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Abstract

Object detection, segmentation and visual tracking are extremely important
problems in both computer vision and medical image analysis. In the last
few years a plethora of methods leveraging a wide range of techniques such
as optimization, integration of statistical priors, variational methods, feature
extraction and matching have been proposed. The most recent scientific efforts
focused on proposing machine learning based approaches that can tackle and
solve these problems appropriately. Methods that are based on handcrafted
features, the so called shallow approaches, have been widely used and explored
until very recently and were often employing machine learning algorithms
such as boosting, support vector machines, random forests coupled with a care-
ful choice of manually engineered features which were designed in a specific
manner for each task. Other researchers, who focused their attention on sparse
sensing and dictionary learning, have achieved notable results proposing meth-
ods that leverage sparse coding to discover sets of basis functions which can be
sparsely combined to reconstruct signals. These basis functions capture salient
characteristics of the data at hand without requiring any manual efforts. Most
recently these approaches have been replaced by deep learning methods which
are as well capable of learning features directly from raw data and can capture
semantically meaningful information in a hierarchical and structured fashion.
Such approaches, which are particularly suited for vision tasks, deliver in
some cases superhuman performances when applied to challenging problems.
Although machine learning approaches as such delivered outstanding perfor-
mances on a number of challenging tasks, many methods – especially in the
field of medical image analysis – cannot still be applied in a straightforward
manner. The lack of large amounts of annotated training data, the presence of
noise and artifacts, the low inter-class versus the high intra-class variability of
the samples, and other domain-specific factors, often limit the performances of
the models. In the same way, computer vision problems such as visual tracking
and pose estimation have proven more challenging than others, in the first
case, due to the limited knowledge of the appearance of the object of interest
beforehand, and in the second case due to the need to retrieve a precise 6 DoF
pose from unconstrained RGBd frames.

In this thesis I will show how voting strategies can be used to tackle detec-
tion, segmentation and pose estimation problems relying on voting strategies
which look only at image parts and assemble the resulting knowledge into a
global decision. This approach overcomes the limitation of current machine
learning methods in all those cases where, due to the nature of the data and
despite appropriate training, the uncertainty of the decision over previously
unseen data remains high. These cases include the situations, often encoun-
tered in medical image analysis, when the anatomy of interest cannot be easily
distinguished from its surrounding and when only part of it is visible; in a
similar manner, in the field of computer vision, we aim to manage uncertainty
when high background clutter and extensive occlusions are present.
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Zusammenfassung

Objekterkennung, Segmentierung und visuelle Verfolgung sind bei der
Computer Vision und der medizinischen Bildanalyse äußerst wichtige Pro-
bleme. In den letzten Jahren wurde eine Vielzahl von Methoden, die eine
breite Palette von Techniken wie Optimierung, Integration von statistischen
Priors,Variationsmethoden, Merkmalsextraktion und Matching nutzen, vorge-
schlagen. Die jüngsten wissenschaftlichen Bemühungen konzentrierten sich
darauf, maschinell lernende Ansätze vorzuschlagen, die diese Probleme an-
gemessen anpacken und lösen können. Methoden, die auf handgefertigten
Merkmalen basieren, sogenannte flache Ansätze, werden bis heute erforscht
und sind weit verbreitet. Oft sind diese mit maschinellen Lernalgorithmen
wie Boosting, Support-Vektor-Maschinen, Random Forests gekoppelt, die eine
sorgfältige Auswahl von manuell konstruierten Features verarbeiten, welche
für jede Aufgabe spezifisch entworfen wurden. Andere Forscher, die ihre Auf-
merksamkeit auf Sparse Sensing und Dictionary Learning konzentriert haben,
haben bemerkenswerte Ergebnisse vorgestellt anhand von Methoden, die Spar-
se Coding nutzen, um Gruppen von Basisfunktionen zu entdecken, welche
dünnbesetzt kombiniert werden können, um Signale zu rekonstruieren. Diese
Basisfunktionen erfassen markante Merkmale der Daten, ohne dass manuelle
Handlungen erfordert werden. Zuletzt wurden diese Ansätze durch Tiefe Neu-
ronale Lernmethoden ersetzt, die ebenso gut fähig sind, Merkmale direkt aus
Rohdaten zu erlernen und semantisch sinnvolle Informationen hierarchisch
und strukturiert zu erfassen. Solche Ansätze, die sich besonders für visuelle
Perzeption eignen, liefern in manchen Fällen übermenschliche Leistungen,
wenn sie auf anspruchsvolle Probleme angewendet werden. Obwohl das ma-
schinelle Lernen als solches hervorragende Leistungen bei einer Reihe von
anspruchsvollen Aufgaben erbracht hat, können viele Methoden - vor allem
im Bereich der medizinischen Bildanalyse - nicht immer einfach angewendet
werden. Das Fehlen großer Mengen an annotierter Trainingsdaten, das Vorhan-
densein von Rauschen und Artefakten, die niedrige Inter-Klassen- gegenüber
der hohen Intra-Klassen-Variabilität der Daten und andere domänenspezifische
Faktoren beschränken oft die Leistungen der Modelle. In gleicher Weise haben
sich Computer Vision Probleme wie visuelle Verfolgung und Posen-Schätzung
als schwieriger herausgestellt als andere Probleme, im ersten Fall aufgrund
der eingeschränkten Kenntnis des Erscheinungsbildes des interessierenden
Objekts im Vorfeld und im zweiten Fall, aufgrund der Notwendigkeit, eine
präzise Pose mit sechs Freiheitsgraden aus unbeschränkten RGBd-Frames er-
kennen zu müssen. In dieser Arbeit werde ich zeigen, wie Voting Strategien
verwendet werden können, um die Probleme in Erkennung, Segmentierung
und Posen-Schätzung zu lösen. Die Voting-Strategien stützen sich lediglich auf
Teilen des Gesamtbilds und setzen das daraus resultierende Wissen zu einer
globalen Entscheidung zusammen. Dieser Ansatz überwindet die Begrenzung
aktueller maschineller Lernmethoden in all jenen Fällen, in denen aufgrund
der Art der Daten und trotz entsprechenden maschinellen Trainings die Un-
sicherheit der Entscheidung über bisher nicht sichtbare Daten hoch bleibt.
Diese Fälle beinhalten Situationen, die oft in der medizinischen Bildanalyse
auftreten, wenn die interessierende Anatomie nicht leicht von ihrer Umgebung
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zu unterscheiden oder wenn nur ein Teil davon sichtbar ist. In ähnlicher Weise
wollen wir Detektions-Unsicherheiten im Bereich der Computer Vision bewäl-
tigen, wenn ein hoher Grad an Unordnung im Hintergrund und umfangreiche
Verdeckungen vorhanden sind.
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Chapter 1

Introduction

Machine learning has recently emerged as a valuable tool to aid humans to
accomplish tasks. In the last few years we have witnessed significant progress
and several innovations in the field of computer vision and pattern recognition.
Machine learning fueled multiple of these advancements. Low level vision
tasks such as segmentation, tracking and object detection as well as high level
applications such as self driving cars, autonomous flying robots, self-taught
robotic object manipulation, pervasive augmented reality and systems capable
of reliably recognizing people or places have been enabled by recent efforts of
the machine vision community. Similarly, in medical field, approaches aiming
to solve diagnostic, interventional, and surgical planning problems have been
proposed and have enabled a number of novel techniques. This corresponds
to most of the research around computer aided medical procedures which
focuses on lesion detection, organ segmentation, computer aided diagnosis,
visual tracking, motion analysis and compensation, surgical robotics, etc.

Although there is a junction point between computer vision and computer
aided medical procedures, which is represented by the use in both cases of
images to accomplish or aid tasks, the two fields are inherently different.

Computer vision deals with images captured with cameras, or depth sen-
sors, which exhibit, in general, a limited amount of noise and artifacts, are
easily understandable by human observers, and whose interpretation is chal-
lenging for computer algorithms due to the complexity of the world they
depict. Main challenges are represented by the presence of clutter, occlusions
and illumination changes which are often irrelevant to human observers but
are hard to be properly handled by computer algorithms. Moreover, the be-
haviour of objects, people or animals present in the scene is motivated and
determined by the context, the semantic relationships that can be built between
different entities and, ultimately, by physical laws. Pictures depicting scenes
with multiple objects and entities are often open to multiple interpretations
depending on the settings where the picture is taken, the characteristics of the
people involved, and the role that the objects might have in the specific context
being considered. In other words, a paramount need in computer vision is
to include a deep knowledge of the world in computer algorithms such that
complex and non-trivial situations can be interpreted.
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Computer aided medical procedures, which corresponds largely to medical
image analysis, focuses on the interpretation of medical data such as volu-
metric scans of the human body obtained with techniques such as Magnetic
Resonance Imaging (MRI), Computed Tomography (CT) and ultrasound (US).
This data is acquired by imaging processes that are very different from the
ones involved in computer vision, since they rely on effects such as variations
of magnetic momentum of atoms, the interaction of X-rays with matter and
their attenuation, and the propagation of sound in mediums of variable density.
This results in images that do not represent the world as our eyes would
perceive it and that are often corrupted by noise and artifacts which render
their interpretation not trivial for untrained observers. The image acquisition
process can produce very different data depending on the equipment, on the
experience and preferences of the person who acquires the data, and on a
huge number of other parameters such as the size of the patient, his voluntary
or involuntary motions, and, of course, by anatomical variations that can be
normally observed among both healthy and diseased subjects.

This thesis mainly focuses on problems related to medical image analysis,
and in particular segmentation of different organs and structures of interest in
MRI and freehand ultrasound images. Some of these solutions and findings
have been applied also to the field of computer vision for applications such
as visual tracking and object pose estimation, always in the spirit of obtaining
superior performances by incorporating more knowledge about the world and
by managing the unavoidable uncertainty of machine learning approaches
through voting strategies. Additionally other novel approaches which do not
make use of Hough voting are introduced in this thesis to solve specific tasks
or as means of comparison to highlight the advantages and disadvantages of
voting based approaches.

1.1 Contributions

The main contributions presented in this thesis can be summarized as follows:

• We propose to address the problem of simultaneous localization and
segmentation of various anatomies in freehand ultrasound images by
employing a Hough voting based framework relying on random forests
and handcrafted features. We show how volumetric segmentation can be
obtained by employing the voting strategy in conjunction with an atlas
of manually segmented volumes.

• We extend the previous idea to exploit features that are automatically
discovered from the data at hand through the application of a sparse
auto-encoder.

• We show, through our Hough-CNN, that deep neural networks can be
employed at the core of a Hough voting based framework for the segmen-
tation of various regions of the human brain in both MRI and freehand
ultrasound images. A large study on different network architectures and
different amounts of training data is performed to show the robustness
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of voting approaches versus traditional ones. We show that the main
idea behind this method can be also applied to 6 degrees of freedom
(DoF) object pose estimation in colour images acquired through a depth
camera.

• We propose V-Net, a fully convolutional neural network (FCNN) which
uses a loss function based on the Dice overlap coefficient and therefore
is specifically tailored for segmentation tasks. Beside comparing the
performances of this method to the the results of our Hough-CNN
approach, we use it to demonstrate prostate segmentation in MRI.

• We propose to use dictionary learning to detect and track electrophys-
iology (EP) catheters in X-Ray fluoroscopy images. We extend such
approach to a voting based technique that uses dictionary learning to
encode and capture generic world knowledge and ultimately employ it
for the task of visual object tracking.

These, and other minor contributions are discussed as outlined in the
following.

1.2 Thesis Outline

This thesis follows the structure presented below. Some items in this list contain
references to published work that is directly connected to the specific topics
discussed in the relative chapter.

Chapter 1 is this chapter, it contains a brief introduction to the thesis.

Chapter 2 is devoted to introduce some of the most relevant theoretical
notions that are useful to gain a better understanding of this work. The
foundations of machine learning are briefly described and notions related to
image representation in computer systems are discussed. Basic notions about
the medical data acquisition modalities used in this research, such as freehand
US, MRI and X-Ray will be also briefly introduced.

Chapter 3 discussed the work relative to the topic of medical image segmen-
tation. A brief analysis of the state of the art in this field and clinical motivation
is presented. In particular, we discuss here our approaches exploiting random
forests (RF), sparse auto-encoders (SA) and convolutional neural networks
(CNN) together with a Hough voting strategy for anatomy delineation. Addi-
tionally we discuss our recent approach exploiting fully convolutional neural
network (FCNN) for the same task. Important references for this chapter are:

• Milletari, F., Yigitsoy, M., Navab, N.: Left ventricle segmentation in cardiac
ultrasound using hough-forests with implicit shape and appearance
priors pp. 49–56 (2014)
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• Milletari, F., Ahmadi, S.A., Kroll, C., Hennersperger, C., Tombari, F., Shah,
A., Plate, A., Boetzel, K., Navab, N.: Robust segmentation of various
anatomies in 3d ultrasound using hough forests and learned data rep-
resentations. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015, pp. 111–118. Springer (2015)

• Milletari, F., Ahmadi, S.A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J.,
Levin, J., Dietrich, O., Ertl-Wagner, B., Bötzel, K., et al.: Hough-cnn: Deep
learning for segmentation of deep brain regions in mri and ultrasound.
Computer Vision and Image Understanding (2017)

• Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In: 3D Vision
(3DV), 2016 Fourth International Conference on, pp. 565–571. IEEE (2016)

• Zettinig, O., Shah, A., Hennersperger, C., Eiber, M., Kroll, C., Kübler, H.,
Maurer, T., Milletarì, F., Rackerseder, J., zu Berge, C.S., et al.: Multimodal
image-guided prostate fusion biopsy based on automatic deformable
registration. International journal of computer assisted radiology and
surgery 10(12), 1997–2007 (2015)

• Bortsova, G., Sterr, M., Wang, L., Milletari, F., Navab, N., Böttcher, A.,
Lickert, H., Theis, F., Peng, T.: Mitosis detection in intestinal crypt images
with hough forest and conditional random fields. In: International Work-
shop on Machine Learning in Medical Imaging, pp. 287–295. Springer
(2016)

Chapter 4 introduces our approaches to detect surgical tools and objects
in images. In particular, we discuss how electrophysiology catheters can
be detected in X-Ray images and how their 3D spatial arrangement can be
reconstructed from two views. Additionally we discuss an approach exploiting
Hough voting to detect objects in RGB-D images. As customary, the state of
the art is briefly analyzed and the motivation of the work is presented in this
chapter.

• Milletari, F., Navab, N., Fallavollita, P.: Automatic detection of multiple
and overlapping ep catheters in fluoroscopic sequences. In: Interna-
tional Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 371–379. Springer (2013)

• Milletari, F., Belagiannis, V., Navab, N., Fallavollita, P.: Fully automatic
catheter localization in c-arm images using â„“1-sparse coding. In: In-
ternational Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 570–577. Springer (2014)

• Kehl, W., Milletari, F., Tombari, F., Ilic, S., Navab, N.: Deep learning of
local rgb-d patches for 3d object detection and 6d pose estimation. In:
European Conference on Computer Vision, pp. 205–220. Springer (2016)
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• Baur, C., Milletari, F., Belagiannis, V., Navab, N., Fallavollita, P.: Auto-
matic 3d reconstruction of electrophysiology catheters from two-view
monoplane c-arm image sequences. International journal of computer
assisted radiology and surgery 11(7), 1319–1328 (2016)

Chapter 5 presents our work relative to tracking of objects in videos. This
method is based on dictionary learning and sparse coding to solve the problem
of object tracking in computer vision domain.

• Milletari, F., Kehl, W., Tombari, F., Ilic, S., Ahmadi, S.A., Navab, N.:
Universal hough dictionaries for object tracking. In: BMVC, pp. 122–1
(2015)

Chapter 6 is devoted to conclusions and discussion about future works.
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Chapter 2

Background

In this chapter we introduce concepts fundamental to the rest of this work. In
particular we show how images are represented in computer systems, how
they are encoded and how to extract features to describe them. We addi-
tionally discuss concepts relative to probability theory and machine learning
fundamentals such as classification and regression. In order to keep this work
self-contained we provide an explanation of concepts relative to random forests,
Hough voting, convolutional neural networks and sparse coding. Finally we
focus our attention on medical images modalities, restricting ourselves to the
modalities that have been employed in this thesis: ultrasound, MRI and X-Ray.

2.1 Foundations

Notions about the representation of images in a computer system and feature
extraction are introduced in this section, followed by a brief explanation of
well understood concepts in machine learning such as probability and its
application for tasks such as classification and regression.

2.1.1 Image representation

Images are usually obtained by sensors whose role is to pick up signals
resulting from physical interactions happening at a microscopic level in the
observed specimen. In computer vision, for example, interactions between
light and objects are commonly observed to create pictures. The source of
contrast, in this case, is the behaviour of different materials when exposed to
light. Most materials absorb some parts of the light spectrum and appear with
different colors. When appropriate sensors are used, even subtle differences in
this signals can be acquired and stored in digital format.

The imaging modalities discussed in this work are all relying a specific
physical phenomenon which is sensed by dedicated hardware to form images.
In computer vision we use most often visible or infrared light; in X-Ray and
CT we use higher energy photons that are absorbed and scattered while they
traverse a medium; in ultrasound we rely on the interactions between a sound
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189 182 102 8

180 181 10 7

183 187 9 11

185 191 5 3

150 153 147 145

200 203 138 132

210 220 219 222

207 209 210 217

Figure 2.1: Schematic representation of how images are encoded in computer
systems in color (RGB) and grayscale format.

wave and materials with different density as modeled by the Snell’s law; in
MRI we sense the nuclear atomic spin after it has been perturbed by a strong
magnetic field.

Digital images are usually obtained by converting the electric signal coming
from the sensors to digital data through analog-to-digital converters. An
interface for digital data transfer is then used to be store or transfer the images
to other systems. Depending on the modality this process can be different or
more complex.

Regardless of the physical imaging process, the information resulting from
the imaging process is stored into a computer system numerically into a tensor.

Grayscale images

Grayscale digital images are represented in computer systems as matrices
(two dimensional tensors). Each element of the matrix represents the intensity
value of one pixel. Differently than black-and-white images, grayscale ones
can contain many shades of gray. Depending on the image format each pixel
is represented using a fixed number of bits. Images making use of 8 bits
encoding for their pixels represent the majority. Using 8 bits it is possible to
encode 256 gray level. In some cases other encodings, often using 12 or 16 bits,
are preferred in order to increase the fidelity of the digital information to the
underlying analog raw signal. A schematic representation is show in Figure
2.1.
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Color images

Color images are represented as a tensor in a computer system. A color image
has 3 dimensions, the first two are spatial representing height and width,
and the third is devoted to channels, which are used to represent the color
information. Images can be represented using three channels in the red-green-
blue (RGB) encoding, which renders color by fusing red, green and blue by
addition. Each channel carries the intensity information for each pixel of the
red, green and blue color component of the image. A variable number of bits
can be used to encode RGB information. A popular choice is to use 8 bits per
channel, in order to obtain approximately 16 millions possible combinations
of colors. A schematic representation of this is shown in Figure 2.1. Using
the same representation other color spaces such as LAB and HSV have been
proposed.

Depth images

Depth images are acquired with special hardware. Popular choices for such
systems are represented by Kinect® sensors which made use of "light-coding"
to detect depth in indoor settings by projecting an infrared light pattern which
is then recognized by a camera. A newer version of the device has been recently
proposed making use of a time-of-flight sensor which allows for outdoor use.
The ability of acquiring these kind of images has fueled and motivated an
incredible amount of research in the last few years in the fields of robotic
vision, human pose estimation and other detection or recognition tasks where
the capability of sensing depth has a crucial role. Depth is represented as an
additional channel of an RGB image, which motivates the name of RGBd that
is often used to indicate this kind of data.

Volumes and beyond

Medical images obtained with imaging modalities such as MRI, CT and with
3D or freehand ultrasound (Section 2.3.1) have a dimensionality that goes
beyond 2D. Tomographic images have at least three dimensions and are stored
as a collection of voxels, that is volumetric pixels which carry an intensity
value representing physical characteristics of the portion of tissue the represent.
With recent technologies it is possible to acquire collections of tomographic
images in a short amount of time. 3D ultrasound is capable of producing
volumetric data in real time, while both CT and MRI can be driven to acquire
"cine" sequences at a few frames per second. These images can be seen as a 4D
(3D + time) data. In ultrasound, it is also possible to acquire 3D Doppler data
over time, which adds another dimension (due to the color information used
to encode flow in color Doppler scans) to the data.

2.1.2 Pre-processing and Feature extraction

Pre-processing is often essential to standardize data in order to facilitate
further processing. Computer vision tasks can be adversely influenced by
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Figure 2.2: From left to right: examples of schematic representation for HAAR,
HOG and box features.

varying lighting conditions, different camera gain, the presence of reflection
and the image statistics are often subject to significant shifts when imaging
conditions change. These problems do not affect quantitative image modalities,
whose intensities have an absolute meaning, but are fairly common in many
tasks using standard cameras. To solve the first problem it is possible to
build invariance towards contrast and illumination changes using zero mean
unit variance normalization. In this case the mean intensity µ = 1

K ∑K
k=1 pk

computed from all the pixels of the image is subtracted from the intensity
of each pixel, and the resulting values are divided by the variance σ2 =
1
K ∑K

k=1(pk − µ)2.
Another technique aiming to standardize all the statistics of the intensities

of an image such that all the moments take predefined values is histogram
equalization. A non-linear transformation is applied in order to obtain an
histogram having approximately the same value for all the bins. This concept
can be extended to histogram matching where the histogram of an image can
be made similar to the one of another using the same reasoning.

Once the images have been pre-processed, features can be extracted. Ac-
cording to the definition, features must possess the following characteristics:

• Local - A feature occupies a small area of the image, thus it is robust to
clutter and occlusions

• Repeatable - The same feature can be found across the images regardless
the geometric and photometric changes

• Distinctive - For each feature an unique description can be created

• Robust - noise, blur, quantization, compression etc. do not destroy feature
description

These features consist often of corner points, blobs, or edges in an image.
They are often accompanied by descriptors which can be used to capture
information about the surrounding of the region the feature has been extracted
from and to make feature matching possible across different images. Also
the descriptors need to be well behaved when we consider invariance and
robustness. Examples of such descriptors are SIFT [103], SURF [16] BRIEF

10



2.1 Foundations

[28] and many others that have been proposed in the last few decades by the
computer vision community.

Although these features and the relative descriptors can be used for machine
learning purpose, the very term "feature" has a slightly different and broader
meaning in this case. Features are quantities that describe the data at hand.
They don’t necessarily need to possess the characteristics listed above and
the aspects of the data captured by them are not always obvious. In machine
learning it is desirable to have a data-set where each example is described by a
collection of features which are sufficient to provide means to solve the task at
hand. For example a problem where we need to recognize objects of a certain
color from others of other color it might be possible to rely only on histograms
as a feature sufficient to accomplish the task. In the past few years a number
of handcrafted features have been proposed to solve problems such as face
detection [165] and pose estimation [150]. Features such as HAAR features
and box features have been successfully in a number of work, especially when
they could be coupled with classifiers having feature selection capabilities,
such as random forests and boosting-based approaches (Figure 2.2). Other
features such as histograms of gradient orientations (HOG) have also been
used in conjunction with a support vector machine to perform pose estimation.
Recently deep convolutional neural networks have been employed in computer
vision and have demonstrated their ability to learn hierarchical features which
are especially optimized for the task at hand. Given enough training data
and a well behaved and smooth loss function, optimization based on back-
propagation is capable of discovering features directly from the data in order
to capture both low and high level image content. In particular, early layers of
a deep neural network usually capture low level vision cues, while deep layers
can distinguish objects and specific patterns [178].

2.1.3 Probability

A random variable x represents an uncertain quantity. Every time x is observed
its value may be different. Random variables can be continuous or discrete,
bounded or unbounded. The tendency of x to assume different values, P(x)
can be summarized by the probability density function (pdf) in case of a
continuous random variable or by a discrete density function often expressed
with an histogram over the possible values in case of a discrete random variable.
Both discrete and continuous representation of probability density functions
must sum to one. Random variables can be considered in groups. In this
case we express their tendency of assuming certain values at the same time as
P(x, y, ..., z). For simplicity we consider the case where two random variables
are considered together, and we write P(x, y). Knowing this quantity it is
possible to recover the probability of x or y separately by marginalization.
Marginalization is the process of retrieving the probability of one variable by
aggregating its probability over every possible value of the others. In this case
we write

P(x) =
∫

P(x, y)dy.
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When we consider, for example, a couple of random variables together we may
be interested in knowing the tendency of one of them to take some values when
the other is fixed. In other words we are interested in knowing the probability
of x given a specific value of y = y∗. We write P(x|y = y∗) the conditional
probability modeling this case. This corresponds to slicing the probability
P(x, y) by selecting a certain slice of values over x taken at y = y∗. We can
therefore write P(x|y = y∗) ∝ P(x, y = y∗) and more precisely, by normalizing
the slice such that its integral sums to one,

P(x|y = y∗) =
P(x, y = y∗)∫
P(x, y = y∗)dx

=
P(x, y = y∗)
P(y = y∗)

.

In more compact notation we write P(x|y) = P(x,y)
P(y) .

The terms of the equation above can be re-arranged to obtain

P(x, y) = P(x|y)P(y)

and by symmetry
P(x, y) = P(y|x)P(x).

Since P(x|y)P(y) = P(y|x)P(x) we can write that

P(y|x) = P(x|y)P(y)
P(x)

which is the Bayes rule which gives us a way to compute the posterior prob-
ability of y given what we know about x through the terms P(x|y), which is
the likelihood of x given y, P(y) which models the prior knowledge we have
about y, and P(x) which is the evidence and normalizes the distribution.

