multilevel Monte

Carlo methods in the time domain [17].

2.2. Sampling and variance

Different physical scenarios can be modeled with the Vlasov–Poisson system, where most test-

cases correspond to a unique initial condition along with some parameters. We begin with

the most basic test case: Langmuir waves are linear Landau damped with small amplitude

ε = 10−2 and nonlinear with large amplitude ε = 0.5. The initial condition reads

f(t = 0, x, v) := (1 + ε cos(kx))
1√
2π

e−
v2

2 , x ∈ [0, L], (2.123)

where the length of the periodic box is given by the wave vector k as

L =
k

2π
, k = 0.5. (2.124)

The initial electric energy is

1

2

∫ L

0
(ε sin(kx))2 dx =

1

2

ε2L

2k2
=
πε2

2k3
(2.125)

and the kinetic energy is

1

2

∫
R

∫ L

0

1√
2πσ

e−
(v−µ)2

2σ2 dxdv =
1

2

(
σ2 + µ2

)
L. (2.126)

The Shannon entropy for the Maxwellian reads∫
R

1√
2πσ

e−
(v−µ)2

2σ2 ln

(
1√
2πσ

e−
(v−µ)2

2σ2

)
dv = ln

(
σ
√

2πe
)
, (2.127)
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2.2. Sampling and variance

yet the analytic determination of the entropy of f(t = 0) by including the spatial perturbance

is difficult so we fall back on numerical values.

Introducing a small portion nb of fast electrons makes the system unstable, resulting in the

bump-on-tail instability [63] with initial condition along with typical parameters given in

eqn. (2.128).

f(x, v, t = 0) := (1− ε cos(kx))
1√
2π

(
(1− nb)e−

v2

2 +
nb
σ

e−
(v−v0)2

2σ2

)
L =

2π

k
, σ = 0.5, nb = 0.1, k = 0.3, v0 = 4.5, ε = 0.03

(2.128)

2.2.1. Importance sampling

Although improvements in the convergence with respect to the number of particles Np can

be achieved by enhancing the initial sampling [64], we stay with a rather simple choice for

the sampling density g. The estimation of a moment E [Θ(X,V )W (t)] requires the weight

W (t) = f(X(t),V (t),t)
g(X(t),V (t),t) . In order to keep the variance V [Θ(X,V )W (t)] small for any Θ, the first

step is to minimizing the variance of the weights V [W (t)] = V
[
f(X(t),V (t),t)
g(X(t),V (t),t)

]
. The optimum

of course is found, when g(x, v, t = 0) is chosen as the probability closest to f(x, v, t = 0),

which we denote as importance sampling. In the optimal case, one chooses

g(x, v, t) =
f(x, v, t)∫∫

Ω f(x, v, t) dxdv
⇒ V [W (t)] = V

[
1∫∫

Ω f(x, v, t) dxdv

]
= 0. (2.129)

In the following we give examples for possible choices of g and how to sample directly from

g. To gain some flexibility in treating arbitrary initial distributions, one can of course use

an accept rejection algorithm [65][p. 11-12] for all test-cases, even in combination with low-

discrepancy sequences [66]. Because most of our examples exhibit simple structure we mostly

use inverse transform sampling.

2.2.2. Spatial disturbance

Suppose a sampling distribution g(x) = 1
L (1 + εcos(kxx)) with 2π

L n = kx and
∫ L

0 g(x) dx = 1.

To draw markers xk, k = 1, . . . , Np according to g we use inverse transform sampling. The

cumulative distribution function G : [0, L]→ [0, 1]

G(y) :=

∫ y

0
g(x) dx =

1

L

(
y +

ε

kx
cos(kxy)

)
(2.130)

with its inverse G−1(u) = y for u ∈ [0, 1]. For every u ∈ [0, 1] one can solve for x

G(x) = u⇔ x+
ε

kx
cos(kxx) = Lu. (2.131)

Often the inversion is done by one Picard (fixed point) iteration on eqn. (2.131), see [5][p. 22].

For the sake of exactness we use Newton’s method and define z := Lu − x and, therefore,

x = Lu− z such that we have to solve

F (z) =
ε

k
sin(k(Lu− z))− z = 0. (2.132)

Note that the derivative is given as d
dzF (z) = −εcos(k(Lu− z))− 1 which can be inserted in

the Newton iteration, eqn. (2.133).

zk+1 := zk −
F (zk)
d
dzF (zk)

(2.133)
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This can be done in parallel for all markers, such that the overall algorithm reads:

For k = 1, . . . , Np

1. Draw i.i.d. uk ∼ U(0, 1)

2. Find xk ∈ [0, L] such that G(xk) = uk

2.2.3. Moment matching

When sampling a density by drawing markers from a random distribution, some analytical

moments of this distribution are known. For a time dependent particle simulations ana-

lytically known moments are the conserved ones. This knowledge can be used as a direct

variance reduction technique, called moment matching [65][p. 15]. Very small modification

to the randomly drawn samples can make the discrete Monte Carlo estimators of a moment

to estimate a desired value exactly. Suppose v1, . . . , vNp ∼ v ∼ N (µ1, σ
2) are i.i.d.

µ1 := E[v], µ̂1 =
1

Np

Np∑
k=1

vk, µ2 := σ2 − µ2
1 = E[v2], µ̂2 =

1

Np

Np∑
k=1

v2
k (2.134)

Search for a preferably simple transformation T : R→ R, v∗ = T (v) such that

µ̂∗1 :=
1

Np

Np∑
k=1

T (vk) = µ1 and µ̂∗2 :=
1

Np

Np∑
k=1

T (vk)
2 = µ2. (2.135)

A linear Ansatz for T yields for all k = 1, . . . , Np

v∗k = T (vk) = (vk − µ1)c+m1, c :=

√
(m2 −m2

1)

(µ2 − µ2
1)
. (2.136)

This can be done at initialization [67], since energy and momentum are known exactly. It

can be done especially for any distribution with known first and second moment. Under a

(Fokker–Planck) collision scheme the velocity of all particles has been stochastically modified,

which means it was re-sampled. The momentum µ1 = 0 is then known but for the kinetic

energy only an estimate before the collision step is available. Now a valid choice is to set

m1 = µ1 = 0 and for the second moment the resulting discrete term m2 = µ2. This corrects

the impulse, while not changing the kinetic energy. Later we will have a look at this particular

example and compare it to variance reduction techniques.

If the phase space position of the markers was not modified but only the weights wk it is

then straight forward to just touch the weights. In general the weights can always be used

to match the density.

µ̂n =
1

Np

Np∑
k=1

wk(vk)
n, v̂n =

1

Np

Np∑
k=1

(vk)
n, λ̂n =

1

Np

Np∑
k=1

(wk)
n

A linear Ansatz for matching µ1 and µ2 by only manipulation of the weights yields

w∗k = T (wk) :=
mu1v̂2 − µ2v̂1

µ̂1v̂2 − µ̂2v̂2
wk −

µ1µ̂2 − µ2µ̂1

µ̂1v̂2 − µ̂2v̂1
.

The velocity moments can be set/kept, but mass conservation λ̂1 = λ1 = 0 is lost. The most

straightforward approach is to match the δ-weights to the corresponding mass [68]. This is

just a special case of general re-weighting techniques, where a chapter can be found here [69].
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(a) Integrated variance of the

electric field.

(b) Time averaged integrated

variance of the electric field.

(c) Time averaged integrated

variance of the charge density

ρ.

Figure 2.2.: Integrated variance for nonlinear Landau damping simulations using PIC with

cubic B-splines (dfem = 3) and varying number of cells Nfem.

(a) Integrated Variance of the

electric field.

(b) Time averaged integrated

variance of the electric field.

(c) Time averaged integrated

variance of the charge density

ρ.

Figure 2.3.: Integrated variance for nonlinear Landau damping simulations using PIC with

Nfem = 32 cells and B-splines of varying order dfem.

2.2.4. Particles per cell

On of the first questions when setting up a simulation is: How many particles are needed?

Increasing the cell size - number of finite elements Nfem - undoubtedly decreases the bias on

the electric field, because of the better discretization. The number of particles per cell should

be at least constant, otherwise the variance on the electric field estimator will increase again.

Since we have the integrated variance of the electric field available as a diagnostic we can

now demonstrate the behavior depending on the number of particles per cell.

We run nonlinear Landau damping Nfem = 8, . . . , 128, , Np = 5 · 105, ∆t = 0.05 and rk3s.

Fig. 2.2a shows a slight increase of the variance with the transition to the nonlinear phase,

which can be explained by the additional modes being present. As expected the variance

increases with decreasing cell size h = L
Nfem

. Time averaging the integrated variances shows

that the variance of the charge density increases linear with the number of cells, see fig. 2.2c.

This implies to keep the number of particles per cell at least constant. But IVAR[Ê] in

fig. 2.2b does not increase the same way because the Laplace operator damps the higher

modes.

Similar results in the same setting are obtained by varying the spline degree dfem, yet here

the increase in variance is very small, see fig. 2.3a, 2.3c and 2.3b.

Yet the this is only half of the picture because we do not have an a-posteriori estimate of the

discretization error, who’s dependence on the cell size is dominated by the interpolation error.
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(a) Quantiles for the right hand

side Monte Carlo estimator of

the first B-spline ψ1(X).

(b) Quantiles for the Monte

Carlo estimator of the first B-

spline ψ1(X) coefficient of Φh.

(c) Quantiles for the electric

field estimator at the arbitrary

position x0 = L
3 .

Figure 2.4.: After the variance σ2 and standard deviation σ of a quantity, here coefficients

of various fields, are made it is misleading to jump directly to the standard error bars by

adding ±σ. This requires the quantity to be normally distributed, which can be tested by

comparing the quantiles to the standard normal distribution. The quantiles of the Monte

Carlo estimators used in a Landau damping PIC simulations are heavily tailed, such that the

error is not normally distributed.

We know the discretization error to be O
((

1
Nfem

)dfem+1
)

so in order to balance variance and

bias, it seems reasonable to first go high order and then increasing the cell size, since the

variance does only mildly depend on the order. This result suggests that spectral methods

with few degrees of freedom but high order might be better suited. An example is orthogonal

series density estimation (OSDE), which will be discussed later.

2.2.5. Variance for error estimation

Although, by the strong law of large numbers the standard Monte Carlo estimator approaches

asymptotic normality, we do not necessarily observe normality in our estimators. Therefore,

it is not suitable to use the standard normal quantiles to obtain confidence intervals using the

estimated variance. We plot the quantiles of various estimators versus the respective normal

quantiles at t = 10 for nonlinear Landau damping Nfem = 32, Np = 1 · 105, ∆t = 0.01 and

rk3s.

Let xk, k = 1, . . . , Np be the samples of the distribution X as introduced before. Since we

use importance sampling with constant weights, we drop them from the notation. Then we

can measure the quantiles for the first Ansatz function of the right hand side b1(X) = ψ1(X)

by the samples ψ1(xk), which diverges far from normality c.f. fig. 2.4a. Since the Poisson

equation for the random variable a(X) := Kψ(X) is linear, we can solve it for every sample

particle a(xk) := Kψ(xk) and plot the estimated quantiles of the first entry a1 of the solution

vector a for the electrostatic Potential Φh. It results in a heavily tailed distribution, see fig.

2.4b. In the last step we pick an arbitrary position x0 = L
3 and evaluate the electric field

for every solution a(xk) at x0, which allows us to estimate the quantiles of the electric field

estimator Ê(x0, X), which directly appears in the particle push. It would be better to have

now some confidence intervals, since the particle movement depends on the accuracy of the

electric field, yet the distribution is again heavily tailed, see fig. 2.4c. The use of confidence

intervals based on a Gaussian distribution for code verification like in [70] is then highly

questionable.
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2.3. Variance reduction

Estimating the fields with a Monte Carlo estimator introduces noise proportional to the

variance, that can be reduced by variance reduction methods. The control variate scheme is

a common variance reduction technique, which was introduced to PIC codes by [13] as the

δf method and has been refined since then [15, 71]. We start with the standard example.

The goal is to estimate the integral over a step function

f1 : [0, 1]→ [0, 1], x 7→
⌊ x
m

⌋
, m = 8 (2.137)

by Monte Carlo integration. We draw uniform samples xk, k = 1, . . . , N of the random

deviate X ∼ U(0, 1) and estimate the integral

θ =

∫ 1

0
f1(x) dx = E [f1(X)] ≈ 1

Np

Np∑
k=1

f1(xk) = θ̂. (2.138)

This situation is depicted in fig. 2.5a. We now use the additional knowledge about the integral

of the linear slope h1 : [0, 1]→ [0, 1], x 7→ x− 1
2m , which is

∫ 1
0 h1(x) dx = 1

2 . By subtracting

h from the estimator (2.138) and adding again the known value of the integrands we do not

change the expectation (2.139).

E[f1(X)] = E[f1(X)− h1(X) + h1(x)]

= E[f1(X)− h1(X)]︸ ︷︷ ︸
≈ 1
Np

∑Np
k=1(f1(xk)−h1(xk))

+

∫ 1

0
h1(x) dx︸ ︷︷ ︸

= 1
2

(2.139)

Now the samples xk merely sample the difference δf := f − h, see fig. 2.5, yielding a new

estimator

θ̂∗ :=
1

Np

Np∑
k=1

(f1(xk)− h1(xk)) (2.140)

where in the expectation nothing changed.

E
[
θ̂∗
]

= E
[
θ̂
]

= θ (2.141)

One can show that the variance of the δf estimator θ̂∗ is much smaller than the variance of

θ̂.

V
[
θ̂∗
]
V
[
θ̂
]

(2.142)

E [f1(X)] =

∫ 1

0
f1(x) dx =

m− 1

2m
, (2.143)

V [f1(X)] =

∫ 1

0
(f1(X)− E[ f1(X) ])2 dx (2.144)

V [f1(X)− h1(X)] =

∫ 1

0
(f1(X)− h1(X)− E[ f1(X)− h1(X) ])2 dx (2.145)

In the following we explore decomposition into a rather simple background h1, a difference

δf1 = f1 − h1 and its application to the Vlasov–Poisson system.
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Chapter 2. Stochastic aspects of Particle-In-Cell

(a) integrating the step function f1 with uni-

formly sampled points

(b) integrating the difference between a step

function f1 and a control variate h1 with uni-

formly sampled points yields a lower variance

Figure 2.5.: Estimating the integral over a step function f1 by Monte Carlo integration.

2.3.1. δf Sampling the difference

We are interested in the first Fourier component of a small one dimensional disturbance

f2(x) := 1 + ε cos(2πx). The first Fourier mode is F{f2}(1) =
∫ 1

0 ei2πxf2(x) dx = ε. With

a uniformly distributed random variable X ∼ U(0, 1) we introduce the random variable

θ := ei2πXf2(X), which yields E [θ] = F{f2}(1) = ε
2 and for the second moment

E
[
θθt
]

=

∫ 1

0
ei2πx−i2πxf2(x)2 dx =

∫ 1

0
f2(x)2 = 1 +

ε2

2
. (2.146)

The variance is V [θ] = E
[
θθt
]
− E [θ]E [θ]t = 1 + ε2

2 −
ε2

4 = 1 + ε2

4 . Let θ̂ be the standard

Monte Carlo estimator for θ with Np samples, which as an estimator for F{f2}(1) is unbiased.

The mean-squared-error, as the expectation of the squared `2 error, is

MSE[θ̂] := V
[
θ̂
]

+
(
E[θ̂]−F{f2}(1)

)2
= V

[
θ̂
]

+
( ε

2
− ε

2

)2
=

1

Np
V [θ] =

1

Np

(
1 +

ε2

4

)
.

(2.147)

For a small disturbance a relative error has to be examined, which reads here:

RMSE[θ̂]

F{f2}(1)
=

√
MSE[θ̂]

F{f2}(1)
=

√
1
Np

(
1 + ε2

4

)
ε

=

√
1 + ε2

4

ε
√
Np

≥
1
ε√
Np

. (2.148)

In order to keep the relative error at the same level, the number of markers Np has to

grow quadratically with decreasing amplitude of the perturbation Np ∼ 1
ε2

. This behavior

cannot be changed by different sampling strategies, e.g. importance sampling. In grid based

integration this effect does not appear, which is a major disadvantage for particle methods.

Nevertheless, this defect can be overcome by the help of a control variate. We seek to remove

the leading 1 in f2 which leads to the 1
ε term in eqn. (2.148), which causes the relative error

to grow with decreasing amplitude. Subtracting the zeroth Fourier mode F{f2}(0) = 1 from

f2 should solve the problem. For this we define a control variate h2(x) = 1 and δf2 = f2−h2

42



2.3. Variance reduction

(a) (b)

Figure 2.6.: Estimating a Fourier component of spatial disturbance.

with the corresponding random variable θ∗ = ei2πXδf2(X). Since F{h2}(1) = 0 is known

analytically

E[θ] = F{f2}(1) = F{f2 − h2}(1) + F{h2}(1)︸ ︷︷ ︸
=0

= E[θ∗], (2.149)

we obtain another estimator for the first Fourier mode. Calculating its variance,

V[θ∗] =

∫ 1

0
ei2πx−i2πx (f2(x)− h2(x))2 dx−

(∫ 1

0
ei2πx (f2(x)− h2(x)) dx

)2

=
ε2

2
−ε

2

4
=
ε2

4
,

(2.150)

and with the standard Monte Carlo estimator for E[θ∗] the relative error

RMSE[θ̂∗]

F{f2}(1)
=

√
MSE[θ̂∗]

F{f2}(1)
=

√
1
Np

(
ε2

4

)
ε

=
1

2
√
Np

(2.151)

becomes independent of the amplitude ε. Fig. 2.5 shows Np = 100 randomly distributed

markers. We estimate integrals θ with Np = 100 randomly distributed markers, uniformly in

x and normally in v, and the standard Monte Carlo estimator θ̂. Introduction of a control

variate h allows sampling the difference δf = f − h while not changing the (phase space)

position of the markers, hence it is often referred as the δf -method. Figures 2.5, 2.6 and 2.7

depict the marker positions and their weights as lines, without and with control variate. In

a simulation the markers are characteristics, so we enhance the estimates on the fields, while

not changing the past characteristics. We want to extend this technique to a one dimensional

plasma. Consider the density f3(x, v) = (1 + ε cos(2πx)) 1√
2π

e−
v2

2 consisting of a small spatial

perturbation of a Maxwellian background. As we have learned from the previous example

we should remove the zeroth spatial Fourier mode, which is
∫ 1

0 f3(x, v) dx = 1 · 1√
2π

e−
v2

2 the

Maxwellian background. Therefore, taking the control variate h3(x, v) = 1 · 1√
2π

e−
v2

2 yields

the same variance reduction as before. As simulation time passes by the velocity distribution

will deviate from the standard Maxwellian. This is modeled by a perturbed Maxwellian

velocity distribution f4(x, v) := (1 + εx cos(2πx)) (1 + εv cos(kvv)) e
k2
v
2√
2π

e−
v2

2 , kv = 6π. Since
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Chapter 2. Stochastic aspects of Particle-In-Cell

(a) f3 (b)

Figure 2.7.: Estimating a Fourier component of spatial disturbance under a Maxwellian ve-

locity background.

the density still factorizes the standard Maxwellian is a good control variate.∫
f4(x, v)− h3(x, v) dv = εx cos(2πx) (2.152)

When solving a kinetic equation, a certain moment θ(t) =
∫∫

ψ(x, v)f(x, v, t) dxdv shall be

estimated by the use of a control variate. Instead of plugging in the particle discretization fp,

we define a new particle discretization f∗p . Here the control variate (background) is subtracted

on particle level and then added analytically yielding an unbiased estimate.

f∗p (x, v, t) := fp(x, v, t)− α
1

Np

Np∑
k=1

h(xk(t), vk(t))

g(t, xk(t), vk(t))︸ ︷︷ ︸
:=γk(t)

δ (x− xk(t)) δ (v − vk(t)) + αh(x, v)

(2.153)

In equation (2.153) α denotes the optimization coefficient for the control variate and is set

to α = 1 if not specified otherwise. Since g is constant along the characteristics the control

variate weights reduce to

γk(t) :=
h(xk(t), vk(t), t)

g(xk(t), vk(t), t)
=

h (xk(t), vk(t), t)

g (xk(0), vk(0), t = 0)
=
h(xk(t), vk(t), t)

gk0
. (2.154)

To simplify eqn. (2.153) we define the δf weights as

δwk :=
f(xk(t), vk(t), t)− αh(xk(t), vk(t), t)

g(xk(t), vk(t), t)

=wk − α
h(xk(t), vk(t), t)

g(xk(t), vk(t), t)

=wk − γk(t).

(2.155)

This allows us to rewrite the control variate particle discretization f∗p as

f∗p (x, v, t) =
1

Np

Np∑
k=1

(wk − αγk(t))︸ ︷︷ ︸
δwk

δ (x− xk(t)) δ (v − vk(t)) + αh(x, v). (2.156)
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Define the control variate estimator θ̂∗ of θ.

θ̂∗(t) :=

∫∫
ψ(x, v)f∗p (x, v, t) dxdv

=
1

Np

Np∑
k=1

(wk − αγk(t))ψ(xk(t), vk(t)) + α

∫∫
ψ(x, v)h(x, v) dxdv

=θ̂ − α 1

Np

Np∑
k=1

γk(t)ψ(xk(t), vk(t))︸ ︷︷ ︸
:=η̂

+ α

∫∫
ψ(x, v)h(x, v) dxdv︸ ︷︷ ︸

:=η

(2.157)

Here, η̂ is as a standard Monte Carlo estimator unbiased since E [η̂] = η. Therefore also θ̂∗ is

unbiased.

E
[
θ̂∗
]

=E
[
θ̂ − αη̂

]
+ αη

=E
[
θ̂
]
− αE [η̂] + αη = E

[
θ̂
]
− η + αη

=E
[
θ̂
]

= θ

(2.158)

This means we did not change the expectation, in particular not the phase space positions

of the markers.

V
[
θ̂∗
]

= V

θ̂ − αη̂ + αη︸︷︷︸
constant

 = V
[
θ̂ − αη̂

]
= V

[
θ̂
]
− 2αCOV

[
θ̂, η̂
]

+ α2V [η̂] (2.159)

In this case we want the variance of the new estimator θ̂∗ to be smaller than the original one.

With the free parameter α we set up a simple optimization problem to minimize the variance

min
α∈R

V
[
θ̂
]
− 2αCOV

[
θ̂, η̂
]

+ α2V [η̂] . (2.160)

The solution to this quadratic problem is known to be

α :=
COV

[
θ̂, η̂
]

V [η̂]
. (2.161)

In the case were the control variate h has a strong correlation to the density f , we obtain good

variance reduction and α will tend to α = 1. Since estimating the covariance, and variances

in (2.161) yields additional work and uncertainties, we mostly directly choose α = 1. Suppose

α is known exactly then the variance of the new estimator θ̂∗ can be calculated and therefore,

we also know the amount of variance reduction. This directly corresponds to required number

of particles.

V
[
θ̂∗
]

= V
[
θ̂
]
−

COV
[
θ̂, η̂
]2

V [η̂]
= V

[
θ̂
]1−

COV
[
θ̂, η̂
]2

V
[
θ̂
]
V [η̂]

 (2.162)

Since α stems from a quadratic minimization problem (variance reduction), it is rather for-

giving for small errors [72]. Nevertheless, we can estimate α for every moment θ depending

on which moment ψ shall be calculated.

α̂ =

1
Np−1

∑Np
k=1

(
wkψ (xk(t), vk(t))− θ̂

)
(γk(t)ψ (xk(t), vk(t))− η̂)

1
Np−1

∑Np
k=1 (γk(t)ψ (xk(t), vk(t))− η̂)2

(2.163)
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But using the estimator (2.163) cannot always guarantee variance reduction, because it is an

estimator. Hence, below a certain threshold it is advised to set α = 0. When using quasi

Monte Carlo sampling [72] covariances are not straightforward to estimate, which limits the

usage of (2.163).

2.3.2. Stochastic optimization

It has been tried to improve upon the standard Maxwellian control variate by defining a

local Maxwellian [71] or the use of separate control variate for every estimator [68]. When

using a control variate, the optimization coefficient is calculated in order to have an optimal

variance reduction. Since the optimization coefficient is mostly unknown, we have to rely on

an estimate.

Let Z = (X,V ) and ψ(Z) be a moment we want to calculate, for example ψ(X,V ) = X3.

In the standard setting we have already a candidate h for a control variate and we seek a

variance reduction by calculating the right correlation coefficient. We are interested in the

integral

E
[(

f(Z)

g(Z)

)
ψ(Z)

]
= E

[(
f(Z)− αh(Z)

g(Z)

)
ψ(Z)

]
=

∫∫
f(z)ψ(z)dz. (2.164)

This leaves us with the following optimization problem

min
α∈R

V
[(

f(Z)− αh(Z)

g(Z)

)
ψ(Z)

]
(2.165)

Since this is a quadratic problem, we can solve this analytically by calculating the roots of

the gradient for α ∈ R.

F (α) := V
[(

f(Z)− αh(Z)

g(Z)

)
ψ(Z)

]
= COV

[(
f(Z)− αh(Z)

g(Z)

)
ψ(Z),

(
f(Z)− αh(Z)

g(Z)

)
ψ(Z)

]
(2.166)

The variance can be rewritten as a covariance (bilinear form), which simplifies further calcu-

lations and the final implementation.

F (α) = V
[
f(Z)

g(z)
ψ(Z)

]
+ 2COV

[
f(Z)

g(Z)
ψ(Z),−αh(Z)

g(Z)
ψ(Z)

]
+ V

[
−αh(Z)

g(z)
ψ(Z)

]
= V

[
f(Z)

g(z)
ψ(Z)

]
− 2αCOV

[
f(Z)

g(Z)
ψ(Z),

h(Z)

g(Z)
ψ(Z)

]
+ α2V

[
h(Z)

g(z)
ψ(Z)

]
(2.167)

d

dα
F (α) = 2COV

[(
f(Z)− αh(Z)

g(Z)

)
ψ(Z),−h(Z)

g(Z)
ψ(Z)

]
= −2COV

[
f(Z)

g(Z)
ψ(Z),

h(Z)

g(Z)
ψ(Z)

]
+ 2αCOV

[
h(Z)

g(Z)
ψ(Z),

h(Z)

g(Z)
ψ(Z)

]
= −2COV

[
f(Z)

g(Z)
ψ(Z),

h(Z)

g(Z)
ψ(Z)

]
+ 2αV

[
h(Z)

g(Z)
ψ(Z)

]
(2.168)

To find the minimum of the quadratic function, we set the first derivative d
dαF (α) to zero,

which yields a solution for α.

d

dα
F (α) = 0⇔ α =

COV
[
f(Z)
g(Z)ψ(Z), h(Z)

g(Z)ψ(Z)
]

V
[
h(Z)
g(Z)ψ(Z)

] (2.169)
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To see the variance reduction, we insert α back into the functional.

F

COV
[
f(Z)
g(Z)ψ(Z), h(Z)

g(Z)ψ(Z)
]

V
[
h(Z)
g(Z)ψ(Z)

]
 = V

[
f(Z)

g(z)
ψ(Z)

]

− 2
COV

[
f(Z)
g(Z)ψ(Z), h(Z)

g(Z)ψ(Z)
]2

V
[
h(Z)
g(Z)ψ(Z)

] +
COV

[
f(Z)
g(Z)ψ(Z), h(Z)

g(Z)ψ(Z)
]2

V
[
h(Z)
g(Z)ψ(Z)

]

= V
[
f(Z)

g(z)
ψ(Z)

]
1−

COV
[
f(Z)
g(Z)ψ(Z), h(Z)

g(Z)ψ(Z)
]2

V
[
f(Z)ψ(Z)

g(z)

]
V
[
h(Z)ψ(Z)

g(Z)

]
︸ ︷︷ ︸

:=%2

 (2.170)

We see that the variance of the original estimator is reduced by a factor (1− %2), where we

call %2 the correlation coefficient.

Parameterized control variate

In general, we treat a control variate h(x, v, α), which depends on parameters α.

h(x, v, α) := α1
1

α3

√
2π

e
− (v−α2)2

α2
3 (2.171)

We want to minimize the function F over α.

F (α) := V
[(

f(Z)− h(Z,α)

g(Z)

)
ψ(Z)

]
= COV

[(
f(Z)− h(Z,α)

g(Z)

)
ψ(Z),

(
f(Z)− h(Z,α)

g(Z)

)
ψ(Z)

]
(2.172)

The gradient,

∇αF = −2COV
[(

f(Z)− h(Z,α)

g(Z)

)
ψ(Z),∇αh(Z,α)

ψ(Z)

g(Z)

]
(2.173)

and the Hessian are given

∇2
αF = +2COV

[
∇αh(Z,α)

ψ(Z)

g(Z)
,∇αh(Z,α)

ψ(Z)

g(Z)

]
− 2COV

[(
f(Z)− h(Z,α)

g(Z)

)
ψ(Z),∇2

αh(Z,α)
ψ(Z)

g(Z)

]
. (2.174)

This allows us to employ a Newton method. But since the quantities and the derivatives have

to be estimated and have a certain stochastic error, the Newton or gradient method becomes

inexact. Nevertheless, using the standard Monte Carlo estimator for F,∇αF and ∇αα2F

yields unbiased estimates. There is a broad field of research for converging algorithms using

the unbiased estimators, starting with the stochastic gradient descent and of course Newton

and Quasi-Newton methods, see [73, 74].
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Kernel density estimation

In case the velocity background
∫

Ωx
f(x, v, t) dx cannot be described by a Maxwellian, a

general approach is to use a kernel density estimate. For a smoothing kernel [51] K : R→ R,

and a smoothing window σv we define the convolution

f0(v, t) :=

∫
Ωx

f(x, τ, t)K

(
v − τ
σv

)
1

σv
dxdτ

=
1

σv
E
[
K

(
v − V (t)

σv

)
W (t)

] (2.175)

yielding an estimator

f̂0(v, t) :=
1

σv

1

Np

Np∑
k=1

K

(
v − vtk
σv

)
wtk. (2.176)

Since equation (2.176) is costly, it cannot be applied at every time step, yet the background

is not subject to much fluctuation. A suitable control variate is then h(x, v, t) := f̂0(v, t).

In practice an intermediate layer of interpolation is introduced. For a broad enough grid in

velocity space (v̄n)n=1,...,Nv the estimator is evaluated at the grid points f̂0(v̄n, t) and then

subject to cubic spline interpolation.

For six-dimensional simulations, a three-dimensional grid is still computationally feasible, as

we use one for the charge density anyhow. It should also be noted that the grid can be quite

coarse.

Gauss–Hermite interpolation

Distributions close to a Maxwellian play a dominant role in plasma physics as they form equi-

librium states of the Vlasov equation. In a collisionless plasma there are actually many others,

but this shall not concern us here. We try to enhance the standard Maxwellian control variate

by allowing additional perturbations. The Hermite polynomials Hn form an orthogonal basis

of L2(R, w), where the weight function is defined as a Gaussian w(x) = e−x
2
. This allows

for an unbounded velocity space discretization, which enables us to reconstruct the velocity

density without additional discretization error. It is also used in spectral Vlasov solvers,

where only very few polynomials are needed [75]. Here we construct an orthogonal series

estimator for the moment density f(v). For detailed derivation, description and stochastic

analysis of the method, especially concerning MSE estimates, we refer to [76] and [77]. We

recall some properties of the Hermite polynomials, see [78][p. 250]. They are obtained by the

recursion formula given in eqn. (2.177).

Hn(x) =
n∑
k=0

an,kx
k (2.177)

a0,0 = 1, a1,0 = 0, a1,1 = 2 (2.178)

an+1,0 = −n2an−1,0 (2.179)

an+1,k = 2an,k−1 − 2nan−1,k for k ≥ 0 (2.180)

The Hermite polynomials are orthogonal with respect to the Gaussian weight function w.∫ ∞
−∞

Hn(x)Hm(x)w(x)dx = 0 for all n 6= m (2.181)∫ ∞
−∞

Hn(x)2w(x)dx = 2n
√
π n! (2.182)
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The definition of the Hermite functions ϕn(x) := Hn(x)
√
w(x) then yields an orthogonal

basis of L2(R). The mass is the sum over all coefficients an, 0.∫ ∞
−∞

ϕn(x) dx =

∫ ∞
−∞

Hn(x)e−
x2

2 dx =
√

2π|an,0| (2.183)

When weighting data by the Gaussian weight function w calculations can be done directly

with the Hermite polynomials. The weight
√

(w(x)) = e−
1
2
x2

corresponds already to an

unnormalized standard Maxwellian. In order to use this orthogonal series of ϕn for a suitable

density estimate for a function f(v), we define a centralizing and normalizing coordinate

transformation.

ṽ =
(v − µv)
σv

µv =

∫ ∞
−∞

vf(v) dv and σv =

√∫ ∞
−∞

(v − µv)2 f(v) dv

(2.184)

Note the additional normalizing factor by the coordinate transformation dṽ
dv = σv ⇒ dv = dṽ

σv
.

The truncated density estimator for f then reads

f̂(v) =
N∑
n

cnHn(ṽ)w(ṽ) (2.185)

cn =

∫ ∞
−∞

Hn(ṽ)
√
w(ṽ)f(v)dv

1

σv2n
√
π n!

. (2.186)

The cn are the coefficients for the linear combination of Hermite function. The total mass is

then given by ∫
f̂(v) dv =

N∑
n=0

cn|an,0|
√

2π

σv
. (2.187)

The extension of this single dimensional estimator to a control variate h(x, v) is done as

follows, where we normalize the weights by the total mass in order to approximate the local

Maxwellian.

m = E
[
f(X,V, t)

g(X,V, t)

]
(2.188)

µv = E
[
V
f(X,V, t)

g(X,V, t)

]
1

m
(2.189)

σv = E
[
(V − µv)2 f(X,V, t)

g(X,V, t)

]
1

m
(2.190)

cn = E
[
Hn

(
V − µv
σv

)
e
− 1

2

(
V−µv
σv

)2
f(X,V, t)

g(X,V, t)

]
1

L

1

σv2n
√
π n!

(2.191)

Another option is to use very few particles and perform a linear least square interpolation

problem using the fk in order to determine the coefficients cn.

Perfect and multiple control variates

We presented several possible control variates, either for the δf approach, or directly to retain

some conservation properties in the method itself. If one can improve upon the standard

control variates and find a perfect control variate h∗ as a solution to the variance minimization

problem eqn. (2.192) then higher rate of convergence such as 1
Np

is possible, see [79] and [80].

0 = min
h∈L2

V
[
f(Z)− h(Z)

g(Z)
ψ(Z)

]
(2.192)
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We are already satisfied with something working for nonlinearly perturbed densities f . Here

the perfect h∗ is f , which we do not have, but we can try to approximate it. Any approxi-

mation can start out as a linear combination of basis functions, see eqn. (2.193). This is the

same Ansatz for multiple control variates, so we can treat this case too by considering every

basis function ϕ to be a control variate or vice versa.

h(z, α) = αtϕ(z) :=
N∑
n=1

αnϕn(z) (2.193)

The cost function for the linear combination of control variates is then given in eqn. (2.194).

J(α) = V
[
f(Z)− h(Z,α)

g(Z)
ψ(Z)

]
= V

[
f(Z)−

∑N
n=1 αnϕn(z)

g(Z)
ψ(Z)

]
(2.194)

The solution to the minimization problem minα J(α) can be directly computed and is given

in eqn. (2.195). With the discrete estimators for mean, variance and covariance eqn. (2.195)

then solves also the discrete problem, which enforces variance reduction. Yet this involves

the costly assembly and inversion of the matrix Σ = A− bbt. In the case of an ill-conditioned

covariance matrix Σ removal of the null space is a feasible solution. This just tells the user

that there are too many control variates present.

α = COV
[
ψ(Z)

g(Z)
f(Z),

ψ(Z)

g(Z)
ϕ(Z)

]{
COV

[
ψ(Z)

g(Z)
ϕ(Z),

ψ(Z)

g(Z)
ϕ(Z)t

]}−1

=

{
E

[(
ψ(Z)

g(Z)

)2

f(Z)ϕ(Z)

]
− E

[
ψ(Z)

g(Z)
f(Z)

]
E
[
ψ(Z)

g(Z)
ϕ(Z)

]}
·E

[(
ψ(Z)

g(Z)

)2

ϕ(Z)ϕ(Z)t

]
︸ ︷︷ ︸

:=A

−E
[
ψ(Z)

g(Z)
ϕ(Z)

]
︸ ︷︷ ︸

:=b

E
[
ψ(Z)

g(Z)
ϕ(Z)

]t


−1 (2.195)

Note that b can be determined analytically for every test function ψ but not A, since it

depends on the sampling distribution which for the Vlasov is unknown for later times. Because

of the conservation of phase space volume a constant sampling density will stay constant,

except that the boundary of supp(g(t)) = z|g(z, t) 6= 0 support is subject to change. Yet if

the initial domain is large enough, one may assume that nothing happens at the boundary.

So for g(z) = C the matrix A constitutes the mass matrix of standard Galerkin L2 projection

with test functions ϕ · ψ, see eqn. (2.196).

b = E
[
ψ(Z)

g(Z)
ϕ(Z)

]
=

∫
Ω
ψ(z)ϕ(z) dz (2.196)

Ai,j =

∫
Ω

ψ(z)2

g(z)
ϕi(z)ϕj(z) dz (2.197)

cj := COV
[
ψ(Z)

g(Z)
f(Z),

ψ(Z)

g(Z)
ϕj(Z)

]
for j = 1, . . . , N (2.198)

In order to point out the link between multiple control variates and the Galerkin dis-

cretization, the minimization problem in eqn. (2.192) is rewritten in variational form, see
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2.3. Variance reduction

eqn. (2.199). Since the covariance is a bilinear form, this is straightforward.

a(u, v) := COV
[
u(Z)

g(Z)
ψ(Z),

v(Z)

g(Z)
ψ(Z)

]
(2.199)

L(v) := COV
[
f(Z)

g(Z)
ψ(Z),

v(Z)

g(Z)
ψ(Z)

]
(2.200)

min
h∈L2

a(f − h, f − h) (2.201)

a(h, δh) = L(f) (2.202)

a(αiϕi, ϕj) = L(ϕj) for all i, j = 1, . . . , N (2.203)

The covariance defines a centered positive semi-definite bilinear form by subtracting the

respective mean:

a(u, v) = COV
[
u(Z)

g(Z)
,
v(Z)

g(Z)

]
=

∫
Ω

(
u(z)−

∫
Ω
u(z′)dz′

)(
v(z)−

∫
Ω
v(z′)dz′

)t
dz (2.204)

On the space of all zero mean random deviates the covariance forms then an inner product.

Removing the centering mean from eqn. (2.204) yields the positive definite L2 scalar product

used for the L2-Galerkin approximation in eqn. (2.205).

a(u, v) = E
[
u(Z)v(Z)

g(Z)

]
=

∫
Ω
u(z)v(z) dz (2.205)

Independently of the bilinear form a the best approximation in the respective norm ‖u‖ =√
a(u, u) is given by Céas Lemma up to a constant. Here eqn. (2.199) incorporates knowl-

edge about the sampling density whereas eqn. (2.205) completely neglects g, which is closer

to eqn. (2.199) when g is constant and we sample uniformly. So choosing f as the best ap-

proximation to h under some discretization in L2 with the standard scalar product will give

the best results when g is uniform. Apart from the centralization in eqn. (2.199) there is also

the test function ψ. It would be favorable to find a control variate such that it is optimal for

all test functions ψ. In a periodic domain we are the most interested in the Fourier modes of

the electric field. These modes are damped by the mode number k and in order to include

all of them at once they are accumulated. For x ∈ [0, L] define θ = 2π xL and notice that

∞∑
k=1

cos (kθ)

k
=

∞∑
k=1

−1

2
ln (2− 2 cos(θ)) ,

∞∑
k=1

sin (kθ)

k
=
π − θ

2
. (2.206)

Since only the positive mode numbers k are needed a general test function ψ can be composed

as

ψ(z) = ψ ((x, v)) = −1

2
ln (2− 2 cos(θ)) + i

π − θ
2

. (2.207)

The test function ψ can be extracted by conditioning. Where we minimize only the right

term in eqn. (2.208) by h =
∫

Ω f(z)dz. This corresponds to the mass and proved to be

ineffective, thus we learn that the variance is located in the second term in the right hand

side of eqn. (2.208).

V
[
f(Z)− h(Z)

g(Z)
ψ(Z)

]
= V

[
f(Z)− h(Z)

g(Z)
ψ(Z)

∣∣∣ψ(Z)

]
+ V

[
ψ(Z)

∣∣∣f(Z)− h(Z)

g(Z)

]
(2.208)

In order to receive an efficient control variate either choose ψ as something similar to

eqn. (2.207) or as the actual basis functions of the Poisson solver.
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Chapter 2. Stochastic aspects of Particle-In-Cell

2.3.3. Randomized Quasi Monte Carlo (RQMC)

Using Quasi Monte Carlo (QMC) instead of standard Monte Carlo yields more uniformly

distributed particles which improves the simulation drastically. Yet the measure of error

for integration with these low discrepancy sequences is the Hardy-Krause variation, see [72]

for an overview. Thus when using the standard Monte Carlo variance estimator and QMC

numbers, merely the variance of a corresponding random sample is estimated.

Therefore Randomized Quasi Monte Carlo (RQMC) was introduced, so one could gain an

error estimate with the standard Monte Carlo variance estimator [81, 82]. The idea is to sam-

ple the variance for several independent sets of RQMC numbers. So we divide the ensemble

of Np markers into R sets of Np/R markers, measure the variance of each and take the mean

over the R samples. The number of subsets can be mostly chosen very small R = 5. This

is particularly interesting for parallelization schemes using domain cloning [83], where R can

be greater than number of domains, thus reducing overhead.

Estimating the optimality coefficient for the control variate is then not straightforward and it

is even unclear how great the impact of the control variate is, see [72]. High order scrambling

by Dick, see [84, 85], leads to convergence rates up to 7
2 but requires smooth integrands. The

Vlasov density f does not exhibit this smoothness such that no improvements can be made

in a nonlinear PIC simulation.

2.3.4. Example: Two-stream instability

Two electron beams [63][p. 136], provide a non-Maxwellian background and a good example

to test our different sampling techniques, along with the control variate method. The initial

parameters for the simulation are

f(x, v, t = 0) := (1− ε cos(kx))
1√
2π
v2e−

v2

2 (2.209)

L =
2π

k
, k = 0.5, ε = 0.05,

q

m
= −1,∆t = 0.05, rk3s , Nfem = 32, cubic (2.210)

which in the nonlinear phase yields in a vortex between the two beams. First we study dif-

ferent sampling techniques and their impact on the control variate method. Later adaptivity

of the before introduced control variates is demonstrated.

Plain sampling

As the initial perturbation is small variance reduction is needed, and since a standard

Maxwellian does not apply as a control variate for the two beams, instead the initial value

is taken h(x, v) := f(x, v, t = 0). Then we can also discriminate between different sampling

options. The standard is to sample directly from f such that the markers are actually nor-

mally distributed in velocity space. In plain sampling the markers are uniformly distributed

in the velocity space for −vmax ≤ v ≤ vmax with vmax = 5. The corresponding sampling

distributions read

g(x, v, t = 0) =

{
1
Lf(x, v, t = 0) standard
1
L (1− ε cos(kx)) 1

2vmax
1{v : |v|≤vmax} plain

. (2.211)

We compare the δf and full-f method for the two sampling variants. The threshold for the

δf method is set to 0.3, where it becomes the standard full-f. Since fig. 2.8a does not clearly

indicate a superior method, we perform a convergence study varying the number of particles

Np = 211, . . . , 218. Figure 2.8b indicates superiority of the δf method even for the nonlinear
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2.3. Variance reduction

(a) Electrostatic energy for Np = 218 = 262144

markers.

(b) `2 error of the electrostatic energy using ref-

erence solution for t > 20 excluding the linear

phase.

(c) Plain sampling improves efficiency of the con-

trol variate (Np = 218).

(d) The integrated variance shows plain δf as

best pick (Np = 218).

Figure 2.8.: Comparing different sampling options of the Maxwellian for the two stream

instability and the effects on the control variate.

phase, where the plain sampling has clearly a negative impact on the full-f method. We look

at the effectiveness of the control variate in fig. 2.8c. With the standard sampling the control

variate lacks impact in the nonlinear phase, and δf becomes full-f . But for plain sampling we

consider the variance reduction efficient enough throughout the nonlinear phase. In absolute

numbers the integrated variance in fig. 2.8d summarizes for this case, that plain δf is the

best method, standard δf turns to standard full-f and plain sampling is not advised in the

full-f case.

Adaptive control variates

Is it possible to improve over the initial value as control variate?

We consider the initial value, a kernel density estimation in velocity space and and multiple

Maxwellians/Gaussians. The parameters are kept as before and the number of particles is set

to Np = 2 · 104. The Maxwellians are adapted by stochastic optimization to yield maximal

variance reductions. We use the MATLABs built in BFGS method fminunc circumventing

expensive Hessian evaluations. The optimization frequency is set to fopt = 1 yielding calcu-

lations every 20th time-step, thus suppressing the costs to a negligible amount. Although it

is not necessary, we perform the optimization with an order magnitude less particles to show
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(a) standard sampling (b) plain sampling

Figure 2.9.: Effectiveness of different adaptive control variates for the two stream instability.

the stability. The kernel density estimation uses the Epanechnikov kernel at 25 grid points

with 4v = 10
25 and cubic spline interpolation. The Ansatz functions for the Gaussians with

the initial parameters are

h(x, v, α) = α1e
− 1

2
(v−α2)2

α2
3 , α = (1, 0, 1) (2.212)

h(x, v, α) = α1e
− 1

2
(v−α2)2

α2
3 + α4e

− 1
2

(v−α5)2

α2
6 α = (1,

vmin

2
, 1, 1,

vmax

2
, 1) (2.213)

h(x, v, α) = α1e
− 1

2
(v−α2)2

α2
3 +α4e

− 1
2

(v−α5)2

α2
6 +α7e

− 1
2

(v−α8)2

α2
9 α = (1,

vmin

2
, 1, 1, 0, 1, 1,

vmax

2
, 1).

(2.214)

One can also obtain initial guesses for α parameters by a clustering algorithm such as the

very popular k–means. It is not used here because the built in MATLAB implementation is

not suitable for the weighted samples. In general it is recommended to use Gaussian mixture

models .

In the beginning the initial value is the best control variate. Figure 2.9a shows that for

standard sampling no control variate is suitable for the nonlinear phase. For plain sampling,

see fig. 2.9b, the kernel density estimator compares well to the initial value. Obviously the

single Gaussian is not a good description, yet the double and triple Gaussian perform very

well. The velocity profiles of the control variates at the end of the plain sampling simulations

are given in fig. 2.10. We can conclude that stochastic optimization is a feasible approach in

finding better control variates.

When the control variate h approximates the distribution function f very well, the difference

δf = f − h is not represented well by the particles distributed according to g, which again

lies close to f . Yet for plain sampling g is flat, and a better approximation for the flat δf .

In consequence on might want to change g such that it fits best to δf , which can be done by

particle filtering.
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2.3. Variance reduction

Figure 2.10.: Velocity profile of adaptive control variates for the two stream instability for

t = 80.

2.3.5. Conditional Monte Carlo

Another popular method for variance reduction is conditional Monte Carlo. Special cases are

antithetic sampling and stratification. The control variate reduced variance of an estimator

for E [X] by the exact knowledge of the mean of another correlated random deviate Y . In

conditional Monte Carlo the conditional expectation E[X|Y ] is used, which has the same

expectation

E
[
E[X|Y ]

]
= E [X] . (2.215)

The conditional expectation can briefly be explained as the expectation of X given Y and is

a random deviate. Its mean can be estimated again by standard Monte Carlo estimation. By

the law of total variance the variance of the conditional expectation is always less or equal

than the original random deviate

V [ E[X|Y ] ] = V[X]− E [V[X|Y ]]︸ ︷︷ ︸
≥0

≤ V[X]. (2.216)

Instead of going into the probabilistic details, we begin with a motivating example everyone

familiar with kinetic plasma simulations can understand.

Example: The gyroaverage operator

Gyrokinetic Particle-In-Cell codes are quite popular [86] and in the framework of gyrokinetic

theory the gyroaverage operator appears. This operator averages a density along a circle,

which has its origins in the circular gyromotion of a charged particle in a magnetic field. We

consider a two dimensional example where we reuse the implementation of the one dimensional

Finite element solver by a tensor product. The new mass matrix is then the Kronecker

product of the one dimensional mass matrix. We follow the notation from [87], and define

the gyroaverage at a position (x1, x2) ∈ [0, 2π]2 as the integral over a circle with radius ρ0

and center (x1, x2) as the gyroaveraging operator J ,

J (Φ) :=
1

2π

∫ 2π

0
Φ (x1 + ρ0 cos(α), x2 + ρ0 sin(α)) dα. (2.217)
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Set ~ρ(α) = (ρ0 cos(α), ρ0 sin(α)). Let JNα denote the discrete approximation of the gyroav-

erage operator by numerical quadrature

J (Φ)(x) ≈ JNα(Φ)(x) :=
1

Nα

Nα−1∑
k=0

Φ

(
x1 + cos

(
k

2π

Nα

)
, x2 + sin

(
k

2π

Nα

))
. (2.218)

The quadrature points on the circle around the position x are called gyropoints. Let g(x) =
1

2π

2
be a uniform sampling density of the random deviate X = (X1, X2) and ψ(x) two dimen-

sional finite element basis functions. The gyroaveraged right hand side bα is not anymore a

two dimensional but three dimensional integral

bα =E
[
J (ψ)(X)

f(X)

g(X)

]
=

∫∫
[0,2π]2

1

2π

∫ 2π

0
f(x) ψ (X + ~ρ(α)) dαdx.

(2.219)

Since we already used Monte Carlo integration for the two dimensional spatial integral and

given the independence of dimension, it is quite natural to draw also samples of the gyroangle

α and rewrite the three dimensional integral as an expectation. So for every particle (xk)

one draws a uniformly distributed gyroangle αk ∼ A ∼ U(0, 2π), which corresponds to

distributing random points along a circle and use them for integration. We start with the

gyroaverage over an expectation, then we use the random deviate A resulting in a expectation

for the three dimensional integral. In the end the particle now also carries the gyroangle,

which can be redrawn at any time step and does not depend on the characteristics.

bα =
1

2π

∫ 2π

0
E
[
ψ (X + ~ρ(α))

f(X)

g(X)

]
dα

=
1

2π
E
[
ψ (X + ~ρ(A))

f(X)

g(X)

1

2π

]

≈ 1

2π

1

Np

Np∑
k=1

ψ (xk + ~ρ(ak))
wk
2π

(2.220)

But as a rule of thumb for Monte Carlo integration [88][p. 27], we should do the gyroaverage

analytically in order to reduce the dimensionality and variance of the integral (2.219).∫ 2π

0
ψ (x+ ~ρ(α)) dα = E

[
ψ (x+ ~ρ(A))

1

2π

]
= E

[
ψ (X + ~ρ(A))

1

2π
|X = x

]
(2.221)

In (2.222), we use the notation of conditional expectation (2.221), which is Rao-Blackwellization [88][p. 27].

bα =
1

2π

∫∫
[0,2π]2

E [ψ (X + ~ρ(A)) |X = x ] f(x) dx

=
1

2π
E
[
E
[
ψ (X + ~ρ(A))

1

2π
| X
]
f(X)

g(X)

]
= E

[
1

2π

∫ 2π

0
ψ (X + ~ρ(α)) dα

f(X)

g(X)

]

≈ 1

Np

Np∑
k=1

(
1

2π

∫ 2π

0
ψ (xk + ~ρ(α)) dα

)
wk

=
1

Np

Np∑
k=1

1

2π
E
[
ψ (X + ~ρ(A))

1

2π
| X = xk

]
wk

(2.222)
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The law of total variance for two random deviates X,Y with bounded variance reads

V [Y ] = E [V [Y |X]] + V [E [Y |X]] .

Applying above decomposition formula allows us to compare the variance of the three dimen-

sional Monte Carlo integral in (2.220) with the conditional estimator (2.221), which yields

V
[
ψ (X + ~ρ(A))

f(X)

g(X)

1

2π

]
= E

[
V
[
ψ (X + ~ρ(A))

f(X)

g(X)

1

2π
|X
]]

+ V
[
E
[
ψ (X + ~ρ(A))

f(X)

g(X)

1

2π
|X
]]

= E
[
V
[
ψ (X + ~ρ(A))

f(X)

g(X)

1

2π
|X
]]

︸ ︷︷ ︸
∗

+V
[

1

2π

∫ 2π

0
ψ (X + ~ρ(α)) dα

f(X)

g(X)

]
︸ ︷︷ ︸

∗∗

. (2.223)

This is known as Blackwell’s theorem [89], which states that the variance of the conditional

estimator is always less or equal than the original estimator, see also [90][pp.107] for more

examples.

⇒ V
[
ψ (X + ~ρ(A))

f(X)

g(X)

1

2π

]
≥ V

[
E
[

1

2π

∫ 2π

0
ψ (X + ~ρ(α)) dα

1

2π
|X
]
f(X)

g(X)

]
(2.224)

Suppose the costs of the gyro-integral are neglectable, on should always calculate the gy-

roaverage separately. But in real applications the gyroradius ρ0 might be depend on another

dimension, like the velocity, so it can be quite costly to construct a gyroaverage for specific

basis functions. It also known from [91][p. 17] that a control variate, (X − E[X]), reduces

(∗∗) in (2.223), whereas the conditional Monte Carlo estimator eliminates the part (∗).
In Fourier space [87], [92] the gyroaverage can be computed for simple domains, by using

e.g. Bessel functions. One can also use numerical quadrature [93] on the periodic domain

[0, 2π] by defining Nα integration points

αl :=
2π

Nα
(l − 1) (2.225)

and then approximating the gyroaverage numerically

bα =
1

Np

Np∑
k=1

(
1

2π

∫ 2π

0
ψ (xk + ~ρ(α)) dα

)
wk

≈ 1

Np

Np∑
k=1

(
1

Nα

Nα∑
l=1

ψ (xk + ~ρ(αl))

)
wk

. (2.226)

But now the number of basis function evaluation is multiplied by a factor Nα. That is

problematic because these comprise the major costs of the charge assignment. Also it is

unclear how many points are needed for a good approximation; [87] suggest Nα = 16. An a

priori error estimate for the quadrature rule is easily obtained from [93],[94].

sup
x∈[0,2π]2

∣∣∣ 1

Nα

Nα∑
l=1

ψ (x+ ~ρ(α)) − J (f)(x)
∣∣∣ ≤ 2π

12N2
K2 := εα (2.227)

Here Km is an arbitrary bound on the mth derivative of the integrand

Km := sup
x∈[0,2π]2

sup
α∈[0,2π]

|∂mα ψ(x+ ~ρ(α))|. (2.228)
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As main assumption the a priori estimate from [93] needs the integrand to be at least twice

continuously differentiable. The circle ~ρ(α) is a smooth mapping, but the basis functions have

to be in ψ ∈ C2, which excludes linear and quadratic splines. In order to give an estimate of

the constant K2 we calculate the derivatives of ~ρ.

~ρ′(α) = ρ0 (sin(α), cos(α)) , ~ρ′′(α) = ρ0 (− cos(α),− sin(α)) = −~ρ(α)

⇒ ‖~ρ(α)‖ = ‖~ρ′(α)‖ = ‖~ρ′′(α)‖ = |ρ0| = ρ0. (2.229)

These are plugged into (2.228) along with the gradient ∇ψ and Hessian ∇2ψ.

K2 = sup
x∈[0,2π]2

sup
α∈[0,2π]

∣∣∣~ρ′(α) · ∇2ψ(x+ ~ρ(α)) · ~ρ′(α)t + ~ρ′(α) · ∇ψ(x+ ~ρ(α))
∣∣∣

≤ ρ2
0 sup
x∈[0,2π]2

‖∇2ψ(x)‖+ ρ0 sup
x∈[0,2π]2

‖∇ψ(x)‖

= ρ2
0‖∇2ψ(x)‖∞ + ρ0‖∇ψ‖∞

≤
(
ρ2

0 + ρ0(2π)2
)
‖∇2ψ(x)‖∞

(2.230)

For large gyroradius ρ0 the ρ2 term dominates and the quadrature error can be approximated

by

εα ≈
2π

12
‖∇2ψ(x)‖∞

(ρ0

N

)2
, (2.231)

where we immediately see that the number of quadrature points N should be proportional

to ρ0. This is already numerically verified in [87], when choosing the number of gyropoints

proportional to the arc length 2πρ0. For higher order smoothness, one can gain similar results.

Using the Simpson rule for ψ ∈ C4 [94][p. 385] the quadrature error can be bounded up to(
2π

2N

)5 K4

90
. (2.232)

The approximation error of the gyroaverage by numerical quadrature εα is additional to the

discretization error of the basis functions an extra bias when estimating the right hand side. It

then becomes clear that this error should be balanced with the particle number. So the noise

level introduced by the variance should always dominate and by (2.233) a ratio of 1
Np
∼ 1

Nα
.

1

Np
V
[

1

2π

∫ 2π

0
ψ (X + ~ρ(α)) dα

f(X)

g(X)

]
> (εα)2 (2.233)

In the comparison (2.233) between Monte Carlo integration in two dimensions and a one

dimensional quadrature rule, a precise balance is achieved by the knowledge of the included

constants, where the variance can be estimated using some subsamples and Km, defined in

eqn. (2.228), can be calculated. Now that the gyroaverage is not analytically known, it is not

guaranteed that Rao-Blackwellization (2.222) is always better than (2.220), because the bias

can dominate the error.

But we can include such a guarantee, by combining the quadrature rule and Monte Carlo

integration, which corresponds to stratified sampling. As a first slight modification we choose

A to be uniformly distributed in [0, 1].

A ∼ U(0, 1) (2.234)

Following [65][p. 16-19], we split the gyroangle integration domain Ω = [0, 2π] into Nα sub

domains with Ωl := [(l − 1) 2π
Nα
, l 2π
Nα

] and integrate over all sub domains. Then all of these

58



2.3. Variance reduction

integrals can be written as an expectation over the random deviate A.

bα =
1

2π
E
[∫

Ω
ψ (X + ~ρ(α)) dα

f(X)

g(X)

]
=

1

2π
E

[
Nα∑
l=1

∫
Ωl

ψ (X + ~ρ(α)) dα
f(X)

g(X)

]

=
1

2π
E

[
Nα∑
l=1

2π

Nα

∫ 1

0
ψ

(
X + ~ρ

(
α

2π

Nα
+ (l − 1)

2π

Nα

))
dα

f(X)

g(X)

]

= E

[
1

Nα

Nα∑
l=1

E
[
ψ

(
X + ~ρ

(
A

2π

Nα
+ (l − 1)

2π

Nα

)) ∣∣∣X] f(X)

g(X)

]

= E

[
1

Nα

Nα∑
l=1

ψ

(
X + ~ρ

(
A

2π

Nα
+ (l − 1)

2π

Nα

))
f(X)

g(X)

]
(2.235)

The random deviate A shifts the quadrature points by a random offset (2.225) and quadrature

remains the same. But the integration domain is divided, which yields a variance reduction.

Note that ρ(α) can also be dependent on x or the velocity v. Most general it can be some para-

metric curve depending on the phase space position of the marker. The stochastic derivations

above are then still valid, except for everything including the Bessel function. In contrast

to grid-based methods, the gyropoints are only needed for the numerical quadrature in the

charge projection phase. Due to the Laplace operator the potential is much smoother than

the charge density. For a given accuracy one needs less quadrature points for the smoother

potential and the charge density is not a problem anyhow. Therefore, the absolute number

of required gyropoints will differ from a grid-based method, where also the charge density

has to be integrated.

A two dimensional numerical example

We start with a small gyroaverage example in two dimensions without particle mesh cou-

pling in order to obtain an easy demonstration. The manufactured reference is a two di-

mensional perturbation with random coefficients βkx,ky ∼ U(0, 1) and random phase shift

ϕkx,ky ∼ U(0, 2π),

f(x, y) =

M∑
kx=1

M∑
ky=2

βkx,ky cos
(
kxx+ kyy + ϕkx,ky

)
. (2.236)

Here the gyroaverage can be easily computed using the Fourier transformation of f [87][p. 487]

and the Bessel function of first kind J0.

J (f)(x, y) =

M∑
kx=1

M∑
ky=2

βkx,ky cos
(
kxx+ kyy + ϕkx,ky

)
J0

(
ρ0

√
k2
x + k2

y

)
. (2.237)

The first test is a convergence study over the number of gyropoints Nα versus the L2 error

integration error

‖J (f)− JNα(f)‖2 . (2.238)

We see in fig. 2.11c that for Nα = 22 the approximation JNα reaches machine precision. This

figure shall be used as reference for the following studies.

Here the goal is to find the value of the integral∫ Lx

0

∫ Ly

0
J (f)(x, y)ω(x, y) dxdy, ω(x, y) := (x− Lx)x (y − Ly)y. (2.239)
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(a) Density f with gyroring for

ρ0 = 1

(b) Averaged density J (f) (c) L2 approximation error for

JNα(f)

Figure 2.11.: Gyroaveraging a perturbed density by a discrete gyroring with Nα gyropoints

and a constant gyroradius ρ0 = 1.

We approximate (2.239) by the standard Monte Carlo estimator for four different expecta-

tions. Let X ∼ U(0, Lx), Y ∼ U(0, Ly) and be A ∼ U(0, 1) which yields the respective

sampling density g(x, y) := 1
LxLy

.

E
[
f (X + ρ0 cos(2πA), y + ρ0 sin(2πA))

ω(X,Y )

g(X,Y )

]
(2.240)

E
[
J (f)(X,Y )

ω(X,Y )

g(X,Y )

]
= E

[
E
[
f (X + ρ0 cos(2πA), y + ρ0 sin(2πA))

∣∣∣X] ω(X,Y )

g(X,Y )

]
(2.241)

E
[
JNα(f)(X,Y )

ω(X,Y )

g(X,Y )

]
(2.242)

E

[
1

Nα

Nα∑
l=1

f

(
(X,Y ) + ~ρ

(
A

2π

Nα
+ (l − 1)

2π

Nα

))
ω(X,Y )

g(X,Y )

]
(2.243)

The simplest estimate is the standard three dimensional integral (2.240). Here we can cal-

culate the gyroaveraged density J (f) of f directly which allows for the two dimensional

integration (2.241). In general the gyroaverage can be approximated by numerical quadra-

ture and a fixed amount of gyropoints Nα, which yields a two dimensional Monte Carlo

estimator in (2.242). To overcome the bias associated with the fixed number of gyropoints

Nα the Rao-Blackwell estimator (2.243) is used. As expected the analytical gyroaverage

(2.241) gives a better approximation, see fig. 2.12a, than the standard estimator (2.240). Yet

it is hard to compare the actual costs of the gyroaverage, since evaluating a Bessel function

is quite expensive. In order to have a fair comparison between (2.240) and (2.242) or (2.243)

respectively, we plot the degrees of freedom NpNα which is the number of function evalu-

ations and represents the actual costs in the particle mesh coupling. The behavior of the

quadrature estimator (2.242) in fig. 2.12b is dominated by bias introduced by the discretiza-

tion error due to the finite number of gyropoints. For Nα = 2 there is no convergence, yet for

Nα = 4 gyropoints the estimator converges. But when Np lowers the noise level to ∼ 10−2

the discretization error of the gyroaverage dominates and convergence stops - the estimator

is not asymptotically unbiased. In order to achieve convergence one has to adapt Nα to Np.

There is also little to no gain over the 3d estimator (2.240). The last estimator (2.243), see

fig. 2.12c, obviously overcomes the bias limitation, yielding only a variance reduction by con-

struction yet only slight increase in efficiency. For a second test, we fix Np = 106 and vary the

gyroradius ρ0. Then we estimate the variances of the standard Monte Carlo estimators, which
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(a) 3d (2.240) and 2d condi-

tional (2.241) estimator.

(b) 2d estimator using quadra-

ture (2.242)

(c) 3d estimator using Rao-

Blackwell variance reduction

based on quadrature (2.243)

Figure 2.12.: Estimating the integral in eqn. (2.239) with pseudo random numbers and the

standard Monte Carlo estimator for different expectations.

(a) 3d (2.240) and 2d condi-

tional (2.241) estimator.

(b) 2d estimator using quadra-

ture (2.242)

(c) 3d estimator using Rao-

Blackwell variance reduction

based on quadrature (2.243)

Figure 2.13.: Estimated variances of the standard Monte Carlo estimator for different ex-

pectations approximating the integral in eqn. (2.239) with variation over the gyroradius

ρ0.

gives a much better indication of the performance increase than the noisy convergence studies

before. The first result in fig. 2.13a reveals once again the variance reduction by reduction of

dimensions. For large gyroradii this effect becomes the strongest, but we also notice that in

general a larger gyroradius ρ0 yields a slightly smaller variance. Both the biased, fig. 2.13b,

and unbiased, fig. 2.13c, estimators yield better variance reduction with increasing number

of gyropoints Nα. Yet the biased estimator shows again strange behavior as for Nα = 2 the

variance approaches the standard 3d estimate. By Rao Blackwells theorem it is clear that

the variance decreases with increasing Nα. Although for a large gyroradius one can achieve

quite a high variance reduction, the question of efficiency is unclear. This point is already

addressed in fig. 2.12c when the error is plotted against the degrees of freedom NαNp, which

accounts for the cost - degrees of freedom. We can make a similar comparison by dividing

the variance of the 3d estimator by Nα and compare with the corresponding 2d estimator.

In fig. 2.14a and fig. 2.14b one can see that the use of gyropoints is inefficient for a small

gyroradius. With growing gyroradius a growing number of gyropoints reaches efficiency one.

The 2d estimators become efficient with large gyroradius and quite many gyropoints. In case

there are no significant performance gains, in the rest of the particle code except the particle

mesh coupling by using less particles, the safe way out is to use the standard 3d Monte Carlo

estimator. But there is also the charge assignment, where a second gyroaverage over the

estimator of the electric field J (Ê)(x) is introduced. Here it is clear that the approximation
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(a) Gyropoint estimator

eqn. (2.242)

(b) Rao Blackwell eqn. (2.243) (c) L2 approximation error for

JNα(f).

Figure 2.14.: Efficiency of variance reduction via gyropoints and quadrature error under

varying gyroradius ρ0.

should always be below the noise level of the electric field. This noise level is, due to the

variance propagation, not the same as the one in the charge assignment. Thus best practice

is to use the 3d estimator and then decide on the number of gyropoints for the second gy-

roaverage adaptively later. But since the particle discretization with the gyroaverage is done

at the level of the Lagrangian, one has to use the same gyroaverage technique in both steps.

Since the optimal Nα differs in the two steps, one has to use (2.243) in the particle to grid

projection in order to not damage the convergence. Then Nα can be chosen to fulfill the

inequality

‖J (Ê)(x)− JNα(Ê)(x)‖2 ≤ V
[
Ê(x)

]
, (2.244)

where all appearing quantities can be easily estimated. Considering the example here, we

can consult fig. 2.14c that the varying gyroradius leads to a one percent error for Nα varying

from 8 to 22. The main insight here is to use more gyropoints with increasing number of

particles. Not because of the charge projection but because of the charge assignment.

(Post-)Stratification and coarse graining

Stratification, Antithetics and Latin hypercube sampling can greatly reduce the variance.

In general they can be applied at the initialization, but they will loose their effect in the

nonlinear phase. Although, if we know a dimension to be particularly unperturbed, but

important then Latin hypercube sampling may be helpful. Nevertheless, it is easy to sample

the initial condition, but very expensive (running the characteristics backwards) to draw a

sample at a later time. Therefore, most algorithms are not applicable. First we describe how

basic stratified sampling can improve sampling of the initial condition. For this the domain

Ω is partitioned into Ns disjunct strata Ωj

Ω =
⋃̇

j=1,...,Ns
Ωj . (2.245)

Stratification uses a known conditional information for a random variable with respect to the

stratum namely the probability that the random variable Z is contained in the stratum Ωj

denoted by ωj .

ωj := P (Z ∈ Ωj) =

∫
Ωj

g(z)dz (2.246)

If g is known then ωj can be calculated, which holds for the initial condition but not at

later times. In the following the exact information given in eqn. (2.246) is used for variance
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reduction by conditional Monte Carlo. For this the conditioned density gj reduces g onto Ωj

and reads

gj(z) :=
g(z)

ωj
1z∈Ωj . (2.247)

Stratification samples nj =
Np
Ns

independent markers Zj,k, k = 1, . . . , nj in every stratum

Ωj according to the probability density gj .

∫
Ω
ψ(z)g(z) dz = E [ψ(Z)] =

Ns∑
j=1

∫
Ωj

ψ(z)gj(z) dz =

Ns∑
j=1

E [ψ(Z)|Z ∈ Ωj ] ≈
Ns∑
j=1

ωj
nj

nj∑
k=1

ψ(Zj,k)

(2.248)

Most important, a variance reduction is guaranteed by the law of total variance, see eqn. (2.249).

This is also known as the Rao-Blackwellization [95] or Riemann Monte Carlo and works best

if the sampling density is constant in each stratum.

V[ψ(Z)] ≥
Ns∑
j=1

V [ψ(Z)|Z ∈ Ωj ] (2.249)

Note that the stratified estimator in eqn. (2.248) can be rewritten as the standard Monte

Carlo estimator with an additional weighting factor sk.

Ns∑
j=1

ωj
nj

nj∑
k=1

ψ(Zj,k) =
1

Np

Ns∑
j=1

skψ(Zk), sk =
Npωj
nj

for Zk ∈ Ωj (2.250)

A detailed description of the method is proposed in [69][Chapter 8.4], where also the connec-

tion to control variates is made. Essentially the stratification is a control variate comprised

of indicator functions for every stratum - phase space boxes. A distribution which is constant

within the stratum yields a high correlation and a good control variate. If ωj is known but we

cannot sample from gj(z) direct post-stratification is the most obvious step. There, already

given samples Zk from g are assigned to their stratum, making nj a random number. In the

following Zj,k denotes the kth marker in the jth stratum. The estimator (2.248) remains

unchanged. The given samples correspond to particles at later times sorted into strata. But

ωj is not exactly known because the sampling density is not available at later times.

In order to estimate ωj the strata can be used as the bins of a histogram. This proportional

allocation estimate (2.251) reduces the stratified mean (2.248) again to the sample mean,

hence nothing has been gained.

ωj = P (Z ∈ Ωj) ≈
nj
Np

(2.251)

Yet the additional information available, but not being used is the value g(Zk) = gk, which is

transported along the characteristics by the markers. Suppose there are very few markers in

every stratum, one can just assume them to be uniformly distributed. This key assumption

allows for the approximation of the integral of the actual density g over the stratum Ωj by

eqn. (2.252).

ωj =

∫
Ωj

g(z) dz =

∫
Ωj

g(z)

|Ωj |
|Ωj |dz ≈

|Ωj |
nj

nj∑
k=1

g(Zj,k) (2.252)

The estimator in eqn. (2.252) obviously needs some normalization in order to ensure mass

conservation
∑

j ωj = 1. But this falls into the regime of moment matching and re-weighting
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techniques. Here we are interested in the connection between eqn. (2.252) and coarse graining

like in [15]. In Sonnendrückers coarse graining technique the particles are sorted in a quad-

tree structure, which corresponds to the strata Ωj here. One starts with the domain Ω and

divides by bisection until there are not more than nj of markers in every subset Ωj . So until

now no difference to the (post)-stratification. Then it is decided [15], that the distribution

function represented by the control variate weights δw should be constant in each stratum.

In order to enforce this, the weights δw are smoothed within every stratum similar to what

we do with the gk in eqn. (2.252). Essentially the coarse graining method is not necessary

because of the control variate, but because of the Fokker–Planck collisions, which change the

constant likelihoods fk and gk but not their ratio. Nevertheless the main idea is to neglect

information below a certain scale - the size of the strata. Therefore, for coarse graining we

suppose that the ratio between f and g should be preserved, leading to the estimator

E
[
ψ(Z)|Z ∈ Ω,

f(Z)

g(Z)
= C

]
. (2.253)

By selecting a small enough box in the marker density it is reasonable to assume the markers

to be uniformly distributed in that box, hence the approximation uniform density z 7→ |Ωj |−1

in (2.252). This approximation leads to a biased estimator which does not guarantee the vari-

ance to be less or equal than in standard estimation. On the contrary exact knowledge of ωj is

beneficial. An improvement of the estimator (2.252) is to use a multidimensional quadrature

rule on the stratum Ωj with the given quadrature nodes Zj,k and the function values gj,k for

k = 1, . . . , nj . Eventually something similar to the (RID) in [96]. The most straightforward

idea is to interpolate the values of g in the stratum by multivariate Lagrange polynomials and

deduce the integral from there. If there are very few markers per stratum this can be hard

coded circumventing the Vandermonde matrix. Although the nodes are not equidistantly

spaced Runge’s phenomenon could cause a problem. Another approach is to use a more

expensive quadrature rule based on Voronoi tessellation (VT) which described in [97][p. 643].

But the Voronoi methods lead down another very promising path.

Let us consider the extreme case of exactly one marker Zj in each stratum Ωj , which re-

quires obviously some advanced form of partitioning the domain Ω. Then the estimate

ωj ≈ g(Zk,j)|Ωj | needs again the volume of the presumably quite deformed Ωj . In [97] such a

set of strata optimizing the quadrature weights implied by ωj is called a Voronoi tessellation

(VT). In general the Ωj form a tessellation of Ω. The VT returns Ωj as convex polyhedra

such that the volume is merely the convex hull. Lloyd’s algorithm repeatedly adapts the

phase space coordinate of the markers Zj , in the Voronoi context called generators, to the

center of the Voronoi cell Ωj which yields after some iterations the Centroidal Voronoi Tes-

sellation (CVT). The CVT forms an optimal quadrature rule [97][p. 643] but it is NP hard

to find. Fast algorithms are given in [98]. Hence it is useful for initialization of particles in

complicated geometries. A direct benchmark concerning the improvement of Monte Carlo by

Voronoi volumes [99] finds large inaccuracies stemming from the boundary cells. For periodic

domains the periodic Voronoi diagram (PVD) [100] is suitable. According to [99] the PVD

yields also better convergence. In [101] the connection between Monte Carlo stratification

and the Voronoi tessellation is made by the definition of quantizers. In general Voronoi tessel-

lation leads to rather deterministic methods [102, 103]. In [103] markers are merged within a

Voronoi cell remarkably with conservation of phase space. Since this also modifies the phase

space position it does not anymore fall into the regime of stratification.

Stratification combines grids and Monte Carlo which according to [69] can improve the con-

vergence order to O(N
− 1

2
− 1
d

p ) where d denotes the dimension. Thus, it is most effective in

low dimensions, which is precisely the regime most PIC codes are operating in. By antithetic
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sampling within a stratum an order of O(N
− 1

2
− 2
d

p ) is possible. Stratification, when restricted

to the initial condition, competes there also with the Latin hypercubes and Quasi Monte

Carlo sequences. As we will see later their nice properties are somehow lost during the non-

linear simulation defaulting back to the square root
√
Np convergence. Here the possibility

of post-stratification is clearly interesting because it does not touch the characteristics but

merely changes the weighting. This approach also avoids degenerating effects, since the main

information in the likelihoods fk and gk is never changed.

Stratified control variates

Post-stratification can be reformulated as a control variate technique. The entire derivation

is given in [104][pp.15-18]. Then given the strata (Ωj)j=1,...,Ns the condition Z ∈ Ωj is used

as a control variate of piecewise constant indicator functions in eqn. (2.254).

E
[
f(Z)

g(Z)
ψ(Z)

]
= E

f(Z)

g(Z)
ψ(Z)−

Ns∑
j=1

αj1Z∈Ωj

+

Ns∑
j=1

αj

∫
Ωj

g(z)dz

=

Ns∑
j=1

E
[
f(Z)

g(Z)
ψ(Z)

∣∣∣ Z ∈ Ωj

] (2.254)

According to [104] variance minimization yields the coefficients α as

αj =
E
[
f(Z)
g(Z)ψ(Z)

∣∣∣ Z ∈ Ωj

]
∫

Ωj
g(z)dz

, (2.255)

which is the reason why the control variate in eqn. (2.254) is equivalent to post-stratification.

This result underlines the generality of the control variate method. Yet the main difficulty of

post-stratification mechanism, the estimation of
∫

Ωj
g(z)dz from the likelihoods gk remains.

The combination of piecewise definitions motivates the combination of the traditional control

variate h and conditional Monte Carlo by decomposition of the control variate onto sev-

eral strata. Given a control variate h(z) in the δf framework and strata (Ωj)j=1,...,Ns the

decomposition of the single control variate h into Ns control variates hj is defined as

hj(z) :=

{
h(z) for z ∈ Ωj

0 else
, for j = 1, . . . , Ns. (2.256)

The new control variate reads then

E
[
f(Z)

g(Z)
ψ(Z)

]
= E

[
f(Z)− αh(Z)

g(Z)
ψ(Z)

]
+ α

∫
Ω
h(z)ψ(z)dz

= E

[
f(Z)−

∑Ns
j=1 αjhj(Z)

g(Z)
ψ(Z)

]
+

Ns∑
j=1

αj

∫
Ωj

hj(z)ψ(z)dz.

(2.257)

The (Ωj) form a disjoint decomposition of ωj , the optimality coefficients (αj) can be calculated

on basis of sparse matrix algebra yielding a fast implementation.

2.3.6. Control variates and geometric integration

Geometric integration is a vast research area that yields for solving systems of ODEs [37].

For applications in plasma physics including the Vlasov equation, see we refer to Kraus’
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work [14]. Extensions to stochastic differential equations are mostly made for the general

Langevin equation [105, 106] and can thus be adapted for Vlasov–Poisson–Fokker–Planck or

the Ornstein–Uhlenbeck process respectively. The original concept of a particle Lagrangian

for PIC dates back to Lewis[8], but we recommend the recent review of the canonical varia-

tional PIC scheme provided in [10]. Here we already rely on structure preserving methods for

the Vlasov equation, since the discrete phase space volume shall be conserved such that the

likelihoods f and g are propagated correctly, see eqn. (2.9). Stochastic differential equations

can be solved with methods of geometric integration yet it is unclear how time dependent

variance reduction techniques such as the control variate can be included. First the equa-

tions of motions which are the characteristics (x(t), v(t)) transporting the initial condition

f(x0, v0, 0) = f(x(t), v(t), t) shall be obtained by a Euler-Lagrange principle, respectively

Euler–Poincare reduction. This includes the definition of the flow (x(t), v(t)) = ϕ(x0, v0, t).

We use the Lagrangian for our electron Vlasov–Poisson system [14][p. 119] given as

L(x, ẋ, v, v̇,Φ, Φ̇) =

∫
f(x0, v0, 0)

[
xv̇ − 1

2
v2 − Φ(x, t)

]
dx0dv0 +

1

2

∫
(∂xΦ(x, t))2 dx.

(2.258)

For a Lagrangian L(q, q̇,Φ, Φ̇) depending on coordinates q, q̇ and the equations of motion and

the field equations can be derived by the Euler–Lagrange equations:

∂L

∂q
(q, q̇,Φ, Φ̇)− d

dt

∂L

∂q̇
(q, q̇,Φ, Φ̇) = 0〈 d

dt

∂L

∂Φ̇
+

∂

∂x

∂L

∂(∂xΦ)
, δΦ

〉
=
〈∂L
∂Φ

, δΦ
〉
∀ δΦ.

(2.259)

The particle discretization replaces the distribution function f(x0, v0, 0) at initial time and

the integral over (x0, v0) in eqn. (2.258) with an expectation including the random deviates

X0, V0 or by inserting the Klimontovich density fp(x, v, t) = 1
Np

∑Np
n=1wnδ(x− xtn)δ(v − vtn).

This includes a change of notation since the flow transports each initial condition separately

xtn, v
t
n = ϕ(x0

n, v
0
n) resulting in many characteristics.

Lp(x, v,Φ, Φ̇) =
1

Np

N∑
n=1

f(x0
n, v

0
n, 0)

g(x0
n, v

0
n, 0)︸ ︷︷ ︸

=wn

[
xnv̇

t
n −

1

2
(vtn)2 + Φ(xtn, t)

]
− 1

2

∫
|∂xΦ(x, t)|2 dx.

(2.260)

By applying the Euler Lagrange equations (2.259) for each particle and the fields the standard

equations of motion for each particle and the weak form of the Poisson equation are recovered

in eqn. (2.261).

d

dt
xtn = vtn (2.261)

d

dt
vtn = ∂xΦ(xtn, t) (2.262)∫

∂xΦ(x, t) · ∂xδΦ(x) dx =
1

Np

Np∑
n=1

wnδΦ(xtn) for all δΦ (2.263)

Mostly the same discretizations for the test function ∂Φ and the Ansatz function Φ is chosen.

The Lagrangian (2.260) does not contain any control variate. Implementing the control vari-

ate on top of the obtained scheme (2.261) changes its properties in an unknown way. There-

fore, the control variate shall be introduced in this framework. We recall from eqn. (2.153)
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the Klimontovich density containing f∗p a control variate

f∗p (x, v, t) := fp(x, v, t)− α
1

Np

Np∑
n=1

h(xtn, v
t
n)

g(xn(t), vn(t), t)︸ ︷︷ ︸
:=γtn=δwtn−wn

δ
(
x− xtn

)
δ
(
v − vtn

)
+ αh(x, v),

(2.264)

which can be inserted into the original Lagrangian (2.258) yielding

L∗p(x, v,Φ, Φ̇) =
1

Np

N∑
n=1

f(x0
n, v

0
n, 0)− αh(x0

n, v
0
n)

g(x0
n, v

0
n, 0)︸ ︷︷ ︸

=δw0
n

[
xnv̇

t
n −

1

2
(vtn)2 + Φ(xtn, t)

]

− 1

2

∫
|∂xΦ(x, t)|2 dx+ α

∫
h(x0, v0)

[
xv̇ − 1

2
v2 − Φ(x, t)

]
dx0dv0.

(2.265)

Here a difficulty arises when applying the Euler Lagrange principle to eqn. (2.265) since there

is no discretization for h present. We suppose that h follows the same Vlasov equation under

the same flow ϕ as the particles and obtain the equations of motions as

d

dt
xtn = vtn

d

dt
vtn = ∂xΦ(xtn, t)

∂th(x, v, t) = −v∂xh(x, v, t) + ∂xΦ(x, t)∂vh(x, v, t)∫
∂xΦ(x, t) · ∂xδΦ(x) dx =

1

Np

Np∑
n=1

δw0
nδΦ(xtn) + α

∫
h(x, v, t)δΦ(x)dxdv ∀ δΦ,

(2.266)

which are for the case of h(x, v, t) = h(v) being an equilibrium reduced to

d

dt
xtn = vtn

d

dt
vtn = ∂xΦ(xtn, t)∫

∂xΦ(x, t) · ∂xδΦ(x) dx =
1

Np

Np∑
n=1

δw0
nδΦ(xtn) + α

∫
h(v)δΦ(x)dxdv ∀ δΦ.

(2.267)

There are for sure cleaner and more elaborate ways to arrive at eqn. (2.267), since the

flow ϕ under the Euler-Poincare reduction has to be treated more detailed, see [14][p. 119].

Nevertheless the system (2.267) is not what we desired, since the particle weight δw0
n stays

constant over time and the control variate is only applied at the initial condition. The

particles immediately decorrelate from their initial condition rendering this form of control

variate useless. But any time discretization is performed by discretizing the action, a time

integral ∫ t+∆t

t
L(q, q̇,Φ, Φ̇, τ)dτ ≈ ∆tL(q, q̇,Φ, Φ̇, 0) (2.268)

with a quadrature rule and obtaining e.g. the symplectic Euler. The desired scheme is mostly

derived for one time step, such that e.g. phase space volume is conserved during one step

yielding a long term stable method when combining many of them. The critical point here is

that it is safe to assume that the particles decorrelate much less in a single time step, which
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means keeping the weights constant during a time step does not violate conservation laws. So

the control variate weights should be updated between time steps. Phase space conservation

is our most important property, which is easily kept by using a symplectic integrator during

one time step. Then it is mostly argued that changing the weight δwn in between time

steps changes the phase space volume and thus ruining our discretization. But it is possible

to modify the weights with an additional control variate enforcing that the overall mass
1
Np

∑Np
n wn = 1

Np

∑Np
n δwn +

∫
h(v) dv stays constant. But this is completely useless since

phase space volume conservation is not about conserving the overall volume, but any volume.

Thus it is really easy to conserve the volume with point particles and constant weight. So one

could stratify the phase space and enforce the mass conservation in each stratum, but still this

does not correspond to the generality of conserving any volume. Unless we do not account

for the phase space volume fluctuating into the control variate in our Lagrange formalism we

can just hope for the best by following the system eqn. (2.267) knowing that at least each

time step itself is fine. Nevertheless fig. 2.15 shows that this is not a good long-term option.

Eventually one has to include the variation of the weights. We aim to define a manifold that

describes the application of a control variate (x, v) 7→ h(x, v). This approach is promising

because geometric integration on manifold appears to be possible, see [107]. The main idea

of the control variate is that the discrepancy between the exact value of an integral and its

Monte Carlo approximation by a given set of markers is used in order to improve other Monte

Carlo estimate using the same set of markers. In the standard control variate estimator this

discrepancy is simply subtracted from the estimated mean, which improves the estimate.

Here we seek for fields, such that this discrepancy is eliminated, which is formulated as a

constraint or a manifold.{
x(t) = (xt1, . . . , x

t
N ) ∈ RN , v(t) = (vt1, . . . , v

t
N ) ∈ RN ,Φ(t) ∈ C1(0, L) |

1

N

N∑
n=1

h(xtn, v
t
n, t)Φ(xtn, t)

g(xn(0), vn(0), t = 0)
=

∫∫
h(x, v, t)Φ(x, t) dxdv

}
:= {x(t), v(t),Φ(t)|σ(x(t), v(t)) = 0}

(2.269)

Then the set given in eqn. (2.269) is a manifold in the particle phase space R2N × C(0, L)

and can be used as a constraint on the system of ODEs arising from the Lagrangian in

eqn. (2.260).

σ(x, v,Φ) = − 1

N

N∑
n=1

h(xtn, v
t
n, t)Φ(xtn, t)

gn
+

∫∫
h(x, v, t)Φ(x, t) dxdv (2.270)

The constraint is introduced into the Lagrangian L via a Lagrange multiplier λ, following [107]

yielding the extended Lagrangian

L
(
x, v, ẋ, v̇,Φ, Φ̇, λ, λ̇

)
:=

1

N

N∑
n=1

fn
gn︸︷︷︸

=wn

[
xtnv̇

t
n −

1

2
(vtn)2 + Φ(xtn, t)

]
+

1

2

∫
|∂xΦ(x, t)|2 dx + λσ(x, v,Φ)

=
1

N

N∑
n=1

fn
gn

[
xtnv̇

t
n −

1

2
(vtn)2 + Φ(xtn, t)

]
+

1

N

N∑
n=1

fn − λh(xtn, v
t
n, t)

gn︸ ︷︷ ︸
:=δwtn

Φ(xtn, t)

+
1

2

∫
|∂xΦ(x, t)|2 dx+ λ

∫∫
h(x, v, t)Φ(x, t) dxdv. (2.271)
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2.3. Variance reduction

The variation in Φ already gives us the control variate estimator for the right hand side of

the weak Poisson equation, which is what we desired.∫
∂xΦ(x, t) · ∂xδΦ(x) dx =

1

N

N∑
n=1

fn
gn
δΦ(xtn)

+ λ

(
1

N

N∑
n=1

h(xtn, v
t
n, t)δΦ(xtn, t)

g(xn(0), vn(0), 0)
−
∫∫

h(x, v, t)δΦ(x, t) dxdv

)

=
1

N

N∑
n=1

δwtnδΦ(xtn)−
∫∫

h(x, v, t)δΦ(x, t) dxdv

(2.272)

When discretizing Φ with basis functions, the constraint should be applied for every basis

function in order to get a constraint for each basis function. This also implies that λ is

not a scalar anymore. So far it looks good, but the corresponding equations of motion in

eqn. (2.273) make no sense as they do not converge to the original system for large number

of particles.

0 = σ(x, v,Φ) (2.273)

d

dt
vtn =

(
1− λh(xtn, v

t
n, t)

fn

)
∂xΦ(xtn, t)− λ

∂xh(xtn, v
t
n, t)

fn
Φ(xtn, t) (2.274)

d

dt
xtn = vtn + λ

∂vh(xtn, v
t
n, t)

fn
Φ(xtn, t). (2.275)

So eventually the complete variance minimization problem has to be incorporated in the

Lagrangian or the integrator making α another free variable. Yet this extends the scope of

this thesis, such that we leave this problem to professionals in geometric integration. We

stress again that every scheme used should at least preserve the volume of phase space in

the single particle case, because long time integration for single particles is a big difficulty in

plasma physics with particles where a plethora of solutions is already available.
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(a) electrostatic energy (b) relative energy error

Figure 2.15.: For a bump-on-tail instability the initial condition is an unsuitable control

variate when importance sampling is used, such that it can be turned off when the variance

reduction lies below a certain threshold. This corresponds to δf → full − f , where long

term stability of the electrostatic energy is recovered and the energy error stays bounded,

because the integrator being used is fully symplectic once the control variate is turned off.

If the control variate shall not be turned off by a threshold, the correlation coefficient will

still be low. Then there are two options, keeping the δwn constant during a stage δf (stages)

resulting in a symplectic time step or changing δwn also during every time step. Both of

these options damage the long term stability to the same extent. ε = 0.03, k = 0.3, Np =

104 ,∆t = 0.05, Nf = 32, rk3s

2.4. Linearized Vlasov–Poisson

Let f0(v) be a steady state solution to the Vlasov–Poisson system. Then the linearization of

the Vlasov–Poisson system [108], around that state f0(v) reads,

∂tf(x, v, t) + v∂xf(x, v, t)− ∂xΦ(x, t)∂vf0(v) = 0 (2.276)

−∂xxΦ(x, t) = 1−
∫
f(x, v, t) dv. (2.277)

Equation (2.276) contains a forcing term such that we cannot use the method of character-

istics. Yet if we allow a weight evolution it is still possible to define equations of motions in

(2.278).

dX(t)

dt
= V (t) (2.278)

dV (t)

dt
= 0 (2.279)

d

dt
f(X(t), V (t), t) = ∂xΦ(X(t), t) · ∂vf0(V (t)) (2.280)

The velocity derivate of the equilibrium ∂vf0 is known in closed form and can just be used.

In this case, the markers distributed according to g do not follow the same Vlasov equation

as f , but eqn. (2.281).

∂tg(x, v, t) + ∂xg(x, v, t) = 0. (2.281)

Then system combining eqn. (2.278) and eqn. (2.281) exhibits a time development of the

weights wk = fk
gk

. We can already see that the velocities of the markers stays constant in

time, therefore, stratified sampling yields already a lasting variance reduction. Furthermore,
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2.4. Linearized Vlasov–Poisson

(a) Weak Landau damping (b) Strong Landau damping (c) Strong Landau damping

Figure 2.16.: Linearized Vlasov–Poisson for linear ε = 0.01, Np = 104 and nonlinear ε =

0.5, Np = 105 Landau damping in comparison to the nonlinear system. The integrated

variance for electric field IVAR [E] is given in order to measure the variance reduction by the

linearization.(∆t = 0.05, Nf = 32)

the number of particles can be reduced by SIR. This is also quite effective, since the system

is linearized.

2.4.1. Particle noise and variance reduction

The investigation of the linearized Vlasov–Poisson system (2.276) brings helpful insight in the

basic dynamics at low costs by excluding the nonlinear coupling. Thus the system is much

easier to solve such that a variance reduction is expected. But an implementation of the

linearization by following the equations of motion in eqn. (2.278) also changes the likelihoods

fn thus in increasing the variance of the mass. This happens independent of an additional

control variate. The equations of motion (2.278) were implemented by a standard second

order Runge Kutta scheme, such that the time integrator constitutes the only difference in

the code. The schemes used here are full-f and δf with the same time integrator. The

linearizing integrator yields then the linearized full-f and the linearized δf . Note again,

that the δf method can never be worse than the full-f scheme. In fact for the nonlinear

Landau damping the linearization does not reduce the integrated variance on the electric

field, see fig. 2.16c. The other results are as expected, the linearization differs significantly in

the nonlinear case where the additional δf does not have any effect, see fig. 2.16b. Yet the

linearization cannot overcome the problem of the small amplitude ε = 0.01 thus δf is needed

for the linear Landau damping, see fig. 2.16a.

2.4.2. Dispersion relations

The main purpose of the linearization is to obtain a system that can be easily treated with

analysis in order to obtain a Dispersion relation. We want to find eigenvalues of the Vlasov–

Poisson system, related to eigenvalues of the Poisson equation thus we call them modes.

These modes are damped and or growing over time. They can be found as complex roots of

a dispersion relation D(ω, k), which depends on the initial condition used for the lineariza-

tion. The complete theory is found in [109], but it is strongly recommended to start with

Sonnendrückers lecture notes [110], which are much more comprehensible. Since Maxwellians

play an important role the plasma dispersion function Z is mostly required, given as

Z(x) :=
√
π e−x

2
(i− erfi (x)) , (2.282)
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where erfi denotes the complex inverse error function. A general initial condition for the

Vlasov–Poisson system is the sum of multiple Maxwellians

f0(x, v) =
∑
n

αn√
2πvth,n

e
− (v−vn)2

2v2
th,n , (2.283)

with size αn thermal velocity vth,n, mean velocity vn. For the plasma frequency ωp (in this

chapter ωp = 1) the dispersion relation reads

D(ω, k) = 1 +
∑
n

αn

(
ωp

kvth,n

)2
[

1 +
1√

2vth,n

(ω
k
− vn

)
Z

(
1√

2vth,n

(ω
k
− vn

))]
. (2.284)

The first approach is of course complex root search on the corresponding dispersion rela-

tion D(ω, k) which can be done efficiently e.g. by rational interpolation [111, 112] or using

MATLABs variable precision arithmetic vpasolve(). Results from this method are used as

reference values. Instead of solving the eigenvalue problem directly an analysis of the electric

field as output of a short time simulation can be rewarding. For this all spatial modes in the

density f are weakly excited for the linearized system and very weakly excited if no linearized

model is at hand. After simulating over the linear phase one takes a time and spatial Fourier

transform of the obtained electric field which yields an informative diagram, see fig. 2.17a.

Examples of such wave dispersion diagrams for the Vlasov equation obtained with similar

methods can be found in [113, 114, 115, 116].

In the beginning the domain length L is fixed to the smallest wave vector k0, the longest

wave length 2π
k0

that shall be resolved by L = 2π
k0

. Let the discretized system allow N modes,

because e.g. the electric field solver uses 2N cells. By spatially Fourier transform the elec-

tric field we obtain time dependent modes Ê(k, t) for k ∈ {k0, 2k0, . . . , Nk0}. Completely

analog the slowest frequency is obtained by ω0 = 2π
tmax

, which yields a the space-time Fourier

transformed field Ẽ(k, ω) for ω ∈ {ω0, 2ω0, . . . ,
2π
∆t}. At this point it is quite common, see

e.g. [116], to state that Ẽ(k, ω) is plotted and omitting the color axis. But this is not ex-

actly what is done. The time Fourier transform is the origin of a lot of problems, because

damped modes are absolutely not periodic which is the very reason why in the analytical

derivation the Laplace transform is used. The discrete counterpart to Laplace transforming

is the Z-transform. It can be obtained by Pronys method, which is the art of fitting damped

modes and a rather parametric approach such that we consider it later. A remedy for the

Fourier transform is to make Ê(x, t), t ≥ 0 periodic by using a butterfly by mirroring the field

at the t = 0 axis, Ê(x, t) = Ê(x,−t). Here zero padding of the discrete Fourier transform

up to values 16 ·N is quite beneficial. This crude post-processing continues by plotting the

logarithm log(|Ẽ(k, ω)|), where we use mostly the squared logarithm because it damps the

small noisy modes log(|Ẽ(k, ω)|)2. At this point the color values are meaningless such that

they can be omitted. Here the in-time filtering by Hann windows was also tried but we did

not see much improvement in smearing out ω.

In PIC codes it is quite common to excite all modes by the natural noise level and then just

wait until something happens. For unstable schemes one might catch then a numerical insta-

bility but in general this is a troublesome course of action since the result heavily depends

on the particle number and the grid points making it hard to compare to other codes. When

using the background f0(v) as control variate nothing happens because the initial condition

matches perfectly. In oder to get the same results for grid-based and PIC methods we define

the initial conditions by exciting all modes to a level ε with a non mandatory uniformly
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2.4. Linearized Vlasov–Poisson

(a) Dispersion diagram obtained by space-time

Fourier transform of the electric field and ad-

ditional post processing as described. White

crosses indicate known roots of D(ω, k).

(b) All 32 spatial Fourier modes of the electric

field. The weakly damped modes oscillate per-

fectly, while the strongly damped ones end in

noisy behavior.

Figure 2.17.: Obtaining the dispersion relation for Langmuir waves with linearized Vlasov–

Poisson δf PIC using fifth order B-splines and the parameters k0 = 0.02, ε = 10−2, Np =

106, Nf = 64, ∆t = 0.02 and tmax = 100.

randomly drawn phase shift u.

f(x, v, t = 0) =

[
1 + ε

N∑
n=1

cos

(
n

2π

L
x+ un

)]
f0(v), ui ∼ U(0, L), ∀i = 1, . . . , N

In order to stay in the linear phase as long as possible ε should be chosen very small. This

initial condition does not excite the exact generalized eigenvalues of the linearized system.

The true eigenvalues form then after some time-steps such that the first can be disregarded in

the post-processing. Most important is a large final time tmax such that the discrete Fourier

transform can work on many oscillations. Thus the time step width is less important. High

order B-splines counterfeit aliasing in the high modes. The strongly damped modes appear

very weak and smeared out in fig. 2.17a. This problem is specific for PIC, because the strong

damping does not continue over the entire simulation time but stops at some noise level,

see fig. 2.17a. For grid based solvers it suffices to stay within the recurrence time. Here

the only solution is to use either much more particles or a smaller simulation time tmax.

The latter degrades then the time Fourier transform. Bad quality spectral plots are quite

common [116], therefore we seek another method. Amplitude and phase estimation based on

Pronys method has been successfully applied in [117]. In general for case signals consisting

only of a few damped sinusoids [118] gives a great overview of an abundance of methods for

estimating the damping rate and frequency including detailed MATLAB examples. These

methods are conceptually the discrete version of the time Laplace transform. For noisy signals

consisting of few frequency components the matrix pencil method is quite robust [118, 119]

thus we settle for this method in our parametric estimates. In the following a parametric

estimate of the time frequency content of Ê(k, t) is made for every mode k. The parametric

method may be more expensive in the post-processing but it has the enormous advantage,

that results from simulating a very short time period tmax suffice for accurate estimates. For

Langmuir waves (fig. 2.18) and the Bump-on-tail instability (fig. 2.19) few oscillations are

needed to in order to reproduce the dispersion diagram. In both cases the standard spectral
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analysis returns only a vague diagram, whereas the parametric estimate is able to extract

growing and damped modes for every k at the same time.
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2.4. Linearized Vlasov–Poisson

(a) Space time harmonics of E (b) Spatial harmonics of E

(c) Frequency content for every spatial Fourier

mode of E. Color denotes growth rate.

(d) Matrix pencil estimated roots of D(ω, k).

Figure 2.18.: Estimating the dispersion relation for Langmuir waves using the matrix pencil

method for short time such that only a few periods of oscillation are observed. The strongly

damped modes appear clearly (blue) in the parametric estimate in contrast to the under-

resolved diagram of the space time harmonics. The circles denote reference values. For large

k the modes are too strongly damped for PIC which explains the small disagreement. (δf

PIC using fifth order B-splines, k0 = 0.02, ε = 10−2, Np = 106, Nf = 64, ∆t = 0.02 and

tmax = 10.)
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(a) Estimated frequencies, color denotes growth

rate.

(b) Estimated roots of D(ω, k).

Figure 2.19.: Estimating the dispersion relation for the Bump-on-tail instability with Lang-

muir waves in the background. This is difficult since it includes strongly damped and growing

modes for every wave number. The two Langmuir wave branches sandwich the Bump-on-tail

branch which is very unstable in the orange region 0.2 < k < 0.4. Since no exact eigenvalue

is excited a fourth branch at ω = 0 accounts for the remainder and can be safely disre-

garded. The circles denote an incomplete set of reference values obtained by root search.

Disagreement can only be seen by the modes that turn already nonlinear in the short time

period and small amplitudes which PIC cannot resolve. (δf PIC using fifth order B-splines,

k0 = 0.02, ε = 10−2, Np = 106, Nf = 64, ∆t = 0.02 and tmax = 20.)
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2.4.3. Conditioning by Gaussian quadrature

The constant velocity in eqn. (2.278) allows for even greater variance reduction by hybrid

Monte Carlo methods. A quadrature method for V is combined with Monte Carlo samples

for X. Let (X,V ) be random deviates with density g(x, v), then X is distributed according

to the marginal density gx.

gx(x) :=

∫ ∞
−∞

g(x, v) dxdv. (2.285)

The integral of the density f and a test function ψ over the velocity domain is approximated by

numerical quadrature with Nv Gauss points vj and corresponding weight wj , see eqn. (2.286).

∫ ∞
−∞

f(x, v)ψ(x, v)dv ≈
Nv∑
j=1

wjf(x, vj)ψ(x, vj) for x ∈ [0, L] (2.286)

Possible candidates are the Gauss–Hermite quadrature for the unbounded domain and Gauss–

Legendre for a truncated domain. These are spectrally accurate methods such that the density

f can be recovered from very few points vj by the corresponding spectral interpolation rule,

see [54]. Spatially independent collisions can then also be included on basis of the spectral

discretization. For the Monte Carlo estimator let X1, X2, . . . be i.i.d. according to to X,

which means that identical samples are used for every vj . The interpretation as conditional

Monte Carlo is emphasized in eqn. (2.287).∫ ∞
−∞

∫ L

0
f(x, v)ψ(x, v) dxdv = E

[
f(X,V )

g(X,V )
ψ(X,V )

]
= E

[
E
[
f(X,V )

g(X,V )
ψ(X,V ) | V

]]
=

∫ ∞
−∞

E
[
f(X,V )

g(X,V )
ψ(X,V ) | {V = v}

]
dv

=

∫ ∞
−∞

E
[
f(X, v)

g(X, v)
ψ(X, v)

]
dv =

∫ ∞
−∞

E
[
f(X, v)

gx(X)
ψ(X, v)

]
dv

≈
Nv∑
j=1

wj E
[
f(X, vj)

gx(X)
ψ(X, vj)

]

≈
Nv∑
j=1

wj
1

Np

Np∑
n=1

f(Xn, vj)

gx(Xn)
ψ(Xn, vj)

(2.287)

The variance of the basic estimator in eqn. (2.287) is given in eqn. (2.288) and includes

covariances, which can be negative thus reducing the overall variance.

V

 Nv∑
j=1

wj
1

Np

Np∑
n=1

f(Xn, vj)

gx(Xn)
ψ(Xn, vj)


=

Nv∑
i=1

Nv∑
j=1

wiwj
Np

COV
[
f(X, vi)

gx(X)
ψ(X, vi),

f(X, vj)

gx(X)
ψ(X, vj)

]
(2.288)

But here the evolution of the particles depends on corresponding the velocity vj thus in-

dependent particles for all velocity Gauss points (vj)j=1,...,Nv are needed. The number of

markers can vary over the different quadrature nodes yielding more flexibility for variance

reduction. In the following X1,j , . . . , XNp,j ,j denote the markers belonging to a Gauss point

vj which are i.i.d.∼ Xj , where Xj is distributed according to gx,j(x). All markers are drawn
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independently and the sampling distribution gx,j as well as number of markers Np,j can be

chosen arbitrarily. The overall number of samples, directly proportional to the computational

costs, is Np =
∑Nv

j=1Np,j .

∫ ∞
−∞

∫ L

0
f(x, v)ψ(x, v) dxdv ≈

Nv∑
j=1

wj E
[
f(Xj , vj)

gx,j(Xj)
ψ(Xj , vj)

]

≈
Nv∑
j=1

wj
1

Np,j

Np,j∑
n=1

f(Xn,j , vj)

gx,j(Xn,j)
ψ(Xn,j , vj)︸ ︷︷ ︸

:=I(f ·ψ)

(2.289)

The overall variance of (2.289) in eqn. (2.290) can be reduced by adapting the number of

samples.

V [I(f · ψ)] =

Nv∑
j=1

w2
j

Np,j
V
[
f(Xj , vj)

gx,j(Xj)
ψ(Xj , vj)

]
(2.290)

The straightforward variance reduction is to choose gx,j(x) close to f(x, vj). It is most

naturally to take the number of particles Np,j for each quadrature point vj proportional to

the corresponding normalizing constant.

Np,j ∼ (wj γj)
2, γj :=

∫ L

0
f(x, vj) dx (2.291)

This keeps the absolute error on the same level, yet we are more interested in the relative

error also known as the coefficient of variance, such that

Np,j ∼ (wj γj)

is a better rule of thumb. Unfortunately none of these quadrature rules guarantee convergence

for Np → ∞ and a fixed Nv. We encountered this situation already in the discussion of

the gyroaverage, which combined periodic quadrature with Monte Carlo. The problem was

resolved by introduction of a random shift onto the quadrature nodes. The same can be

done in non-periodic domains and is again basically stratification with only one particle per

stratum. The sample particles can be drawn according to eqn. (2.292), which guarantees a

variance reduction but not necessarily a gain in efficiency.

Vn,j =

(
j − Un
Nv

)
(vmax − vmin) + vmin, j = 1, . . . , Nv

Un ∼ U(0, 1) i.i.d for all n = 1, . . . , Np

wn,j =
(vmax − vmin)

Nv

Xn,j ∼ X

(2.292)

When interpreted as a randomly shifted Riemann sum the Monte Carlo estimator for the

samples obtained from eqn. (2.292) yields the quite unattractive convergence rate of O(Nv)

for Nv →∞, although the rate for small Nv might be much higher. Up to now it is unclear

how to randomize the Gauss–Hermite quadrature with its attractive convergence rate. We

suspect that high order Quasi Monte Carlo techniques with an interlacing factor in the velocity

dimension can yield much better convergence rates, which is demonstrated for Gaussians

in [84]. The variance in V being much larger than the variance in X can be denoted by

E
[
V
[
f(X,V )

g(X,V )
ψ(X,V ) | X

]]
� E

[
V
[
f(X,V )

g(X,V )
ψ(X,V ) | V

]]
. (2.293)
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In this case the conditioning (2.289) becomes a very efficient replacement for the Monte

Carlo estimator. But when estimating the electric field for Vlasov–Poisson with importance

sampling the weights reduce to a constant C and the test-function is only spatially dependent.

By the law of total variance we can see that the above criteria is not met in the latter case:

E
[
V
[
f(X,V )

g(X,V )
ψ(X) | X

]]
= E [V [Cψ(X) | X]] = C2E [V [ψ(X) | X]] = 0, (2.294)

E
[
V
[
f(X,V )

g(X,V )
ψ(X) | V

]]
= C2

(
V [ψ(X)]− E [V [ψ(X)|V ]]

)
. (2.295)

We conclude that the linearized Vlasov–Ampère is a better candidate for conditioning. Nev-

ertheless these are only expectations such that improvements might still be possible.

Note that this is also possible for the three dimensional linearized Vlasov–Maxwell system

without external magnetic field B0. A homogeneous constant magnetic field B0 leads via the

Lorenz force v ×B0 to the rotating gyromotion changing the velocity coordinate v. But the

part of the velocity v parallel to the magnetic field v‖ ‖ B0 stays untouched thus allowing

one dimensional quadrature rule along v‖. Gyrokinetic theory supposes the existence of a

coordinate transformation - near identity transform - in order to transform the six dimen-

sional system in a coordinate system such that one dimension is constant over space and time

yielding a reduction from six to five dimensions. Then it turns out that the fifth dimension,

the magnetic moment, stays constant over time also in the nonlinear case, which is our entry

point to massive variance reduction. There is an abundance of literature concerning gyroki-

netic theory available targeted mostly to physicists how are already familiar with the topic,

such that we recommend [26] for readers of this work.

To our surprise neither the gyrokinetic particle codes (ORB [71], EUTERPE [120]) nor the

Eulerian (GENE, GKW [121], AstroGK [122]) or Semi-Lagrangian (GYSELA [123]) solvers

employ a rapidly converging quadrature rule like Gauss–Hermite onto the µ component in

gyrokinetic theory, thus on could probably improve both Lagrangian and Eulerian codes.

For the conditioning of the linearized Vlasov–Poisson system Sobol numbers are used in x

and different Gaussian quadrature rules in v. The Quasi Monte Carlo sequence is chosen,

because it is trivial to improve over the standard Monte Carlo by much simpler methods such

as stratification. Scatter plots of the density for the standard Sobol numbers, the Gauss–

Legendre and Gauss–Hermite quadrature as well as the randomized midpoint rule are found

in fig. 2.20. For Gauss–Hermite a second alternative is also shown, where the proportional

allocation for each quadrature node is used. The recurrence phenomenon observed in fig. 2.22

stems from the mesh based representation. Since the grid in v is deterministic and the Poisson

equation linear it is possible to calculate the integrated variance of the electric field on each

grid point. This shows the need for that for the Bump-on-tail the region between the bump

and the Maxwellian needs more particles. For the Landau the Gauss–Hermite proportional

allocation yields improvements, although the outliers should have been treated separately.

We already know from theory that Vlasov–Poisson is not a good candidate to demonstrate

this method, which is also underlined by fig. 2.21. Yet in practice the δf method is used,

such that better results can be achieved for linear Landau damping and the Bump-on-tail

instability, see fig. 2.22.
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Quasi Monte Carlo Gauss–Legendre

Gauss–Hermite Gauss–Hermite(alt.)

random midpoint

Figure 2.20.: Lagrangian particles transporting the color of the initial condition for strong

Landau damping at tmax using conditional Monte Carlo. For QMC and the random mid-

point rule the filamentation caused by the Landau damping can be clearly seen. For the

Gauss methods the particles are obviously randomly distributed in x and deterministic in v.

Contrary to the other Gauss methods the random midpoint appears to be non-deterministic

and does not suffer from the recurrence. Gauss–Legendre, Gauss–Hermite and the midpoint

method seem waste particles on areas where the density f is small (blue). For Gauss-Legendre

this is extreme as many particles accumulate at v ≈ ±4. In Gauss–Hermite (alt.) this prob-

lem is circumvented by proportional allocation but the recurrence remains such that the

filamentations are not visible anymore.
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QMC Gauss–Legendre G.-Hermite G.-Hermite(alt.) Midpoint

Weak Landau 4.009e-06 3.591e-06 3.768e-06 2.378e-06 2.739e-06

Strong Landau 0.02539 0.06531 0.1143 0.02611 0.04467

Bump-on-tail 4.848 90.81 59.26 256.3 53.59

Figure 2.21.: Integrated variances of the electric field at tmax for the linearized Vlasov–Poisson

and a constant total number of particles. The variance increases by the conditioning implying

that the method fails to improve the QMC estimate.
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electrostatic energy IVAR[E]

Weak Landau damping Np = 104, Nv = 50

Strong Landau damping Np = 104, Nv = 40

Bump-on-tail instability Np = 103, Nv = 25

Figure 2.22.: Linearized Vlasov–Poisson with conditioning in the velocity domain. The pro-

portional allocation for Gauss–Hermite quadrature successfully reduces variance although it

leads to spiking variance estimates for Np,j < 5.
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2.5. Fokker–Planck collisions

2.5. Fokker–Planck collisions

To implement collisions in the Vlasov–Poisson model we follow [15] and introduce the Fokker–

Planck equation (2.296),

∂f(x, v, t)

∂t
= θ

∂

∂v
((v − µ)f(x, v, t)) +

σ2

2

∂2f(x, v, t)

∂v2
(2.296)

with parameters θ(x), µ(x) and σ(x). In the literature one often finds the diffusion coefficient

D = σ2

2 and γ = θ. The equilibrium solution is

feq(x, v, t) =

√
θ(x)

πσ(x)2
e
−θ (v−µ(x))2

σ(x)2 =
1

√
2π σ(x)√

2θ

e
− 1

2

 v−µ(x)
σ(x)√

2θ

2

=

√
θ

2πD
e−

1
2
θ(v−µ(x))2

D .

(2.297)

Note that we are only interested in a solution for t ∈ [0,∆t] since we use (2.296) in combination

with the Vlasov equation (2.1). The Vlasov–Fokker–Planck equation reads

∂f

∂t
+ v · ∇xf − (E + v ×B) · ∇vf︸ ︷︷ ︸

advection

= ∇v ·
[
θ(v − µ)f − σ2

2
∇vf

]
︸ ︷︷ ︸

collisions

. (2.298)

For the purpose of implementation we are only interested to solve (2.296) during a splitting

step t ∈ [0,∆t]. Let g(x, v, t) be a probability distribution that solves the same Fokker–Planck

equation as f
∂g(x, v, t)

∂t
= θ

∂

∂v
((v − µ)g(x, v, t)) +

σ2

2

∂2g(x, v, t)

∂v2
. (2.299)

Let (xk(t = 0), vk(t = 0)) be i.i.d. according to g(t = 0, x, v) for k = 1, . . . , Np. The cor-

responding stochastic differential equation to eqn. (2.299) is an Ornstein–Uhlenbeck process

(2.300), which is one way of solving the Fokker–Planck equation [124][p. 99].

dVt = θ (µ− Vt) dt+ σdWt (2.300)

The time development of the stochastic process for the Vlasov equation was prescribed by the

characteristics (2.6), which we can add now to (2.300) to obtain the process corresponding

to the Vlasov–Fokker–Planck equation:

d

dt
X(t) = V (t) (2.301)

d

dt
V (t) = − (E(t,X(t)) + V (t)×B(t,X(t))) + θ (µ− V (t)) + σdWt (2.302)

We define a time discretization along time steps ∆t and change the standard notation to

xtn := xn(t∆t), vtn := vn(t∆t), t ∈ N. (2.303)

2.5.1. Integrating the Ornstein–Uhlenbeck process

Since the transition probability of the Ornstein–Uhlenbeck process is known, we can integrate

eqn. (2.300) exactly. The transition probability (2.304) from a state v′ at time t′ to a state

v at time t′ for t > t′ is adapted from [124][p. 100].

P
(
v, t, v′, t′

)
=

√
θ

2πD
(
1− e−2θ(t−t′)

) exp

−θ
(
v − µ

(
1− e−θ(t−t

′)
)
− v′e−θ(t−t′)

)2

2D
(
1− e−2θ(t−t′)

)


(2.304)
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One also obtains the equilibrium distribution in the limit of large time.

lim
t→∞

P
(
v, t, v′, t′

)
= feq(v) (2.305)

Knowing the transition probability allows us to set up a stochastic process by sampling this

transition as

Vt = V0e−θt + µ
(

1− e−θt
)

+
σe−θt√

2θ
We2θt−1

= V0e−θt + µ
(

1− e−θt
)

+
σ√
2θ
W1−e−2θt

= V0e−θt + µ
(

1− e−θt
)

+

√
D

θ
W1−e−2θt ,

(2.306)

where Wt ∼ N (0, t) denotes a standard Wiener process. Resolving eqn. (2.306) for V0 yields

a backward propagation in eqn. (2.307).

V0 = Vte
θt + µ

(
1− e−θt

)
− eθt

√
D

θ
W1−e−2θt

= Vte
θt + µ

(
1− eθt

)
−︸︷︷︸
=±

√
D

θ
We2θt−1

(2.307)

Note that the Wiener process is symmetric, such that the change of sign is irrelevant. For the

backward equation (2.307) the transition probability is be described for t < t′ by eqn. (2.308).

P
(
v, t|v′, t′

)
=

√
θ

2πD
(
e2θ(t′−t) − 1

) exp

−θ
(
v − µ

(
1− eθ(t

′−t)
)
− v′eθ(t′−t)

)2

2D
(
e2θ(t′−t) − 1

)
 (2.308)

The long time limit of the backward transition probability (2.308) is obtained in eqn. (2.309).

lim
t′→∞

P
(
v, 0|v′, t′

)
= lim

t′→∞

√
θ

2πD (e2θt′ − 1)
exp

−θ
(
v − µ

(
1− eθt

′
)
− v′eθt′

)2

2D (e2θt′ − 1)


= lim

t′→∞

√
θe−2θt′

2πD (1− e−2θt′)︸ ︷︷ ︸
→0

exp

−θ
(
ve−θt

′ − µ
(

e−θt
′ − 1

)
− v′

)2

2D (1− e−2θt′)


︸ ︷︷ ︸

→exp
[
−θ (v′−µ)2

2D

]
= 0

(2.309)

In the semi-discretization of eqn. (2.306) we substitute the Wiener process by a normally

distributed random variable U ∼ N (0, 1) which reads

Vt = V0e−θt + µ
(

1− e−θt
)

+

√
D

θ

√
1− e−2θtU. (2.310)

Here Vt is just linear combination of the two random deviates V0 and U . In the following

two ways are shown, how to use the samples Vt for Monte Carlo integration of an arbitrary

function h. For this the integral over h is rewritten in two different ways using that the
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probability densities are normalized. In eqn. (2.311) the probability density of V0 is denoted

by v0 7→ g(v0, t = 0).∫
R
h(vt) dvt

=

∫
R
h(vt) dvt

∫
R

1

2π
e−

u2

2 du︸ ︷︷ ︸
=1

=

∫
R

∫
R
h(vt)

1

2π
e−

u2

2 dvtdu

=

∫
R
h(vt) dvt

∫
R
g(v0, t = 0) dv0︸ ︷︷ ︸

=1

=

∫
R

∫
R
h(vt)g(v0, 0) dvtdv0

(2.311)

There are two possibilities for a change of variable that substitutes vt yielding only an integral

over v0 and u, see eqn. (2.312).

vt = v0e−θt + µ
(

1− e−θt
)

+

√
D

θ

√
1− e−2θtu

dvt = e−θt dv0

dvt =

√
D

θ

√
1− e−2θt du

(2.312)

The first line of eqn. (2.311) yields an expectation, where the probability density of the

diffusion is completely eliminated.∫
R

∫
R
h
(
v0e−θt + µ

(
1− e−θt

)
+

√
D

θ

√
1− e−2θtu︸ ︷︷ ︸

=vt(v0,u)

) 1

2π
e−

u2

2 e−θtdv0du

= E

h(V0e−θt + µ
(
1− e−θt

)
+
√

D
θ

√
1− e−2θtU

)
g(V0, t = 0) 1

2π e−
U2

2

1

2π
e−

U2

2 e−θt

 = E
[

h(Vt)

g(V0, t = 0)eθt

]
(2.313)

This estimator is suited for weak collisions. Substitution of vt in the second line of eqn. (2.311)

yields an expectation in eqn. (2.314) which is entirely independent of g and therefore, suited

for strong collisions.∫
R

∫
R
h
(
v0e−θt + µ

(
1− e−θt

)
+

√
D

θ

√
1− e−2θtu︸ ︷︷ ︸

=vt(u,v0)

)√D

θ

√
1− e−2θtg(v0, 0) dudv0

= E

h(V0e−θt + µ
(
1− e−θt

)
+
√

D
θ

√
1− e−2θtU

)
g(V0, t = 0) 1

2π e−
U2

2

g(V0, 0)

√
D

θ

√
1− e−2θt


= E

 h(Vt)

1
2π e−

U2

2

√
θ

D(1−e−2θt)

 (2.314)

Applying eqn. (2.306) to the particles yields

vt+∆t
n =vtne−θ(x

t
n)∆t + µ(xtn)

(
1− e−θ(x

t
n)∆t

)
+
σe−θ(x

t
n)∆t√

2θ(xtn)

√
e2θ(xtn)∆t − 1utn

=µ(xtn) +
(
vtn − µ(xtn)

)
e−θ(x

t
n)∆t +

σ(xtn)√
2θ(xtn)

√
1− e−2θ(xtn)∆t utn

(2.315)

where utn ∼ N (0, 1) i.i.d. for all n, l.
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2.5.2. Likelihood integration

For the Vlasov equation we know that the values of the distribution function stay con-

stant along the characteristics. Thus it suffices to define the sampling likelihood g0
n =

g(0, xn(0), vn(0)) and the distribution likelihood f0
n = g(0, xn(0), vn(0)). With the Fokker–

Planck equation g(t, xn(t), vn(t)) is not anymore a constant of time, but still the ratio
f(t,xn(t),vn(t))
g(t,xn(t),vn(t)) is.

With the transition probability (2.304) we can calculate the evolution of the likelihoods by

f(x, v, t) =

∫
R
f(x, v′, 0)P

(
v, t, v′, 0

)
dv′

=

∫
R
f(x, v′, 0)

√
θ

2πD (1− e−2θt)
exp

[
−
θ
(
v − µ

(
1− e−θt

)
− v′e−θt

)2
2D (1− e−2θt)

]
dv′. (2.316)

Inserting the Klimontovich density yields

f(x, v, t) =
1

Np

Np∑
n=1

δ(x− x0
n)P

(
v, t, v0

n, 0
)
wn

=
1

Np

Np∑
n=1

δ(x− x0
n)wn

√
θ

2πD (1− e−2θt)
exp

[
−θ
(
v − µ

(
1− e−θt

)
− v0

ne−θt
)2

2D (1− e−2θt)

]
. (2.317)

After the particle has been redrawn according to the Ornstein–Uhlenbeck process the spatial

coordinate did not change, therefore, xtn = x0
n. The updated likelihoods read

f tn := f(xtn, v
t
n, t) :=

1

Np
P
(
vtn, t, v

0
n, 0
)
w0
n

=
f0
n

g0
n

1

Np

√
θ

2πD (1− e−2θt)
exp

[
−θ
(
vtn − µ

(
1− e−θt

)
− v0

ne−θt
)2

2D (1− e−2θt)

]
.

(2.318)

The 1
Np

term causes the likelihoods to peak, which is an unnatural behavior. Therefore, we

introduce an additional smoothing kernel Kh in spatial direction.

f tn := f(xtn, v
t
n, t) :=

1

Np

Np∑
m=1

Kh

(
xtn − x0

m

)
P
(
vtn, t, v

0
m, 0

)
wm

=

√
θ

2πD (1− e−2θt)

1

Np

Np∑
m=1

wmKh

(
xtn − x0

m

)
exp

[
−θ
(
vtn − µ

(
1− e−θt

)
− v0

me−θt
)2

2D (1− e−2θt)

]
(2.319)

Since we are working with the Klimontovich density, this is, of course, only an estimator for

the value of the density. The problematic point here is the sum over all particles, for all

particles, for every collision step yielding costs O(N2
p ). The value of the weight is smoothed

with a Gaussian in every collision step. This already corresponds to a N-body problem for-

mulation, where the costs can be reduced to O(Np) by the fast multipole method.

Let us first sketch another approach originating from the δf method applied onto the gyroki-

netic Vlasov–Fokker–Planck system [125]. The equilibrium solution feq to the Fokker–Planck

equation stays constant over every time step of the splitting. One can use the particles,

which are distributed according to g and solve the Ornstein–Uhlenbeck process (2.306). The
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likelihood feq(x
t
n, v

t
n) of any state (xtn, v

t
n) can be evaluated at every time t because feq is

known and does not depend on time. When the Ornstein–Uhlenbeck process (2.315) is ap-

plied on the particles, they are depending on the collision frequency θ, mildly displaced or

scattered over the entire phase space. This corresponds to the evolution of the sampling

density g(x, v, t) under the Fokker–Planck equation. Now feq and g follow the same time

evolution and therefore,

feq(xn(t), vn(t))

g(xn(t), vn(t), t)
=
feq(xn(0), vn(0))

g(xn(0), vn(0), 0)
= const. for all t. (2.320)

This allows to determine the sampling likelihood gtn after the collision step as

g(xn(t), vn(t), t) = g(xn(0), vn(0), 0)
feq(xn(t), vn(t))

feq(xn(0), vn(0))
, (2.321)

which can also be applied to f yielding

f(xn(t), vn(t), t) = f(xn(0), vn(0), 0)
feq(xn(t), vn(t))

feq(xn(0), vn(0))
. (2.322)

Essentially this is the same procedure as in [15], yet this scaling of the likelihoods has nothing

to do with the control variate. There is no control variate present during the collision step,

not here and also not in [15]. A priori the control variate is independent of the equilibrium of

the collision operator. For strong collisions or long times, the solution will tend to a certain

equilibrium, therefore, the equilibrium can serve as a suitable control variate. Of course, f tn
is now a likelihood for a specific particle and does not necessarily represent the distribution

function well at that point. Although eqn. (2.313) and eqn. (2.314) are the unbiased and

therefore correct likelihoods it is mostly better to use eqn. (2.322) instead, because it can be

interpreted as conditioned Monte Carlo estimator on the sigma algebra{
f(X(t), V (t), t) = f(X(0), V (0), 0)

feq(X(t), V (t))

feq(X(0), V (0))

}
. (2.323)

In [125] and [15] coarse graining is used to smear out the f tn over the particles, which is

effective once the solution is close to the equilibrium. Since the equilibrium is a long term

solution, the propagation described in eqn. (2.322) is a feasible choice for t → ∞, yet this

needs some further rigorous explanation.

We try a motivation by Bayes’ theorem (2.324), which gives a relation for the probability P
of two events A,B and their mixed conditional probabilities.

P(A|B) =
P(B|A)P (A)

P (B)
⇒ P (B) =

P(B|A)

P(A|B)
P (A) (2.324)

Since a marker (Xt, V t) subject to the Ornstein–Uhlenbeck process is a random deviate dis-

tributed according to the probability density f , we can identify the probabilities of observing

this marker as

P
(
{V t = v ∧Xt = x}

)
= f(x, v, t) and P

(
{V 0 = v′ ∧X0 = x′}

)
= f(x′, v′, 0). (2.325)

The marker position (Xt, V t) at time t > 0, depends obviously by the Ornstein–Uhlenbeck

process on the position (X0, V 0) at time t = 0 and vice versa. In the equilibrium state,

Risken [124][p. 101, eqn. 5.32] shows that only for large times, the joint distribution of (V t)

and (V 0) factorizes and the two states become then actually independent. This perfectly

makes sense when one thinks of collisions as destructors of the initial information content.
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Applying Bayes’ theorem (2.324) onto the two events {V t = v∧Xt = x} and {V 0 = v′∧X0 =

x′} yields

P
(
{V t = v ∧Xt = x}

)
=
P
(
{V t = v ∧Xt = x} | {V 0 = v′ ∧X0 = x′}

)
P ({V 0 = v′ ∧X0 = x′} | {V t = v ∧Xt = x})

P
(
{V 0 = v′ ∧X0 = x′}

)
.

(2.326)

The spatial position does not change in the collision step, therefore, it is very convenient to

drop the spatial dependency from eqn. (2.326) by setting x = x′. In the case of spatially

dependent collisions, one has to drag x along, yet the outcome is the same.

P
(
{V t = v ∧Xt = x}

)
=
P
(
{V t = v} | {V 0 = v′}

)
P ({V 0 = v′} | {V t = v})︸ ︷︷ ︸

:=η

P
(
{V 0 = v′ ∧X0 = x}

)
(2.327)

The involved conditional probabilities in η, (2.327), are in fact already known as the transition

probability P of the Ornstein–Uhlenbeck process (2.304).

P
(
{V t = v} | {V 0 = v′}

)
= P (v, t|v′, 0) and P

(
{V 0 = v′} | {V t = v}

)
= P (v′, 0|v, t)

(2.328)

This is even more convenient, since now we can easily insert eqn. (2.304) into the ratio ν,

which reads

η =
P (v, t|v′, 0)

P (v′, 0|v, t)
=√

e2θt − 1

1− e−2θt︸ ︷︷ ︸
=eθt

exp

[
−θ
(
v − µ

(
1− e−θt

)
− v′e−θt

)2 − (ve−θt − µ
(
e−θt − 1

)
− v′

)2
2D (1− e−2θt)

]
= eθt

(2.329)

If we suppose that backward diffusion is the same as forward diffusion one may falsely identify

the probabilities as

P
(
{V t = v} | {V 0 = v′}

)
= P (v, t|v′, 0) and P

(
{V 0 = v′} | {V t = v}

)
= P (v′, t|v, 0).