When two random variables are independent the identity P(x|y) = P(x)
holds. The same identity can be derived also for y. One can then write that
P(x, y) = P(y|x)P(x) which translates into P(x, y) = P(y)P(x) if the variables
are independent.

When we consider a function f of a random variable x, it is possible to
obtain quantities which summarize its behaviour in terms of expected value.
This can be computed using the expectation operator

E[x] =
∫

f (x)P(x)dx

The expectation operator is a linear operator. The expectation of a deterministic
quantity k is the quantity itself; the expectation of the sum of two different
functions of x is the sum of their expectations; the expectation of E[k f (x)] is
kE[ f (x)] and if two variables x and y which are independent are considered,
the expectations E[ f (x)g(x)] is the product of the expectations of the two
functions. Quantities such as variance, kurtosis, etc, can be computed using
this operator as they can be all defined as functions of x.

Although probability distribution functions can take arbitrary shapes and
values as long as they are positive and integrate to one, there are some com-
mon distributions that are often used to model phenomena which exhibit
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convenient properties when they need to be manipulated and employed in
complex computations. We discuss here the Bernoulli, the categorical and the
Gaussian distributions. The Bernoulli distribution can be used to model binary
classification, the categorical distribution to model multi-class problems and
the Gaussian distribution is important for various methods in this work.

The Bernoulli distribution is used to model phenomena that can have only
a binary outcome. That is, the random variable x can only assume the value 0
or the value 1. Therefore it is a discrete, finite and uni-variate distribution. It
can be written as

P(x) = λx(1− λ)(1−x)

where λ is the probability of x = 1. When looking at Bayesian approaches it is
useful to be able to compute a distribution for the parameter λ governing the
Bernoulli distribution. For this purpose we use the Beta distribution. In this
way we can model classification as a maximum a posterior estimation problem.

The categorical distribution is employed to model uni-variate random
variables that can only assume K discrete values. It is similar to the Bernoulli
distribution and can be expressed as

P(x = k) = λk

for each possible value of x = 1 . . . k. And ∑K
k=1 λk = 1. In cases where it is

useful to get a distribution for the hyper-parameters λk, the correct distribution
to use is the Dirichlet distribution.

The Gaussian distribution is a uni-variate or multi-variate distribution
modeling continuous random variables having unbounded values ∈ R. It
depends on two parameters the mean µ and the variance σ2. It can be expressed,
in the uni-variate form, as

P(x) =
1√

2πσ2
e(−

1
2
(x−µ)

σ2 )

in case there is uncertainty about the parameters µ and σ2 their distribution
can be modeled as a normal-scaled inverse gamma distribution.

2.1.4 Classification

Classification consist of distinguishing between data instances belonging to
different classes using a function that is learned in a supervised fashion from
ensembles of feature vectors and corresponding labels. Such approaches
rely on a trained dataset containing multiple samples organized in a matrix
X and respective ground truth Y. An example of classification consists of
distinguishing normal medical images from those exhibiting abnormalities.

More formally, we can learn a discriminative model implemented by the
function f (x) capable of associating feature vectors x to probabilities P(l|x)
over the set of discrete labels l ∈ {1...K}.

Logistic regression is a discriminative model often used in classification. It
enforces a linear decision boundary in feature space. In the following we will
restrict ourselves to the case where we want to classify n-dimensional features
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vectors xi ∈ X in two classes l = {0, 1}. This situation can be modeled using
the Bernoulli distribution introduced previously

P(l|x, θ) = λθ(x)l(1− λθ(x)))(1−l),

where
λθ(x) =

1
1 + exp(θT · x) .

The set of parameters θ is learned through optimization by relying on the
training set and the corresponding ground truth annotation. The training pairs
are assumed to be independent. The solution to the learning problem amounts
to finding the best parameters θ and can be sought, for example, via Maximum
Likelihood Estimation (MLE).

In Maximum Likelihood Estimation we seek to maximize the likelihood
P(l|x, θ) with respect to θ over the whole training set {X, L}. Under the
assumption of sample independence this corresponds to

P(L|X, θ) =
N

∏
i=1

λθ(xi)
l
i(1− λθ(xi)))

(1−li).

We can at this point use the expression for λθ and turn the product into a
sum by taking the logarithm of the whole expression. Although this operation
changes the value of the function over its domain, it doesn’t change the
location where its maximum is achieved. In this way we can obtain a more
tractable expression for the derivative of the MLE expression having replaced
the product with a sum.

The derivative can be written as

∂L
∂θ

= −
N

∑
i=1

(
1

1 + exp(−θxi)
− li)xi

and the solution to the learning problem in a MLE sense can be achieved by
gradient descent until convergence.

More complex classification approaches have been proposed in the past
decades and although no single classifier is capable of solving every problem
optimally, it is possible to achieve level of accuracy that surpass those of
humans on specific tasks [78]. Approaches such as Logistic Regression are seen
as naive when compared with more recent classification methods based on
random forests [82], boosting [147] or multi-layer neural networks [45]. These
approaches, which have been extensively studied in scientific literature, are
capable of enforcing non-linear decision boundaries without resorting to kernel
tricks [4] which are necessary when using Support Vector Machines (SVM)
[37] or Logistic regression itself. Selected approaches are further discussed in
Section 2.2.

2.1.5 Regression

The aim of regression is to learn a function to associate an observation x
consisting of features organized in a vector of real numbers, with one or
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more real numbers w. Regression falls in the category of supervised machine
learning approaches where a training set of data samples xi organized in a
matrix X and corresponding labels w contained in W is employed. An example
of regression problem is the task of predicting the expected survival time of a
patient from medical data. In this case the prediction is a continuous rather
than a discrete value.

In the following we will restrict to the case where we want to predict a
single real number w in correspondence of each sample x. We want to learn
the parameters θ governing the uni-variate posterior distribution P(w|x). Since
the labels are uni-variate and continuous we can resort to using the Normal
distribution introduced previously in this chapter. As an example, we model
this task as a linear regression problem.

P(w|x, θ, σ2) =
1√

2πσ2
exp((−1

2
(w− µθ(x))

σ2 ))

where µθ(x) = θT · x.
Also in this case the solution can be sought by employing Maximum

Likelihood Estimation (MLE) with respect to both θ and σ and in particular by
taking the logarithm of

P(W|X, θ, σ2) =
N

∏
i=1

1√
2πσ2

exp((−1
2
(wi − µθ(xi))

σ2 )).

The solution to this linear regression problem can be sought using gradient
descent and the derivatives with respect to σ and θ of the expression shown
above.

Similarly to classification, regression methods have seen considerable ad-
vancements in the last few decades and multiple approaches which go beyond
linear regression have been proposed and have been demonstrated to be capa-
ble of solving complex regression problems.

2.2 Methods

In this section we discuss methods from prior art that are relevant to the
approaches presented in this thesis.

2.2.1 Random trees and forests

Random trees are branching logistic regression models [137]. This model has
activation

ai = (1− g(xi, ω))φT
0 xi + g(xi, ω)φT

1 xi

The function g is a (typically binary) gating function. Depending on the
outcome of g(xi, ω) either the linear function φT

0 xi or φT
1 xi is used. The final

classification outcome is produced using the parameters φ0 or φ1 depending
on a decision made by g. Because of this formulation, when g can be learned
during training, the two classifiers are specialized on a subset of the data rather
than the whole set. In this way non-linear decision boundaries can be enforced.
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Figure 2.3: Schematic representation of the implementation of a random tree
using a binary tree data structure. Line thickness represents number of data-
points being routed in the tree structure. Leaves store class probabilities.

One possibility for g is to take the form of another logistic regression
model having parameters ω. During learning we perform maximum likelihood
estimation of the parameters [φ0, φ1, ω] using the training data pairs xi, yi

N
i=0.

It is possible to nest gating functions and obtain more and more complex
classifiers that, although have more parameters and are more difficult to
optimize, can produce better and better decision boundaries.

In practice, random decision forests are constructed as groups of random
decision trees whose implementation is based on the binary tree data structure
[40] (Figure 2.3). In many cases a gradient-free optimization strategy is chosen.

Each node in the tree can be either a splitting node or a leaf. Similarly to
the example above, making use of the function g, splitting nodes route data
to more specialized classifiers consisting of their left or right child. Routing is
performed according to the outcome of a comparison between one or a group
of features, selected at random during training, and a threshold. That is, in
each splitting node we implement the behavior of a very simple linear classifier
that is very similar to g. Once the tree has reached the desired depth or the
number of data-samples resulting from the previous split has fallen below
a threshold, a leaf is instantiated. A Leaf typically stores the proportion of
labels from different classes of the data-points that reached it. Of course more
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complex information can be stored. This information may consist of Hough
votes as shown in [62]. A single random tree can enforce non-linear decision
boundaries during classification. These boundaries are not always optimal and
sometimes can overfit the training data. In this sense, a random forest exhibits
better performances by fusing the outcome of multiple random trees to obtain
smoother and more precise boundaries. Further explanations about random
forests can be found in Section 3.3.

Random forests represent a leap forward in the performances of computer
vision approaches based on machine learning [40]. They are able to do feature
importance selection in an automatic way, since splits are often based on fea-
tures that can best categorize the data at hand, and to obtain very complex
decision boundaries using a simple and efficient implementation. Some draw-
backs of this technique are the necessity to process the whole dataset at once,
which can be limiting in cases where the number of data-points is extremely
high, and the limited ability to perform online training.

2.2.2 Hough transform

Hough transform is a well known technique [75] which allows detection of
object instances from a certain class of shapes even in presence of noise and
artifacts. In computer vision, Hough transform has been used in its most classic
formulation to detect lines, circles and ellipses from images. These shapes
can be expressed analytically using a few parameters that describe them
completely. Images are usually processed through convolutional operations to
extract gradients which convey information about edges and object boundaries
in the scene [54]. The resulting information is then used to accumulate Hough
votes in parameter space and therefore discover instances of these shapes in
the image plane.

For example, a line can be parametrized as y = mx + b or, for better
behaviour during computation, as r = x ∗ cosθ + y ∗ sinθ using the Hesse
normal form [54]. The parameter space, in this case, is the two dimensional
space of either the parameters m and b or, for the Hesse normal form, the
parameters r and θ. The Hough transform works by analyzing each pixel of the
image (or feature-map). If the gradients extracted from the image show enough
evidence of the presence of a portion of a line at that pixel, the parameters
r and θ are computed. These parameters are accumulated in a vote map
(or accumulator), at the position r and θ. Normally each vote is associated
with a weight that conveys information about the strength of the evidence
supporting it. In practice the parameters space is discretized into "bins" in
order to represent the continuous parameters r and θ in the computer system.
After each pixel of the image has been analyzed, voting is complete. At this
point the vote map is processed and local maxima (peaks) are identified. These
positions in parameter space correspond to line instances in the image.

The Hough transform in its classic implementation has several limitations.
First of all, it can only detect basic shapes that can be expressed analytically.
When a larger number of parameters is used to express more complex analytic
shapes, a good trade-off between the size of the vote map and bin granularity
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may be hard to find. When the vote map is very large, votes will accumulate
more sparsely and peaks in the parameters space might become harder to
distinguish from the background noise. Large vote maps occupy more memory,
which can be problematic when the limit of available computational resources
is reached. Coarse vote maps are smaller, since they contain less bins, but may
determine imprecise results or a high number of false positives.

A "generalized Hough transform" has been introduced in [10] with the
aim of allowing detection of arbitrary shapes which cannot be expressed
analytically. In this case, a template shape can be detected in presence of
translations, rotations and shape changes by making use of a parametrization
relying on a correspondence table, called R-table, whose rows contain votes
extracted from the template edges. The votes are grouped by orientation of
the template edges. The parameters space is 5 dimensional, since it needs to
model 2D translations, rotations, and scale changes in 2 orthogonal directions.

A reference point y is chosen within the template that needs to be rec-
ognized. The edges of the template are extracted, and in particular their
orientation φi at each point is taken into consideration. The vector ri joining
every point on the edges of the template and y is then expressed with respect
to φi and added to the R-table at the φi-th row. Detection is performed by
extracting edges and orientations from the image and hand, and by using the
r-table to cast votes in parameter space. Votes accumulate in a clear peak only
when the correct scale and rotation is considered and only for objects whose
edges are similar to the ones extracted when analyzing the reference template.

This approach is robust to partial occlusions and slightly deformed shapes.
It can also tolerate noise and additional structures in the images. Multiple
occurrences of the same object can be retrieved by processing the vote-map
appropriately. The computational and storage requirements for this algorithm
may be very high.

More recently the generalized Hough Transform has been paired with ran-
dom forests [62]. This technique has proven to deliver better performances than
other previous works refining the idea presented in [10]. The discriminative
power of random forests, applied to both pixel classification and vote grouping,
have further increased the effectiveness of generalized Hough voting and its
robustness towards occlusions, deformations and other challenges in computer
vision.

2.2.3 Convolutional neural networks

Neural networks have been introuced in [108]. A neural network makes
use of building blocks called neurons which implement the linear function
y = f (wTx + b) that produces an output y through the activation function f
having as input the dot product between the parameters w and the inputs x
plus the bias term b. When the activation f is a sigmoid, this corresponds to a
linear classifier similar to the one described in 2.1.4.

The function implemented by an artificial neuron remotely resembles the
behavior of biological neurons which activate their output synapse when the
sum of the activation of their inputs surpasses a certain threshold. When
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one or more hidden layers of neurons are present they have the potential
to approximate any non-linear function. As a result, Neural networks are
universal function approximators [44]. This kind of architecture takes the name
of "fully connected" structure because each input is connected to each of the
neuron of the first layer, and every neuron of any subsequent layer is connected
to all the outputs of the previous, until the output of the network is reached.

Multi-layer neural networks can be trained using gradient back-propagation,
which is a technique discussed in [98]. The first step of this stategy is the
forward pass. The operations implemented by the layers of the neural network
are performed in a cascaded fashion (layer after layer), and the objective
function is computed. At this point the gradient of the loss with respect to
the parameters of the network is back-propagated throughout the layers and
applied to the parameters of the model.

As different layers of neurons are stacked together the theoretical learning
capacity of the network increases but the number of total parameters of the
model grows quickly. This becomes unpractical for problems such as computer
vision and image understanding where the input dimensionality is extremely
high already, and thus number of neurons required to tackle the task is very
large. As a result, non-convolutional neural networks cannot be used to end-
to-end image recognition tasks due to practical problems related to number of
parameters of the model, overfitting, difficulties during optimization, etc.

In order to limit these issues, convolutional neural networks have been
proposed [98]. The connections of the neural network architecture have been
organized such that the only a small number of model parameters would
be used in each layer and shared among different portions of the inputs.
In convolutional neural networks, each convolutional layer convolves the
activations from the previous with a small kernel containing model parameters.
This operation is repeated layer after layer until a different kind of layer or the
output of the network is reached.

Convolutional neural network, due to their structure, have the capability
of learning hierarchical features directly from the training data [178]. This is
directly linked with the concept of receptive field. Let us suppose that the
convolutional kernels used in subsequent convolutional layers throughout the
network have a size of K× K pixels. The first layer will be able to perceive a
K × K region of the input image, while the subsequent layer will be able to

perceive a region as big as K +
⌊

K
2

⌋
× K +

⌊
K
2

⌋
. That is, the receptive field,

and therefore the kinds of patterns that can be recognized, grow with the
depth of the network (Figure 2.4). This is also the reason why current network
architectures employ a larger number of convolutional kernels in deeper layers
compared to shallower ones: those kernels are more specialized and recognize
more complex patterns, therefore they are needed in greater number.

Current neural architectures do not only employ convolutional layers. Often
fully connected and pooling layers are used. The first type of layer implements
the same operations that early fully connected neural networks used to im-
plement throughout the whole architecture. The second kind of operation
consists of a decimation task where the size of the activation tensor resulting
from the computations of the previous layer is reduced by a factor p. One of
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Figure 2.4: Schematic representation of the receptive field of two 3× 3 kernel
applied one after the other in a convolutional neural network architecture.

the most common strategy for this task is "max-pooling" which forwards the
maximum value that can be retrieved by looking at a K× K window over the
image applied every p pixels in each direction.

When a neural network is instantiated (both in the convolutional and
fully connected cases) the parameters are initialized at random. This is very
important as it serves the purpose of parameters symmetry breaking which
in turn allows for a meaningful learning procedure where most convolutional
kernels learn to recognize a different pattern.

Another crucial role is represented by the non-linearities employed to obtain
the activation of each convolutional or fully connected layer. It is important to
ensure that the behavior of the gradient of the non-linearities does not cause a
gradient vanishing issue during back-propagation.

Convolutional neural networks have proven to be effective for end-to-end
computer vision and image understanding tasks, for applications such as classi-
fication [93], regression [169] and segmentation [145]. Due to their formulation
as a massively parallel task, it’s possible to obtain efficient implementation of
convolutional neural network on Graphic Processing Units (GPUs).

2.2.4 Sparse coding

We introduce here the main concepts of sparse coding [55]. Sparse coding is a
technique to reconstruct a signal as a sparse combination of an over-complete
set of basis functions called dictionary. Each basis functions takes the name of
word or atom. This is particularly useful in fields such as compressed sensing
and has proven also beneficial for computer vision applications such as visual

20



2.3 Medical modalities

tracking.
Let us suppose a signal y ∈ Rn and a dictionary D ∈ Rn×m whose columns,

also called atoms, approximately span y. The signal y is reconstructed as a
linear combination of the words through the weights α ∈ Rm by solving the
optimization problem

min
α

1
2
‖Dα− y‖2

2 + λ ‖α‖0 . (2.1)

The weight λ controls the sparsity of the solution establishing a trade-off
between least squares optimality and the number of words employed for its
computation. When the weights α are constrained to be positive, the signal y
can be reconstructed only as a conical combination of atoms.

The solution can also be sought for the dictionary D ∈ Rn×m. Given a data-
set of observations we are interested in finding D which can approximately
reconstruct all the examples in the data-set in a sparse manner.

In practice, when the objective is to reconstruct images through sparse
coding, the column of D capture low level visual features, such as edges at
multiple orientations, blobs and corners.

2.3 Medical modalities

Modern medical procedures strongly rely on visual data acquired from patients
using imaging techniques that are able to provide views of the inside of the
body. In this way it is possible to correctly diagnose diseases, see problems
or malformations and assess the progress of a treatment or the outcome of a
procedure. Different medical imaging modalities have different capabilities.
This is due to the fact that contrast, which is at the base of image formation,
is obtained in different ways depending on the physical effect exploited by
the modality. Some modalities use ionizing radiations which, depending on
the dose, can be harmful for the patients but allow to obtain 2D or 3D images
having high resolution and containing invaluable information for clinicians.
Other techniques, such as ultrasound, use sound beams to obtain contrast from
tissue interfaces and form images in real time and in an inexpensive and safe
way. MRI uses a more complex physical process which exploits high magnetic
fields to perturb the orientation of the atomic spins of living tissue. Although
this modality is implemented in machines whose cost is extremely high and
that require special facilities to be operated, the information provided by MRI
is of paramount importance for clinical applications. Other modalities such of
opto-acoustic tomography have been recently developed but are beyond the
scope of this thesis.

2.3.1 Ultrasound

Ultrasound image formation is based on the interaction of sound waves with
materials having different density and therefore different acoustic impedance.
Any sound beam traveling through a medium experiences attenuation as it
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travels away from its source and reflection or scattering when it encounters
regions having different acoustic impedance in the medium. By varying the
frequency of the sound beam it is possible to travel further distances in the
medium (lower frequency) or obtain reflections and scattering for increasingly
small structures (higher frequency).

When imaging the body, echoes are produced at the interfaces between
different kind of tissue, due to their different density, and interfaces between
tissue and air.

In order to obtain images at high enough resolution to allow clinical con-
siderations it is necessary to apply high frequency sound beams through
specifically designed transducers which require good coupling with the body.
Coupling is usually provided by applying ultrasound gel to the body part
that is being scanned which propagates sound at the speed of 1540 m/s. The
frequency and power of the sound beam should be varied when imaging
different body parts. Deep structures are often imaged at frequencies between
1 and 6 MHz, while shallow structures such as vessels and nerves are imaged
at higher resolution using frequencies in the range 8 - 25 MHz.

The waves are usually produced using piezo-electric elements which are
manufactured in arrays whose elements can be activated one by one or in
groups. When electric tension is applied to the elements of the array they
undergo deformation and therefore they can create a mechanical wave (sound
wave) by repeatedly changing their shape. Piezo-electric elements can also
act as sensors for sound waves. When a sound wave is applied to them they
change their shape due to the mechanical force applied by the wave, and
produce an electric tension at their extremities.

Image formation in ultrasound heavily relies on timings, computations
and the assumption that the sound beam travels at a fixed speed through the
body. This speed is assumed to be similar to the speed of sound in water as
the human body consists largely of water. We give an intuitive description of
ultrasound image formation. When a sound beam is produced, it propagates
radially from the piezoelectric element outwards. When it interacts with an
interface between media having different density an echo is produced. This
echo is sensed by the elements in the transducer and a signal is recorded.
Depending on when the echo reaches the transducer it is possible to retrieve
the spatial location where it has occurred and by exploiting and refining this
mechanism it is possible to associate raw signal to spatial locations during
scanning. The image is retrieved by looking at the envelope of the raw signal,
therefore taking into account the strength of the sensed echos.

In practice it is necessary to implement complex techniques in order to
retrieve ultrasound images. Multiple elements of the transducer can be fired
together in order to create a sound beam that has a shape and a focus in order
to better trace the echos back to their spatial locations and obtain better images.
This process is called beam-forming. In the past, focus has also been achieved
using sound lenses placed in front of the transducer or by using transducer
having a specific shape.

Ultrasound can be used in multiple different ways that are conventionally
indicated by A-mode, B-mode, M-mode and Doppler. A-mode, where A stands
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Figure 2.5: Schematic representation of freehand ultrasound volume acquisi-
tion.

for amplitude, shows a plot of the sensed echoes along a single scanning line
through the body as a function of depth. B-mode stands for brightness mode
and consists of grayscale images in 2D or 3D acquired through either a me-
chanically swept transducer or a 1D (producing 2D images) or 2D (producing
3D volumes) transducer array. M-mode stands for motion mode which usually
produces high temporal resolution scans along a specific scan line which are
assembled into a grayscale image showing the motion of the structures encoun-
tered along the line over time. Doppler uses frequency shifts due to Doppler
effect to sense motion inside the body. This is especially useful when acquiring
vascular images in order to assess the blood flow. Due to the motion of the
blood in the vessels the echoes produced by the liquid are shifted in frequency.
This is normally rendered with a color overlay on the grayscale B-mode images
produced by the scanner.

Freehand ultrasound

In the previous section 2D and 3D B-mode ultrasound was briefly discussed.
It has been stated that B-mode images can be acquired using mechanically
sweeping transducers. A single transducer can be mechanically swept to
create a 2D image by assembling the signal relative to different scan lines into
an image due to the fact that its motion is known. 3D images can be also
assembled by mechanically wobbling a 1D transducer.

From these considerations it seems intuitively clear that as long as we can
put in relation to each other different 2D scans, we can also build a 3D image.
This is the concept behind freehand ultrasound.
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If we have means to track the pose of the transducer with respect to the
patient, we can acquire a collection of 2D images by swiping through the
whole region of interest, assess the physical boundaries of the volume that we
have scanned, and interpolate brightness values for the whole area of interest
in a voxel-by-voxel fashion. It is necessary to note though that when we
image different structures from different angles we may obtain very different
brightness signals in ultrasound. This is due to the fact that echoes will be
reflected differently by differently shaped interfaces in tissue and maximum
brightness will be achieved when the transducer is placed perpendicular to an
interface. Moreover, when bones or air is present sound waves do not propagate
anymore through the medium as they are completely reflected by the interface
and instantly absorbed thereafter. This creates signal drop and shadow regions
in 2D ultrasound which have different shape and characteristics depending on
the imaging angle of the probe. Both these factors create additional challenges
when it comes to 3D volume reconstruction.

We usually track the probe and the body of the patient using a high preci-
sion optical tracking and assemble our volumes using off-the-shelf software
such as the PLUS framework [95]. This is summarized in a schematic form in
Figure 2.5. By capturing the spatial transformation between the tracker and
the body and the tracker and the probe it is possible to find the position and
rotation of the probe with respect to the body at any given time. The rela-
tionship between the probe and the image it produces needs to be discovered
by calibration of the data acquisition system prior to scanning. In this way
the voxels of the reconstructed volume can be expressed in patient coordinate
frames where both an origin and a meaningful metric for measurements are
defined.

Some anatomies are more suited than others to be scanned via freehand
ultrasound. Images of organs that do not undergo voluntary or involuntary
motion are easier to acquire. Recently [135] freehand acquisition of transcranial
ultrasound images of the brain has been demonstrated. In that case and in
a handful of similar situations images can be acquired in a straightforward
manner.

In other cases, deformations induced by the probe swiping motion itself can
be present [179]. In those cases it is often possible to ignore these imprecision
as long as the underlying model is robust enough.

When dealing with anatomies that are subject to frequent voluntary or
involuntary motion it is necessary to either account for this effect using prior
information and optimization, in a sort of "bundle-adjustment" strategy [166],
or, when the motion is periodic or known, gate the acquisition process in order
to obtain images that do not exhibit motion [79].