(2.330)

This is justified when the system is equilibrium, because in equilibrium there is no direction

of time such that forward diffusion is the same as backward diffusion. This yields then

η =
P (v, t|v′, 0)

P (v′, t|v, 0)
= exp

[
−θ
(
v − µ

(
1− e−θt

)
− v′e−θt

)2 − (v′ − µ (1− e−θt
)
− ve−θt

)2
2D (1− e−2θt)

]

= exp

[
−θ
(
(v − µ)− (v′ − µ)e−θt

)2 − ((v′ − µ)− (v − µ)e−θt
)2

2D (1− e−2θt)

]

= exp

[
−θ (v − µ)2 + (v′ − µ)2e−2θt − (v′ − µ)2 − (v − µ)2e−2θt

2D (1− e−2θt)

]
= exp

[
−θ
(
1− e−2θt

) (
(v − µ)2 − (v′ − µ)2

)
2D (1− e−2θt)

]

= exp

[
−θ (v − µ)2 − (v′ − µ)2

2D

]
=
feq(v)

feq(v′)
.

(2.331)
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After some elemental operations one obtains the simple propagation defined in eqn. (2.322),

which was used in [125, 15]. One can successively update and store the η for every particle,

as a third weight, serving as a multiplicator for the likelihoods. We chose the straightforward

approach of having this information in gtn and f tn. The only thing to remember is that we

are not in the Klimontovich case anymore, where f tn is the actual value of the density at the

particle position. The δf method heavily relies on this, therefore, from time to time, one can

restore this state by e.g., coarse graining, or another smoothing or interpolation technique.

In the next section we show that there is also another way in handling these likelihoods.

2.6. Sequential importance re-sampling (SIR)

In the nonlinear dynamics of the Vlasov–Poisson system some particles might be more im-

portant than others. For the random markers, sampling the transport in the Vlasov equation

is important, but first we need to obtain the transport model. Our first concern is to reduce

the variance in the Poisson equation, as this gives us the electric field and thus the character-

istics for the transport. There is a trade off between the Vlasov (2.1) and the Poisson (2.2)

equation that is not yet understood. Therefore, we focus on the Poisson equation. Under

the control variate, the weights W (t) are not constant anymore but start to change as δW (t)

and become truly time dependent stochastic process. The simplest idea, is to split particles

with large weight and delete the ones with negligible contribution. This, of course, makes

only sense if the split particles do not follow the same characteristics. As the characteristics

depend only on the phase space position, just creating two new particles with half the weight

at the same position does not change the result, unless we have weak or strong collisions.

But as Fokker–Planck collisions are involved this poses no problem.

To conclude, we want to manipulate the samples in a way such that the variance of the

weights ωk, which we belief to be highly relevant, is small.

ωn := δwn =
fn − αh(zn)

gn
(2.332)

2.6.1. From Np to Mp markers

We start with a simple example suited for Vlasov–Fokker–Planck. Suppose we have an

ensemble of weighted markers (zn(t), wn(t)), n = 1, . . . , Np distributed according to the

unknown probability density g(t, z) and representing the density f(t, z) > 0 by weights

wn = f(t,zn(t))
g(t,zn(t)) > 0. This setting corresponds to a standard particle simulation, disregarding

any control variate. With f being a density, we know wn(t) ≥ 0, ∀n = 1, . . . , Np. At some

point in time we want to change the sample size from Np markers to Mp. The Sequential

Importance Re-sampling (SIR) or often referred to as bootstrap filter implements an urn

model [126].

A discrete cumulative probability distribution is constructed from the samples and (2.337)

is then essentially the discrete inverse transform sampling. The main drawback here is that

even in the case Mp = Np, we lose some phase space resolution. The same marker for a single

characteristic can be drawn twice, while some others might not be drawn at all. Example:

With the new particle ensemble {z∗m∗, f∗m∗, g∗m∗} the standard Monte Carlo estimator for the

mass becomes ∫∫
f(x, v, t) dxdv ≈ 1

Mp

Mp∑
m=1

f∗m∗
g∗m∗

. (2.340)
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Algorithm 1 Sequential Importance Re-sampling (SIR) for full f

Input: Ensemble {(zn, fn, gn), n = 1, . . . , Np},
Weights wn = fn

gn
≥ 0 for all n = 1, . . . , Np

Output: Ensemble {(z∗∗m , f∗∗m , g∗∗m ), m = 1, . . . ,Mp}
1: Normalize the weights

w̄n :=
wn∑Np
l=1wl

, ∀n = 1, . . . , Np. (2.333)

This creates a discrete probability distribution, where the probability of drawing then

kth marker is w̄n.

P
(′′ Draw (zn, wn)′′

)
= w̄n (2.334)

2: Determine the corresponding discrete cumulative distribution function by the cumulative

sum pl of {w̄n, n = 1 . . . , NP }

pl :=
l∑

n=1

w̄n, l = 1, . . . , Np. (2.335)

3: Draw Mp uniformly identically independently distributed numbers

um ∼ U(0, 1), for m = 1, . . . ,Mp. (2.336)

4: Draw Mp markers (z∗m, f
∗
m, g

∗
m) from the ensemble {(zn, fn, gn), n = 1, . . . , Np} by setting

for all m = 1, . . . ,Mp

(z∗m, f
∗
m, g

∗
m) := (zn, fn, gn), k = max {l : pl ≤ um} (2.337)

5: Re-normalize the weights and likelihoods. The position of the markers did not change

therefore

(z∗∗m , f
∗∗
m ) = (z∗m, f

∗
m) for all m = 1, . . . ,Mp. (2.338)

Recalling the normalization, eqn. (2.333) alters only the likelihood g∗∗m . Np∑
l=1

wl

 = w∗∗m =
f∗∗m
g∗∗m

⇒ g∗∗m :=
f∗∗m(∑Np
l=1wl

) =
f∗m(∑Np
l=1wl

) (2.339)
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Also the second moment∫∫
f(x, v, t)2 dxdv =

∫∫
f(x, v, t)2

g(x, v, t)
g(x, v, t) dxdv ≈ 1

Mp

Mp∑
m=1

(f∗m∗)
2

g∗m∗
(2.341)

can also be recovered, allowing application of moment matching techniques.

2.6.2. Extension to δf

Once algorithm 1 is applied onto a ensemble, a second application yields no additional effect

since the weights, the likelihood ratios, do not change over time. Suppose an ensemble of

belief-weighted markers (zn(t), ωn(t)), n = 1, . . . , Np distributed according to the unknown

probability density g(t, z) with the likelihoods fn, gn, hn as described in (2.332). We modify

algorithm 1 to show its full potential with time dependent weights.

2.6.3. Choice of importance weight

In a δf particle simulation the weights under the control variate δwn are much more impor-

tant for sampling based variance reduction techniques. Algorithm 2 provides a tool for this,

which works also for negative weights disregarding the sign. But here the weights δwn(t)

can be highly oscillating over time. A particle characteristic might always be important at a

later point in time, so when disregarded to early a part of the solution will be lost. Possible

remedies are additional filter algorithms on the time dependent belief ωn(t) = δwn(t).

With Algorithm 2, one is free to choose any bounded belief function to emphasize the impor-

tance of certain particles.
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Algorithm 2 Sequential Importance Re-sampling (SIR) for δf

Input: Ensemble {(zn, fn, gn), n = 1, . . . , Np},
Weights ωn = fn−h(zn)

gn
Output: Ensemble {(z∗∗m , f∗∗m , g∗∗m ), m = 1, . . . ,Mp}

1: Normalize the non-negative weights

ω̄n :=
ωn∑Np
l=1 |ωl|

, for all n = 1, . . . , Np. (2.342)

2: Determine the corresponding discrete cumulative distribution function by the cumulative

sum pl of {ω̄n, n = 1 . . . , NP }

pl :=
l∑

n=1

ω̄n, l = 1, . . . , Np. (2.343)

3: Draw Mp uniformly identically independently distributed numbers

um ∼ U(0, 1), for m = 1, . . . ,Mp. (2.344)

4: Draw Mp markers (z∗m, f
∗
m, g

∗
m, ω

∗
m) from the ensemble {(zn, fn, gn, ωn), n = 1, . . . , Np}

by setting for all m = 1, . . . ,Mp:

(z∗m, f
∗
m, g

∗
m, ω

∗
m) := (zn, fn, gn, ωn), k = max {l : pl ≤ um} (2.345)

5: Re-normalize the weights and likelihoods. The position of the markers did not change

therefore

(z∗∗m , f
∗∗
m ) = (z∗m, f

∗
m) for all m = 1, . . . ,Mp. (2.346)

Again we recall the normalization (2.342) to recover the weight

|ω∗∗m | = 1 ·
Np∑
l=1

|ωl|, (2.347)

which shall be defined in the usual δf notation

|ω∗∗m | :=
∣∣∣∣f∗∗m − h(z∗∗m )

g∗∗m

∣∣∣∣ . (2.348)

Thus, we alter only the sampling likelihood to g∗∗m

g∗∗m :=
|f∗∗m − h(z∗∗m )|∑Np

l=1 |ωl|
sgn(ω∗m) (2.349)
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2.7. Numerical results

At last the following simulation results combine different methods previously introduced in

different ways, such that we have to treat them at the end. It is always problematic to

use a highly resolved reference solution using the same solver, because the Monte Carlo

convergence rate might be observed although there is a bug in the code. Therefore, if not

specifically mentioned otherwise, the reference solution is obtained by a spectral solver based

on Fourier transformation in x and v, and symplectic time integration. A description of the

method can be found in [21].

2.7.1. Monte Carlo PIC

Basic questions concerning a standard PIC are many times related to conservation of entropy,

convergence rates, uncertainties and choice of an appropriate time step. In the following

sections these basic properties are investigated using the stochastic tools we have derived

before.

Entropy estimation

We estimate the entropy during a nonlinear Landau damping simulation using the nearest

neighbor estimator (2.39). As this estimator is designed for random numbers, we are also in-

terested in the case of the Sobol (QMC) and scrambled Sobol (RQMC) sequence Parameters

are with cubic splines k = 0.5, ε = 0.5, ∆t = 0.01, Nfem = 32, Np = 105.

When including Fokker–Planck collisions, we fix the collision frequency to θ = 0.05 and

σ = 2
√

2θ. This setting pulls the distribution function towards the corresponding Fokker–

Planck equilibrium formed by the Maxwellian 1√
2π

e−
1
2( v2 )

2

, which corresponds to heating the

plasma.

For collision-less Vlasov–Poisson (fig. 2.23) the nearest neighbor estimator finds the correct

entropy, which also seems to be conserved during the simulation (fig. 2.23b). The low discrep-

ancy sequences indicate a higher entropy in the beginning of the simulation, which perfectly

makes sense as the sequences exhibit more order than the random numbers. Over time QMC

and RQMC seem to loose the low discrepancy property and converge to the Monte Carlo en-

tropy estimate. Although, the electrostatic energy in fig. 2.23a indicates faster convergence

for (R)QMC, this seems to have little influence on the particle entropy. The Kullback Leibler

entropy estimate indicates that the distribution function differs strongly from the initial con-

dition.

Under heating the entropy raises correctly to the precalculated value (fig. 2.24b). Differing

from the previous case the low discrepancy properties seems to be destroyed immediately by

the random instantiation of the Ornstein–Uhlenbeck process. Due to the incorrect weight

propagation, the Shannon estimator is unable to recover the correct limit (fig. 2.24d). We

also see an increase in integrated variance (fig. 2.24d), although the initial field energy seems

to be entirely dissipated (fig. 2.24a).

Convergence rates for MC and RQMC using full f and δf

By convergence study with Np = 212, . . . , 221, ∆t = 0.05, Nfem = 32 and the third order

symplectic Runge Kutta [32], we want to investigate the order of convergence for random

and low discrepancy particles. A highly resolved reference solution of the nonlinear Landau

damping problem is provided by a spectral solver. The expected convergence rates 1
2 for

MC and 1 − ε for QMC are found in every result. The measure of error is the difference in
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(a) Electrostatic energy for non-

linear Landau damping.

(b) Shannon entropy by nearest

neighbor estimator.

(c) Kullback-Leibler entropy

with respect to the initial

condition.

Figure 2.23.: Entropy estimates for collision-less nonlinear Landau damping considering ran-

dom numbers and low discrepancy sequences.

(a) Electrostatic energy for non-

linear Landau damping with

heating.

(b) Shannon entropy by nearest

neighbor estimator.

(c) Kullback-Leibler entropy

with respect to the initial

condition.

(d) Incorrect Shannon entropy estimate

by false propagation of sampling weights.

(e) Integrated variance of the electric

field.

Figure 2.24.: Entropy estimates nonlinear Landau damping with strong collisions, considering

random numbers and low discrepancy sequences. The entropy approaches the correct value

for the Fokker–Planck equilibrium.

94



2.7. Numerical results

Figure 2.25.: The estimated amount of variance reduction for nonlinear Landau damping.

Below the threshold the control variate is turned off. This happens in the beginning of the

nonlinear phase.

(a) Absolute `2 error for t ∈ [0, 25] on E (b) Absolute `2 error for t ∈ [10, 25] on E

Figure 2.26.: Convergence diagram for PIC simulations of nonlinear Landau damping at

different points in time. The Monte-Carlo and Quasi-Monte convergence can be observed

independent of the control variate, which is effectively turned off after the linear phase.

electrostatic energy. But due to the initial damping see fig. 2.23a, the error in the linear phase

dominates. The control variate, efficient in the linear phase (fig. 2.25), reduces the variance

and, therefore, lowers the `2-error offset for the δf methods in fig. 2.26a. This effect is the

strongest for the random numbers, but can be barely seen for the low-discrepancy sequence.

Generously excluding the linear phase in fig. 2.26b exhibits similar convergence rates, yet - as

expected - δf has no impact anymore. We are interested in a possible decay of the convergence

rate over time, as a sign of degeneration. For this we estimate the convergence rate by fitting

a slope for every point in time. In figures 2.27a and 2.27b the respective simulation with

the largest amount of markers is used as a reference, whereas fig. 2.27c uses the standard

reference, which required a simple moving average smoothing with time bandwidth of one,

to make this plot readable.
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(a) Convergence rate for every

time step with the last sample

itself as reference. (full f)

(b) Same as (a) but for δf with

Maxwellian control variate.

(c) Convergence rates with re-

spect to spectral reference solu-

tion.

Figure 2.27.: Slightly smoothed convergence rates for every time step for strong Landau

damping and random and quasi-random sequences. When the last sample, the one with the

largest number of particles, is taken as a reference the convergence rate is easier to obtain.

Nevertheless the correct O
(

1
Np

)
is observed for pseudo-random and O

(
1√
Np

)
for quasi-

random numbers, which appears to be stable over time.

Post-stratification

We want so see what improvements can be achieved by different post-stratification techniques.

The implementation of the histogram method is trivial and the quad-tree method yields just

another arrangement for the strata. Stratification works best on pseudo-random numbers

and has in general little to no effect on quasi Monte Carlo sequences. It is hard to find a

control variate for the nonlinear phase of Landau damping is such that an enhancement of

the standard Maxwellian control variate by post-stratification according to the scheme in

eqn. (2.254) is tested in fig. 2.28. More details have to be provided for the Voronoi method,

see fig. 2.29. Inspired by [99] we create a periodic boundary condition in spatial direction by

adding periodically ghost particles at both sides of the interval. The boundary in the velocity

domain is realized by mirroring at the fastest particle, see fig. 2.29a. In general one should

mirror at a higher position as the fastest particle such to avoid the deformed Voronoi cell

for the fastest particle see fig. 2.29a. Thus the effective number of particles is quadrupled in

the calculation of Voronoi cells. MATLAB uses qhull from [127] which is actually not the

bottleneck here but rather MATLABs way of looping over cells when calculating the Voronoi

volumes. The assumption that the particles are uniformly distributed within each stratum is

best met when the particles are sampled uniformly at the initialization. The support of the

sampling density g changes over time, but since phase space is incompressible the particles

stay uniformly distributed. Stratification improves random numbers but not quasi random

sequences since they already have a built in uniformity. Therefore the first example only tests

the improvements on ordinary random numbers, see fig. 2.30. In this example the length of

the domain was chosen larger k = 0.3 than in the standard test-case resulting in a weaker

damping rate in order to exclude the small amplitude noise effects whilst still retaining the

challenging nonlinear behavior. The Voronoi method appears to be better, such that it shall

be discussed in detail here, see fig. 2.31. For uniformly distributed random numbers major

improvements are made as expected from theory, see fig. 2.31a. But surprisingly also the

QMC numbers, designed for uniformity are clearly improved by the post-stratification see

fig. 2.31b. The Lagrangian phase space can be seen in fig. 2.32.

We can see from fig. 2.30b that the mass conservation is far from perfect. This also means

that the phase space volume in each stratum is not conserved, when stratification is applied.
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(a) Electrostatic energy for his-

togram.

(b) Electrostatic energy for

quad-tree.

(c) Estimated factor of variance

reduction.

Figure 2.28.: Post-stratification of the standard Maxwellian control variate for nonlinear Lan-

dau damping with Np = 2 ·104, ∆t = 0.1 with histogram and quadtree based choice of strata.

The estimated variance reduction increases significantly in the nonlinear phase, and best re-

sults are obtained with the equidistant histogram method while the quad-tree method fails

to enhance the simulation. Importance sampling is used, such that the additional positive

effect of uniform sampling on the δf method is missing.

(a) For a selection of 200 markers the white

ghost particles enforce periodically and mirrored

boundary conditions.

(b) Weights of Voronoi volumes for Np = 104

particles at t = 50 of nonlinear Landau damping.

Figure 2.29.: Every particle is assigned the weight of its Voronoi volume, where ghost particles

are used to create periodic and reflective boundary conditions in order to phase space volume.
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(a) electrostatic energy

(b) mass (c) energy error

Figure 2.30.: Post-stratification for nonlinear Landau Damping ε = 0.5, k = 0.3, Np =

104, ∆t = 0.05 on uniformly distributed (vmax = 5) random numbers. Re-stratification is

done every tenth time step. The best results are achieved by the Voronoi method. The

histogram and the Quad-tree method depend highly on the size of the strata, which leads to

under and over-smoothing. The standard method uses importance sampling.
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(a) MC (b) RQMC (Sobol) (c) RQMC (Sobol)

Figure 2.31.: Voronoi Post-stratification for nonlinear Landau Damping ε = 0.5, k =

0.5, Np = 104, ∆t = 0.05.

(a) Np = 106 RQMC particles

with importance sampling (pro-

vided as reference)

(b) Np = 104 MC particles with

importance sampling

(c) Np = 104 Voronoi post-

stratified MC particles

Figure 2.32.: Lagrangian particle phase space for nonlinear Landau damping with pseudo-

random Monte Carlo markers. The particle trapping effect, seen in the RQMC reference, is

also retained for the Voronoi method.

Thus, the pure stochastic stratification is too inconsistent, such that in future research one

could introduce additional constraints when calculating the new sampling weights gn in each

stratum in oder to conserve mass or even other moments of the Vlasov equation exactly.

Time step control

We have learned that PIC codes are dominated by three errors: the time integration error,

the Monte Carlo noise and the finite element approximation error, where the last two form

the RMSE.

First we want to show that the relative energy error can be a misleading diagnostic. We

employ a nonlinear Landau damping full−f simulation with the third order integrator rk3s

and a very small time step, which gives good energy conservation (fig. 2.33a), yet the result

does not fit the reference solution (fig. 2.33b). Increasing the number of particles Np and the

time step by a order of magnitude O(10), increases the relative energy error by roughly three

orders of magnitude due to third order integrator (fig. 2.33a). Nevertheless, the solution is

now much closer to the reference (fig. 2.33b), which now obviously stems from the number

of particles. Here fig. 2.33c already shows a good estimate for the integrated variance of the

electric field at low particle numbers. Note that for comparability, the factor 1
Np

does not

appear here but later in the sample integrated variance. Increasing the number of particles

reduced the variance and was here obviously necessary since we want to relate information

about the variance and the time integrator error in order to balance the time step dt and
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(a) Relative energy error for

small and large time step (dt)

(b) Electrostatic energy (c) Estimates for the integrated

variance of E (without 1
Np

).

Figure 2.33.: The relative energy error can be a misleading measure of solution quality (here

for strong Landau damping). Decreasing the number of particles and the time step by a factor

of ten yields the same costs and leads to a smaller energy error (a) but a worse solution of

the problem (b). Apart from the particle number the integrated variance depends on the

problem itself such that it is clear that independent of the time step a certain number of

particles is needed to resolve the small amplitudes (c).

number of particles Np.

The time integration error can be estimated for every particle by Runge Kutta methods with

integrated error estimates [34][pp.181]. Here we use Heun’s second order scheme 2.351 - the

second order explicit trapezoidal rule, containing already the first order explicit Euler 2.350.

An option for higher order is Fehlbergs Runge Kutta 4(5) [35][pp. 171], which for our testing

purposes converges too fast thus unnecessarily increasing the costs of this study.

Let (xtk, v
t
k), k = 1, . . . , Np be the random particles at time t > 0. The second order explicit

trapezoidal rule reads{
x̃t+4tk := xtk +4t vtk
ṽt+4tk := vtk +4t Ê(xtk, t)

q
m

explicit Euler (2.350)x
t+4t
k := xtk +4t 1

2

(
vtk + ṽt+4tk

)
vt+4tk := vtk +4t 1

2

(
Ê(xtk, t) + Ê(x̃t+4tk , t+4t)

)
q
m

. (2.351)

Here a first order approximation of the local time discretization error ξ at time t + ∆t is

obtained for every particle by

ξk = ‖(ξxk , ξvk)‖2 = ‖
(
xt+4tk − x̃t+4tk , vt+4tk − ṽt+4tk

)
‖2. (2.352)

Already in the explicit Euler scheme we changed the notation of from the electric field E(x, t)

to its stochastic estimator Ê(x, t). Eventually the local stochastic error for a particle xk is

given by V
[
Ê(xk)

]
, which we average over all particles yielding the integrated variance

1

Np

Np∑
k=1

V
[
Ê(xk, t)

]
gk

≈
∫ L

0
V
[
Ê(xk, t)

]
= IVAR[Ê(X, t)]. (2.353)

In the same way we integrate the local time discretization error

ξ̄ :=
1

Np

Np∑
k=1

ξk
gk
. (2.354)
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2.7. Numerical results

(a) Error on the electrostatic energy for t > 15

for different combinations of ∆t and Np. The red

line denotes a ratio IVAR[E]

ξ̄
= 80.

(b) Ratio between IVAR [E] and mean time inte-

gration error ξ̄.

Figure 2.34.: Balancing time discretization error and particle noise.

The electric field estimator is used at two different sub-steps in eqn. (2.351) so we assume

Ê(X(t), t+) ≈ Ê(X̃(t + ∆t), t + ∆t). The stochastic error should be smaller than the time

discretization error, which gives us the following rule of thumb using the standard deviation

1

2
4t

√
IVAR[2Ê]

Np
= 4t

√
IVAR[Ê]

Np
� ξ̄. (2.355)

Note that the integrated variance is not accurate enough since the underlying distribution

is heavily tailed. Therefore we choose the integrated variance to be at least one or two

orders of magnitude smaller than the time discretization error. In a convergence study we

experimentally check the relation between `2-error on the electrostatic energy, the variance

and the time discretization error. The contour plot fig. 2.34a shows a nested L-shaped

structure. The red line shows the ratio at which particle number and time resolution should

be increased to actually decrease the `2-error. In fig. 2.34b we found the ratio IVAR[E]

ξ̄
= 80

to fit best to fig. 2.34a.

Multiple simulations variance

To test our variance estimators, we take a brute force approach. We run the exact same

simulation for N = 1000 times yet with different independent initial random numbers, by

each time choosing a unique seed for the pseudo random number generator. If the problem

is resolved by the fixed number of particles, here Np = 104 the result should not change.

Any fluctuation on the different results gives automatically a hint where the solution can be

trusted an where not. Estimating the variance over these different results gives a variance on

the solution, which already incorporates already effects due to propagation of the error. This

variance, which is rather expensive to obtain can be compared a local variance estimate, by

using a single simulation and our standard techniques.

We consider linear Landau damping, where the errors should only propagate linear and

therefore are maybe easier to estimate. The parameters are

L =
2π

k
, k = 0.5, ε = 0.01,

q

m
= −1,∆t = 0.05, rk3s, Nfem = 32, cubic, Np = 104. (2.356)

Fig. 2.35a, showing only a subset of all the runs, indicates clearly that the solution quality

is unacceptable for t > 10. Using all runs as independent samples, yields an estimate of
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(a) Electrostatic energy for 50 stochastically in-

dependent runs

(b) Variance of the electrostatic energy estimated

from multiple runs and using error propagation

for a single simulation.

Figure 2.35.: Error estimation using multiple stochastically independent simulations of linear

Landau damping (a). The variance of the electrostatic energy is obtained by taking the

variance over 1000 independent runs (b). A comparable result can also be obtained much

cheaper using error propagation for a single simulation.

the variance of the electrostatic energy. Fig. 2.35b compares this estimate with the local

self estimate of a single simulation, where we see fairly good agreement. Note that this

uses the sample covariance, where one divides by Np. Since the single simulation error does

not account for error accumulation over time, we expect it to under estimate the variance

for larger times. Fig. 2.35b exhibits the phase from over estimation to under estimation,

looking at the maxima for t ∈ [2.5, 17.5], where the general dynamic seem to be intact. It is

unaffordable to run a large scale Particle-In-Cell simulations thousands of times, we seek for

a simpler diagnostic. When dominated by the stochastic noise, the electric field in the time

integration is the culprit. Then we can integrate the integrated variance of the electric field

up to a certain time and compare it against it’s L2
[0,L]-norm to get a relative error. Then

Figure 2.36 indicates that for t > 10 the solution cannot be trusted any more.
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2.7. Numerical results

Figure 2.36.: Estimating the accumulated noise by a time integral over the integrated variance

of the electric field compared to the L2 norm of the electric field suggests that the electric

field cannot be trusted anymore for t > 10, which is definitely true for t > 12 when comparing

to the reference.

2.7.2. Re-sampling

In particle methods re-sampling is done for various reasons in different ways. Sometimes one

suspects the distribution function to have degenerated [128], or one wants to neglect small

oscillations, perform collisions on a grid or just change the number of markers [129]. An

extreme case of re-sampling is the Semi-Lagrangian method, where the particles transport

the value of the distribution function along the characteristics only one over time step. Then

their contribution is immediately interpolated onto the nodes of a grid, where they start again

from for the next time step. Here we have no such a grid, but we always have the initial

condition, therefore, we start with a backward Lagrangian method.

Backward characteristics

Suppose we have calculated the electric field up to a time t > 0. This contains all necessary

information for describing the characteristics. Then the weight for a new randomly drawn

particle at time t > 0 can be determined by following the characteristics backward in time

to t = 0 and evaluating the initial condition there. This corresponds to the backward semi-

Lagrangian method except that we can not step back just one time step, where we find the

distribution function on a grid, but have to run backward the entire elapsed time. In this

example the entire ensemble of particles is purged after a certain period and replaced by a

new set of particles uniformly distributed according to

g(x, v, t) :=
1

vmax − vmin
1v∈[vvmin,vmax]. (2.357)

Fig. 2.37 and fig. 2.38 indicate that despite its exponentially growing costs this method works

in the linear and the nonlinear case. By this uniform re-sampling the low discrepancy of the

RQMC sequence is restored periodically, but this appears not to be relevant. Nevertheless

this method can be used as a uncertainty quantification, since the extent of discontinuities

provides an lower bound on the error in the simulation. Especially the energy error obtained

from geometric methods is misleading as energy is discretely conserved, such that the energy

error we see here for the re-sampled simulation has more significance.
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(a) electrostatic energy (b) relative energy error

Figure 2.37.: Weak Landau damping (δf) with a backward Lagrangian re-sampling by uni-

formly distributed RQMC(sobol) particles. The red dots mark the re-sampling events. A

standard Monte Carlo (random) simulation is given as reference.

(a) electrostatic energy (b) variance of electrostatic energy

(c) relative energy error (d) momentum error

Figure 2.38.: Nonlinear Landau damping with a backward Lagrangian re-sampling by uni-

formly distributed RQMC particles. The red dots mark the re-sampling events.
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SIR for Fokker–Planck collisions

In Landau damping, the initial electrostatic energy contained in the initial perturbation

wanders off into a perturbation of the Maxwellian velocity distribution. For linear Landau

damping, and linearized strong Landau damping this happens immediately, whereas by actual

nonlinear strong Landau damping there are nonlinear effects in between. Nevertheless, it ends

with a perturbed Maxwellian, such that the local Maxwellian control variate should give us

a good control variate. Except it does not for a large amount of field energy ε > 0.1. The

perturbation of the Maxwellian takes higher frequency over time, such that at some point

it cannot be resolved anymore. Yet every particle carries completely free of diffusion the

values of the distribution function along, whereas a lack of resolution should be healed with

diffusion. One can introduce Fokker–Planck collisions but still the control variate does not

work again, see 2.39a. The likelihoods fk start to peak, giving an unnatural representation

of the density, see fig. 2.39c. We can try sequential importance re-sampling SIR with the

weight

δW =
f(X,V )− fequ(V )

h(X,V )
(2.358)

using the Fokker–Planck equilibrium fequ, which is by definition the local Maxwellian. This

also smoothens the likelihoods (fig. 2.39d) and modifies the sampling distribution such that

the control variate correlates again, see fig. 2.39a. Already without collisions it is questionable,

whether particles with small δW should be neglected, because at later times they can be

relevant again, see fig. 2.40. We are not satisfied yet, since there are discontinuities in 2.39b.

It is obvious that the re-sampling should be done continuously in time also and not only at

certain points. This also avoids the up and down of the control variate correlation in the

equilibrium under collisions. The answer is a slight modification, which stochastic sequential

importance re-sampling.

2.7.3. Collisions and coarse graining

Here we focus on the Vlasov–Poisson–Fokker–Planck system which incorporates collisions.

Depending on the collision frequency the particle distribution approaches the Maxwellian

equilibrium such that a Maxwellian control variate should gain efficiency again. Yet this does

not work, such that we have to introduce a coarse graining technique. In order to understand

the general problem we start with the stochastic counterpart of a one dimensional Fokker–

Planck equation the Ornstein–Uhlenbeck process.

Ornstein–Uhlenbeck

In this one dimensional example we start with an initial shifted two stream density

f(v, t = 0) =
1√
4π

(
e(v+1)2

+ e(v−3)2
)
. (2.359)

This density shall follow the Fokker–Planck eqn. (2.360) with collision frequency θ = 0.01,

diffusivity D = 0.04 and drift µ = 0.

∂tf(v, t) = θ
∂

∂v
[(v − µ)f(v, t)] +D

∂2f(v, t)

∂v2
(2.360)

For long time the density f approaches the equilibrium in form of a single Gaussian fequ
which reads

fequ(v) =
θ√

2πD
e−θ

(v−µ)2

2D . (2.361)
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(a) Correlation of the local Maxwellian control

variate.

(b) Electrostatic energy with discontinuities at

filtering times.

(c) Likelihood fk for every particle at t = 30.

Strong peaking of the likelihoods.

(d) Likelihood fk for every particle at t = 30

under SIR. Peaking likelihoods have been split.

Figure 2.39.: Effects of the brute force particle filtering (SIR) on nonlinear Landau damping

under moderate θ = 0.01 Fokker–Planck collisions. The control variate gains efficiency (a),

because the peaking likelihoods (c) are split (d), but unfortunately the solution is destroyed

(b).

(a) weak Landau damping (b) strong Landau damping

Figure 2.40.: Development of the δw weights over time for some randomly selected particles.

In the linear simulation the weights are basically unperturbed, but in the nonlinear examples

unimportant particles with small weights develop large weight at different times.
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2.7. Numerical results

Let V0 be a random deviate distributed according to the initial condition f(v, t = 0). Then

the random deviate Vt obtained by following the Ornstein–Uhlenbeck process,

Vt = V0e−θt + µ
(

1− e−θt
)

+

√
D

θ
W1−e−2θt (2.362)

is distributed according to f(v, t) as solution of eqn. (2.360). In the semi-discretization we

obtain a jump over time t by use of another independent deviate U ∼ N (0, 1).

Vt = V0e−θt + µ
(

1− e−θt
)

+

√
D

θ

√
1− e−2θtU (2.363)

In order to cover a time distance t the interval [0, t] can also be divided in Nt multiple

jumps. Now, there are two options of sampling from the equilibrium density. One can either

directly sample a normally distributed random deviate V∞ ∼ N (µ, Dθ ) from the equilibrium

distribution or use Vt for a very large t. In the following we want to calculate the integral of

the function h(v) by Monte Carlo integration.

h(v) = e−0.3v2 (v + 3)v(v − 2) + 1

15
, I =

∫ ∞
−∞

h(v)dv ≈ 0.575296566683170 (2.364)

The integral is obtained as expected value using markers obtained from V0, Vt and V∞.∫ ∞
−∞

h(v)dv = E
[
h(V0)

f(V0, 0)

]
= E

[
h(Vt)

f(Vt, t)

]
= E

[
h(V∞)

fequ(V∞)

]
(2.365)

The knowledge of the exact value of the integral I can then be used via the control variate

method in order to reduce the variance of other estimators using the random deviates V0, Vt
and V∞. The slight problem here is that f(Vt, t) is not known directly such that we have to

use the likelihood ηt corresponding to the transition probability in the Ornstein–Uhlenbeck

process. The purpose of the example here is to show that we can find a converging Monte

Carlo estimator for the integral I in order to use the function h as a control variate. Although

Vt follows a stochastic process it is only the combination of two random deviates V0 and

U . Since both distributions are known Monte Carlo integration with Vt, given the correct

likelihoods, is possible. The Monte Carlo estimator combining importance sampling and the

Markov chain likelihood ηt is then based upon

E

[
h(Vt)

f(Vt, t)︸ ︷︷ ︸
unknown

]
= E

[
h(Vt)

f(V0, t)ηt

]
. (2.366)

The results are found in fig. 2.41. There it becomes clear, that although the samples Vt
approach V∞ the variance on the standard Monte Carlo estimator increases due to the in-

corporated likelihood propagation. The samples for fequ are drawn independently an yield a

much smaller variance, since the Gaussian sits right on top of the integrand. Understandably

the two streams f(t = 0) are not suited for integrating h, yielding a higher variance. In

order to reduce the variance fequ is not a suitable control variate. But if one defines several

control variates fequ,j = fequ(v)1v∈Ωj as the restrictions of fequ onto a stratum Ωj ⊂ R a

significant variance reduction is achieved for every estimator. We call this a stratified control

variate. Now that we can calculate Monte Carlo integrals and apply control variates under

an Ornstein–Uhlenbeck process, we can proceed with the more complicated Vlasov equation.
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(a) Densities obtained by histogram estimates.

Over the two Gaussians approach the equilibrium

fequ.

(b) For tmax = 100 the density f is very close to

the equilibrium, such that both markers distri-

butions can be used to integrate h.

(c) Estimating
∫
hdv by Monte Carlo integration

using V0 and V∞ as well as Vt with likelihood

propagation and Nt = 103 time-steps.

(d) Because fequ is an ineffective control variate

it is stratified into multiple control variates onto

several boxes.

Figure 2.41.: Monte Carlo integration with Np = 105 random samples subject to an Ornstein–

Uhlenbeck process. Due to the likelihood propagation the variance increases, but can be

reduced by a stratified control variate.
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Vlasov–Poisson–Fokker–Planck

Coarse graining for Fokker–Planck collisions is a special case of conditional Monte Carlo.

The sampling likelihoods are averaged in every stratum Ω while the ratio between f and g is

retained for every particle, yielding the temporary likelihoods f∗n and g∗n according to

g∗n =
1

#{z|z ∈ Ωj}
∑
zm∈Ωj

gn for all zn ∈ Ωj

f∗n =
fn
gn
g∗n.

(2.367)

The original likelihoods are saved, respectively advanced for the collisions, and reused at

each coarse graining step. Therefore no information is lost, which is more in the sense of

conditional Monte Carlo and mitigates degenerate effects of the coarse graining such that

result is less sensitive to the coarse graining frequency. In the examples here the strata Ωj

are obtained by the quad-tree sorting algorithm with a maximum number of particles per box

of 20. The basic principle behind the quad-tree sorting algorithm can be seen in fig. 2.42. As

another option we use the N th-nearest neighbor method in MATLAB to find for every particle

a set Ωj with the N th (here N = 10) nearest neighbors in phase space and coarse grain again

according to eqn. (2.367). The first test case is the Bump-on-Tail instability [63][p.140] with

initial conditions given in eqn. (2.368).

f(x, v, t = 0) := (1− ε cos(kx))
1√
2π

1

(1 + a)

(
e−

v2

2 +
a

σ
e−

(v−v0)2

2σ2

)
(2.368)

L =
2π

k
, σ = 0.5, a =

2

9
, k = 0.3, v0 = 4.5,

q

m
= −1, ε = 0.03 (2.369)

The demonstrations include the Bump-on-tail instability with weak (fig. 2.43) and strong

(fig. 2.44) collisions as well as nonlinear Landau damping with strong collisions, see fig. 2.45.

In all cases the coarse graining yields a better correlation for the control variate thus increasing

the variance reduction when the equilibrium is reached.
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(a) Quad-tree structure with particles. (b) Averaged likelihood for every box in the

Quad-tree.

Figure 2.42.: The quad-tree algorithm reduces recursively the size of the boxes such that each

box contains less than a certain number of particles. The likelihoods are averaged in each

box yielding a coarser representation of phase space.
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(a) electrostatic energy (b) variance reduction by CV

(c) mass of δw (d) variance of δw

(e) standard (f) nearest neighbor (g) quad-tree

Figure 2.43.: Coarse graining the Bump-on-tail instability under weak collisions θ = 0.001

and Np = 105. The coarse graining reduces the peaking of the likelihoods (e,f,g) and enhances

the variance reduction by the control variate (b), but it also introduces too much diffusivity

leading to a strong damping of the instability (a).
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(a) electrostatic energy (b) variance reduction by CV

(c) mass of δw (d) variance of δw

(e) standard (f) nearest neighbor (g) quad-tree

Figure 2.44.: Coarse graining the Bump-on-tail instability under strong collisions θ = 0.05

and Np = 105. The overshooting of the likelihoods (e) is successfully damped by the coarse

graining for both methods (f),(g), such that the control variates gains efficiency in the equi-

librium. The high diffusivity does not seem to matter here (a).
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(a) electrostatic energy (b) variance reduction by CV

(c) mass of δw (d) variance of δw

(e) standard (f) nearest neighbor (g) quad-tree

Figure 2.45.: Coarse graining strong Landau damping under moderate collisions θ = 0.01 and

Np = 105. The diffusivity of the coarse graining can be seen in (a) as the Langmuir wave

gets stronger damped. Once the equilibrium is reached it helps the control variate (b).
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(a) electrostatic energy (b) variance reduction by CV

(c) mass of δw (d) variance of δw

(e) standard (f) nearest neighbor (g) quad-tree

Figure 2.46.: Coarse graining weak Landau damping under weak collisions θ = 0.01 and

Np = 105. Here the coarse graining is definitely not recommended since the likelihoods do

not peak(e), it falsifies the solution (a) and brings no additional variance reduction (b).
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2.7.4. Principal component analysis

With the covariance matrix Σb(t) we obtain much information about the noise, which should

be analyzed. The zeroth Fourier mode is already understood to be the source of noise, for

small amplitudes, e.g. in the case of ε = 0.03. By principal component analysis we can [130]

quantify the noise, using estimates of Σb(t) and the corresponding propagation for the field

solver. We can see the noise reduction for the linear phase due to the control variate, and

also find the source of noise for the higher modes. It provides also a natural way of filtering.

Let Ψ ∈ RNfem×Np the sparse matrix containing the evaluation of all basis functions for all

particles.

(Ψ)n,m = ψn(xm)wm −
1

Np

Np∑
k=1

ψn(xk)wk, n = 1, . . . , Nfem, m = 1, . . . , Np (2.370)

Then the covariance matrix Σb can also be obtained by

Σb =
1

Np − 1
ΨtΨ. (2.371)

Here the eigenvector to the largest eigenvalues of the covariance matrix corresponds to the

direction of the largest variance. Since only the potential is used for the electric field, we

can calculate the first Npc principal components of the potential covariance matrix ΣΦ. The

spectrum of ΣΦ reveals several spectral gaps, grouping always two eigenvalues, see fig. 2.47a.

Grouping the pairs of two eigenvectors in v, we plot the corresponding function x 7→ vtψ(x),

which reveals the dominant modes of the simulation, see figs. 2.47b, 2.47c and 2.47d. Let

V denote the matrix containing the first Npc normalized eigenvectors of ΣΦ, with the cor-

responding eigenvalues in d. It then is possible to filter the coefficient vector of the electric

potential a(t) by a(t)filterd := V V ta(t). This yields a similar electrostatic energy as the

standard simulation, c.f. fig. 2.48a. When the control variate looses effect in fig. 2.48c the

spectrum of variances in the PCA analysis fig. 2.47a raises, by orders of magnitude, yet the

overall structure remains. A quite interesting diagnostic is the signal to noise ratio 2.48b,

where we plot the ratio

SNR =

∑Npca
k=1 dk

tr (ΣΦ)−
∑Npca

k=1 dk
. (2.372)

This corresponds to the ratio of the variance that is kept, v.s. the variance in the other

components that is neglected. Although for this one dimensional example filtering of the

Laplacians eigenmodes is obvious, this general approach can be extended to cases where there

is no pre-known mode structure e.g. complex geometries.

Singular value decomposition (SVD), closely related to PCA [130], can give us information

for every sample. We would like to identify the particles, with the greatest contribution to

the electric potential. To get from the pure contribution to the basis functions, stored in Ψ

the Poisson equation is solved for every particle resulting in ΨΦ. We perform a SVD on ΨΦ,

see (2.373), where U corresponds to the eigenvectors of the covariance matrix ΣΦ.

ΨΦ := KΦ, ΨΦ = USV t, (2.373)

The columns of V are vectors which hold the contribution of every particle to the respective

singular value in the diagonal matrix S. It is also the contribution of every particle to

the corresponding eigenvector of the potential covariance matrix ΣΦ. Here, we only use

the particle positions xk. This spatial information should be connected with the velocity

space, which is done by considering the phase space position of every particle. By coloring
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(a) Eigenvalues of the electric potential covari-

ance matrix ΣΦ.

(b) First pair of eigenvectors of ΣΦ.

(c) Second pair of eigenvectors of ΣΦ. (d) Third pair of eigenvectors of ΣΦ.

Figure 2.47.: Principal component analysis on the finite element coefficients of the electrostatic

potential Φ. The obtained components resemble Fourier modes, which is expected in a

periodic domain.
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(a) Electrostatic energy

(b) Signal to noise ratio for principal component

filter.

(c) Variance reduction by the control variate f0.

Figure 2.48.: Principal component filtering of first four components Npc = 4 for the bump-on-

tail instability. The filter reduces successfully the background noise level, yielding a better

agreement with the reference solution (a). When the control variate looses its efficiency the

signal to noise ratio drops (b). Furthermore the filtering does not influence the (in)efficiency

of the control variate (c).
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every particle (xk, vk) with the absolute value of its contribution |V(k, j)| to the jth principal

component, gives an overview in phase space. In a good signal we expect spectral clustering,

therefore it is naturally to take the sum over these contributions weighted with the respective

singular value, e.g. the first two components.

For the bump-on-tail instability, see fig. 2.49 the particles contribute to the mode, independent

of their velocity. Yet more interesting for a KEEN wave [131], the major contribution to the

potential comes from the particles around the forming vortex. For parameters and highly

resolved phase space plots, see [132].

Both simulations were performed with the δf method Np = 105, Nfem = 32 and the initial

velocity distribution as a control variate. Although all the simulation particles were used, it

is also possible to select a subset of particles and do the necessary calculations only for them,

which should massively speed up the SVD.
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Figure 2.49.: First two leading right eigenvectors of ΨΦ for the bump-on-tail instability.
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Figure 2.50.: First two leading right eigenvectors of ΨΦ for the KEEN Wave.
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2.7.5. Unstructured finite elements and multi-scale methods

With a magnetic field of strength B0 in z-direction the six dimensional Vlasov equation can

be reduced to four dimensions.

v ×B(x, t) = v ×

 0

0

B0(x, t)

 =

 v2

−v1

0

B0(x, t) (2.374)

Because there is no cross product in two dimensions, we denote

v ∧B(x, t) =

(
v1

v2

)
∧B(x, t) =

(
v2

−v1

)
B0(x, t). (2.375)

Following [24] we use a scaled version of the four dimensional Vlasov equation given in

eqn. (2.376).

ε ∂tf +

(
vx
vy

)
·
(
∂xf

∂yf

)
+

[(
Ex(x, y, t)

Ey(x, y, t)

)
+

1

ε

(
vy
vx

)
B0(x, t)

]
·
(
∂vxf

∂vyf

)
= 0 (2.376)

For ε = 1, eqn. (2.376) becomes the standard Vlasov equation. Here we consider non-neutral

electrons, which means the right hand side of the Poisson equations consists only of the

electron charge density.

E(x, y, t) = −∇Φ(x, y, t), −∆Φ(x, y, t) =

∫∫
R2

f(x, y, vy, vy) d(vx, vy) (2.377)

This non-neutral configuration yields a Kelvin-Helmholtz instability, which exhibits a more

turbulent behavior than our standard two dimensional Vlasov phase-space. Hence in com-

bination with unstructured finite elements it is particularly interesting to investigate the

particle noise in such a situation. But for a strong magnetic field the gyromotion at the gyro-

frequency ω = B becomes a very small time scale, which is expensive to resolve. Therefore,

a limiting model for large homogeneous B is considered.

The two dimensional guiding center model

The two dimensional vorticity eqn. (2.378), often referred to as a guiding center model,

emerges as the asymptotic limit ε→ 0 of the four dimensional Vlasov–Poisson system under

a strong magnetic field [24, 133]. This is often referred to as a reduced fluid model of the

kinetic Vlasov–Poisson system. A spatial plasma density f develops under the electric field

E which arises as the gradient of the electric potential Φ. The potential Φ is the solution to

a Poisson equation coupling the density f to the fields.

∂tf(x, y, t)− Ey(x, y, t)∂xf(x, y, t) + Ex(x, y, t)∂yf(x, y, t) = 0 (2.378)

E(x, y, t) = (Ex(x, y, t), Ey(x, y, t)) = − (∂xΦ(x, y, t), ∂yΦ(x, y, t)) (2.379)

−4 Φ(x, y, t) = f(x, y, t) (2.380)

The corresponding characteristics are given in eqn. (2.381).

d

dt
X(t) = −Ey(X(t), V (t), t) and

d

dt
Y (t) = Ex(X(t), V (t), t) (2.381)

Due to the divergence form of eqn. (2.378) the mass
∫
f(x, y, t)d(x, y) is conserved. We aim

for the most simple discretization thus linear Lagrange finite elements defined on triangles

are chosen for the discretization of the Poisson equation. The computational domain is the
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unit disc and we use the MATLABs PDE toolbox to generate an unstructured triangulation.

The particle mesh coupling needs the nodal basis functions on every triangle which are for

the linear Lagrange finite elements the restriction of the barycentric coordinates onto the

respective triangle. For a triangle given by three points (xi, yi) ∈ R2, i = 1, 2, 3 and a point

(x, y) ∈ R2 the three barycentric coordinates λi(x), i = 1, 2, 3 are defined in eqn. (2.382).

Here A denotes the area of the triangle.

λ1(x, y) :=
(y2 − y3)(x− x3) + (x3 − x2)(y − y3)

2A
(2.382)

λ2(x, y) :=
(y3 − y1)(x− x3) + (x1 − x3)(y − y3)

2A
(2.383)

λ3(x, y) :=
(y1 − y2)(x− x1) + (x2 − x1)(y − y1)

2A
(2.384)

A :=
1

2
[(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)] (2.385)

Note that the third coordinate is directly obtained by λ3 = 1− λ2− λ1 because it holds that

1 = λ1(x, y) + λ2(x, y) + λ3(x, y) for all (x, y) ∈ R2. (2.386)

If all barycentric coordinates are non-negative the position x lies within the triangle. The

negative barycentric coordinate Later we need to evaluate the variance of the Potential where

at every point the product ψi(x, y)ψj(x, y) of basis functions is needed for all i, j. Fortunately

here the barycentric coordinates fulfill the relation (2.387) such that the variance of any

quantity at the mesh nodes equals merely the diagonal entries on the corresponding covariance

matrix.

λi(xj , yj) = δi,j (2.387)

For the electric field the piecewise derivatives of the potential are needed thus the piecewise

gradients of the barycentric coordinates are defined in (2.388). These gradients are constant

and can therefore be stored during the simulation.

∇λ1(x, y) :=
1

2A

(
y2 − y3

x3 − x2

)
(2.388)

∇λ2(x, y) :=
1

2A

(
(y3 − y1)

(x1 − x3)

)
(2.389)

∇λ3(x, y) :=
1

2A

(
y1 − y2

x2 − x1

)
(2.390)

We see that given a standard library for the meshing and matrix assembly the particle mesh

coupling is implemented in very few steps. Except that the particles have to be located in

the triangles, which is difficult. Elegant solutions can use structured hexagons [134] or field

aligned triangles [135][p.606]. On unstructured grids a particle can be located in a triangle by

subsequently following the most negative barycentric coordinate of the current triangle [136].

Since this algorithm uses the last known position it is quite efficient [137] and hence used

here, although more robust variants are available nowadays [138] including better treatment

of boundary conditions. See [139] for a comprehensive overview.

As the only test-case we consider the Diocotron instability in the unit disc, which also can be

observed directly in nature [140] and has been extensively simulated in the community [133,

141, 134, 142, 24, 23].

The unit disc is best described in polar coordinates, which is used in eqn. (2.391) to describe
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(a) charge density (b) electric field (c) electric potential

Figure 2.51.: Integrated variances for a constant charge density ρ(r, θ) = 1 in the unit disc

under increasing degrees of freedom for linear Lagrange finite elements.

the initial condition.

f(r, θ) =

{
1 + ε cos(kθ) for r ∈ [r−, r+]

0 else
(2.391)

r− = 0.4, r+ = 0.5, ε = 0.05, k = 5 (2.392)

A thin ring of electrons is initialized with a small ε perturbation of the kth mode. This

simulation uses the fourth order Runge Kutta scheme with time-step ∆t = 0.25, Np = 50, 000

RQMC particles and 4252 elements (triangles) resulting in Nf = 2191 degrees of freedom.

In Cartesian coordinates, this means with respect to the Lebesgue measure, the sampling

density g is proportional to f up to a constant.

But first we consider only the Poisson equation with a completely constant right hand side

f(r, θ) = ρ(r, θ) = 1. By calculating the integrated variances for the L2 projection the

constant increase in variance with the degrees of freedom can be observed in fig. 2.51a. Given

the fact that we only use first order elements, this is devastating since a lot of elements are

required to resolve the stiff Laplace operator. But the Laplace operator damps the higher

modes, refer to fig. 2.51b, which yields a much better behavior for the electric field E which is

actually needed in the characteristics, eqn. (2.381). Surprisingly the integrated variance for

the potential seems to decrease asymptotically to a constant value with increasing degrees

of freedom, see (2.51c). So we can conclude that the Laplacian performs quite a strong

regularization on the noisy right hand side. Figure 2.52 shows the evolution of the Diocotron

instability, where the fives vortices emerge in the nonlinear phase. Here the difference between

the noisy density estimation in is remarkable. We observe in fig. 2.53 and fig. 2.54b that the

variance on the potential is much lower than on the charge density and that there is only a

minor increase after the linear phase. Also the integrated variances in fig. 2.54a and fig. 2.54b

seem to be bounded and only oscillate with the rotation of the vortices. This means that

over time we do not require more particles as the density evolution undergoes many more

non-linearities.

Multilevel Monte Carlo for asymptotically preserving schemes

We preferred the two dimensional guiding center model over a four dimensional Vlasov–

Poisson equation because it is costly to resolve the fast gyromotion in the fully kinetic model.

But if kinetic effects are of interest the reduced fluid model is not an option. Of course,

fluid-kinetic hybrid models can recover effects of both scales [143]. It was also tried to

improve kinetic simulations by fluid models [144]. Thus the first stochastic thought is to

use the solution of the guiding center eqn. (2.378) as a control variate for eqn. (2.376) via
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Figure 2.52.: Lagrangian particles carrying the initial value of the distribution function ap-

proximating the Diocotron instability.

ρ IVAR [ρ] Φ IVAR [Φ]

Figure 2.53.: Variances of the finite element estimator for the charge density and the potential

next to the estimators themselves.
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2.7. Numerical results

(a) IVAR of charge density (b) IVAR of potential (c) Duration of particle location

per particle for every stage of

the Runge Kutta integrator

Figure 2.54.: Integrated variances of the charge density and the potential over time for the

nonlinear Diocotron instability.

the δf approach. This has several severe difficulties. The two dimensional density from

eqn. (2.378) has to be brought up to a four dimensional one in order to be used as a control

variate. This can be done by multiplication with a local Maxwellian. But even if the entire

solution of eqn. (2.378) is available on a grid, the local Maxwellian might just not be a good

approximation because if it would one does not need the kinetic model after all. Additionally

the exact support suppg of the sampling density on the grid has to be known, which is

not the case for the isolated vorticies of the Diocotron instability. Another problem is that

the kinetic model has to influence the fluid model because over long time they might just

drift apart. Therefore we cannot use the δf method with what we gained in the previous

section. The control variate requires the exact knowledge of an expectation but for biased

estimators it might be just enough to estimate the expectation with a cheaper but more

biased estimator. This method is called multilevel Monte Carlo, see [16] for a very quick but

sufficient introduction. Multiple levels are obtained by using different discretizations yielding

a different bias. For density estimation on a grid the bias and the variance depend on the

cell size h, which is used in [18] in combination with sparse grids and multiple levels. In

general this can be treated and optimized like the normal control variates [145]. Here our

dominating bias is the time step because of the fluid and kinetic time scale. For Vlasov

equations involving collisions [17] provides a suitable multi-grid scheme in time. But here the

time scales are so vastly different, that we need an integrator that is capable of solving the

kinetic model for a small time step and the fluid model for a large time step, which we found

in asymptotically preserving schemes [24]. For small ε� 1 eqn. (2.376) approaches the to the

fluid model, but the B
ε term becomes stiff. The first order integrator given in eqn. (2.393).

can solve eqn. (2.376) including the stiff term for a large time-step whilst recovering the

asymptotic model [24]. On the other hand the original Vlasov equation is solved for ε = 1

but then a smaller time-step is needed.xn+1 = xn + ∆t
ε v

n+1

vn+1 = vn + ∆t
ε

(
vn+1

ε ∧B(xn, tn) + E(xn, tn)
) (2.393)

Thus the discretization error is denoted by ε which makes our model much cheaper and allows

us to use more particles. Suppose we have decided on a suitable scale separation by the choice

of two parameters ε0 � ε1 = 1 and ∆t0 � ∆t1. Here the first level is the original Vlasov

equation and the zeroth level the fluid model. Let Eε,∆t denote the electric field obtained

by using particles advanced by the scheme (2.393) using the scale ε and the time-step ∆t.

Combining the large time-step ∆t0 with the full Vlasov equation ε1 = 1 is prohibitive, yet
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the small time-step ∆t1 can be used when integrating the fluid model. We suppose the fluid

scheme is converged on the time-step ∆t0 such that it is safe to assume

Eε0,∆t0 = Eε0,∆t for ∆t < ∆t0. (2.394)

By introducing Monte Carlo estimators we can use the fluid model as a control variate for

obtaining the electric field Êε1,∆t1 of the full Vlasov equation. The two level estimator lacking

the optimization coefficient α reads

E
[
Êε1,∆t1

]
= E

[
Êε0,∆t0

]
+ E

[
Êε1,∆t1 − Êε0,∆t1

]
. (2.395)

Due to the larger time-step much more particles can be used on Êε0,∆t0 while still being

cheaper than Êε1,∆t1 . The key ingredient is the representation of the fluid solution on the

scale of the kinetic model Êε0,∆t1 . This allows us to use the fluid solution fε1 without going

through the δf approach by subtracting actual values of the distribution function according

to δw =
fε1−fε0
gε1

. In practice the fluid model is solved in order to obtain Eε0,∆t0 . It can be

calculated by a non-particle method as long as there is a corresponding particle discretization

available in order to get Êε0,∆t1 . Then a set of markers on the Vlasov level is duplicated and

both sets are advanced by eqn. (2.393). The original uses ε1,∆t1 giving Êε1,∆t1 while the

cloned markers are advanced with the same time step but for another level ε0,∆t1 yielding

Êε0,∆t1 . Finally, eqn. (2.395) is calculated by projecting E
[
Êε0,∆t0

]
onto the finer time grid

via linear interpolation. The feedback to the fluid model is provided by substituting the

predictor Êε0,∆t0 with the corrector Êε1,∆t1 on intersecting time points. Another approach

is to estimate the entire fluid distribution function from the kinetic particles which is very

costly and therefore, not feasible. Especially asymptotic integrator allow for multiple levels

using a telescope sum

E
[
ÊεN ,∆tN

]
= E

[
Êε0,∆t0

]
+

N∑
n=1

E
[
Êεn,∆tn − Êεn−1,∆tn

]
. (2.396)

To use multilevel Monte Carlo efficiently a precise relation between ε and suitable ∆t has to

be known, such that we skip this part. Multilevel time grid notation is cumbersome, such

that we refer to [17] for a detailed write-up with proof of convergence. Let ϕεt denote the

discrete flux corresponding to a discrete time integration of the characteristics (Xt, V t) on

the level ε over a time step ∆t using the field E.(
Xt+∆t, V t+∆t

)
= ϕε0∆t(X

t, V t;E) (2.397)

Then we define to stochastic processes for the characteristics, the fluid particles (Xt
0, V

t
0 ) and

the kinetic particles (Xt
1, V

t
1 ). For both levels an electric field E(x) as a function of x is

obtained by a Monte Carlo estimator. We denote such an estimator using i.i.d. replicates of

the random deviate X as

E(x) = E [F (x,X)] and E = E [F (X)] . (2.398)

This means F (Xt
1) estimates E(t) using the kinetic particles while F (Xt

0) uses the fluid

particles. The overall first order algorithm consists then of two steps. First the fluid particles

are advanced on the fluid level with a large time step using a given field E(t).

(Xt+∆t0
0 , V t+∆t0

0 ) = ϕε∆t0(Xt
0, V

t
0 ;E(t)) (2.399)

This yields a first estimate for the field at t+ ∆t0 using the temporary fluid particles

Ê(t+ ∆t0) = E
[
F (X̂t+∆t0

0 )
]
. (2.400)
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By linear interpolation between Ê(t+ ∆t0) and E(t) we define Ê(t+ ∆t) for any ∆t > 0 by

Ê(t+ ∆t) := E(t)

(
1− ∆t

∆t0

)
+

∆t

∆t0
Ê(t+ ∆t0). (2.401)

In order to sample the fluid level onto the kinetic level, copies
(
X̂t

1, V̂
t

1

)
of the kinetic particles

at time t, called hybrid particles, are independently evolved using not the self consistent field,

but the interpolated projection from the fluid level Ê(t).

(X̂t+n∆t1
1 , V̂ t+n∆t1

1 ) = ϕε0∆t1

(
X̂
t+(n−1)∆t1
0 , V̂

t+(n−1)∆t1
0 ; Ê(t+ (n− 1)∆t1)

)
, n = 0, . . . ,

∆t0
∆t1

(2.402)

With the hybrid particles it is possible to sample the difference between the fluid and the

kinetic model such that the discrete analog of the rather vague multilevel Monte Carlo

eqn. (2.395) reads

E(t+ n∆t1) = Ê(t+ n∆t1)− E
[
F (Xt+n∆t1

1 )− F (X̂t+n∆t1
1 )

]
. (2.403)

The kinetic particles are then advanced using the right field E(t+ n∆t1), which is then also

fed back into the fluid model at the start of our algorithm in eqn. (2.399).

(Xt+n∆t1
1 , V t+n∆t1

1 ) = ϕε0∆t1

(
X
t+(n−1)∆t1
0 , V

t+(n−1)∆t1
0 ;E(t+ (n− 1)∆t1)

)
, n = 0, . . . ,

∆t0
∆t1

(2.404)

In order to provide the correct feedback to the fluid level for higher order methods, the fluid

particles have to be advanced again using the corrected field E(t+ ∆t),∆t ∈ [0,∆t0] leaving

eqn. (2.399) only to be a predictor step.

The explicit version of the first order scheme in eqn. (2.393) for our discretization is given in

eqn. (2.405).

xn+1 = xn + ∆t
ε v

n+1
x

yn+1 = yn + ∆t
ε v

n+1
y

vn+1
x =

[
−B0(xn,yn,tn)

ε
∆t2

ε2
Ex(xn, yn, tn) + ∆t

ε Ey(x
n, yn, tn) + ∆t

ε
B0(xn,yn,tn)

ε vny + vnx
ε

]
·
[
B0(xn,yn,tn)2∆t2

ε4
+ 1
]−1

vn+1
y =

[
−B0(xn,yn,tn)

ε
∆t2

ε2
Ex(xn, yn, tn) + ∆t

ε Ey(x
n, yn, tn)− ∆t

ε
B0(xn,yn,tn)

ε vnx +
vny
ε

]
·
[
B0(xn,yn,tn)2∆t2

ε4
+ 1
]−1

(2.405)

Examining the Jacobi determinant (2.406) of the discrete flux ϕ(x, y, vx, vy,∆t) of the scheme (2.405)

reveals that not only is the scheme extremely dissipative for small ε but also for ε = 1.

1
B(x,y)2∆t2

ε4
+ 1

< 1 for B 6= 0 (2.406)

Thus phase-space volume is lost causing trouble for the likelihood propagation and application

of the standard δf method. The standard Boris algorithm is not symplectic but actually

preserves phase space volume, see [31], such that we would prefer an asymptotic preserving

scheme based on such an integrator. In the following computations the second order L-stable

scheme from [24] was used, since the first order scheme is just too dissipative for ε = 1. The

fluid initial condition eqn. (2.391) is extended by an additional Maxwellian with temperature

Te = 0.05.

f(x, y, vx, vy, t = 0) = ρ(x, y, t = 0)
1

2πTe
e−

v2
x+v2

y
2T . (2.407)
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The parameters used here are B = 10, ε1 = 1, ∆t1 = 0.01, Np,1 = 103, ε0 = 0.05,∆t0 =

2, Np,0 = 105 and ε = 0.3. Because of the magnetic field we expect an oscillation in the

energies caused by the upper hybrid oscillations at frequency

ω =
√

1 +B2 + 3k2Te. (2.408)

These oscillations can be seen in the kinetic energy and the electrostatic energy in fig. 2.56.

The variance reduction in the kinetic part is also at an satisfactory high level. These values

denote the lowest variance reduction in the last kinetic time step, when (X1, V1) and their

fluid replicates (X̂1, V̂1) are the most apart, such that even higher values can be expected.

Although the method works, we are not fully satisfied because the schemes are so dissipative

such that actual multiple levels seem not to be feasible. The obvious alternative is to use

Boris for Vlasov–Poisson and some Runge Kutta scheme for the fluid model. Here we con-

sidered only Monte Carlo method but in general a coupling between Eulerian and Lagrangian

particles works the same way circumventing the conventional δf approach. Therefore, the

three ingredients needed for a general composition are

• Eulerian fluid model

• Lagrangian fluid model (using Eulerian fields)

• Lagrangian kinetic model.

The next step is application to an extension with non-homogeneous magnetic field [23] or

directly Lagrangian or Eulerian four dimensional drift-kinetic for six dimensional Lagrangian

kinetic model.
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Figure 2.55.: Lagrangian particles in two level Monte Carlo for magnetized four dimensional

Vlasov–Poisson using the same asymptotic preserving scheme with different scaling and time-

step. Much more particles on the fluid level provide an effective control variate for few kinetic

particles. The kinetic particles following the cyclotron motion blur the initial condition while

the fluid particles are strongly confined.

(a) Electrostatic energy (b) Kinetic energy (c) Factor of variance reduction

Figure 2.56.: Two level Monte Carlo for the Diocotron instability using a second order asymp-

totic preserving scheme.
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Chapter 3.

Spectral particles

Spectral discretizations for the field solver of Particle-In-Cell codes are quite common, see [146,

147, 148]. Particle-In-Fourier (PIF), which uses Fourier modes instead of finite elements as

basis functions, was already used to couple kinetic and MHD simulations in the HMGC

code [149, 150], where the particles still have an unnecessary spatial shape. For periodic and

especially periodic systems in beam physics hybrids between PIC and PIF have already been

applied for slab and cylindrical geometry [151, 152]. Such an hybrid has also been used to

evaluate the Fourier filtered fields in a gyrokinetic PIC simulation on GPU and CPU [153].