2.3.2 MRI

Magnetic resonance imaging (MRI) is a widespread modality used by clinician
to acquire tomographic images of the body. This modality does not use any
ionizing radiation and relies on a strong static magnetic fields, an oscillating
magnetic field and radio frequency signals to obtain images. MRI images have
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high soft tissue contrast and relatively high resolution in arbitrary orientation.
Moreover MRI is applicable in children and has hardly any side effects. The
source of contrast in this modality is the concentration of hydrogen atoms
contained in the molecules making up the human body.

Hydrogen atoms nuclei have magnetism and, in particular, an atomic spin
vector. These vectors behave similarly to compass needles when they are placed
in the static magnetic field of the MRI machine. That is, they align with the
field. The spin vectors have also an angular momentum. When the orientation
of the atomic spin vectors is temporarily perturbed it is possible to observe
the effect of the angular momentum as they re-align with the static magnetic
field to equilibrium. This is a phenomenon called precession which can be
observed only while the spin vectors re-align towards equilibrium. Precession
can be sensed using coils which pick up the signal produced while the spin
vectors re-align. By applying an oscillating magnetic field orthogonal to the
static magnetic field at the appropriate resonance frequency, it is possible to
temporarily perturb the orientation of the spin vectors and bring them out of
equilibrium. At that point precession is induced and a signal can be obtained.

Hydrogen nuclei have two equilibrium states, spin up and spin down. The
angular momentum of the atoms having spin up and down cancel each other
out. It is therefore necessary to have a different proportion of atoms having
different spins in order to create a net atomic spin axis during scanning. When
operating at room temperature there is only a slight preponderance of the
spin up state which results in a visible spin axis pointing upwards. Increasing
the magnitude of spin axis can be achieved lowering the temperature of the
specimen towards absolute zero or by increasing the static magnetic field of the
MRI apparatus. The magnitude of the spin axis determines the magnitude of
the signal sensed by the RF coil in the machine. For some applications it is de-
sirable to image using higher magnetic fields or lower specimen temperatures.
The magnetic field strength also influences the precession frequency which
is proportional to the static field strength B0 through the Larmor equation
ω = γ ∗ B0, where γ is a quantity specific to the chemical element (hydrogen)
whose atomic spins are being exploited during imaging. At equilibrium we
have a cumulative magnetic vector which is made up by the contributions of
all the individual spin vectors.

In order to produce a tomographic image it is necessary to be able to
distinguish the signal coming from different portions of the specimen at hand.
This can be done through precession frequency shifts induced by gradient
coils in the machine. These coils slightly perturb the static magnetic field
B0 influencing ω. The gradient coils can perturb the field in three orthogo-
nal directions. This influences the Larmor frequency as a function of space.
This spatial encoding can be retrieved by observing the signal produced by
precession over time, through the concept of k-space.

When we tip the cumulative magnetic vector away from equilibrium (90
degree pulse) using the transverse magnetic field, precession will be observed.
All the spin vectors across the specimen being scanned will precess at the
same frequency and without phase differences. Once the gradient coils are
active, the magnetic field in z direction will be perturbed and the spin vectors
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Figure 2.6: Example of MRI images. Image source: [180].

making up the magnetic vector will spin at different Larmor frequency ωz.
The spin vectors will gradually go out-of-phase with each other due to the
frequency shift. As time passes this phase difference will become bigger and
bigger. If we plot the phases as a function of z we obtain a sinusoidal wave
whose frequency k increases with time. The obtained signal S(k) therefore
corresponds to the summation over the whole length z of the effects of all the
spins (proportional to the number of atoms present in the specimen) times their
phases. The phases can be encoded in k-notation as exp(ikz) and the signal
S(k) (with k proportional to time) can be written S(k) =

∫
ρ(z)exp(ikz)dz. The

function ρ(z) can be obtained via inverse Fourier transform. These concepts
can be generalized for imaging in three dimensions.

These principles have been deeply studied and refined during the last 50
years and MRI scanners have been continuously improved in order to be able
to deliver better images at increased resolutions. Different imaging sequences
involving complex pulse sequences have been developed by introducing dif-
ferent ways to drive the oscillating magnetic field of the MRI scanner. In this
way different information could be obtained from the images. Very important
sequences are "T1 weighted", "T2 weighted" and "PD weighted" which produce
very different results using the same hardware as shown in Figure 2.6.

2.3.3 X-Ray

X-Ray imaging is a widespread diagnostic modality employed all around the
world by physicians to image the inside of the human body. In this modality
high energy photons are generated, through an X-Ray generator, beamed
through the body part being scanned and detected by an X-Ray detector. As
X-Rays travel through a medium they are scattered and absorbed. These effects
lie at the core of image formation. The source of contrast for this modality is
the opacity of the materials being scanned to X-Ray.

X-Ray has been discovered by the German scientist Wilhelm Roentgen who
has introduced a technique to produce high energy photons at very short
wavelengths (10−11m) which, although cannot be perceived by the human eye,
are able to penetrate thick solid objects.

X-Rays are generated by X-ray tubes (Figure 2.7). Although different

26



2.3 Medical modalities

Figure 2.7: Picture of an X-Ray tube. Image source [34].

versions of such device exist, the functioning principle is common. A cathode
and an anode are placed in a vacuum tube. A large difference of electric
potential is enforced between the anode and the cathode which causes a
current of highly accelerated electrons to flow in between. These electrons
collide with the material of the anode and decelerate due to the presence of
other charged particles. This effect, called Bremsstrahlung, consists of a loss of
kinetic energy of the moving electrons which results in a high energy X-Ray
photons being emitted.

X-Rays traveling through any medium are absorbed and scattered. The
dominant effects being observed at energy windows that are typically used
in diagnostic settings are the Photoelectric absorption, Compton scattering
and Rayleigh scattering. The first effect consists of an interaction between
the X-Ray photons and electrons belonging to the material. In this case the
photon is absorbed completely and the interacting electron is kicked off its
atom. Vacancy is subsequently filled by another electron of the outer shell of
the atom which leads to an energy emission called X-Ray fluorescence. During
Compton scattering, the X-Ray photon collides with electrons of the outer
shell, loses energy, and continues to travel on a different course while the
interacting electron is kicked off the atom. In Rayleigh scattering the photon
deviates its course without an energy transfer. The accumulated effect of these
interactions between X-Ray photon and matter is the source of contrast in X-Ray
imaging and can be approximately summarized by the transmission equation
I = I0exp(−µx) where I0 is the initial beam intensity, µ is an absorption
coefficient specific for each material, x is the distance traveled by the beam.

Detection of X-Ray can be done using X-Ray films, even though new tech-
niques capable of acquiring digital images have been recently employed. Image
intensifiers or flat panels detectors are currently employed in most of the X-Ray
systems around the world with a bias towards image intensifiers which are
more artifacts prone but have a lower cost.

X-Ray images are currently used both during diagnosis and intervention.
Applications range from orthopedy to angiography and include interventional
uses such as X-Ray fluoroscopy which is essential to provide guidance during
minimally invasive procedures such as trans-catheter surgeries.
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Segmentation

3.1 Introduction

Segmentation is important for both computer vision and medical image anal-
ysis applications. Segmenting an image or a volume consists of delineating
regions of interest that have a specific meaning to the user in relation to the
task at hand. For example, in computer vision, researchers are often interested
in delineating all the objects that occur in an image, in order to distinguish
them from the background and enable further tasks such as robot interaction
or accurate object localization and classification.

Similarly, in medical image analysis we are often interested in delineating
anatomical detail that are relevant to a diagnostic or surgical or treatment
planning task. More specifically, segmentation enables:

• Extraction of quantitative measurements that are indicative of the pres-
ence or absence of a medical condition;

• Pre-operative planning, where the precise delineation of regions of inter-
est allows surgeons to intervene more accurately and more effectively on
the patient;

• Computer aided interventions, where segmentation is used for tasks such
as navigation, real-time motion compensation and deformable registra-
tion;

• Extraction and enhancement of specific information from the image in
order to enable further tasks.

Formally, segmentation can be seen as the problem of assigning a label to
each pixel or voxel in the image [73]. Having N labels, we obtain an exhaustive
N-partitioning P of the image I consisting of N regions Rn, where each pixel
is assigned exactly to one region and there are no pixels that have not been
assigned. Therefore

P = {R1, ..., RN} : ∪N
i=1Ri = I.
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Manual segmentation of medical images is tedious, time consuming and
subjective. When different experts are asked to trace the boundary of a certain
organ or structure of interest, their response can exhibit variations that are
sometimes very significant. These variations depend on the training that each
individual received, his or her particular area of speciality and the guidelines
followed by their hospital or organization.

Despite the fact that the subjectiveness of manually traced segmentations
poses challenges to automated delineation methods, by observing how experts
react to ambiguous situations, we determine that prior anatomical knowledge is
crucial to obtain high-quality results. As previously stated, medical images are
often noisy and corrupted by artifacts, and portions of anatomical details are
often not visible or their appearance is corrupted. Both human and computer
aided approaches must be aware of this issue and react appropriately. Doctors
apply the knowledge they have been incorporating through extensive training,
while machines make use of shape models which have been implemented in
a number of different ways in virtually all the most successful segmentation
methods introduced recently.

In particular, segmentation has been implemented using:

• Methods incorporating explicit shape priors, via principal component
analysis (PCA), produce contours by linear combination of the principal
modes of variation of the training data. In this scenario the coefficients of
the linear combination are obtained via optimization, taking into account
the image content. The resulting shapes are therefore plausible. Methods
based on "snakes" or level-sets belong to this group.

• Methods based on atlas where one or multiple manually annotated
images are employed to segment novel data by deformation and label
propagation from the atlas itself to the new scan. Most brain segmentation
approaches belong to this category.

• Methods based on implicit shape priors, where it is not necessary to
explicitly parametrize the contour and capture its modes of variation,
but a shape prior is imposed by forcing the method to produce plausible
boundaries by imposing the need for symmetry for example or the need
to respect some distance constraints between points locally. Voting based
approached impose these kind of constraints.

Another important aspect is the nature of the data. Medical data can be
volumetric, when dealing with tomographic modalities (PET, MRI, CT, 3D
ultrasound), or 2D when dealing with X-Ray, 2D ultrasound, endoscopy data
and other modalities.

When dealing with 2D ultrasound data the main problem is represented
by the fact that only a cut-through the anatomy of interest can be seen in one
image and therefore only part of the anatomy might be visible simply because
other parts are not in the current scan plane. This poses huge challenges
when accurate measurements are needed for example as the accuracy of the
measurements depends on the skills of the sonographers who need to find
a suitable sonic window that guarantees a correct view. In X-Ray we see a
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projection of all the structures of the body onto a plane, and therefore we
face challenges when we need to discern structures at different depths. On
the other hand 2D data is easier to process due to its limited dimensionality,
compared to volumetric data, and therefore many researchers have proposed
to treat 3D data as a collection of 2D planes and process each plane separately.

Volumetric data should be processed taking its nature into account. Main
challenges in volumetric data is the limited resolution that is often a problem in
MRI or 2D freehand ultrasound, and the data dimensionality which demands
for higher computational resources and processing times. Finally, 3D data
is sometimes more difficult or expensive to acquire and most importantly
annotate than 2D images.

In the works presented in this chapter we will mainly focus on volumetric
segmentation using approaches that scale well both in terms of computational
resources, need for annotated training examples and processing time.
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3.2 Related Work

Recent techniques to perform computer aided segmentation rely on a number
of different methodologies such as deformable models, graph based models,
single and multi atlases, and machine learning methods. Both automatic and
semi-automatic methods have been proposed although, due to the potential
advantages of the firsts, major efforts have been spent in the last few years to
eliminate any need for human interaction from segmentation algorithms.

Approaches based on deformable models rely on optimization-based math-
ematical formulations and, often, on statistical prior knowledge to ensure
robustness of the results. The cost functions being utilized by such methods
are usually based on local intensity gradients, texture, region intensities or
speckle statistics [125]. Exemplary works in this category are [1, 35, 70, 119]
where the parameters defining the segmentation curve are optimized to fit the
image content while taking into account prior information about the expected
final shape, as well as [38, 39, 160] where a variational approach based on level
sets is proposed.

Methods employing shape and appearance models often require a difficult
and time-consuming training stage where the annotated data must be carefully
aligned to establish correspondence across shapes in order to ensure the
correctness of the extracted statistics. PCA can then be used to build a point
distribution model (PDM) by finding the principal modes of variation of the
shapes across the training dataset. Segmentation algorithms can therefore rely
on both image data and prior knowledge to fit a contour that is in agreement
with the shape model. The resulting segmentation is anatomically correct, even
when the image data is insufficient or unreliable because of noise or artifacts.
These approaches are referred to as active shape models (ASM) in literature
[36] and were shown to be applicable to a variety of problems. For example in
[70] a statistical shape model was used to segment the cerebellum of fetuses
in volumetric ultrasound, in [71] the left ventricle of the heart was delineated
making use of contour optimization and prior knowledge and in [1], a hardly
visible portion of the brain imaged by ultrasound through the temporal bone
window of the skull was reliably segmented using a 3D active contour.

Some models take advantage of both appearance and shape models ob-
tained through PCA. In [119], volumetric ultrasound and MRI images of the
heart were segmented using 3D active appearance models (AAM).

Graph based methods have also been proposed an studied by several
groups. In these formulations the images or volumes are seen as graphs
where the pixels or voxels play the role of nodes and neighboring nodes
are interconnected with arcs whose weight is proportional to the intensity
similarity. Although they often require extensive user interaction in order to
identify the source and sink nodes and solve a max-flow/min-cut problem,
they have proven to be successful in a number of applications, and in particular
the method presented in [67] has demonstrated astonishing capabilities in
a number of segmentation tasks, yet requiring only a reasonable amount of
user interaction. When employed in conjunction with automatic approaches
providing initialization, these methods are capable of delivering results without
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requiring any human interaction [139].
Atlas based approaches rely on label propagation from annotated images

to novel data. By the means offered by deformable registration, manually
annotated images and previously unseen data can be brought into spatial
alignment. At this point labels can be propagated across the images and a
segmentation can be retrieved. Methods relying on this concept are popularly
employed for MRI image segmentation where a number of atlas design choices
were explored [92] such as the number of subject that need to be included
in the atlas, the choice of deformable registration algorithm, the construction
of a reference template and the strategy used for label fusion. Atlas based
segmentation has been also successfully employed in ultrasound image seg-
mentation of prostate [128] and left ventricle (LV) of the heart in volumetric
echocardiography [129].

Machine learning approaches have been successfully employed to solve
localization and segmentation tasks both in computer vision [63, 140] and med-
ical image analysis [52]. Fast and accurate voxel-classification for multi-organ
segmentation was achieved by Montillo et al. [120], through entangled Decision
Forests. The power of Random Forests was also demonstrated in localization
and bounding box detection for multiple organs simultaneously, for example in
CT [41] or in MRI Dixon sequences [133] Compared to that, Riemenschneider
et al. propose a joint single-object localisation and segmentation using Hough
Regions and Bayesian labelling of a random field [142], implicitly modelling
object shape. Rematas and Leibe [140] refined this approach and proposed
a unified Hough Forest framework predicting object location and fuzzy seg-
mentation in a streamlined manner. Random Forest lesion detection in 3D
transcranial ultrasound was demonstrated in [132]. Ionasec et al. combine
several Probabilistic Boosting Trees and Marginal Space Learning to fit a com-
plex aortic-mitral valve model to 4D Cardiac CT and 4D trans-esophageal
echocardiography data [84].

These work motivate our first contribution to the field of medical image
segmentation, which is presented in Section 3.3. In this contribution we address
the challenge of segmenting the left ventricle of the heart in 3D ultrasound
images exhibiting noise and artifacts.

Previous approaches have tackled this problem by using either fully auto-
matic or semi-automatic methods. Often hard constraints on the final shape
of the LV needed to be imposed. In [22] a fast semi-automatic method based
on graph cut and an implicit U-shape prior has been used. After asking the
user to click at the location of three specific landmarks of the LV, the 3D vol-
ume was sampled and projected to a spherical-cylindrical coordinate system.
Then, a graph was made in which each node was associated to a voxel. A
gradient-based quantity was then assigned to each edge. Finally, a final de-
lineation of the LV could be achieved by graph-cut. [51] proposed another
semi-automatic approach. After manual initialization, each each short-axis
slice was processed independently, via a Structured Random Forest (SRF) [50].
As a result the probability of each pixel belonging to the endocardium-blood
interface was obtained. Model based surface estimation was then performed
through a "model-to-data" approach followed by a "data- to-model" step. In
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[129] a multi-atlas, semi-automatic, label propagation method was applied.
In order to facilitate finding correspondences between ultrasound images, a
spectral representation of the volumes through dictionary space was used. In
[13] a fully automatic workflow was proposed. Initially, the ED frame was
used to estimate the contour of the LV using an ellipsoid. This was further
refined using a method based on explicit active surfaces. The information was
then propagated through the whole 3D+t sequence using tracking, in order to
estimate the contour of the LV through the cardiac cycle.

Our machine learning based technique, relying on the power of random
forests and handcrafted features, overcomes the limitations of classical active
shape model (ASM) and active appearance model (AAM). We propose a novel
methodology where the anatomy of interest is simultaneously localised and
segmented using a voting strategy and an atlas of annotated volumes which
implicitly impose appearance and shape priors.

Although handcrafted features can exhibit robustness towards the presence
of noise and artifacts [85] and have been often employed to deliver automatic
segmentations, they can rarely adapt well to a range of different tasks such
as segmentation of different anatomies. For this reason, recent work [19] in
the machine learning community focused on approaches leveraging single
[33] or multi-layer [96] auto-encoders to automatically discover appropriate
features from large amount of data. In particular, sparse auto-encoders with a
single-layer have been proven to learn more discriminative features compared
to multi-layer ones [33] when a sufficiently large number of hidden units is
chosen. One of the main advantages of these approaches is the fact that they
don’t need supervision to accomplish the task.

These findings motivate our second contribution, presented in 3.4 which
extends the first by proposing a way to overcome the limitations of hand-
crafted features therefore being able to adapt to different anatomies by learning
adequate features from exemplary data. In this case a sparse auto-encoder
is trained from a set of ultrasound volumes in order to create a bank of 3D
features, which are specific and discriminative to the anatomy at hand.

In the last few years convolutional neural networks (CNNs) became very
popular tools among the computer vision community. Classification problems
such as image categorization [93, 154], object detection [65] and face recognition
[60] as well as regression problems such as human pose estimation [17], and
depth prediction from RGB data [56] have been addressed using CNNs and
unprecedented results have been presented to the community. In order to
cope with the challenges present in natural images, such as scale changes,
occlusions, deformations different illumination settings and viewpoint changes,
these methods needed to be trained on very large annotated datasets and
required several weeks to be built even when powerful GPUs were employed.
In medical imaging, however, it is difficult to obtain even a fraction of this
amount of resources, both in terms of computational means and amount of
annotated training data.

Prior to the introduction of extensive public datasets [9], at the point in time
when our contribution was made, most approaches [31, 32, 76, 124, 136, 26]
could only be trained on a few dozen training examples. Most networks were
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applied to tasks that could be solved by interpreting the images patch-wise in
a sliding window fashion. In this case, several thousands of annotated training
examples could be obtained from just a few images. Dataset augmentation
techniques, such as random patch rotation and mirroring, were also applied
when the analyzed objects were invariant to these transformations [146, 31,
32, 76]. This is the case for cell nuclei, lymph nodes, tumor regions, and
highly deformable organs such as prostate, but not for anatomic structures
with regular size and local context, such as regions of the brain.

Another way to deal with little training data is to embed CNNs as core
components into other methods which are well known to the community and
have been previously applied to the same class of problems. A deep variational
model is proposed in [139]. Their CNN is embedded into a global inference
model, i.e. the CNN outputs are treated as unary potentials on a graph and
the segmentation is solved via minimum s-t cuts on the predicted graph. In
[161] the CNN performs 3D regression to predict an affinity graph, which
can be solved via graph partitioning techniques or connected components
in order to segment neuron boundaries. Active shape models are realized
with CNNs in [100] via regression of multi-template contributions and ob-
ject location. Variational Deep Learning was realized in [124] by combining
shape-regularized level-set methods with Deep Belief Networks (DBN) for left
ventricle segmentation in cardiac MRI.

In Section 3.5, we propose a novel Hough-CNN detection and segmentation
approach which utilizes CNNs at its core to efficiently process medical volumes
patch-wise and obtains voxel-wise classifications along with high level features
–used to retrieve votes – that are descriptive of the object of interest.

In a similar spirit, works such as [141, 173] have employed Hough voting
using a CNN. Their respective aim is to obtain head poses and cell locations
in 2D by using the network to perform simultaneous classification and vote
regression.

Fully convolutional networks (FCNN) trained end-to-end have been recently
applied to 2D images both in computer vision [126, 102] and microscopy image
analysis [145]. These models, which served as an inspiration for our fourth
contribution in the scope of medical image segmentation, employed fully
convolutional network architectures and were trained to predict a segmentation
mask for the whole volumetric image at once. In [126], a pre-trained VGG
network architecture [151] was used in conjunction with its mirrored, de-
convolutional equivalent to segment RGB images, by leveraging the descriptive
power of the features extracted by the innermost layer. In [102], three fully
convolutional deep neural networks, pre-trained on a classification task, were
refined to produce segmentations while in [145], a brand new CNN model,
especially tailored to tackle biomedical image analysis problems in 2D, was
proposed. More recently, this approach was extended to 3D and applied to
segmentation of volumetric data acquired from a confocal microscope [30].
The method was trained using partially annotated data, by optimization of a
weighted multinomial logistic loss layer.

In imaging modalities that are not strongly affected by shadows and signal
drop regions, we found appropriate to apply methods based on FCNN to
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perform segmentation. We introduce a novel FCNN architecture making use
of an innovative loss layer specifically designed for segmentation tasks of MRI
volumes. We propose to optimize the Dice coefficient, one of the most common
measures of region overlap in medical image analysis [43], instead of more
traditional loss functions. We show that a direct optimization of this objective
yields better segmentation accuracy than the commonly used multinomial
logistic loss function, as used e.g. in [30].
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3.3 Hough segmentation forests

We propose a learning-based approach to perform automatic segmentation of
3D ultrasound images (3D-US). The segmentation contour is estimated through
the use of a variant of Hough forests whose object localization capabilities are
coupled with a patch-wise, appearance driven, contour estimation strategy.
Our Hough-forest-based method, which builds upon [140], neither relies on
complex construction of a SSM, nor on manual initializations to obtain results.
An important difference in our main contribution is that we incorporate, in
order to deal with the characteristics of the US images, an appearance prior
enhancing the implicit shape model with constraints on the appearances of the
region of interest. The performance of the proposed method is evaluated on
a dataset of 60 volumes acquired from 30 patients using different equipment
and settings.

3.3.1 Motivation

We apply our approach to segmentation of the left ventricle (LV) of the human
heart in 3D-US volumes. This kind of images, depicting the anatomy of interest
in real time, have proven to be extremely valuable for the assessment of the
functionality of the left ventricle. The value of such assessment plays a central
role in the prediction of outcomes, long term patient survival and for patient
management [168, 127]. One of the main indicators used for evaluation of the
functionality of the left ventricle of the heart is the ejection fraction (EF) which
indicates the fraction of blood present in the left ventricle at the end of diastole
(ED) that gets ejected through the aortic valve at the end of the systole (ES) due
to the contraction of the heart. An accurate segmentation of the blood pool
is extremely valuable since it allows an automatic, yet accurate assessment of
the end systolic and end diastolic volume (ESV and EDV respectively) and
therefore the ejection fraction.

Previously, imaging modalities such as computed tomography (CT), mag-
netic resonance imaging (MRI), and positron emission tomography (PET) have
been employed for heart functionality assessment. Several recent studies indi-
cated that 3D-US, as well as MRI, is particularly indicated to acquire images
with a high diagnostic value. 3D-US is indeed cheaper, real time, has high
temporal resolution and can be performed at the bed-side and for these reasons
it might become the modality of election for this clinical application in the near
future [121].

One of the main limitations of 3D-US, as well conventional 2D ultrasound,
is that it produces images that are often corrupted by noise and artifacts and
are not easy to interpret. One of the main reasons of these limitations seems
to be the low contrast between the blood and the endocardial tissue and the
presence of typical ultrasound artifacts. Our method addressed some of these
issue by implementing an accurate, fully automatic approach for volumetric
segmentation of the LV. Our approach consists of two steps. In the first step a
random forest is used to do a initial estimation of the region assignment for
each voxel. That is, voxels are classified and assigned to either background or
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Sampling Grid Classification Vote Casting and localisation SegmentationAtlases

Figure 3.1: Schematic representation of our segmentation approach shown in
2D.

foreground class. In the second step, voxels that are part of the foreground
cast votes in order to determine the location of the centroid of the anatomy
and proceed to a implicitly-shape-constrained segmentation of the LV.

3.3.2 Method

Our approach leverages the object localization capabilities of Hough Forest [63]
to obtain accurate segmentations of different organs in ultrasound volumes.
Our approach comprises a training and a test phase. The localization of the
left ventricle in the images is obtained in a fully automatic manner, using
the Hough forest voting strategy. The contour is estimated by making use
of a code-book of binary surface patches associated with the votes. That is,
each vote is associated with a binary patch modeling the 3D boundary of the
LV as observed during training around the location the vote originated from.
These patches are used during segmentation to estimate the final contour as
a superimposition of their contributions. Each contribution to the contour is
weighted considering local appearances and added to the final contour. A
schematic representation of this approach is show in Fig. 3.1.

Preprocessing

We normalize the spatial resolutions of the 3D-US volumes by re-sampling
them to a common spacing and then equalize their intensity histograms via
standard histogram equalization. In ultrasound images, high contrasts are
produced locally by tissue interfaces such as the ventricular wall. Therefore, we
define the foreground region as a narrow band around the annotated contour
boundary and the rest of the image as background, represented with the class
labels c ∈ C = { f , b}.