The first variational framework for PIF is provided in [10], where it also becomes clear that

PIF conserves both energy and momentum where the latter one is not conserved in the stan-

dard finite element PIC. - Decreasing the field discretization error in PIC, thus, increasing

its spectral fidelity avoids known unphysical instabilities [55]. Such schemes are commonly

referred to as dispersion free and are becoming more common [154].

In the following, Particle-In-Fourier (PIF) is introduced, compared and combined with PIC

in order to discretize various Vlasov systems. PIF uses a Fourier representation for the fields,

which is efficient when the number of physically relevant Fourier modes remains small [149].

Physically relevant is a vague criterion, since it requires an a-priori deeper understanding

of the solution. Additionally the Vlasov–Poisson system generates many small scales and

filaments that have to be resolved such that Fourier filtering is mostly linked to some form

of filamentation filtration [155, 156]. The smallest filament a grid based solver can resolve

is a priori determined by its resolution, but Lagrangian particles can resolve large and small

scales separately and are not subject to such limitations. Of course, the grid based field

equations should resolve small scales in the fields, but it is absolutely not necessary. In many

cases restricting the fields on few Fourier modes also results in much smaller structures, see

fig. 3.1 and fig. 3.2, because the coupling between Vlasov and Poisson equation is of nonlinear

nature. Although turbulence requires high resolution, the diffusive behavior rising from the

averaging over the gyromotion in strongly magnetized plasmas is perfectly captured by the

particle discretization of the Vlasov equation and does not depend on the resolution of the

fields. It is known that PIC has issues resolving the high Fourier modes [75, 157, 158], such

that our stochastic framework can help us to determine which Fourier modes are obscured

by the Monte Carlo noise and which ones are still well captured, see fig. 3.3. In the follow-

ing, PIF and other orthogonal methods provide an intuitive access in order to resolve the

variance-bias balancing problem.
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Nf = 1 Nf = 16

Figure 3.1.: The electric potential Φ in PIC simulations can be Fourier filtered such that

only the first Nf Fourier modes remain in the electric field used for the advection of the

particles. Although for Nf = 1 only the first Fourier mode contributes to the advection

of the particles, the neglected modes can still be kept for diagnostic purposes. Here for a

Bump-on-tail instability the remaining Fourier modes are also growing although they are not

present in the discrete system itself. There is little difference between a simulation with one

(Nf = 1) and many (Nf = 16) Fourier modes for Np = 106, Nfem = 32, ∂t = 0.05 and cubic

B-splines. This means that also small spatial structures in the density emerge although they

are not resolved by the field discretization. This ultimately motivates the use of PIF.
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Strong Landau Damping (t = 50)

Bump-on-tail Instability (t = 200)

Nf = 1 Nf = 2 Nf = 4 Nf = 8

Electrostatic energy

Figure 3.2.: Particle-In-Fourier (PIF) of the Vlasov–Poisson system for increasing number of

Fourier modes Nf . The particle phase space exhibits small structures independent of the

number of Fourier modes motivating the use of PIF. There remains also no visible difference

in the electrostatic energy Nf > 2 compared to the reference solution. Note that in the linear

phase of the Bump-on-tail instability (t ≤ 20) the solution for Nf = 1 coincides with the

reference. This is expected since only that single mode is excited and there is no nonlinear

mode interaction at the beginning such that the second Fourier mode becomes only relevant

at later times.
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Strong Landau Damping (t = 50) Bump-on-tail Instability (t = 200)

Figure 3.3.: In PIF, the variance of each Fourier coefficient Φ̂(k) of the potential Φ can be

estimated straightforward compared to PIC, since the Fourier modes are orthogonal. Because

of this orthogonality the variance itself is meaningful and contrary to PIC covariances do not

have to be taken into account. If the absolute value of a coefficient Φ̂k is at the order of the

sample standard deviation, the true value is obscured by noise such that either the number of

particles Np is massively increased or the respective Fourier mode can be neglected yielding

a speed-up when using PIF. This can be generalized to other orthogonal series, which form

eigenfunctions of the respective field equation.
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3.1. Electrostatic electron model — Vlasov–Poisson/Ampère

We consider again the Vlasov equation with external magnetic field B, div(B) = 0

∂f

∂t
+ v · ∇xf − (E + v ×B) · ∇vf = 0. (3.1)

It can be coupled with the Poisson equation for the electric potential Φ. With the charge

density ρ =
∫
f dv the Poisson equation is defined as

−∆Φ = ρ− ρion, E := −∇Φ, (3.2)

In the same way one can define the current density j(x, t) =
∫
vf(x, v, t) dv and solve instead

of eqn. (3.2) the Ampère equation

∂tE(x, t) = j(x, t)− jion(x) (3.3)

in order to obtain the evolution of the electric field. If not specified otherwise we set jion = 1,

which makes Vlasov–Poisson and Vlasov–Ampère equivalent in one dimension. We already

know from the previous introduction that eqn. (3.1) describes a conservation law, which is

solved by the methods of characteristics.

3.1.1. Density estimation by Fourier transform

The natural way of solving the Poisson equation in a periodic domain is by Fourier transform,

but first we have to Fourier transform random particle densities. In a domain of length L

the wave vector k corresponding to the nth Fourier mode is defined as k = 2π
L n for n ∈ Z.

For the canonical case L = 2π the wave vector corresponds to the nth Fourier mode, such

that for the sake of notation k is used to denote the kth Fourier mode. For every mode k

the Fourier coefficients ρ̃(k, t) of the charge density ρ(x, t) are then obtained by the Fourier

transform:

ρ̃(k, t) :=
1

L

∫
R

∫ L

0
e−ikxf(x, v, t) dxdv. (3.4)

The charge density itself can be expressed as a Fourier series, see eqn. (3.5). In a numerical

simulation this Fourier series is truncated such that just a finite number of Fourier modes k

is regarded.

ρ(x, t) =
∑
k

ρ̃(k, t)eikx (3.5)

In L2 the Fourier modes
(
x 7→ eikx

)
k∈Z form an orthogonal series, which means that they are

orthogonal with respect to the L2 scalar product

1

L

∫ L

0
(eikx)†eilx dx =

1

L

∫ L

0
ei(l−k)x dx = δl,k. (3.6)

The plasma density f can be described by a stochastic process Z(t) = (X(t), V (t)) combined

with a weight W = f(X(t),V (t),t)
g(X(t),V (t),t) , such that the Fourier transform of the charge density in

eqn. (3.5) is rewritten as

ρ̃(k, t) =
1

L

∫
R

∫ L

0
e−ikxf(x, v, t) dxdv

=
1

L

∫
R

∫ L

0
e−ikx f(x, v, t)

g(x, v, t)
g(x, v, t) dxdv =

1

L
E
[
e−ikX(t)W

]
.

(3.7)
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Fourier transforming random deviates is actually a major tool in stochastic theory, where the

characteristic function of a random deviate X is defined as

ϕX(t) = E
[
eitX

]
. (3.8)

Given a number of samples the Monte Carlo estimator for the expectation in eqn. (3.7)

can also be obtained by inserting the Klimontovich density fp into the original integral in

eqn. (3.4).

ρ̃(k, t) ≈ ˆ̃ρ(k, t) =
1

L

∫
R

∫ L

0
e−ikxfp(x, v, t) dxdv

=
1

L

∫
R

∫ L

0
e−ikx 1

Np

Np∑
n=1

δ(x−Xn(t))δ(v − Vn(t))wn dxdv

=
1

L

1

Np

Np∑
n=1

wne−ikXn(t)

(3.9)

Given the weighted samples (Xn, Vn)n=1,...,Np , eqn. (3.9) provides a Monte Carlo estimator
ˆ̃ρ(k, t) for every Fourier mode ρ̃(k, t) of the charge density ρ. Inserting these estimators into

the Fourier series for ρ, see eqn. (3.5), yields the unbiased density estimator ρ̂(x, t)

ρ(x, t) ≈ ρ̂(x, t) =
∑
k

ˆ̃ρ(k, t)eikx. (3.10)

Unbiased, because the Fourier modes were not truncated, and using the exact identity (3.5),

we obtain

E [ρ̂(x, t)] =
∑
k

E
[

ˆ̃ρ(k, t)
]

eikx =
∑
k

ρ̃(k, t)eikx = ρ(x, t). (3.11)

But in reality we have to truncate somewhere resulting in the Fourier series approximation

ρ(x, t) ≈
Nf∑

k=−Nf

ρ̃(k, t)eikx (3.12)

and the biased density estimator ρ̂ given in a single expression as

ρ(x, t) ≈ ρ̂(x, t) =

Nf∑
k=−Nf

ˆ̃ρ(k, t)eikx =
1

L

1

Np

Nf∑
k=−Nf

Np∑
n=1

wneik[x−Xn(t)]. (3.13)

Biased, because the Fourier modes are truncated and the bias that is, the difference between

the expectation of the estimator and the quantity it is supposed to approximate, is nonzero

and reads

|ρ(x, t)− E [ρ̂(x, t)]| =

∣∣∣∣∣∣
∑
k

ρ̃(k, t)eikx −
Nf∑

k=−Nf

ρ̃(k, t)eikx

∣∣∣∣∣∣ =
∑
k>Nf
k<−Nf

ρ̃(k, t)eikx. (3.14)

It is, however, more meaningful to consider the integrated squared bias∫ L

0
|ρ(x, t)− E [ρ̂(x, t)]|2 dx = L

∑
k<−Nf ,k>Nf

|ρ̃(k, t)|2. (3.15)

Thus, the bias consists only of the truncated Fourier modes. Orthogonal spectral series like

Fourier, Chebyshev and Legendre series have the nice property that the absolute value of
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the coefficients ρ̃(k, t) decreases with increasing k. Boyd [54][pp. 50] uses this geometric

convergence to conclude that the truncation error is in the order of the last coefficient.

Applying this rule of thumb here means the bias can be estimated using the last coefficient.

But since we couple stochastic and deterministic methods the mean squared error (MSE) is

better suited to describe the error of the approximation ρ̂.

MSE [ρ̂(x, t)] = E
[
|ρ̂(x, t)− ρ(x, t)|2

]
=

V [ρ̂(x, t)]

Np
+ |ρ(x, t)− E [ρ̂(x, t)]|2

=
V [ρ̂(x, t)]

Np︸ ︷︷ ︸
variance

+

∣∣∣∣∣∣∣∣∣
∑
k>Nf
k<−Nf

ρ̃(k, t)eikx

∣∣∣∣∣∣∣∣∣
2

︸ ︷︷ ︸
bias2

(3.16)

Instead of this point-wise description we integrate again, such that the mean integrated

squared error (MISE) reads

MISE [ρ̂] =

∫ L

0
E
[
|ρ̂(x, t)− ρ(x, t)|2

]
dx =

V [ρ̂(x, t)]

Np
+ |ρ(x, t)− E [ρ̂(x, t)]|2

=
IVAR [ρ̂(t)]

Np︸ ︷︷ ︸
integrated variance

+ L
∑
k>Nf
k<−Nf

|ρ̃(k, t)|2

︸ ︷︷ ︸
integrated bias2

. (3.17)

The integrated variance can be estimated by covariance propagation in the same manner as

it was done for Particle-In-Cell. The ultimate goal is of course to balance bias and variance,

where another rule of thumb emerges from the orthogonality of the Fourier modes. For any

estimated Fourier series, Fourier coefficients which are smaller than their variance can be

truncated. We will consider this in more detail later, but be reminded that the strength of

the orthogonal series density estimation lies within the accessible control over the variance

bias relation. Now that we can project from a marker density onto a spectral k-grid and

back, we can continue with the solution of the field equations.

3.1.2. Fourier transform of Ampère and Poisson equation

The Poisson equation for electrons with a constant ion background reads

−∆Φ(x, t) = 1− ρ(x, t), (3.18)

and its Fourier transform is given as

− (ik)2Φ̃(k, t) = −ρ̃(k, t). (3.19)

The constant ion background cancels with the average electron density, which was a notational

hassle for finite elements. But in Fourier space this just means that the k = 0 Fourier mode

is dropped, such that the solution to eqn. (3.19) is merely a scalar multiplication according

to eqn. (3.20).

Φ̃(k, t) =
ρ̃(k, t)

(ik)2
⇒ Φ(x, t) =

∑
k 6=0

ρ̃(k, t)

(ik)2
eikx (3.20)

Something quite commonly known is that: Fourier methods do not scale.

Although there have been great and successful efforts to implement scalable Fourier trans-

forms [159], the O(N log(N)) transform of function values on a grid is never going to be so
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embarrassingly parallel as the standard Monte Carlo estimator. Or is it? The combination of

both Fourier transform and Monte Carlo estimation according to eqn. (3.7) scales better for

sure. Also the O (N) Poisson solve is then merely a negligible scalar multiplication. Thus,

maybe we should refine our statement to: Fourier transforms do not scale.

The equations of motions require the electric field E, which is obtained as

E(x, t) = −∇Φ(x, t) ⇒ Ẽ(k, t) = −ik Φ̃(k, t) ⇒ E(x, t) = −
∑
k 6=0

ρ̃(k, t)

ik
eikx. (3.21)

The electrostatic energy as the L2 norm of the electric field is

HE =
1

2

∫ L

0
|E(x, t)|2 dx =

L

2

∑
k 6=0

|Ẽ(k, t)|2 =
L

2

∑
k 6=0

∣∣∣∣ ρ̃(k, t)

k

∣∣∣∣2 . (3.22)

Inserting the particles yields an estimator for the electric field, such that the complete field

solver can be expressed and implemented in one single equation.

E(x, t) ≈ Ê(x, t) = −
∑
k 6=0

ˆ̃ρ(k, t)

ik
eikx

= − 1

L

1

Np

∑
k 6=0

Np∑
n=1

wn
ik

eik[x−Xn(t)]

(3.23)

The compactness and simplicity of eqn. (3.23) is an enormous strength of the Particle-In-

Fourier method in many ways. Complex derivations of new numerical methods can incor-

porate the Poisson solve in just one expression, which allows for much quicker development

and testing of new schemes in contrast to Particle-In-Cell codes, where particle sorting, mass

and stiffness matrices are additional factors of complexity. Let us proceed with the counter-

part, the Vlasov Ampère system for which we need the Fourier transformed electron current

density j with

j(x, t) =

∫
R

∫ L

0
vf(x, v, t) dxdv and j̃(k, t) =

∫
R

∫ L

0
vf(x, v, t)e−ikx dxdv. (3.24)

The Fourier transform of the Ampère equation does also incorporate an ion background,

which is, without loss of generality, set to jion(x) = 1
L

∫
R
∫ L

0 vf(x, v, t = 0) dxdv such that

the zeroth Fourier mode always drops out. In this very special case Vlasov–Poisson and

Vlasov–Ampère are equivalent in a single dimension.

∂tẼ(k, t) = j̃(k, t)− j̃ion(k) (3.25)

Since eqn. (3.25) depends on time, we have to deploy a time discretization, before we split

the Vlasov and the Poisson equation from each other. In the Vlasov–Poisson particle dis-

cretization this means that first the given particles are used to obtain the electric field E and

then this field is used to advance the particles according to their equations of motion. Thus,

the naive approach is to do the same for the Ampère equation yielding

Ẽ(k, t+ ∆t) = Ẽ(k, t) +

∫ t+∆t

t
j̃(k, τ)dτ = Ẽ(k, t) + ∆t j̃(k, t). (3.26)

But an important property is lost in eqn. (3.26). The factor 1
k in eqn. (3.21) damps the high

modes, which is a crucial physical feature that cannot be found in eqn. (3.26). Since the high

138



3.1. Electrostatic electron model — Vlasov–Poisson/Ampère

modes are not damped, particle noise (variance) increases affecting the solution1. The correct

Hamiltonian splitting of the Vlasov–Ampère system solves the problem, see eqn. (3.27).

{
∂tf(x, v, t) + E(x, t)∂vf(x, v, t) = 0

∂tE(x, t) = 0{
∂tf(x, v, t) + v∂xf(x, v, t) = 0

∂tE(x, t) =
∫
R vf(x, v, t) dv − jion(x)

(3.27)

The corresponding particle splitting using a stochastic process and the expectation reads


Ẋ(t) = 0,

V̇ (t) = E(X(t), t),

∂tẼ(k, t) = 0,

(3.28)


Ẋ(t) = V (t),

V̇ (t) = 0,

∂tẼ(k, t) = E
[
V (t)e−ikX(t)

]
.

(3.29)

The idea of the splitting is that the corresponding split steps are so simple that they can be

solved exactly. In eqn. (3.28) the particle position and the field coefficients and therefore, the

field itself stay constant over time, such that the ODE for the velocity V (t) can be solved

exactly according to

V (t+ ∆t) = V (t) +

∫ t+∆t

t
V̇ (τ) dτ

= V (t) +

∫ t+∆t

t
E(X(τ), τ)︸ ︷︷ ︸

=E(X(t),t) (constant)

dτ

= V (t) + ∆t E(X(t), t).

(3.30)

The second split step is a bit more involved. First note that the trajectories X(t) are solved

exactly by

X(τ) = X(t) +

∫ τ

t
Ẋ(τ ′) dτ ′ = X(t) + (τ − t)V (t), τ ∈ [t, t+ ∆t]. (3.31)

Using the trajectory of X during the split step allows us to solve the Ampère equation

correctly by using the line integral and the indefinite integral of the Fourier mode, which

1On several occasions the author faced the statement that Vlasov–Ampère has more noise because it does

not damp the high modes. Actually the variance can differ depending on the first moment of the particle

velocity distribution, see the multi-species Vlasov–Maxwell example.
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shows again how easy things are in Fourier space.

Ẽ(k, t+ ∆t) = Ẽ(k, t) +

∫ t+∆t

t
∂tẼ(k, τ) dτ

= Ẽ(k, t) + Ẽ(k, t) +

∫ t+∆t

t
E
[
V (τ)e−ikX(τ)

]
dτ

= Ẽ(k, t) + Ẽ(k, t) + E
[∫ t+∆t

t
V (τ)e−ikX(τ) dτ

]
= Ẽ(k, t) + E

[∫ t+∆t

t
V (τ)e−ik[X(t)+(τ−t)V (t)] dτ

]
= Ẽ(k, t) + E

[∫ X(t)+∆tV (t)

X(t)
e−iks ds

]

= Ẽ(k, t) + E

[[
1

−ik
e−iks

]s=X(t+∆t)

s=X(t)

]
= Ẽ(k, t)− 1

ik
E
[
e−ikX(t+∆t) − e−ikX(t)

]

(3.32)

Now the 1
ik factor, which damps the high modes, again appears in eqn. (3.32).

3.1.3. Variational aspects

PIF was introduced ad-hoc which provided an intuitive access but does not guarantee any

conservation laws. Actually the same scheme can be derived by a discrete Euler–Lagrange

principle, such that we recall some mechanisms from [10]. For a particle discretization

fp(x, v, t) =
1

Np

Np∑
n=1

wnS(x− xn)δ(v − vn), (3.33)

with a spatially smoothing shape function S the discrete particle Lagrangian for Vlasov–

Poisson reads

L(x, ẋ, v, v̇,Φ, Φ̇) =

1

Np

Np∑
n=1

wn

[
xnv̇n −

1

2
v2
n −

∫
S(x̃− xn)Φ(x) dx̃

]
+

1

2

∫
(∂x̃Φ(x̃))2 dx̃. (3.34)

The equations of motions with the field equations are obtained by the Euler–Lagrange prin-

ciple from eqn. (3.34) as

ẋn = vn,

v̇n =

∫
S (x− xn(t)) ∂x̃Φ(x̃) dx̃,

−
∫
∂xΦ(x)(∂xϕ(x))† dx =

1

Np

Np∑
n=1

wn

∫
S(x̃− xn)ϕ(x)† dx̃, ∀ϕ.

(3.35)

Given a nontrivial shape function S, the Vlasov–Poisson system is mollified such that (3.34)

and (3.35) correspond to the system (3.36).

∂tf(x, v, t) + v∂xf(x, v, t)− E(x, t)∂vf(x, v, t) = 0

−∆Φ(x, t) = 1−
∫ L

0

∫ ∞
−∞

f(x− y, v, t)S(y) dvdy

E(x, t) = −
∫ L

0
∂xΦ(x− y, t)S(y) dy

(3.36)
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In order to obtain our standard PIC, finite elements ψk are chosen as Ansatz for Φ =
∑

Φkψk
and the test-functions as ϕ ∈ {ψk}. Additionally the particle shape is restricted to a delta

function S(x) = δ(x). For the classical PIF the choice of Fourier modes ψk = eikx yields the

discrete Lagrangian

L =
1

Np

Np∑
n=1

wn

[
xnv̇n −

1

2
v2
n −

∑
k

1

L
Φke

ikxn

]
+
L

2

∑
k

1

k2
ΦkΦ

†
k, (3.37)

along with the equations of motion and the Fourier transformed Poisson equation

ẋn = vn, v̇n =
∑
k

ikΦke
ikxn , k2Φk =

1

L

1

Np

Np∑
n=1

wne−ikxn . (3.38)

For a non-trivial particle shape function the most common choice is based on splines. The B-

splines Sm of order m with cell size h are obtained by successive convolution of the rectangular

function S0

S0(x) =

{
1
h if x ∈

(
−h

2 ,
h
2

)
0 else

Sm(x) = S0 ∗ · · · ∗ S0︸ ︷︷ ︸
m+1 times

(x) = S
∗(m+1)
0 (x) =

∫ ∞
−∞

S0(x− y)Sm−1(y) dy.

(3.39)

Note that by the convolution the support of the mth order spline Sm increases with the degree

m,

supp(Sm) =

[
−hm+ 1

2
, h
m+ 1

2

]
. (3.40)

Convolution is merely a multiplication in Fourier space, such that the Fourier transform of

the B-splines is explicitly given as∫ L

0
Sm(x)e−ikx dx =

[
sinc

(
kh

2

)]m+1

. (3.41)

Here the unnormalized definition sinc(x) = sin(x)
x is used, but most software uses the nor-

malized convention sinc(x) = sin(xπ)
xπ . Inserting the B-splines and the Fourier modes into

eqn. 3.35 yields a variant of PIF with finite particles with spatial extent h(m+ 1).

ẋn = vn,

v̇n =
∑
k

ikΦk

[
sinc

(
kh

2

)]m+1

eikxn

=
∑
k

1

−ik

[
sinc

(
kh

2

)]2(m+1) 1

L

1

Np

Np∑
m=1

wme−ik(xn−xm)

k2Φk =

[
sinc

(
kh

2

)]m+1 1

L

1

Np

Np∑
n=1

wne−ikxn

(3.42)

Because of the particle shape the initial condition f0 is subject to an additional convolution

resulting in f̃0 given by

f̃0(x, v) =

∫ L

0
f0(y, v)Sm(x− y) dy. (3.43)
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In order to obtain a consistent initial condition the deconvolution has to be incorporated into

the initial condition. Observe that

1 + ε cos(kx) =

∫ L

0

[
1 + sinc

(
kh

2

)−m
ε︸ ︷︷ ︸

:=ε̃

cos(ky)
]
Sm(x− y) dy, (3.44)

which means it suffices to change the amplitude of the perturbation from ε to ε̃ for the typical

initial condition. Although the initial condition is modified correctly the outcome of the

simulation depends on the particle shape and does not necessarily coincide with the original

Vlasov–Poisson system, see fig. 3.4. For m = 1 eqn. (3.42) was already derived in [10], where

also the conservation of energy and momentum is discussed. Among the conserved quantities

of the Vlasov–Poisson system is the momentum, which including the particle discretization

reads ∫
f(x, v, t)v dxdv =

1

Np

Np∑
n=1

wnv
t
n

∫
S(x) dx. (3.45)

For the classical finite difference PIC the symmetry in the charge projection scheme e.g.,

cloud in cell, to and from the grid yields the momentum conservation at the discrete level,

but the conserved quantities such as energy are in general lost when those schemes are not

derived from a variational principle [5]. For the canonical variational particle algorithm with

particles shapes S, the condition (3.46) was derived in [10].∫
Φ(x)∂xψk(x)† dx

∫
S(x−xn)ψk(x) dx = −

∫
Φ(x)ψ†k dx

∫
S(x−xn)∂xψk(x) dx (3.46)

Here (ψk)k=1,... are orthogonal basis functions for the potential Φ satisfying the orthogonality∫
ψk(x)ψl(x)† dx = δk,l. (3.47)

Equation (3.46) holds true for Fourier modes ψk = eikx and, thus, momentum and energy

are conserved. Unfortunately we do not know of any other basis for which this also is true.

Instead of showing the translation invariance for the Lagrangian which is done in [10], the

force a particle exerts on itself is calculated. Recall that given particles (xn)n=1,...,Np and

weights (wn)n=1,...,Np in PIF, the electric field at the position x reads

E(x;x1, . . . , xNp , w1, . . . , xNp) =

3

Nf∑
k=−Nf
k 6=0

eikx 1

ik

1

Np

Np∑
n=1

wne−ikxn =
1

Np

Nf∑
k=−Nf
k 6=0

1

ik

Np∑
n=1

wneik(x−xn)

=
1

Np

Np∑
n=1

wn

Nf∑
k=1

(
1

ik
eik(x−xn) +

1

−ik
e−ik(x−xn)

)
=

1

Np

Np∑
n=1

wn

Nf∑
k=1

2

k
sin (k(x− xn)) . (3.48)

Evaluating the electric field (3.48) for a particle xm eqn. (3.49) reveals that there is no particle

self force.

E(xm;x1, . . . , xNp , w1, . . . , xNp) =
1

Np

Np∑
n=1

wn

Nf∑
k=1

2

k
sin (k(xm − xn))

=

Nf∑
k=1

2

k

1

Np
wm sin (k(xm − xm))︸ ︷︷ ︸

=0︸ ︷︷ ︸
self force

+
1

Np

Np∑
n=1
n6=m

wn

Nf∑
k=1

2

k
sin (k(xm − xn)) (3.49)
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Weak Landau damping (Nf = 1)

Strong Landau damping (Nf = 4)

Figure 3.4.: PIF simulations of weak Landau damping using different quadratic B-spline

particle shape functions S2 of varying width h. A null width h = 0 results in the standard

PIF. With increasing particle width, the solution clearly deviates from the reference although

energy and momentum are conserved. (h0 = L
4(2+1) , Np = 106, ∆t = 0.05, rk3s)

But this does not necessarily imply total momentum conservation when using control variates.

In [160][p.2] it is already noted that there is an inconsistency in momentum conservation

stemming from the control variate. For a control variate PIC the constant weights wn are

replaced by time dependent weights δwn. As long as these weights do not change during a

time step, there remains no particle self force although the total momentum conservation is

violated by the changing weights.

3.1.4. Variance in PIF

We have already discussed the errors in the particle mesh coupling for PIC, such that all

results obtained for PIC apply also for PIF by choosing the Fourier modes as basis functions(
ψm(x) = eim 2π

L
x
)
m=1,...,Nf

which yields diagonal mass and stiffness matrices

Mk,l = δk,l
1

L
and Kk,l = δk,l

1

k2L
, k, l = 1, . . . , Nf . (3.50)

This simplicity allows us to directly state the variance of the Fourier coefficients of charge

density, potential and electric field. Using independent identically distributed samples the

sample variance for the Fourier coefficients reads

V
[

ˆ̃ρ(k, t)
]

=
1

Np

1

L2
V
[
e−ikX(t)W (t)

]
. (3.51)
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The variance for the charge density estimator in eqn. (3.13) given in eqn. (3.52) contains

covariances of all Fourier modes.

V [ρ̂(x, t)] = V

 Nf∑
k=−Nf

ˆ̃ρ(k, t)eikx

 =
1

L2Np
V

 Nf∑
k=−Nf

e−ikX(t)W (t)eikx


=

1

L2Np

Nf∑
k1=−Nf

Nf∑
k2=−Nf

COV
[
e−ik1X(t)W (t)eik1x, 3e−ik2X(t)W (t)eik2x

]

=
1

L2Np

Nf∑
k1=−Nf

Nf∑
k2=−Nf

COV
[
e−ik1X(t)W (t), e−ik2X(t)W (t)

]
ei(k1−k2)x

(3.52)

Whether PIC or PIF is used, the coefficient covariance matrix is always dense. This matrix is

needed in order to calculate more meaningful criterion — the integrated variance. Inserting

(3.52) and using the orthogonality of the Fourier modes shows that the integrated variance

in PIF is directly obtained by summing up the variances of each Fourier mode.

IVAR [ρ̂(t)] =

∫ L

0
V [ρ̂(x, t)] dx

=
1

L2Np

Nf∑
k1=−Nf

Nf∑
k2=−Nf

COV
[
e−ik1X(t)W (t), e−ik2X(t)W (t)

] ∫ L

0
ei(k1−k2)x dx︸ ︷︷ ︸
Lδk1,k2

=
1

LNp

Nf∑
k=−Nf

V
[
e−ikX(t)W (t)

]
=

Nf∑
k=−Nf

LV
[

ˆ̃ρ(k, t)
]

(3.53)

The variances of the field coefficients are then obtained by scalar multiplication

V
[

ˆ̃Φ(k, t)
]

= V

[
ˆ̃ρ(k, t)

ik2

]
=

1

k4

[
ˆ̃ρ(k, t)

]
,

V
[

ˆ̃E(k, t)
]

= V

[
ˆ̃ρ(k, t)

−ik

]
=

1

k2

[
ˆ̃ρ(k, t)

]
,

(3.54)

which results in the integrated variances

IVAR
[
Φ̂
]

=

Nf∑
k=−Nf
k 6=0

L

k4
V
[

ˆ̃ρ(k, t)
]

and IVAR
[
Ê
]

=

Nf∑
k=−Nf
k 6=0

L

k2
V
[

ˆ̃ρ(k, t)
]
. (3.55)

3.1.5. Fourier filtering and aliasing in PIC

For the finite element PIC a series of Nf m
th-order h = L

Nf
wide B-splines was used as basis

functions for the fields. Fourier transforming such a periodic series results in

u(x) =

Nf∑
n=1

un Sm (x− nh− x̄)︸ ︷︷ ︸
=ψn(x)

ũk =
1

L

∫ L

0
u(x)e−ikx dx =

1

L

Nf∑
n=1

un

[
sinc

(
kh

2

)]m+1

e−ik(nh+x̄).

(3.56)
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For x̄ = 0 the first spline is centered at x = 0, but an equidistant periodic grid will have the

first node at x = 0 such that the centered spline has to be shifted to x̄ = hm+1
2 . Inserting the

canonical choice k = 2π
L l, l = 0, . . . , Nf − 1 and h = L

Nf
into eqn. (3.56) yields eqn. (3.57).

ũl = e−2πi x̄
L
l

[
sinc

(
π
l

Nf

)]m+1 1

L

Nf∑
n=1

une
−2πi l

Nf

︸ ︷︷ ︸
discrete Fourier transform

(3.57)

Here it becomes clear that the Fourier modes ũ can be obtained from the finite element

coefficients (un) by a discrete Fourier transform on the coefficient vector and a corresponding

scaling with the sinc function. This is a beneficial coincidence, since the involved finite

element matrices are circulant Toeplitz matrices which can be diagonalized using the discrete

Fourier transform (3.58) on the coefficient vectors, see also [161][p. 34].

(F)n,m = e
−2πinm

Nf , n,m = 0, . . . , Nf − 1

(F−1)n,m =
1

Nf
e
−2πinm

Nf , n,m = 0, . . . , Nf − 1,
(3.58)

If the mass and stiffness matrix are diagonalized by

M = F−1DMF and K = F−1DKF (3.59)

a Fourier filter is implemented by setting entries of the diagonal matrices DM , DK to zero,

which correspond to the desired Fourier modes according to eqn. (3.57). This also applies for

the inversion, where the constant Fourier mode is subtracted for neutrality. Thus, field solve

and Fourier filter can be incorporated into the same process. Note that this form of filtering

does not destroy the time symmetry such that the filtered energy is conserved and essentially

nothing changed from the variational perspective expect the choice of basis functions. In

the following we are interested up to which extent Fourier filtering reduces particle noise.

Since the IVAR of the fields depends mainly on the structure of f(x, v, t), one cannot draw

a general conclusion without having any knowledge of f . Therefore, we restrict ourselves to

an equilibrium case ρ(x) = 1 with a uniform sampling density g(x) = 1
L . Equation (2.97)

already holds a closed expression for the corresponding right hand side covariance, such that

for PIC the Fourier filtered mass and stiffness matrices (3.59) can be used for covariance

propagation. For PIF the Fourier coefficients and their variance are directly obtained by

E
[

ˆ̃ρ(n)
]

= ρ̃(n) =
1

L

∫ L

0

ρ(x)

g(x)
e−i 2π

L
nxg(x) dx =

1

L

∫ L

0
Le−i 2π

L
nx 1

L
= 0 dx for n 6= 0 (3.60)

and

V
[

ˆ̃ρn(t)
]

=
1

Np

∫ L

0

(
1

L

ρ(x)

g(x)
e−i 2π

L
nx − ρ̃(n)

)(
1

L

ρ(x)

g(x)
e−i 2π

L
nx − ρ̃(n)

)†
g(x) dx

=
1

Np

∫ L

0

(
1

L
Le−i 2π

L
nx − 0

)(
1

L
Le−i 2π

L
nx − 0

)† 1

L
dx

=
1

Np

∫ L

0
e−i 2π

L
nx+i 2π

L
nx 1

L
dx =

1

Np
.

(3.61)

Note that the zeroth Fourier mode is constant and is not subject to any variance V
[

ˆ̃ρ
]

= 0.

This only holds true for importance sampling where the variance of the weights is zero V[W ] =
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0, or when a control variate is applied respectively. Inserting (3.61) into the previously

obtained expressions for the integrated variance (3.55) results in

IVAR [ρ̂] =

Nf∑
n=1

2LV
[

ˆ̃ρ(n)
]

=
2LNf

Np

Nf→∞−−−−→ ∞. (3.62)

For an increasing number of Fourier modes, the integrated variance of the density estimate

tends to infinity which means that the number of particles per mode have to be held constant

in order to balance the background noise. Nevertheless this changes once we include the field

solve. With eqn. (3.55) we obtain upper bounds for the integrated variance of the potential

IVAR
[
Φ̂
]

=

Nf∑
n=1

2
L(

2π
L n
)4V [ ˆ̃ρ(n)

]
=

2L5

(2π)4Np

Nf∑
n=1

1

n4︸ ︷︷ ︸
Nf→∞−−−−→π4

90

Nf→∞−−−−→ L5

720Np
(3.63)

and the electric field used for the advection

IVAR
[
Ê
]

=

Nf∑
n=1

2
L(

2π
L n
)2V [ ˆ̃ρ(n)

]
=

2L3

(2π)2Np

Nf∑
n=1

1

n2

Nf→∞−−−−→ 2L3

(2π)2Np

π2

6
=

L3

12Np
. (3.64)

Therefore, contrary to a plain density estimate, the Monte Carlo noise is limited by the field

equation. For this case fig. 3.5 contains a comparison of the integrated variance for PIF and

PIC for different spline order and number of cells. Compared to the B-splines the PIF has

the highest IVAR. Also with increasing support, order of the splines, the IVAR increases

slightly. The correct variance propagation allows us to see that IVAR[E] is bounded with

respect to the number of basis functions, whereas IVAR[ρ] is not for both PIC and PIF.

Contrary to grid based integration, in Monte Carlo integration the number of samples

required for a certain precision on a Fourier coefficient does not depend on the mode number,

which is indicated already in eqn. (3.61). To further investigate this, we consider importance

sampling of a uniform mode k with amplitude ε > 0 according to

ρ(x) = 1 + ε cos(kx), g(x) =
ρ(x)

L
. (3.65)

Figure 3.5.: Integrated variance of electric field, potential and charge density for ρ(x) = 1,

g(x) = 1
L . Although every additional Fourier mode yields more variance, the damping by the

Laplace operator bounds the increase. With varying B-spline degree d PIC approximates the

variance of PIF while both have the same asymptotic bound.
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3.1. Electrostatic electron model — Vlasov–Poisson/Ampère

(a) Arbitrary degree B-splines Sm(x) (b) Fourier transform S̃m(k) of the B-splines

Sm(x)

Figure 3.6.: B-splines and their Fourier transform. While Sm (a) has compact spatial support

the Fourier transform S̃m (b) is globally supported in Fourier space. This causes aliasing,

since every Fourier mode contributes to one B-spline. Higher order splines decay much faster

in Fourier space, such that the aliasing is suppressed.

The expectation and the variance of the kth Fourier coefficient then read

E
[

ˆ̃ρ(k)
]

= ρ̃(k) =
1

L

∫ L

0
(1 + ε cos(kx))e−ikx dx =

ε

2
,

V
[

ˆ̃ρ(k)
]

=
1

Np

1

L2

∫ L

0

[
Le−ikx − ε

2

] [
Le−ikx − ε

2

]† 1

L
(1 + ε cos(kx)) dx

=
1

Np

[
1

L2

∫ L

0
L2 1

L
(1 + ε cos(kx)) dx− ε2

4

]
=

1

Np

(
1− ε2

4

)
.

(3.66)

It seems that especially the grid-less PIF is suited for few very high mode numbers, since the

corresponding variance is bounded and the estimator is unbiased.

Finite element PIC codes based on B-splines can only provide a biased estimate of the Fourier

modes because of the discretization error depending on the grid size and spline degree. This

error causes high frequencies to appear in a low frequency interval, which is called aliasing.

Also Fourier methods based on the FFT also suffer from aliasing, but there are filtering

techniques such as the 3/2-rule [162][p.30] to remove this effect. Aliasing is independent of

the particle number and depends only on the choice of of the basis functions. We utilize

Shannons sampling theorem [163] and analyze the high frequency behavior of a m-th degree

B-spline Sm by using the Fourier transform obtained in

S̃m(ω) = sinc
(ω

2

)m+1
=

(
2 sin

(
ω
2

)
ω

)m+1

= O
(

1

ωm+1

)
.

The support of Sm in Fourier space is unbounded such that all frequencies are included which

leads to aliasing, see fig. 3.6. The decay rate of S̃m depends on the B-spline degree, such that

with higher order B-splines the aliasing is suppressed. As aliasing can cause instabilities [55]

its extend should be quantified. For diagnostic purposes this has already been done for

gyrokinetic simulations [164], such that we restrict ourselves to two dimensional Vlasov–

Poisson simulations and extend the analysis to B-splines of varying degree. Estimating the

Fourier modes directly — as in the unbiased PIF — yields no aliasing of other frequencies.
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Since PIF is unbiased and the same Fourier modes can be calculated via PIC using eqn. (3.57)

the bias in a PIC simulation can be determined by the difference to the PIF estimate for the

same simulations. This means that the particles are advanced by the PIC scheme and only

for diagnostic reasons the Fourier modes obtained in PIC by eqn. (3.57) are compared to the

values obtained with the direct Fourier transform on exactly the same markers, which we

call PIF. By increasing the B-spline degree, aliasing is suppressed and the harmonics of the

potential estimated by PIC converge to the PIF estimate, see fig. 3.7.
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(a) Electrostatic energy (b) Spatial harmonics Φ̃(k)

(c) Relative energy error (d) Absolute momentum error

(e) Bias on harmonics Φ̃(k) (f) Mean bias on harmonics

Φ̃(k)

(g) Square bias and variance for

Φ̃(k) at t = 200

Figure 3.7.: PIC simulations of the Bump-on-tail instability (Nfem = 32, Np = 104, ε = 0.03,

∆t = 0.05, rk3s, RQMC) with varying B-spline degree. Higher order splines improve the en-

ergy conservation, but not the total momentum error. The Bump-on-tail instability is driven

by the k = 1 mode in the linear phase and excites higher harmonics in the nonlinear regime.

The bias on the PIC estimator of Φ̃(k) is calculated by using the unbiased PIF estimator for

Φ̃(k) on the same particles. The variance on Φ̃(k) is estimated by PIF. Although the variance

is much higher than the square bias, it is still possible to observe the difference because the

same particles are used and the PIC and PIF estimate are, therefore, highly correlated. This

diagnostic shows that the bias stays constant over time and decreases with increasing spline

degree as expected but resides several orders of magnitude below the variance.
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3.1.6. Variational Multilevel PIF

In the original Lagrangian (3.34) the particle shape function S can differ for each particle.

Upon this fact a multilevel Monte Carlo (MLMC) scheme can be constructed [16]. The

general idea is that coarse spatial grid exhibits less noise than a finer grid. Therefore, multiple

ensembles of particles can live on coarse and fine grids, such that the coarse result is used as

a control variate for the finer grid. Thus MLMC, can be extended into the control variate

formalism, see [145]. The exact mean on the coarse grid is not known, but can be estimated

by using much more particles or the same number of particles as the overall variance is

smaller due to the coarser structure. This is realized by adapting the smoothing window

with h of the particle shape function Sh. A similar idea is discussed in [18] using sparse

grids but no variational framework. For M levels with smoothing widths h0 < · · · < hM−1

and independent samples (xln, v
l
n, w

l
n), n = 1, . . . , Nl for each level l = 0, . . . ,M − 1 the

corresponding multilevel particle Lagrangian reads

L =
1

2

∫
(∂x̃Φ(x̃))2 dx+

N1∑
n=0

w0
n

[
x0
nv̇

0
n −

1

2
(v0
n)2 −

∫
Sh0(x̃− x0

n)Φ(x) dx̃

]

+
M−1∑
l=1

1

Nl

Nl∑
n=1

wln

xlnv̇ln − 1

2
(vln)2 −

∫ [
Shl(x̃− xln)− Shl−1(x̃− xln)

]
︸ ︷︷ ︸

difference to previous level

Φ(x) dx̃

 . (3.67)

If identical samples are used for each level the Lagrangian (3.67) will collapse to the original

one (3.34). For different number of samples the coarser particles act as a control variate

for the finer grid, where the mean field interaction is not exactly known but sampled by

the particles. Discretizing the fields with PIF and choosing the shape function as mth order

B-splines yields the multi-level equations of motions and the discrete Poisson equation in

eqn. (3.68).

ẋln = vln,

v̇0
n =

∑
k

ikΦk

[
sinc

(
kh0

2

)]m+1

eikx0
n ,

v̇ln =
∑
k

ikΦk

{[
sinc

(
khl
2

)]m+1

−
[
sinc

(
khl−1

2

)]m+1
}

eikxln ,

k2Φk =

[
sinc

(
kh0

2

)]m+1 1

L

1

N0

N0∑
n=1

wne−ikxn

+
1

L

M−1∑
l=1

{[
sinc

(
khl
2

)]m+1

−
[
sinc

(
khl−1

2

)]m+1
}

1

Nl

Nl∑
n=1

wlne−ikxln

(3.68)

It remains to make a choice concerning the particle width hl and the number of particles for

each level. Given a particle width h0 the other levels can defined by refinement according

to hl = 1
2l
h0, . . . l = 0, . . . ,M − 1. From the smoothed Vlasov–Poisson system (3.36) and

eqn. (3.68) it becomes clear that the additional convolution is applied two times, such that

the integrated variance of the electric field under spatially uniform sampling reads

IVAR
[
Êl

]
=

1

Nl

Nf∑
k=−Nf
k 6=0

L

k2
sinc

(
khl
2

)4(m+1)

. (3.69)
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Weak Landau damping (Nf = 1)

Strong Landau damping (Nf = 4)

Figure 3.8.: Multilevel Monte-Carlo PIF simulations of weak Landau damping using different

quadratic B-spline particle shape functions S2 with varying number of levels M . With increas-

ing number of levels the solution deviates clearly from the reference. (hM−1 = L
4(2+1) , Np =

106, ∆t = 0.05, rk3s)

For a given total number of markers Np =
∑M−1

l=0 Nl, the number of markers Nl for each level

is then chosen such that the integrated variance is balanced according to

Nl ∼
Nf∑
k=1

2L

k2
sinc

(
khl
2

)4(m+1)

. (3.70)

PIC has problems resolving small amplitudes due to the noise, where a control variate that

subtracts the background f(v) provided a remedy. This form of noise is the dominant problem

in Monte Carlo particle methods, which unfortunately cannot be solved by purely particle

based MLMC approach. With increasing number of levels and therefore, decreasing number

of Nl particles per level the background noise on each level is larger such that small amplitude

effects such as linear and nonlinear Landau damping are recovered worse, see fig. 3.8. Similar

results are reported in [18], where the memory consumption was reduced by sparse grids but

not the particle noise thus rendering the MLMC mechanism inefficient. We conclude that

MLMC might be better suited for multiple levels in the time discretization, which was already

successfully applied for general Vlasov–McKean processes in [17].

3.2. Particle in spectral space

We can generalize the Particle-In-Fourier method in order to solve the Poisson equation in

a non-periodic domain including Dirichlet and Neumann boundary conditions. The Fourier

modes form a global orthogonal series in the periodic domain, which rapidly approximates

smooth functions at the expense that every particle contributes to every Fourier mode. Spec-

tral methods for bounded domains are based on other orthogonal series, which are mostly

global polynomials [54, 162]. In that context every particle contributes also to every polyno-

mial, but polynomials are much cheaper to evaluate than the trigonometric functions. Instead
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of going to deep into the theory of these polynomials we want to point out the Chebyshev

identity (3.71), which tells us that the Fourier modes — here cos(nθ) and sin(nθ) — can be

obtained by a two term recurrence relation.

cos(nθ) = 2 cos(θ) cos ((n− 1)θ)− cos ((n− 2)θ) ,

sin(nθ) = 2 cos(θ) sin ((n− 1)θ)− sin ((n− 2)θ) .
(3.71)

Those recurrence relations play an essential role in the theory of the spectral methods, such

that all the other orthogonal series are also defined by such a relation. The most popular

global spectral methods use the Chebyshev polynomials, which are defined as

Tn(x) = cos
(
n cos−1(x)

)
x ∈ x ∈ [−1, 1]. (3.72)

With the Chebyshev identity (3.71) this definition yields a three term recurrence relation

eqn. (3.73), which is the handier definition for a series of polynomials. It provides an efficient,

and most important, numerically stable scheme to evaluate all Chebyshev polynomials at a

certain position x ∈ [−1, 1].

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

(3.73)

More formulas can be found in the appendix C.1.1, such that we can turn to another set of

orthogonal polynomials.

The straightforward orthogonal series density estimation (OSDE) uses the orthogonal Leg-

endre polynomials Pn, see [165] for an overview and appendix C.1.3 for useful equations.

The use of Legendre polynomials is not very widespread because, contrary to the Chebyshev

polynomials, there is no similar fast transform from values on a grid to Legendre coefficients.

Yet this poses no obstacle for Lagrangian particles, since there is no grid present. Thus,

the Legendre polynomials are perfectly suited for particle methods. They are defined for

x ∈ [−1, 1] by the three term recurrence eqn. (3.74).

P0(x) = 1

P1(x) = x

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x)

(3.74)

The Legendre polynomials are very well suited for density estimation because of their strict

orthogonality with respect to the Lebesgue measure, see eqn. (3.75).∫ 1

−1
Pn(x)Pm(x) dx =

2

2n+ 1
δn,m (3.75)

Given Lagrangian particles, the L2 projection is the most attractive operation, since, in

contrast to the Chebyshev polynomials, no additional weighting function is present. But

on the other hand, Chebyshev based methods are much more widespread and efficient. Yet

any Legendre series can be transformed into a Chebyshev series and vice versa. Algorithms

performing the transform in both directions are available in O(N), see [166] and O
(
N log(2N)
loglog(N)

)
from [167]. The latter one is actually faster and available in FastTransforms.jl.
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3.2.1. Particle in Legendre and Chebyshev

There is an abundance of systems that can be solved using Particle-In-Cell yet many times

finite element solvers are rewritten from scratch although well developed libraries are avail-

able. There is development in using particles with deal.II [168], and fenics [169]. For spectral

methods in MATLAB chebfun [170] is the obvious choice, but since MATLAB does not scale

it is not a long term option. Julia on the other hand is much faster and better suited for

large scale particle methods and there is a freshly emerging spectral library Approxfun.jl [171].

Therefore, we implement a particle-spectral-grid coupling in this environment. For over 20

years efficient spectral methods have been derived for simple geometries (cylinder, sphere,

see [172, 173, 174, 175]) and we could implement them right away, but then a specific plasma

physics problem tailored to the corresponding geometry has to be solved. The Poisson equa-

tion with homogeneous Dirichlet boundary conditions can be solved trivially with Legendre

polynomials, such that for a clamped mode Linear landau damping us used to verify the feasi-

bility of the scheme in fig. 3.10. In a more general approach Approxfun.jl, which is embeeded

in julia approximation, provides us with a set of tools for any nonlinear PDE. Especially

the banded matrix assembly for all types of boundary conditions and the preconditioning

by ultraspherical polynomials are taken care of. This has such a generality that we demon-

strate something rather odd, namely a periodic Vlasov–Poisson solver that uses Legendre

and Chebyshev polynomials as basis functions. The particle mesh coupling takes place at

the level of Legendre polynomials, where the obtained coefficients are transformed into the

Chebyshev basis using FastTransforms.jl. On this level any boundary conditions or equations

can be solved efficiently. Since the resulting fields are given in Chebyshev polynomials, the

back transform onto the Legendre basis is skipped. The errors made by this basis transform

are on the level of machine precision, hence we can safely ignore them. The algorithm is

long-term stable and energy is conserved, see fig. 3.9. The more interesting question is how

many degrees of freedom are needed given a certain number of particles or where should we

truncate the expansion. Given the heavily perturbed density at the end of the simulation, see

fig. 3.9b, there are obviously many modes present. But the field coefficients are decreasing,

see fig. 3.9b, which means some of them are merely noise and can be neglected. In order to

avoid calculation of covariances we turn to the Legendre basis and estimate the variance of

the Legendre coefficients. Taking advantage of the Legendre orthogonality this costs as much

as another charge assignment. Although the coefficients oscillate, the tail n > 30 is at the

order of the standard deviation, such that those coefficients are dominated by noise and do

not contribute to the solution, see fig. 3.9e. Possible improvements can be made by averaging

the coefficient of variance over some time in order to obtain a smoother picture. Given the

capabilities of Approxfun.jl for tensor structured domains, this particle mesh coupling can be

directly used in higher dimensions including other nonlinear PDEs that can also incorporate

curvature.

3.2.2. Particle-In-Fourier Hankel

The natural analytic way of solving the Poisson equation in cylindrical domain is by the

Fourier Hankel transform [176]. The idea was already applied in a Vlasov–Maxwell PIC code

that still has an intermediate grid [147, 148]. Here we focus on an entirely grid-less variant.

The expansion in Bessel functions has only algebraic convergence, thus other possible methods

based on polynomials are a better choice from a numerical perspective see [54][pp. 385]. Here

polar coordinates (r, θ) are used, where the basis function in the periodic direction θ are

Fourier modes and in the radial direction Bessel functions.

For a radially symmetric density ρ(r) the continuous mth order Hankel transform is defined
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(a) electrostatic energy (b) spectral coefficients

(c) energy error (d) momentum error

(e) Legendre coefficient noise at t = 100 (f) particle density at t = 100

Figure 3.9.: Nonlinear Landau damping with Legendre polynomials and periodic boundary

via the Chebyshev representation provided by Approxfun.jl. (Np = 106, ∆t = 0.01, Nx =

64, k = 0.5)
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3.2. Particle in spectral space

(a) electrostatic energy (b) energy error (c) absolute momentum error

Figure 3.10.: Weak Landau damping with Legendre polynomials, periodic boundary condi-

tions for the particles and homogeneous Dirichlet boundary conditions for the electrostatic

potential Φ. By using the initial condition f(x, v, 0) = e−
v2

2
1√
2π

(1 + 0.05 sin(kx)) the excited

mode is clamped to the homogeneous Dirichlet boundary conditions, such that the results

from the periodic linear analysis can be used for code validation (a). In this way complicated

boundary conditions for the particles are circumvented and energy conservation can be ob-

served (b), but the momentum conservation is lost (c). (Np = 106, ∆t = 0.01, Nx = 20, k =

0.5)

as

ρ̃(kr) =

∫ ∞
0

ρ(r)Jm(krr)dr, kr ∈ R. (3.76)

If we Fourier transform the usual way in θ, the function ρ(r, θ) can be decomposed into a

series of Fourier modes and Bessel functions. The mth order Bessel function Jl is coupled to

the mth Fourier mode in θ by m = kθ ∈ Z.

f(r, θ) =
∑
l

∑
m

ρ̃(kr, kθ)e
i2πmθJm(r) (3.77)

We recall some additional definitions and properties of the Bessel function of first kind, see

also [177].

J−m(r) := (−1)mJm(r) (3.78)

The derivative of a Bessel function can again be expressed by Bessel functions of different

order.

∂rJm(r) =

{
−J1(r) if m = 0
1
2 [Jm−1(r)− Jm(r)] else

(3.79)

Dirichlet Boundary condition

We want to solve the Poisson equation with Dirichlet boundary conditions. Here am,l denotes

the lth zero of the mth order Bessel function of first kind, see eqn. (3.80).

Jm(am,l) = 0, l ∈ N, m = 0, 1, . . . (3.80)

We normalize by the radius rmax in order to have orthogonal basis functions.

Jm,l(r) := Jm

(
r
am,l
rmax

)
(3.81)

∂rJm,l(r) = ∂rJm

(
r
am,l
rmax

)
am,l
rmax

=
am,l
rmax

1

2

[
Jm−1

(
r
am,l
rmax

)
− Jm+1

(
r
am,l
rmax

)]
(3.82)
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For the normalization we define for every pair of Bessel function and Fourier mode the

normalizing constant

λ2
m,l :=

∫ rmax

0
Jm,l(r)

2r dr =
r2

max

2
[J ′m(am,l)]

2 =
r2

max

2
[Jm+1(am,l)]

2. (3.83)

The Fourier–Bessel coefficients for the density ρ are obtained by

ρ̃m,l :=
1

2π

∫ 2π

0

1

λ2
m,l

∫ rmax

0
e−imθJm

(
r
am,l
rmax

)
ρ(r, θ)r dr dθ, (3.84)

yielding the expansion

ρ(r, θ) =
∑
m,l

ρ̃m,l eimθJm

(
r
am,l
rmax

)
. (3.85)

The Fourier-Bessel coefficients for the Poisson equation in polar coordinates

∆Φ =
1

r

∂

∂r

(
r
∂Φ

∂θ

)
+

1

r2

∂2Φ

∂θ2
= ρ, (3.86)

are obtained as

Φ̃m,l =

(
rmax

am,l

)2

ρ̃m,l (3.87)

yielding the electric potential

Φ(r, θ) =
∑
m,l

Φ̃m,l eimθJm

(
r
am,l
rmax

)
. (3.88)

In Cartesian coordinates the gradients are given as

∂xΦ = cos(θ)∂rΦ− sin(θ)∂θΦ, ∂yΦ = sin(θ)∂rΦ + cos(θ)∂θΦ. (3.89)

This suffices to implement a Vlasov–Poisson solver using Lagrangian particles, where the

particles can either live in the logical coordinates (r, θ) or in Cartesian (x, y). One downside

is the costly numerical evaluation of Bessel functions; in MATLAB it is around ten times

slower than the complex exponential. This is the analog to PIF — the local costs increase

but the field solve remains a scalar multiplication and is therefore, highly scalable.

But we can learn something different from this orthogonal series expansion. In most particle

simulations there is some form of Fourier filtering applied in order to reduce the integrated

variance of the field. In periodic directions Fourier modes are taken, yet for a finite element

Fourier discretization of the polar plane it is unclear what to filter best, since one would

like to filter something physically reasonable. Here the truncation of the Fourier-Bessel is a

possible answer.

The Bessel functions are not the only orthogonal functions on the polar plane. For example,

Zernike polynomials [178] constructed by Gram Schmidt orthogonalization of the monomial

basis [1, r, r2, r3, . . . ] with respect to the scalar product 〈f, g〉 =
∫ rmax

rmin
f(r)g(r)r dr are one

choice. By construction, they form an orthogonal basis on the polar plane with Jacobian

J(r, θ) = r. They suffer from oscillatory behavior for higher degree limiting their application

in numerics [179]. But it is even possible to generalize the Zernike polynomials on elliptical

surfaces, see [180], such that they are possible candidates for describing a toroidal magnetic

equilibrium.
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3.3. Orthogonal series density estimation (OSDE)

Figure 3.11.: Sparsity patterns of the mass matrix for 40 degrees for Chebyshev polynomials

with varying weights and cubic B-splines.

3.3. Orthogonal series density estimation (OSDE)

Our favorite tool for obtaining density estimates is orthogonal series density estimation,

because partial differential equations can be solved easily and noise is naturally filtered by

truncation. For a stochastic overview and truncation rules we recommend [181]. We begin

with an example for Legendre and Chebyshev methods, continue with the application onto

control variates for nonlinear problems and conclude with multidimensional PIF for Vlasov–

Poisson in order to demonstrate the drawbacks of increasing dimensionality.

3.3.1. Example

We demonstrate density estimation on the bounded domain (0, 1) using orthogonal polyno-

mials. For this, a scaled Bessel function f(x) = J0(30 ·x) is reconstructed using the uniformly

distributed random deviate X ∼ U(0, 1) implying a constant sampling density g(x) = 1 and

different orthogonal polynomials, see fig. 3.12. The standard PIC method is represented by

Finite Elements based on cubic B-splines. For the shifted Chebychev polynomials {T ∗n}, the

Galerkin scalar product is weighted by functions ωi given in eqn. (3.90).

ω1(x) =
1

2
√
x(1− x)

, ω2(x) = 2
√
x(1− x), ω3(x) = 1 (3.90)

This heavily impacts the sparsity of the mass matrix and also the variance of the Galerkin

right hand side, which is estimated from eqn. (3.91) by Np = 106 samples.∫ 1

0
f(x)ψj(x)ω(x) dx = E[f(X)ψj(X)ω(X)] (3.91)

As we can see in fig. 3.11 the sparsity pattern for the Chebyshev polynomials depends on

the weight ω beating the sparse-by-construction B-splines in efficiency for ω1 and ω2. The

complete orthogonality is achieved by ω1, which unfortunately leads to the worst integrated

variance, see fig. 3.13a. This is due to the singularity in ω1({0, 1}). Thus, for OSDE naturally

orthogonal Legendre polynomials are better suited. Damping the boundary by ω2{0, 1} = 0

leads to the best integrated variance. When the right hand side is obtained by numerical

quadrature, the B-splines yield a good initial precision but are ultimately outperformed by

the spectral methods, see fig. 3.12a. For the Bessel function the spectral methods could

be even better if we take into account the parity of the steps shown in fig. 3.12a, which

was already pointed out by [54]. In the Monte Carlo approximation the errors can be seen

in figs. 3.12b and 3.12c. Saturation is reached for more than 21 degrees of freedom. Here

we have chosen the number of particles large enough such that the difference between the

spectral and the B-spline approximation is already visible. The convergence rate shall not
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(a) L2 Galerkin projection (b) Monte Carlo Np = 106 (c) Monte Carlo Np = 106

Figure 3.12.: Orthogonal series density estimation of a scaled Bessel function J0(30 · x) rep-

resented by uniformly distributed MC samples. Ultimately the spectral methods, Chebyshev

and Legendre, outperform the cubic B-splines in the standard L2 Galerkin projection (a),

which is almost irrelevant here given the high sample noise.

(a) integrated variance (b) bias and variance

Figure 3.13.: The integrated variances (a) increase with the degrees of freedom where choice

of the additional weighting ω for Chebyshev polynomials has a visible impact. Similar to

the L2 orthogonal Fourier modes in PIF, the L2 orthogonal Legendre polynomials exhibit a

slightly higher variance than the B-splines. In this manufactured example the bias can be

calculated, such that the variance bias trade-off problem is solved by the intersection of the

two curves in b).
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3.3. Orthogonal series density estimation (OSDE)

Figure 3.14.: Coefficients of the Chebyshev (left) and Legendre expansion (right) and their

respective variance provide an a posteriori rule-of-thumb truncation criteria. Even without

the variance the point of truncation can be guessed.

be the main objective here yet constructing a suitable filter reducing computational costs is

what we are mainly interested in. Here f is known; therefore, the error can be calculated

directly and it is obvious when convergence is reached and the series can be truncated. This

yields a natural filter reducing the computational costs. The same can be accomplished with

the finite elements and principal component analysis, except coefficients cannot be truncated

a posteriori because any change in the grid size yields different basis functions. It is possible,

but quite a hassle to implement, giving the orthogonal spectral methods a clear advantage.

In fig. 3.13b the error and the respective integrated variance are plotted and it is obvious

that the convergence is reached at their intersection. As always, having the bias and the

variance available yields a good truncation criteria. However, absolute error estimation with

finite elements requires complicated h or p refinement, which will also affect the variance.

The coefficients of the spectral expansion decay fast, where the last coefficient is already

a measure for the discretization error [54], here the bias. Thus when they stop decaying:

truncate them! In the orthogonal cases the variance of the coefficients can be estimated very

cheap and directly. This means having both variance and bias from a purely data driven

estimation, the point of truncation in fig. 3.14 is obvious and compares very well to fig. 3.12c.

There is much more theory on truncation rules available in [181] allowing for a self-tuning

method.

3.3.2. Fourier–Hermite control variate

Hermite functions are, due to their Gaussian envelope, well suited to approximate a Maxwellian

distribution. Therefore, many spectral solvers make successfully use of a Fourier–Hermite

representation of the plasma distribution [3, 157, 158, 182]. If there exists a basis that can

approximate the distribution f with few degrees of freedom it may be well suited as a control

variate using the δf method. Due to the fine structure in nonlinear Landau damping it is

very hard to find a good control variate, nevertheless low rank Fourier–Hermite OSDE of

the distribution appears to work, see fig. 3.15. For nonlinear Landau damping the resolution

in velocity space ensures longer effectiveness, such that the Ansatz with few spatial modes

seems reasonable, see fig. 3.16. When the distribution enters a strongly nonlinear phase too

many Fourier–Hermite modes are required, such that the control variate de-correlates. This
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(a) electrostatic energy (b) variance reduction (c) energy error

Figure 3.15.: Fourier–Hermite series (Nf ×Nv) = (3× 45) as a control variate for nonlinear

Landau damping in comparison to the local Maxwellian and the initial condition. (Np =

104, Nf = 32, RQMC). Although the energy error (c) remains unchanged, the Hermite–

Fourier control variates yields an electrostatic energy (a) that lies closer to the reference

solution than a δf scheme using the initial condition as control variate. This can also be

explained by the larger variance reduction (b) that unfortunately decays with increasing

nonlinearity.

raises the question whether the δf scheme is worth the effort in the nonlinear phase, when a

simple spectral solver using the same basis achieves the same result without noise.
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Figure 3.16.: For nonlinear Landau damping the Fourier–Hermite (Nf ×Nv) control variate

starts gaining efficiency once more than one Fourier mode is present. The more resolution in

velocity space, the longer the control variate is well correlated. Here Nf = 1 means, that only

the zeroth mode is present such that the control variate is nothing more than an enhanced

Maxwellian.

161



Chapter 3. Spectral particles

3.3.3. PIF for multidimensional Vlasov–Poisson

The straightforward implementation of PIF allows for solving Vlasov–Poisson in an arbitrary

dimension d ∈ N with the same implementation. The spatial domain is set to be a d-

dimensional periodic box [0, L]d.

f(x, v, t = 0) :=

1 + ε cos

 d∑
j=1

xj
2π

L

 1(√
2π
)d e− |v|22 (3.92)

The markers are sampled uniformly in x and v, with vmin = −10, vmax = 10 sampling using

RQMC Sobol numbers.

g(x, v, t = 0) :=
1

Ld
1

(vmax − vmin)d
(3.93)

The correlation coefficient ρ is estimated for every Fourier mode respectively. The fourth order

symplectic Runge Kutta scheme [32] suitable for Vlasov–Poisson is used for time integration.

We begin with testing linear ε = 0.1 and nonlinear ε = 0.5 Landau damping in dimensions

d = 1, . . . , 4 and for k = 0.5, Np = 105, L = 2π
k ∆t = 0.1.

For linear Landau damping only the excited mode m = 1 is calculated. This allows for a fast

field solve, which leads to a linear increase in the simulation time with respect to the dimension

d. Fig. 3.18 shows that with full f energy conservation is obtained as one would expect also

by a PIC method. Additionally, PIF delivers momentum conservation up to roundoff, see

fig. 3.19. But since the spatial disturbance is too small, the simulation is governed by noise

and not capable of finding the correct damping rate, see fig. 3.17. Although we are in the linear

phase of a linear problem the problem becomes harder with higher dimension. Therefore, it

is clear, that despite the Monte Carlo Ansatz we do not have convergence independent of

the dimension and thus a heavy curse of dimensionality. With introduction of the control

variate, we are able to alleviate the problem yet we lose the high precision in momentum

conservation. But due to the absence of any self force, the error seems bounded.