Hough forests differ from simple random forests because, beside the clas-
sification outcome, they provide means to localize object instances through
a voting strategy. In our approach, we couple the voting strategy with a
code-base of segmentation patches and associated intensity patches, enabling
the forest to natively estimate a segmentation contour [140]. During testing
the ventricle center will be retrieved through the voting strategy. After its
location is estimated, all votes that didn’t accumulate in its neighborhood will
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Figure 3.2: Schematic representation of the information carried by each training
data-point.

be filtered out, making the subsequent segmentation step faster and more
effective.

Feature extraction

After re-sampling and intensity standardization, we extract features from
volume patches extracted from a regular grid imposed over the LV ultrasound
volume. The same kind of features are used both during training and testing.

N-dimensional feature vectors F ∈ RK associated with each point in the
regular grid are extracted by applying a bank of K box filters within a radius
R f around each sampling position, obtaining mean intensities over randomly
displaced, asymmetric cuboidal regions similar to Criminisi et al. [42] (see Fig.
3.2 left). Only one component Fk of the vector F is used in each of the splitting
nodes of the random trees employed in this algorithm. This corresponds to the
case where axis aligned splits are performed.

Training the Hough Forest

Our implementation of Hough Forests (HF) combines the classification
performance of Random Forests (RF) with the capability of carrying out organ
localization and segmentation. Differently from the classical Hough Forest
framework [63], our method retrieves segmentations enforcing shape and
appearance constraints.

We consider a training set composed of N data samples, d1...N , where each
sample di = [dx, dy, dz]> corresponds to a voxel of an annotated volume Vt
belonging to the training set T. The annotation Gt, obtained in the form of a
3D binary mask associated with the volume Vt, determines the binary labels
li = { f , b} that characterize each data-point as belonging to the foreground
or to the background. Foreground data-points are associated with a vote
vi = ct − di, which is expressed as a displacement vector connecting di to the
centroid of the annotated anatomy ct = [cx, cy, cz]>, obtained from Gt. (Fig.
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3.2)
During training, the best binary decision is selected in each node of the

Hough Forest, either maximizing the Information Gain (IG) or maximizing
the Vote Uniformity (VU). The criterion is chosen at random. In each node,
we compute M random features and we determine S candidate splits through
the thresholds τ1...S. Each split determines a partitioning of the data Dp
reaching the parent node in two subsets Dl =

{
di ∈ Dp : Fk(di) ≤ τs

}
and

Dr =
{

di ∈ Dp : Fk(di) > τs
}

reaching the left and right child nodes, respec-
tively. The Information Gain is obtained as:

IG(Dp, Dl , Dr) = H(Dp)− ∑
i∈{l,r}

|Di|
|D̄| H(Di),

where the Shannon entropy H(D) = ∑c∈{ f ,b}−pclog (pc) is obtained through

the empirical probability pc =
|Dc |
|D| using Dc = {di ∈ D : li = c}.

The Vote Uniformity criterion requires the votes v{l,r}j contained in Dl and

Dr to be optimally clustered around their respective means v̄{l,r}:

VU(Dl , Dr) = ∑
i∈{l,r}

∑
vj

∥∥∥vi
j − v̄i

∥∥∥ .

Once (i) the maximum tree depth has been reached or (ii) the number of data
points reaching the node is below a certain threshold or (iii) the Information
Gain is zero, the recursion terminates and a leaf is instantiated. The proportion
of foreground versus background points p{ f ,b} is stored together with the votes
vi and the associated original positions di. The coordinates di, in particular,
refer to training volumes which will be used as atlases during segmentation.
The reason to use both vote uniformity and information gain criteria is that
we want each of the leaves of our tree to convey both high confidence during
classification and votes that point into approximately the same direction.

Each tree is trained with a random subset of T (circa 70%), which is
recursively split in each node until a termination criterion is met and leaf nodes
are established.

Segmentation via Hough Forests

Given an ultrasound volume I of the test set, we first classify its voxels into
foreground or background, then we allow foreground data-points to cast votes
in order to localize the target anatomy, and finally, we obtain the contour by
projecting 3D segmentation patches from the atlases associated with each vote
that correctly contributed to localization (Fig. 3.1).

The data-points processed in the Hough Forest are obtained through a
regular grid of sampling coordinates S = {s1...sNd}. In this way, we can reduce
the computational load during testing without significantly deteriorating the
results. Each data-point si classified as foreground in a specific leaf l of the
Hough trees is allowed to cast the nl

v votes v1...nl
v

stored in that leaf during
training.
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Figure 3.3: Left: votes cast by data-points classified as foreground during
testing. Right: probabilistic segmentation contour.

Each vote determines a contribution, weighted by the classification con-
fidence, at the location si + vj of a volume C having the same size as I and
whose content is initially set to zero.

The target anatomy is localized retrieving the position of the highest peak
in the vote map. All the votes v̂j falling within a radius r around the peak are
traced back to the coordinates ŝi of the data-points that cast them. Each vote v̂j

is associated with the coordinates d̂j of a specific annotated training volume.
We retrieve the 3D appearance patch Aj and the segmentation patch Pj

associated to each vote by using the coordinates d̂j to sample the appropriate
training volume and its annotation. The segmentation patches are projected
at the positions ŝi after being weighted by the Normalized Cross Correlation
(NCC) between the patch Aj and the corresponding intensity patterns around
ŝi in the test volume. The fusion of all the re-projected segmentation patches
forms the final contour, which implicitly enforces shape and appearance con-
straints. An exemplary qualitative result can be seen in Figure 3.3.

Using this strategy, not only we obtain a fully automatic method that
does not rely on manual initialization, but we can limit the influence of false
positives. In contrast to methods that perform segmentation relying on pixel-
wise classification, our approach can easily discard misclassified data-points
since they are unlikely to cast votes that accumulate around the actual object’s
center. Additionally, the intensity patches associated to each vote model the
expected appearance in correspondence of the segmentation patch stored in
the code-book, further helping in rejecting false-positive segmentation votes.

3.3.3 Experimental evaluation

We evaluated our algorithm on the MICCAI echocardiography segmentation
challenge datasets [21]. Our method was mainly implemented in Matlab®,
while some parts, like the segmentation stage, were implemented in C++. We
trained a forest containing 20 Hough trees, having a maximal height of 16 and
a minimum leaf population of 10 data-points. We performed two experiments,
where in the first we perform a leave-one-out-cross validation on the training
set, and in the second we do the training on the entire training set, and testing
on the test volumes one-by-one.
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Figure 3.4: Typical contour estimates. In these pictures just one slice of the
contour is depicted although the contour is estimated in 3D.

More details about the evaluation framework and the data used in this
study are presented in [21].

In the first experiment, leave-one-out cross validation, in order to maintain
computational efficiency, the data-points were sampled from a coarsely spaced
grid, where the data-points were located at every ∆d = 8mm circa. The
segmentation and intensity patches Sp and Ip stored in the code base had
a size (px × py × pz) of approximately 18mm× 16mm× 13mm. The features
were extracted using a bank of N = 200 random box-filters that could be
displaced at most R f = 15mm from the grid-points. All the votes in a radial
neighborhood of RLVC = 4mm from the detected centroid were considered for
back-projection. The results of the cross validation, in terms of Dice coefficient,
are provided in Table 3.1. In this experiment, training required circa 5 minutes
while segmenting each volume took circa 6 seconds.

MaD HD Dice Min Err.
Mean ED 2.66 mm 9.01 mm 0.871 0.09 mm
Mean ES 2.43 mm 8.09 mm 0.869 0 mm

ED Volume ES Volume Ejection Fraction
Corr. Coeff 0.986 0.974 0.861

Bias 38.42 -2.57 19.33

Table 3.1: Evaluation of our approach on training data via leave-one-out cross
validation. In the upper half of the table we present the statistics in terms of
mean absolute distance (MaD), Hausdorff distance (HD), dice coefficient and
minimum surface error, respectively. In the second half of the table we report
the correlation coefficient, bias and limit of agreement that we achieved with
respect to the clinical indices; ED volume, ES volume, ejection fraction and
stroke volume.

In the second experiment, on the test set, we sampled the volumes more
densely, reducing the grid point distance to ∆d = 6mm circa. All other
parameters remained constant. We also compared the performances of our
algorithm with the ones of the other teams participating to the challenge. In
particular, we ranked among the best from the point of view of Dice overlap
coefficient. These results together with a comparison with other methods is
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Fig. 3. Bullseye plots of distance error dm (in mm) computed for the full testing dataset between a) the reference meshes and the participants’ meshes at
ED instant and b) the experts (designed as observers) at ED and ES. The scales of the colorbar in fig. a) and b) have been adjusted to the data range

however the clinical equipment that we used do not offer
the possibility to acquire such signal. The publicly available
database5 is thus only composed of conventional B-mode
volumes. The pathologies were carefully selected in order to be
as representative as possible for a majority of clinical scenar-
ios necessitating an endocardial segmentation (thus showing
significant variation in volume and shape).

The interest of an evaluation framework critically relies on
the quality of the reference. Creating reference delineations
with multiple observers is a tedious and complex task. For
this purpose, a dedicated manual contouring protocol for
LV delineation has been specifically defined with close in-
volvement of three expert cardiologists. Although the same
guidelines were given to the experts, their annotations were
not always consistent. The largest differences were usually
located near the mitral valve hinge points and at the apex.
Strict distance criteria were used to ensure coherence between
manual contouring. A second contouring round had to be put
in place for most of the treated volumes (42 of the 45 patients)
to reach consensus between the experts.

5The patient data were provided by hospitals under conditions of restricted
scientifc usage in the context of this study. The accessibility to the data is
thus subject to a license agreement available at https://www.creatis.insa-lyon.
fr/EvaluationPlatform/CETUS/rules.html

B. Evaluation results

The algorithm of Domingos et al. (machine learning tech-
nique) produces four of the six best segmentation scores in
terms of mean value while the algorithm of Bernier et al.
(graph cut model) obtained five of the nine best scores for
the extraction of relevant clinical indices. These results are
very encouraging since these techniques have only recently
been applied for segmentation of RT3DE, which shows that
the application of novel theory in the field of RT3DE can
still be a source of improvement. For a long term perspective,
this means that significant improvements are still achievable
in this domain. In terms of image information extraction, it is
interesting to note that one third of the methods in competition
exploit machine learning techniques [29], [31], [40], among
them the method of Domingos et al. obtained particular good
results in the semi-automatic sub-category for LV segmenta-
tion. This interesting aspect is even more striking given the
limited size of the training dataset (15 patients). Indeed, given
that machine learning techniques generally require a large
amount of cases during the training stage, one can assume that
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Figure 3.5: Bull eye graphs graphically representing errors attained by the
methods compared in Table 3.2 in different regions (numbered following
convention in [21]) of the left ventricle of the heart.

provided in Table 3.2.
Additionally, in Figure 3.5, the accuracy of our algorithm with respect

to different locations of the LV is graphically rendered. The bull eye graph
reported in Figure 3.5 shows 17 different regions of the left ventricle, projected
onto the axial plane cutting through the LV long axis, and the error of the
algorithms in those regions. We can conclude, from this data, that our algorithm
is least precise in the apical region of the LV (region 17 in the bull eye graph).

The training stage required 15 minutes and one testing image could be
segmented in circa 30 seconds.

3.3.4 Further applications

The technique explored in this work is particularly well suited for ultrasound
volume segmentation and was employed without any modification for another
work, presented in [179], whose goal was to segment the prostate in trans-rectal
ultrasound scans acquired while performing computer assisted biopsies.

Currently, prostate cancer diagnosis procedures rely and sampling a number
of random tissue regions through biopsy. The areas that are targeted are
suspected to be affected by cancer according to pre-operative imagery. Such
imagery is often acquired through MRI and PET and shows suspicious regions
with reasonable contrast. During biopsy, real time guidance is be obtained by
performing trans-rectal ultrasound (TRUS) scans which deliver intra-operative
images of the prostate as the samples are collected. Unfortunately TRUS
does not offer any contrast towards the detection of cancerous areas, therefore
doctors must refer to pre-operative volumes (MRI, PET) and mentally register
the images in order to target the correct areas.

In [179] we propose to automatize this process by i) obtain MRI and PET
scans of the patient such that they are registered in the same coordinate
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End Diastolic (ED)
Method Dist. Hausdorf Dist. Dice

Barbosa [13] 2.26± 0.73 8.10± 2.66 0.894± 0.041
Keraudren [91] 2.44± 0.95 8.98± 3.09 0.870± 0.048
Milletari [118] 2.14± 0.68 8.25± 3.87 0.893± 0.031
Smistad [152] 2.62± 0.95 8.26± 2.98 0.885± 0.038

Van Stralen [163] 2.44 + 0.91 8.45± 3.50 0.879± 0.054

End Systolic (ES)
Barbosa [13] 2.43± 0.91 8.13± 3.08 0.856± 0.057

Keraudren [91] 2.54± 0.75 9.15± 3.24 0.842± 0.057
Milletari [118] 2.91± 1.01 8.53± 2.30 0.838± 0.062
Smistad [152] 2.92± 0.93 8.99± 2.98 0.844± 0.050

Van Stralen [163] 2.79± 1.24 8.65± 2.85 0.835± 0.079

Table 3.2: Evaluation of our and other approaches on the test set of 60 3D-US
volumes depicting the left ventricle of the heart. Further results, including
ejection fraction and volume correlations, can be retrieved from the official
CETUS challenge website at address https://miccai.creatis.insa-lyon.fr/miccai.

frame, ii) obtain accurate segmentation of the prostate in MRI offline, iii)
acquiring free-hand ultrasound volumes of the prostate intra-operatively, iv)
segment the prostate in those volumes though our Hough forest framework, v)
bring the MRI and US images into spatial agreement by relying only on the
segmentations of the prostate in the respective volumes and a bio-mechanical
of the organ model to improve robustness.

For the latter step, at first the surface meshes are registered together by
minimizing the distance between surface vertices and computing their dis-
placement. This alignment is performed elastically using coherent point drift
between the MRI and US prostate contours, instead of relying on image data;
then, the displacements are interpolated to obtain a dense deformation field
that is used to warp the MRI volume onto the 3D-US scan. At this point the
MRI, US and PET images can be fused together and accurate guidance can be
achieved.

The freehand ultrasound volume is acquired through an external high-
precision tracking system, in a coordinate frame that is aligned to the one of
the patient. The biopsy needle is as well tracked by the same system. In this
way it is possible to display to the user (Fig. 3.6):

• The MRI and PET scans fused together and accurately aligned via elastic
deformation with the true boundaries of the prostate at the time of the
intervention

• The expected trajectory of the needle on-screen, together with the images
that show the suspicious regions at their true location.
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Figure 3.6: Overview of the system proposed in [179]. The pre-operative
and pre-segmented MRI scan is brought into spatial alignment with the intra-
operative TRUS scan by bringing into spatial alignment the respective segmen-
tation contours. Once the images are fused together both MRI and PET images
can be displayed together with the expected trajectory of the biopsy needle
(greed dashed line).

3.3.5 Discussion

Our Hough forest based approach to segment 3D-US volumes in short time
and without requiring any human interaction constitutes the foundation of
other further approaches based on voting which have proven to be successful
in a wide range of applications. This algorithm was applied to two important
tasks in medical image analysis, namely the segmentation of the left ventricle
of the heart and of the prostate and has been shown being suitable for real-time,
intra operative usage. The main limitation of this approach can be traced back
to the choice of the features used to describe the data at hand and process
it through the random forest. Although random forest can perform feature
selection automatically, we observed that the features used in this work were
often inadequate for other applications, such as segmentation of different
anatomies [179]. This motivated the work presented in chapter 3.4
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3.4 Learned data representations

In this contribution, we propose a highly adaptive learning-based method for
fully automatic segmentation of ultrasound volumes that leverages anatomy-
specific features which are obtained through a sparse auto-encoder. This sparse
auto-encoder is trained from a set of ultrasound volumes in order to create a
bank of 3D features, which are specific and discriminative to the anatomy at
hand.

The extracted features are employed in a Hough Forest based framework
to retrieve the position of the target anatomy and its segmentation contour.
Similarly to the previous contribution, presented in Section 3.3, the position
of the region to be segmented is assessed through a voting strategy and the
contour is obtained by patch-wise projection of appropriate portions of a
multi-atlas. Again, in order to enforce both shape and appearance constraints,
each contribution to the contour is weighted by a factor dependent on the
appearance pattern of the region that it was collected from.

The resulting method is not only (i) fully automatic, and (iii) capable of
enforcing shape and appearance constraints to ensure sufficient robustness,
but also (ii) highly adaptive to different kinds of anatomies. We demonstrate
the performance of the method for three different applications: segmentation
of midbrain, left ventricle of the heart and prostate. The experiments show
that our approach is competitive compared to state-of-the-art anatomy specific
methods and that, in most cases, the quality of our segmentations lies within
the expected inter-expert variability for the particular dataset.

3.4.1 Method

Our approach comprises a training and a test phase. During training, we
discover anatomy-specific features that are employed to learn a Hough Forest.
During testing, we perform simultaneous object localization and segmentation.
A schematic representation of this method can be seen in Figure 3.2.

Feature Learning

Sparse Auto-Encoders are feed-forward neural networks designed to produce
close approximations of the input signals as output (Fig. 3.7 - a). By employing
a limited number of neurons in the hidden layer and imposing a sparsity
constraint through the Kullback-Leibler (KL) divergence of the neurons firing
rate with respect to a desired firing frequency, the network is forced to learn a
sparse lower-dimensional representation of the training signals [33, 96].

The network has N inputs, K neurons in the only hidden layer and N
outputs. The biases b(1,2)

i are integrated in the network through the presence of
two additional neurons in the input and hidden layer having a constant value
of 1. The weights of the connections between the j-th neuron in one layer and
the i-th neuron in the next are represented by w(1,2)

ij ∈ R, that are grouped in

the matrices W1 ∈ RK×(N+1) and W>2 ∈ RN×(K+1). Network outputs can be
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3.4 Learned data representations

Figure 3.7: a) Schematic Illustration of a Sparse Auto-Encoder (SAE); b) Bank of
feature extraction filters obtained from 2D ultrasound images of the midbrain;
c) One filter obtained from 3D echocardiographical data through the SAE.

written as hW(1,2)(X) = f
(
W>2 f (W1X)

)
, where f (z) = 1

1+exp(−z) is the sigmoid
activation function.
The matrix X is filled with M un-labeled ultrasound training patches arranged
column-wise. After a normalization step to compensate for illumination varia-
tions through the dataset, the network is trained via back-propagation. The
network weights are initialized with random values. The objective function to
be minimized comprises of three terms, enforcing the fidelity of the reconstruc-
tions, small weights magnitude and sparsity respectively:

C(X, W1,2) =
1
2

∥∥hW(1,2)(X)− X
∥∥2

+
λ

2

2

∑
l=1

K

∑
k=1

N

∑
n=1

(
w(l)

nk

)2
+ β

K

∑
j=1

KL(ρ‖ρj).

In the third term, we indicate as ρj =
1
M
(
1> f (W1X)

)
the average firing rate

of the j-th hidden neuron, and we define the KL divergence, which enforces
the sparsity constraint [123] by penalizing deviations of ρj from ρ, as:

KL(ρ‖ρj) = ρ log

(
ρ

ρj

)
+ (1− ρ)log

(
1− ρ

1− ρj

)
.

The parameter ρ represents the desired firing rate of the neurons of the hidden
layer, and must be set prior to training together with λ, β and K, which control
the weight of the two regularization terms and the number of neurons of the
hidden layer respectively.

After optimization, the rows of the weight matrix W1 can be re-arranged to
form a set of 3D filters Ξ = {ξ1...ξK} having the same size as the ultrasound
patches collected during training (Fig. 3.7 - b,c).

Training and Testing

The training and testing procedure in this approach is very similar to the
one detailed in Section 3.3.2. The only exception, in this case, is that the
features used to describe the volumetric patches are not handcrafted, but are
obtained by the auto-encoder, as explained above.
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Figure 3.8: Exemplary segmentation results (green curves) Vs. ground-truth
(red curves). Mesh color encodes distances from ground truth in the range
−3mm (red) to +3mm (blue), with green indicating perfect overlap.

Each data point is therefore described by K features F1...K, which are com-
puted by applying one of the filters ξ from the set Ξ obtained via Sparse
Auto-Encoders as described in the previous step. Specifically, we write

Fk(d) =
rx

∑
i=−rx

ry

∑
j=−ry

rz

∑
k=−rz

Vt(dx + i, dy + j, dz + k) ∗ ξ(i, j, k).

3.4.2 Experimental Evaluation

We demonstrate the segmentation accuracy and the flexibility of our algorithm
using three datasets of different anatomies comprising in total 87 ultrasound
volumes. A brief description of each dataset and the relative state-of-the-art
segmentation approach being used for comparison is provided below.

1. The left ventricle of the heart is segmented and traced in [14] using
an elliptical shape constraint and a B-Spline Explicit Active Surface
model. The dataset employed for our tests, comprising 60 cases, was
published during the MICCAI 2014 “CETUS” challenge. Evaluations
were performed using the MIDAS platform1.

2. The prostate segmentation method proposed in [138] requires manual
initialization. Its contour is retrieved using a min-cut formulation on
intensity profiles regularized with a volumetric size-preserving prior. We
test on a self-acquired trans-rectal ultrasound (TRUS) dataset comprising
15 subjects. All the volumes were manually segmented by one expert
clinician via ‘TurtleSeg’. Our results are obtained via cross-validation.

3. Segmentation of the midbrain in trans-cranial ultrasound (TCUS) is
valuable for Parkinson’s Disease diagnosis. In [1], the authors employed
a discrete active surface method enforcing shape and local appearance
constraints. We test the methods on 12 ultrasound volumes annotated by
one expert using ‘ITK snap’ and acquired through one of the skull bones
of the patients. Our results are obtained via cross-validation.

1Documentation under: http://www.creatis.insa-lyon.fr/Challenge/CETUS
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Table 3.3: Overview of Dice coefficients and mean absolute distance (MAD)
achieved during testing. Inter-expert-variabilities (IEV) are also reported. MAD
was not provided by the authors of the algorithms used for comparison.

Dataset Avg. our Dice MAD (mm) State-of-art Dice IEV (Dice)
Left Ventricle 0.87± 0.08 2.90± 1.87 0.89± 0.03 86.1%[14]

Prostate 0.83± 0.06 2.37± 0.95 0.89± 0.02 83.8%[138]
Midbrain 0.85± 0.03 1.18± 0.24 0.83± 0.06 85.0%[1]

Table 3.3 shows the performance of our method in comparison to the other
state-of-the-art approaches on the three datasets. Results are expressed in
terms of Dice coefficients and mean absolute distance (MAD) from ground
truth annotation. Typical inter-expert annotation variability is also shown for
each anatomy.

Parameters of the Model

The Sparse Auto-Encoder was trained to obtain K = 300 3D filters having size
15× 15× 15 pixels, with parameters λ = 10−4, β = 10 and ρ = 10−3. The
Hough Forest includes 12 trees with at most 35 decision levels and leafs that
contain at least 25 data-points. During testing, the images were uniformly
sampled every 3 voxels. All the votes accumulating in a radius of 3 voxels
from the object centroid were reprojected. The size of the segmentation and
intensity patches employed for reprojection during segmentation was different
for the three datasets due to the variable size the object of interest. Values
for left ventricle, prostate and midbrain were 35× 35× 35, 30× 30× 30 and
15× 15× 15 pixels respectively.

Training time for the Auto-Encoder was approximately 24 hours per dataset,
with 500,000 patches. The training time for the forest ranged from 20 minutes
to 5 hours. The processing time during testing was always below 40sec. per
volume.

In Fig. 3.9 we show the histogram of Dice scores observed during our tests.
Its resolution is 0.05 Dice. Additional results can be found in Table 3.3 and Fig.
3.8.

3.4.3 Discussion

Localization of the target anatomy through a voting strategy, removes the need
for user interaction while being very efficient in rejecting false positive data-
points, whose votes could not accumulate in the vicinity of the true anatomy
centroid. During our tests, only one out of 87 localizations failed, resulting
in a wrong contour. A trade-off between appearance and shape constraints
can be set choosing the size of the segmentation patches. Bigger patches force
smoother contours, while smaller ones lead to more adaptation to local volume
contents. The method is not suited for segmentation of elongated structures.
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Figure 3.9: Percentage of test volumes vs. Dice coefficient. This histogram
shows the percentage of test volumes falling in each Dice bin on the horizontal
axis.
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3.5 Convolutional neural networks and voting

In this contribution, we propose a flexible voting mechanism similar to the one
proposed in Section 3.3 and 3.4 but based on neighborhood relations between
the features computed by the CNN. On one hand, this allows us to cast, for
each patch, a variable amount of votes that can be associated with additional
information such as segmentation patches, therapeutic indications or diagnostic
information which may be added or modified at any time without requiring re-
training. On the other hand, by using votes collected from annotated training
images and stored as displacement vectors instead of relying on regression, our
method exhibits robustness to inputs that strongly differ from those observed
during training.

3.5.1 Motivation

Recent research has shown the ability of convolutional neural networks (CNN)
to deal with complex machine vision problems: unprecedented results were
achieved in tasks such as classification [93, 154], segmentation, and object
detection [155, 149], often outperforming human accuracy [78]. CNNs have
the ability of learning a hierarchical representation of the input data without
requiring any effort to design handcrafted features [97]. Different layers of
the network are capable of different levels of abstraction and capture different
amount of structure from the patterns present in the image [178]. Due to the
complexity of the tasks and the very large number of network parameters
that need to be learned during training, CNNs require a massive amount
of annotated training images in order to deliver competitive results. As a
consequence, significant performance increase can be achieved as soon as faster
hardware and higher amount of training data become available [93].

In this work we investigate the applicability of convolutional neural net-
works to medical image analysis. Our goal is to perform segmentation of single
and multiple anatomic regions in volumetric clinical images from various
modalities. To this end, we perform a large study on parameter variations
and network architectures, while proposing a novel segmentation framework
based on Hough voting and patch-wise back-projection of a multi-atlas. We
demonstrate the performance of our approach on brain MRI scans and 3D
freehand ultrasound (US) volumes of the deep brain regions.

The better results delivered by CNNs in computer vision were in part
accomplished with the help of extremely large training datasets and signif-
icant computational resources. Both of which may be often unrealistic in
clinical environments, due to the absence of large annotated dataset and to
data protection policies which often do not allow computation outsourcing.
Therefore, in this study, we perform all training and testing of CNN networks
on clinically realistic dataset sizes, using a high-performance, but stand-alone
PC workstation.

Segmentation of brain structures in US and MRI has widespread clinical
relevance, but it is challenging in both modalities.

In MRI, the segmentation of basal ganglia is a relevant task for diagnosis,
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Figure 3.10: Example of MRI and ultrasound slices (left) and their respective
segmentations (right) as estimated by Hough-CNN. Anatomies shown include
midbrain in US (red) and in MRI (yellow). Further, in upper half of MRI slice:
hippocampus (pink), thalamus (green), red nucleus (red), substantia nigra
(green/red stripes within midbrain) and amygdala (cyan)
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treatment and clinical research. A concrete application is pre-operative plan-
ning of Deep Brain Stimulation (DBS) neurosurgery in which basal ganglia,
like the sub-thalamic nucleus (STN) and globus pallidus internal (GPi), are
targeted for treatment of symptoms of Parkinson’ï¿½ï¿½s disease (PD) and
dystonia, respectively [48]. Accurate localization and outlining of these nuclei
can be challenging, even when performed manually, due to their weak contrast
in MRI data. Moreover, fully manual labelling of individual MRIs into multiple
regions in 3D is extremely time-consuming and therefore prohibitive. For this
reason, both in research [48, 46] and in clinical practice [12], segmentation
through atlas-based approaches is widely used.

Transcranial ultrasound (TCUS) can be used to scan deep brain regions
non-invasively through the temporal bone window. Using TCUS, hyper-
echogenicities of the Substantia Nigra (SN) can be analysed, gaining valuable
information to perform differential [167] and early [20] diagnosis of Parkinson’s
Disease (PD). A crucial step towards computer assisted diagnosis of PD is
midbrain segmentation [1, 112]. This task is reportedly challenging even for
human observers [135]. In order to penetrate the skull, low frequencies need to
be applied resulting in an overall reduction of the resolution and in the presence
of large incoherent speckle patterns. Scanning through the bone, moreover,
attenuates a large part of the ultrasound energy, leading to overall reduction of
the signal-to-noise ratio, as well as low contrast and largely missing contours
at anatomic boundaries. Additionally, the higher speed of sound in the bone
leads to phase aberration [86] and de-focussing of the ultrasound beam which
causes further lowering of the image quality. A variety of image TCUS quality,
anatomical visibility and 3D ultrasound fan geometry can be seen in Figure 3.12.
Registration methods, in particular non-linear registration, are very difficult
under these conditions. Therefore, atlas-building and atlas-based segmentation
methods tend to fail in ultrasound.

In this work we evaluate the performance of our approach using an ultra-
sound dataset of manually annotated TCUS volumes depicting the midbrain,
and an MRI dataset, depicting 26 regions including basal ganglia, annotated in
a computer-assisted manner. Our method is fully automatic, registration-free
and highly robust towards the presence of artifacts. Through our patch-based
voting strategy, our approach can localize and segment structures that are
only partially visible or whose appearances are corrupted by artifacts. This
approach, published in [113], is the first work employing CNNs to perform
ultrasound segmentation.

Our work features several contributions:

• We propose Hough-CNN, a novel segmentation approach based on a
voting strategy similar to [112]. We show that the method is multi-modal,
multi-region, robust and implicitly encoding priors on anatomical shape
and appearance. Hough-CNN delivers results comparable or superior to
other state-of-the-art approaches while being entirely registration-free. In
particular, it outperforms methods based on voxel-wise classification.

• We propose and evaluate several different CNN architectures, with vary-
ing numbers of layers and convolutional kernels per layer. In this way
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Name Network Architecture
Act. func-
tion

Init. Remarks

3-3-3-3-3 I31 · C64
3 · P

2
3 · C

64
3 · C

64
3 · C

64
3 · C

64
3 · F128 · F128 · F#regions

PReLU MSRA
F use
drop-out
(ratio 0.5)

3-3-3-3-3-3-3-3 I31 ·C64
3 ·C

64
3 ·C

64
3 ·C

64
3 ·C

64
3 ·C

64
3 ·C

64
3 ·C

64
3 · F128 · F128 · F#regions

5-5-5-5-5 I31 · C64
5 · C

64
5 · C

64
5 · C

64
5 · C

64
5 · F128 · F128 · F#regions

7-5-3 I31 · C64
7 · P

2
3 · C

64
5 · C

64
3 · F128 · F#regions

9-7-5-3-3 I31 · C64
9 · C

64
7 · C

64
5 · C

64
3 · C

64
3 · F128 · F128 · F#regions

Small Alex I31 · C64
11 · P

1
2 · C

64
5 · P

1
2 · C

64
3 · C

64
3 · C

64
3 · F128 · F128 · F#regions

Table 3.4: Six CNNs were designed and employed to process squared or cubic
patches having size 31 pixels. Notation for architecture and CNN layers given
in section 3.5.2. Activation functions follow all layers.

we acquire insights on how different network architectures cope with the
amount of variability present in medical volumes and image modalities.

• Each network is trained with different amounts of data in order to evalu-
ate the impact of the number of annotated training examples on the final
segmentation result. In particular, we show how complex networks with
higher parameter number cope with relatively small training datasets.

• We adapted the Caffe framework [87] to perform convolutions of volumet-
ric data, preserving its third dimension across the whole network. We
compare CNN performance using 3D convolution to the more common
2D convolution, as well as to a recent 2.5D approach [146].

In this work we propose and benchmark six network architectures, includ-
ing one very deep network having 8 convolutional layers as shown in Table
3.4.

3.5.2 Method

We propose six different convolutional neural network architectures trained
with patches extracted from annotated medical volumes. We optimize our
models to correctly categorize data-points into different classes. The volumes
were acquired in two different modalities, US and MRI, and depict deep
structures of the human brain. Accurate segmentation of the desired regions
has been achieved through a Hough voting strategy, inspired by [112], which
was employed to simultaneously localize and segment the structures of interest.

Convolutional neural networks

A CNN consists of a succession of layers which perform operations on the
input data. Convolutional layers (symbol Ck

s ) convolve the images Isize presented
to their inputs with a predefined number (k) of kernels, having a certain size
s, and are usually followed by activation units which rescale the results of the
convolution in a non linear manner. Pooling layers (symbol Pstride

size ) reduce the
dimensionality of the responses produced by the convolutional layers through
downsampling, using different strategies such as average-pooling or max-
pooling. Finally, fully connected layers (symbol F#neurons) extract compact, high
level features from the data. The kernels belonging to convolutional layers as
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3.5 Convolutional neural networks and voting

well as the weights of the neural connections of the fully connected layers are
optimized during training through back-propagation. The network architecture
is specified by the user, by defining the number of layers, their kind, and the
type of activation unit. Other relevant parameters are: the number and size of
the kernels employed during convolution, the amount of neurons in the fully
connected part and the downsampling ratio applied by the pooling layers. We
propose six network architectures that are described in Table 3.4.

CNNs perform machine learning tasks without requiring any handcrafted
feature to be engineered and supplied by the user. That is, discovering optimal
features describing the data at hand is part of the learning process. During
training the network parameters are first initialized and then the data is
processed through the layers in a feed-forward manner. The output of the
network is compared with the ground-truth through a loss function and the
error is back-propagated [97] in order to update the filters and weights of all
the layers, up to the inputs. This process is repeated until it converges. Once
the network is trained, predictions can be made by using it in a feed-forward
manner and reading out the outputs of the last layer.

In our approach we made use of parametric rectified linear units [78]
(PReLU) as our activation functions.

PReLU(x) =

{
x if x ≥ 0
αx if x < 0

(3.1)

The parameter α in the PReLU activation function is learnt during training,
along with other network weights. In this context we initialize the network
parameters using MSRA [78] as it is an appropriate choice when employing
PReLU activation units.

Many authors [93, 81] reported that the tendency of the network to overfit
can be decreased by using a technique called “drop-out” during training
which inhibits the outputs of a random fraction of the neurons of the fully
connected layers in each iteration. In this way it is possible to limit their
excessive specialization to specific tasks, which is believed to be at the origin
of overfitting in CNNs.

Finally, we employ max-pooling layers to reduce the dimensionality of the
data as it traverses the network. The input of the pooling layer is exhaustively
subdivided into sub-patches having fixed size and overlapping by an amount
controlled by the “stride” parameter. Only the maximal value in each sub-patch
is forwarded to the next layer. This procedure is known to incorporate a spatial
invariance to the network which contradicts the desired localization accuracy
required for segmentation. For this reason we limit the usage of pooling layers
to the minimum amount required to meet the existing hardware constraints.

Voxel-wise classification

A set T = {p1, ..., pN} of square (or cubic) patches having size p pixels is
extracted from J annotated volumes Vj with j ∈ {1...J} along with the cor-
responding ground truth labels (obtained from the annotation of the center
voxel) Y = {y1, ..., yN} ∈ R. Based on this training set CNNs are optimized to
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b)

d) f)e)

a) c)c)

e) f)

a)

d)

Figure 3.11: Schematic representation in 2D of the Hough-CNN segmentation
approach. a) The volume is interpreted patch-wise and classified using the
CNN. b) Every pixel of the foreground (red) casts one or multiple votes in
order to localize the anatomy centroid. c) The votes accumulate in a vote-map,
represented here in jet colormap, and the object centroid is found at the location
of maximum vote accumulation. d) All the votes that accumulated close to the
detected anatomy centroid contribute to the final contour by projecting a binary
segmentation patch (here shown in red and white to indicate foreground and
background respectively) at the location they were cast from. e) A contour
confidence map is constructed by accumulating all the contributions associated
to the votes. f) The resulting contour, depicted in purple, is retrieved by
thresholding the confidence map.

categorize the patches correctly. The resulting trained networks are capable
of performing voxel-wise classification, also called semantic segmentation, of
volumes by interpreting them in a patch-wise fashion or in only one pass
by employing the corresponding fully convolutional neural network (FCNN)
formulation. However, due to the lack of regularization and enforcement of
statistical priors this approach delivers sub-optimal results (Figure 3.16). For
this reason we introduce a novel segmentation method that is based on simul-
taneous localization of the anatomy of interest and robust contour extraction
(Figure 3.11).

Hough voting with CNN

We introduce a robust segmentation approach that is scalable to multiple
regions and implicitly encodes shape priors. This method employs a Hough-
voting strategy to perform anatomy localization and a database containing
segmentation patches to retrieve the contour of the anatomy. Instead of relying
only on categorical predictions produced by the CNNs we also make use
of features extracted from their intermediate layers, in particular from the
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3.5 Convolutional neural networks and voting

second-last fully connected one. Several authors [93, 65, 60] have reported that
these features (sometimes also called descriptors) can be used for tasks such as
image retrieval by mapping images to the feature space and identifying their
neighbours. These findings are employed at the core of our voting strategy.

To keep our notation as simple and understandable as possible we describe
our approach for single region segmentation in the following.

During training, we make use of the dataset of training volumes Vj with
j ∈ {1...J}, and respective binary segmentation volumes Sj with j ∈ {1...J}.

We collect patches from both foreground and background and train a CNN for
classification using the cross entropy loss. As a result, we obtain the parameters
θ̂ that define the network. The CNN not only differentiates patches belonging
to foreground and background through classification, but also associates each
input to a feature vector obtained from its second-last fully connected layer.
The macroscopic effect of the network can be summarized using two functions

f1(pi, θ̂) = li ∈ {0, 1} and f2(pi, θ̂) = fi ∈ Rd

respectively mapping each input patch pi to its label li and to the feature fi,
which has as many dimensions d as there are neurons in the fully connected
layer it is collected from.

We exhaustively collect a dataset T = {p1...pN} of either 2D, 2.5D or 3D
patches from the locations X = {x1...xN} of the foreground region of each
of the training volumes Vj, and we use the CNN to obtain the features fi
introduced before. Our goal is to create a database storing triples consisting of
a feature vector fi, a vote vi and a segmentation patch si.

The vote vi is a displacement vector joining the voxel xi, where the i-th
patch was collected from, and the position anatomy centroid cj in the training
volume Vj:

vi = xi − cj; cj =
1
|Fg| ∑

xi∈Fg

xi

where Fg is the set of all the voxels belonging to foreground. The binary
segmentation patches assume values 1 or 0 respectively for foreground and
background area since they are collected from the positions xi of the binary
annotation volumes Sj.

During testing, in order to segment a previously unseen volume I, we
make use of both the trained CNN and the database established before. We
first obtain the classification label for each voxel xi by processing the relative
patch pi through the CNN, which delivers also the features fi for all the
patches being classified as foreground. Each of such features is compared
to those contained in the database in order to retrieve the K closest entries
using Euclidean distance as criterion. This K-nearest neighbour search (K-nn)
[122] is performed computing Euclidean distances di

1...K between features, as
previously done in [93] for image retrieval. In this approach we didn’t find
any need a Hough forest similar to the one one presented in Section 3.3, which
would have increased the runtime of the approach and at the same time create
opportunity for overfitting.

Once the neighbours are identified, their votes vi
1...K and associated segmen-

tation patches si
1...K from the database, are employed to respectively perform
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localization and segmentation. The votes are weighted by the reciprocal of the
Euclidean distance computed during K-nn search w1...K = 1

di
1...K

and contribute

to a vote-map at positions

v̂i
k = xi + vi

k; ∀k ∈ {1...K}

We repeat the steps described above for each of the patches that were classified
as foreground (Figure 3.11b). Since the region of interest occurs only once in
each volume, we smooth the final vote map with a small Gaussian filter and
retrieve the region centroid by finding the location c where the maximal value
of the vote map is reached (Figure 3.11c). Smoothing reduces the possibility of
small localization mistakes due to “noise” in the vote map around the position
where its maximum occurs.

The region of interest can now be segmented by re-projecting the votes vi
k

to the locations xi where they have been originated from. However, not all the
votes should be re-projected, since a relevant portion of them is erroneous, i.e.
did not contribute to the vote-map anywhere close to the estimated anatomy
location. Thus, only those that contributed to the vote-map within a certain
range r from the predicted centroid are taken into consideration and are
actually allowed to contribute to the final segmentation contour with their own
segmentation patch si

k. The segmentation patches si
k are centred at the location

xi, weighted by wi
k and accumulated in the segmentation map S (Figure 3.11d).

Assuming that the segmentation patches si
k have been extended to an infinite

spatial extent by zero-padding, we can write:

Ŝ(x) = ∑
xi

K

∑
k=1

Ind(v̂i
k, ĉ) wi

k si
k(x− xi)

Ind(a, b) =

{
1 ‖a− b‖ < r

0 ‖a− b‖ ≥ r

In this sense, the segmentation patches si
k can be seen as basis functions si

k(x),
which take binary values, that need to be scaled and re-centered at appropriate
locations in order to produce the desired effect in the segmentation map. The
segmentation map S is normalized to take only values comprised between 0
and 1 by dividing each of its voxels by the number of contributions that had
been accumulated there. At this point it is thresholded in order to obtain the
final binary contour.

The approach is summarized schematically in Figure 3.11. Extending this
method to multiple regions requires little effort. In our implementation, we
treated each region independently by creating region-specific databases as well
as dedicated vote-maps and segmentations. The memory requirements of this
approach can be decreased by retrieving the segmentation patches directly
from the volumes S1...J instead of storing them in the database. In this case,
the database contains coordinates that are used to fetch contour portions from
the S1...J .
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3.5 Convolutional neural networks and voting

Figure 3.12: Visual comparison of semantic segmentation results (top) and
Hough-CNN results (bottom) on the same ultrasound data using the best-
performing CNN. Red areas represent ground truth annotation. Red contours
represent segmentation outputs. Best viewed in digital format.

Efficient patch-wise evaluation through CNN

When dealing with images or volumes, patches are extracted in a sliding-
window fashion and processed through a CNN. This approach is inefficient
due to the high amount of redundant computations that need to be performed
for neighbouring patches. In case no padding is used within the convolutional
layers, the whole volume can be convolved with the respective kernels in
one pass, instead of treating each patch separately, while achieving the same
result. The same holds true for pooling layers whose pooling windows can
be arranged to process the whole volume at once. However, as soon as fully
connected layers are employed, the volume can no longer be processed in one
pass due to the fact that the connections of this layer are limited to the size of
the input patch.

To solve this issue we convert out CNN to a FCNN as proposed by Sermanet
et al. in [149] in order to be able to process the whole volume at once, yet
retrieving the same results that we would obtain if the data would be processed
patch-wise.

3.5.3 Experimental evaluation

In this section we show that CNNs not only can be used to robustly segment
medical volumes (Figure 3.12, Figure 3.13), but they also posses the ability
of learning extremely effective features (outputs of upper layers) from the
data. Even in ultrasound, where the structures of interest are often not clearly
visible or the images are affected by artifacts, CNNs are able to focus on
salient information and therefore recognize patterns. We demonstrate the
superior performances of our Hough-voting-based segmentation algorithm by
evaluating our method on two datasets of US and MRI volumes depicting the
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Figure 3.13: Visual comparison of semantic segmentation results (top two
rows) and Hough-CNN results (bottom two rows) on same MRI volumes using
the same trained CNN. Coloured areas represent ground truth annotation.
Coloured contours represent segmentation outputs. Best viewed in digital
format.

human brain. The two modalities provide complementary information, but are
inherently different both from the point of view of the challenges they offer
and the range of anatomy they can image.

Datasets and ground-truth definition

Our MRI dataset is composed of MRI volumes of 55 subjects, which were
acquired using 3D gradient-echo imaging (magnitude and phase) with an
isotropic spatial resolution of 1x1x1 mm. The sequence [49] is designed for
quantitative susceptibility mapping (QSM) and sensitivity towards iron de-
posits. These are biomarkers for movement disorders like Parkinson’s Disease
and create visible contrast in relevant basal ganglia like SN and STN. For
our study, basal ganglia and other deep-brain structures were annotated in
an atlas volume in two ways. One set of bi-lateral atlas labels (brainstem, n.
accumbens, amygdala, caudate, thalamus, hippocampus, pallidum, putamen)
were annotated semi-automatically via a shape- and appearance-model seg-
mentation (FSL FIRST [131]) plus manual correction of generated labels (one
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3.5 Convolutional neural networks and voting

neuroimage technician, verified by one expert neurologist). Another set of
bi-lateral labels (separation of of pallidus into GPi and GPe, midbrain, red
nucleus, substantia nigra pars compacta and substantia nigra pars reticulata)
was annotated in a fully manual manner (neuroimage technician, verified by
expert neurologist) based on visible contrast. The atlas labels were transferred
using a state-of-the-art atlas approach [7]. As a summary, the list of structures
of interest is also visible in Figure 3.15.

The US dataset was acquired transcranially on 34 subjects, with several
freehand 3D sweeps recorded through the left and right temporal bone window
each. Altogether, 162 volumes were acquired with slight variations in bone
window positioning, and reconstructed at 1mm isotropic resolution. For
all 162 TCUS volumes, midbrain outlines were annotated in 3D by a single
human expert. Inter-rater agreement of the midbrain annotations, in terms
of Dice coefficient, has been reported in [135] to be 0.85. CNN training was
performed on data from 8 subjects (40 sweeps), and testing on data from 24
previously unseen subjects (114 sweeps), while validation data was performed
on 8 sweeps from 2 subjects. Performing segmentation on more than 100 test
volumes is a good indicator of actual clinical applicability of (Hough-)CNN-
based segmentation. The experiments show that the method generalizes very
well on previously unseen data, which is a highly desirable property in clinical
settings.

In order to test our approach and to benchmark the capabilities of the
proposed CNNs when they are trained with a variable amount of data, we
establish, for each dimensionality (2D, 2.5D and 3D) two differently sized
training sets in US and three in MRI respectively. For each of the 40 training
volumes in US we collect either 2K or 10K patches per volume such that half
of the training set depicts the background and the other half the foreground.
The resulting training sets have respective sizes of 80K and 400K patches. A
validation set containing 5K patches has been established for US using images
of subjects that have not been used for training or testing and employed to
assess the generalization capabilities of the models. From the 45 MRI training
volumes, we extract either circa 100, 1K or 10K patches per volume per region
(including background). The resulting training sets have respective sizes of
135K, 1.35M and 13.5M patches.

CNN parameters

We analyze six different network architectures, presented in Table 3.4, by
training each of them for 15 epochs using Stochastic Gradient Descent (SGD)
with mini-batches of 64 or 124 samples, learning rate varying between 10−2

and 5 · 10−3 depending on the individual network architecture, momentum 0.9
and weight decay 5 · 10−4. All our models converged after a few epochs, and
often before the seventh epoch.

Each network is analyzed three times, with patches capturing the same
amount of context from the neighbourhood, but having different dimensionality.
That is, our networks process 2D data, 2.5D data and 3D data in order to
investigate how the networks respond to the higher amount of information
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Parameter Name Value

Tolerance radius r for reprojection r = 3 voxels
Amount of smoothing for vote-maps σ = 1

Maximum number of neighbours K-NN K = 20
Maximal distance of K-NN neighbours (US) 2.5

Maximal distance of K-NN neighbours (MRI) 6.0
Size of segmentation patch 9× 9× 9

Table 3.5: Parameters of the model utilized during the experiments.

carried by patches in 2.5D and 3D patches compared to 2D. During training,
we randomly sample patches from annotated volumes and we feed them to the
networks along with their ground truth labels. The patches of the 2D dataset
are all square and have a size of 31× 31 pixels; the 2.5D dataset is composed
of patches having the same size and three channels consisting of 2D patches
from the sagittal, coronal and transversal plane centred at the same location;
the 3D dataset contains cubic patches having size 31× 31× 31 voxels.

Some of the parameters supplied to our Hough-CNN algorithm are empiri-
cally chosen. Parameters names and respective values are reported in Table
3.5. These parameters remained constant throughout all experiments, both in
ultrasound and MRI. All the trainings were performed on Intel i7 quad-core
workstations with 32 gigabytes of ram and graphic cards from Nvidia, specifi-
cally "Tesla k40" or "Titan X" (12GB VRAM). All tests were made on a similar
workstation equipped with a Nvidia GTX 980 (4 GB VRAM).

Experiments and results in ultrasound

We train our CNNs with different amount of data having different dimen-
sionality, as explained in Section 3.5.3. Each of the six proposed architectures
is trained six times (five for 3D due to the computational burden of some
experiments) in order to cover all the possible combinations of dimensionalities
(2D, 2.5D, 3D patches) and amount of data (training set sizes 80K, 400K). We
test each CNN on 114 ultrasound volumes acquired from subjects whose scans
have never been used during training or validation.

Table 3.6 shows the average performance in terms of Dice coefficients, mean
distances of the estimated contours to the ground truth annotations and failure
rates of the proposed Hough-CNN segmentation approach when different
CNNs are employed. Since we segment one region per volume, the failure rate
represents the percentage of volumes where the region of interest could not
be segmented due to wrong localization (Dice 0). In Figure 3.14 we provide
summary of the performances of each network, when various amounts of
training data are used and patches of different dimensionality are supplied.
Better networks produce Dice histograms whose higher values are occurring
far away from the origin.

Visual examples of ultrasound segmentation results are visible in Figure
3.12. It is notable that the Hough-CNN segmentation is able to localize and
segment the midbrain accurately, regardless of whether the scan was acquired
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Chapter 3: Segmentation

through the left or right bone window. It is also robust to bone window quality
and overall visibility of structures, as well as signal-drop regions and blurring.

Experiments and results in MRI

We train each of our networks nine times (eight for 3D) in order to explore
all the possible combination of different data dimensionality and size of the
training set as explained in Section 3.5.3. We test each of the models on 10
volumes, using their respective atlas-based annotations for evaluation. We
verified, through visual inspection performed by a technician and an expert
neurologist, that the annotation appropriately delineate the regions of interest.

Table 3.7 reports the average performance in terms of Dice coefficients,
mean distances of the estimated contours to the ground truth annotations
and failure rates of the proposed Hough-CNN segmentation approach when
different CNNs are employed at its core. The failure rate, in particular, refers
to the percentage of regions of the whole training set (total number: 26× 10
regions), that were not segmented correctly by Hough-CNN due to the fact
that they could not be correctly localized. The results are clustered by the size
of the training set employed to train the model to improve readability and
the possibility of making comparisons between CNNs employing data having
different dimensionality (2D, 2.5D and 3D). From these results we observe that
the best performing architecture is “7-5-3”.

In Figure 3.15 we compare the results achieved by the architecture “7-5-
3”, on each of the 26 brain region of interest separately, when different data
dimensionalities are used. The bar plot shows the results in terms of Dice
coefficient, while the dashed line plot conveys the results in terms of average
distance of the estimated contour to ground-truth delineation. We observe
that Hough-CNN yields better Dice coefficients when bigger regions and high
contrast area are segmented. Small and low contrast regions could be correctly
localized but they were in general harder to segment.