(a) full f (b) control variate δf

Figure 3.17.: Electrostatic energy for linear Landau damping with PIF.
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(a) full f (b) control variate δf

Figure 3.18.: Relative energy error for linear Landau damping with PIF

(a) full f (b) control variate δf

Figure 3.19.: Absolute momentum error for linear Landau damping with PIF

(a) estimated correlation coefficient α̂ (b) estimated variance reduction

Figure 3.20.: Control variate diagnostics for linear Landau damping
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3.4. Electromagnetic Particle-in-Fourier

A Hamiltonian splitting for the Vlasov–Maxwell equations is introduced in [19]. Here the

discretization with Lagrangian particles uses PIF instead of PIC. Contrary to PIC [19] the

global basis functions simplify the discretization. The finite element exterior calculus is not

needed, since de Rham complex is trivially formed by Fourier modes as their derivatives are

obtained by a scalar multiplication. This leads completely analog to the electrostatic Vlasov–

Poisson system to energy conservation with respect to the splitting error and momentum

conservation to machine precision also for the electromagnetic case. In the following the

particle discretization with PIF is discussed using the reduced 1d2v Vlasov–Maxwell model

as an introductory example. A more detailed overview of the Vlasov–Maxwell system is given

in appendix B.1.1 as well as the extension of PIF to six dimensions C.3.

3.4.1. Vlasov–Maxwell (1d2v)

We denote the spatial Fourier transform of the fields along with their back-transforms as

B̃(k, t) :=
1

L

∫ L

0
B(x, t)e−ikx dx, B(x, t) =

∑
k

B̃(k, t)eikx,

Ẽ1(k, t) :=
1

L

∫ L

0
E1(x, t)e−ikx dx, E1(x, t) =

∑
k

Ẽ1(k, t)eikx,

Ẽ2(k, t) :=
1

L

∫ L

0
E2(x, t)e−ikx dx, E2(x, t) =

∑
k

Ẽ2(k, t)eikx,

(3.94)

where the the discrete one dimensional wave vector k is given as

k = z
2π

L
, z ∈ Z. (3.95)

We turn to the discretization of the Hamiltonian splitting of the Vlasov–Maxwell system,

which is introduced in the appendix B in eqns.(B.47,B.48,B.50,B.49). Here each Hamiltonian

is solved exactly in the time interval (0, t), which corresponds to a time-step of length t.

• Kinetic energy (d = 1), Ĥp1 = 1
2

1
Np

∑Np
n=1wnv

2
1,n

Because the velocity V1 is constant in eqn. (B.47) and therefore ẋn(t) = v1,n(0) we

obtain xn(t) = xn(0) + tv1,n(0) and can integrate V2 exactly:

v2,n(t) = v2,n −
∫ t

0
v1,n(τ)B(xn(τ), τ)dτ

= v2,n −
∫ t

0
v1,n(0)B(xn(τ), 0)dτ

= v2,n −
∑
k

B̃(k, 0)v1,n(0)

∫ t

0
eikxn(τ)dτ

= v2,n −
∑
k

B̃(k, 0)v1,n(0)

∫ t

0
eikxn(0)+τv1,n(0)dτ

= v2,n −
∑
k

B̃(k, 0)v1,n(0)
1

v1,n(0)

∫ xn(t)

xn(0)
eiksds

= v2,n −
∑
k 6=0

B̃(k, 0)
1

ik

[
eikxn(t) − eikxn(0)

]
− tB̃(0, 0)v1,n(0).

(3.96)
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The Fourier modes of E1(k, t) for k 6= 0 read then

Ẽ1(k, t) = Ẽ1(k, 0)−
∫ t

0

1

L

1

Np

Np∑
n=1

wnẋn(τ)e−ikxn(τ)dτ

= Ẽ1(k, 0)−
∫ t

0

1

L

1

Np

Np∑
n=1

wnv1,n(0)e−ikxn(τ)dτ

= Ẽ1(k, 0)− 1

L

1

Np

Np∑
n=1

wnv1,n(0)

∫ t

0
e−ik(xn(0)+tv1,n(0))dτ

= Ẽ1(k, 0)− 1

L

1

Np

Np∑
n=1

wnv1,n(0)
1

v1,n(0)

∫ xn(t)

xn(0)
e−iksds

= Ẽ1(k, 0)− 1

L

1

Np

Np∑
n=1

wn
−1

ik

[
e−iks

]xn(t)

xn(0)

= Ẽ1(k, 0) +
1

L

1

Np

Np∑
n=1

wn
1

ik

[
e−ikxn(t) − e−ikxn(0)

]

(3.97)

and for k = 0

Ẽ1(0, t) = Ẽ1(0, 0)−
∫ t

0

1

L

1

Np

Np∑
n=1

wnẋ1,n(0)dτ = Ẽ1(0, 0)− t · 1

L

1

Np

Np∑
n=1

wnv1,n(0).

(3.98)

The entire discretization of Hp1 is then summarized in eqn. (3.99).

xn(t) = xn(0) + tv1,n(0)

v2,n(t) = v2,n(0)−
∑
k

B̃(k, 0)
1

ik

[
eikxn(t) − eikxn(0)

]

Ẽ1(k, t) = Ẽ1(k, 0) +
1

L

1

Np

Np∑
n=1

wn
1

ik

[
e−ikxn(t) − e−ikxn(0)

]
for k 6= 0

Ẽ1(0, t) = Ẽ1(0, 0)− t · 1

L

1

Np

Np∑
n=1

wnv1,n(0)

(3.99)

• Kinetic energy (d = 2), Ĥp2 = 1
2

1
Np

∑Np
n=1wnv

2
2,n

For this reduced model the system (B.48) is linear, such that the discretization is

obtained straightforward in eqn. (3.100).

v1,n(t) = v1,n(0) + tv2,n(0)
∑
k

B̃(k, 0)eikxn(0)

E2(k, t) = E2(k, 0)− t 1

L

1

Np

Np∑
n=1

wnv2,ne−ikxn(0) for all k

(3.100)

• Electric energy ĤE = 1
2

∑
k L
(
|Ẽ1(k, t)|2 + |Ẽ2(k, t)|2

)
Independent of the dimensionality the system (B.49) is always linear such that the exact
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discrete solution reads

v1(t) = v1(0) + t
∑
k

Ẽ1(k, t)eikx,

v2(t) = v2(0) + t
∑
k

Ẽ2(k, t)eikx,

B̃(k, t) = B̃(k, 0)− t(ik)Ẽ2(k, 0).

(3.101)

• Magnetic energy ĤB = 1
2

∑
k L|B̃1(k, t)|2

After Fourier transformation the solution to eqn. (B.50) is given in eqn. (3.102).

Ẽ2(k, t) = Ẽ2(k, 0)− t(ik)B̃(k, 0) (3.102)

Discretization of Hp

In case we do not split Hp we face the system

∂tf + v1∂xf − v1B(x, t)∂v2f + v2B(x, t)∂v1f = 0

∂tB(x, t) = 0

∂tE1(x, t) = −
∫ ∫

v1f(x, v1, v2, t)dv1dv2

∂tE2(x, t) = −
∫
v2f(x, v, t)dv,

(3.103)

leading to the characteristics

ẋn(t) = v1,n(t)

v̇1,n(t) = v2,nqnB(xn(t), 0)

∂tv2,n(t) = −v1,nqnB(xn(t), 0)

∂tE1(k, t) = − 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0
v1,n(τ)︸ ︷︷ ︸
=ẋ1,n(τ)

e−ik(xn(τ))dτ

∂tE2(k, t) = − 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0
v2,n(τ)︸ ︷︷ ︸
=ẋ2,n(τ)

e−ik(xn(τ))dτ.

(3.104)

We can simplify the field integrals by substituting s = xn(τ), and therefore v1,nτdτ = ds.

E1(k, t) = E1(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0
ẋ1,n(τ)e−ik(xn(τ))dτ

= E1(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ x(t)

xn(0)
e−iksds

= E1(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn
1

−ik

[
e−ikxn(t) − e−ikxn(0)

]
(3.105)

For E2 it is not possible to obtain an analytical expression, thus one can approximate this

integral with the midpoint rule or other integrators.
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Implicit midpoint for Hp

As already noted in [19], in general the Hamiltonian Hp cannot be integrated exactly, which

is the reason why it is again split into multiple components. But Hp contains the gyromotion

such that it is unnatural to split it into separated steps for every spatial direction. We

would favor the use of an exponential integrator [183, 184] in oder to take much larger time

steps by integrating the gyromotion exactly. Such exponential time differencing schemes

have already been successfully applied to the Vlasov–Poisson system in order to resolve the

gyromotion [185] or fast oscillations in the electric field [186]. In our Hamiltonian framework

possible candidates are symmetric implicit schemes [187], but we do not understand yet how

to apply them. Therefore, we start with the design of a simple implicit integrator for Hp
such that we learn the necessary steps on the way. We search for two trajectories x(τ) and

v(τ) such that they consistently approximate the following system of ODEs,

ẋ(τ) = v(τ), v̇(τ) = v(τ)×B(x(τ), 0), τ ∈ [0, t]. (3.106)

But v̇(τ) and thus also v(τ) depends on x(τ) such that the coefficients to the Legendre series

have to be chosen consistently to eqn. (3.106). Here the orthogonal Legendre polynomials

are used in order to obtain spectral convergence when approximating the true trajectory of

the particles. Using the roots of the Legendre polynomials and the corresponding weights

of Gauss–Legendre quadrature, the Legendre series for v̇(τ) can be expressed as a sum of

Lagrange polynomials. In this context such a representation is favored because it is much more

straightforward to approximate a trajectory via the values at some nodes. This node driven

view-point corresponding to collocation yields the name Legendre–Gauss collocation methods

[188]. Once both trajectories x(τ) and v(τ) are approximated consistently for τ ∈ [0, t] the

Ampère increment, here for PIF,

E(k, t) = E(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0
ẋ(τ)e−ik(xn(τ))dτ (3.107)

can be calculated exactly since all included functions and their polynomial degree is known.

Whether Lagrange polynomials at nodes or coefficients to some series, the mechanism stays

the same:

1. Chose an Ansatz for v(τ) and x(τ),

2. Interpolate from eqn. (3.106), determining the free parameters of the Ansatz for v(τ),

3. Determine the integral in eqn. (3.107) to machine precision.

The ultimate goal is to do this for an Ansatz that approximates the gyromotion very well,

while retaining the spectral convergence. We continue with the simplest example by using

the first Legendre polynomial P0(x) = 1, which yields the implicit midpoint rule.

v̇(τ) ≈ v(t)− v(0)

t

[
=

0∑
n=0

anPn(τ) = a0 · 1

]
, τ ∈ [0, t]

v(τ) = v(0) + (v(t)− v(0))
τ

t

v(t) = v(0) +

∫ t

0
v̇(τ)dτ

≈ v(0) + t

[
v̇

(
t

2

)]
= v(0) + t

[
v

(
t

2

)
×B

(
x

(
t

2

)
, 0

)]
= v(0) + t

(
v(0) + v(t)

2

)
×B

(
x

(
t

2

)
, 0

)
(3.108)
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The same approximations are made for x(t).

ẋ(τ) ≈ x(t)− x(0)

t

[
=

0∑
n=0

bnPn(τ) = b0 · 1

]
, τ ∈ [0, t]

x(τ) = x(0) + (x(t)− x(0))
τ

t

x(t) = x(0) +

∫ t

0
ẋ(τ)dτ

≈ x(0) + t

[
ẋ

(
t

2

)]
= x(0) + tv

(
t

2

)
≈ x(0) + t

v(0) + v(t)

2

(3.109)

Inserting the approximation yields the trajectory x(τ) with

x(τ) = x(0) + τ
v(0) + v(t)

2
∀τ ∈ (0, t),

x

(
t

2

)
= x(0) +

t

2

v(0) + v(t)

2
,

x(t) = x(0) + t
v(0) + v(t)

2
.

(3.110)

Therefore, x
(
t
2

)
can be used in eqn. (3.108). An implicit system of equations for v(t) and

x(t) is then obtained.

v(t) = v(0) + t

(
v(0) + v(t)

2

)
×B

(
x(0) + t

v(0) + v(t)

4
, 0

)
x(t) = x(0) + t

v(0) + v(t)

2

(3.111)

In case of the reduced 1d2v Vlasov–Maxwell this reads

v1(t) = v1(0) + t

(
v2(0) + v2(t)

2

)
·B
(
x(0) + t

v(0) + v(t)

4
, 0

)
,

v2(t) = v2(0)− t
(
v1(0) + v1(t)

2

)
·B
(
x(0) + t

v(0) + v(t)

4
, 0

)
,

x(t) = x(0) + t
v1(0) + v1(t)

2
.

(3.112)

The implicit system can be solved by Picard iterations as fixed point F (v(t)) + v(t) = v(t),

where F is given with v(0) = (v1
0, v

2
0, v

3
0)t as

x̃(v) := x0 + t
v0 + v

4

F (v) = v0 +
t

2

q

m

(
v0 + v

)
×B(x̃(v), 0)− v

=

v0
1

v0
2

v0
3

+
t

2

q

m

(v0
2 + v2)B3(x̃(v), 0)− (v0

3 + v3)B2(x̃(v), 0)

(v0
3 + v3)B1(x̃(v), 0)− (v0

1 + v1)B3(x̃(v), 0)

(v0
1 + v1)B2(x̃(v), 0)− (v0

2 + v2)B1(x̃(v), 0)

−
v1

v2

v3


. (3.113)

The cross product is denoted using a skew symmetric matrix v ×B = bvc× ·B = −B × v =

−bBc× · v. Our peculiar definition of F is more useful when we apply the Newton method
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vk+1 := vk −DF (vk)−1F (vk), where the Jacobi matrix DF reads

Dx̃(v) =
t

4
id3×3

DF (v) =
t

2

q

m

[
−bB(x̃(v), 0)c× + bv0 + vc× ·DB(x̃(v), 0) ·Dx̃(v)

]
− id3×3

=
t

2

q

m

[
−bB(x̃(v), 0)c× +

t

4
bv0 + vc× ·DB(x̃(v), 0)

]
− id3×3

= −

1

1

1

+
t

2

q

m

[ 0 B3(x̃(v), 0) −B2(x̃(v), 0)

−B3(x̃(v), 0) 0 B1(x̃(v), 0)

B2(x̃(v), 0) −B1(x̃(v), 0) 0


+
t

4

 0 −(v0
3 + v3) (v0

2 + v2)

(v0
3 + v3) 0 −(v0

1 + v1)

−(v0
2 + v2) (v0

1 + v1) 0


·

∂x1B1(x̃(v), 0) ∂x2B1(x̃(v), 0) ∂x3B1(x̃(v), 0)

∂x1B2(x̃(v), 0) ∂x2B2(x̃(v), 0) ∂x3B2(x̃(v), 0)

∂x1B3(x̃(v), 0) ∂x2B3(x̃(v), 0) ∂x3B3(x̃(v), 0)

].

(3.114)

The approximated trajectories x(τ) and v(τ) are then used in the Ampère equation for the

increment of the electric fields. The integral in the first dimension is merely a line integral

such that it is straightforward to evaluate if the anti-derivative is at hand, but this is actually

a special case. Yet with the implicit midpoint discretization a consistency problem arises

since v1,n(τ) 6= ẋ1,n(τ), and we sometimes see the Ampère equation in the following incorrect

form

E1(k, t) =

E1(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0
v1,n(τ)︸ ︷︷ ︸
wrong

e−ik(xn(τ))dτ

 . (3.115)

In the correct form, stemming from discretization on the level of the Lagrangian for Hp,
v1,n(τ) is substituted by ẋ1,n(τ).

E1(k, t) = E1(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0
ẋ1,n(τ)e−ik(xn(τ))dτ

= E1(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0

v1,n(0) + v1,n(t)

2
e
−ik

(
x(0)+τ

v1,n(0)+v1,n(t)

2

)
dτ

= E1(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn
1

−ik

[
e−ikxn(t) − e−ikxn(0)

]
(3.116)

For a consistent discretization with respect to the six dimensional model we approximate

ẋ2,n(τ) as ẋ2,n(τ) =
v2,n(0)+v2,n(t)

2 and use the reduction on 1d2v afterwards. Thus, the
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second component presents us a more general situation where we face the following integral

E2(k, t) = E2(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0
ẋ2,n(τ)e−ik(xn(τ))dτ

= E2(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0

v2,n(0) + v2,n(t)

2
e
−ik

(
x(0)+τ

v1,n(0)+v1,n(t)

2

)
dτ

= E2(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn
v2,n(0) + v2,n(t)

v1,n(0) + v1,n(t)

∫ t

0

v1,n(0) + v1,n(t)

2
e
−ik

(
x(0)+τ

v1,n(0)+v1,n(t)

2

)
dτ

= E2(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn
v2,n(0) + v2,n(t)

v1,n(0) + v1,n(t)

1

−ik

[
e−ikxn(t) − e−ikxn(0)

]
,

(3.117)

which is not a standard line integral that can be simplified by substitution. In three dimen-

sions and for k · (vj,n(0) + vj,n(t)) 6= 0, the increment is then given as

Ej(k, t) = Ej(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0
ẋj,n(τ)e−ik·xn(τ)dτ

= Ej(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0

vj,n(0) + vj,n(t)

2
e
−ik·

(
x(0)+τ

vn(0)+vn(t)
2

)
dτ

= Ej(k, 0)− 1

L

1

Np

Np∑
n=1

qnwne−ik·xn(0)

∫ t

0

vj,n(0) + vj,n(t)

2
e−i τ

2
k·(vn(0)+vn(t))dτ

= Ej(k, 0)− 1

L

1

Np

Np∑
n=1

qnwne−ik·xn(0) vj,n(0) + vj,n(t)

−ik · (vn(0) + vn(t))

[
e−i τ

2
k·(vn(0)+vn(t))

]τ=t

τ=0

= Ej(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn
vj,n(0) + vj,n(t)

−ik · (vn(0) + vn(t))

[
e−ik·xn(t) − e−ik·xn(0)

]
.

(3.118)

For the implicit midpoint method this is still the case yet for higher order methods the

trajectory x(τ) becomes a polynomial of higher degree such that analytic integration for

PIF relies on the expensive complex error function erf. In general Gauss–Legendre or Gauss-

Lobatto quadrature can be used. The latter one uses the endpoints τ ∈ 0, t and may, therefore,

be more practicable, see [177][p.888]. For global orthogonal polynomials - spectral methods

- the number of quadrature nodes increases directly with the polynomial degree of Tn or

Pn but the number of nodes required for exact integration is known a priori. The cubic

B-splines used in [19] require just very few quadrature nodes for exact integration, but since

they are discontinues the trajectory x(τ) has to be integrated piecewise on each cell. Thus,

we conclude that more complicated integrators are much easier to implement with global

Fourier or Chebyshev methods.

3.4.2. Multispecies Vlasov–Maxwell (1d2v)

We extend the reduced three dimensional model to a simulation containing two species, where

each species is simulated with the same number of markers. The general initial conditions
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for electrons and the ions are given in eqn. (3.119).

fe(x, v1, v2, t = 0) =
1 + εe cos(kx)

2πσ1σ2
2

e
− v2

1
2σ2

1

(
δe
−

(v2−v0,1)2

2σ2
2 + (1− δ)e

−
(v2−v0,2)2

2σ2
2

)

fi(x, v1, v2, t = 0) =
1 + εi cos(kx)

2πσ2
i

e
− v

2
1+v2

2
2σ2
i

B3(x, t = 0) = βr cos(kx) + βi sin(kx)

E2(x, t = 0) = αr cos(kx) + αi sin(kx)

∂xE1(x, t = 0) =
∑
s

qs
e

∫
Rd
fs(x, v1, v2, t) dv

(3.119)

For a simplified model we set qe = −1, qi = 1 and
(

c
vth,e

)2
= 1. The terms vth,e = 1, Te = 1

and me = 1 can be set but will always cancel out since everything is relative to the electrons.

The ions are usually colder and heavier then the electrons, therefore σi is determined by the

mass and temperature ratio

σi =

√
Ti
Te

me

mi
, L =

k

2π
. (3.120)

In the following we investigate energy and momentum conservation and the variances of the

electric field E1. The number of Fourier modes is set to Nf = 3. We use the symmetric

second order Strang splitting described in [19] with the additional symmetric composition

resulting in a fourth order Strang splitting.

At the end of the simulation we check the conservation of the Poisson structure, which is

always conserved up to a roundoff error. Additionally the integrated sample variance of the

resulting electric field is estimated separately for the electron and ion contribution. The same

analysis is done on the Ampère equation. Since the contribution of the current density of

each species to the electric field via the Ampère equation is integrated over the time of one

time-step, the same integration has to be applied for the integrated variance in eqn. (3.121).

IVAR

[∫ t+∆t

t
∂tÊ1(x, τ) dτ

]
=
∑
s

IVAR

[∫ t+∆t

t
j1,s(x, τ) dτ

]
(3.121)

We consider four test-cases with parameters given in fig. 3.21. The results are shown in

table 3.1 and fig. 3.22. In all cases energy is well conserved, but contrary to the 1d1v

electrostatic solver the momentum error is not at roundoff. The ion-acoustic wave as the

true multi-scale test-case can already be observed in the beginning of the Weibel instability

on the electric field E1. We use 20 times less particles than [19], but due to the restriction

onto few Fourier modes the noise level is moderate, although it can clearly be seen in the

ion-acoustic wave. The new insight here, is that for the Poisson equation the integrated

variance is independent of the species. This makes sense, since apart from the oscillations

the spatial density is uniformly in both cases. Yet for the Ampère equation there is a much

larger difference, stemming from the scale difference in the thermal velocity. The standard

deviation is proportional to
√
Np, which means, e.g. in the Weibel test-case, that the amount

of ions can be decreased by a factor of 2 in oder to have the same noise level.

Here no control variate is used and, of course, if the ions exhibit no great perturbation a

simple Gaussian based control variate then allows for less ion markers. But with two species

only a factor up to two can be gained hence we do not proceed further in this direction.
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default εe, εi, αr, αi, βr, βi, v0,1, v0,2, δ, B0 = 0, c = 1

me = 1, Te = 1, mi = 1038, Ti = 0.1Te, σ1, σ2 = 1

Np = 105, Nf = 3,∆t = 0.05

Landau εe = 0.5, k = 0.5,

Weibel βr = −10−3, k = 1.25, σ1 = 0.02√
2
, σ2 =

√
12σ1,

Weibel streaming σ1 = σ2 = 0.1√
2
, k = 0.2, βi = 10−3, v0,1 = 0.5, v0,2 = −0.1, δ = 1

6

Ion acoustic k = 0.6283185, L = 10, mi = 200, Ti = 10−4Te, εi = 0.1, αi = 0.2
k , Nf = 1

Light wave k = 0.4, c = 10, βr = 0.001, ∆t = 0.001

Figure 3.21.: Parameters for multi-species Vlasov–Maxwell(1d2v) test-cases

Landau Weibel Weibel streaming Ion acoustic Light

Ampère ion 0.0035 2.5e-05 9.1e-04 0.0022 0.0034

electron 2.7e-05 1.1e-05 6.6e-05 6.1e-06 3.3e-05

Poisson ion 0.0078 0.003 0.018 0.005 0.0079

electron 0.0074 0.003 0.018 0.005 0.0079

Poisson eqn. error 1.8e-14 1.5e-17 3.0e-15 7.8e-16 6.4e-18

Table 3.1.: Standard deviations from the integrated sample variance of the electric field for

Poisson, respectively the increment for Ampère at the last time step. Additionally the error

for the discrete conservation of the Poisson equation is given.

3.4.3. Semi-implicit Vlasov–Maxwell (1d2v)

Instead of splitting the Hamiltonian Hp into the components Hp1 and Hp2 we use the the

implicit midpoint discretization of Hp1 from eqn. (3.112). The overall Hamiltonian splitting

into Hp, HE and HB is kept, hence the scheme is semi-implicit. We use the initial condi-

tions (3.119) and the parameters given in fig. 3.21 from the multi-species example, except

that the ions are set as a constant background precisely as in [19]. The most challenging

test-case, the Weibel streaming instability, is presented in fig. 3.23. Although the time step

is with ∆t = 0.5 quite large there is no visible difference between the two schemes. A closer

look reveals a slightly smaller energy error for the implicit method in fig. 3.24. The implicit

equations are solved using Picard (fixed point) iterations or a Newton method, where we

found the latter to be much more efficient in the nonlinear phase, see fig. 3.25. With direct

integration of the Ampère equations using primitives, the Newton method takes with 234.3s

roughly double as long as the splitting 114.5s. The Picard iterations are with 424.6s too

slow. This might also depend on the initial guess which is an explicit Euler step. Instead

of using the primitive function the Ampere equation ((3.122) can also be integrated using a

quadrature rule with weights and knots (ωm, τm) according to

Ej(k, t) = Ej(k, 0)− q 1

L

∫ t

0

∫ L

0

∫
R2

vjfp(x, v, t)e
−ik·x dv dx dτ

= Ej(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn

∫ t

0

vj,n(0) + vj,n(t)

2
e
−ik·

(
xn(0)+τ

vn(0)+vn(t)
2

)
dτ

≈ Ej(k, 0)− 1

L

1

Np

Np∑
n=1

qnwn
∑
m

ωm
vj,n(0) + vj,n(t)

2
e
−ik·

(
xj(0)+τm

vn(0)+vn(t)
2

)
.

(3.122)
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electromagnetic energy energy error momentum error

strong Landau damping

Weibel instability

Weibel streaming instability

Ion acoustic wave

Light wave

Figure 3.22.: Electrostatic and magnetic energy, relative energy error and the momentum

error in the two velocity components for the four test-cases of the Vlasov–Maxwell 1d2v PIF.
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(a) splitting Hp,1 and Hp,2 (b) implicit midpoint for Hp

Figure 3.23.: Electrostatic and magnetic field energies under the Weibel streaming instability

with ∆t = 0.5 for the standard splitting (a) and the implicit midpoint method (b).

At this point a discussion on the exact conservation of Gauss’ law is needed, since it is

unclear to which precision it is actually required. The simulation is anyhow subjected to

roundoff and the numerical stability does not depend on the level of precision, opposed to

the long term stability. For polynomial basis functions it is a priori clear which quadrature

rule is needed for exact integration of Ampere’s equation where on the other hand for the

exponential function this question is a bit more involved. Given the large Monte Carlo error,

precision can be sacrificed while increasing a small bias, which does for example not appear

in the energy error, see fig. 3.25. Nevertheless for any quadrature rule, the achieved precision

depends on the density f and hence a certain precision cannot be guaranteed a priori. Here

this is quite attractive, because the solution converges already for few quadrature nodes.

Nevertheless the achieved precision depends on the scenario (the density f) and is not a

priori known, such there is no universal guarantee for long term stability. On the other

hand introducing some adaptivity solves this potential problem easily. If we are already

comfortable with sacrificing precision, we realize that the additional integration over time

yields a four dimensional integral(1d2v1t), see eqn. (3.122). Instead of applying only a three

dimensional Monte Carlo estimator and a separate quadrature for time we can raise the

dimensionality for the Monte Carlo integration to four by drawing a random time τ ∈ (0, t).

Depending on the number of particles this will not result in sufficient precision on Gauss’ law

such that a randomized quadrature rule in time has to be used. This idea corresponds to

the methods applied for the gyroaverage operator and the linearized Vlasov–Poisson system.

The randomized quadrature rules are explained in detail in section A.1. Here the randomized

quadrature rules win in the large particle limit, which is not always reached, see fig. 3.26.

In future research one can expand the Monte Carlo integral into the time domain because

there is no curse of dimensionality such that one can sample the gyromotion especially when

using exponential time differencing schemes.
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(a) energy error (b) absolute momentum error

Figure 3.24.: Comparison of the energy and momentum error between the explicit splitting

(a) and the implicit midpoint method (b).

(a) iterations in the implicit

solver

(b) Conservation of Gauss’ law

under quadrature

(c) Average energy error under

quadrature

Figure 3.25.: The Newton method converges much faster than the Picard iterations and is

also more efficient since for PIF the derivative ∂xB(x, t) is obtained by only one complex

multiplication. For exact integration of the Ampère equation Gauss–Legendre quadrature

with a varying number of quadrature nodes is used, which yields a fast decreasing error on

the Poisson equation over the entire simulation time ttmax = 400. Here it is not necessary to

conserve the Poisson equation up to machine precision, since the energy error barely changes

for fewer quadrature nodes. (Weibel streaming instability).
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(a) nonlinear Landau damping (b) Weibel streaming instability

Figure 3.26.: Simpson’s Rule and the Monte Carlo estimator with a quadratic control variate

use both three quadrature nodes yielding the same costs. Although the Simpson rule has

higher accuracy it can be outperformed by the unbiased Monte Carlo estimator in the many

particle limit. Here this works for nonlinear Landau damping (a) but seem to require much

more particles for the Weibel streaming instability (b).

3.5. Mixing PIF and PIC

When discretizing arbitrary domains with PIC any boundary condition can be incorporated,

but it is also possible to use PIF in periodic directions. In the following we introduce a

mixture between PIC and PIF, where for typical geometries of fusion devices PIF is used in

the toroidal and poloidal direction and B-spline finite elements for the radial coordinate.

3.5.1. General coordinate elliptic Fourier-FEM solver

The most general field equation, for a field Φ and charge density ρ, is a general elliptic

equation

− div(A∇Φ) + b · ∇Φ + cΦ = ρ, (3.123)

where A denotes a 3 × 3 tensor, b a vector field and c a scalar field. The weak form of

eqn. (3.123) is given as

〈(∇Φ)† ·A · ∇ϕ〉+ 〈b · ∇Φ, ϕ〉+ 〈cΦ, ϕ〉 = 〈ρ, ϕ〉. (3.124)

In the following the Galerkin method using splines and Fourier modes is used to discretize

eqn. (3.124). The Poisson equation is obtained with A as the identity, b = 0 and c = 0 as a

special case. We are interested in the geometry of fusion devices, which are mostly described

by a global mapping in coordinates ξ = (r, θ, ϕ), where r is bounded and θ and ϕ are periodic.

Transforming eqn. (3.124) in the previously introduced notation yields∫
Ω̃
∇̃Φ̃(ξ)† · J−1

T (ξ)Ã(ξ)J−†T (ξ) · ∇̃ϕ̃(ξ) det(JT (ξ)) dξ

+

∫
Ω̃
b̃(ξ)† · J−1

T (ξ)J−†T · ∇̃Φ̃(ξ)ϕ̃(ξ) det(JT (ξ)) dξ

+

∫
Ω̃
c̃(ξ)Φ̃(ξ)ϕ̃(ξ) det(JT (ξ)) dξ =

∫
Ω̃
ρ̃(ξ)ϕ̃(ξ) det(JT (ξ)) dξ.

(3.125)
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We already suppose that the boundary conditions are incorporated in the choice of basis

functions. Fourier modes are the obvious choice in the poloidal ϕ and toroidal θ direction.

For the one dimensional VP-PIC code periodic B-splines of degree d on a uniform grid were

used, but for the radial direction r non-periodic basis functions are needed. In this case we

define

• ψlr as the l-th B-spline on a mesh over [rmin, rmax] with Nr cells.

• ψmθ (θ) := e−iθm as the basis of the mth Fourier mode over [0, 2π]

• ψnϕ(ϕ) := e−iϕn as the basis of the nth Fourier mode over [0, 2π].

The basis functions ψl,m,n are then obtained by the tensor product

ψl,m,n = ψlr · ψmθ · ψnϕ 1 ≤ l ≤ Nr, 1 ≤ m ≤ Nθ, 1 ≤ n ≤ Nϕ. (3.126)

In most cases a B-spline library will take a set of knots and the appropriate boundary con-

ditions are obtained by multiple knots. The basis functions in radial direction ψlr(r), l =

1, . . . , Nr are given as B-splines on

rmin . . . rmin︸ ︷︷ ︸
spline degree

r1 r2 r3 . . . rmax (3.127)

with rk ∈ [rmin, rmax]. The construction of the B-splines is found in Deboor’s book [49][pp. 87-

90]. Not duplicating rmax imposes natural Dirichlet boundary conditions at rmax and homo-

geneous Neumann boundary conditions at rmin. This choice is, of course, not fixed and also

mixed boundary conditions for different Fourier modes are possible e.g. to resolve the singu-

larity in a polar mesh.

Inserting the basis functions into the weak form (3.125) yields the mass matrix M incorpo-

rating the entire general elliptic equation.

M(l1,m1,n1),(l2,m2,n2) =∫ 2π

0

∫ 2π

0

∫ rmax

rmin

 ψl1r (r)

im1eim1θ

in1ein1ϕ

t [
J−1
T ÃJ−†T

]
(r, θ, ϕ)

 ψl2r (r)

−im2e−im2θ

−in2e−in2ϕ


+
[
bJ−1
T J−†T

]
(r, θ, ϕ)

ψl1r (r)

eim1θ

ein1ϕ

ψl2r (r)e−i(m2θ+n2ϕ)

+ c(r, θ, ϕ)ψl1r (r)ψl2r (r)ei[(m1−m2)θ+(n1−n2)ϕ] det(JT (r, θ, ϕ)) drdθdϕ (3.128)

For most curvilinear coordinates,M will be a dense matrix with respect to the Fourier modes.

This is the disadvantage of spectral Galerkin methods [54], but there are remedies available

using preconditioning based on finite differences [189]. Since the number of Fourier modes in

the toy models presented in this work remains small, we do not have to deal with large dense

and ill-conditioned matrices.

Nevertheless, at this point we have to discuss the coupling of Fourier modes in different

geometries. For this we study the spline-spectral Galerkin mass matrix arising from Pois-

son equation in different domains. Depending on the coordinate transformation, the tensor

J−1
T J−tT along with det(JT (r, θ, ϕ) will destroy the orthogonality of the Fourier modes yield-

ing full matrices. Additionally, Fourier filtering is not natural anymore in the sense that

the Fourier modes do not correspond to the exact eigenfunctions of the Laplace operator for
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arbitrary geometries. In polar coordinates the Fourier modes in θ still decouple yielding the

sparse matrix

K(l1,m1),(l2,m2) :=

∫ 2π

0

∫ rmax

0
∇(r,ϕ)ψl1,m1J

−1
T J−tT

(
∇(r,ϕ)ψl1,m1

)†
r drdθ

=

∫ 2π

0

∫ rmax

0

(
(∂rψ

l1
r )ψm1

θ

ψl1r (∂θψ
m1
θ )

)t(
r 0

0 1
r

)(
(∂rψ

l2
r )ψm2∗

θ

ψl2r (∂θψ
m2
θ )∗

)
drdθ

=

∫ 2π

0

∫ rmax

0
r(∂rψ

l1
r )(∂rψ

l2
r )ψm1

θ ψm2
θ +

1

r
ψl1r ψ

l2
r (−im1)(−im2)∗ψm1

θ ψm2∗
θ drdθ

= 2π δm1,m2


∫

Ωr

r(∂rψ
l1
r )(∂rψ

l2
r )dr︸ ︷︷ ︸

:=s1

+m1m2

∫
Ωr

1

r
ψl1r ψ

l2
r dr︸ ︷︷ ︸

:=s2

 . (3.129)

But for the common pseudo-toroidal coordinates the stiffness matrix has a more involved

structure

K(l1,m1,n1),(l2,m2,n2) =

∫ 2π

0
ψn1
ϕ

(
ψn2
ϕ

)∗
dϕ ·

∫ 2π

0

∫ rmax

0
ψm1
θ

(
ψm2
θ

)∗ ·[
∂rψ

l1
r ∂rψ

l2
r (cos(θ)r2 +R0r) +

n1n2r
2 +m1m2 (R0 + r cos θ)2

(R0 + r cos θ) r
ψl1r ψ

l2
r

]
drdθ. (3.130)

Since toroidal coordinates may often be hard-coded for simpler research codes, we have a

closer look and split eqn. (3.130) in three separate parts (3.131), (3.132) and (3.133).

s1 =

∫ 2π

0

∫ rmax

0
ψm1
θ

(
ψm2
θ

)∗
∂rψ

l1
r ∂rψ

l2
r

(
cos(θ)r2 +R0r

)
drdθ =∫ rmax

0

∫ 2π

0
e−i(m1−m2)θ∂rψ

l1
r ∂rψ

l2
r

(
cos(θ)r2 +R0r

)
drdθ =

2πR0

∫ rmax

0 ∂rψ
l1
r ∂rψ

l2
r r dr for m1 = m2

π
∫ rmax

0 ∂rψ
l1
r ∂rψ

l2
r r

2 dr for |m1 −m2| = 1

0 else

(3.131)

s2 = (n1n2)

∫ rmax

0

∫ 2π

0
e−i(m1−m2)θ r

R0 + r cos(θ)
ψl1r ψ

l2
r drdθ

= (n1n2)

∫ rmax

0

∫ 2π

0

e−i(m1−m2)θ

R0
r + cos(θ)

ψl1r ψ
l2
r drdθ (3.132)

s3 = (m1m2)

∫ rmax

0

∫ 2π

0
e−i(m1−m2)θ

(
R0

r
+ cos(θ)

)
ψl1r ψ

l2
r drdθ =

(m1m2)


2πR0

∫
Ωr
ψl1r ψ

l2
r

1
r dr for m1 = m2

π
∫

Ωr
ψl1r ψ

l2
r dr for |m1 −m2| = 1

0 else

(3.133)

Collecting terms yields

K(l1,m1,n1),(l2,m2,n2) = 2πδn1,n2 (s1 + s2(n1, n2) + s3(m1,m2)) , (3.134)
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where the toroidal mode dependence can be explicitly extracted by defining

n1n2s̃2 = s2(n1, n2), m1m2s̃3 = s2(m1,m2), (3.135)

which finally results in

K(l1,m1,n1),(l2,m2,n2) := 2πδn1,n2

[
s1(l1, l2,m1,m2) + n2

1s̃2(l1, l2,m1,m2)

+m1m2s̃3(l1, l2,m1,m2)
]
. (3.136)

Although the B-splines provide sparsity in the radial direction, K in eqn. (3.136) exhibits

dense blocks for the poloidal Fourier modes, such that a solver for sparse matrices with many

entries is needed. The source of the problem is the J−1
T J−†T tensor, which also appears in

the transformed Maxwell’s equation. This implies that, although the global Poisson solve

can be circumvented in Vlasov–Maxwell, the Fourier modes will still couple in the standard

geometry.

If the coordinate transformation is given in a Fourier-spline basis the corresponding matrices

can be assembled algebraically. Nevertheless, the most straightforward approach is to use

numerical quadrature, where in radial direction Gauss–Legendre points have to be used in

each cell. Note that the fast Fourier transform should be used in order to speed up the

initialization.

3.5.2. Diocotron instability with B-splines and Bessel functions

We previously already encountered the guiding center model in polar geometry (see also

appendix B.1.3) and the Diocotron instability with the initial condition

r− = 4, r+ = 5, rmax = 10, ε = 10−2, γ = −1, Np = 105,∆t = 0.1

ρ(t = 0, r, θ) =

{
1 + ε cos(lθ) for r− ≤ r ≤ r+

0 else.

(3.137)

In this special geometry the eigenmodes of the Laplace operator are known as Fourier-Bessel

functions. Thus, two different field solvers are considered. The obvious choice is particle

in Fourier in θ-direction. For the radial direction finite elements based on cubic B-splines

or Bessel functions are used. Here the problem size is so small that in both cases the field

solver is neglectable, although it is trivial for the Bessel functions. In the current MATLAB

implementation the Bessel functions itself are about 50-times more expensive than the Fourier

modes prohibiting larger runs. A particular downside of global spectral methods becomes

clear from fig. 3.27. The sharp annulus has to be resolved correctly and, therefore, a certain

radial resolution is needed, such that the Bessel functions (fig. 3.27b) have no advantage over

the cubic B-splines (fig. 3.27a). Nevertheless, the Fourier approximation in θ seems to be

very effective for this problem, since the linear phase is correctly obtained, see fig. 3.28
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(a) Fourier-FEM (B-splines) (b) Fourier-Hankel (Bessel)

Figure 3.27.: Growth rates for different number of degrees of freedom for the Diocotron

instability compared to linear theory (l = 3). Because of the sharp annulus in the initial

condition, a certain resolution is required for the correct linear phase, such that radial filtering

with Bessel functions (b) poses no advantage over the unfiltered Fourier-FEM discretization

(a).

Figure 3.28.: Growth rates for the Diocotron instability for Np = 105 particles. The highest

modes are difficult to obtain, because of the particle noise.
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3.5.3. Drift kinetic ion temperature gradient instability

The ion temperature gradient instability is a popular instability that emerges quite natural.

An ion temperature gradient provokes an instability and ultimately leads to turbulence that

slowly eats up this gradient. Physicists are interested in the ITG instability because it may

help predicting parts of the turbulent transport inside fusion devices, which is important

because you would like to keep the gradient and with it your confinement. For us it shall

be just another accumulation of parameters and an initial condition to use in the reduced

gyrokinetic model. The purpose of these tests is to demonstrate that PIF allows us to carry

out single mode simulations in any curvilinear coordinate system on a desktop computer.

Here the spatial coordinates r ∈ [rmin, rmax], θ ∈ [0, 2π], ϕ ∈ [0, Lϕ] are used in the plain box,

also called slab. In the slab we denote radius, poloidal angle and toroidal angle. The same goes

for cylinder and variants of the torus including a helical device with s = 5. Although we could

easily consider inhomogeneous magnetic fields, we are only interested in the flexibility of the

coordinate transformation and we try to keep this as comprehensive as possible. Technically

a curvature in the magnetic field can be incorporated in the coordinate transformation to be

field aligned. The only thing that one might want to change is the magnitude of B varying

over the radius r. We consider an ITG test case [190], where we excite an eigenvalue of

the linearized version of eqn. (B.61). This test-case simulates only one species, the ions

s = i such that we denote fs = f . Nevertheless, there are radial profiles given for the

ion temperature Ti(r) the electron temperature Te(r) and the number density of all species

n0(r) required. These profiles centered at rp have always the same shape P(r) depending on

different parameters. The constants CP is only defined in order to normalize the density n0

to one.

P ∈ {Ti, Te, n0}

P(r) = CPexp

(
−κPδrP tanh

(
r − rp
δrP

))
CTi = CTe = 1

Cn0 =
rmax − rmin∫ rmax

rmin
exp

(
−κPδrP tanh

(
r−rp
δrP

))
rp :=

rmax − rmin

2

(3.138)

These profiles are then used to define an equilibrium for the initial condition, that we will

also used as control variate.

feq(r, v) =
n0(r)√
2πTi(r)

exp

(
− v2

2Ti(r)

)
(3.139)

The initial condition itself is then a perturbation of the equilibrium by a Gaussian over the

radial direction. The radial profile of the resulting mode does not correspond to a Gaussian

and, therefore, the initial state is just an approximation to the true eigenvalue.

f(r, θ, ϕ, v, t = 0) = feq(r, v)

[
1 + ε · exp

(
−
−(r − rmax−rmin

2 )2

δr

)
cos

(
2πn

L
ϕ+mθ

)]
(3.140)

rmin = 0.1, rmax = 14.5, Lθ = 2π, Lϕ = 15606.759067,

κn0 = 0.055, κTi = κTe = 0.27586,

δr = 8, δrTi = δrTi = 1.45, δrn0 = 2δrTi ,

n = 1, m = 5

(3.141)
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For the ITG test case we have to draw a velocity distribution with radial dependent temper-

ature

g(r, θ) =
r(

r2
max − r2

min

)
π

1rmin≤r≤rmax . (3.142)

With the substitution ṽ := v√
(Ti(r))

we can substitute the integral

∫∫
1√

2πTi(r)
e
− v2

2Ti(r) r drdv =

∫∫
1√
2π

e−
ṽ2

2 r drdṽ (3.143)

and therefore draw ṽk ∼ N (0, 1) and set vk =
√
Ti(rk)ṽk. This is independent of the sampling

in r.

Quasi-neutrality test-case

The general elliptic solver is tested by use of a manufactured solution to the quasi-neutrality

equation in cylindrical coordinates (3.144). By performing such tests, bugs and bottlenecks

can be found in the implementation such that

−
[
n0(r)∂rrΦ(r, θ, ϕ) +

(
n0(r)

r
+ ∂rn0(r)

)
∂rΦ(r, θ, ϕ) +

n0(r)

r2
∂θθΦ(r, θ, ϕ)

]
+
n0(r)

Te(r)

(
Φ(r, θ, ϕ)− Φ̄(r, θ)

)
= ρ(r, θ, ϕ)

Φ̄(r, θ) =
1

Lϕ

∫ Lϕ

0
Φ(r, θ, ϕ)dϕ. (3.144)

Inserting the potential

Φ(r, θ, ϕ) = sin

(
2 · 2π r − rmin

rmax − rmin

)[
cos(ϕ+ 2θ) + sin

(
2π

r − rmin

rmax − rmin

)
cos(2θ)

]
(3.145)

into eqn. (3.144) yields

ρ(r, θ, ϕ) =
n0(r)

r2

[
4 cos(ϕ+ 2θ) sin

(
4π

r − rmin

rmax − rmin

)
+ 4 cos(2θ) sin

(
4π

r − rmin

rmax − rmin

)]
+

4π2n0(r)

(rmax − rmin)2

[
4 cos(ϕ+ 2θ) sin

(
4π

r − rmin

rmax − rmin

)
+ cos(2θ) sin

(
4π

r − rmin

rmax − rmin

)]
+

n0(r)

LϕTe(r)

{
sin

(
4π

r − rmin

rmax − rmin

)
[sin(2θ)− sin(Lϕ + 2θ) + Lϕ cos(ϕ+ 2θ)]

}
−2π(rn′0(r) + n0(r))

r ∗ (rmax − rmin)

[
2 cos(ϕ+ 2θ) cos

(
4π

r − rmin

rmax − rmin

)
+ cos(2θ) cos

(
4π

r − rmin

rmax − rmin

)]
.

(3.146)

This tests the interplay between coordinate transformation and matrix assembly. Addition-

ally the particle mesh coupling is tested by sampling particles uniformly in the cylinder

according to

u ∼ U(0, 1), r =
√
u(r2

max − r2
min) + r2

min, θ ∼ U(0, 2π),

ϕ ∼ U(0, Lϕ), w = 2πLϕ
r2

max − r2
min

2
. (3.147)

Using the L2 projection of ρ and three Fourier modes in each dimension, the convergence

for different B-spline degrees is checked. A correct implementation yields an increasing order
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deterministic QMC dofs = 16

QMC dofs = 32 QMC dofs = 64

Figure 3.29.: Testing a general elliptic solver for the quasi-neutrality equation in cylindrical

coordinates by means of a manufactured solution. L2 error on the electric potential for a

given ρ with rmin = 0, rmax = 5 and Lϕ = 2π. For large particle numbers the variance drops

below the discretization error for the low oder splines such that the bias appears.
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(a) electrostatic energy (b) energy error

Figure 3.30.: Single mode drift kinetic ITG instability with varying spline degree and Nr = 16

and Np = 4 · 105. The electrostatic energy (a) follows the reference in the linear phase. It

exhibits less oscillations for higher order splines, yet the energy error (b) does not change

drastically.

of convergence with increasing spline degree. Additionally the variance and bias can be

observed in the particle mesh coupling, especially the small increase in variance for radial

cells, see fig. 3.29. From fig. 3.29 it also becomes clear that even for such a simple example

an enormous number of markers is needed in order to decrease the variance to the level of the

bias. Further tests can be done for other geometries, where differential operators for various

geometries can be found in [191].

Spline degree

In the linear phase the noise obscures small perturbations, such that the δf method is highly

effective. It is quite common that smooth particle shapes are seen as a form of noise reduction

method, but they rather reduce the degrees of freedom. Nevertheless, increasing the spline

degree increases the spectral fidelity such that we are interested in the effects for high order

splines. The ITG test-case requires some basic resolution, thus, it was not possible to use

less than Nr = 16 degrees of freedom (not number of cells) in radial direction and obtain

reasonable growth rates, even for high order splines. The energy error, a quantity merely

depending on the splitting error, does not change but the electrostatic exhibits less oscillations

in the nonlinear phase, see fig. 3.30. This is explained by the slight variance reduction of

the high order B-splines, see fig. 3.31. Although this cannot be generalized, it is obviously

worthwhile investigating the variances with respect to the order and not only the resolution.

Adapted polar mesh

In curved geometries the measure of particle per cell becomes non-intuitive since the cells

are deformed, while the uniform background density does not depend on the geometry as

the Jacobian is always included. More concretely in polar geometry with Jacobian r the

uniform sampling density g(r) = r is used yielding the sampling in eqn. (3.147). It represents

a constant Vlasov density very well. To allow for different types of grids in radial direction,

a parameter αr > 0 is introduced. The knot sequence is then defined as

rk := rmax

(
k

N

)αr
, k = 1, . . . , Nr. (3.148)
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IVAR [ρ] IVAR [E] IVAR [Φ]

Figure 3.31.: Integrated variance of the charge density ρ, electric field E and potential Φ.

Increasing the B-spline degree from linear to sextic yields a slight variance reduction by

smoothing away the smalls scales. Since the Laplace operator damps the small scales anyhow

there is no effect on the potential Φ.

The cell number for a position r is then given as

cell(r) =

⌊(
r

rmax

)1/αr

N

⌋
. (3.149)

In polar coordinates the area of the k − th cell is

Ak =
(
r2
k − r2

k−1

)
π =

[(
rmax

(
k

N

)αr)2

−
(
rmax

(
k − 1

N

)αr)2
]
π

= π
r2

max

N2αr

(
k2αr − (k − 1)2αr

)
. (3.150)

For αr = 1 equidistant spacing is obtained whereas αr = 1
2 results in a partition of equal

areas of the unit circle.

αr =
1

2
⇒ Ak = π

R2
max

N2αr
= const. (3.151)

The canonical choice is to take an equidistant sequence, that means rk− rk−1 = const., since

this yields the smallest discretization error (except for exotic cases involving the singularity).

But in the particle-mesh coupling, the variance is also important such that such common

knowledge might not apply. Indeed for the quasi-neutral test-case a reduction of error can

be achieved by changing the grid to αr = 1/2, see fig. 3.32a. This also translates to the ITG

test-case, see figs. 3.32b and 3.32c. It has to be mentioned that by the worse discretization

error the eigenvalues of the field equations are also approximated not as well. This entirely

depends on the problem and has unpredictable consequences for nonlinear simulations.

Multiple geometries

We run the same test-case with exactly the same parameters, with the only difference that

the coordinate transformation is changed resulting in a different curved domain. Note that

for an accurate physical representation, a different initial conditioned tailored to the domain

has to be chosen. Mostly these equilibria are obtained by solving the high collisional limit

to the original Vlasov equation, which essentially leads to MHD equilibria. These are then

again parameterized yielding test-cases. Such extensions can be found for the torus as the

DIII-D test-case in [192] and the D-shaped cylinder, see [193]. The results for quartic splines

with Np = 104, Nr = 16, ∆t = 5 can be seen in figs. 3.33, 3.34 and 3.35.
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(a) quasi-neutrality test-case

(cubic)

(b) energy error (c) integrated variance of ρ

Figure 3.32.: In polar geometry the number of particles per cell can be kept constant by chang-

ing the radial grid spacing to an equi-volume map. This reduces the variance in the standard

quasi-neutral test-case (a), but increases the bias compared to the standard equidistant grid

(cubic, Nr = 32). Thus, for noise dominated simulations it is feasible to adapt the mesh

and eventually increase the spline degree in order to compensate for the extreme increase in

bias. For the single mode drift kinetic ITG instability (b) with varying spline degree a small

variance reduction is observed (c).

(a) electrostatic energy (b) variance reduction (c) relative energy error

Figure 3.33.: Single mode ITG simulation for different domains. For the cylindrical model

the linear phase matches the analytical prediction (a) and also does not change much for

toroidal geometries due to the large aspect ratio. The control variate is very effective during

the linear phase (b). Compared to nonlinear Landau damping the factor variance reduction

> 100 is much better, such that it is still worth using the control variate in this nonlinear

phase. The energy error increases with the complexity of the geometry (c).

(a) IVAR [ρ̂] (b) IVAR
[
Ê
]

(c) IVAR
[
Φ̂
]

Figure 3.34.: Integrated variances of charge density ρ, electric field E and potential Φ over

the linear phase of an ITG instability for different geometries.
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charge density potential

slab

cylinder

toroidal cylinder

torus

elliptic torus

elliptic helix (s = 5)

Figure 3.35.: Charge density and potential for a single mode drift kinetic ITG in the nonlinear

phase at the end of the simulation. The potential Φ is by help of the Laplacian much smoother

than the charge density ρ. Also the extent of the variance in the radial direction gets limited

by this damping.
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3.6. Implementation and benchmarks of Particle-In-Fourier

When the Particle-In-Fourier discretization of a system is already given, the implementation

is mostly straightforward. For spectral methods in general a factor two can be gained easily

by using the complex symmetry of the Fourier modes, see appendix C.2. Yet there are other

formulas that result in a performance gain which can be easily applied a-posteriori.

3.6.1. Numerical evaluation of the Fourier modes

The orthogonal basis functions sin and cos have many advantages, but even on modern com-

puter hardware they are expensive to evaluate. Since the Particle-In-Fourier heavily relies on

the massive evaluation of trigonometric functions, we present different options. Although ev-

erything started with the CORDIC (coordinate rotation digital computer) algorithm, where

Volder [194] gives a nice explanation, these algorithms are designed for limited hardware,

like computers from the 50s or micro-controllers nowadays. Today we rely on software im-

plementations provided by different libraries or direct hardware implementation on modern

architectures such as Intel Skylake. In the beginning we seek for double precision accuracy of

the method, although in almost every case the particle noise is more dominant. By trading

off accuracy the conserved quantities of the geometric integration are affected at first. The

solution quality does then depend on the particle noise. Since this can be done at compile

time by enabling fast math option (-ffast-math), it is not of our concern.

The first step in accelerating a function evaluation is by defining a lookup table up to a certain

precision, or use some form of polynomial interpolation. Evaluating polynomials is thanks

to Horners algorithm computationally accurate and cheap. Another option often used is the

approximation by a Taylor series. By range reduction we restrict ourselves to fast evaluation

of sin(x) for x ∈ [0, π2 ] by polynomials of order n. The corresponding Taylor series is obtained

by truncating the expansion to a nth order polynomial.

f(x) := sin(x) ≈
∞∑
m=0

(−1)m
x2m+1

(2m+ 1)!
(3.152)

An enhanced lookup table uses cubic spline interpolation on n+1 equidistant points in [0, π2 ].

On the same equidistant points standard Lagrange interpolation yields an unique polynomial

of degree n + 1. But the best way is to use Chebyshev polynomials, which we map from

[−1, 1] to [0, π2 ]. We recall some useful equations for Chebyshev interpolation from [195]. The

roots of the (n+ 1)th degree Chebyshev polynomial of first kind Tn+1 read

Tn+1(xj) = 0, xj := cos

(
j − 1

2

n+ 1
π

)
, ∀j = 1, . . . , n+ 1. (3.153)

Chebyshev interpolation is done by mapping these roots to x̃j =
xj+1

2
π
2 , ∀ j = 1, . . . , n+ 1

and interpolating with an nth order polynomial through the points (x̃j , xj). This polynomial

can also be obtained by a Chebyshev sum

f(x) ≈
n∑
i=0

ciTi(x), (3.154)

with coefficients

ci =
2

n+ 1

n+1∑
k=1

f(xj)Ti(xj), i = 0, . . . , n. (3.155)
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(a) Polynomial approximation of sin in [0, π2 ] (b) Multiple Fourier modes by recursion

Figure 3.36.: Since polynomials is very fast expensive trigonometric functions such as sin can

be approximated by a polynomial expansion up to a certain degree (a). For cubic splines the

degree denotes the degrees of freedom for an underlying grid. For a 13th degree Chebyshev

series, the sin is approximated to machine precision, demonstrating that spectral expan-

sion outperforms naive interpolation. Based on the first Fourier mode higher modes can be

obtained by forward or backward application of the Chebyshev identity (3.157) or a plain

exponential power by successive multiplication according to eqn. (3.156), which affects the

precision (b).

GPU CPU

time [s] error time [s] error

native 1.08e-09 6.1e-05 2.74e-09 6.82e-09

standard 1.11e-09 3.33e-16 3.45e-09 3.33e-16

Table 3.2.: The native implementation of sin in OpenCL is slightly faster yet inaccurate.

Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz with Intel(R) HD Graphics, Intel OpenCL

Here fig. 3.36a identifies the Chebyshev polynomials clearly as the most efficient method

tightly followed by the standard Lagrange interpolation. The cubic splines are only useful up

to three degrees of freedom, so either we use a lookup table to the desired precision, or directly

take the global polynomials. But for PIF we need to evaluate the exponential function of a

purely complex argument. In many cases a function sincos is available providing sin and cos

simultaneously.

eikx = cos(kx) + i sin(x) =
(
eix
)k

= (cos(kx) + i sin(x))k (3.156)

Many modes have to be evaluated, thus, the costly trigonometric functions calls can be re-

duced to a single evaluation followed by many complex self multiplications. This is without

doubt very cheap, but leads to numerical roundoff error as can be seen in fig. 3.36b. For

compensation of numerical roundoff, see [196].

Another disadvantage is that this cannot be vectorized, hence in a highly vectorized environ-

ment like OpenCL it can be faster to directly call sincos for every mode. Although it is, of

course, possible to vectorize the recurrence relation in eqn. (3.156) by hard-coded unrolling.

In computer experiments an additional factor of two could be gained by unrolling at least

8 iterations for Nf ≥ 64. On Intel Skylake vectorization is said to gain a factor of up to

ten, which we were unable to achieve here by loop unrolling. Since such unrolling techniques

restrict the codes flexibility they were not used for general tests. We recall the Chebyshev
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identity, which is another formula using a two term recurrence for the sine and cosine

cos(nx) = 2 cos(x) cos ((n− 1)x)− cos ((n− 2)x) ,

sin(nx) = 2 cos(x) sin ((n− 1)x)− sin ((n− 2)x) .
(3.157)

It can be used forward starting from the zeroth mode, or backward. Yet fig. 3.36b shows

that both methods suffer from heavy roundoff error. Sometimes hardware implementations

are available, which can be easily accessed by OpenCL but lack the desired precision in our

case, see table 3.2.

3.6.2. Micro-benchmark

Particle-In-Fourier is simple to implement, such that we can test different programming

languages and hardware. For the standard Particle-In-Cell a vast variety of skeleton codes are

provided by Decyk, see [197],[198], which are used as a basis for comparison. For the following

tests we chose a standard Vlasov–Poisson simulation with the third order symplectic Runge

Kutta as time integrator, which yields few lines of code for Landau damping. In contrast

to PIC, where particles only contribute to their surrounding cells using cheap polynomials,

in PIF every particle contributes to every Fourier mode via an expensive e−function. This

makes PIF computationally heavier such that we expect it to have better performance in

massively parallel environments like GPUs, where locally much more FLOP/s are possible.

Dedicated GPU programming is cumbersome such that we search for a high level framework

that allows for an easy implementation. MATLAB offers gpuArrays with Nvidia CUDA as

back-end such that porting existing code to the GPU is trivial.

In the first example we use our most efficient MATLAB implementation of the particle mesh

coupling using cubic B-splines finite elements for a Vlasov–Poisson PIC code. Then exactly

the same problem is solved, once with PIC and PIF. Note that in PIC for one Fourier mode

two cells are needed. Fig. 3.38 indicates that at least in MATLAB, PIF is more efficient on

the GPU. Yet this takes place at such a high level of abstraction that it cannot be generalized.

Therefore, we perform a micro-benchmark in order to test implementations of the same PIF

algorithm in different languages. With a syntax similar to MATLAB yet performance of C we

present implementations in the new language julia [199], in order to leave the old-age standard

Fortran based high performance plasma-physics behind us. We, of course, include python

with numpy [200]. OpenCL is a portable framework for high performance applications based

on C, that allows us to use the same code on CPU and GPU. Via python the pyOpenCL

package provides a simplified interface [201]. The advantage over CUDA is that we do not

need expensive hardware but can use a Laptop with an Sky Lake Intel(R) Core(TM) i5-6300U

CPU and the integrated Intel HD Graphics 520 GPU supporting double precision. If we seek

a comparison between fortran, julia and python, we have to use the same compiler flags and of

course the same compiler, and therefore, we choose gfortran with the highest optimization flag

−O3. For the single core comparison we set the environment variable OMP_NUM_THREADS=1,

in order to keep MATLAB and numpy from using several threads. A dramatic improvement

is the architecture specific optimization by -march=native. For the Fortran example this is a

trivial change, yet for julia the entire interpreter had to be rebuild. Since julia was installed

from source, this was done by adding a file “Make.user” with the entry MARCH=native,

JULIA_CPU_TARGET=native and then building as recommended. In the optimized variant

of the algorithm the Fourier modes are calculated by successive multiplication according to

eqn. (3.156). Yet this method cannot be vectorized without explicit unrolling such that it is

not feasible with MATLAB and numpy. If not specified otherwise Np = 105 particles, Nf = 64

Fourier modes and Nt = 150 time steps are used. The results for different languages can be
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time [s]

Interpreter standard optimized

single multi-thread(4)

gFortran (-O3, OMP) 403.37 134.01 7.67

julia (-O3, MPI) 361.73 - 8.90

python (numpy) 562.40 - -

MATLAB (CPU) 237.43 122.15 -

pyOpenCL (CPU) - 12.08 (8.91)

julia Yeppp! 209.35 83.03 -

pyOpenCL (GPU) - 14.40 (10.81)

PIC (OMP) 1.06 0.29 -

Table 3.3.: Wall time for PIF with Np = 1e5 particles, Nf = 64 Fourier modes and Nt = 150

third order time steps. For pyOpenCL the charge assignment could not be optimized. Decyks

OpenMP one dimensional single precision sekeleton PIC code fmpic1 is used as a reference.

The number of cells is set to Nf = 2 ·64 and Nt = 3 ·150 in order to account for the difference

in the leap frog scheme. The performance of PIC is insensitive to the number of cells Nf and

the dominating costs are charge assignment such that the comparison is fair.

seen in table 3.3. MATLAB performs surprisingly well for the standard algorithm. For the

standard PIF OpenCL outperforms the OpenMP Fortran by at least an order of magnitude,

see also fig. 3.39a. Yet for the optimized variant the computational costs per particle are

so low that a different kernel design is needed in order to implement the optimized charge

projection. This is not done here and only the charge assignment is optimized. Figure. 3.39c

shows that for GPU und CPU the optimized charge projection is much more efficient than the

standard charge assignment causing an imbalance in costs, such that given the right design

greater performance benefits are possible. Nevertheless for larger problem sizes the - not yet

perfect - pyOpenCL still outperforms Fortran on the CPU, see fig. 3.39b. The newcomer

julia is even slightly faster than the best Fortran implementation, but it uses MPI and not

OpenMP such that we suspect the gain in performance to come from the overhead. Using

the julia interface to the vectorized library Yeppp! [202] results in a speedup of two for the

trigonometric functions but relies on vectorization. Scanning the number of Fourier modes

reveals the overhead of julia and python, see fig. 3.39. Nevertheless pyOpenCL appears to

get more work done in the same time, such that we have to ask ourselve the question how

well the Fortran code is actually optimized. Under Linux the tool perf allows us to measure

the percentage of cache misses and instructions per cycle, the results for PIF and Decyk’s

mpic1 are summarized in fig. 3.37. It becomes clear that the hardware is not used to full

extent in neither of the cases. Therefore, we recommend OpenCL kernels coupled to a high

level language like python or julia since the development was fairly simple and there is much

room for optimization in the kernels, as already discussed before.
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gfortran -O3 -mtune=native -march=native -fopenmp \

-ggdb -g -o pif_vp_OMP.fortran pif_vp_OMP.F90

export OMP_NUM_THREADS =4

perf stat -B -e cache -references ,cache -misses ,cycles ,\

instructions ,branches ,faults ,migrations ./ pif_vp_OMP.fortran

Performance counter stats for ’./ pif_vp_OMP.fortran ’:

378.289.955 cache -references

6.217.327 cache -misses # 1,644 % of all cache refs

88.515.150.902 cycles

109.372.024.305 instructions # 1,24 insns per cycle

8.118.313.560 branches

709 faults

3 migrations

7 ,673797924 seconds time elapsed

Performance counter stats for ’./fmpic1 ’:

213.051.927 cache -references

400.951 cache -misses # 0,188 % of all cache refs

32.628.470.342 cycles

26.403.571.347 instructions # 0,81 insns per cycle

2.291.879.005 branches

528 faults

3 migrations

2 ,841810770 seconds time elapsed

Performance counter stats for ’python ./ pif_vp_opencl.py ’:

989.990.351 cache -references

265.004.291 cache -misses # 26,768 % of all cache refs

70.462.157.878 cycles

95.748.734.682 instructions # 1,36 insns per cycle

7.943.209.499 branches

415.523 faults

16 migrations

8 ,910162779 seconds time elapsed

Figure 3.37.: Under Linux the tool perf provides a performance analysis in one simple step.

Deeper analysis of the Fortran code by perf annotate revealed that the cache misses come from

the trigonometric calls in libm. For the Intel Skylake architecture the theoretical maximum

of instructions per cycle (IPC) is 16, such that there is still room for improvement by a factor

ten. Despite the large amount of cache misses due to the flawed reduction kernel design the

OpenCL code has definitely better trigonometric functions, since it does not use successive

multiplication.
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(a) CPU (b) GPU (with MATLAB’s gpuArrays)

Figure 3.38.: Comparison of Particle-In-Cell and Particle-In-Fourier on CPU and GPU under

MATLAB. On the GPU and a moderate problem size the computational costs are independent

of the number of modes. The tests were performed on IPP’s draco cluster with an Intel Xeon

E5-2698 CPU and Nvidias PNY GF980GTX GPU.

(a) Standard PIF (b) Optimized PIF (c) PIF OpenCL kernels on

CPU and GPU

Figure 3.39.: The computational costs of PIF increase linear with the number of Fourier

modes, but the leading constant leaves room for improvements. The highly vectorized

OpenCL beats fortran for the standard PIF (a), although exactly the same algorithm is

used. When successive multiplication is applied (for pyOpenCL only in charge projection)

OpenCL beats julia, which levels in with fortran (b). The optimized charge assignment us-

ing successive multiplications cannot be efficiently implemented for GPU using pyOpenCL

templates (c). A possible solution are advanced reduce kernels specifically designed for many

threads, but are more extensive to implement.
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3.7. Eulerian versus Lagrangian in Fourier space

We have compared PIF and PIC, which are both Lagrangian methods subject to the same

noise. Yet if there is no self-consistent field, there is additional noise on the particle dynamics.

Eulerian methods converge faster in low dimensions, such that there is no noise but for ad-

vection, stabilization in the form of diffusion is required. Whenever a diffusion free transport

is needed Lagrangian particles are mostly a better choice than the Eulerian ones. This is also

one of the reasons why particle methods are so successful in e.g. high energy beam physics,

where the particles run through many complicated magnetic fields. In the case of moderate

degrees of freedom the error on the solution is not dominated by the order of convergence

but the constant in front of it, which is for PIF the variance. If we can suppress the variance

enough, then it should be possible to compete with an Eulerian solver for a moderate amount

of particles.

3.7.1. Direct comparison

Since PIF is a spectral discretization, the Eulerian solver should also be spectral in spatial

direction. The closest step is then to choose the standard pseudo-spectral solver. The spectral

solver is equipped with a Fourier filter such that it approximates exactly the same system

as the PIF. The time integrator is, for both solvers, the third order Runge Kutta [32] such

that the discretization of the density f is the only difference. Note that this integrator is

not symplectic but adjoint symplectic for the Eulerian discretization. The parameters for the

Bump-on-tail instability and the grid of the Eulerian solver are given in eqns. (3.158).

ε = 0.05, v0 = 4.5, σ = 0.5, k = 0.3, m = 1, L = m · 2π

k

f(x, v, t = 0) =
1 + ε cos(kx+ π

4 )
√

2π

[
(1− nb)e−

v2

2 +
nb
σ

e−
(v−v0)2

2σ2

]
g(x, v, t = 0) =

1√
2πL

[
(1− nb)e−

v2

2 +
nb
σ

e−
(v−v0)2

2σ2

]
vmax = 9, vmin = −7

(3.158)

Here, for the MATLAB implementation of both solvers the raw run time coincides up to 5%,

when only Nf = 1 Fourier mode is used. Figure 3.40 shows that in that, case the PIF can

absolutely compete with the pseudo-spectral solver despite the low dimension. This is only

possible because Sobol’s Quasi-Monte-Carlo numbers are used, which have a theoretical con-

vergence order of O( 1
N ) and are definitely not the first choice for two dimensional integration.

We should also mention that the vortices in phase space emerging from the bump-on-tail in-

stability, also called BGK modes, form actually a nonlinear stable state [203]. This means,

that they are less susceptible to the particle noise. Thus small amplitude Landau damping

is unfair for PIF and the BGK modes are eventually unfair for the Eulerian solver. Yet we

have to admit that this test-case is specifically designed such that the noisy particles perform

well. Since m = 1 the longest wavelength is also the most unstable one. By increasing m = 3

the third Fourier mode is excited, and if we do not filter the first two modes the PIF has no

chance against the pseudo-spectral solver, see fig. 3.41. This behavior is also observed in a

more comprehensive study comparing PIC with a Hermite-Fourier spectral solver for a turbu-

lence test-case [75], where the PIC is too noisy in the small wavelengths. A study comparing

a six dimensional Vlasov–Poisson PIF against a Semi-Lagrangian solver also draws the con-

clusion that PIF can be efficient for very few modes, tailored to the scenario [204]. Another
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electrostatic energy kinetic energy

Figure 3.40.: Comparison between a pseudo-spectral Eulerian and the Lagrangian PIF

Vlasov–Poisson solver for a Bump-on-tail instability for different number of Fourier modes

Nf . For PIF degrees of freedom are particles Np respectively total number of grid points

Nx · Nv for the spectral solver. For better comparison the errors are obtained from the

electrostatic energy and the kinetic energy.
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(a) electrostatic energy (b) kinetic energy

Figure 3.41.: For smaller wavelengths m = 3 the pseudo-spectral solver is clearly more efficient

than PIF, since PIF is unable to capture the nonlinear plasma oscillations for long time.

Np = 5122, Nx = Nv = 512.

extensive PIC versus spectral comparison can be found in [158, 157], which absolutely favors

the spectral solver for already a moderate error.

3.7.2. Variance reduction

Can a possibly coarse result of the Eulerian solver be used to reduce the variance of the

Lagrangian method? Since the phase space density is directly given in Fourier modes, those

can be easily applied as a control variate h(x, v) = fEulerian(x, v) for PIF. For this the particles

are sampled uniformly in the same domain as the spectral solver, g(x, v) = [L(vmax−vmin]−1.

Uniform sampling enhances the correlation thus the variance reduction by the initial condition

as control variate is also given. The test moment is set to
∫ L

0 x(x − L
2 )(x − L)f(x, v) dxdv.

The variance reduction by the spectral solution levels in at a factor of 100, which is five times

larger then the reduction by the initial condition at 21, see fig. 3.43c. The results of both

method coincide, as can bee seen in fig. 3.43a and fig. 3.43b. When comparing the phase

space at the end of the simulation, the particles draw a sharper image, see fig. 3.42b, than

the spectral representation which suffers from aliasing, see fig. 3.42a.

Long term high k modes

It is known that particle methods have problems resolving the high k. Nevertheless, an

advantage of Monte Carlo integration over the grid based quadrature is that the error of

estimating a higher mode does not increase with the mode number, but only depends on the

modes amplitude. By considering only a single Fourier mode at a large k no extra amplitudes

are present such that the coefficient of variance depends only on the amplitude of this mode.

With larger k the Eulerian solver requires more resolution and grid-points but not the PIF

solver. By construction of such an example we are able to outperform the Eulerian solver

with our Lagrangian particles, see fig. 3.44.
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(a) Eulerian (pseudo-spectral) (b) Lagrangian (PIF)

Figure 3.42.: Phase space at t = 60 in the bump-on-tail instability. PIF (b) uses the pseudo-

spectral solver (a) as control variate. Nf = 1, Np = 1282, Nx = Nv = 128, ∆t = 0.05

(a) Electrostatic energy in the

hybrid simulation.

(b) Kinetic energy in the hybrid

simulation.

(c) Variance reduction for ini-

tial condition and Eulerian

solver as control variate.

Figure 3.43.: Energies (a,b) and variance reduction (c) in a VP Eulerian-Lagrangian hybrid

simulation.

(a) electrostatic energy (b) energy error

Figure 3.44.: Filtering exactly one small wavelength m = 10, Nf = 1 by a Fourier filter in the

Eulerian and Lagrangian simulation PIF exhibits a greater stability than the pseudo spectral

solver for long times (Np = 1282, Nx = Nv = 128).
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Pseudo spectral discretizations

Complementary to the Lagrangian PIF, the next closest relative in the Eulerian family of

discretization are pseudo-spectral solvers. Of course they suffer from the curse of dimension-

ality but not on the computational level here, since the FFTW library is well optimized, see

fig. 4.1. Constant coefficient advection in a periodic domain can be solved exactly in Fourier

space. In all cases treated here there is a Hamiltonian splitting available yielding constant

advection possible. Fourier for the Vlasov equation spectral solvers that employ also a Fourier

transform in velocity space date back to [20, 205]. Such Fourier-Fourier solver were further

developed for higher dimensions [206, 207] and also extended to the Vlasov–Maxwell equation

[207, 113],[22]. For Vlasov–Poisson it has been shown that Fourier filtering can be used to

suppress the recurrence phenomenon [156] or filter filamentations [155]. For Vlasov–Poisson

the Hamiltonian splitting has also been known [21], but for Maxwell none of these splitting

methods are of geometric origin.

It should be mentioned that for the velocity space discretization also Chebyshev and Hermite

polynomials have been used [20, 75]. A low degree Hermite polynomials provide an elegant

way to approximate a fluid model on the numerical level.

A priori structure should be conserved for long terms and e.g. energy conservation is just a

consequence but not the goal itself. Fourier spectral methods do not conserve positivity of

the distribution function. In this context we neglect the question on positivity conserving

schemes although for other forms of discretizations there have been improvements in that

direction [208, 4, 209].

After the setting in Fourier space is discussed by means of our favorite Vlasov–Poisson ex-

ample a new Fourier spectral Vlasov–Maxwell solver is presented based on a Hamiltonian

splitting.

Figure 4.1.: Fourier transforming a multidimensional array along one particular dimension

yields a strided access pattern resulting in a slowdown. Timings are shown for forth- and

back-transform in MATLAB (using FFTW) on a laptop. Although a slowdown is visible it

is not prohibitive for high dimensional spectral methods.
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4.1. Vlasov–Poisson–Fokker–Planck (1d1v)

We consider the one dimensional Vlasov–Fokker–Planck equation (4.1).

∂tf(x, v, t) + v∂xf(x, v, t) +
q

m
(E(x, t) + Eext(x, t)) ∂vf(x, v, t) =

θ
∂

∂v
((v − µ(x))f(x, v, t))− σ(x)2

2︸ ︷︷ ︸
=D(x)

∂2f(x, v, t)

∂v2
(4.1)

Here we Fourier transform in velocity and spatial space where f̂ denotes a transformation.

For notational simplicity the transformed dimension is indicated by kx or kv in the argument.

The spatial, velocity and fully Fourier transformed densities are defined as

f̂(kx, v, t) =
1

L

∫ L

0
f(x, v, t)e−ixkx dx, (4.2)

f̂(x, kv, t) =
1

vmax − vmin

∫ vmax

vmin

f(x, v, t)e−i(v−vmin)kv dv, (4.3)

f̂(kx, kv, t) =
1

L

1

vmax − vmin

∫ vmax

vmin

∫ L

0
f(x, v, t)e−i(xkx+(v−vmin)kv) dxdv, (4.4)

where the wave vectors are kx = n2π
L and kv = 2π

vmax−vmin
for n ∈ Z. Note that one can

easily by a Fourier forth and back-transform switch between those three representations on

a discrete level. We split the integration in three parts in τ [0, t], where the Vlasov steps can

be integrated exactly in Fourier space.

1. Advection in x

∂tf(x, v, t) + v∂xf(x, v, t) = 0 (4.5)

2. Advection in v and Poisson solve

∂tf(x, v, t) +
q

m
(E(x, 0) + Eext(x, 0)) ∂vf(x, v, t) = 0 (4.6)

Here we solve the Poisson equation with constant background (for q = −1), but other

fields are also possible.

∂xE(x, t) = 1 + q

∫
f(x, v, t) dv (4.7)

3. Fokker–Planck Collisions

θ
∂

∂v
((v − µ(x))f(x, v, t))︸ ︷︷ ︸

drift

−D(x)
∂2f(x, v, t)

∂v2︸ ︷︷ ︸
diffusion

(4.8)

For the splitting we consider the time [0, t] to be one time step.

1. Advection in x in spatially transformed space

∂tf̂(kx, v, t) = −vikxf̂(kx, v, t). (4.9)

The constant coefficient advection is integrated exactly over this splitting step.

f̂(kx, v, t) = f̂(kx, v, 0) +

∫ t

0
(−vikx)f̂(kx, v, τ)dτ

= f̂(kx, v, 0)e−vikxt

(4.10)
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2. Advection in v in velocity transformed space

∂tf̂(x, kv, t) = − q

m
(E(x, 0) + Eext(x, 0)) ikvf̂(k, kv, t)

f̂(x, kv, t) = f̂(x, kv, 0)e−
q
m

(E(x,0)+Eext(x,0))ikvt.
(4.11)

Note that in this step the advection in v cancels out under the velocity integral.∫
R
f(x, v, t)dv =

∫
R
f(x, v + t

q

m
[E(x, 0) + Eext(x, 0)] , 0)dv =

∫
R
f(x, v, 0)dv (4.12)

Therefore, the electric field can be obtained in the spatially transformed space before

or at the end of the split step.

Ê(kx, 0) = q
1

ikx

∫
f̂(kx, v, 0) dv, for kx 6= 0 (4.13)

3. The drift term in the Fourier transformed Fokker–Planck collision operator (4.14) poses

a problem since it contains a derivative in Fourier space ∂kv f̂(x, kv, t).

∂tf̂(x, kv, t) = θ
[
(1− µ(x)ikv)f̂(x, kv, t) + i∂kv

(
ikvf̂(x, kv, t)

)]
+D(x)k2

v f̂(x, kv, t)

= θ
[
(1− µ(x)ikv)f̂(x, kv, t)− f̂(x, kv, t)− kv∂kv f̂(x, kv, t)

]
+D(x)k2

v f̂(x, kv, t)

= −θkv
[
µ(x)i + ∂kv f̂(x, kv, t)

]
+D(x)k2

v f̂(x, kv, t) (4.14)

The remaining terms form an ODE, which is nothing new. Let Fv denote the Fourier

transform v, F−1
v the corresponding back-transform and v· the multiplication with v.

The derivative in Fourier space can be expressed by back-transforming according to

eqn. (4.15).

i∂kv f̂(x, kv, t) = Fv [v·]F−1
v f̂(x, kv, t)︸ ︷︷ ︸

=vf(x,v,t)

(4.15)

This introduces aliasing on the discrete level such that exact integration is only guar-

anteed to a certain precision that depends on the amount of Fourier filtering. Recall

that Fourier transform is only a linear operation and on the coefficient level v· corre-

sponds to multiplication with a diagonal matrix containing the corresponding velocity

grid points. This means that a linear operator L = Fv [v·]F−1
v can be defined, which

has the following property

etL = etFv [v·]F−1
v = eFvt[v·]F

−1
v = Fvet[v·]F−1

v . (4.16)

For further investigation we refer to [210], where a pseudo spectral based Fokker–Planck

solver with an exponential time differentiating scheme is discussed and also [211].

The Lie steps can be composed by symmetric composition, see [21]. The symplectic Runge

Kutta scheme from Forest and Ruth [32] also works as it is just shifted by a half step and,

therefore, adjoint symplectic for the Eulerian discretization.

4.2. Vlasov–Maxwell (1d2v)

The Hamiltonian splitting was already discussed extensively for Lagrangian particles, nev-

ertheless it is also possible to derive the same method for a spectral discretization. For a

different, but incorrect [212], splitting this has already been done in [22]. Here we use the
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correct Hamiltonian splitting from [213]. Let f(x, v1, v2, t) denote the plasma density and f̂

the Fourier transform. Since there are six different combinations of transforms f̂ denotes a

transformation, where the transformed dimension is indicated as before by kx, kv1 or kv2 in

the argument. That means f̂(kx, v1, kv2) denotes the Fourier transform of f in x and v2. We

begin by treating the Hamiltonian splitting for time integration from 0 to t.

• Kinetic energy (d = 1), Hp1 = 1
2

∫∫∫
v2

1f(x, v, t) dxdv1dv2

∂tf(x, v1, v2, t) + v1∂xf(x, v1, v2, t)−
q

m
B3(x, t)v1∂v2f(x, v1, v2, t) = 0

∂tB3(x, t) = 0

∂tE1(x, t) = −q
∫ vmax

2

vmin
2

∫ vmax
1

vmin
1

v1f(x, v1, v2, t)dv1dv2

(4.17)

The first problem, but luckily the only problem we will encounter, is the Fourier trans-

form for the Vlasov density, since Fourier transforming in x and v1 simultaneously

results in terms containing convolutions:

∂tf̂(kx, v1, kv2 , t) + v1ikxf̂(kx, v1, kv2 , t)−
q

m
B̂3(kx, t) ∗kx v1ikv2 f̂(kx, v1, kv2 , t) = 0.

(4.18)

This can be avoided by considering only the Fourier transform in v2 such that (4.17)

can be solved exactly by

∂tf̂(x, v1, kv2 , t) + v1∂xf̂(x, v1, kv2 , t)−
q

m
B3(x, 0)v1ikv2 f̂(x, v1, kv2 , t) = 0

⇔ ∂tf̂(x, v1, kv2 , t) = −
[
v1∂x −

q

m
B3(x, 0)v1ikv2

]
f̂(x, v1, kv2 , t)

⇒ f̂(x, v1, kv2 , t) = exp

−t v1

[
∂x −

q

m
B3(x, 0)ikv2

]
︸ ︷︷ ︸

=L

 f̂(x, v1, kv2 , 0)

(4.19)

Here the exponential contains still the derivative ∂x which can be — and this is a

critical point here — exactly obtained at the grid points x1, . . . xNx for the spectral

discretization by Fourier forth and back-transform. For this recall that the discrete

Fourier transform can be denoted in a matrix1 Fx ∈ RNx×Nx and F−1
x . Hence the

matrix L ∈ RNx×Nx representing the discrete but exact counterpart of L reads

L = v1F−1
x diag (ik1, . . . , ikNx)Fx︸ ︷︷ ︸

=LA

−v1
q

m
ikv2diag (B(x1, 0), . . . , B(xNx , 0))︸ ︷︷ ︸

LL

. (4.20)

By calculating the matrix exponential exp(−tL) the systems of ODE arising from eval-

uating eqn. (4.19) at every spatial grid point can be solved exactly for each v1 and

kv2 . Now it is obviously highly questionable to replace a fast Fourier transform with a

matrix, and although there are matrix free variants of the standard algorithms avail-

able [214] we follow a much simpler approach. Note that exp(tLA) and exp(tLL) are as

(transformed) diagonal matrices trivial to calculate respectively to apply onto a vector(
f̂(x1, v1, kv2), . . . , f̂(xNx , v1, kv2)

)
but unfortunately LL and LA do not commute. In

such a situation Moler [215] suggests to use the Trotter product formula

e−
t
m
Le−

t
m

(LA+LL) = lim
m→∞

(
e−

t
m
LAe−

t
m
LL
)m

. (4.21)

1Instead of assembling the matrix by hand, one can just Fourier transform an identity matrix of the appro-

priate size. In this way one always obtains the correct normalization, e.g. in MATLAB fft(eye(Nx), [], 1)

and ifft(eye(Nx), [], 1).
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4.2. Vlasov–Maxwell (1d2v)

Essentially this means, we should split Ĥp1 into two parts which can be solved exactly

in Fourier space and then sub-step these parts to the desired accuracy. Splitting eqn.

(4.17) in the Vlasov—Ampère Hp1,A part and the remaining terms of the Lorentz force

Hp1,L yields

Hp1,A

∂tf(x, v1, v2, t) + v1∂xf(x, v1, v2, t) = 0,

∂tE1(x, t) = −q
∫ vmax

2

vmin
2

∫ vmax
1

vmin
1

v1f(x, v1, v2, t)dv1dv2,

Hp1,L

{
∂tf(x, v1, v2, t)− q

mB3(x, t)v1∂v2f(x, v1, v2, t) = 0,

∂tB3(x, t) = 0.

(4.22)

The advection in Hp1,A can be again directly solved by a Fourier transform in x,

f̂(kx, v1, v2, τ) = f̂(kx, v1, v2, 0)e−v1ikxτ for τ ∈ [0, t]. (4.23)

The electric field is, identical as in Vlasov–Ampère, obtained by inserting the time

evolution (4.23) yielding:

Ê(kx, t) = Ê(kx, 0)− q
∫ t

0

∫ vmax
2

vmin
2

∫ vmax
1

vmin
1

v1f̂(kx, v1, v2, τ)dτdv1dv2

= Ê(kx, 0)− q
∫ t

0

∫ vmax
2

vmin
2

∫ vmax
1

vmin
1

v1f̂(kx, v1, v2, 0)e−v1ikxτdτdv1dv2

= Ê(kx, 0)− q
∫ vmax

2

vmin
2

∫ vmax
1

vmin
1

v1f̂(kx, v1, v2, 0)

∫ t

0
e−v1ikxτdτdv1dv2

= Ê(kx, 0)− q
∫ vmax

2

vmin
2

∫ vmax
1

vmin
1

v1f̂(kx, v1, v2, 0)
1

−v1ikx

[
e−v1ikxτ

]t
0

dv1dv2

= Ê(kx, 0) + q

∫ vmax
2

vmin
2

∫ vmax
1

vmin
1

f̂(kx, v1, v2, 0)
1

ikx

[
e−v1ikxt − 1

]
dv1dv2.

(4.24)

The second part Hp1,L reduces to a constant coefficient advection in v2 and is solved

directly by

Ĥp1,L

{
f̂(x, kv2 , t) = e

q
m
B3(x,t)v1 ikv2 tf̂(x, kv2 , 0). (4.25)

Note that the split step Hp1,A , given in eqns. (4.23) and (4.24) can also be performed

in v2 transformed space, thus, both eqn.(4.26) and eqn. (4.27) can be used.

Ĥp1,A

f̂(kx, v1, v2, t) = f̂(kx, v1, v2, 0)e−v1ikxt

Ê(kx, t) = Ê(kx, 0) + q
∫ vmax

2

vmin
2

∫ vmax
1

vmin
1

f̂(kx, v1, v2, 0) 1
ikx

[
e−v1ikxt − 1

]
dv1dv2.

(4.26)

Ĥp1,A


f̂(kx, v1, kv2 , t) = f̂(kx, v1, kv2 , 0)e−v1ikxt

Ê(kx, t) = Ê(kx, 0)

+ q
∫ vmax

1

vmin
1

f̂(kx, v1, kv2 = 0, 0) 1
ikx

[
e−v1ikxt − 1

]
dv1

(
vmax

2 − vmin
2

)
(4.27)

In order to obtain a symmetric splitting of Hp1 the following two second order options

are available by Strang splitting, where ϕ denotes the corresponding flux:

ϕp1(∆t) = ϕp1,A

(
∆t

2

)
◦ ϕp1,L(∆t) ◦ ϕp1,A

(
∆t

2

)
ϕp1(∆t) = ϕp1,L

(
∆t

2

)
◦ ϕp1,A(∆t) ◦ ϕp1,L

(
∆t

2

) (4.28)
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With and without sub-stepping of this sub-splitting there was no visible difference

(relative error at ∼ 10−6 to the fields obtained with the exact full matrix exponential

for our test-cases, although there is a difference to the exact integration, see fig. 4.3.

For the sake of efficiency we used only the single split step in the presented simulations.

The reason for this could be that the advection in eqn. (4.25) takes only place in the

v2-component such that it would not affect the integration of the Ampère eqn. (4.24)

in Hp1,A where the velocity v2 is integrated out. This means that the resulting field E

is exactly the same as in the original Hp1 and Gauss’ law is conserved.

• Kinetic energy (d = 2), Hp2 = 1
2

∫∫∫
v2

2f(x, v, t) dxdv1dv2

∂tf(x, v1, v2, t) +
q

m
v2B3(x, t)∂v1f(x, v1, v2, t) = 0

∂tE2(x, t) = −q
∫ vmax

2

vmin
2

∫ vmax
1

vmin
1

v2f(x, v1, v2, t)dv1dv2

(4.29)

Since there is no advection in x we know that the transport in v1 averages out by∫ vmax
1

vmin
1

f(x, v1, v2, τ)dv1 =

∫ vmax
1

vmin
1

f(x, v1, v2, 0)dv1 ∀τ ∈ [0, t], (4.30)

such that Hp2 can be integrated exactly in a single step yielding the final discretization

Ĥp2

f̂(x, kv1 , v2, t) = f̂(x, kv1 , v2, 0)e−ikv1v2
q
m
B3(x,0)t

Ê2(kx, t) = Ê2(kx, 0)− t · q
∫ vmax

2

vmin
2

∫ vmax
1

vmin
1

v2f̂(kx, v1, v2, 0)dv1dv2.
(4.31)

• Electric energy, HE = 1
2

∫
|E(x, t)‖2 dx

∂tf +
q

m
E1(x, t)∂v1f(x, v1, v2, t) +

q

m
E2(x, t)∂v2f(x, v1, v2, t) = 0

∂tB3(x, t) = −∂xE2(x, t)

∂tE(x, t) = 0

(4.32)

The advection is constant in (v1, v2) and varies only in x, such that the constant coef-

ficient advection can be solved exactly in Fourier space.

ĤE

{
f̂(x, kv1 , kv2 , t) = f̂(x, kv1 , kv2 , 0)e−i q

m(E1(x,0)kv1+E2(x,0)kv2)t

B̂3(kx, t) = B̂3(kx, 0)− t · ikxÊ2(kx, t)
(4.33)

• Magnetic energy, HB = 1
2

∫
‖B(x, t)2‖ dx

∂tE2(x, t) = −∂xB3(x, t)

∂tE1(x, t) = ∂tB3(x, t) = 0
(4.34)

ĤB
{
Ê2(kx, t) = Ê2(kx, 0)− t ikxB̂(kx, 0) (4.35)

For the initialization of the simulation the electric field E1 is obtained by the Poisson equation,

which reduces in one dimension to Gauss’ law. In Fourier space Gauss’ law reads

Ê1(kx, t) =
1

ikx
q

∫ vmax
2

vmin
2

∫ vmax
1

vmin
1

f̂(kx, v1, v2, t)dv1dv2︸ ︷︷ ︸
:=ρ̂(kx,t)

for kx 6= 0. (4.36)
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4.2. Vlasov–Maxwell (1d2v)

Gauss’ law is preserved during the entire simulation, such that we denote the error on

eqn. (4.36) at final time as Pε, which should be close to machine precision. Instead of the

standard second order Strang splitting using two Lie steps, we prefer a second order method

which has less than half the error constant of the Strang splitting [216]. It requires four Lie

steps and is given by symmetric composition of a flux ϕ with its adjoint ϕ∗ as

ϕα∆t ◦ ϕ∗(1/2−α)∆t ◦ ϕ(1/2−α)∆t ◦ ϕ∗α∆t, y2 = (2
√

326− 36)
1/3, α =

y2
2 + 6y2 − 2

12y2
. (4.37)

In the following four tests with varying initial conditions resulting in nonlinear Landau damp-

ing, the Weibel and the Weibel streaming instability with parameters according to [19, 217]

are performed. The second order splitting in eqn. (4.37) is used for the time discretization. In

most cases the energy error is taken as a measure of correctness, yet the strength of the pre-

sented scheme is the preservation of structure, such that the energy error can be misleading,

because choice of a small enough time step, short simulation time and a sufficient resolution

can mimic conservation. If the structure preserving method is implemented correctly a sim-

ulation will exhibit long term stability, despite an insufficient resolution in time and space.

Here we also want to point out that the perfect energy conservation in [19] for the Weibel

instability was only achieved by high order integrators and all presented results presented

perfectly coincide with the PIC and PIF, except that they do not exhibit noise and are from

the authors experience much cheaper to obtain. In general, the PIF still performs better for

simulations containing only very few modes. Stable results for low resolution are found in

figs. 4.4, 4.5, and for better resolution in fig. 4.6, 4.7, 4.8. The default parameters are denoted

in eqn. (4.38) along with the initial condition (4.39), which were adapted from [217]. We con-

clude that it is not hard to obtain a geometric Eulerian method for the Vlasov–Maxwell

simulations. Given the affinity of the presented scheme to PIF, it fits perfectly in the scope

of this thesis since parallel development of Eulerian and Lagrangian codes creates confidence

in the obtained results.
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default ε, βr, βi, v0,1, v0,2, δ, B0 = 0, c = 1, σ1, σ2 = 1

N = Nx = Nv1 = Nv2 = 32, ∆t = 0.05

Strong Landau εe = 0.5, k = 0.5,

v1,max = 4.5σ1, v1,min = −v1,max, v2,max = 4.5σ2, v2,min = −v2,max

Weibel βr = −10−3, k = 1.25, σ1 = 0.02√
2
, σ2 =

√
12σ1,

v1,max = 4.5σ1, v1,min = −v1,max, v2,max = 4.5σ2, v2,min = −v2,max

Weibel streaming sym. σ1 = σ2 = 0.1√
2
, k = 0.2, βi = 10−3, v0,1 = 0.3, v0,2 = −0.3, δ = 1

2

v1,max = 0.9, v1,min = −v1,max, v2,max = 0.9, v2,min = −v2,max

Weibel streaming asym. σ1 = σ2 = 0.1√
2
, k = 0.2, βi = 10−3, v0,1 = 0.5, v0,2 = −0.1, δ = 1

6

v1,max = 0.3 (or 0.7), v1,min = −v1,max, v2,max = 1.05, v2,min = −0.55
(4.38)

f(x, v1, v2, t = 0) =
1 + ε cos(kx)

2πσ1σ2
2

e
− v2

1
2σ2

1

(
δe
−

(v2−v0,1)2

2σ2
2 + (1− δ)e

−
(v2−v0,2)2

2σ2
2

)
B3(x, t = 0) = βr cos(kx) + βi sin(kx)

E2(x, t = 0) = αr cos(kx) + αi sin(kx)

∂xE1(x, t = 0) = 1−
∫
R2

f(x, v1, v2, t) dv

(4.39)

Figure 4.2.: Parameters and corresponding initial conditions for different Vlasov–Maxwell

(1d2v) test-cases. The most challenging cases are the symmetric and asymmetric Weibel

streaming instability.

(a) L2 error (b) wall time

Figure 4.3.: By use of the matrix exponential expm the split step Hp1 can be integrated

exactly, but it is not matrix free and does at the moment not take advantage of the fast

Fourier transform. But it can also be approximated by a sub stepped splitting, which is

shown here for the asymmetric Weibel streaming instability at t = tmax = 300 in the fully

nonlinear phase for Nx = Nv = 128. Many sub steps are required to approximate Hp1 , such

that high order methods are required (a) since the matrix exponential is comparably efficient

(b). Nevertheless experiments have shown that there was no visible difference in the fields

for the presented test-cases when only two sub-steps where chosen.
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4.2. Vlasov–Maxwell (1d2v)

Low resolution: Nx = Nv1 = Nv3 = 32, ∆t = 0.05

electrostatic energy energy error momentum error

strong Landau damping Pε = 4.17− 14

Weibel instability Pε = 2.9e− 14

Weibel streaming instability (asym.) Pε = 3.01e− 13

Figure 4.4.: Electrostatic energy, relative energy error and the momentum error in the two

velocity components for different test cases of the Vlasov–Maxwell 1d2v geometric pseudo-

spectral solver. The time discretization is performed by a second order Strang splitting.

Although the resolution with just 32 grid points per dimension is very low, the solver appears

to be stable over longer times.
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Low resolution: Nx = Nv1 = Nv3 = 32, ∆t = 0.05

strong Landau damping

Weibel instability

Weibel streaming instability (asym.)

Figure 4.5.: Phase space densities for Vlasov–Maxwell 1d2v simulations under low resolution.
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4.2. Vlasov–Maxwell (1d2v)

High resolution: Nx = Nv1 = Nv3 = 128, ∆t = 0.01

electrostatic energy energy error momentum error

strong Landau damping Pε = 5.97e− 13

Weibel instability Pε = 9.31e− 14

Weibel streaming instability (sym.) Pε = 1.71e− 12

Weibel streaming instability (asym.) Pε = 7.8e− 12

Figure 4.6.: High resolution results for three Vlasov–Maxwell 1d2v simulations with the ge-

ometric pseudo-spectral solver. The energy error is smaller than in the low resolution but

remains at a high level, which is comparable to the GEMPIC[19] results, where a smaller

energy error was only achieved with a high order splitting.
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High resolution: Nx = Nv1 = Nv3 = 128, ∆t = 0.01

strong Landau damping

Weibel instability

Figure 4.7.: Phase space densities for Vlasov–Maxwell 1d2v simulations under high resolution.

symmetric asymmetric

Figure 4.8.: Kinetic energy for the symmetric and asymmetric Weibel streaming instability

at high resolution.
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4.2. Vlasov–Maxwell (1d2v)

High resolution: Nx = Nv1 = Nv3 = 128, ∆t = 0.01

Weibel streaming instability (sym.)

Weibel streaming instability (asym.)

Figure 4.9.: Phase space densities for Vlasov–Maxwell 1d2v simulations under high resolution.
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Chapter 5.

Conclusion and Outlook

The goal of this work is to lay a foundation for stochastic and spectral particle methods and

to demonstrate the application of new methods for the Vlasov equation. Starting from this

basic work some worthwhile paths are already clear to see for the future. But, as always in

numerics, it is fruitful to provide some code to build upon.

5.1. Exemplatory codes

For reproducibility a github repository1 is provided containing all MATLAB and julia codes

used in this thesis. Almost all figures containing comparisons have their own script that

produces these plots and studies precisely, and which is also independent of the machine.

Only comparisons using extensive computations will not run out of the box. This repository

is most useful if you want to e.g. investigate the presented variance reduction methods for

other test-cases or modify them. Digging in foreign codes is labor intensive, such that clean,

simple and performant examples suited for educational purposes or sparking future work are

provided for free2.

• Vlasov-Poisson (1d1v) Micro-benchmark (MATLAB, julia, python)

MATLAB:

• Vlasov-Poisson-Fokker-Planck (1d1v) PIC and PIF with δf

• Vlasov-Maxwell (3d3v) PIF

• Vlasov-Maxwell (1d2v) Multi-Species PIF

• Vlasov-Poisson (1d1v) Pseudo-Spectral

• Vlasov-Maxwell (1d2v) Pseudo-Spectral

• Vlasov-Poisson (1d1v) Dispersion Relations

• Guiding-center (2d) PIC with Triangles

julia:

• Vlasov-Poisson (3d3v) PIF

• Vlasov-Maxwell (3d3v) PIF

• Vlasov-Poisson (1d1v) Particle in Chebyshev (with ApproxFun.jl) and Legendre

Although the MATLAB codes are quite performant and can be used on Nvidia GPUs using

MATLAB’s GpuArrays, the author strongly encourages everyone to port the MATLAB codes

to julia because the particle methods can easily be made scalable using MPI, and GPU support

is also becoming more and more attractive.

1https://github.com/ameresj/StochasticSpectralParticles
2http://jakobameres.com
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5.2. Stochastics

A unifying approach on the existing stochastic particle simulations in plasma physics was

presented. Variance as a measure of error for the fields was established, allowing for better

diagnostics. It then became clear that PIC suffers from the fact that small amplitudes are

obscured by the high level of the particle noise. The control variate mechanism proved to be a

versatile technique to reduce the variance which shadows the small amplitudes. In the linear

phase it is reasonably efficient to use the initial condition directly as control variate, which

allowed us to obtain dispersion relations with the help of the matrix pencil method. Given

the issues of PIC with small amplitudes it is certainly not a good idea to obtain dispersion

relations in that way as a primary objective, but one should use a spectrally perturbed

Ansatz, see [218]. It is also interesting how to obtain a dispersion relation by linearization

around the current state in the nonlinear phase in order to assess stability properties, since

this requires density estimation of the full distribution. For density reconstruction OSDE has

only little overhead, is easy to implement and can also provide control variates in the nonlinear

phase. The control variate can even be viewed as a projection, which [219, 104] might make

a combination with symplectic integrators possible. This is necessary, because long term

stability is required in the nonlinear phase. The situation looks worse for conditional Monte

Carlo, which is most useful when the values transported by the markers are subject to a

change, as it is the case for collisions. Properties can be baked into the distribution but the

changes are mostly so violent that hardly any improvements are made as they destroy the

dynamic. Standard Monte Carlo could be improved but it does not work for QMC. Thus,

the best option so far is to combine uniform sampling, QMC and an OSDE control variate.

Multilevel Monte-Carlo is an interesting extension of the control variate mechanism, which is

most promising for the combination of models constructed on different time scales, but is not

a remedy for the small amplitude noise. It is also clear, that every moment-guided simulation

should rather use the control variate to enforce constraints than the crude moment matching.

The control variate could be applied in other particle simulations [144, 220] where additional

information about certain moments come from another set of equations.

The particle noise catches on to anything unstable in the system, and therefore it is so intuitive

to find new physics with PIC. When the transport along a complex magnetic field dominates

over the effects by the self consistent field, accurate results can be obtained with few particles

compared to the high dimensionality of the problem. Monte Carlo in two dimensions does

not make much sense and we have learned that the variance in PIC also increases with the

dimension. In the simplest scenario the one dimensional problem is extended into three

dimensions by an outer product. Therefore, a particle method has to be sufficiently accurate

already in one dimension in order to be competitive. Restricting the variance by filtering or

directly the dimensionality of the spatial space can, of course, turn the situation in favor to

PIC. Therefore, using PIC for a 1d2v or 2d3v Vlasov–Maxwell model is more appropriate

than discretizing a 3d2v gyrokinetic density with Monte-Carlo markers, and performing a 3d

density estimate with the additional dimension for the quadrature used in the gyro-average

on top, which drags a four dimensional bias and a three dimensional variance along.

5.3. Spectral methods

PIF codes are even easier to implement than PIC, but when optimized they are better vec-

torized along the modes than along the particles. The same applies for Chebyshev and

Legendre discretization for the fields. Fourier modes as eigenfunctions of the Laplace opera-

tor provide a natural way of filtering thus reducing the variance, which is the largest obstacle
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for Monte-Carlo particle methods. For any given geometry the Laplace operator guides us

to an appropriate coordinate system and suitable basis functions, which definitely should be

used for PIC if available. This becomes more complex once an arbitrary possibly field aligned

geometry is needed, but it is still possible by combining PIF and PIC. Given the fact that the

filtered Fourier modes are no eigenfunctions it is questionable whether the field alignment

is appropriate. Global spectral methods in general curvilinear coordinates lead mostly to

dense and ill-conditioned matrices [54]. Additionally it might not even be the best option to

describe the domain by one single global mapping but simply cut out the D-shaped poloidal

plane from a square, see [221]. For the Poisson equation, cylinder coordinates (R,Z, ϕ) and a

Legendre-Fourier Ansatz for (R,ϕ) result in a tridiagonal matrix such that only the poloidal

plane (R,Z) has to be taken care of. For future work we suggest using the fictitious domain

method with internal forcing, which was successfully applied to the Poisson equation in [222].

In general using PIF in the toroidal direction is always a good idea.

Fourier space is beautiful, hence the flawless properties of PIF for Vlasov–Poisson and Vlasov–

Maxwell, but there are even more opportunities. The gyro-average, which corresponds to a

circular motion, can be described by Bessel functions in Fourier space, but an exponential in-

tegration scheme can also benefit from the Fourier structure in the same way. We have showed

that the 1d2v Monte Carlo can be extended into the time domain for a semi implicit Hamil-

tonian splitting. In future work, together with exponential integration the gyromotion can

be resolved implicitly at low costs and it is even possible to overcome the plasma frequency

as well, as other experiments have shown [223]. Yet this requires a fully implicit particle

methods, such that it might be easier to follow the Fourier spectral approach presented in

this work.
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Appendix A.

Mixed stochastic and deterministic methods

A.1. Randomizing deterministic quadrature

In previous examples considering the gyroaverage operator we saw that the periodic midpoint

rule can easily be randomized yielding an unbiased estimator that is as least as performant as

the plain quadrature rule. But this is of course only possible in periodic domains. Therefore,

we treat two forms of variance reduction by quadrature rules in bounded domains namely

Chebyshev and Gauss-Lobatto quadrature.

A.1.1. Chebyshev

Another quadrature rule for bounded domains, but also based on equidistant points is the

Chebyshev quadrature on [−1, 1]. For this the interval [−1, 1] is bended onto a half circle, the

integrand mirrored onto the full circle and since the circle is periodic equidistant quadrature

nodes are the method of choice. Therefore, define the transformation from the circle θ ∈ [0, 2π]

to the domain x ∈ [−1, 1] by x = cos(θ). Note that the corresponding Jacobian is given as
d
dθ cos(θ) = − sin(θ) = −

√
1− cos(θ)2 and can also be expressed in terms of x as −

√
1− x2.

Chebyshev quadrature uses the equidistant points on the unit circle, whic The randomized

Chebyshev quadrature is then derived by∫ 1

−1

f(x)√
1− x2

dx =

∫ cos−1(1)

cos−1(−1)

f(cos(θ))√
1− cos(θ)2

(− sin(θ)) dθ

=

∫ π

0
f(cos(θ)) dθ =

1

2

∫ 2π

0
f(cos(θ)) dθ

≈ π

N

N∑
n=1

f(cos(θn)︸ ︷︷ ︸
:=xn

) =
π

N

N∑
n=1

f(xn)

θn := 2π
n− u
N

, u ∼ U(0, 1).

(A.1)

For u = 1
2 the first half of the nodes xj coincides with the other half such resulting in the

standard Chebyshev quadrature rule. Thus an additional factor of two in the number of

quadrature yields spectral convergence and an unbiased Monte Carlo estimator. Thus it is

only useful if the number of markers is so large, that it can make up for this factor of two.

The weight factor 1√
1−x2

can be included in the quadrature weights.

If f(x, v) is smooth in v, like a Maxwellian, the numerical quadrature gains efficiency.

A.1.2. Gauss–Lobatto

For the standard bounded quadrature rules, like Gauss–Legendre and Gauss-Lobatto the

equidistant stratification technique cannot by applied anymore. Thus we turn to a different
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idea that of uses orthonormal polynomials, which originally stems from [224]. For one dimen-

sion examples for the randomization of the trapezoidal and Gauss-Lobatto rule are derived

in [225][p.69-47], but overcomplicated and not generalized. Thus we present a new general

method of how to combine deterministic quadrature and interpolation in order to reduce the

variance of the Monte Carlo quadrature. Actually the control variate is underlying mecha-

nism for the formulas derived in [225]. A Gaussian quadrature rule with quadrature nodes

and weights (xj , wj)j=0,...,N approximates an integral as

J =

∫
Ω
f(x) dx ≈

N∑
j=1

wjf(xj). (A.2)

For the spectral methods quadrature and interpolation are tightly connected, see [54], such

that a numerically well behaving approximation of f can be made by Lagrange interpolation

using the quadrature nodes (xj). The Lagrange polynomials for given nodes (xj) are defined

as

`j(x) :=
∏

1≤n≤N
n 6=j

x− xn
xj − xn

. (A.3)

The interpolation If of f using the nodes (xj) and the corresponding Lagrange polynomials

`j reads

If (x) =
N∑
j=1

f(xj)`j(x), (A.4)

and can be exactly integrated by the quadrature rule eqn. (A.2) which yields

∫
Ω
If (x) dx =

∫
Ω

N∑
j=0

f(xj)`j(x) dx =

N∑
j=1

f(xj)

∫
Ω
`j(x) dx︸ ︷︷ ︸
=wj

=

N∑
j=1

wjf(xj). (A.5)

This connection holds true for all N -point Gaussian quadrature rules which are exact at

least up to a polynomial degree N . Then the standard Monte Carlo integral for eqn. (A.2)

is rewritten as δf = f − If scheme using the interpolation If . For a random deviate A

distributed according to some probability density p the δf Monte Carlo integral reads∫
Ω
f(x) dx = E

[
f(A)

p(A)

]
= E

[
f(A)− If (A)

p(A)

]
+

∫
Ω
If (x) dx. (A.6)

Inserting eqn. (A.5) into eqn. (A.6) connects the quadrature rule with the Monte Carlo

estimator by ∫
Ω
f(x) dx = E

[
f(A)− If (A)

p(A)

]
+

N∑
j=1

wjf(xj). (A.7)

Unfortunately, even if the quadrature rule is exact for a higher degree than N the Monte Carlo

estimator of eqn. (A.7) is only exact up to degree N , because N -point Lagrange interpolation

is only exact up to degree N yielding the δf as f −If = 0 to drop out. Nevertheless if there

is some freedom in the choice of p we can at least reduce the variance by choosing p close to

δf = f − If . Since `i(xj) = δij the interpolation is always exact at the quadrature nodes,

which means that δf vanishes there.

δf(xj) = f(xj)− If (xj) = 0 for all j = 1, . . . , N. (A.8)

220



A.1. Randomizing deterministic quadrature

Since we do not know more about δf , we let the sampling density p also vanish at the nodes

(xj) by defining

p(x) =

∣∣∣∏N
j=1(x− xj)

∣∣∣∫
Ω

∣∣∣∏N
j=1(x− xj)

∣∣∣ dx
. (A.9)

In one dimension the method of choice for sampling from p is inverse transform sampling, by

using the inverse P−1 of the cumulative sampling density P (y) =
∫ y

0 P (x)dx. Unfortunately

closed expressions for P−1 are harder to find with increasing degree N , where we have to fall

back to Newtons method. In the following we revise and complement the mechanism given in

[225][p.69-47]. We start with the trapezoidal rule for Ω = [0, 1] with (xj) = {0, 1} , (wj) = 0.5,

where the interpolation reads

If (x) = f(0) + (f(1)− f(0))x = f(0)(1− x) + f(1)x. (A.10)

p(α) = 6α(1− α), α ∈ [0, 1] (A.11)

We can sample the random deviate A from p by inverse transform sampling for a uniformly

distributed u ∼ U(0, 1)

A = P−1(u) = R

1

4

−(1 + i
√

3)
3

√
−2u+ 2

√
(u− 1)u+ 1 +

i(
√

(3) + i)

3

√
−2u+ 2

√
(u− 1)u+ 1

+ 2


(A.12)

Inserting in (A.7) yields an estimator exact for quadratic polynomials, see eqn. (A.13).

J = E
[
f(A)− (1−A)f(0)−Af(1)

6A(1−A)

]
+
f(0) + f(1)

2
(A.13)

An interesting trick from [225], is to introduce antithetic sampling by the random deviate

1−A resulting in an estimator accurate for cubic polynomials in eqn. (A.14).

J =
1

2
E
[
f(A)− (1−A)f(0)−Af(1)

6A(1−A)
+
f(1−A)− (A)f(0)− (1−A)f(1)

6(1−A)A

]
+
f(0) + f(1)

2

= E
[
f(A) + f(1−A)− f(0)− f(1)

12A(1−A)

]
+
f(0) + f(1)

2

(A.14)

Note that for eqn. (A.13) the special case A = 1
2 yields the fifth order Simpsons rule:

J ≈ 1

6

{
f(0) + 4f

(
1

2

)
+ f(1)

}
. (A.15)

Next the order is increased by using Simpson’s rule with (xj) =
{

0, 1
2 , 1
}
, (wj) =

{
1
6 ,

r
6 ,

1
6

}
and the quadratic interpolation

If (x) = f(0)(1− x)(1− 2x) + 4x(1− x)f

(
1

2

)
− x(1− 2x)f(1). (A.16)
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The canonical sampling density along with its inverse cumulative distribution function reads

p(x) = 16‖x(1− x)(2x− 1)|

P (x) =

{
8x2(x− 1)2 for x ∈ [0, 1

2 ]

1− 8x2(x− 1)2 for x ∈ (1
2 , 1]

P−1(u) =


1
2

(
1−

√
1− 2

√
u
2

)
for u ∈ [0, 1

2)

1
2 for u = 1

2

1− 1
2

(
1−

√
1− 2

√
1−u

2

)
for x ∈ (1

2 , 1]

. (A.17)

Here Hammersley wanted to avoid the absolute value and took

p(x) = 30x(1− x)(1− x)2, x ∈ [0, 1], (A.18)

yielding a quartic (A.19) a quintic (A.20) estimator.

J = E
[
f(A)− (1−A)(1− 2A)f(0)

10A(1−A)(1− 2A)2
+A(1− 2A)f(1)− 4A(1−A)f

(
1

2

)]
+
f(0) + 4f

(
1
2

)
+ f(1)

6
(A.19)

J = E

[
+
f(A) + f(1−A)− f(0)− f(1)

60A(1−A)
+
f(A) + f(1−A)− 2f

(
1
2

)
15(1− 2A)2

]

+
f(0) + 4f

(
1
2

)
+ f(1)

6
(A.20)

Nevertheless, similar to the Chebyshev case before, a factor two in the polynomial exactness

of the quadrature rule is lost. So there seems to be some penalty on randomizing quadrature

rules.

A.2. Enforcing constraints

A.2.1. Moment matching techniques

Moment matching during the simulation might seem quite attractive as it enforces the con-

servation of certain moments. In this context, Owen [69][p.33] explains the connection to

control variates quite well and he also gives an interesting alternative re-weighting method

that enforces positive weights [69][p.38]. Most important here is that in a survey of variance

reduction method the connection between moment matching and control variates is made,

see [226]. In plasma physics moment matching in simulations is also referred to as a moment

guided simulation [144]. If the phase space positions of the markers were not modified but

only their weights, it is straightforward to only manipulate the weights. This happens for

example when applying a control variate h.

δwk :=
f(xk, vk)− h(xk, vk)

g(xk, vk)
= wk −

h(xk, vk)

g(xk, vk)
(A.21)

We define some additional constants as

δ̂µn =
1

Np

Np∑
k=1

δwk(vk)
n, v̂n =

1

Np

Np∑
k=1

(vk)
n, δ̂λn =

1

Np

Np∑
k=1

(δwk)
n.
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A linear Ansatz for matching δµ1, δµ2 by only manipulating the weights yields

δfw∗k = T (wk) :=
δµ1v̂2 − δµ2v̂1

δ̂µ1v̂2 − δ̂µ2v̂2

wk −
δµ1δ̂µ2 − δµ2δ̂µ1

δ̂µ1v̂2 − δ̂µ2v̂1

.

The velocity moments mean δµ1 and variance δµ2 can be set or kept, but mass conservation

δ̂λ1 = δλ1 = 0 is lost.

A.2.2. Constraints by control variates for full f and δf

We leave the intuitive setting of δf - sampling the difference - behind us, but keep the control

variate in order to employ constraints. This is the crucial point, because work in this area

are dominated by the δf idea [71][p.569],[68, 125, 47], subtracting a large enough analytical

known part of the density to improve the moment estimators on the density. This idea stems

from the days of linearization, that made it to a statistic method. Which is why control

variate PIC is a much more accurate description than δf -PIC, what constantly leads to

confusion.

We broaden our view, and follow essentially the key idea of [227]. The control variate idea

was to improve the estimation of the mean of one random deviate by using the mean of

another. In our familiar setting we have two moments described by the mean of Θ(X,V ) and

Φ(X,V ). We are interested in

θ = E [Θ] ≈ θ̂ =
1

Np

Np∑
k=1

Θ(xk, vk) (A.22)

and we know a-priori the exact value of

φ = E [Φ] . (A.23)

We define a new random variable

Θ∗ := Θ− αΦ + αφ (A.24)

with same expectation as Θ,

θ = E [Θ∗] = E [Θ]−αE [φ] + αφ︸ ︷︷ ︸
=0

. (A.25)

But its variance is reduced by

V [Θ∗] = (1− ρ)V [Θ] , ρ :=
COV [Θ,Φ]

V [Θ]V [Φ]
(A.26)

for the coefficient α set to

α =
COV [Θ,Φ]

V [Φ]
. (A.27)

We can always estimate α by estimating variances and covariances. But now instead of

focusing on finding a suitable control variate Φ for Θ by constructing Φ in ways such that it

is correlated to Θ, we think a different way following [227].

By interpreting equation (A.23) as a constraint, we can impose with the control variate

estimator Θ̂∗ the constraint (A.23) onto the original estimator θ̂. Potentially this has a

broad application, as there are many constraints in Vlasov simulation, namely all preserved

quantities.
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error variance

θ̂ 3.604366E-03 2.194456E+02

θ̂∗ 1.858271E-04 3.541589E+01

moment matched θ̂ 4.708416E-16 2.210685E+02

Figure A.1.: Initial condition for bump-on-tail instability with control variate and moment

matching for Np = 104.

Kinetic energy

An exampled for a conserved quantity is the momentum, here without mass normalization,

φ :=

∫∫
vf(x, v, t) dv =

∫∫
vf(x, v, t = 0) dv (A.28)

This is a constraint that can be put into a random variable with Φ := V (t)W (t)

E [Φ] = E [V (t)W (t)] = φ =

∫∫
vf(x, v, t = 0) dv. (A.29)

We now want to estimate another quantity, the kinetic energy θ =
∫∫

v2f(x, v, t) associated

with the random variable Θ := V (t)2W (t).

θ = E [Θ] = E
[
V (t)2W (t)

]
(A.30)

By using Φ as a control variate for Θ we incorporate some prior knowledge - namely the

conserved quantity - into the Monte Carlo estimator

Θ∗ = V (t)2W (t)− αV (t)W (t) + αφ, (A.31)

θ̂∗ =

 1

Np

Np∑
k=1

vk(t)
2wtk + α̂vk(t)w

t
k

+ α̂φ. (A.32)

The optimization parameter α is estimated by

α̂ =
ˆCOV
[
V (t)2W (t), V (t)W (t)

]
V̂ [V (t)W (t)]

. (A.33)

This is most effective when the mean velocity is much greater than zero. We consider the

initial density of a Bump-on-tail (2.368), where we know the mean velocity at every point in

time, as momentum is conserved.

For the moment matching we also matched the second moment - the energy - analytically

by the formulas provided in (2.134),(2.135),(2.136). This is a crucial point, as of course

the error is down to machine precision because we enforced it. But the variance remains

unchanged, whereas the control variate reduces the variance. We desire variance reduction in

our simulation. This might also be the reason why approaches in [144] and [220], where only

matching of moments is done and actual optimization of variance reduction is missing, lack

greater impact. It should be pointed out, that for a centered Maxwellian and a symmetric

two-stream this constraints have no impact, but especially no negative one. Thus it really

depends on the velocity distribution, which is probably more interesting at the plasma edge.
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Mass conservation

Now we want to give a simple example of how the kernel density estimation of the charge

density via the finite elements can be improved. Throughout the literature [15],[68] one is

often concerned with spurious effects stemming from the loss of mass conservation in the δf

scheme. For example [15][p.408, eqn. (39)] just averages the weights, where [68][p.1011,eqn.

(45)-(46)] is more elegant and uses moment matching, but both induce completely unknown

bias.

But these effects stem rather from the finite element estimate ρ̂h not having the correct mass

θ =
∫

Ωx
ρ(x, t) dx, which is a priori known as a conserved quantity. Define 1h =

∫
Ωx
ψ(x) dx 1.

Then the mass of the discrete charge density shall coincide with the a priori known analytical

value, which reads

θ =

∫
Ωx

ρ(x, t) dx = E [W (t)]

=

∫
Ωx

(ME [ψ(X(t))W (t)])tψ(x) dx = (1thM) E [ψ(X(t))W (t)] . (A.34)

In the case of the Galerkin discretization we know exactly∫
Ωx

ρ(x, t) dx =

∫
Ωx

ρh(x, t) dx, (A.35)

hence no additional bias from the spatial discretization is introduced. To reduce the com-

plexity for this example, we limit ourselves to the estimation of one coefficient bn(t) =

E [ψn(X(t))W (t)] where the constraint is

θ = (1thM) E [ψ(X(t))W (t)] (A.36)

For the control variate - constrained Monte Carlo - estimator we define the random deviate

B∗n(t) = ψn(X(t))W (t) − βn (1thM)ψ(X(t))W (t) + βn

∫
Ωx

ρ(x, t)︸ ︷︷ ︸
=θ

, (A.37)

with the optimization coefficient βn

βn =
COV

[
ψn(X(t))W (t), (1thM)ψ(X(t))W (t)

]
V
[
(1thM)ψ(X(t))W (t)

] . (A.38)

We want to emphasize that rather complex constraints involving calculations in the Galerkin

space can be used. It is also straightforward to replace W (t) with δW (t) from the δf part.

Here we give a complete example of how to do this but first we change the constrained to

the simple mass defined as

E [W (t)] = θ, (A.39)

leading to the random deviate

B∗n(t) := ψn(X(t))W (t) − βn W (t) + βn

∫
Ωx

ρ(x, t)︸ ︷︷ ︸
=θ

. (A.40)

This results in the standard Monte Carlo estimator

b̂∗n(t) := βnθ +
1

Np

Np∑
k=1

ψn(xtk)w
t
k − βnwtk. (A.41)

1Note that for uniform B-splines, Mt
1h = (1, . . . , 1)t holds.
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The optimization coefficient βn has to be estimated for every n = 1, . . . , Nh separately

βn =
COV [ψn(X(t))W (t),W (t)]

V [W (t)]
(A.42)

This improves conservation of
∫
ρ̂h(x, t) dxdv =

∫
ρh(x, t) dxdv. Now, one can show that

mass is not only conserved in expectation but also in the realization. Let us incorporate this

with the δf control variate for given h. The first idea is to optimize the variance with respect

to the δf control variate as usual resulting in the optimization coefficient α and

B∗n(t) = ψn(X(t))
f(X,V, t)− αh(X,V, t)

g(X,V, t)︸ ︷︷ ︸
:=δW (t)

+ α

∫∫
Ω
ψn(x, v)h(x, v) dxdv. (A.43)

αn :=
COV

[
ψn(X)f(X,V,t)

g(X,V,t) , ψn(X)h(X,V,t)
g(X,V,t)

]
V
[
ψn(X)h(X,V,t)

g(X,V,t)

] (A.44)

For this fixed α we define the mass conserving estimator via the random variable

B∗∗n (t) := ψn(X(t))δW (t) − βn δW (t)

+ βn

(∫
Ωx

ρ(x, t) dx− αn
∫

Ω
h(x, v, t) dxdv

)
+ αn

∫∫
Ω
ψn(x, v)h(x, v) dxdv (A.45)

and the optimization coefficient

βn :=
COV [ψn(X(t))W (t),W (t)]

V [W (t)]
. (A.46)

This marginal optimization coefficient has the advantage of being easy to implement in exist-

ing δf codes. Yet for the sake of completeness we solve the rather lengthy problem adapting

the notation Zt = (X(t), V (t)), Xt = X(t),

min
α,β∈R

1

2
V [B∗∗n (t)] =

min
α,β∈R

1

2
V

ψn(X)
f(Z, t)

g(Z, t)
− αψn(X)

h(Z, t)

g(Z, t)︸ ︷︷ ︸
δf

−β f(Z, t)

g(Z, t)
+ βα

h(Z, t)

g(Z, t)︸ ︷︷ ︸
mass conservation constrain

 (A.47)

with the first derivatives

d

dα
B∗∗n (t) = COV

[
ψn(X)

f(Z, t)

g(Z, t)
− αψn(X)

h(Z, t)

g(Z, t)
− β f(Z, t)

g(Z, t)
+ βα

h(Z, t)

g(Z, t)
,

− ψn(X)
h(Z, t)

g(Z, t)
+ β

h(Z, t)

g(Z, t)

]
(A.48)

and

d

dβ
B∗∗n (t) = COV

[
ψn(X)

f(Z, t)

g(Z, t)
− αψn(X)

h(Z, t)

g(Z, t)
− β f(Z, t)

g(Z, t)
+ βα

h(Z, t)

g(Z, t)
,

− f(Z, t)

g(Z, t)
+ α

h(Z, t)

g(Z, t)

]
.

(A.49)
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Adding the mass constrain will not reduce the δf variance by a great deal, therefore, simul-

taneous optimization of α and β is mostly not worth the effort and it is fine to work with the

ready δ-weights and then enforce the optimization. It is recommended to also calculate the

correlation coefficient, and set β to zero when the correlation coefficient is small, relative to

machine precision. In a MATLAB implementation we use 10−14. But this, of course, again

depends on the application, therefore, we present these two options. The bias introduced by

estimating the optimization coefficients, can for sure be neglected [65],[28]. Everything above

reduces the error on the constraint in the estimators, which [227] shows.

Lp-norm conservation for δf

In the full f version, the Lp norms are conserved by default, as the weights remain constant.∫∫
Ω
f(x, v, t)p dxdv = E

[
f(Z(t), t)p

g(Z(t), t)

]
= const. for all t ≥ 0 (A.50)

Suppose p ≥ 2. For δf = f − αh the density can be rewritten such that∫∫
Ω
δf(x, v, t)p dxdv =

∫∫
Ω
f(x, v, t)p +

p−1∑
n=1

f(x, v, t)n (−αh(x, v, t))p−n + (−αh(x, v, t))p dxdv.

(A.51)

On our way to designing a control variate to enforce the Lp-norm conservation, we substitute

the integrands in eqn. (A.51) by expected values that will later be approximated by the

particles.

E
[

(f(Z, t)− αh(Z, t))p

g(Z, t)

]
−

p−1∑
n=1

(
p

n

)
E
[
f(Z, t)n (−αh(Z, t))p−n

g(Z, t)

]
=

∫∫
Ω
f(x, v, t)p dxdv +

∫∫
Ω

(−αh(x, v, t))p dxdv (A.52)

The Lp-norm of f is a conserved quantity of the Vlasov equation. (2.1). Since h is available

in analytic form, its Lp-norm is also at hand. Now, as before, we translate the constraint

(A.52) to a control variate

B∗∗n (t) := ψn(X(t))
f(Z, t)− αh(Z, t)

g(Z, t)

− β

[
(f(Z, t)− αh(Z, t))p

g(Z, t)
−

p−1∑
n=1

(
p

n

)
f(Z, t)n (−αh(Z, t))p−n

g(Z, t)

]

+ β

[∫∫
Ω
f(x, v, t)p dxdv +

∫∫
Ω

(−αh(x, v, t))p dxdv

]
, (A.53)

which for p = 2 reduces to

B∗∗n (t) := ψn(X(t))
f(Z, t)− αh(Z, t)

g(Z, t)

− β

[
(f(Z, t)− αh(Z, t))2

g(Z, t)
+ 2α

f(Z, t)h(Z, t)

g(Z, t)

]

+ β

[∫∫
Ω
f(x, v, t)2 dxdv + α2

∫∫
Ω
h(x, v, t)2 dxdv

]
. (A.54)
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B.1. Systems and parameters

In order to perform simulations within a physics context we introduce the Vlasov–Maxwell

and Vlasov–Poisson system along with some standard physical effects for single and multiple

species. More simplified models include a guiding center and a drift kinetic model stemming

partially from gyrokinetic theory in the zero Larmor radius case.

B.1.1. Multi-species Vlasov–Maxwell and Vlasov–Poisson

Before treating multiple species, we have to acquire different test cases and scenarios which

are closer to the physics in nature. An example of how a physicist may describe a simulation

is: “we take thermal ions and electrons considering collisions by electrostatic space charge

kicks and look at the electron scale”. In this case the initial condition “thermal” describes a

Gaussian, “space charge” refers to the self consistent electric field“ and the ”electron scale“

only means that the ions are treated as fixed. The translation is ”one species electron Vlasov–

Poisson with constant ion background and Gaussian/Maxwellian initial condition“. So the

Poisson equation models the ”kicks“ by the species itself. From a mathematical point of view

this is a distorted picture, and mostly you will not encounter a set of equations and an initial

condition, but rather vague descriptions. Nevertheless with some basic knowledge it is quite

simple to ”translate“ such descriptions into something easy accessible.