Visual examples of MRI segmentation results are visible in Figure. 3.13.
It is notable that the Hough-CNN segmentation is able to correctly localize
and segment multiple structures, despite large anatomical variability, such as
cortical atrophy and enlarged lateral ventricles.

3.5.4 Discussion

Training of CNNs requires a large amount of data in order to achieve satis-
factory voxel-wise classification results and perform semantic segmentation.
However, as described in the introduction, obtaining such large annotated
datasets is rarely possible in clinical settings. By using a voting-based strategy,
it is possible to localize the anatomy of interest with high precision, even when
the rate of mis-classified voxels is very high. Additionally, our Hough-CNN
approach implicitly enforces shape priors which facilitate segmentations in
images where the anatomy of interest is poorly visible. Furthermore, when
using 3D patches, only 1.35M training patches were required to surpass the
performance obtained with datasets of 13.5 millions 2D and 2.5D patches. This
marks a 90% reduction of required training data, which turns out to be useful
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0.05 Dice. The vertical axis represents the number of volumes falling in each
Dice bin. Each CNN architecture is depicted with its own colour.
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Figure 3.16: Comparison of mean Dice coefficients obtained in 2D, 2.5D and
3D on US and MRI data using Hough-CNN and semantic segmentation.

when big quantities of annotated data are not available. In all three dimension-
alities, 2D, 2.5D and 3D, Hough-CNN outperforms voxel-wise segmentation
(cf. Figure 3.16). Similar to related works [124, 139, 161, 100], we thus demon-
strate that it may be beneficial to embed CNNs as powerful classifiers into
higher-level methods which encode anatomic shape- and appearance priors.

The experiments performed on MRI highlight important aspects of both
our CNNs and the modality itself. Most of the brain regions considered in
this study (e.g. midbrain, STN, caudate) can be recognized by a human rater
by clearly visible contrasts, while the position and boundaries of difficult
regions with less contrast (e.g. GPi, GPe, SNpc, SNpr) can be inferred through
anatomical knowledge and neighborhood context. Ultrasound volumes are
much more challenging from this point of view. Human midbrain in TCUS can
be difficult to discern and human observers can be mislead by artifacts and
signal-loss areas having similar shape. The CNNs employed in this study had
various architectures and therefore different pattern recognition capabilities.
In MRI, where the most part of regions of interest have good contrast while
the position of the others can be inferred by the context, the best performing
network was “7-5-3”. Although this architecture is the simplest, it delivered best
results in all the MRI experiments. In US, which is a challenging modality, the
networks that delivered best results were among the most complex. “SmallAlex”
and “3-3-3-3-3-3-3-3” are deeper and therefore recognize more complex visual
content than “7-5-3”.

While we observed a strong performance advantage when segmenting
MRI volumes considering 3D data (Table 3.7), we observed the opposite effect
when segmenting ultrasound as shown in the bottom left of Table 3.6. In MRI,
processing data in 3D brings additional useful information which improves
the performance of both automated methods and human raters, who refer
simultaneously to sagittal, coronal and axial views when establishing the
ground truth. In US, we observed that experts segmenting the ground truth
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3.5 Convolutional neural networks and voting

used only the axial plane, since it is the only plane in which the characteristic
shape of the midbrain can be recognized. Similarly, CNNs produce best results
when they are not supplied with misleading information from sagittal and
coronal planes.

Altogether, using Hough-CNNs, we segmented 10 previously unseen MRI
volumes achieving very high Dice coefficients for large and high-contrasted
regions, while some of the smallest and most challenging regions were al-
most always localized accurately and segmented with sub-voxel mean surface
distance. Additionally, we achieved very robust midbrain segmentation in 3D-
TCUS, in a test dataset of more than 20 subjects and 114 volumes, with a large
variation of 3D sweep geometry, bone window qualities, midbrain appearance,
location and orientation. Given the size and variety of the 3D-TCUS test set,
we are confident to say that the method generalizes well to unseen patients.

Compared to atlas-segmentation, Hough-CNN is faster (30 seconds in US,
and 3-4 minutes in MRI on the machine employed for testing) and entirely
registration-free. This makes our approach applicable to TCUS data, in which
registration-dependent methods like atlas-based segmentation would be ex-
tremely difficult, if not impossible, due to largely missing anatomical and
structural context. Our approach is flexible since both votes and segmentation
patches can be substituted without any need for re-training or augmented
to include information from multiple experts. As a future work, we plan to
investigate the extendability of the trained CNN classifier to other modalities
via transfer learning, e.g. from our QSM sequences to T1 or T2. It is also
noteworthy that in this work, we have only used the CNN method for seg-
mentation. However, as other works have demonstrated [134], the learned
data representations in the last layers of the CNN can be directly used for
classification or regression of disease parameters. This can be interleaved with
segmentation, which goes far beyond the capabilities of purely atlas-based
methods.
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3.6 Segmentation via fully convolutional neural net-
works

In this section we present a novel 3D segmentation approach that leverages
the power of a fully convolutional neural network, trained end-to-end, for
processing of volumetric medical images.

Compared to other recent approaches, the contributions of this approach is
three-fold. First, instead of processing the input volumes in a 2D slice-by-slice
fashion, we propose to directly use 3D convolutions. Second, we propose to
maximize a novel objective function designed specifically for medical image
segmentation, which is based on the Dice overlap measure. Third, we define
our network architecture such that residual functions are learned by our convo-
lutional layers. This improve convergence and performances. As our empirical
observations confirm, this mechanism ensures also our novel architecture to
converge in a fraction of the time required by a similar network that does not
learn residuals.

Our CNN is trained end-to-end on MRI volumes depicting prostate, and
learns to predict segmentation for the whole volume at once. Prostate seg-
mentation from MRI can be challenging due to large appearance variation
across different scans, e.g. in terms of deformations or changes of the in-
tensity distribution. Moreover, MRI volumes are often affected by artifacts
and distortions due to field inhomogeneity. To cope with the limited number
of annotated volumes available for training, we augment the data applying
random non-linear transformations and histogram matching. We show in our
experimental evaluation that our approach achieves good performances on
challenging test data while requiring only a fraction of the processing time
needed by other previous methods2.

3.6.1 Method

In Figure 3.17 we provide a schematic representation of our convolutional
neural network. We perform convolutions aiming both at extracting features
from the data and, at the end of each stage, reducing its resolution by using
appropriate stride. The left part of the network consists of a compression path,
while the right part decompresses the signal until its original size is reached.
Convolutions are all applied with appropriate padding.

The left side of the network is divided into different stages that operate at
different resolutions. Each stage comprises one to three convolutional layers.
Similarly to the approach presented in [77], we formulate each stage such
that it learns a residual function: the input of each stage is (a) used in the
convolutional layers and processed through the non-linearities and (b) added
to the output of the last convolutional layer of that stage in order to enable
learning a residual function. As confirmed by our empirical observations, this
architecture ensures convergence in a fraction of the time required by a similar
network that does not learn residual functions.

2Detailed results available at http://promise12.grand-challenge.org/results/
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Figure 3.17: Schematic representation of our network architecture. Our custom
implementation of Caffe [87] processes 3D data by performing volumetric
convolutions. Best viewed in electronic format.

The convolutions performed in each stage use volumetric kernels having
size 5× 5× 5 voxels. As the data proceeds through different stages along
the compression path, its resolution is reduced. This is performed through
convolution with 2× 2× 2 voxels wide kernels applied with stride 2 (Figure
3.18). Since the second operation extracts features by considering only non-
overlapping 2× 2× 2 volume patches, the size of the resulting feature maps
is halved. This strategy serves a similar purpose as pooling layers which,
motivated by [153] and other works discouraging the use of max-pooling
operations in CNNs, have been replaced in our approach by convolutional
ones. The number of feature channels doubles at each stage of the compression
path of the V-Net. Due to the presence of the residual connections we need to
increase the number of channels of the skip connection to match the output of
the convolutional layers. We resort to using the down-sampling convolutions
to do this. PReLu non linearities [78] are applied throughout the network.

Replacing pooling operations with convolutional ones also results in net-
works that, depending on the specific implementation, can have a smaller
memory footprint during training. This is due to the fact that switches, which
map the output of pooling layers back to their inputs, do not need to be stored
for back-propagation. In particular, this can be analyzed and better understood
[178] when applying only de-convolutions instead of un-pooling operations.

Downsampling allows us to reduce the size of the signal presented as input
and to increase the receptive field of the features being computed in subsequent
network layers. Each of the stages of the left part of the network, computes
a number of features which is two times higher than the one of the previous
layer.

The right portion of the network extracts features and expands the spatial
support of the lower resolution feature maps in order to gather and assemble
the necessary information to output a two channel volumetric segmentation.
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2x2x2 Convolution 
with stride 2

2x2x2 De-convolution 
with stride 2

= =

Figure 3.18: Convolutions with appropriate stride can be used to reduce the size
of the data. Conversely, de-convolutions increase the data size by projecting
each input voxel to a bigger region through the kernel.

The two feature maps computed by the very last convolutional layer, having
1× 1× 1 kernel size and producing outputs of the same size as the input
volume, are converted to probabilistic segmentations of the foreground and
background regions by applying soft-max voxel-wise. After each stage of
the right portion of the CNN, a de-convolution operation is employed in
order increase the size of the inputs (Figure 3.18) followed by one to three
convolutional layers involving half the number of 5× 5× 5 kernels employed
in the previous layer. Similar to the left part of the network, we resort to learn
residual functions in the convolutional stages of the right part as well.

Similarly to [145], we forward the features extracted from early stages of
the left part of the CNN to the right part. This is schematically represented in
Figure 3.17 by horizontal connections. In this way we gather fine grained detail
that would be otherwise lost in the compression path and we improve the
quality of the final contour prediction. We also observed that these connections
improve the convergence time of the model.

We report in Table 3.8 the receptive fields of each network layer, showing
the fact that the innermost portion of our CNN already captures the content of
the whole input volume. We believe that this characteristic is important during
segmentation of poorly visible anatomy: the features computed in the deepest
layer perceive the whole anatomy of interest at once, since they are computed
from data having a spatial support much larger than the typical size of the
anatomy we seek to delineate, and therefore impose global constraints.

Dice loss layer

The network predictions, which consist of two volumes having the same
resolution as the original input data, are processed through a soft-max layer
which outputs the probability of each voxel to belong to foreground and to
background. In medical volumes such as the ones we are processing in this
work, it is not uncommon that the anatomy of interest occupies only a very
small region of the scan. This often causes the learning process to get trapped
in local minima of the loss function yielding a network whose predictions are
strongly biased towards background. As a result the foreground region is often
missing or only partially detected. Several previous approaches resorted to loss
functions based on sample re-weighting where foreground regions are given
more importance than background ones during learning [145]. In this work,
we propose a novel objective function based on Dice coefficient, a quantity
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3.6 Segmentation via fully convolutional neural networks

ranging between 0 and 1, which we aim to maximize.
The Dice coefficient D between two binary volumes can be written as

D =
2 ∑N

i pigi

∑N
i p2

i + ∑N
i g2

i
=

2 ∑N
i pigi

∑N
i pi + ∑N

i gi
s.t. pi ∈ {0, 1} ∧ gi ∈ {0, 1}.

As expressed in the formula above, the Dice coefficient can be written in two
different yet equivalent ways as long as all the values pi and gi which represent
voxels of, respectively, the predicted segmentation volume and the ground
truth labeling are strictly binary. This equivalence does not hold for their
gradient when the two expressions are differentiated with respect to any voxel
pj of the prediction volume P.

The derivative of the first expression is:
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the derivative of the second expression is:
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Let’s now study the behavior of these two gradients at optimum. In the optimal
case we have that every voxel of the predicted volume P assumes a binary value
pi ∈ {0, 1} and that this value is equal to gi which represents the corresponding
voxel of the binary ground-truth volume.
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because of the equivalence between the voxels of P and those of G,
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
now we define K = ∑N

i pi and we notice that, since pi is binary, pi = p2
i . As a

result
∂D1
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[
2pjK− 2pjK

(2K)2

]
= 0.

We have proven that the derivative of the dice coefficient as shown in the first
part of the definition above, is zero at the optimal point when the segmentation
matches the ground truth. Let us now follow the same procedure for the
gradient of the second expression.
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
73



Chapter 3: Segmentation

Layer Input Size Receptive Field

L-Stage 1 128 5× 5× 5
L-Stage 2 64 22× 22× 22
L-Stage 3 32 72× 72× 72
L-Stage 4 16 172× 172× 172
L-Stage 5 8 372× 372× 372
R-Stage 4 16 476× 476× 476
R-Stage 3 32 528× 528× 528
R-Stage 2 64 546× 546× 546
R-Stage 1 128 551× 551× 551
Output 128 551× 551× 551

Table 3.8: Theoretical receptive field of the 3× 3× 3 convolutional layers of the
network.

Figure 3.19: Distribution of volumes with respect to the Dice coefficient
achieved during segmentation.
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i pi

)
−∑N

i p2
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)2


using the same definition we used above we can then write:

∂D2

∂pj

∣∣∣∣∣
P=G

= 2

[
2pjK− K

(2K)2

]
= 2

[K(2pj − 1)
4K2

]
=

(2pj − 1)
2K

6= 0

which can create problems during optimization and neural network weights
update.

We use the first formulation of dice in this work, exhibiting the squares of
pi and gi at the denominator. When we optimize our network through this
function we do not need to account for class imbalance between regions, e.g. by
assigning loss weights to samples of different classes such as in [145]. In fact,
we obtain results that we experimentally observed are much better than the
ones computed through the same network trained optimizing a multinomial
logistic loss with sample re-weighting (Fig. 3.21).
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3.6 Segmentation via fully convolutional neural networks

Algorithm Avg. Dice Avg. Hausdorff dist Score Promise Speed

V-Net + Dice-based loss 0.869± 0.033 5.71± 1.20 mm 82.39 1 sec.
V-Net + mult. logistic loss 0.739± 0.088 10.55± 5.38 mm 63.30 1 sec.

Imorphics [164] 0.879± 0.044 5.935± 2.14 mm 84.36 8 min.
ScrAutoProstate 0.874± 0.036 5.58± 1.49 mm 83.49 1 sec.

SBIA 0.835± 0.055 7.73± 2.68 mm 78.33 –
Grislies 0.834± 0.082 7.90± 3.82 mm 77.55 7 min.

Table 3.9: Quantitative comparison between the proposed approach and the
current best results on the PROMISE 2012 challenge dataset.

Training

Our CNN is trained end-to-end on a dataset of prostate scans in MRI. An
example of the typical content of such volumes is shown in Figure 3.20. All
the volumes processed by the network have fixed size of 128× 128× 64 voxels
and a spatial resolution of 1× 1× 1.5 millimeters.

Annotated medical volumes are not easily obtainable due to the high cost
associated with one or more experts manually tracing a reliable ground truth
annotation. In this work we found necessary to augment the original training
dataset in order to obtain robustness and increased precision on the test dataset.

During every training iteration, we fed as input to the network randomly
deformed versions of the training images by using a dense deformation field
obtained through a 2× 2× 2 grid of control-points and B-spline interpolation.
These augmentations were performed "on-the-fly", prior to each optimization
iteration, in order to alleviate the otherwise excessive storage requirements.
Additionally, we vary the intensities of the data during training to simulate the
variety of data appearance from the scanner. To this end, we use histogram
matching to adapt the intensity distributions of the training volumes used in
each iteration to the ones of other randomly chosen scans belonging to the
dataset.

Testing

A previously unseen MRI volume can be segmented by processing it in a
feed-forward manner through the network. The output of the last convolu-
tional layer, after soft-max, consists of a probability map for background and
foreground. The voxels having higher probability (> 0.5) to belong to the
foreground than to the background are considered part of the anatomy.

3.6.2 Experimental evaluation

We trained our method on 50 MRI volumes, and the relative manual ground
truth annotation, obtained from the "PROMISE2012" challenge dataset [101].
This dataset contains medical data acquired in different hospitals, using differ-
ent equipment and different acquisition protocols. The data in this dataset is
representative of the clinical variability and challenges encountered in clinical
settings. As previously stated we massively augmented this dataset through
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Axial
Sagittal

C
oronal

Figure 3.20: Qualitative results on the PROMISE 2012 dataset [101].

Figure 3.21: Qualitative comparison between the results obtained using the
Dice coefficient based loss (green) and re-weighted soft-max with loss (yellow).
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3.6 Segmentation via fully convolutional neural networks

Dice Histogram - Comparison Best/Worst CNN Vs. V-Net (FCNN)
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Figure 3.22: Comparison Dice coefficient distribution obtained by running our
experiments on the ultrasound dataset using our best Hough CNN model
(blue), our worst Hough CNN model (green), and V-Net (orange).

random transformation performed in each training iteration, for each mini-
batch fed to the network. The mini-batches used in our implementation
contained two volumes each, mainly due to the high memory requirement
of the model during training. We used a momentum of 0.99 and an initial
learning rate of 0.0001 which decreases by one order of magnitude every 25K
iterations.

We tested V-Net on 30 MRI volumes depicting prostate whose ground truth
annotation was secret. All the results reported in this section were obtained
directly from the organizers of the challenge after submitting the segmentation
obtained through our approach. The test set was representative of the clinical
variability encountered in prostate scans in real clinical settings [101].

We evaluated the approach performance in terms of Dice overlap and
Hausdorff distance between the predicted delineation and the ground truth an-
notation as well as the obtained challenge score, as computed by the organizers
of "PROMISE 2012" [101] (cf. Table 3.9, Fig. 3.19).

Our implementation3 was realized in python, using a custom version of the
Caffe4 [87] framework which was enabled to perform volumetric convolutions
via CuDNN v3. All trainings and experiments ran on a standard workstation
(64 GB RAM, 3.30GHz Intel® CoreTM i7-5820K CPU, NVidia GTX 1080 with
8 GB VRAM). Model training ran for 48 hours, or 30K iterations circa, while
segmentation of a previously unseen volume took circa 1 second. Datasets
were first normalized using the N4 bias field correction function [162] and then
resampled to a common resolution of 1× 1× 1.5 mm. We applied random
deformations to the scans used for training by varying the position of the
control points with random quantities obtained from gaussian distribution
with zero mean and 15 voxels standard deviation. Qualitative results can be
seen in Fig. 3.20.

3Implementation available at https://github.com/faustomilletari/VNet
4Implementation available at https://github.com/faustomilletari/3D-Caffe
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Method Dice [0,1] Failures

Best Hough-CNN 0.85 0%
Worst Hough-CNN 0.74 14%

V-Net (FCNN) 0.71 1%

Table 3.10: Comparison between Hough-CNN and V-Net on the ultrasound
dataset.

Comparison with Hough CNN

In order to put our results into perspective we compare the performances of
V-Net with the results achieved by our Hough-CNN, presented in chapter 3.5.
In our comparison we kept all the hyper-parameters of V-Net fixed and trained
the model for 20 thousand iterations, until convergence, on the same training
set we employed to train Hough-CNN. When we evaluated the method on our
training set we noticed that although the rate of failure (cases with Dice equal
0) was slightly lower, the contours were often leaking into regions that didn’t
belong to the midbrain and in some cases their shape was not resembling any
of the training shapes. As a result, the performance of V-Net on this dataset
was much inferior to the one of Hough-CNN. This can be observed in Figure
3.22 and Table 3.10 where the distribution of dice coefficients across the test
set and quantitative results and respectively shown. In particular, the results
obtained on the ultrasound dataset by the best and the worst architectures
employed in the Hough CNN study have been compared to V-Net and have
clearly shown superior performances.

3.6.3 Discussion

We presented and approach based on a volumetric convolutional neural net-
work that performs segmentation of MRI prostate volumes in a fast and
accurate manner. We introduced a novel objective function that we optimize
during training based on the Dice overlap coefficient between the predicted
segmentation and the ground truth annotation. Our Dice loss layer does not
need sample re-weighting when the amount of background and foreground
pixels is strongly unbalanced and is indicated for binary segmentation tasks.
Although we inspired our architecture to the one proposed in [145], we divided
it into stages that learn residuals and, as empirically observed, improve both
results and convergence time. Future works will aim at segmenting volumes
containing multiple regions in other modalities such as ultrasound and at
higher resolutions by splitting the network over multiple GPUs.
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Detection

4.1 Introduction

Object detection is a popular topic in the computer vision community as it
enables various applications such as scene parsing, robotic interaction, robotic
manipulation, navigation for autonomous systems and many others. In com-
puter vision, it is often necessary to retrieve an accurate estimate not only of
the location but also of the pose of the detected objects. This allows robotic
applications that involve grabbing tools or operating machinery in an au-
tonomous manner. These systems need to be robust to challenges such as
clutter, occlusions, lighting changes, contrast changes, etc.

In medical field object detection assumes a slightly different connotation
as it is often used to detect very specific patterns, for example in MRI or US,
which demonstrate the presence or absence of diseases, or specific artificial
objects, such as catheters, placed in the body by surgeons. In particular we are
interested in finding specific objects by localizing the position of their center of
mass, or bounding boxes. The main challenges that we must address in object
detection for medical image analysis are related to the presence of noise and
artifacts that are specific to each imaging modality. In general medical data is
difficult to interpret for reasons such as the lack of depth perception, potential
overlaps and noise in X-Ray, the presence of shadows, signal drop regions and
noise in ultrasound, poor resolution in MRI and high data dimensionality (3D
or 4D data) in both MRI and CT.

When dealing with 2D images, such as X-Ray, it may also be necessary to
acquire scans from different points of view and fuse the information obtained
after object detection to retrieve more clinically 3D information.

In this chapter two works are presented. The first deals with automatic
electrophysiology catheter detection in X-Ray fluoroscopic images, while the
second presents an approach to estimate a 6 degrees of freedom pose of known
objects from depth images in a manner that is robust to occlusion clutter and
the other challenges that are often present in realistic settings.
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4.2 Related Work

In this section we provide literature review for the two works presented in
this part of the thesis. Due to the profoundly different application of the two
detection approaches related work is presented separately for each of them.

4.2.1 Catheter Detection

In recent research practice, the medical imaging community has focused its
efforts to localize catheters directly in C-arm images. Fallavollita et al. devel-
oped a catheter tip detection algorithm based on thresholds of the fluoroscopic
images; this failed in low contrast images [59]. A technique for tracking and
detecting the ablation catheter in X-ray images was first proposed by Franken et
al. but the computational cost was relatively high making the method not appli-
cable in clinic [61]. Coronary Sinus and ablation catheter detections were first
proposed in [106, 104]. Multiple user interaction and parameter fine-tunings
were necessary to meet the quality of the X-ray image. Employing respiration
and motion compensation methods may succeed in overcoming some of the
above challenges. Recently, Schenderlein et al. proposed a catheter tracking
method using snakes active contour models [148]. Brost et al. developed a
model-based lasso catheter tracking algorithm in biplane X-ray fluoroscopy
[27]. However, the tracking required re-initialization and user interaction.
Wen et al. successfully tracked one catheter in a cardiac cycle and required
user-initialization in selecting tip electrodes [170, 171]. Multiple catheter-tip
detections are presented in [177]. There, authors require user interaction for
their detections using a geodesic framework. Finally, methods including fast
blob detections, clustering, shape-constrained searching and catheter model-
based detection have been proposed [117, 105]. A limitation of these is that
they assume fixed shape for the catheter and might not cope with different
C-arm positions and catheter shape changes due to foreshortening.

4.2.2 6DoF pose estimation

Pose estimation is essential for robotic object manipulation and augmented
reality. Novel research has been enabled by the commercialization of cost
effective depth sensing devices from various manufacturers. Several works
addressing the problem of 6DoF pose estimation have been proposed recently.
In [80, 143, 90] a method using holistic representation of the objects of interest
is proposed. In this case templates are matched to the scene using an efficient
algorithm trained on synthetic views. The main limitation of this approach
is introduced by the presence of occlusions which impairs its recall and by
the computational burden of processing a large number of objects. Other
approaches such as [110, 72, 6] are introducing mechanisms to improve the
robustness of the detections in presence of occlusions or noise using carefully
designed descriptors which introduce additional computation. Voting based
approaches have been proposed in [25] and [157] where the objective of finding
the 6DoF pose of an object was achieved by relying only on image patches
which often contain only a small portion of the object and therefore provide
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robustness to occlusions and presence of specular reflections while consistency
and global context is guaranteed implicitly by the voting strategy. These work
make use of random Hough forests which rely on handcrafted features.

With the recent advancements in the field of deep learning a plethora of
methods has been introduced to perform image classification, regression, seg-
mentation and also to obtain reliable and compact descriptors for images using
strategies based on auto-encoders. Due to the capability of deep learning of
capturing hierarchical features directly from the data at hand, handcrafted fea-
tures have gradually been abandoned and replaced in most recent approaches.
[69, 68] employed SVM to classify features computed through a convolutional
neural network on candidate object region. In [169] the capability of CNNs
of learning adequate descriptors for pose estimation from RGBd images is
demonstrated. The main innovation of [169] is the fact that it uses a triplet loss
for this particular application.
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4.3 EP catheters detection and tracking

Catheter guidance is a vital issue for the success of electrophysiology inter-
ventions. It is usually provided through fluoroscopic images that are taken
intra-operatively. The cardiologists, who are typically equipped with C-arm
systems, scan the patient from multiple views rotating the fluoroscope around
one of its axes. The resulting sequences allow the cardiologists to build a
mental model of the 3D position of the catheters and interest points from both
views. An approach to perform automatic detection and tracking of electro-
physiology (EP) catheters in C-arm fluoroscopy sequences is proposed in this
section. This method is fully automatic and can concurrently track an arbitrary
number of overlapping catheters. After a pre-processing step, sparse coding is
employed to first detect candidate catheter tips, and subsequently detect and
track the catheters. The proposed technique is validated on 2835 C-arm im-
ages, which include 39,690 manually selected ground-truth catheter electrodes.
Results demonstrated sub-millimeter detection accuracy and real-time tracking
performances.