We define some physical quantities, which we use later in the normalization where we interpret

everything relative to electrons. Not all quantities are actually needed, some cancel out or are

being replaced by a constant relative to something depending on the electrons. The thermal

velocity for a species s (electrons e or ions i) is denoted by

vth,s :=

√
kB

Ts
ms

, (B.1)

where Ts is the temperature, ms the mass and kB = 1.3806485210−23JK−1 the Boltzmann’s

constant. Here the first pitfall is that the temperature in plasma physics is often given in

electron Volts (eV ), which is not a temperature but an energy. Division by the constant
kB
e = 8.617330310−5eV K−1 yields the desired temperature in Kelvin. For a temperature T̂s

given in eV it holds that vth,s =
√

T̂se
ms

. Given temperature and mass ratio between a species

s and the electrons e results in the following useful ratio of thermal velocities.

vth,s
vth,e

=

√
Ts
Te

me

ms
(B.2)
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s species e, i

Ts temperature K

ms mass kg

e unit charge C

qs charge C

ns density of species (constant) m−d

The (electron) plasma frequency defines the characteristic time scale by ω−1
p

ωp := ωpe =

√
nee2

meε0
. (B.3)

This frequency is defined for an arbitrary species s with charge as

ωps :=

√
nse2

msε0
. (B.4)

The electron Debye length reads

λD :=

√
ε0kBTe
nee

=
vth,e
ωp

. (B.5)

Note that we chose ε0 and µ0 for vacuum, but in principle any other nonlinear operator is

also possible.

When working with a magnetic field one often stumbles upon the dimensionless quantity

β, which is the ratio between the pressure of a species s at a certain temperature and the

magnetic pressure for a given magnetic field strength B.

βs =
ps

pmagnetic
=
nskBTs

B2

2µ0

=
2nskBTs
B2c2ε0

(B.6)

Since in most cases β is given for the electrons, the strength of the magnetic field B can

be obtained from β directly with respect to the normalization we chose here yielding the

normalized field strength B̃. Another option to describe the magnetic field strength is the

cyclotron frequency ωc,s for a species s.

ωc,s :=
|qs|B
ms

, ωce :=
eB

me
(B.7)

The radial gyromotion of the particles around a field line has frequency ωc,s, thus, it is also

called the gyro frequency. The electron cyclotron frequency is commonly denoted as ωce.

Note that the factor
vth,e
c also appears in normalized Maxwell equations.

B =

√
2nskBTs
βc2ε0

=

(
vth,e
c

√
2

β

)(
ωp
me

e

)
⇒ B̃ =

vth,e
c

√
2

β
. (B.8)

Sometimes B is denoted by B0 and then oscillations or profiles are given with respect to B0

originating from a fixed β. We continue with an example for nondimensionalization in the

case of the Poisson equation.

∇ · E(x, t) =
1

ε0

∑
s

qs

∫
Rd
f(x, v) dv (B.9)
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normalization SI unit

dimension d - 1

time t 1
ωp

s

length x λD m

velocity v vth,e
m
s

number density ns ne m−d

phase space density fs
ne

(vth,e)d

(
s ·m−2

)d
charge density ρs e ne A · s ·m−d

current density js e ne vth,e A ·m−(d−1)

electric field E me
e vth,eωp V ·m−1

magnetic field B me
e ωp T

electric potential Φ me
e (vth,e)

2 V

charge q e A · s
mass m me kg

Table B.1.: Normalization of commonly used quantities with respect to the electron denoted

by [ ]e.

We make the substitutions t̃ = tωp, ṽ = v
vth,e

and x̃ = x
λD

defining the dimensionless electric

field Ẽ. We know the unknown normalization constant C already according to table B.1, but

we want to derive it again. Therefore, we make the following Ansatz for the dimensionless

the electric field Ẽ:

Ẽ(x̃, t̃) · C = E(x̃λD, ṽ vth,e). (B.10)

Inserting the known ne
(vth,e)d

f̃(x̃, ṽ)f
(
x̃λD, ṽ vth,e,

t̃
ωp

)
= f(x, v, t) for the phase space density

the substitution reads

∇̃ · Ẽ(x̃, t̃)
1

λD
C =

1

ε0

∑
s

qs

∫
Rd

ne
(vth,e)d

f̃(x̃, ṽ) (vth,e)
ddṽ. (B.11)

We non-dimensionalize the charge by qs = e qse and bring all quantities with dimension to the

left hand side.

∇̃ · Ẽ(x̃, t̃)
Cε0
λDnee

C =
∑
s

qs
e

∫
Rd
f̃(x̃, ṽ) dṽ. (B.12)

Now, the right hand side is non-dimensional and therefore, C has to be chosen such that the

left hand side is also non-dimensional, yielding Cε0
λDnee

= 1. It is useful to express ε0 = nee2

ω2
pme

.

We would like to express everything normalized to the electron scale which means The same

result is obtained as in table B.1.

C =
λDnee

ε0
= vth,e

nee

ε0ωp
= vth,e

neeω
2
pme

nee2ωp
=
me

e
vth,eωp. (B.13)

With the above definitions we state our typical equations relative to electrons. This allows

us to take parameters relative to the electron scale into account, where they are available or

normalize values from the real world.

For a species s in d dimensions the typical initial condition is a Gaussian velocity distribution

(also called Maxwellian).

fs(x, v, t = 0) =
ns
ne

(√
2π

vth,s
vth,e

)−d
exp

− ‖v‖2

2
(
vth,s
vth,e

)2

 (B.14)
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Here ns and ne denote the mean density and, therefore, a perturbation can be added on top

of this. We obtain the normalized Vlasov equation (B.15) and the characteristics (B.16) for

a species s relative to electrons.

∂tfs(x, v, t) + v · ∇xfs(x, v, t) +
qs
e

me

ms
[E(x, t) + v ×B(x, t)] · ∇vfs(x, v, t) = 0 (B.15)

d

dt
Vs(t) =

qs
e

me

ms
[E(Xs(t), t) + Vs(t)×B(Xs(t), t)]

d

dt
Xs(t) = Vs(t)

(B.16)

For the Maxwell equations (B.17)-(B.20) the vacuum permeability can be expressed as µ0ε0 =
1
c2

, which leaves the speed of light as the only natural constant in the equations. We can

normalize c with respect to the thermal electron velocity, but c̃ will remain a very large

quantity.

∂tE(x, t) =

(
c

vth,e

)2

︸ ︷︷ ︸
=:c̃2

∇×B(x, t)−
∑
s

qs
e

∫
Rd
vfs(x, v, t) dv Ampère

(B.17)

∇× E(x, t) = −∂tB(x, t) Faraday

(B.18)

∇ · E(x, t) =
∑
s

qs
e

∫
fs(x, v, t) dv (electrostatic) Gauss

(B.19)

∇ ·B(x, t) = 0 magnetic Gauss

(B.20)

The speed of light is normalized to the electron thermal velocity which reads c̃ := c
vth

. In

many cases for the sake of simplicity the speed of light is artificially set to one, c̃ = 1.

We continue with simplified models derived from the electromagnetic Vlasov–Maxwell system.

Suppose the magnetic field is constant in time, the electric field E is obtained by solving

Faraday’s and Gauss’ law which read

∇× E(x, t) = 0 and ∇ · E(x, t) =
∑
s

qs
e

∫
fs(x, v, t)︸ ︷︷ ︸

=ρs(x,t)

. (B.21)

Some elementary math tells us that the curl of E always vanishes when E is the gradient of

a scalar field, which then turns out to be the electric potential Φ such that

E(x, t) = −∇Φ(x, t)⇒ ∇× E(x, t) = ∇× (−∇Φ(x, t)) = 0. (B.22)

Since the Faraday equation is now satisfied, inserting the electric potential into Gauss’ law

yields the Poisson equation:

E(x, t) = (−∇Φ(x, t)) = −∆Φ(x, t) =
∑
s

ρs(x, t). (B.23)

This means for a purely electrostatic model the electric field E is obtained from the Poisson

equation (B.24).

−∆Φ(x, t) =
∑
s

qs
e

∫
Rd
fs(x, v, t) dv, E(x, t) = −∇Φ(x, t) (B.24)
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For the initialization of an Vlasov–Maxwell solver at t = 0 the electric field is also obtained

by the Poisson eqn. (B.24). A suitable discretization conserves the electrostatic and magnetic

Gauss laws, which can be verified at the end of a simulation and is often referred to as the

Poisson error although eqn. (B.24) is not valid over time, but Gauss law is.

Depending on the choice of the ion background Vlasov–Poisson is equivalent or at least very

similar to Vlasov-Ampère, where the Poisson equation is replaced by the Ampère equation

(B.25).

∂tE(x, t) = −
∑
s

qs
e

∫
Rd
vfs(x, v, t) dv (B.25)

If we chose to simulate only electrons and set s = e then the only natural constant appearing

in the Vlasov–Maxwell system is the speed of light c in vacuum.

Now, what is actually the mathematicians favorite model? First we set the only natural

constant to one c̃ = 1! For the standard initial condition (B.14), we do not need to specify

ne because everything is normalized with respect to the electrons, and the only choice is to

set vth = 1. For the one species model, one simply neglects the Vlasov equation for the ions

fi and defines mostly the standard initial condition (B.14) with ni = ne and vth,i = vth,e = 1.

The mass mi is not needed, but the charge qi = −e. Thus the simulation will be valid for

electrons in a universe with c = 1 for different temperatures Te and densities ne.

Note that the total energy H in the Vlasov–Maxwell system consisting of the kinetic energy

Hp, electric energy HE and magnetic energy HB is conserved with the energies defined as

H = Hp +HE +HB,

Hp =
∑
s

1

2
ms

∫∫
|v|2fs(x, v, t) dxdv,

HB =
1

2

∫
|B(x, t)|2 dx,

HE =
1

2

∫
|E(x, t)|2 dx.

(B.26)

The total momentum

P =

∫
E(x, t)×B(x, t) dx+

∑
s

∫∫
msvfs(x, v, t) dxdv︸ ︷︷ ︸

particle momentum

(B.27)

is also among the conserved physical quantities.

Linearized Vlasov–Maxwell

Sometimes the non-linear dynamics is too difficult to resolve such that one would like to start

with a simpler, linearized model. Here the species index s is only dropped for the introduction.

First a time independent state f0(x, v) as a equilibrium solution to the Vlasov–Maxwell

equations (B.15),(B.17)-(B.20) is chosen. In one dimension this is typically a Maxwellian or

just the spatially unperturbed initial condition, thus, it is often denoted as f0(v) without any

spatial dependence. However, in higher dimensional problems the temperature and drift -

variance and mean - often depend on the position. In order to keep the generality, the spatial

dependence is allowed in the equilibrium state f0(x, v). We then can approximate the true

solution f by an asymptotic expansion around the equilibrium state f0 for a small ε > 0 in

eqn. (B.28).

f(x, v, t) = f0(x, v) + εf1(x, v, t) (B.28)

233



Appendix B. Vlasov models and geometries

The time dependent f1(x, v, t) contains the difference between the equilibrium f0 and the

full solution f and is, therefore, often referred to as δf(x, v, t). This can cause confusion

with the control variate δf method for variance reduction, such that we keep the notation f1

here. Again, variance reduction does not equal linearization. Since one also have to collect

coefficients of powers of ε for the Maxwell equations, expansions for the electric and magnetic

field are introduced in the same manner in eqn. (B.29).

E(x, t) = E0(x) + εE1(x, t), B(x, t) = B0(x) + εB1(x, t) (B.29)

Inserting eqns. (B.28),(B.29) into the unnormalized Vlasov equation and ordering the coeffi-

cients yields

∂tf
0(x, v) + v · ∇xf0(x, v, t) +

q

m

[
E0(x) + v ×B0(x)

]
· ∇vf0(x, v)︸ ︷︷ ︸

=0

+ ε
{
∂tf

1(x, v, t) + v · ∇xf1(x, v, t)

+
q

m

[
E0(x) + v ×B0(x)

]
· ∇vf1(x, v, t) +

q

m

[
E1(x, t) + v ×B1(x, t)

]
· ∇vf0(x, v)

}
+ ε2

[ q
m

[
E1(x, t) + v ×B1(x, t)

]
· ∇vf1(x, v, t)

]
= 0. (B.30)

Note that ∂tf
0(x, v) = 0 and that the nonlinear interaction between the f1 and the field

E1, B1 are in the ε2 term which is going to be neglected. Since the Maxwell equations are

linear in (E,B, f) (superposition principle), equating coefficients yields a set of Maxwell

equations for the pair (f0, E0, B0) and a separate one for (f1, E1, B1). The first pair is

already solved as condition to the equilibrium f0 such that only the second one is left. Thus,

the linearization does not affect the Maxwell solver.

Reintroducing multiple species and the correct normalization yields the linearized Vlasov

equation (B.31) and the corresponding Maxwell equations (B.32).

∂tf
1
s (x, v, t) + v · ∇xf1

s (x, v, t)

+
qs
e

me

ms

{ [
E0(x) + v ×B0(x)

]
· ∇vf1

s (x, v, t) +
[
E1(x, t) + v ×B1(x, t)

]
· ∇vf0

s (x, v)
}

= 0

(B.31)

∂tE
1(x, t) =

(
c

vth,e

)2

∇×B1(x, t)−
∑
s

qs
e

∫
Rd
vf1
s (x, v, t) dv

∇× E1(x, t) = −∂tB1(x, t)

∇ · E1(x, t) =
∑
s

qs
e

∫
f1
s (x, v, t) dv

∇ ·B1(x, t) = 0

(B.32)

It is problematic that eqn. (B.31) cannot be solved anymore with the method of char-

acteristics. Therefore, a weight for every characteristic is introduced by the likelihood

F (t) := f(X(t), V (t), t). The equations of motion for each species s are then given in

eqn. (B.33).

d

dt
X(t) = V (t)

d

dt
Vs(t) =

qs
e

me

ms

[
E0(Xs(t)) + Vs(t)×B0(Xs(t))

]
d

dt
Fs(t) = −qs

e

me

ms

[
E1(Xs(t)) + Vs(t)×B1(Xs(t))

] (B.33)
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Plasma waves

For code verification - did we implement the algorithm correctly? - one is often faced with

the problem of finding suitable test-cases. The standard approach consists of a perturbation

analysis of the linearized system which gives some results to compare with. Instead of just

citing some scenarios, this section should teach the non-physicist reader how to identify

suitable scenarios from the available literature. Here kinetic equations are solved, yet MHD

theory seems to be much more evolved such that we chose to translate MHD scenarios to

kinetic test-cases by multiplying a Maxwellian velocity distribution with the MHD density.

We start with the first phenomenon in a plasma which is a plasma wave. MHD waves can be

found in [228], but most kinetic theory should be taken from [229, 109]. The latter one can

be hard to read, thus, it is advised to consult [229] first.

A plasma wave with velocity V in direction of the wave vector ~k in a periodic box of the

length L passes the box in one period of time T = L
V . Therefore, in most cases the length

of the box is set to L = 2π
k = 2π

~k
in order for the frequency to be easily determined from the

wave vector.

ω = 2πf =
2π

T
= V · k ⇔ ω

k
= V (B.34)

In some relations, the frequency ω has an imaginary part such that a description of the wave

as t 7→ A0exp(iωt) yields an oscillation with the real part of ω and a damping of the initial

wave amplitude A0 over time. Note also that the wave vector ~k is in one dimensional models

only denoted by k. Depending on the reduced system there are only some wave vectors that

actually make sense, thus if not noted otherwise we suppose that ~k points along a unit vector.

Plasma oscillations - Langmuir waves (~k ‖ ~E)

Until now, we repeatedly treated the simple Landau damping test-case which acts only on the

electrons, thus requiring only a neutralizing background. It is electrostatic, hence there is no

constant magnetic field ~B0 = 0. It can also travel along the magnetic field which means the

wave vector is parallel to the magnetic background field ~k ‖ ~B0. The Bohm-Gross relation

reads

ω =
√
ωp,e + 3kvth,e. (B.35)

Much more accurate roots are found by numerical resolution of the dispersion relation for

the Vlasov–Poisson system.

Ion acoustic wave (~k ‖ ~E)

This starts out as a two species (ions and electrons) Vlasov–Poisson test case that can, of

course, also be used in Vlasov–Maxwell. The ion acoustic wave is a plane plasma wave,

where a perturbation of the ions leads to a wave traveling at the sound speed cs, given in

the approximated dispersion relation, see eqn. (B.36), which we obtained from [228][p.458],

where also ”electron acoustic“ waves are described. The factor γ = 1 + 2
d describes the

dimensionality of the wave, see [228][p.454] and is here γ = 3. In this case we suppose that

the electrons are much hotter than the ions Te � Ti, see [109].

Vs =
ω

k
=

√
kB(Te + γTi)

mi
= vth,e

√√√√(me

mi
+ γ

(
vth,i
vth,e

)2
)

= vth,e

√
me

mi

(
1 + γ

Ti
Te

)

for
Vs
k
ω � ωpi

(
1 +

Ti
Te

)
= ωp

√
me

mi

ni
ne

(
1 +

(
vth,i
vth,e

)2
) (B.36)

Here eqn. (B.36) is only valid for low frequencies. We adapt the test case described in [230]

and refer to the similar tests in [158, 231].

An electromagnetic wave - also called light wave (B0 = 0, ~E ⊥ ~B)
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The first real electromagnetic scenario is the simplest electromagnetic wave, also called a

light wave or a photon. Without background field a weak initial excitation of the magnetic

field yields an electromagnetic wave, which is characterized by a phase shifted oscillation of

the magnetic and electric field. This corresponds to light traveling through a medium and,

therefore, being slightly slower than in vacuum. Although this is a rather simple phenomenon,

experimentalists use microwave diagnostics for comparison to theoretical predictions [232] and

even for tomography of the velocity distribution, see [233]. Therefore, one has to be able to

simulate also the effects the plasma has on external electromagnetic waves in order to compare

experiment to theory. In the following only electrons are required such that we do not need

the ion time scale.

ω =
√
ωp,e + k2c2

ω̃ =

√
1 +

k̃2λ2
D c̃

2

v2
th,eω

2
p,e

=

√
1 + k̃2c̃2

(B.37)

Since this wave has a higher frequency ω then the plasma frequency ωp, the simulation time

should be chosen short. The speed of light should be significantly greater than the thermal

velocity of the electrons c � vth,e implying c̃ � 1, e.g. we chose c̃ = 10. The frequency ω

should then be larger than the plasma frequency such that we can observe the wave. A very

large ω only tests the Maxwell solver, but here we want to measure the slower speed of light,

hence we set ω = 3 resulting in k = 0.4. As a test the frequency ω or the 90 degree phase

shift between E and B can be measured.

The exotic electron X-Wave (~k ⊥ ~B0, ~k ‖ ~E)

We continue with an electron wave requiring electromagnetic effects but only an ion back-

ground. Thus, the dispersion relation comes from cold plasma theory and the ions should

constitute a constant background. A detailed treatment of these wave phenomenons in a

Vlasov–Maxwell plasma by a completely spectral and, thus, highly accurate discretization

can be found in [207, 113]. The frequency for electrons is obtained by

c2k2

ω2
= 1−

ω2
p,e(ω

2 − ω2
p,e)

ω2(ω2 − ω2
p,e − ω2

c,e)

c̃2k̃2

ω̃2
= 1− ω̃2 − 1

ω̃2(ω̃2 − ω̃2
c,e − 1)

.

(B.38)

The electron X-wave dispersion relation (B.38) admits two solutions, the slow and the fast

X-wave. The solution in normalized form is given in eqn. (B.39).

ω2 =
2(c2k2(1 + ω2

ce) + 1))√
(c2k2 − ω2

ce)
2 + 4ω2

ce + ω2
ce + c2k2 + 2

(B.39)

A test-case for the nonlinear X − B mode conversion from exotic waves to Bernstein waves

for non-periodic 1d2v Vlasov–Maxwell with electrons can be found in [234].

Magnetoacoustic (magnetosonic) wave - the compressional Alfvén wave (~k ⊥
~B0, ~k ‖ ~E)

The Alfvén wave is a transverse wave traveling along the magnetic field ~k ‖ with the Alfvén

velocity VA.

VA =
B0

µ0
∑

smsns

ṼA =
c

vth,e
B̃0

√
mene∑
smsns

= c̃ B̃0

√
mene∑
smsns

(B.40)
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Yet in the 1d2v Vlasov–Maxwell example only one dimensional longitudinal waves are possible

such as the ion acoustic wave. The ion acoustic wave perpendicular to a nonzero background

magnetic field ~k ⊥ B0 is called the magnetoacoustic wave. Since it is a longitudinal sound

wave compressing and decompressing the ions, it is also referred to as the compressional

Alfvén wave. The dispersion relation obtained from the cold plasma fluid description reads

ω = ck

√
Vs + VA
c2 + V 2

A

, (B.41)

where VA is the Alfvén velocity and Vs the sound speed known from the electrostatic ion

acoustic wave before. The wave is called magnetoacoustic for ω < ωc,i and the fast Alfvén

wave for ωc,i < ω < ωc,e.

B.1.2. Vlasov–Maxwell in 1d2v

We consider a reduction of the full Vlasov–Maxwell model onto one spatial and two velocity

components. Elimination of the second and third spatial component, leaves us with two

components of the electric field and one component of the magnetic field. Here the single

magnetic component in z-direction is denoted by B.

x = x1, v = (v1, v2), E = (E1, E2), B = B3 (B.42)

For a density f(x, v1, v2, t), the two components of the electric field E1(x, t), E2(x, t) and the

magnetic field B(x, t) the reduced Vlasov equation is given in eqn. (B.43).

∂tfs + v1∂xfs +
qs
e

me

ms
[E1∂v1fs + E2∂v2fs +B (v2∂v1fs − v1∂v2fs)] = 0 (B.43)

Dropping the species index s yields the corresponding characteristics in eqn. (B.44).

d

dt
V1(t) =

q

e

me

m
[E1(Xs(t), t) + V2(t)B(X(t), t)]

d

dt
V2(t) =

q

e

me

m
[E2(Xs(t), t)− V1(t)B(X(t), t)]

d

dt
X(t) = V1(t)

(B.44)

The time dependent Maxwell equations reduce to a system of three equations (B.45).

∂tE1(x, t) = −
∑
s

qs
e

∫
v1fs(x, v1, v2, t)dv

∂tE2(x, t) = −
(

c

vth,e

)2

∂xB(x, t)−
∑
s

qs
e

∫
v2fs(x, v1, v2, t)dv,

∂tB(x, t) = −∂xE2(x, t)

(B.45)

At the initialization for t = 0 the Poisson eqn. (B.46) needs to be solved in order to obtain

the first component E1 of the electric field. The second component is always initialized as

zero, E2(x, 0) = 0.

− ∂xxΦ(x, t) =
∑
s

qs
e

∫
Rd
fs(x, v1, v2, t) dv, E1(x, t) = −∂xΦ(x, t) (B.46)

We consider the Hamiltonian splitting described in [19], which yields three Hamiltonians

Hp1 ,Hp2 ,HB,HE . Later the following discretization is performed by Lagrangian particles

such that we do not need the Vlasov equation but its characteristics in the splitting.
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• Kinetic energy (d = 1), Hp1 = 1
2

∫
v2

1f(x, v, t) dv

∂tB(x, t) = ∂tE2(x, t) = 0

d

dt
V1(t) = 0

d

dt
X(t) = V1(t)

d

dt
V2(t) = −q

e

me

m
V1(t)B(X(t), t)

∂tE1(x, t) = −
∑
s

qs
e

∫
v1fs(x, v1, v2, t)dv

(B.47)

• Kinetic energy (d = 2), Hpv = 1
2

∫
v2

2f(x, v, t) dv

d

dt
X(t) =

d

dt
V2(t) = 0

∂tB(x, t) = ∂tE1(x, t) = 0

d

dt
V1(t) =

q

e

me

m
V2(t)B(X(t), t)

∂tE2(x, t) = −
∑
s

qs
e

∫
v2fs(x, v1, v2, t)dv

(B.48)

• Electric energy HE = 1
2

∫
|E(x, t)|2 dx

d

dt
X(t) = 0

∂tE1(x, t) = ∂tE2(x, t) = 0

d

dt
V1(t) =

q

e

me

m
E1(Xs(t), t)

d

dt
V2(t) =

q

e

me

m
E2(Xs(t), t)

∂tB(x, t) = −∂xE2(x, t)

(B.49)

• Magnetic energy HB = 1
2

∫
|B(x, t)|2 dx

d

dt
X(t) =

d

dt
V1(t) =

d

dt
V2(t) = 0

∂xB(x, t) = ∂xE1(x, t) = 0

∂tE2(x, t) = −
(

c

vth,e

)2

∂xB(x, t)

(B.50)

B.1.3. Drift kinetic and guiding center model

We extend the two dimensional guiding center model to a four dimensional electrostatic drift

kinetic model. Here drift kinetic refers to gyrokinetic in the zero Lamor radius limit. For us

the gyrokinetic equations as approximation to the Vlasov–Maxwell equations are only valid in

the large aspect ratio, because of the W = 0 approximation in [25]. It holds true for scenarios

with the homogeneous magnetic fields used here. Essentially we solve equations of gyrokinetic

type and neglect the gyroaverage. This (3d1v) model problem is spatially three dimensional

and regards only the parallel velocity v‖. Such a drift kinetic model is treated in many

occasions [42, 190, 192, 193] especially because it has a Hamiltonian structure ∂tf = {f,H},
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see also [21]. Let B(x) denote a vector field representing a background magnetic field and

denote the normalized direction of the magnetic field by the

B : R3 → R3, b =
B

‖B‖
, B0 = ‖B‖. (B.51)

The fast gyromotion happens perpendicular to the magnetic field, such that a particle travels

parallel with velocity v‖ along a magnetic field line. In order to describe parallel and orthog-

onal motions the ⊥ operator is introduced as a projection into the space orthogonal to the

magnetic field. Thus for v, w ∈ R3 and the normalized ‖b‖ = 1 the parallel operator ( )‖ is

defined by the scalar product as

(v)‖ =
v ·B
B ·B

B = (v · b)b. (B.52)

The definition of the perpendicular operator ( )⊥ is based upon ( )‖.

(v)⊥ = v − (v)‖ = v − v ·B
B ·B

B = v − (v · b)b = v − (vtb)b = v − (bbt)v = b× v × b. (B.53)

Another useful identity reads

(v)⊥ · (w)⊥ = (v)⊥ · w = (v) · w⊥. (B.54)

These definitions can be directly extend to the ∇ operator for a scalar function Φ.

∇‖x := ~b · ∇x (B.55)

∇⊥x := ~b×∇x ×~b (B.56)

∇⊥Φ := ~b×∇Φ×~b = ∇Φ− (∇Φ ·~b)~b (B.57)

The drift kinetic equation for a four dimensional density f(x, v‖, t) with x ∈ R3 and v‖ ∈ R
reads

∂tf(x, v‖, t)−(∇xΦ(x, t))⊥ ·∇
⊥
x f(x, v‖, t)+v‖∇‖x ·f(x, v‖, t)−∇‖Φ(x, t) ·∂v‖f(x, v‖, t) = 0.

(B.58)

Note that

(∇xΦ(x, t))⊥ · ∇
⊥
x f = (∇xΦ(x, t))⊥ · ∇xf = ∇⊥x Φ(x, t) · ∇xf, (B.59)

which allows us to rewrite eqn. (B.58) as

∂tf −∇⊥x Φ(x, t) · ∇xf + v‖∇‖x · f −∇‖xΦ(x, t) · ∂v‖f = 0, (B.60)

and finally

∂tf +
(
v‖ ·~b−~b×∇Φ×~b

)
∇xf +

(
~b · ∇Φ

)
∂v‖f = 0. (B.61)

The characteristics of eqn. (B.60) read

d

dt
X(t) = −∇⊥x Φ(X(t), t) +~b · v‖

d

dt
V‖(t) = ~b · ∇Φ(X(t), t).

(B.62)

So far we did not specify any species in the above equations, yet the goal is to simulate the

ion time scale. The right hand side of the Poisson equation features contributions from ions

and electrons represented by the respective number density ns(x).

−∆Φ(x) = qi

∫
R
fi(x, v‖) dv‖ + qe

∫
R
fe(x, v‖) dv‖ = qini(x) + qene(x) (B.63)
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Assuming that the electrons respond quickly and follow basically the ion distribution, the

electrons do not need their own Vlasov equations but can be entirely modeled by the Boltz-

mann response. This is often referred to as Boltzmann or adiabatic electrons, or adiabatic

electron response, see [235] for more theory. Here n0 is the background plasma density and Te
the electron temperature. These quantities typically vary only perpendicular to the magnetic

field such that ne can be assumed to be constant along the field lines. Inserting the electron

Boltzmann response,

ne(x) = n0e
−qe Φ(x)

T (x) ≈ n0

(
1− qe

Φ(x)

Te(x)

)
(B.64)

using the approximation ex ≈ 1 + x for small x, into the Poisson equation yields the Poisson

equation with adiabatic electron response

−∆Φ(x) + qe
n0

Te(x)
Φ(x) = qini(x) + qen0. (B.65)

Sometimes this response shall be restricted onto the flux surfaces, or in general a specific

dimension such that we define for x3 ∈ [a, b] the average Φ̄ as

Φ̄(x, t) =
1

b− a

∫ b

a
Φ(x, t)dx3. (B.66)

In this case we restrict the adiabatic response to the third dimension by

−∆Φ(x) + qe
n0

Te(x)

(
Φ(x)− Φ̄(x)

)
= qini(x) + qen0. (B.67)

This already falls into the domain of physical modeling such that there are different variants

available. In general the Boltzmann response term can also be used for the fully kinetic

models, which helps in testing implementations. Gyrokinetic theory works in front of a

background under the assumption of quasi neutrality such that the Poisson equation for the

electric potential vanishes and a much more complicated variant appears: the quasi-neutrality

equation. Thus, instead of the Poisson equation, we use the quasi-neutrality equation with

an adiabatic electron response restricted onto the third dimension

−∇⊥x ·
[
n0(x)

B0Ωi
∇⊥x Φ(x, t)

]
+
en0(x)

Te(x)
(Φ(x, t)− Φ̄(x, t)) =

∫
f(x, v‖, t)dv‖ − n0(x). (B.68)

This model requires the density and temperature profiles to be constant along the magnetic

field

∇‖xn0(x) = 0 and ∇‖xTe(x) = 0. (B.69)

Reduction of eqn. (B.60) to the plane perpendicular to the magnetic field yields the two

dimensional guiding center model identical to the vorticity equation. A more comprehensive

form of equation (B.160) is given given in Cartesian coordinates with f(t, x, y), Φ(x, y) for

all (x, y) ∈ Ω̃

∂tf + (∇Φ)y∂xf − (∇Φ)x∂yf = 0, t ∈ [0, T ] (B.70)

with electric field E = (Ex, Ey)
t = −∇Φ and the characteristics

d

dt
X(t) = −Ey(X(t), V (t), t) and

d

dt
Y (t) = Ex(X(t), V (t), t). (B.71)

In Cartesian and polar coordinates the total energy is given as the H1 seminorm of Φ

E(t) =

∫∫
Ω̃
|∇Φ(t, x, y)|2d(x, y)

=

∫
Ω
r |∂rΦ(t, r, θ)|2 +

1

r
|∂θΦ(t, r, θ)|2 drdθ

(B.72)
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and the total mass by

M(t) =

∫∫
Ω̃
ρ(x, y)d(x, y) =

∫∫
Ω
ρ(t, r, θ)rdrdθ. (B.73)

Later a formulation of the drift kinetic model in curvilinear coordinates is provided.

The drift kinetic model is quite close to the Vlasov equation, especially if we solve a Poisson

equation as in [24]. In order to use a in time multilevel Monte Carlo approach a mapping

from full Vlasov to drift kinetic has to be provided. Here the magnetic moment µ =
v2
⊥

2B0
=

0→ v⊥ = 0. was neglected such that we project v to v‖ by

v‖ = P(v) =
(
v ·~b

)
(B.74)

and we define a quasi-inverse as

v = P−1(v‖) = v‖~b (B.75)

The characteristics then read

d

dt
X(t) = P(V (t)) ·~b+~b×∇Φ (X(t), t)×~b

d

dt
V (t) = P−1

(
~b · ∇Φ

) (B.76)

This allows us to advance full kinetic particles according to the drift kinetic equations of

motion.

B.2. Coordinate transformations into curvilinear coordinates

Although the periodic box is a comfortable home for investigations concerning numerical

schemes we have to leave this setting behind when challenging real world problems. But

since the box is so convenient, it is straightforward to take the real world Ω and transform it

back into our box Ω̃. This is done by a coordinate transformation where we aim to introduce

a ready to use framework on a very basic level. Ratnani provides more material linked to

plasma physics in the appendix of [236]. A coordinate transformation from logical x̃ ∈ Ω̃ to

physical x ∈ Ω coordinates is defined as a diffeomorphism T ∈ C1(Ω̃,Ω) as

T : Ω̃ ⊂ Rn → Ω ⊂ Rm, x̃ 7→ x = (T1(x̃), . . . , Tn(x̃)) . (B.77)

In n dimensions the derivative of T is denoted by the Jacobi matrix JT

JT (x̃) := DT (x̃) =

∂x̃1T1(x̃) . . . ∂x̃nT1(x̃)
...

...

∂x̃1Tm(x̃) . . . ∂x̃nTm(x̃)

 . (B.78)

Since T is a diffeomorphism, it has an inverse T−1 with Jacobi matrix JT−1(x) = DT−1(x).

The immediate verification test is then T (T−1(x)) = x and JT−1(T (x̃)) = J−1
T (x̃).

T−1 : Ω→ Ω̃, x 7→ x̃ =
(
T−1

1 (x), . . . , T−1
n (x)

)
JT−1(x) := DT−1(x) =

∂x1T
−1
1 (x) . . . ∂xnT

−1
1 (x)

...
...

∂x1T
−1
m (x) . . . ∂xnT

−1
m (x).

 = (JT (x̃))−1 (B.79)
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In the following, scalar functions and vector fields are also transformed. For a scalar integrable

function f we define the transformation f̃ yielding the integral equation (B.80) with the

change of variables dx = det(JT (x̃))dx̃ including the Jacobi determinant det(JT (x̃)).

f : Ω ⊂ Rm → C, x 7→ f(x)

f̃ : Ω̃ ⊂ Rn → C, x̃ 7→ f̃(x̃) = f (T (x̃))∫
Ω
f(x) dx =

∫
Ω̃
f̃(x̃) | det(JT (x̃))|dx̃

(B.80)

For a vector field F the natural basis for the transformation F̃ is the covariant basis given

by the covariant transform in eqn. (B.81). It emerges naturally from the multidimensional

chain rule for x = T (x̃).

F : Ω ⊂ Rm → Rm, x 7→ F (x) = JT (x̃)−tF̃ (x̃)

F̃ : Ω̃→ Rm, x̃ 7→ F̃ (x̃) = F (T (x̃)) = F̃ (x̃)

Dx̃ [F (T (x̃))] = DxF (T (x̃))JT (x̃)t ⇔ DxF (T (x̃)) = JT (x̃)−tDx̃F̃ (T (x̃))

(B.81)

Note that the same transform is made for a constant vector v ∈ Rm by ṽ = J−tT (x̃)v. The

covariant transformations for the gradient and the curl are given in eqn. (B.82).

∇f(x) = JT (x̃)−t∇̃f̃(x̃)

∇× F (x) =
JT (x̃)

det(JT (x̃))
∇̃ × F̃ (x̃)

(B.82)

For every vector field F the contravariant transform F̂ provides a natural way to calculate

the divergence, see eqn. (B.83)

F (x) =
JT (x̃)

det(JT (x̃))
F̂ (x̃)

∇ · F (x) =
1

det(JT (x̃))
∇̃ · F̂ (x̃)

(B.83)

We can transform between the covariant F̃ and contravariant F̂ representation by

F̃ (x̃) =
JT (x̃)tJT (x̃)

det(JT (x̃))
F̂ (x̃) and F̂ (x̃) = det(JT (x̃))JT (x̃)−1JT (x̃)−tF̃ (x̃). (B.84)

By use of the backtransform the curl for the contravariant basis is found as

∇× F (x) =
JT (x̃)

det(JT (x̃))
∇̃ ×

[
JT (x̃)tJT (x̃)

det(JT (x̃))
F̂ (x̃)

]
. (B.85)

This expression is rather hard to evaluate, such that we conclude that depending on which

kind of differential operator are being used one should chose between the covariant and

contravariant basis.

B.2.1. Vlasov–Maxwell and Poisson

The GEMPIC framework [19] is used for discretization and, therefore, (E,B) ∈ H(curl,Ω)×
H(div,Ω). This setting has to be respected under the change of variables, thus we chose

the covariant Piola transform for the electric field E and the contravariant transform for the

magnetic field B.

covariant E(x, t) = JT (x̃)−tẼ(x̃, t), E ∈ H(curl,Ω), Ẽ ∈ H(curl, Ω̃) (B.86)

contravariant B(x, t) =
JT (x̃)

det(JT (x̃))
B̂(x̃, t), B ∈ H(div,Ω), B̂ ∈ H(div, Ω̃) (B.87)
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With this change of variable the Faraday eqn. (B.18) can be solved in the strong form and

directly with the differential operators in the logical coordinates, see also eqn. (B.81).

∂tB(x, t) = −∇× E(x, t)

⇔ JT (x̃)

det(JT (x̃))
∂tB̂(x̃, t) = − JT (x̃)

det(JT (x̃))
∇̃ × Ẽ(x̃, t)

⇔ ∂tB̂(x̃, t) = −∇̃ × Ẽ(x̃, t)

(B.88)

We proceed with the weak form of the Ampère equation for a test function ϕ ∈ H(curl,Ω)

in eqn. (B.89) that we adapted from [19][p.11].∫
Ω
∂tE(x, t) · ϕ(x) dx =

(
c

vth,e

)2 ∫
Ω
B(x, t) · ∇ × ϕ(x) dx

−
∑
s

qs
e

∫
Ω

(∫
Rd
vfs(x, v, t)dv

)
· ϕ(x) dx ∀ϕ ∈ H(curl,Ω) (B.89)

Because of ∂tE = −j the current density j has to be in the same coordinate system as E,

which means j ∈ H(curl,Ω). Hence the covariant transform is used for the current density

j(x, t) and the velocity v = JT (x̃)−tṽ. The basis transform of the velocity ṽ = JT (x̃)v has to

incorporate the change of variables dv = det
(
JT (x̃)−t

)
dṽ = dṽ

det(JT (x̃)) . The charge density ρ

is defined as ρ ∈ L2(Ω). Since ϕ ∈ H(curl,Ω), ϕ̃ is transformed with the covariant transform.

We define f̃s(x̃, ṽ, t) := f(T (x̃), v, t).∫
Ω̃
JT (x̃)−t∂tẼ(x̃, t) · JT (x̃)−tϕ̃(x̃) |det(JT (x̃))|dx̃ =(

c

vth,e

)2 ∫
Ω̃

JT (x̃)

det(JT (x̃))
B̂(x̃, t) · JT (x̃)

det(JT (x̃))
∇̃ × ϕ̃(x̃) |det(JT (x̃))|dx̃

−
∑
s

qs
e

∫
Ω̃

(∫
Rn
J−tT (x̃)ṽf̃s(x̃, ṽ, t)

dṽ

det (JT (x̃))

)
·JT (x̃)−tϕ̃(x̃) | det(JT (x̃))|dx̃ ∀ϕ̃ ∈ H(curl, Ω̃)

(B.90)

Rearranging terms in eqn. (B.90) yields eqn. (B.91) where unfortunately the current density

contains now a metric.∫
Ω̃
∂tẼ(x̃, t)t

[
JT (x̃)−1JT (x̃)−t

]
ϕ̃(x̃) |det(JT (x̃))|dx̃ =(

c

vth,e

)2 ∫
Ω̃
B̂(x̃, t)t · JT (x̃)tJT (x̃)

|det(JT (x̃))|
∇̃ × ϕ̃(x̃) dx̃

−
∑
s

qs
e

∫
Rn

∫
Ω̃
f̃s(x̃, ṽ, t)ṽs ·

(
JT (x̃)−1JT (x̃)−tϕ̃(x̃)

)
dx̃dṽ ∀ϕ̃ ∈ H(curl, Ω̃) (B.91)

We chose the transform such that Faraday’s law could be solved exactly. In general we have

to fall back on the weak form for the Ampère equation, because transforming the Maxwell

part of the strong Ampère equation in the given setting yields

∂tE(x, t) =
JT (x̃)tJT (x̃)

det(JT (x̃))
∇̃ ×

[
JT (x̃)tJT (x̃)

det(JT (x̃))
B̂(x̃)

]
, (B.92)

which has not necessarily a closed form.

For Vlasov–Maxwell or Vlasov–Poisson a transformation of the weak Poisson equation is

needed. In both cases one chooses covariant transform for E and a scalar test function
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ϕ ∈ H1(Ω). The weak form eqn. (B.93) of the Poisson equation (B.24) contains already

the potential as a scalar function, therefore, Φ ∈ H1(Ω) and consequently for the gradient

−∇Φ = E ∈ H(curl,Ω).∫
Ω
∇Φ(x, t) · ∇ϕ(x) dx =

∑
s

qs
e

∫
Rn

∫
Ω
fs(x, v, t)ϕ(x) dxdv ∀ϕ ∈ H1(Ω) (B.93)

E(x, t) = −∇Φ(x, t) (B.94)

Since the transformed electric field is given in the covariant basis, it can be calculated in

strong form from the gradient of the potential Φ̃ by −JT (x̃)−tẼ(x̃, t) = −JT (x̃)−t∇̃Φ̃(x̃, t).

This results in the transformed Poisson equation, see eqn. (B.95).∫
Ω̃
JT (x̃)−t∇̃Φ̃(x̃, t)·JT (x̃)−t∇̃ϕ̃(x̃) det(JT (x̃))dx̃ (B.95)

=
∑
s

qs
e

∫
Rn

∫
Ω̃
f̃s(x̃, ṽ, t)ϕ̃(x̃) det(JT (x̃))dx̃dṽ ∀ϕ̃ ∈ H1(Ω̃) (B.96)

Ẽ(x̃, t) = −∇̃Φ̃(x̃, t) (B.97)

Suppose the particles live in the logical coordinates, the transformed Vlasov equation in

logical coordinates is needed. For the transformation of the Vlasov eqn. (B.15) we note that

the cross product is invariant under basis transform up to the sign of the Jacobi determinant.

Since the coordinate transformation is independent of v, the change of variables in v is only

a linear one, which yields

∇vfs(x, v, t) = JT (x̃)∇̃ṽf̃s(x̃, ṽ, t). (B.98)

Using the covariant and the contravariant representations of the fields result in eqn. (B.99),

where some tensors cancel out yielding the final eqn. (B.100).

∂tf̃s(x̃, ṽ, t) + J−tT (x̃)ṽ · JT (x̃)−t∇̃x̃f̃s(x̃, ṽ, t)

+
qs
e

me

ms

[
JT (x̃)−tẼ(x̃, t) + J−tT (x̃)ṽ × JT (x̃)

det(JT (x̃))
B̂(x̃, t)

]
· JT (x̃)f̃s(x̃, ṽ, t) = 0

(B.99)

∂tf̃s(x̃, ṽ, t) +
ṽ · ∇̃x̃f̃s(x̃, ṽ, t)

det(JT (x̃))

+
qs
e

me

ms

[
det(JT (x̃))JT (x̃)−1JT (x̃)−tẼ(x̃, t) + ṽ × B̂(x̃, t)

]
· ∇̃ṽf̃s(x̃, ṽ, t) = 0

(B.100)

From eqn. (B.100) the characteristics are extracted into eqn. (B.101).

d

dt
Ṽ (t) =

qs
e

me

ms

[
Ẽ(X̃(t), t) + V (t)× B̂(X̃(t), t)

]
d

dt
X̃(t) =

Ṽ (t)

det(JT (X̃(t)))

(B.101)

From eqn. (B.101) we see that the ODE describing the characteristic X(t) is nonlinear due

to the Jacobi determinant, even for constant V (t). This complicates the exact integration in
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the Hamiltonian splitting, hence we chose the natural basis for the velocity by

˙̃X(t) =
d

dt
T−1(X(t))︸ ︷︷ ︸

X̃(t)

= J−1
T (X̃(t)) Ẋ(t)︸︷︷︸

=V (t)

=: Ṽ (t) (B.102)

yielding the transform

v = JT (x̃)ṽ, ṽ = JT (x̃)−1v, dv = det(JT (x̃))dṽ. (B.103)

d

dt
Ṽ =

d

dt

(
JT (X̃(t))−1V (t)

)
= JT (X̃(t))−1V̇ (t) +

 3∑
d=1

˙̃Xd(t)︸ ︷︷ ︸
=Ṽd(t)

∂x̃d

(
JT (X̃(t))−1

)V (t)

= JT (X̃(t))−1V̇ (t) +

[
3∑
d=1

Ṽd(t)∂x̃d

(
JT (X̃(t))−1

)]
JT (X̃(t))Ṽ (t)

(B.104)

The equations of motions in eqn. (B.105) are then more suitable for exact integration under

constant V (t).

d

dt
Ṽ (t) =

qs
e

me

ms
JT (X̃(t))−1JT (X̃(t))−t

[
Ẽ(X̃(t), t) + Ṽ (t)× B̂(X̃(t), t)

]
+

[
3∑
d=1

Ṽd(t)∂x̃d

(
JT (X̃(t))−1

)]
JT (X̃(t))Ṽ (t)

d

dt
X̃(t) = Ṽ (t)

(B.105)

Therefore, the velocity transformation (B.103) is suited for a Hamiltonian splitting along the

three spatial dimensions. We observe that the current in the Ampère equation contains a

double Jacobi determinant:

∑
s

qs
e

∫
Ω̃

(∫
Rn
JT (x̃)ṽf̃s(x̃, ṽ, t) det(JT (x̃))dṽ

)
· JT (x̃)−tϕ̃(x̃) | det(JT (x̃))|dx̃ =

∑
s

qs
e

∫
Ω̃

∫
Rn
f̃s(x̃, ṽ, t)ṽ · ϕ̃(x̃) | det(JT (x̃))|2 dṽdx̃. (B.106)

Fortunately, since both characteristics X = T (X̃) and V = JT (X̃)Ṽ have been transformed

the particle density1 reads

f̃p,s(x̃, ṽ) =
1

Np

Np∑
n=1

δ
(
x̃− X̃n

)
δ
(
ṽ − Ṽn

) Wn

det
(
JT
(
X̃n

))2 , (B.107)

such that the double Jacobi determinant in eqn. (B.106) cancels out upon insertion of f̃p,s.

This means that it is in general possible to integrate the current over time using an anti-

derivative of the given basis function if both x and v are transformed.

1See also B.2.5 and eqn. (B.177).
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B.2.2. Back-transform by a Newton method

Suppose x ∈ R3 is given and we want to find a ξ ∈ [0, 1]3 such that

T (ξ) = x, T−1(x) = ξ. (B.108)

If the inverse transform T−1 cannot be directly calculated or tabulated by an interpolation

(we recommend Chebyshev), an inversion by the Newton method is the most straightforward

way to proceed. This only requires the Jacobian JT or, if available, the inverse J−1
T . The

corresponding iteration for n = 1, 2, . . . is given in eqn. (B.109) and should be terminated

when the increment δξ drops below a tolerance near machine precision.

ξn+1 = ξn − JT (ξn)−1 (T (ξn)− x)︸ ︷︷ ︸
=δξ

(B.109)

Such are numerical back-transform should always be implemented in order to test analytical

versions and vice versa.

B.2.3. Common coordinate systems

The following section contains an overview of various coordinate transformations that are

commonly used. Apart from the standard bodies cylinder, torus and sphere we provide the

fusion like geometries such as the D-Shaped Torus representing a Tokamaks core and also a

flux surface of a Stellarator. Since it is very important to test the implementation of PDE

solvers under this coordinate transformation, analytical expressions of the gradient and the

Laplace operator are provided or can be found in [191] such that, e.g. a Poisson solver can

be easily tested by the method of manufactured solutions.

Most of these geometries approximate the flux surfaces of a MHD equilibrium in order to

obtain a flux surface aligned description. The fusion devices Tokamak and Stellarator have

a toroidal shape such that coordinates (r, θ, ϕ) seem more natural to handle. Here r ∈
[rmin, rmax] describes the flux surface label, which in the literature is also often denoted by s

or ψ. The other two periodic coordinates θ ∈ [0, Lθ] and ϕ ∈ [0, Lϕ] parametrize a flux surface.

If not denoted otherwise a 2π-periodicity is naturally assumed defining Lϕ = Lθ = 2π. The

transform to logical coordinates (ξ1, ξ2, ξ3) is then merely a scalar multiplication. The general

form of the coordinate transformation is given in eqn. (B.110) with the corresponding Jacobi

matrix in eqn. (B.111).

T : [rmin, rmax]× [0, Lθ]× [0, Lϕ]→ R3

(r, θ, ϕ) 7→

Tx(r, θ, ϕ)

Ty(r, θ, ϕ)

Tz(r, θ, ϕ)

 (B.110)

JT : [rmin, rmax]× [0, Lθ]× [0, Lϕ]→ R3×3

(r, θ, ϕ) 7→

∂rTx(r, θ, ϕ) ∂θTx(r, θ, ϕ) ∂ϕTx(r, θ, ϕ)

∂rTy(r, θ, ϕ) ∂θTy(r, θ, ϕ) ∂ϕTy(r, θ, ϕ)

∂rTz(r, θ, ϕ) ∂θTz(r, θ, ϕ) ∂ϕTz(r, θ, ϕ)

 (B.111)

Sometimes, contrary to the covariant transform, the normalized Jacobian matrix JT is used

for transformation. For this we define the unit vectors er, eθ, eϕ as the normalized columns

of JT . This also yields the definition of the normalized Jacobi J̄T matrix in eqn. (B.112).

J̄T ⇒ v = J̄T ṽ ⇒ ṽ = J̄−1
T v (B.112)
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Any vector field v in coefficient form ṽ = (vr, vθ, vϕ) can then be transfered to Cartesian

coordinates by

vr(r, θ, ϕ)er(r, θ, ϕ) + vθ(r, θ, ϕ)eθ(r, θ, ϕ) + vϕ(r, θ, ϕ)eϕ(r, θ, ϕ). (B.113)

This approach is mostly needed when magnetic field components are already given as unit

vectors in the respective coordinate system, e.g.,

B = Bθeθ +Bϕeϕ = Bpoloidaleθ +Btoroidaleϕ. (B.114)

For simplified models Bpoloidal and Btoroidal are then only constants. But it is always better

to stay in the natural covariant transform, thus, the transformation of scalar fields Φ(x, y, z)

reads

Φ̃(r, θ, ϕ) := Φ(T (r, θ, ϕ)). (B.115)

The same also applies for the gradient of the respective scalar field.

⇒ ∇(r,θ,ϕ)Φ̃(r, θ, ϕ) = J tT (∇(x,y,z)Φ) (T (r, θ, ϕ)) (B.116)

⇒ ∇(x,y,z)Φ = J−tT ∇(r,θ,ϕ)Φ̃ (B.117)

The possible confusion here originates from the fact that the coordinate transformation is

always linked to the magnetic equilibrium. In the modeling of an experiment it is then

straightforward to use the normalized basis. Since our framework builds upon the covariant

and contravariant transform it is strongly advised to translate given values Bθ, Bϕ for vector

fields B into the contravariant basis.

Polar and cylinder coordinates

When dealing with curvilinear coordinates the first encounter are the two dimensional polar

coordinates which become the cylinder coordinates in three dimensions. Here the z axis

remains unchanged yielding the substitution ϕ = z.

T (r, θ, ϕ) =

r cos(θ)

r sin(θ)

ϕ

 , JT (r, θ, ϕ) =

cos(θ) −r sin(θ) 0

sin(θ) r cos(θ) 0

0 0 1

 , det(JT (r, θ, ϕ)) = r

(B.118)

Recall that hypot(x, y) =
√
x2 + y2 and the definition of the atan2 which matches the peri-

odicity of the arctan correctly and defines values for x = 0. The atan2 is found in all modern

computing language as an intrinsic function and is preferred over the arctan.

atan2(y, x) :=



arctan
( y
x

)
if x > 0

arctan
( y
x

)
+ π if x < 0 and y ≥ 0

arctan
( y
x

)
− π if x < 0 and y < 0

π
2 if x = 0 and y < 0

−π
2 if x = 0 and y < 0

(B.119)

With these intrinsic functions available, the inverse coordinate transformation can be effi-

ciently computed directly by

T−1(x, y, z) =

hypot(x, y)

atan2(y, x)

ϕ

 . (B.120)
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For a Particle-In-Fourier method the most expensive operation is the evaluation of the first

Fourier mode. When the particles live in physical space, the first Fourier mode of θ is obtained

directly by a single division.

eiθ = cos(θ) + i sin(θ) =
x+ iy√
x2 + y2

=
x+ iy

r
(B.121)

Although this is rather obvious, similar equations can be obtained for other geometries.

The combined mapping from the normalized logical coordinates (ξ1, ξ2, ξ3) to the physical

space (x1, x2, x3) with the Jacobi matrix is given in eqn. (B.122).

T (ξ1, ξ2, ξ3) =

[ξ1(rmax − rmin) + rmin] cos(ξ22π)

[ξ1(rmax − rmin) + rmin] sin(ξ22π)

ξ3Lz

 (B.122)

T−1(x1, x2, x3) =

(hypot(x1, x2)− rmin) 1
rmax−rmin

arctan
(
x2
x1

)
1

2π
x3
Lz

 (B.123)

JT (ξ) =

cos(2πξ2)(rmax − rmin) −2π sin(2πξ2)(rmin + ξ1(rmax − rmin)) 0

sin(2πξ2)(rmax − rmin) 2π cos(2πξ2)(rmin + ξ1(rmax − rmin)) 0

0 0 Lz


(B.124)

A variant of describing a toroidal device are also cylindrical coordinates, mostly referred to

as (R,Z, ϕ) coordinates.

T (R,Z, ϕ) =

R cos(ϕ)

R sin(ϕ)

Z

 , JT (R,Z, ϕ) =

cos(ϕ) −R sin(ϕ) 0

sin(ϕ) −R sin(ϕ) 0

0 0 1

 , det(JT (R,Z, ϕ)) = R

(B.125)

J−1
T =

 cos θ sin θ 0

− sin θ
R

cos θ
R 0

0 0 1

 , J−1
T J−tT =

1 0 0

0 1
R2 0

0 0 1

 , J tTJT =

1 0 0

0 R2 0

0 0 1

 (B.126)

Using eqn. (B.85), the curl for a vector F̂ (R,Z, ϕ) in the contravariant basis reads

∇× F =
1

R

cos(ϕ) −R sin(ϕ) 0

sin(ϕ) −R sin(ϕ) 0

0 0 1

∂R∂ϕ
∂Z

×
 1

R

1 0 0

0 R2 0

0 0 1

 ·
F̂RF̂ϕ
F̂Z




=
1

R

cos(ϕ) −R sin(ϕ) 0

sin(ϕ) −R sin(ϕ) 0

0 0 1




∂ϕF̂Z
R −R ∂Z F̂ϕ

∂Z F̂R
R − 1

R∂RF̂Z + F̂Z
R2

R∂RF̂ϕ + F̂ϕ − ∂ϕF̂R
R


(B.127)

The Laplace operator is given as

∇2Φ =
∂2Φ

∂R2
+

1

R

∂Φ

∂R
+

1

R2

∂Φ

∂ϕ2
+
∂2Φ

∂Z2
. (B.128)

As we can see from eqn. (B.128) the Laplace operator differs from the Cartesian ones as it

includes 1
R terms. A more natural transformation is achieved in the log-polar coordinates,

where the radial component is chosen as ρ = log(r).

T (ρ, θ, ϕ) =

eρ cos(θ)

eρ sin(θ)

ϕ

 , JT (ρ, θ, ϕ) =

eρ cos(θ) −eρ sin(θ) 0

eρ sin(θ) eρ cos(θ) 0

0 0 1

 , det(JT (ρ, θ, ϕ)) = eρ

(B.129)
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∇2Φ =
∂2Φ

∂ρ
+
∂2Φ

∂θ
+
∂2Φ

∂ϕ
(B.130)

Toroidal coordinate system (r, ϕ, θ) (toroidal cylinder)

Let R0 be the major radius of the torus. Define the toroidal angle ϕ ∈ (0, 2π) and the poloidal

angle θ ∈ (0, 2π). The radius in the poloidal plane is defined as r ≥ 0 and due to the torus

geometry limited by the major radius r ≤ rmax < R0 thus r ∈ (0, rmax), where rmax is also

called the minor radius.

Transformation to Cartesian coordinates T : (r, ϕ, θ) 7→ (x, y, z) is given by

T (r, θ, ϕ) =

(R0 + r cos(θ)) cos(ϕ)

(R0 + r cos(θ)) sin(ϕ)

r sin(θ)

 =

xy
z

 , (B.131)

along with the inverse transform

T−1(x, y, z) =


√(√

x2 + y2 −R0

)2
+ z2

atan

(
z√

x2+y2−R0

)
atan

( y
x

)

 =

rθ
ϕ

 (B.132)

and the Jacobi matrix

JT (r,ϕ,θ) = ∇T (r, ϕ, θ)t =

cos θ cosϕ −(R0 + r cos θ) sinϕ −r sin θ cosϕ

cos θ sinϕ (R0 + r cos θ) cosϕ −r sin θ sinϕ

sin θ 0 r cos θ

 , (B.133)

and Jacobi determinant

det(JT (r,ϕ,θ)) = r (R0 + r cos(θ)) = rR0 + r2 cos(θ). (B.134)

Since we assumed R0 > r > 0 we can drop the absolute value in the Jacobi determinant by

| det(JT (r,ϕ,θ))|
∣∣rR0 + r2 cos(θ)

∣∣ = r2

∣∣∣∣∣∣∣∣
R0

r︸︷︷︸
<1

+ cos(θ)

∣∣∣∣∣∣∣∣ = rR0 + r2 cos(θ). (B.135)

The Laplace operator for Φ(r, θ, ϕ) is

∆Φ =
1

r2
∂θθΦ + ∂rrΦ +

1

(R0 + r cos θ)2∂ϕϕΦ

+

(
1

r
+

cos θ

R0 + r cos θ

)
∂rΦ−

sin θ

r(R0 + r cos θ)
∂θΦ. (B.136)

With the inverse Jacobi matrix

JT (r, ϕ, θ)−1 =

 cosϕ cos θ cos θ sinφ sin θ

− sinϕ
R0+r cos θ

cosϕ
R0+r cos θ 0

− cosϕ sin θ
r − sinϕ sin θ

r
cos θ
r

 , (B.137)

useful expressions concerning the Poisson equation the are

J−1
T J−tT =

1 0 0

0 1
(R0+r cos θ)2 0

0 0 1
r2

 (B.138)
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and

J−1
T J−tT det(JT ) =

cos(θ)r2 +R0r 0 0

0 r
R0+r cos θ 0

0 0 R0+r cos θ
r

 (B.139)

Torus (toroidal harmonics)

The natural coordinates for a torus do not describe the poloidal plane starting from cylindrical

coordinates and bending them around in order to obtain a torus. Yet they have a less intuitive,

rather complicated transformation for a major radius R0 > 0 and τ ≥ 0, θ, φ ∈ [0, 2π].

T (τ, θ, ϕ) =


R0

sinh(τ)
cosh(τ)+cos(θ) cos(ϕ)

R0
sinh(τ)

cosh(τ)+cos(θ) sin(ϕ)

−R0
sin(θ)

cosh(τ)+cos(θ)

 (B.140)

The advantage of these coordinates is that the Laplace operator can be separated in Fourier

modes and associated Legendre functions of first and second kind [237]. Thus, they are

more suitable for highly accurate spectral methods. Although they are not fairly widespread,

it can be shown that they have superior qualities in expanding the vacuum magnetic field

in a Tokamak [238, 239] even up to the X-point [240]. Also Shafranovs original work on

the Shafranov shift uses these coordinates [241]. Since they are not at all field aligned, it

is not feasible to use them in any form of advection related to a magnetic field in a semi-

Lagrangian or Eulerian method. Because our Lagrangian particles live anyhow in physical

space the coordinates are only needed by the fields for which they seem to be an unintuitive

yet beautiful candidate. We recall some definitions in eqn. (B.141).

cosh(x) :=
ex + e−x

2
, sinh(x) :=

ex − e−x

2
,

sinh−1(z) = log(z +
√

1 + z2), cosh
(
sinh−1(z)

)
=
√
z2 + 1 (B.141)

For constant τ , the resulting surfaces form tori of radius r, defining a transformation between

r and τ in eqn. (B.142).

r =
R0

sinh(τ)
⇔ τ = sinh−1

(
R0

r

)
= log

(
R0

r
+

√
1 +

R2
0

r2

)
(B.142)

dr

dτ
= −R0 cosh(τ)

sinh(τ)2
=

R0 cosh(τ)

1− cosh(τ)2
,

dτ

dr
= − R0

r
√
R2

0 + r2
(B.143)

Note also that cosh(τ) =

√
R2

0
r2 + 1. The major radius R of the toroidal surface with radius

r or label τ can be found by R(τ) = R0 coth(τ) or R(r) =
√
R2

0 + r2. Inserting eqn. (B.142)

back into the original transform yields a transform where r can be seen again as a flux surface

label describing tori of radius r.

T (r, θ, ϕ) =


R2

0√
r2+R2

0+r cos(θ)
cos(ϕ)

R2
0√

r2+R2
0+r cos(θ)

sin(ϕ)

r −R0 sin(θ)√
r2+R2

0+r cos(θ)

 (B.144)

Obviously the transformation given in eqn. (B.144) does not have a singularity at r = 0 and

is, therefore, a diffeomorphism. The inverse transforms for (B.140) and (B.144) are given in
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(a) toroidal-cylinder (b) toroidal

Figure B.1.: Segment of a Torus in the toroidal and toroidal-cylinder coordinates R0 =

1.6, rmax = 1. The exp(i(10θ + 3ϕ)) mode weighted by
√

cosh(τ) + cos(θ) is depicted on

every surface of constant τ . Note the compression of the nested toroidal surfaces and the

Fourier modes on the inner side of the torus.

eqn. (B.145).

τ =
1

2
ln


(√

x2 + y2 +R0

)2
+ z2(√

x2 + y2 −R0

)2
+ z2



r = 2


(√

x2 + y2 +R0

)2
+ z2(√

x2 + y2 −R0

)2
+ z2


1
2

(√

x2 + y2 +R0

)2
+ z2(√

x2 + y2 −R0

)2
+ z2

− 1


−1

θ = cos−1


(
R2

0 − (x2 + y2 + z2)
)√(√

x2 + y2 +R0

)2
+ z2

√(√
x2 + y2 −R0

)2
+ z2


ϕ = atan

(y
x

)

(B.145)

For testing the expressions for many differential operators including the Laplace operator

can be found in [191][pp.112-114]. In the toroidal coordinates, a solution Φ to the Laplace

equation ∆Φ = 0 decomposes into the product of four orthogonal functions [237, 191].

Φ(τ, θ, ϕ) =
√

cosh(τ) + cos(θ) ·

P
n
m− 1

2

(cosh(τ)) · eimθ · einϕ

Qn
m− 1

2

(cosh(τ)) · eimθ · einϕ
(B.146)

The associated Legendre functions P and Q of first and second kind can be evaluated ef-

ficiently by using the ”DTHOR3 2.0“ algorithm, see [242, 243, 244]. With this separation

the Poisson equation in toroidal coordinates can again be solved very efficiently in spectral

space [245, 246]. Thus, a Particle in Toroidal Harmonics (PITH) algorithm is possible and

would provide extreme scalability for the Poisson solver. But for a Vlasov simulation the

corresponding MHD equilibrium has to be solved using the same spectral method, which has

not yet been done. Note that the difference to the cylindrical harmonics is the additional

weighting factor
√

cosh(τ) + cos(θ), which compresses the modes at the inner side of the

torus, see fig.B.1. The Laplace operator, among a full description of the coordinate system
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can be found in [191][pp.112-115].

∆Φ(τ, θ, ϕ) =

[
∂

∂τ

(
sinh(τ)

cosh(τ) + cos(θ)

)
∂Φ

∂τ
+ sinh(τ)

∂

∂θ

(
1

cosh(τ) + cos(θ)

∂Φ

∂θ

)]
·
(

(cosh(τ) + cos(θ))2

R2
0 sinh(τ)

)
+

(cosh(τ) + cos(θ))2

R2
0 sinh(τ)2

∂2Φ

∂ϕ2

(B.147)

We learned that the cylindrical toroidal coordinates are not the true harmonics in the toroidal

geometry but they are good to to use, since their coordinate transformation itself is not

singular for r = 0.

Parametrization of MHD equilibria

Equilibrium configurations for Tokamaks can be simply described by incorporating an el-

lipticity κ(r) and triangularity δ(r) into the pseudo-toroidal coordinates, see eqn. (B.148).