4.3.1 Motivation

Sudden cardiac death (SDC) is linked to severe disorders of the heart rhythm. In
the United States alone, the incidence rate ranges up to 450,000 cases annually
[47]. In some cases, patients affected by heart beat related diseases can be
definitively treated with radio-frequency (RF) catheter ablation. The efficacy of
catheter ablation is highly dependent on accurate identification of the site of
origin of the arrhythmia. Once this site has been identified, an ablation catheter
is positioned in direct contact with it and radio-frequency energy is delivered
to ablate it.

Catheter ablation is often a long procedure requiring significant fluoroscopy
exposure. It was proved recently [53], that 3D navigation systems contribute
to the reduction of the exposure to patients and operators. The common
mapping technologies that combine 3D anatomy and electrophysiological data
are: CARTO and CARTOMerge (Biosense Webster), NavX (St.Jude Medical),
and RPM (Cardiac Pathways-Boston Scientific). Other technologies that provide
continuous data of all electrophysiogical events include Ensite 3000 (St. Jude
Medical) and Basket (Cardiac Pathways-EP Technologies) [29]. Whether using
mapping systems or conventional RF ablation techniques, clinicians still rely on
C-arm images to position and guide catheters. Thus, exploiting C-arm image
information is crucial for providing additional information to clinicians during
cardiac ablation procedures. There are several reasons as to why detecting and
tracking the position of ablation catheters relative to the patient anatomy is
important. They are related to interventional guidance aspects: (i) accounting
for heart motion compensation, (ii) easing positioning & navigation during
cardiac ablation, (iii) planning the ablation procedure by (iv) registration to
preoperative data such as CT and MRI.

We propose a unique method that considers all of the key challenges
associated with catheter detections. Our method: (i) is fully automatic; (ii)

82



4.3 EP catheters detection and tracking

Figure 4.1: Proposed pipeline.

supports the presence of multiple, touching and overlapping catheters; (iii) can
detect and track catheters appearing foreshortened or deformed; (iv) is robust
to illumination variations and to the sudden motion of the catheters. Although
implemented in a non-efficient manner, the algorithm achieves almost real-time
performances.

4.3.2 Method

Our catheter tracking and detection pipeline is shown in Figure 4.1. The
pre-processing step aims to improve the image signal to noise ratio and to
reduce the search space. A further reduction of the search space is obtained
in the catheter tips detection stage, where image locations corresponding to
catheter tips are selected. In the final step, we detect and track the catheters
by the means offered by sparse coding. Catheter hypotheses are formed and
associated to a cost, the ones yielding the minimal global cost constitute the
output of our algorithm.

In our approach, we use sparse coding, that was first introduced in Section
2.2.4, to solve our catheter tracking by detection task. We only allow conical
combinations of dictionary atoms as, due to the nature of our problem, dif-
ferent atoms should be never subtracted from each other to obtain a better
reconstruction. The dictionaries used in this work contain the appearance
of the catheters and of the electrodes. We rely on the sparsity assumption
to match the candidate appearances with a few, specific ones stored in the
dictionaries.

Pre-processing

In order to cope with the presence of noise and improve the contrast of the
fluoroscopic images, we apply to the images an homomorphic filter [130]
followed by a bilateral filter [158], reducing noise artifacts while preserving
edges. As a further pre-processing step, we use a determinant of hessian blob
detector to obtain the accurate location of electrode-like structures appearing
in the images. As demonstrated by [117, 105], the electrodes can in this way
be localized with sub-millimeter precision, therefore enabling us to effectively
limit the search space.
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Training

In our method, we employ two sets of dictionaries to: (i) select image locations
corresponding to the tips of the catheters, (ii) reconstruct and associate a cost
to each candidate catheter. The dictionaries are obtained in a training stage
that makes use of annotated data.

Training dictionaries for “tips” detection

In order to detect the catheter tips, we instantiate the dictionaries DT and DE,
respectively built from patches depicting catheter tips and electrodes at various
orientations. The patches are normalized to have zero mean and unit standard
deviation so that illumination invariance and uniform probability of being
selected during reconstruction are ensured.

Training dictionaries for catheters detection

In our approach, detection and tracking are coupled tasks. Supposing we want
to track K catheters, we train:

1. K dictionaries D1...K, one for each typology of catheter, of positive templates
capturing the appearances of each catheter separately.

2. one dictionary DN of negative templates capturing typical background
appearances.

The words djk of each dictionary Dk are associated with the specific poses
assumed by the k − th catheter during training. We also instantiate meta-
data matrices Mj, whose purpose is to establish a correspondence between
the 1D intensity profiles of the catheters and the expected locations of the
catheter’s electrodes. In this way it is possible to recover the position of
electrodes that have been missed in the previous step. The coordinates stored
in Mj are normalized to a common orientation and expressed with respect
to the catheter’s tip position. The negative profiles stored in DN are used
during tracking to penalize candidate catheters whose appearances resemble
the background. All the appearances stored in the dictionaries consist of 1D
intensity profiles of fixed length r, sampled from training images. The intensity
profiles, which are implicitly rotation invariant (they stay the same regardless
the orientation of the catheter), are normalized to have zero mean and unit
standard deviation.

Tracking by detection

We want to detect and track K catheters through a fluoroscopic sequence. The
output of the pre-processing step of our algorithm is a set of key-points X ={

x1...xp
}

(Figure 4.2a). Once small image patches yi are extracted around the
xi (Figure 4.2b), the ones that correspond to catheter tips can be discriminated
by solving the following two problems:

α̂t = min
at
‖DTαt − yi‖2

2 + λ1 ‖αt‖1 , s.t. αt ≥ 0 (4.1)
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Figure 4.2: Main steps of our algorithm. The output of each step is fed into the
next.

α̂e = min
ae
‖DEαe − yi‖2

2 + λ2 ‖αe‖1 , s.t. αe ≥ 0. (4.2)

Key-points associated to patches that have been reconstructed better with
DT than with DE, are regarded as catheter “tips” according to

T = {t1...tN≥K} =
{

xi : ‖DT α̂t − yi‖2
2 < ‖DEα̂e − yi‖2

2

}
. (4.3)

In the final step of our pipeline, we aim to formulate and score catheter hy-
potheses (Figure 4.2c). Each catheter tip tn yields as many catheter hypotheses
as the number of neighboring key-point xi ∈ X falling within a distance r. The
catheter hypotheses are intensity profiles lni extracted from lines of length r
originated in tn and intersected with each xi in turn. For each k = 1...K we aim
to solve the following problems:

α̂k
ni = min

αk
ni

∥∥∥Dkαk
ni − lni

∥∥∥2

2
+ λ3

∥∥∥αk
ni

∥∥∥
1

, s.t. αk
ni ≥ 0 (4.4)

β̂k
ni = min

βN
ni

∥∥∥[DN , Dj 6=k]β
k
ni − lni

∥∥∥2

2
+ λ4

∥∥∥βk
ni

∥∥∥
1

, s.t. βk
ni ≥ 0. (4.5)

We aim to assess, through (4.4), the similarity of each catheter hypothesis
with the k-th catheter and, through (4.5), its similarity with the background or
with catheters having label different than k.

Furthermore, we identify the biggest element of αj of α̂k
ni, and we retrieve the

associated meta-data Mj =
[
m1...mQ

]
, containing the expected, approximated

and pose specific (in terms of out-of-plane rotation of the catheter) coordinates
of the electrodes. When a catheter hypothesis corresponds to a true catheter,
the coordinates mj and xi are spatially close. The minimal distances di =
minq

(∥∥xi −mq
∥∥) between each point xi (after normalization to the orientation

of li) and the points stored in Mj, are obtained.

The errors EP =
∥∥∥Dkα̂k

ni − lni

∥∥∥2

2
and EN =

∥∥∥[DN , Dj 6=k]β̂
k
ni − lni

∥∥∥2

2
, and the

coefficient d = ∑i di determine the cost of a candidate catheter according to

Ek
ni =

{
d EP i f EP ≥ EN

d EP
EN−EP

i f EP < EN
. (4.6)
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For each tip ti, the best catheter hypothesis that could be reconstructed using
Dk is retained (Figure 4.2d) and its cost Êk

ni is stored in a matrix C ∈ RK×N

modeling associations between labels and catheter hypotheses. The hungarian
method is employed to select K catheter hypotheses yielding the lowest total
cost. Please note that the presence of the meta-data is not only beneficial to
score the catheter hypotheses but can be used to effectively recover missed
electrodes detections.

Mild temporal consistency can be enforced to favor catheter hypotheses
occurring at similar position over time. This is realized by counting how many
consecutive times a catheter k appears in a neighborhood (radius g) of its
previous position and dividing the error Ek

ni by this number. If the k-th catheter
moves abruptly, the counter associated with its previous position is decreased
until it reaches zero.

4.3.3 Experimental evaluation

A total of 2835 C-arm images, belonging to 20 sequences acquired from two
views were analyzed. A reference, a pacing and an 8-French ablation/mapping
catheter are visible in the sequences. The image sizes are 512 × 512 with a pixel
spacing of 0.44 mm. The X-Ray beam energy was varied between 70-92kV to
ensure variability within the data. Ground truth annotation, which included
the position of the 39690 electrodes appearing in the sequences, was provided
by two observers. The model’s parameters were fixed experimentally to be
λ1 = 10, λ2 = 150, λ3 = λ4 = 1 for all the experiments. The scale of the
blob detector was fixed to σ = 4. We enforced temporal consistency fixing
the quantity g to 8px during all the experiments. Since our method requires a
training phase, we assessed the performances of our approach when different
amount of training data is used. The training images are selected from a
sequence that is never used for testing.

Catheter detection and tracking

We assessed the performances of our method to detect and track the mapping,
pacing and reference catheter respectively. The results are shown in Table
4.1. We evaluated, in particular, the impact of the number of annotated
examples used during training on the performances. The pacing and reference
catheters that experience little foreshortening and deformations are already well
detected using a few training examples while the mapping catheter requires an
higher number of training examples due to its frequent out-of-plane rotations.
Incrementing the number of training examples the performances improve up
to values close to 100%. The computation time increases with the dimension
of the dictionaries. When 100 images are used during training, the processing
time for one frame is 0.7 seconds using our MATLAB prototype and circa 0.08
seconds using our more optimized C++ implementation.
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Table 4.1: Tracking and detection results. A different number of training
examples was used in each test.

A/P View (%) Lateral View (%)
Training set Mapping Pacing Reference Mapping Pacing Reference
3 examples 77.49 98.38 98.17 53.74 96.74 97.52

10 examples 87.13 99.79 98.38 78.86 98.02 99.08
20 examples 88.05 99.79 99.30 89.16 97.95 98.87
50 examples 93.46 99.79 99.36 89.31 98.09 99.01

100 examples 93.95 99.79 99.51 90.02 97.95 99.36

Table 4.2: Detection accuracy in pixels and millimeters.

A/P View Lateral View
Pixels Millimeters Pixels Millimeters

mapping 1.17± 0.64 0.51± 0.28 1.28± 0.35 0.56± 0.15
pacing 1.48± 0.60 0.65± 0.26 1.29± 0.23 0.56± 0.10

reference 1.63± 0.75 0.71± 0.33 1.49± 0.22 0.65± 0.09

Detection accuracy

The accuracy of the catheters detections in terms of distance of the electrodes
from the ground truth annotation was assessed. The achieved results are
shown in Table 4.2.

4.3.4 3D multi-view catheter reconstruction

When multiple X-Ray sequences are acquired through a C-Arm from a different
points of view, it is possible to reconstruct the 3D configuration of EP catheters
by (i) detecting the catheters and their electrodes in each view separately, (ii)
using epipolar geometry and the known transformation matrices relative to
each view and the intrinsic parameters of the system. In [15] we develop
both an approach based on epipolar geometry and a method that additionally
incorporates prior knowledge about the catheter shapes. This helps increase ro-
bustness to deformations and other motion that might have happened between
the two acquisitions from different viewpoints needed for the algorithm to
run. In this way we are able to demonstrate the performance of our detection
method on the complete surgical workflow and highlight the advantages of
performing 3D multi-view catheter reconstruction with prior knowledge of
their shapes.

4.3.5 Discussion

A novel method to detect and track linear EP catheters, that may appear
foreshortened or occluded, in fluoroscopic images was presented. The ap-
proach, that is based on `1-sparse coding is robust to catheter overlap and
has great potential in correcting for patient motion when used in conjunc-
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tion with anatomical overlays. Future work will focus on the development of
unique methods to automatically reconstruct catheters from [57, 58] single or
multi-view C-arm fluoroscopy images. The technique would rely on no user
interaction, high clinical accuracy, and real-time performance. Alternatively the
detection of catheter electrodes can be coupled with generative probabilistic
models that optimizes correspondence and subsequent 3D reconstructions of
the catheters.
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Abstract. We present a 3D object detection method that uses regressed
descriptors of locally-sampled RGB-D patches for 6D vote casting. For
regression, we employ a convolutional auto-encoder that has been trained
on a large collection of random local patches. During testing, scene
patch descriptors are matched against a database of synthetic model
view patches and cast 6D object votes which are subsequently filtered
to refined hypotheses. We evaluate on three datasets to show that our
method generalizes well to previously unseen input data, delivers robust
detection results that compete with and surpass the state-of-the-art while
being scalable in the number of objects.

1 Introduction

Object detection and pose estimation are of primary importance for tasks such
as robotic manipulation, scene understanding and augmented reality, and have
been the focus of intense research in recent years. The availability of low-cost
RGB-D sensors enabled the development of novel methods that can infer scale
and pose of the object more accurately even in presence of occlusions and clutter.

Methods such as Hinterstoisser et al. and related [14, 27, 18] detect objects in
the scene by employing templates generated from synthetic views and matching
them e�ciently against the scene. While these holistic methods are implemented
to be very fast at a low FP-rate, their recall drops quickly in presence of occlusion

Fig. 1. Results of our voting-based approach that uses auto-encoder descriptors of
local RGB-D patches for 6-DoF pose hypotheses generation. (Left) Cast votes from each
patch indicating object centroids, colored with their confidence. (Middle) Segmentation
map obtained after vote filtering. (Right) Final detections after pose refinement.

Figure 4.3: Example of detection of multiple objects in a RGBd image. On the
left, the representation of vote accumulation (red means high number of votes),
in the center approximate segmentation resulting from the back-projection of
votes and patch-masks scaled by the vote weight, on the right detection result
with pose.

4.4 Pose estimation through voting

Six degrees of freedom pose estimation from RGBd images finds application in
fields such as robotics and augmented reality. We propose a method to infer
the pose of objects present in a scene in a scalable and robust manner through
voting. We train a convolutional auto-encoder to perform reconstruction of a
large dataset of RGBd patches and use the resulting compact representation of
each patch as a descriptor. Descriptors are computed on a dataset of synthetic
RGBd training patches annotated with pose and stored in a database. When
a new image is supplied to the system the descriptors for its patches are
computed and compared with the descriptors in the database. Votes are
therefore cast and filtered to obtain detections and relative pose (Figure 4.3).

4.4.1 Motivation

In order to build robustness towards the presence of noise, occlusions, spec-
ular reflections, local illumination changes we propose to tackle 6DoF pose
estimation using a patch-based approach and voting. Although the first step of
the computation involve only local information and ignores the global context
represented by the knowledge of the whole object at hand, this context is
retrieved back after vote casting, as votes are able to accumulate correctly into
a peak only if a high percentage of patches are recognized and cast consistent
votes. Moreover, we put in place a refinement approach to avoid false positive
detection and we perform hypothesis verification at the end of our processing
pipeline. Moreover, during learning stage we use only synthetic data and we
avoid learning background.

4.4.2 Method

This section is devoted to the description of the approach. We describe the
way RGBd patches are extracted from a grid imposed over the image and at
the appropriate scale. Then we give an overview of the convolutional neural
network used in this work and last we present the voting strategy making use
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Fig. 2. Illustration of the voting. We densely sample the scene to extract scale-invariant
RGB-D patches. These are fed into a network to regress features for a subsequent k-
NN search in a codebook of pre-computed synthetic local object patches. The retrieved
neighbors then cast 6D votes if their feature distance is smaller than a threshold ⌧ .

2 Related work

There has recently been an intense research activity in the field of 3D object de-
tection, with many methods proposed in literature traditionally subdivided into
feature-based and template-based. As for the first class, earlier approaches relied
on features [20, 4] directly detected on the RGB image and then back-projected
to 3D [19, 25]. With the introduction of 3D descriptors [28, 31], approaches re-
placed image features with features directly computed on the 3D point cloud
[23], and introduced robust schemes for filtering wrong 3D correspondences and
for hypothesis verification [13, 2, 6]. They can handle occlusion and are scalable
in the number of models, thanks to the use of approximate nearest neighbor
schemes for feature matching [24] yielding sub-linear complexity. Nevertheless,
they are limited when matching surfaces of poor informative shape and tend to
report non real-time run-times.

On the other hand, template-based approaches are often very robust to clut-
ter but scale linearly with the number of models. LineMOD [15] performed ro-
bust 3D object detection by matching templates extracted from rendered views
of 3D models and embedding quantized image contours and normal orientations.
Successively, [27] optimized the matching via a cascaded classification scheme,
achieving a run-time increase by a factor of 10. Improvements in e�ciency are
also achieved by the two-stage cascaded detection method in [7] and by the
hashing matching approach tailored to LineMOD templates proposed in [18].
Other recent approaches [21, 10, 3] build discriminative models based on such
representations using SVM or boosting applied to training data.

Recently, another category of methods has emerged based on learning RGB-
D representations, which are successively classified or matched at test time.
[5, 30] use random forest-based voting schemes on local patches to detect and
estimate 3D poses. While the former regresses object coordinates and conducts
a subsequent energy-based pose estimation, the latter bases its voting on a scale-
invariant LineMOD-inspired patch representation and returns location and pose
simultaneously. Recently, CNNs have also been employed [32, 11, 12] to learn

Figure 4.4: Detection and pose estimation pipeline. Patches are extracted from
a grid over the image. Descriptors are computed and compared with the
ones learned from synthetic images and contained in a database. Votes are
cast using the information in the database, filtered and detections with pose
produced.

of the learned descriptors. A schematic representation of our method is shown
in Figure 4.4.

RGBd patch sampling

We extract training data by sampling patches from both synthetic renderings
from CAD models of the objects of interest seen from viewpoints uniformly
sampled on an icosahedron surrounding the 3D object model, and real images.

The patches are obtained at the same scale since we sampled them such
that their side measures 5 centimeters. To do so we rely on the depth sensed at
the pixel corresponding to the center of the patch. The depth data of the patch
is then centered and clamped to confine it in a specific value range. Colors and
depth are normalized and the patch is resized to a conventional size of 32 by
32 pixels.

By using patches we are able to avoid the background modeling that is
necessary when holistic approaches are used. Very small portions of the
background which can be present in the periphery of patches that lie on the
silhouette of the object are eliminated. This is possible since we have a CAD
model of the object, therefore we know the exact boundary of the object in the
image. This is profoundly different from what other learning based method
which look at the whole object at once do. Such approaches need to resort to
particular strategies such as hard negative mining to be able to cope with this
issue.

The patches extracted from real images, specifically belonging to the
LineMod dataset, are used to trained our convolutional auto-encoder which is
responsible for descriptor computation. These patches belong to both objects
and background regions. The patches extracted from synthetic renderings are
also associated to information about specific object pose. These patches along
with the associated pose are used to produce a database of feature and 6DoF
votes which is used during inference for detection and pose estimation.

A schematic representation of this process is provided in Figure 4.5.

90



4.4 Pose estimation through votingDeep Learning of Local RGB-D Patches for Detection and Pose Estimation 5

Fig. 3. Left: For each synthetic view, we sample scale-invariant RGB-D patches yi of
a fixed metric size on a dense grid. Their associated regressed features f(yi) and local
votes v(yi) are stored into a codebook. Right: Examples from the approx. 1.5 million
random patches taken from the LineMOD dataset for autoencoder training.

3.2 Network Training

Since we want the network to produce discriminative features for the provided
input RGB-D patches, we need to bootstrap suitable filters and weights for the
intermediate layers of the network. Instead of relying on pre-trained, publicly
available networks, we decided to train from scratch due to multiple reasons:

1. Not many works have incorporated depth as an additional channel in net-
works and most remark that special care has to be taken to cope with, among
others, sensor noise and depth ’holes’ which we can control with our data.

2. We are one of the first to focus on local RGB-D patches of small-scale objects.
There are no pre-trained networks that have been so far learned on such data,
and it is unclear how well other networks that were learned on RGB-D data
can generalize to our specific problem at hand.

3. To robustly train deep architectures, a high amount of training samples is
needed. By using patches from real scenes, we can easily create a huge train-
ing dataset which is specialized to our task, thus enhancing the discriminative
power of our network.

Note that other works usually train a CNN on a classification problem and
then use a ’beheaded’ version of the network for other tasks (e.g. [9]). Here, we
cannot simply convert our problem into a feasible classification task because of
the sheer amount of training samples that range in the millions. Although we
could assign each sample to the object class it belongs to, this would bias the
feature training and hence, counter the learning of a generalized patch feature
representation, independent of object a�liations. It is important to point out
that also [32] aimed for feature learning, but with a di↵erent goal. Indeed, they
enforce distance similarity of feature space and object pose space, while we in-
stead strive for a compact representation of our local input patches, independent
of the objects’ poses.

Figure 4.5: Schematic representation of training patch extraction from render-
ings.

Convolutional neural network

Our neural network needs to be trained on the data extracted from real scenes
belonging to the LineMod dataset in order to produce descriptors that are
suitable to be included in the voting strategy that lies at the core of our
approach. We propose to use a convolutional auto-encoder (Figure 4.6) trained
from scratch on the patches extracted in the previous step. The reason why we
do not rely on a publicly available network pre-trained on a large dataset such
as image-net and then refine it on our dataset are multiple.

• Although low level features of the first few layers of such networks
capture common features that are most probably adequate for our task,
higher level features that sense objects and complex patterns are most
probably not useful in our approach.

• The presence of an additional channel in our data, namely depth, compli-
cates the adoption of existing models.

• Using patches allow us to extract millions of training examples from each
image of the LineMod dataset.

Multiple authors have highlighted and taken advantage of features extracted
by deep layers of neural networks trained to solve classification tasks. In this
case it is not possible to retrieve meaningful classes from our patch dataset and
therefore we opt to train a convolutional auto-encoder on these images using
a loss layer which enforces high quality reconstructions. The work presented
in [169] learns features descriptive of the object pose pose after it has been
detected. This goal is different from ours. While [169] proposes to enforce a
correspondence between distance in feature space and pose space, our aim is
to simply obtain a compact representation of object patches and then use a
vote strategy to do both object detection and pose estimation.

Through the convolutional auto-encoder we aim to obtain descriptors that
accomplish this task. An auto-encoder aims to minimize the reconstruction
error E = ‖x− y‖2

2 where x are the input patches and y the reconstructions
outputted by the network. Our neural network architecture employs two 5× 5
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Fig. 4. Depiction of the employed AE (top) and CAE (bottom) architectures. For both,
we have the compressing feature layer with dimensionality F .

We teach the network regression on a large variety of input data by randomly
sampling local patches from the LineMOD dataset [15], amounting to around
1.5 million total samples. Furthermore, these samples were augmented such that
each image got randomly flipped and its color channels permutated. Our network
aims to learn a mapping from the high-dimensional patch space to a much lower
feature space of dimensionality F , and we employ a traditional autoencoder (AE)
and a convolutional autoencoder (CAE) to accomplish this task.

Autoencoders minimize a reconstruction error ||x � y|| between an input
patch x and a regressed output patch y while the inner-most compression layer
condenses the data into F values. We use these F values as our descriptor since
they represent the most informative compact encoding of the input patch. Our
architectures can be seen in Figure 4. For the AE we use two encoding and
decoding layers which are all connected with tanh activations. For the CAE we
employ multiple layers of 5⇥5 convolutions and PReLUs (Parametrized Rectified
Linear Unit) before a single fully-connected encoding/decoding layer, and use a
deconvolution with learned 2 ⇥ 2 kernels for upscaling before proceeding back
again with 5⇥ 5 convolutions and PReLUs. Note that we conduct one max-pool
operation after the first convolutions to introduce a small shift-invariance.

3.3 Constrained Voting

A problem that is often encountered in regression tasks is the unpredictability
of output values in the case of noisy or unseen, ill-conditioned input data. This
is especially true for CNNs as a deep cascade of non-linear functions composed

Figure 4.6: Schematic representation of the chosen convolutional auto-encoder
architecture.

convolutional layers and 1 fully connected layer to produce the features F
(having variable dimensionality as shown in the experiments) as a result of the
compressing path of the network and a encoder-decoder-like arrangement of
layers for the expanding path which produces the image output y. Pooling
layers in the compressing path are replaced with 2× 2 de-convolutions applied
with stride 2.

After training, we use this neural network for (i) producing a database of
object specific descriptors associated with 6DoF information in form of a vote
relative to the pose and (ii) doing inference on previously unseen patches.