This is known as Soloviev equilibrium [247, 248], but actually better descriptions including

divergence free magnetic fields are available but more involved [249].

T (r, θ, ϕ) =


[
R0(r) + r cos

(
θ + sin−1(δ) sin(θ)

)]
cos(ϕ)[

R0(r) + r cos
(
θ + sin−1(δ) sin(θ)

)]
sin(ϕ)

κ(r)r sin(θ)

 (B.148)

The r dependent profiles R0(r), κ(r) and δ(r) are obtained by solving ODEs for the given

initial values at the outermost flux surface, involving additional parameters see [247]. For the

cases used in this work we assume constant profiles with κ = 1.44, δ = 0.416 and the major

radius is set to R0 =
Lϕ
2π .

Helical Coordinates

Stellarator equilibria are found by minimize the total MHD plasma energy consisting of

magnetic and thermal contribution using some additional regularization [250]. Such an equi-

librium can be described by a Fourier series over poloidal and toroidal modes [251], according

to eqn. (B.149).

T (r, θ, ϕ) =


[∑mpol

m=0

∑ntor
n=−ntor

Rm,n(r) cos(mθ − nϕ)
]

cos(ϕ)[∑mpol

m=0

∑ntor
n=−ntor

Rm,n(r) cos(mθ − nϕ)
]

sin(ϕ)∑mpol

m=0

∑ntor
n=−ntor

Zm,n(r) cos(mθ − nϕ)

 (B.149)

The Fourier coefficients Rm,n and Zm,n with R0,n = Z0,n = 0 for n < 0, depend on the flux

surface label r, but are also subject to the famous Stellarator symmetry

R−m,−n(r) = Rm,n(r) and Z−m,−n(r) = −Zm,n(r), (B.150)

which is already incorporated into the representation in eqn. (B.149). Such Fourier geometries

with many coefficients are in general hard to invert and require high resolution but yield

astonishing geometries, see fig. B.2. If one does not have access to a code providing the

coefficients, one is restricted to use published information for single flux surfaces, see e.g. [252].

Thus we either solve the entire problem directly or construct a simplified toy model that

incorporates the basic numerical difficulty. For this we rotate an ellipse in the poloidal plane

s times around the magnetic axis yielding a helical shape for eqn. (B.151).

T (r, θ, ϕ) =

(R0 + ar cos(ϕs) cos(θ)− br sin(ϕs) sin(θ)) cos(ϕ)

(R0 + ar cos(ϕs) cos(θ)− br sin(ϕs) sin(θ)) sin(ϕ)

ar sin(ϕs) cos(θ) + br cos(ϕs) sin(θ)

 (B.151)
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B.2. Coordinate transformations into curvilinear coordinates

Figure B.2.: Quasi-Helical flux surface with parameters from [252] filled by a randomly syn-

thesized structure.

det (JT (r, θ, ϕ)) = rab [R0 + ar cos(ϕs) cos(θ)− br sin(ϕs) sin(θ)] (B.152)

With given ellipticity κ of an equilibrium we set a = κ, b = 1
κ .
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B.2.4. Guiding center (2d) and drift kinetic (3d1v)

We begin with the coordinate transformation of the guiding center and drift kinetic model

and finish with examples for polar and cylinder coordinates. As already mentioned before, for

the polar and cylinder coordinates it is customary to not use the covariant transform but the

normalized covariant transform using the normalized Jacobi matrix J̄ . After the coordinate

transformation f̃(r, θ, ϕ, v‖, t) = f(T (r, θ, ϕ), v‖, t) the drift kinetic eqn. (B.61) reads

∂tf̃ +
(
v‖ · J̄T b̃+ J̄T b̃× J−tT ∇̃Φ̃× J̄T b̃

)
· J−tT ∇̃x̃f̃ +

(
J̄T b̃ · J−tT ∇̃Φ̃

)
· ∇v‖ f̃ = 0, (B.153)

and the corresponding characteristics are

d

dt
X̃(t) =

[
J−1
T

(
J−tT ∇(r,θ,ϕ)Φ̃(X̃(t), t)− (∇(r,θ,ϕ)Φ̃

t(X̃(t), t)J−1
T J̄T b̃− v‖) · J̄T b̃

)]t
,

d

dt
V‖(t) = ∇(r,θ,ϕ)Φ̃

t(X̃(t), t)J−1
T J̄T b̃.

(B.154)

The parallel velocity v‖‖ ~B depends on the magnetic field. The transformation of the quasi-

neutrality equation is discussed separately with the introduction of a general coordinate

elliptic solver. The guiding center density evolution along with the characteristic X(t) for a

spatial density f(x) reads

∂tf̃ + J̄T b̃× J−tT ∇̃Φ̃× J̄T b̃ · J−tT ∇̃x̃f̃ = 0,

d

dt
X̃(t) =

[
J−1
T

(
J−tT ∇(r,θ,ϕ)Φ̃(X̃(t), t)− (∇(r,θ,ϕ)Φ̃

t(X̃(t), t)J−1
T J̄T b̃− v‖) · J̄T b̃

)]t
.

(B.155)

For B = (0, 0, 1)t the vorticity equation is obtained in Cartesian coordinates. The drift kinetic

model in polar coordinates f(r, θ, ϕ, t) is given in eqns. (B.156) and (B.157).

∂tf −
∂rΦ

r
∂rf +

∂rΦ

r
∂θf + v∂ϕf − ∂ϕΦ∂vf = 0, t ∈ [0, T ] (B.156)

−
[
∂rΦ +

(
1

r
+
∂rn0(r)

n0(r)

)
∂rΦ +

1

r2
∂θΦ

]
+

1

Te(r)
(Φ− Φ̄) =

1

n0(r)

∫
R
f dv − 1 (B.157)

Here the toroidally averaged Φ̄ is defined as

Φ̄(r, θ) :=
1

Lϕ

∫ Lϕ

0
Φ(r, θ, ϕ)dϕ. (B.158)

Integrating eqn. (B.157) over ϕ yields a separate elliptic PDE (B.159), which has to be solved

before eqn. (B.157).

−
[
Lϕ∂rΦ̄ +

(
1

r
+
∂rn0(r)

n0(r)

)
Lϕ∂rΦ̄ + Lϕ

1

r2
∂θΦ̄

]
+

1

Te(r)
(LϕΦ̄− LϕΦ̄) =

Lϕ
n0(r)

∫ Lϕ

0

∫
R
f dvdϕ− Lϕ

⇔ −
[
∂rΦ̄ +

(
1

r
+
∂rn0(r)

n0(r)

)
∂rΦ̄ +

1

r2
∂θΦ̄

]
=

1

n0(r)

∫ Lϕ

0

∫
R
f dvdϕ− 1

(B.159)

A guiding center type equation on the polar plane [253] for a density f(r, θ, t) with r ∈
[rmin, rmax], θ ∈ [0, 2π] reads

∂tf −
∂θΦ

r
∂rf +

∂rΦ

r
∂θf = 0, t ∈ [0, T ] (B.160)
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where the potential Φ(r, θ, t) is given by the Poisson equation in polar coordinates

−∂2
rΦ− 1

r
∂rΦ−

1

r2
Φ = f,

Φ̂m(r = 0, t) = 0 for m 6= 0,

∂rΦ̂m(r = 0, t) = 0 for m = 0,

Φ(rmax, t) = 0.

(B.161)

In order to treat the singularity at the origin a boundary conditions for the Fourier transform

in θ, Φ̂m(r, t) := 1
2π

∫ 2π
0 e−imθΦ(r, θ, t)dθ is required. We define the electric field as usual as

E(r, θ, t) = −∇(r,θ)Φ(r, θ, t) = −
(
∂rΦ(t, r, θ) ~er +

1

r
∂θΦ(t, r, θ) ~eθ

)
,

Er = −∂rΦ, Eθ = −1

r
∂θΦ. (B.162)

Here we chose homogeneous Neumann boundary condition at rmin for the first Fourier mode

Φ̂0 at rmin and homogeneous Dirichlet boundary conditions for the non zero modes. For more

details on boundary conditions we refer to [253]. The characteristics of eqn. (B.160) read

d

dt
r(t) = −∂θΦ(t, r(t), θ(t))

r(t)
= Eθ(t, r, θ),

d

dt
θ(t) =

∂rΦ(t, r(t), θ(t))

r(t)
= −Er(t, r(t), θ(t))

r(t)
.

(B.163)

B.2.5. Coordinate transformations for Monte Carlo characteristics

When implementing a particle method in curvilinear coordinates - something involving a

coordinate transformation, like a cylinder - one often hears: ”You should put the Jacobian

into the weights, but if you really do not want to, you can just evaluate it for every particle.“

The problem here is the term “weight”, because in this framework there is no weight per se,

but only a ratio of two likelihoods wk = fk
gk

. Here we want to sort this out by explaining where

the weights come from, where exactly the Jacobian enters and what choices are available.

Given a mapping by a C1 diffeomorphism T : [0, 1]d → Ω ⊂ Rd, ξ 7→ T (ξ) = x from

logical to physical coordinates with T ([0, 1]d) = Ω. Let JT (ξ) = |det(∇T (ξ))| denote the

Jacobi determinant of T . Without loss of generality we regard only the spatial coordinate,

because this is the typical situation. Let g(x, v) describe a probability density, (X,V ) a

corresponding random deviate and f(x, v) the Vlasov density. For some function ψ we can

calculate a moment in physical and logical coordinates using the coordinate transformation

and the Jacobi determinant. In the typical situation a test-function ψ defined in logical

coordinates ξ 7→ ψ(ξ) is given. With a change of coordinates we then obtain the following

identity. ∫
R

∫
Ω
f(x, v)ψ(T−1(x)) dxdv =

∫
R

∫
[0,1]d

f(T (ξ), v)ψ(ξ)JT (ξ) dξdv (B.164)

We define the random deviate of the transformed spatial coordinate Ξ = T−1(X) with T (Ξ) =

X, and obtain the tuple (Ξ, V ). Then the Monte Carlo integral, using the sampling density

g of x, v yields

E
[
f(X,V )

g(X,V )
ψ(T−1(X))

]
=

∫
R

∫
Ω

f(x, v)

g(x, v)
ψ(T−1(x)) g(x, v) dxdv =∫

R

∫
[0,1]d

f(T (ξ), v)

g(T (ξ), v)
ψ(ξ) g(T (ξ), v)JT (ξ)dξdv = E

[
f(T (Ξ), V )

g(T (Ξ), V )
ψ(Ξ)

]
. (B.165)
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Here one might wonder why the Jacobian JT appears in the second integral but not in the

second expectation in eqn. (B.165). We know that g is a probability density describing the

distribution of (X,V ). We seek now the probability distribution g̃ of the transformed random

deviate (Ξ, V ) = (T−1(X), V ). By the change of coordinates in the integral∫∫
g(x, v) dxdv =

∫∫
g(T (ξ), v)JT (ξ)︸ ︷︷ ︸

:=g̃(ξ,v)

dξdv, (B.166)

the transformed probability density is obtained as

g̃(ξ, v) = g(T (ξ), v)JT (ξ). (B.167)

In eqn. (B.165) the change of coordinates in the expectation is trivial, we just transform the

samples as we need to and the Jacobian is already included. In eqn. (B.168) we explicitly point

out the corresponding probability density that is used in the integral form of the expectations.

Eg
[
f(X,V )

g(X,V )
ψ(T−1(X))

]
= Eg̃

[
f(T (Ξ), V )

g(T (Ξ), V )
ψ(Ξ)

]
(B.168)

Therefore, we do not need the Jacobian JT when the markers are available in physical space,

since the expectation takes care of it. But where does it enter?

We change viewpoint to the time dependent problem solved by the method of characteris-

tics. There a marker (Xn(t), Vn(t)), following a characteristic transports the Vlasov density

fn = f(Xn(t), V (t)n, t) and the sampling density gn = f(Xn(t), Vn(t), t), which are both

constants in time. In different coordinate systems the marker (Xn(t), Vn(t)) has different

coordinates e.g. (Ξn, Vn) but the value it transports is exactly the same. Often the mapping

T allows are more elegant description of a density, and therefore, we define the transformed

densities f̂ and ĝ as

f̂(ξ, v, t) := f(T (ξ), v, t) and ĝ(ξ, v, t) := g(T (ξ), v, t). (B.169)

Sometimes, for the sake of a simplified notation, the density f(ξ, v, t) = f(x = T (ξ), v, t) is

implicitly defined by the change in argument from x to ξ, which can be helpful or confusing.

In eqn. (B.170) we stay explicit and again point out the constant values transported by a

marker.

fn = f(Xn(t), Vn(t), t) = f (T (Ξn(t)), Vn(t), t) = f̂ (Ξn(t), Vn(t), t)

and gn = g(Xn(t), Vn(t), t) = g (T (Ξn(t)), Vn(t), t) = ĝ (Ξn(t), Vn(t), t) (B.170)

Losing the time dependence for the sake of notation, the mapped density ĝ(ξ, v, t) is not

a probability distribution like g̃(x, v) which with eqn. (B.168) and eqn. (B.169) yields a

transform relation, see eqn. (B.171).

g(x, v) = ĝ(ξ, v) =
g̃(ξ, v)

JT (ξ)
, x = T (ξ) (B.171)

Equation (B.171), also valid for f, f̂ and f̃ , is the most important one for us, because it

describes exactly where and when to put the Jacobian. Typically we have a domain Ω =

T ([0, 1]d) that is parameterized by T , therefore it is much more comfortable to work in the

logical coordinates. Instead of describing the initial condition f(x, v) in physical coordinates

we chose the more convenient f̂(ξ, v). We now, at t = 0, need to draw a marker (Xn, Vn),

but we want to do this in logical coordinates (Ξn, Vn) according to a probability density
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g̃(ξ, v). Mapping the marker into physical coordinates (Xn, Vn) = (T (Ξn), Vn) yields our

desired sample with distribution g given by

g(x, v) =
g̃(T−1(x), v)

JT (T−1(x))
= g̃(T−1(x), v)JT−1(x). (B.172)

The likelihoods fn, gn are then the same as in eqn. (B.170), where we stay in the comfortable

logical space and obtain for the marker (Ξn, Vn):

fn = f̂ (Ξn, Vn) and gn =
g̃(Ξn, v)

JT (Ξn)
. (B.173)

From eqn. (B.173) we conclude that only the sampling in logical coordinates makes it neces-

sary for us to consider the Jacobian JT . For variance reduction we would like the sampling

distribution g to be close to f , such that different choices are available: The first one is to

chose the sampling distribution g̃(ξ, v) as a normalized version of f̂(ξ, v) resulting in g(x, v)

not being close to f(x, v) because of the division by the Jacobian eqn. (B.173). This is mostly

referred to as “putting the Jacobian in the weights”. The other option is to “put the Jacobian

in the particles”. In order to be close to f we define ĝ(ξ, v) as a normalized version of f̂(ξ, v)

and chose the sampling distribution as

g̃(ξ, v) = ĝ(ξ, v)JT (ξ). (B.174)

This results in g(x, v) being a normalized version of f(x, v) yielding a variance reduction.

The uniform sampling, choosing ĝ(ξ, v) = 1ĝ(v) is then “sampling the Jacobian”, because

the spatial part of the probability density is then only the Jacobian g̃(ξ, v) = ĝ(v)JT (ξ). We

will later give an example for polar coordinates.

Likelihoods fn, gn should always be defined in the physical space (Lebesgue measure), as we

do here. It remains to note that control variates in physical h(x, v) or logical coordinates

h̃(ξ, v) are used as usual, e.g., the δ-weight is defined as

δwn =
fn − h(Ξn, Vn)

gn
. (B.175)

We have treated the stochastic aspect and proceed with the deterministic Klimontovich den-

sity similar to [48]. Hence, the Klimontovich density fp as a sum of Dirac-δ functions shall

replace f in the occurring integrals.

fp(x, v) =
1

Np

Np∑
n=1

δ(x− xn)δ(v − vn)
fn
gn

(B.176)

But first we recall the composition rule for delta functions. For a function h(ξ) = x with a

single root h(ξ0) = 0 the composition is defined as

δ(x) = (δ ◦ h)(ξ) = (δ ◦ h)(ξ)
1

det(∇h(ξ0))
, (B.177)

which can also be derived from integration by substitution. Applying eqn. (B.177) onto

eqn. (B.176) yields the transformed Klimontovich density f̂p as

f̂p(ξ, v) = fp(T (ξ), v) =
1

Np

Np∑
n=1

δ(T (ξ)− xn)

JT (ξn)
δ(v − vn)

fn
gn

=
1

Np

Np∑
n=1

δ(ξ − ξn)

JT (ξn)
δ(v − vn)

fn
gn
.

(B.178)
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By the change of coordinates it is known that∫
R

∫
Ω
f(x, v)ψ(T−1(x)) dxdv =

∫
R

∫
[0,1]d

f̂(ξ, v)ψ(ξ)JT (ξ) dξdv. (B.179)

Hence, the consistency of the definition of f̂p(ξ, v) is checked by verifying the integral eqn. (B.179)

for the Klimontovich densities fp and f̂p reading∫
R

∫
Ω
fp(x, v)ψ(T−1(x)) dxdv =

∫
R

∫
[0,1]d

f̂p(ξ, v)ψ(ξ)JT (ξ) dξdv. (B.180)

The right hand side of eqn. (B.180) is∫
R

∫
Ω
fp(x, v)ψ(T−1(x)) dxdv =

∫
R

∫
Ω

1

Np

Np∑
n=1

δ(x− xn)δ(v − vn)
fn
gn
ψ(T−1(x)) dxdv

=
1

Np

Np∑
n=1

fn
gn
ψ(T−1(xn)).

(B.181)

The left hand side of eqn. (B.180) reads∫
R

∫
[0,1]d

f̂p(ξ, v)ψ(T (ξ))JT (ξ) dξdv

=
fn
gn

∫
R

∫
[0,1]d

1

Np

Np∑
n=1

δ(ξ − ξn)

JT (ξn)
δ(v − vn)ψ(T (ξ))JT (ξ)

fn
gn

dξdv

=
1

Np

Np∑
n=1

fn
gn
ψ( ξn︸︷︷︸

=T−1(xn)

) =

∫
R

∫
Ω
fp(x, v)ψ(x) dxdv, (B.182)

and coincides with eqn. (B.181) since the additional Jacobian cancels. This means given a

set of markers or random deviates, the Monte Carlo approximation of an integral using these

markers in a Klimontovich density is independent of the coordinate system, since the markers

can be transformed freely and the Jacobian always cancels out. Particles methods get their

attractiveness exactly from this property.

At last an example for this curvilinear sampling shall be given using the familiar polar coordi-

nates for a disc or an annulus Ω. Let the logical domain be given as Ω0 = [rmin, rmax]× [0, 2π].

T (r, θ) = (r cos(θ), r sin(θ)) , T−1(x, y) =
(√

x2 + y2, arctan
(y
x

))
, JT (r, θ) = r (B.183)

We have a nontrivial Jacobian JT and, therefore, different options of sampling. The volume

of the annulus T (Ω0) = Ω is known to be

|Ω| =
(
r2

max − r2
min

)
π. (B.184)

Hence when the particles should be uniformly distributed in the domain, the sampling density

in Cartesian and logical coordinates reads

g(x, y) =
1

|Ω|
= ĝ(r, θ) for (x, y) ∈ Ω and (r, θ) ∈ Ω0. (B.185)

But as we have seen before, ĝ is not the probability density describing the distribution of the

markers (rn, θn)n=1,...,Np such that eqn. (B.174) has to be applied yielding

g̃(r, θ) =
JT (r, θ)

|Ω|
r(

r2
max − r2

min

)
π
. (B.186)
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With
∫∫

Ω g̃(r, θ)drdθ = 1, g̃ becomes a probability density. We want to draw random numbers

(rn, θn)n=1,...,Np according to g̃(r, θ) and use inverse transform sampling since g̃(r, θ) = g̃(r)

reduces to one dimension. Define the cumulative distribution function G : [rmin, rmax]→ [0, 1]

as

G(τ) =

∫ 2π

0

∫ τ

rmin

g(r, θ)drdθ =
r2 − r2

min

r2
max − r2

min

, (B.187)

with the inverse

G−1(u) =
√
u(r2

max − r2
min) + r2

min, u ∈ [0, 1]. (B.188)

Then the markers (rn, θn) for n = 1, . . . , Np are obtained in the three steps:

1. Draw iid θn ∼ U(0, 2π),

2. Draw iid. un ∼ U(0, 1),

3. Set rn := G−1(un) =
√
un(r2

max − r2
min) + r2

min.

Another option is to draw the markers uniformly in the logical domain according to

rn ∼ U(rmin, rmax) and θn ∼ U(0, 2π), (B.189)

which corresponds to the sampling density

g̃(r, θ) =
1

|Ω0|
=

1

(rmax − rmin)2π
. (B.190)

But then the Jacobian enters into the Cartesian sampling density by definition, see eqn. (B.191).

ĝ(r, θ) =
g̃(r, θ)

JT (r, θ)
=

1

(rmax − rmin)2π

1

r

⇒ g(x, y) =
1

(rmax − rmin)2π

1√
x2 + y2

(B.191)

This yields more markers for small r and does not cancel with the Jacobian of the coordinate

transformation and is, therefore, a rather unnatural way of sampling.
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Spectral methods and particle discretizations

C.1. Orthogonal Polynomials

For any Vlasov solver, derivatives, anti-derivative and various methods for evaluation are

needed, such that the we collect and review essential formulas from the enormous complex

of spectral methods that are most useful for implementation.

C.1.1. Chebyshev

The Chebyshev polynomials of second kind are defined by

U0(x) = 1

U1(x) = 2x

Un+1 = 2xUn(x)− Un−1(x).

(C.1)

The derivative of the first kind Chebyshev polynomial can be obtained by

d

dx
Tn(x) = nUn−1(x), ∀n ≥ 1 (C.2)

or directly by ([195][p.47])

d

dx
Tn(x) =

n

2

Tn−1(x)− Tn+1(x)

1− x2
. (C.3)

The Ultra-spherical polynomials Un can be used to obtain efficient pre-conditioners leading to

sparse methods, see [171]. We take advantage of this rather involved computations by using

the ApproxFun.jl package [171]. The two term recurrence relation for the first derivative of

T ′n reads

T ′0(x) = 0

T ′1(x) = 1

T ′2(x) = 4x

T ′n+1(x) = 2x
n+ 1

n
T ′n(x)− n+ 1

n− 1
T ′n−1(x).

(C.4)

These two term recurrence relations emerge from the Chebyshev identity (3.71) and the

substitution x = cos(θ), where dx = − sin(θ)dθ.

Tn(cos(θ)) = cos(nθ), T ′n(cos(θ)) =

[
d

dθ
Tn(cos(θ))

]
· (− sin(θ)) =

sin(nθ)n

sin(θ)
(C.5)

Unfortunately it is not possible to derive a two term recurrence formula for the second

derivative. We define the indefinite integral Rn(x) with constant zero to Tn as

Rn(x) :=

∫
Tn(x)dx =

1

2

(
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

)
=
nTn+1(x)

n2 − 1
− xTn(x)

n− 1
. (C.6)
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The indefinite integral Rn can be expressed by the Chebyshev polynomials Tn, which allows

for integration of a Chebyshev series directly over the coefficients.

Rn(cos(θ)) =

∫
cos(nθ)(− sin(θ))dθ =

{
− sin(θ)2

2 if n = 1
cos(θ(n+1))

2(n+1) − cos(θ(n−1))
2(n−1) else

(C.7)

∫ 1

−1
Tn(x) dx =

{
0 for n = 1
(−1)n+1

1−n2 else
(C.8)

In most cases one wants to evaluate a linear combination of Chebyshev polynomials. The

standard method for numerically stable evaluation of polynomials is the Horner method,

which is a special case of the Clenshaw algorithm. Because of their two term recurrence

relation, the Clenshaw algorithm is directly applicable to the Chebyshev polynomials. We

proceed to work on the unit interval [0, 1] with the shifted Chebyshev polynomials of the first

kind

T ∗n(x) = Tn(2x+ 1) and T ∗′n (x) = 2T ′n(2x+ 1). (C.9)

The recurrence relation for their evaluation reads

T ∗0 (x) = 1

T ∗1 (x) = 2x− 1

T ∗n+1(x) = 2(2x− 1)T ∗n(x)− T ∗n−1(x)

.

(C.10)

T ∗′0 (x) = 0

T ∗′1 (x) = 2

T ∗′1 (x) = 16x− 8

T ∗′n (x) = 2(2x− 1)
n

n− 1
T ∗′n−1(x)− n

n− 2
T ∗′n−2(x).

(C.11)

Alternative formulas for the first and second derivatives are given in eqn.(C.12).

d

dx
Tn(x) =

1
2n (Tn−1(x) + Tn+1(x))

1− x2

d2

dx2
Tn(x) =

n

4

(n+ 1)Tn−2(x)− 2nTn(x) + (n− 1)Tn+2(x)

(1− x2)2

(C.12)

When evaluating the indefinite integral or the derivatives of Chebyshev series, it suffices to

calculate a new set of coefficients and express the integral again as Chebyshev series.

u(x) =
N∑
n=0

unTn(x) (C.13)

For the indefinite integral we set the integration constant U0 = 0 to zero and suppose un =

0 ∀n > N .

U(x) =

∫
u(x) dx =

N+1∑
n=0

UnTn(x)

Un =
un−1 − un+1

2n
for n > 1

UN =
uN−1

2N

UN+1 =
uN

2(N + 1)

U0 = 0

(C.14)
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The same can be done for the first derivative.

u′(x) =
N∑
n=0

u′nTn(x)

u′N = 0

u′N−1 = 2NuN

u′n = 2(n+ 1)un+1 + u′n+2

u′0 = u1 + u′2

(C.15)

Note the additional factor 2 for shifted Chebyshev polynomials. Successive application of the

recursion (C.15) yields a formula for the second derivative.

For evaluation of a series of orthogonal polynomials (Φk)k=0,...,n,

S(x) =
n∑
k=0

ckΦk(x), (C.16)

which follows the two term recurrence

Φk+1(x) = αk(x)Φk + βk(x)Φk−1(x), (C.17)

the Clenshaw algorithm can be used, which was first described in [254].

bn+1 = bn+2 = 0

bk(x) = ck + αkbk+1(x) + βk+1bk+2(x) ∀ k = 0, . . . , n.
(C.18)

S(x) = Φ0(x)c0 + Φ1(x)b1(x) + β1Φ0(x)b2(x) (C.19)

The Clenshaw algorithm for a Chebyshev series and its first derivative is given in eqn. (C.20)

and eqn. (C.21).

bN+1 := 0 and bN+2 := 0

bn := un + 2xbn+1 − bn+2, n = N, . . . , 1

u(x) =
N∑
n=0

unTn(x) = u0 + xb1 − b2

(C.20)

bN+1 := 0 and bN+2 := 0

bn := un + 2x
n+ 1

n
bn+1 −

n+ 2

n
bn+2, n = N, . . . , 2

u(x) =
N∑
n=0

unT
′
n(x) = u1 + 4xb2 − 3b3

(C.21)

Now that we treated several possibilities for the efficient evaluation of Chebyshev polyno-

mials, we continue with solving differential equations. The first candidate is, of course, the

Poisson equation with Neumann and Dirichlet boundary conditions. The two standard ap-

proaches are either the collocation or the Galerkin method, where we chose the latter since

it fits perfectly in the variational particle framework.

The Fourier modes satisfy the periodic boundary condition and the B-spline finite elements

can satisfy Dirichlet and Neumann boundary conditions upon construction. Hence the bound-

ary conditions are naturally built into the basis functions. The Chebyshev polynomials have

different values at the boundary

Tk(±1) = (±1)k and T ′k(±1) = (±1)k+1k2, (C.22)
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but we can construct, similar to [255, 165], basis functions ψk composed of Chebyshev poly-

nomials, which satisfy the inhomogeneous Robin boundary conditions.

a±ψk(±1) + b±ψ
′
k(±1) = c± (C.23)

The inhomogeneous Robin boundary conditions are general enough such that homogeneous

Dirichlet or Neumann are just special cases. Following [165][pp. 202], we seek coefficients ak
and bk such that the basis functions ψk can be expressed as a linear combination of Chebyshev

polynomials

ψk(x) = Tk(x) + akTk+1(x) + bkTk+2(x). (C.24)

Inserting eqn. (C.22) into eqn. (C.24) results in

ψk(±1) = (±1)k + ak(±1)k+1 + bk(±1)k+2

ψ′k(±1) = (±1)k+1k2 + ak(±1)k+2(k + 1)2 + bk(±1)k+3(k + 2)2.
(C.25)

This yields the following linear system for ak and bk(
a±(±1)k+1 + b±(±1)k+2(k + 1)2

)
ak +

(
a±(±1)k+2 + b±(±1)k+3(k + 2)2

)
bk

= −a±(±1)k − b±(±1)k+1k2 + c±, (C.26)

(
±a± + b±(k + 1)2

)
ak +

(
a± ± b±(k + 2)2

)
bk = −a± ∓ b±k2 + c±(±1)−k. (C.27)

We rewrite the 2× 2-system in matrix form and obtain a solution by the direct inverse.(
a+ + b+(k + 1)2 a+ + b+(k + 2)2

−a− + b−(k + 1)2 a− − b−(k + 2)2

)
︸ ︷︷ ︸

:=Γ

(
ak
bk

)
=

(
−a+ − b+k2 + c+

−a− + b−k
2 + c−(−1)k

)
(C.28)

(C.29)

γk = det(Γ) = 2a+a− + (k + 1)2(k + 2)2 (a−b+ − a+b− − 2b−b+)

ak = − 1

γk

[ (
a+ + b+(k + 2)2

) (
−a− + b−k

2 + c−(−1)k
)

−
(
a− − b−(k + 2)2

) (
−a+ − b+k2 + c+

) ]
bk =

1

γk

[ (
a+ + b+(k + 1)2

) (
−a− + b−k

2 + c−(−1)k
)

+
(
a− − b−(k + 1)2

) (
−a+ − b+k2 + c+

) ]
(C.30)

We transform this result for shifted Chebyshev polynomials T ∗ and define the Galerkin basis

function as

ψk(x) = T ∗k (x) + akT
∗
k+1(x) + bkT

∗
k+2(x). (C.31)

The boundary values of the polynomials only change by a factor 2 in the first derivative, see

eqn. (C.32).

T ∗k ({0, 1}) = (±1)k and T ∗′k ({0, 1}) = 2(±1)k+1k2, (C.32)
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Hence, a modification of eqn. (C.30) yields the coefficients for the basis functions (C.31) on

[0, 1].

γk = 2a+a− + 2(k + 1)2(k + 2)2 (a−b+ − a+b− − 4b−b+)

ak = − 1

γk

[ (
a+ + 2b+(k + 2)2

) (
−a− + 2b−k

2 + c−(−1)k
)

−
(
a− − 2b−(k + 2)2

) (
−a+ − 2b+k

2 + c+

) ]
bk =

1

γk

[ (
a+ + 2b+(k + 1)2

) (
−a− + 2b−k

2 + c−(−1)k
)

+
(
a− − 2b−(k + 1)2

) (
−a+ − 2b+k

2 + c+

) ]
(C.33)

The Galerkin basis {ψn}Nn=0 is composed of the shifted Chebyshev polynomials {T ∗n}
N+2
n=0 .

The operator projecting from the shifted Chebyshev polynomials onto the Galerkin basis is

denoted by the (N + 1)× (N + 3) matrix

Sx =

1 a0 b0
. . .

. . .
. . .

1 aN bN

 . (C.34)

Because the spectral Galerkin method usually leads to dense matrices we highly recommend

Jie Shens series on efficient spectral-Galerkin methods [172, 173, 174, 175], where he obtains

sparse or full and banded matrices, which are mostly solved in O(N). Of particular interest

for us is the Helmholtz equation in cylindrical geometry [174] and in spherical geometry [175].

This shows that spectral methods based on Fourier-Chebyshev polynomials are very efficient

even for complex geometries. Unfortunately the torus was not treated, but since it resides

somewhere between cylinder and sphere it should be possible to obtain similar results.

Boyd [54][p.389] has strong objections to using shifted Chebyshev polynomials T ∗k (r) =

Tk(2r − 1) as a basis in radial direction since T ∗k (r2) = Tk(2r
2 − 1) yields a much better

approximation of the Bessel function J0. We note that this is due to the change of volume

in the polar plane, which in general can be calculated by the Jacobi determinant of the

coordinate transformation.

T (r, θ) = (r cos(θ), r sin(θ))⇒ det(∇T (r, θ)) = r (C.35)

Thus, an additional normalization of the basis functions by an additional change of coordi-

nates might yield much faster convergence and should therefore be considered.

In many cases intervals are given as [0, L], which can be mapped to the standard interval

[−1, 1] by

ϕ : [0, L]→ [−1, 1], x 7→ 2x

L
− 1, ϕ′ =

2

L
. (C.36)

For the L2-projection and derivatives, coefficients are multiplied by ϕ′.

Fast Chebyshev transform

A major advantage of the Chebyshev polynomials is that given an appropriate grid the trans-

form from function values on the grid to the Chebyshev coefficients using the O(N log(N))

discrete cosine transform can benefit from the fast Fourier transform. The fast type-I dis-

crete cosine transform DCT − I is implemented in FFTW , see [256], for a length N array

(Xk)k=0,...,N−1 in eqn. (C.37).

Yk = X0 + (−1)kXN−1 + 2

N−2∑
j=1

Xj cos

(
πjk

N − 1

)
, k = 0, . . . , N − 1 (C.37)
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There is the option of choosing the Chebyshev-Gauss quadrature nodes in (−1, 1), but since

we want to handle boundary conditions on a collocation basis we chose Chebyshev Gauss–

Lobatto points given in eqn. (C.38) as the spatial grid.

xj = cos

(
πj

N − 1

)
, j = 0, . . . , N − 1 (C.38)

Values of the Chebyshev polynomials at these nodes are then directly expressed in eqn. (C.39).

Tk(xj) = Tk

(
cos

(
πj

N − 1

))
= cos

(
πj · k
N − 1

)
(C.39)

The entire complex of forward and back transforming with the discrete Chebyshev transform

for a function u : [−1, 1]→ R is prepared in eqn. (C.40). When using the type-I discrete cosine

transform in eqn. (C.37) the forward transform is normalized by N − 1 and the backward

transform by 2.

u(x) ≈
N−1∑
k=0

ũjTk(x)

uj := u(xj)

uj =
N−1∑
k=0

ũj cos

(
πj · k
N − 1

)
= ũj + 2

N−1∑
k=0

ũj cos

(
πj · k
N − 1

)

ũk =
1

(N − 1)ck

N−1∑
j=0

2

cj
uj cos

(
πj · k
N − 1

)
=

1

(N − 1)ck

u0 + (−1)kuN−1 + 2

N−2∑
j=1

uj cos

(
πj · k
N − 1

)
cj =

{
2 for j = 0, N − 1

1 for j = 1, . . . , N − 2

(C.40)

Poisson equation on bounded domain

Before we proceed directly with curvilinear coordinates and mappings we want to solve the

Poisson equation with Robin boundary conditions on the domain [0, 1] using Chebyshev

polynomials.

−∆Φ = ρ

a−Φ(0) + b−Φ′(0) = c−

a+Φ(1) + b+Φ′(1) = c+

(C.41)

For the variational formulation we use the L2 scalar product with a weight function ω and

test functions ϕ satisfying the boundary conditions.∫ 1

0
Φ′(x) (ϕ(x)ω(x))′ dx =

∫ 1

0
ρ(x)ϕ(x)ω(x) dx, ∀ϕ (C.42)∫ 1

0
Φ′(x)

(
ϕ(x)′ω(x) + ω(x)′ϕ(x)

)
dx =

∫ 1

0
ρ(x)ϕ(x)ω(x) dx, ∀ϕ (C.43)

ω(x) =
√

1− x2

ω′(x) =
−x√
1− x2

ω(cos(θ)) = sin(θ)

ω′(cos(θ)) = −cos(θ)

sin(θ)

(C.44)
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We substitute with x = cos(θ), and dx = dθ(− sin(θ)) yielding∫ 1

−1
T ′i (x)Tj(x)ω′(x)dx = −

∫ 0

π

sin(iθ)i

sin(θ)
cos(jθ)

− cos(θ)

sin(θ)
sin(θ)dθ

= −i
∫ π

0

sin(iθ) cos(jθ) cos(θ)

sin(θ)
dθ

= −i


0 if i = 0,
π
2 if i = j,

π if i < j, i even, j uneven,

0 else.

(C.45)

This results in a banded Toeplitz matrix, which can be solved very efficiently. For a suit-

able weight function ω Chebyshev polynomials are orthogonal, thus we denote some useful

relations from [54]. ∫ 1

−1
Ti(x)Tj(x)

1√
1− x2

dx = δi,j

{
π for i = 0
π
2 else.∫ 1

−1
Ui(x)Uj(x)

√
1− x2 dx = δi,j

π

2∫ 1

−1
T ′i (x)T ′j(x)

√
1− x2 dx = δ(i−1),(j−1)

π

2
(ij)

(C.46)

∫ 1

0
T ∗i (x)T ∗j (x)

1

2
√
x(x− 1)

dx = δi,j

{
2π for i = 0

π else∫ 1

0
T ∗i (x)T ∗j (x)2

√
x(x− 1) dx = δ(i−1),(j−1)π(ij)

(C.47)

If our method is extended to the stretched domain [0, L], the modified potential reads

Φ̃ : [0, L]→ R, Φ̃(x) = Φ
(x
L

)
⇒ Φ̃′(x) = Φ′

(x
L

) 1

L
. (C.48)

C.1.2. Hermite functions for unbounded domains

Until now we have only treated bounded or periodic domains, but spectral methods are also

very efficient on unbounded [−∞,∞] and half open [0,∞] domains. For unbounded domains

Hermite polynomials and for half open domains Laguerre polynomials can be used. The

Galerkin mechanism is completely analog to the Chebyshev polynomials and it is straightfor-

ward to implement. There are plenty plasma physics applications that can benefit from the

modeling of an open interval. For example, in high energy beam physics boundary conditions

pose a problem, since the longitudinal model follows the moving beam in a reference frame

[257], [258]. It is unphysical to make this frame periodic or bounded, although much simpler

from a computational viewpoint. Therefore, we present a brief recipe for an unbounded elec-

trostatic case. We follow [165][Chapter 4, Spectral Methods in Unbounded Domains], which

provides a quick overview and also includes the Laguerre polynomials suited for semi-infinite

intervals [0,∞). The normalized Hermite functions Ĥn of degree n defined in eqn. (C.49)

are chosen as basis functions. They consist of a Gaussian weight, the normalization and

the Hermite polynomials defined in eqn. (C.50). Hence, they are very well suited for an

approximation of a localized chunk of plasma in open space.

Ĥ(x) =
1√

2nn!
e−

x2

2 Hn(x), for n ≥ 0, x ∈ R (C.49)
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The physicists’ Hermite polynomials are just as the Chebyshev polynomials defined by a

three term recurrence relation (C.50).

H0(x) = 1

H1(x) = 2x

Hn(x) = 2xHn(x)− 2nHn−1(x)

(C.50)

Yet this is not the numerically stable way of evaluating the Hermite functions and, therefore,

we can use a recurrence relation for Ĥn provided by [165][p.146], which reads

Ĥ0(x) = e−
x2

2

Ĥ1(x) =
√

2xe−
x2

2

Ĥn+1(x) = x

√
2

n+ 1
Ĥn(x)−

√
n

n+ 1
Ĥn−1(x).

(C.51)

Note that the expensive e-function appearing in eqn. (C.49) is actually only needed once

in the recurrence relation (C.51) and should not be applied afterwards, since it damps the

diverging Hermite polynomials. Thus, eqn. (C.51) should be used in an implementation. The

derivatives of a normalized Hermite function provided in eqn. (C.52) and (C.53) are adapted

from [165][p.146].

d

dx
Ĥ0(x) = − 1√

2
Ĥ1(x)

d

dx
Ĥn(x) = Ĥ ′n(x) =

√
n

2
Ĥn−1(x)−

√
n+ 1

2
Ĥn+1(x)

(C.52)

d2

dx2
Ĥn(x) =

√
n(n− 1)

2
Ĥn−2(x)− n+ 1

2
Ĥn(x) +

√
(n+ 1)(n+ 2))

2
Ĥn+2(x) (C.53)

Here a Hermite function series and its derivative are denoted in eqn. (C.54).

u(x) =
∑
n

unĤn(x), u′(x) =
∑
n

u′nĤn(x). (C.54)

The derivative of a Hermite function series itself is again a Hermite function series and the

coefficients u′n are obtained by

u′n = −
√
n

2
un−1 −

√
n+ 1

2
un+1. (C.55)

In order to reconstruct the charge density or solve the Poisson equation, we can use the sparse

mass (C.56) and stiffness matrices (C.57) provided in [165].∫
R
Ĥn(x)Ĥm(x) dx =

√
πδm,n (C.56)

∫
R
Ĥ ′n(x)Ĥ ′m(x) =


−
√
n(n−1)π

2 for m = n− 2
√
π
(
n+ 1

2

)
for m = n

−
√

(n+2)(n+1)π

2 for m = n+ 2

0 else

(C.57)
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For assembling a constant Galerkin right hand side, eqn. (C.58) resulting in eqn. (C.59) is

helpful. ∫ ∞
−∞

e−
x2

2 Ĥn(x) dx =

{
n!

(n/2)!

√
2π for n even

0 for n odd
(C.58)

∫ ∞
−∞

Ĥn(x) dx =


√
n!

(n/2)!
√

2
n

√
2π for n even

0 for n odd
(C.59)

Therefore, the integral over a Hermite series requires only every second coefficient, see

eqn. (C.60). ∫ ∞
−∞

∑
n

unĤn(x) dx =
∑
n

u2n

√
(2n)!

n!2n

√
2π. (C.60)

Efficient evaluation of a Hermite function series is achieved by the Clenshaw algorithm in

eqn. (C.61).

bN+1 := 0 and bN+2 := 0

bn := un + x

√
2

n+ 1
bn+1 −

√
n+ 1

n+ 2
bn+2, n = N, . . . , 0

u(x) =

N∑
n=0

unĤn(x) = e
−x2

2 b0

(C.61)

C.1.3. Legendre polynomials

Using the Clenshaw algorithm [254] on (3.74) yields the efficient and numerically stable

evaluation of a Legendre series in eqn. (C.62).

bN+1 := 0 and bN+2 := 0

bn := un + x
2n+ 1

n+ 1
bn+1 −

n+ 1

n+ 2
bn+2, n = N, . . . , 0

u(x) =

N∑
n=0

unPn(x) = b0

(C.62)

Here, we work with a Legendre series where the derivative or the anti-derivative can be

expressed again as a Legendre series, see eqns. (C.63) and (C.64).

Pn(x) =
1

2n+ 1

[
P ′n+1(x)− P ′n−1(x)

]
(C.63)

P ′n+1(x) =
∑

0≤k≤n
2

(2(n− 2k) + 1)Pn−2k(x) (C.64)

For the indefinite integral we set the integration constant U0 = 0 to zero, define un = 0, ∀ n >
N and use (C.63) to obtain eqn. (C.65). The coefficients in (C.65) and (C.66) are also found
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in [54][pp.500-501].

U(x) =

∫
u(x) dx =

N+1∑
n=0

UnPn(x)

Un =
1

2n− 1
un−1 −

1

2n+ 3
un+1 for n > 1

UN =
1

2N − 1
uN−1

UN+1 =
1

2N + 1
uN

U0 = 0

(C.65)

The derivative is quite involved and not as straightforward as the integral, here [54] provides

us eqn. (C.66).

u′(x) =

∞∑
n=0

u′nPn(x)

u′n = (2n+ 1)
∞∑

p=n+1,p+n odd

up

(C.66)

Equation (C.66) is rewritten into eqn. (C.67) by introducing a series (an), which is the

reversed cumulative sum of the Legendre coefficients cn of odd or even index n.

u′(x) =

N∑
n=0

u′nPn(x)

a2k−2 = a2k + u2k−2

a2k−1 = a2k+1 + u2k−1

u′n = (2n+ 1)an+1

aN+1 = aN+2 = 0

(C.67)

Following [172] the weak Poisson equation with Dirichlet boundary conditions can be solved

efficiently with Legendre polynomials by defining basis functions

ψn(x) =
1√

4n+ 6
(Pn(x)− Pn+2(x)) , ψn(x). (C.68)

The basis (ψn) satisfies the homogeneous Dirichlet condition ψn(±1) = 0 because Pn(±1) =

(±1)n. The derivative reduces with eqn. (C.63) to a Legendre polynomial

ψ′n(x) =
1√

4n+ 6
(2(n+ 1) + 1)Pn+1(x) =

√
n+

3

2
Pn+1(x), (C.69)

which means that the derivative of a function expressed in the basis (ψn) can be directly

evaluated as a Legendre series by (C.62) avoiding (C.66). Using the orthogonality (3.75) it

becomes clear that on this basis the weak Poisson solve with homogeneous Dirichlet boundary

conditions is trivial since∫ 1

−1
ψ′n(x)ψ′m(x) dx = −

∫ 1

−1
ψ′′n(x)ψm(x) dx = δn,m. (C.70)

It remains to conclude, that we can obtain in Euclidean space the L2 projection (3.75), the

integral (C.65) and the derivative (C.66) in O(N).
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In polar coordinates the Jacobian r enters the L2 projection destroying the orthogonality in

eqn. (3.75). For this, general formulas like eqn. (C.71) and eqn. (C.72) are useful.

u(x) =

N∑
n=0

unPn(x)

xu(x) = v(x) =
N∑
n=0

vnPn(x)

v0 = 0

vn =
n

2n− 1
un−1 +

n+ 1

2n+ 1
un+1, n ≥ 1

(C.71)

∫ 1

−1
xPn(x)Pm(x) =

{
2n+1

(2n+1)(2n+3) for m = n+ 1
2n

(2n−1)(2n+1) for m = n− 1
(C.72)

C.2. Complex to real transforms for PIF

Fourier coefficients form a set of complex conjugates which means, that half of the coefficients

Fourier are just a redundant replication. In order to always gain a factor of two, one of the

following formulas can be used. Although this is very basic math we state the different options

here explicitly because they are very helpful for the implementation. Let f(ϕ) : [0, 2π] → R
be given. We want to approximate f by f̂ with Nϕ modes. One calculates the coefficient

vector as

F̂ (n) =
1

2π

∫ 2π

0
e−inϕf(ϕ) dϕ, for all n = −Nϕ, . . . , 0, . . . Nϕ (C.73)

and receives the reconstructed density as

f̂(ϕ) =

Nϕ∑
n=−Nϕ

F̂ (n)einϕ ≈ f(ϕ). (C.74)

Now we perform a lengthy calculation to show that we only need to calculate and save F̂ (n)

for n = 0, . . . , Nϕ. First we note that

F̂ (−n) =
1

2π

∫ 2π

0
e−i(−n)ϕ f(ϕ)︸︷︷︸

∈R

dϕ =
1

2π

∫ 2π

0
einϕf(ϕ) dϕ =

1

2π

∫ 2π

0
einϕf(ϕ) dϕ

= F̂ (n), for all n = −Nϕ, . . . , 0, . . . Nϕ.

(C.75)
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Then we want to use this identity to simplify

f̂(ϕ) =

−1∑
n=−Nϕ

F̂ (n)einϕF̂ (0) +
∑
n=1

F̂ (n)einϕ

= F̂ (0) +
∑
n=1

F̂ (−n)e−inϕ + F̂ (n)einϕ

= F̂ (0) +
∑
n=1

F̂ (n)e−inϕ + F̂ (n)einϕ

= F̂ (0) +
∑
n=1

F̂ (n)einϕ + F̂ (n)einϕ

= F̂ (0) +
∑
n=1

2R
(
F̂ (n)einϕ

)
+ 2I

(
F̂ (n)einϕ

)
= F̂ (0) + 2

∑
n=1

R
(
F̂ (n)

)
R
(
einϕ

)
− I

(
F̂ (n)

)
I
(
einϕ

)
= F̂ (0) + 2

∑
n=1

R
(
F̂ (n)

)
cos(nϕ) − I

(
F̂ (n)

)
sin(nϕ)

= F̂ (0) + 2
∑
n=1

R
(
F̂ (n)

)
R
(
e−inϕ

)
+ I

(
F̂ (n)

)
I
(
e−inϕ

)

(C.76)

For a two dimensional Fourier transform defined in eqn. (C.77) half of the modes can be

neglected by the complex conjugates given in eqn. (C.78).

F̂ (m,n) =
1

(2π)2

∫ 2π

0

∫ 2π

0
e−i(mθ+nϕ)f(θ, ϕ) dϕ

for all m = −Nθ, . . . , 0, . . . Nθ and n = −Nϕ, . . . , 0, . . . Nϕ

(C.77)

F̂ (−m,−n) = F̂ (m,n), F̂ (−m,n) = F̂ (m,−n), F̂ (0,−n) = F̂ (0, n) (C.78)

A typical mistake is to neglect all modes where m or n are negative, thus one should be careful

at this point. Various representations of the discrete back-transform are given in eqn. (C.79)

and can be combined with eqn. (C.78) in order to gain an increase in efficiency.

f̂(θ, ϕ) =

Nθ∑
m=−Nθ

Nϕ∑
n=−Nϕ

F̂ (m,n)ei(mθ+nϕ)

=

Nϕ∑
n=−Nϕ

F̂ (0, n)einϕ +

Nθ∑
m=1

 Nϕ∑
n=−Nϕ

F̂ (m,n)ei(mθ+nϕ) + F̂ (−m,−n)︸ ︷︷ ︸
=F̂ (m,n)

e−i(mθ+nϕ)


= F̂ (0, 0) +

Nϕ∑
n=1

[
F̂ (0, n)einϕ + F̂ (0,−n)einϕ

]

+

Nθ∑
m=1

 Nϕ∑
n=−Nϕ

F̂ (m,n)ei(mθ+nϕ) + F̂ (−m,−n)︸ ︷︷ ︸
=F̂ (m,n)

e−i(mθ+nϕ)


(C.79)
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C.3. Particle-in-Fourier for Vlasov–Maxwell (3d3v)

For the sake of completeness we also discretize the six dimensional Vlasov–Maxwell equations,

such that the provided six dimensional codes can be better understood. For the initialization

of the Vlasov–Maxwell solver at t = 0 we need to find the electric field by solving the Poisson

equation

−∆Φ(x, t) =
∑
s

ρs(x, t) and E(x, t) = −∇Φ(x, t). (C.80)

Transforming this into spatial Fourier space yields an equation for every mode k 6= (0, 0, 0)

and j ∈ {1, 2, 3}.

− (k2
1 + k2

2 + k2
3)Φ̃(k, t) = ρ̃(x, t) and Ẽj(x, t) = ikxΦ̃(k, t) (C.81)

The Fourier modes of the electric field are then uniquely defined as

Ẽj(k, t) =
−ikj

k2
1 + k2

2 + k2
3

ρ̃(k, t), ∀j ∈ {1, 2, 3} and k 6= (0, 0, 0). (C.82)

At any time the Poisson error, the conservation of Gauss’ electrostatic and magnetic law, can

be checked by verifying

div(E(x, t)) = ∇ · E(x, t) = ∂x1E1(x, t) + ∂x2E2(x, t) + ∂x3E3(x, t) =
∑
s

ρs(x, t),

div(B(x, t)) = ∇ ·B(x, t) = ∂x1B1(x, t) + ∂x2B2(x, t) + ∂x3B3(x, t) = 0,

(C.83)

which in Fourier space reads

ik1Ẽ1(k, t) + ik2Ẽ2(k, t) + ik3Ẽ3(k, t) =
∑

ρ̃s(k, t)

ik1B̃1(k, t) + ik2B̃2(k, t) + ik3B̃3(k, t) = 0.
(C.84)

In the following the different equations for each split part of the Hamiltonian H = HE +

HB +Hp with their respective Particle-In-Fourier discretization are provided.

• Electric Energy

HE =
1

2

∫
|E(x, t)|2 dx ≈ ĤE =

1

2

∫ L3

0

∫ L2

0

∫ L1

0
|E(x, t)|2dx1dx2dx3

=
1

2

∑
k

(
|Ẽ1(k, t)|2 + |Ẽ2(k, t)|2 + |Ẽ3(k, t)|2

)
L1L2L3

(C.85)

∂tf +
q

m
E(x, t) · ∂vf = 0

∂tB(x, t) = −∇× E(x, t) = −

∂x2E3(x, t)− ∂x3E2(x, t)

∂x3E1(x, t)− ∂x1E3(x, t)

∂x1E2(x, t)− ∂x2E1(x, t)

 (C.86)

∂tB̃(k, t) = −i

k2Ẽ3(k, t)− k3Ẽ2(k, t)

k3Ẽ1(k, t)− k1Ẽ3(k, t)

k1Ẽ2(k, t)− k2Ẽ1(k, t)

 (C.87)

• Magnetic energy

HB =
1

2

∫
|B(x, t)|2 dx ≈ ĤB =

1

2

∑
k

(
|B̃1(k, t)|2 + |B̃2(k, t)|2 + |B̃3(k, t)|2

)
L1L2L3

(C.88)
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∂tE(x, t) = c2∇×B(x, t) = c2

∂x2B3(x, t)− ∂x3B2(x, t)

∂x3B1(x, t)− ∂x1B3(x, t)

∂x1B2(x, t)− ∂x2B1(x, t)

 (C.89)

∂tẼ(k, t) = c2i

k2B̃3(k, t)− k3B̃2(k, t)

k3B̃1(k, t)− k1B̃3(k, t)

k1B̃2(k, t)− k2B̃1(k, t)

 (C.90)

• Kinetic energy (in 3d)

Hp =
1

2

∫
|v|2f(x, v, t) dxdv ≈ Ĥp =

1

2

1

Np

Np∑
n=1

wn
(
v2

1,n + v2
2,n + v2

3,n

)
(C.91)

∂tf(x, v, t)+v · ∇xf(x, v, t) +
q

m
(v ×B(x, t)) · ∇vf(x, v, t) = 0

∂tB(x, t) = 0

∂tE(x, t) = −
∑
s

qs

∫
vfs(x, v, t)dv

(C.92)

ẋ1(t) = v1(t)

ẋ2(t) = v2(t)

ẋ3(t) = v3(t)

v̇1(t) =
q

m
[v2(t)B3(x(t))− v3(t)B2(x(t))]

v̇2(t) =
q

m
[v3(t)B1(x(t))− v1(t)B3(x(t))]

v̇3(t) =
q

m
[v1(t)B2(x(t))− v2(t)B1(x(t))]

(C.93)

The Hamiltonian Hp = Hp1 +Hp2 +Hp3 can be furthermore split into three parts along the

spatial components.

• Kinetic energy (d = 1), Ĥp1

v̇1(t) = 0

ẋ1(t) = v1(t) = v1(0)

v̇2(t) = − q

m
v1(t)B3(x(t) = − q

m
v1(0)B3(x(t))

v̇3(t) =
q

m
v1(t)B2(x(t)) =

q

m
v1(0)B2(x(t))

∂tE1(t) = −q
∫
v1f(x, v, t)dv

(C.94)

Since v1 is constant we can integrate exactly over ∂tx1(t).

x1(τ) := x1(0) + τv1(0) (C.95)
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v2(t) = v2(0) +
(
− q

m

)∫ t

0
v1(0)

∑
k

B̃3(k, 0)ei(k1x1(τ)+k2x2(0)+k3x3(0))dτ

= v2(0) +
(
− q

m

)∑
k

B̃3(k, 0)ei(k2x2(0)+k3x3(0))

∫ t

0
v1(0)eik1x1(τ)dτ

= v2(0) +
(
− q

m

)∑
k

B̃3(k, 0)ei(k2x2(0)+k3x3(0))

∫ t

0
v1(0)eik1(x1(0)+τv1(0))dτ

= v2(0) +
(
− q

m

)∑
k

B̃3(k, 0)ei(k1x1(0)+k2x2(0)+k3x3(0))

∫ t

0
v1(0)eik1τv1(0)dτ

= v2(0) +
(
− q

m

) ∑
k, k1 6=0

B̃3(k, 0)eik·x(0) 1

ik1

[
eik1tv1(0) − 1

]
+
(
− q

m

) ∑
k

k1=0

B̃3(k, 0)eik·x(0)tv1(0)

= v2(0) +
(
− q

m

)
∑
k

k1 6=0

B̃3(k, 0)
1

ik1

[
eik·x(t) − eik·x(0)

]
+
∑
k

k1=0

B̃3(k, 0)eik·x(0)tv1(0)


(C.96)

The same procedure is applied to the electric field. Here we already see that we only

need to calculate the additional eik1v1(0), which can result in a speed-up since there are

multiple duplicates in k1.

x1,n(t) = x1,n(0) + tv1,n(0)

v2,n(t) = v2,n(0)

+
(
− q

m

)
∑
k

k1 6=0

B̃3(k, 0)
1

ik1

[
eik·x(t) − eik·x(0)

]
+
∑
k

k1=0

B̃3(k, 0)eik·x(0)tv1(0)


v3,n(t) = v3,n(0)

+
( q
m

)
∑
k

k1 6=0

B̃2(k, 0)
1

ik1

[
eik·x(t) − eik·x(0)

]
+
∑
k

k1=0

B̃2(k, 0)eik·x(0)tv1(0)


Ẽ1(k, t) = Ẽ1(k, 0) + q

1

L

1

Np

Np∑
n=1

wn

{
1

ik1

[
e−ik·xn(t) − e−ik·xn(0)

]
for k1 6= 0

−t v1,n(0) for k1 = 0

(C.97)

• Kinetic energy (d = 2), Ĥp2

ẋ2(t) = v2(0)

v̇1(t) =
q

m
v2(0)B3(x(t))

v̇3(t) = − q

m
v2(0)B1(x(t))

∂tE2(t) = −q
∫
v2f(x, v, t)dv

(C.98)
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x2,n(t) = x2,n(0) + tv2,n(0)

v1,n(t) = v1,n(0)

+
( q
m

)
∑
k

k2 6=0

B̃3(k, 0)
1

ik2

[
eik·x(t) − eik·x(0)

]
+
∑
k

k2=0

B̃3(k, 0)eik·x(0)tv2(0)


v3,n(t) = v3,n(0)

+
(
− q

m

)
∑
k

k2 6=0

B̃1(k, 0)
1

ik2

[
eik·x(t) − eik·x(0)

]
+
∑
k

k2=0

B̃1(k, 0)eik·x(0)tv2(0)


Ẽ2(k, t) = Ẽ2(k, 0) + q

1

L

1

Np

Np∑
n=1

wn

{
1

ik2

[
e−ik·xn(t) − e−ik·xn(0)

]
for k2 6= 0

−t v2,n(0) for k2 = 0

(C.99)

• Kinetic energy (d = 3), Ĥp3

ẋ3(t) = v3(t)

v̇1(t) = − q

m
v3(t)B2(x(t))

v̇2(t) =
q

m
v3(0)B1(x(t))

∂tE3(t) = −q
∫
v3f(x, v, t)dv

(C.100)

x3,n(t) = x3,n(0) + tv3,n(0)

v1,n(t) = v1,n(0)

+
(
− q

m

)
∑
k

k3 6=0

B̃2(k, 0)
1

ik3

[
eik·x(t) − eik·x(0)

]
+
∑
k

k3=0

B̃2(k, 0)eik·x(0)tv3(0)


v2,n(t) = v2,n(0)

+
( q
m

)
∑
k

k3 6=0

B̃1(k, 0)
1

ik3

[
eik·x(t) − eik·x(0)

]
+
∑
k

k3=0

B̃1(k, 0)eik·x(0)tv3(0)


Ẽ3(k, t) = Ẽ3(k, 0) + q

1

L

1

Np

Np∑
n=1

wn

{
1

ik3

[
e−ik·xn(t) − e−ik·xn(0)

]
for k3 6= 0

−t v3,n(0) for k3 = 0

(C.101)
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The total momentum is conserved over time, such that the discrete total momentum has to

be considered which reads

P = m

∫∫
vf(x, v, t) dxdv +

∫
E(x, t)×B(x, t) dx

= m

∫∫
vf(x, v, t) dxdv +


∫
E2(x, t)B3(x, t)− E3(x, t)B2(x, t) dx∫
E3(x, t)B1(x, t)− E1(x, t)B3(x, t) dx∫
E1(x, t)B2(x, t)− E2(x, t)B1(x, t) dx


P̂ =

m

Np

Np∑
n=1

wnvn + L
∑
k

Ẽ2(k, t)B̃3(k, t)− Ẽ3(k, t)B̃2(k, t)

Ẽ3(k, t)B̃1(k, t)− Ẽ1(k, t)B̃3(k, t)

Ẽ1(k, t)B̃2(k, t)− Ẽ2(k, t)B̃1(k, t)

 .

(C.102)
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PIF and Semi-Lagrange Vlasov–Poisson in 6d

Access to Helios1 in the scope of the Selavlas project, enabled us to benchmark a single

species Vlasov–Poisson PIF scheme on a larger scale. For this a standard PIF for arbitrary

integer dimensions was implemented in SeLaLib. Time integration is done by symplectic

Runge-Kutta schemes up to fourth order. In presence of a constant external magnetic field

the phase space conserving Boris scheme is implemented. The MPI parallelization is done

by domain cloning, which means that every node holds all Fourier modes. Since the Poisson

solve is trivial and only few modes are used this approach is computationally feasible. Solving

the Poisson equation in Fourier space is simple, yet the charge projection onto the spectral

grid is expensive, since every particle contributes to every Fourier mode. Each Fourier mode

is calculated by evaluation of a complex exponential such that there is no roundoff. In

order to achieve a O(N) convergence, the quasi monte carlo Sobol sequence is used for the

random samples. We present simulations of Landau damping and a Bump-on-Tail instability

and compare the results as well as the computational performance to a grid based Semi-

Lagrangian Vlasov–Poisson solver. This results are a joint work with K. Kormann and were

presented at the PASC16 conference [204]. The Semi-Lagrangian solver also developed in

SeLaLib was using the full grid in order to compare the 6D performance [259, 260]. Other

implemented variants using e.g. the tensor train format [261, 262] take advantage of our

simply constructed test-cases such that a comparison is pointless.

We consider in d dimensions the wave vector k, k0 ∈ Rn. The length of the d-dimensional

periodic box [0, L1]× · · · × [0, Ld] is given as Ln = 2π
k0
n
, ∀n = 1, . . . , d. The initial conditions

for Landau damping (eqn. (D.1)) and the bump-on-tail instability(eqn. (D.2)) are extended

from one to d dimensions by tensor product.

f(x, v, t = 0) =

(
1 + ε

d∑
i=1

cos(kixi)

)
1

(
√

2π)d
e−

1
2

∑d
i=1 v

2
i (D.1)

f(x, v, t = 0) =

(
1 + ε

d∑
i=1

cos (kixi)

)
1√
2π

(
(1− nb)e−

|v|2
2 +

nb
σ

e−
|v−v0|

2

2σ2

)
(D.2)

By this Ansatz reference solutions can be synthesized from a one dimensional spectral solver.

In the following the L2 error on the electrostatic energy is compared. Since for a damped

mode one would only compare the initial condition therefore, the first half of the simulation

is neglected. The QMC convergence is achieved for Landau damping, see figs.D.1,D.2 and

the PIF scales perfectly due to the small amount of modes. But the Semi-Lagrangian solver

cannot be beaten with this naive Fortran implementation, especially as the costs increase

rapidly with more Fourier modes. The same problem appears for the Bump-on-tail instability,

where the PIF performs a little bit better, see fig.D.3. Nevertheless, we have to note that

1This work was carried out using the HELIOS supercomputer system at Computational Simulation Centre of

International Fusion Energy Research Centre (IFERC-CSC), Aomori, Japan, under the Broader Approach

collaboration between Euratom and Japan, implemented by Fusion for Energy and QST.
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total cpu time electrostatic energy

energy error momentum error

Figure D.1.: Linear Landau damping ε = 0.01, ∆t = 0.1, k = [0.5, 0.5, 0.5].

such comparison can be influenced already by minor optimizations such that this is a constant

race for performance.
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total cpu time electrostatic energy

energy error momentum error

Figure D.2.: Strong Landau damping ε = 0.5, ∆t = 0.01, k = [0.5, 0.5, 0.5].
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total cpu time electrostatic energy

energy error momentum error

Figure D.3.: Bump-on-tail instability ε = 0.5, ∆t = 0.01, k = [0.3, 0.3, 0.3], nb = 0.1, v0 =

4.5
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