Pose estimation and voting

As previously mentioned, pose estimation is performed through a voting
strategy that relies on an object-specific database containing 6D votes in the
form v = [tx, ty, tz, α, β, γ] and a feature vector f obtained from the auto-encoder
network at the end of its compressing path. The vote can be understood as a
mixture of two pieces of information: spatial information [tx, ty, tz] that encodes
the spatial displacement between the center of each patch and the centroid of
the object in 3D, and angular information [α, β, γ] which represents 3 angles
expressing the pose of the object. Building these databases relies on synthetic
renderings and patch sampling.

Object detection and pose estimation in a novel image is done by imposing
a sampling grid on the image, extracting patches from each position and
use these patches to obtain feature vectors similar to the ones included in
the database from the auto-encoder. K nearest neighbors in feature space
are selected from the database and their voting information is used. Their
contributions are weighted by the reciprocal of the Euclidean distance in feature
space. The spatial information [tx, ty, tz] is added to the sampling position of
the patch [sx, sy, sz] to find the object centroid, and the angular information is
accumulated at the centroid. In order to increase efficiency, we quantize all the
votes and accumulate them in a 2D coarse grid. The votes contained in scarcely
populated bins of the 2D grid are ignored. All the other votes are considered
and mean shift filtering is performed both in spatial and quaternions space to
find peaks in the vote-map which are understood as true detections.
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Table 4.3: Results of our approach on the dataset used in [157]

Sequence [80] [157] Ours

Camera 0.589 0.394 0.383
Coffee 0.942 0.891 0.972

Joystick 0.846 0.549 0.892
Juice 0.595 0.883 0.866
Milk 0.558 0.397 0.463

Shampoo 0.922 0.792 0.910

Total 0.740 0.651 0.747

It is possible to obtain also a coarse but reasonable segmentation of the
object(s) at hand by back-projecting the votes that resulted in a true detection to
the position they originated from and apply there a binary segmentation patch
(which can be obtained when the database is built using synthetic renderings)
scaled by the vote weight. An example of this can be seen in Figure 4.3, central
panel.

4.4.3 Experimental evaluation

We evaluate the approach on challenging data in order to benchmark it
and highlight its performances in comparison with other state-of-the-art ap-
proaches. We tested our approach on the dataset proposed by Tejani in [157],
the LineMOD dataset [80] and on the challenge dataset used in [5] where
different detectors multiple cues were employed to achieve robust results.
These datasets are linked with state-of-the-art work in RGBd object detection
and pose estimation which use different constraints and assumptions in their
evaluation procedures. In order to obtain fair results during comparison we
adopt the same conventions and assumptions of the original methods we use
to benchmark ours. When we compare with [157] we follow their protocol of
extracting N=5 stongest modes in the voting space and subsequently verify
them via ICP and normal vectors check, with the goal of suppressing false pos-
itives. For what concerns the comparison with [80] we retain all the detections
having a similarity score larger than 0.8. We have observed that this delivers,
as expected, excellent results for LineMOD when the objects are not occluded.
When we apply our approach we remove the last stage of the voting strategy
described previously and we take the N=100 most confident votes to formulate
our hypotheses.

The results achieved on the [157] dataset are summarized in Table 4.3
and put into perspective by comparing them with the ones achieved by other
approaches. The results obtained on the LineMOD dataset are shown in Table
4.4. Finally, the results achieved on the challenge dataset associated to the work
presented in [5], are reported in Table 4.5.
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Table 4.4: Results of our approach on the dataset used in [80]

Sequence [80] [90] [143] [83] Ours

ape 95.8 96.1 95.0 93.9 96.9
bench-vise 98.7 92.8 98.9 99.8 94.1

bowl 99.9 99.3 99.7 98.8 99.9
cam 97.5 97.8 98.2 95.5 97.7
can 95.4 92.8 96.3 95.9 95.2
cat 99.3 98.9 99.1 98.2 97.4
cup 97.1 96.2 97.5 99.5 99.6
drill 93.6 98.2 94.3 94.1 96.2
duck 95.9 94.1 94.2 94.3 97.3
eggb 99.8 99.9 99.8 100 99.9
glue 91.8 96.8 96.3 98.0 78.6

hole puncher 95.9 95.7 97.5 88.0 96.8
iron 97.5 96.5 98.4 97.0 98.7
lamp 97.7 98.4 97.9 88.8 96.2

phone 93.3 93.3 95.3 89.4 92.8

Average 96.6 96.5 97.2 95.4 95.8

Table 4.5: Results of our approach on the challenge dataset [5]

Method Precision Recall F1-Score

GHV [5] 1.0 0.998 0.999
Tang [156] 0.987 0.902 0.943
Xie [174] 1.0 0.998 0.999

Aldoma [6] 0.998 0.998 0.997
Ours 0.941 0.973 0.956
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4.4.4 Discussion

This approach demonstrates the capabilities of voting strategies for object
detection and pose estimation tasks using RGBd data. The idea presented here
is very similar to other works presented in this thesis and further demonstrates
the flexibility of Hough voting strategies. Moreover, we demonstrate the usage
of a deep convolutional auto-encoder for the crucial task of producing features
driving the voting approach.
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Tracking

5.1 Introduction

Visual tracking has been a central topic in computer vision research since a few
decades. Being able to track an object over time using only visual information
allows a number of applications, which are interesting both under the academic
and the industrial point of view.

Video surveillance, augmented reality, robotic applications, motion tracking
and behavioral studies are just a few examples that involve visual tracking
as a relevant part of the task. Also in medical field, tracking is necessary
for a number of tasks. Its application in this field ranges from surgical tools
visual tracking (applied for example in minimally invasive - image guided
- surgical procedures) to work-flow modeling where the goal is to track the
staff in the operating room during medical procedures, in order to analyze the
intervention itself and be able to aid the team.

In the last few years the computer vision community proposed a number
of high relevance works about visual tracking. These approaches were able
to perform reliably in challenging situations and were tested on a number of
sequences featuring one or multiple challenges. Even though the approaches
are multiple, their goal is always the same: estimate the state of an object over
time.

Object can be occluded or out of focus, can deform, change color, exhibit
different surface characteristic such as reflections and therefore their properties
cannot be captured fully by any analytic model. Moreover the object motion can
be very different from sequence to sequence: some objects move slowly while
others move very fast, their trajectory can be smooth or can be characterized
by abrupt changes.

The imaging process itself reduces the amount of information that is ex-
ploitable by the tracker: noise is always present and corrupts the images in an
unpredictable way while the analog to digital conversion operated by the com-
ponents of the camera introduces quantization noise. In addition, when dealing
with 2D images, algorithms must rely only on projections of the structures of
the 3D real world onto the image plane.

97



Chapter 5: Tracking

As of today, there is not a single tracker that can address at once all the
possible challenges and the variety of phenomena that can affect target objects
in real life settings.

Despite this, there are a number of trackers that aim to cope with a very
specific subset of these challenges and are designed to work in very specific
environment. Trackers that are used in factories’ production lines, for example,
perform in a reliable way as a result of the availability of some prior knowledge
about the object being tracked. The method presented in Section 4.3, belongs
also to the category of object-specific trackers since it aims to track specific
catheters having a specific electrode pattern in X-Ray sequences.

The aim of a generic tracker is more general. The goal that must be solved
is to track objects of which no prior knowledge about the object is available.
The only information provided to track the object is the initialization supplied
by the user or some other mechanism in the first frame of the sequence. A
tracker that is equally good in tracking humans, cars and animals at the same
time in different scene setting is not straightforward to realize.

In this section, a generic tracking algorithm relying on Hough voting and
dictionary learning will be presented. This approach was tested against a
number of challenging video sequences and proved to surpass or match the
performances of most recent approaches.
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5.2 Related Work

Current approaches can be grouped into two classes [176]:

• discriminative trackers, which make use of a classifier to distinguish the
object of interest from the background. This includes tracking methods
based on segmentations and bounding boxes;

• generative trackers, which rely on appearance models to capture and
match the visual characteristics of the object of interest across the frames.
In this case, most approaches work by managing the uncertainty around
the exact location of the object using strategies such as particle filter.

Recent examples of discriminative methods [66, 63] made use of a voting
strategy to track deformable objects while ensuring robustness towards oc-
clusion. Generative approaches such as [175, 181, 109] rely on a set of object
templates stored in a dictionary to maintain the appearances of the object of
interest and on sparse coding to robustly recognize it.

The state of an object can be parametrized using a number of parameters.
This depends on the complexity of the motion of the object and on the desired
precision of the tracking results. The state space can be parametrized using 2
parameters, which are able to model all the possible translation of the object
onto the image plane, it can be 4 dimensional defining the parameters of a
rigid transformation, it can be 6 dimensional modeling affine transformations
or 8 dimensional when the aim is to model projective transformations.

Discriminative approaches to visual object tracking make use of classifiers
to produce binary [8, 88] or structured predictions [63, 66, 74, 64] and therefore
distinguish the object of interest from the background. The most relevant
factors influencing the performance of the trackers are the discriminative
capabilities of the features, the choice of the learning algorithm, and the online
update strategy. In [8] a classifier based on boosting was updated online
using multiple instance learning, while [88] proposed to integrate structural
constraints in order to limit the impact of data-samples that are unlikely to be
related to the target during update. More recently [74] employed a kernelized
structured output Support Vector Machine (SVM) to regress the transformation
of the bounding box between subsequent frames. In [64], Gaussian Process
Regression (GPR) was employed to discriminate the target position from
background points, by means of a semi-supervised approach that learns the
discriminative model from both previously seen samples as well as unseen
candidates directly extracted from the current frame. Hough forests have been
used [63, 66] to jointly perform classification and localization of the target
bounding box. Data-points are classified and, depending on their label, they
are enabled to cast votes which localize the target. Recently, Convolutional
Neural Networks (CNN) have also been employed to classify between target
and background [99].

Generative approaches such as [18, 23] model the appearances of the object
of interest using histograms and ensure robustness using a fast segmentation
strategy which prevents the appearances of portions of the background from
triggering failures. In [18] a Graph Cut-based segmentation method was
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employed in each frame to obtain reliable histograms. In [23] a probabilistic
framework was developed to obtain Maximum-A-Posteriori estimations (MAP)
of both a level set-based segmentation contour wrapping the object of interest,
as well as an affine transformation accounting for rigid object motion. Other
generative methods [11, 181, 182, 175] make use of a dictionary of target object
templates and sparse coding to score candidate bounding boxes positions. In
each frame, patches are collected from the image and sparsely reconstructed
through the dictionary. The reconstruction fidelity serves as a likelihood of
candidate patches to depict the object of interest.
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Figure 5.1: Qualitative results on the sequences ‘Trellis’, ‘Singer2’, ‘Deer’, ‘Car4’
and ‘Dudek’. Our results are highlighted in red, manual annotation from the
benchmark sequence is depicted in green.

5.3 Hough-dictionaries for visual tracking

We propose a novel approach to online visual tracking that combines the
robustness of sparse coding with the flexibility of voting-based methods. Our
algorithm relies on a dictionary that is learned once and for all from a large set
of training patches extracted from images unrelated to the test sequences. In
this way we obtain basis functions, also known as atoms, that can be sparsely
combined to reconstruct local image content. In order to adapt the generic
knowledge encoded in the dictionary to the specific object being tracked, we
associate a set of votes and local object appearances to each atom: this is the
only information being updated during online tracking. In each frame of
the sequence the object’s bounding box position is retrieved through a voting
strategy. Our method exhibits robustness towards occlusions, sudden local and
global illumination changes as well as shape changes. We test our method on
50 standard sequences obtaining results comparable or superior to the state of
the art.

5.3.1 Method

We implement visual object tracking by means of a universal dictionary, learned
offline, together with a specific voting strategy.

The algorithm comprises three steps: Offline Dictionary learning — Where
we learn a dictionary of visual words from a large set of randomly sampled
image patches, with the goal of obtaining a set of basis functions (i.e. atoms)
capable of reconstructing a large variety of local image appearances.
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Tracker Initialization — Aiming at adapting the generic knowledge captured
in the dictionary to the target object. This is achieved by storing votes to the
bounding box centroid, obtained by manual initialization, and associated local
object appearances in correspondence to each dictionary atom.
Online Tracking — Whose purpose is to track the object across the sequence
using a generalized Hough voting strategy. We reconstruct image patches
through the dictionary and we cast the votes associated to each atom employed
for the reconstructions in order to obtain the updated bounding box centroid
position.

Our approach combines the advantages of both sparse coding and Hough
voting-based strategies to reliably track unconstrained objects. Instead of using
dictionaries containing object templates and relying on the reconstruction
error to score candidate object positions as in [11, 181, 182, 175], we learn a
generic, fixed, over-complete dictionary from small patches collected from
images unrelated to the test sequences. Such resulting universal dictionary,
which is estimated once and for all, is capable of reconstructing portions of
the target object using a sparse combination of visual words selected with the
awareness of the large range of appearances that can be found in real-world
situations, as supported by the findings of [159].

A crucial step is the initialization, where the content of the manually placed
bounding box is reconstructed patch-wise through the atoms of the dictionary
and the notion of target shape and appearance is acquired by storing votes
associated to each atom. The votes are stored as displacement vectors between
the patches sampling positions and the center of the bounding box, while
the appearances are represented by the reconstructions obtained through the
dictionary. Due to the fact that the object is modeled locally by means of
small patches, our approach is able to cope well with the presence of occlusion,
noise, blur, sudden local and global illumination changes (all patches are
individually normalized to account for illumination changes and are local)
and background clutter. Furthermore, our approach can adapt to appearance
changes of the tracked object by means of a specific update procedure of the
votes and appearances associated to the dictionary atoms.

The intuition is that, as long as the appearances of the target do not
radically change, its parts are always reconstructed using the same set of atoms.
Therefore, the bounding box position in each frame can be retrieved using
the proposed voting strategy. To cope with object appearance changes, the
votes and appearances are updated in each frame to achieve robustness, while,
conversely, the atoms of the dictionary are never modified.

Sparse coding

We make use of the theory shown in Section 2.2.4. In particular, the equation

min
α

1
2
‖Dα− y‖2

2 + λ ‖α‖1

will be used in this work to learn the dictionary D and reconstruct the signal y.
Here, to facilitate optimization and the enable the use of a fast implementation
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Figure 5.2: During offline learning we obtain a generic dictionary from image
patches (Sec. 5.3.1). The initialization aims at collecting object-specific informa-
tion in the form of votes and local appearances (Sec. 5.3.1). Online tracking is
implemented using a voting strategy to retrieve the centroid of the bounding
box (Sec. 5.3.1).

of the Lasso algorithm [107], the regularization term λ ‖α‖1 makes use of the
l1 norm as an approximation of the more principled l0 norm.

Offline Dictionary Learning

Recent approaches demonstrated the capabilities of sparse coding to perform
tasks such as denoising, texture synthesis, compression and audio processing
[107]. In these approaches, a dictionary of non-orthogonal basis functions is
employed to obtain sparse reconstructions of the input signals. We propose
to reconstruct parts of the image using a limited number of basis patches, the
atoms of the dictionary, which capture phenomena underlying real-world ap-
pearances. In our intuition we can retrieve sparse codes that are discriminative
of the object of interest by deploying a dictionary capable of reconstructing a
large range of different image patches. In contrast to previous methods based
on l1-sparse coding, we do not try to explain parts of the image using templates
depicting the object of interest [182, 11, 181, 109], neither we employ the recon-
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structions fidelity, which are potentially misleading, to score candidate object
positions. In our approach, we employ a dictionary that can approximately
reconstruct every possible image patch and which possesses knowledge about
recurrent intensity patterns as seen in the training set. As a result, we encode
the object of interest through combinations of dictionary atoms, each of which
encodes the causes underlying intensity patterns occurring in real scenes [159].
This is possible because our dictionary is trained with an amount of data that
goes well beyond that which is available in the first frame of the sequence.
During the first step of our algorithm (Fig. 5.2, top), we collect a large set
T = {t1, ..., tn} of grayscale image patches from generic images downloaded
from the Internet and we learn a dictionary D = {d1, ..., dk} containing k atoms
by optimizing the following problem with respect to D and αi:

arg min
D

1
n

n

∑
i=1

1
2
||ti −Dαi||22 + λ||αi||1. (5.1)

We aim to minimize the sum of squared differences (SSD) between the patches
contained in the data-set T and their sparse reconstructions obtained as a linear
combination of the columns of D through the coefficients αi ∈ Rk. The strength
of the sparsity constraint can be controlled through the parameter λ.

Tracker Initialization

Using the object bounding box provided in the first frame of every sequence,
we initialize the method by capturing the shape and appearance of the object of
interest: we rely, as previously stated, on a set of votes pointing to the bounding
box centroid c = (cx, cy) together with a representation of the appearances of
the region where each vote originated from.

Specifically, the initial bounding box is subdivided into M× N sub-regions
R1, ..., RM×N . Each region stores votes a separate list of votes and appearances
of the regions of origin. This is necessary since patches from different sub-
regions may be reconstructed using the same set of dictionary atoms, and
if there would be just one common list of votes for the whole object, many
unnecessary votes might be cast. By considering only small sub-regions
within the object, we ensure votes that are always pointing in approximately
the right direction. That is, they never induce a violation of the initial spatial
configuration of the object’s sub-regions during tracking. The absolute ordering
of the sub-regions does not change during tracking. It is also worth pointing
out that, in comparison with the case where no sub-regions are defined, a
smaller amount of votes is stored in correspondence of each atom in every
sub-region, leading to a reduction of processing time during tracking. The
subdivision of each template into sub-regions is graphically depicted in Fig.
5.2, middle.

For each of the sub-regions we densely extract image patches p1, ..., ps at
locations x1, ..., xs having the same dimensionality as the atoms in D. Each
patch pi is reconstructed through D by solving the l1-sparse optimization
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problem

arg min
αi

1
2
||pi −Dαi||22 + λ||αi||1 (5.2)

yielding the sparse coefficients αi, and the reconstructions p̂i = Dαi. Using
these sparse coefficients αi we identify the indices of the atoms that contributed
to the reconstruction of pi. Supposing that the i-th patch pi belongs to the
j-th sub-region and that it required the contribution of the k-th atom during
its reconstruction, the vote vi = c− xi and the appearance p̂i are respectively
added to the sets Vj

k and Aj
k (Fig. 5.2, middle). Importantly, storing sparse

reconstructions p̂i as robust representations of region appearances is advanta-
geous since it allows to reduce the effects of noise, and it implicitly encodes
the configuration of the sparse coefficient vector α characteristic of the patches
used for initialization.

Our l1-sparse optimization of Eq. 5.1 is almost instantaneous due to the
fact that the dictionary atoms di, as well as the signals pi, consist of very small
patches with low dimensionality, thus yielding an average computational cost
for the initialization step of typically just a few milliseconds.

Online Tracking

We track the object across the sequence by retrieving the position of the
bounding box centroid in each frame through the voting strategy. We extract
image patches pj

1, ..., pj
N from the area surrounding the last known position of

each sub-region Rj (50px2 in our experiments) and we reconstruct them using
the dictionary D solving the l1-sparse optimization as stated in Eq. 5.2. The
obtained sparse codes α

j
i and the reconstructions p̂j

i = Dα
j
i are respectively

employed to identify the atoms involved in each reconstruction and to obtain
weights for the votes Vj

k by comparison with the learned appearances stored

in Aj
i (Fig. 5.2, bottom). Let us suppose the i-th image patch belongs to the

search area of the j-th sub-region and that is reconstructed through the k-th
dictionary atom: we cast all the votes v(k,j)

l stored in Vk
j after weighting their

contributions with the weights w(k,j)
l obtained as the reciprocal of the SSD

between the appearances a(k,j)
l and the reconstruction p̂j

i :

w(k,j)
l =

1

(a(k,j)
l − p̂j

l)
>(a(k,j)

l − p̂j
l)

. (5.3)

The weighted votes contribute to a vote map. The bounding box centre is
found by identifying the location of the highest peak in the vote map after it is
smoothed by convolving it with a small Gaussian kernel.

Since the different search areas often overlap, an efficient implementation
of the reconstruction can be achieved by solving Eq. 5.2 only once for all the
patches in the global search area, regardless of the sub-regions they belong to.
After the sparse codes are retrieved, they are interpreted using the information
stored in the data structures of the specific sub-regions.
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Figure 5.3: Our method, whose output is depicted using a red bounding box,
is able to cope with large rotations and scale changes. Note that the manual
annotation provided in the benchmark data-set [172], depicted in green, does
not take into account rotations.

Update strategy

Once the bounding box is estimated, we select the atom of the dictionary that
was employed the most for reconstruction of the background area and we
prune its votes and appearances from the data structures of every sub-region.
On the other hand, all the samples contained inside the estimated bounding
box serve to update the voting structures through a procedure similar to the
one used during initialization. In this way, we aim to keep information about
the object until the moment it becomes misleading. This happens when votes
and appearances get coincidentally associated to background structures.

Handling scale changes and rotations

The votes and appearances employed in our method are not invariant to
rotation and scale changes. When the object changes orientation or size, the
votes do not accumulate in clear peaks anymore. To handle scale changes and
rotations of the target object, we create different versions of the input frame
which are rotated and re-scaled by fixed quantities. We decide for the rotation
and scale for which we obtain the vote map yielding the maximum peak. The
inverse of the estimated parameters are then added to the current state of the
tracker.

Since performing an exhaustive search by considering a large range of
rotations and scale changes is a computationally intensive task, we rely on the
assumption, commonly used in tracking, that the position, scale and rotation
of the object changes smoothly from one frame to the other. In this way, as
shown in Fig. 5.3, we can deal with those changes by only considering a small
range of rotations and scale factors.
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Figure 5.4: Backprojection of the Hough votes. Upper row: Output of our algo-
rithm. Lower row: Votes having high weights (jet colormap) were generated
only by patches belonging to the visible region of the object: the occlusion has
a negligible effect on the vote map.

Figure 5.5: Robustness towards illumination changes is achieved by normaliz-
ing the patches extracted from the image. Even in sequences like ‘David’, where
extreme illumination changes are present, our method performs correctly.

Robustness against occlusions

As previously stated, our method exhibits robustness to large amounts of
occlusion. Since the reconstruction of the object is performed patch-wise and
a few patches are already sufficient to cast a high number of votes with high
confidence, we are able to localize the bounding box even when large portions
of the target are not visible. In Fig. 5.4 we show the behaviour of our approach
when the object undergoes occlusions. We re-project the votes that contributed
to the estimation of the bounding box in each frame to the position of the
patches that generated them and we observe that only visible parts of the
object are able to effectively contribute to the estimation of the bounding box
centroid.

Robustness against illumination changes

The patches extracted from the images both during initialization and tracking
are normalized to zero mean and unit standard deviation to achieve illumina-
tion invariance. The same applies to the appearances stored in correspondence
of the dictionary atoms. As briefly shown in Fig. 5.5, our method exhibits
robustness against extreme illumination changes.

107



Chapter 5: Tracking

Figure 5.6: Results in terms of success and precision comparing our method
with top performing algorithms on the 50 sequences (51 targets) of the CVPR13
Visual Tracking Benchmark[172]. Area under curve (AUC) is reported in
brackets. All plots are color-coded according to performances. These images
are obtained using the automatic scoring tool provided by the organizers of
the challenge [172].

5.3.2 Experimental evaluation

To test our approach we employ the benchmark data-set published in [172]
that consists of 50 annotated sequences (51 targets) including challenging
situations such as illumination changes, deformations, occlusions, background
clutter and motion blur. We compared with the most recent approaches
having publicly available results on this benchmark, in particular ‘L1APG’ [11],
‘MTT’ [181], ‘SCM’ [182], ‘Struck’ [74], ‘TGPR’ [64] and all the others which
have been evaluated in [172]. We follow the experimental protocols proposed
in the benchmark [172] and evaluate our approach in terms of success and
precision. All the sequences were converted to grayscale. The parameters of
each algorithm are fixed for all the sequences and the bounding box used
for initialization is provided in the first frame. Since the first frame of the
sequence ‘David’ is very dark and unsuited for the initialization of many
tracking algorithms, all the methods used for comparison were initialized at
frame 300 while ours was initialized at frame 1. Although our approach yields
better performance when initialized at frame 300, we want to demonstrate
that we are able to track the object correctly even if the initialization frame is
extremely dark as shown in Fig. 5.5. The average overlap and precision plots
for all the experiments are depicted in Fig. 5.6. The performance of the trackers
is expressed in terms of area under curve (AUC) and these values are enclosed
in brackets in the plot of Fig.5.6. Qualitative results are shown in Fig. 5.1.

Parameters of the algorithm

The parameter λ, which controls the sparsity of both the dictionary and the
sparse reconstructions is set to 0.1. The dictionary D consists of k = 300 8× 8
pixels atoms. During online tracking, candidate patches are collected using a
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Figure 5.7: Results in terms of success and precision our method in comparison
with top performing algorithms on 44 sequences (45 targets). Area under
curve (AUC) reported in brackets. All plots are color coded according to
performances. These images are obtained using the automatic scoring tool
provided by the organizers of the challenge [172]

regular grid which has a 4 pixels spacing and which covers a 50 pixels wide area
around the last known position of the bounding box. To handle scale changes
and rotations, we transform each frame by considering each possible pair of
scale and rotation from the set of possible rotation offsets, ∆r =

[
−3 0 3

]
degrees, and the set of possible scale offsets, ∆s =

[
−0.03 0 0.03

]
. With

these empirically selected parameters, our MATLAB implementation processes
approximately 5 frames per second.

Results on selected sequences

From empirical observations we have noticed that the our tracking method
tends to fail over low-resolution sequences depicting small target objects or
objects that are hardly distinguishable from the surroundings (in grayscale).
As a result, the algorithm performs unsatisfactorily in sequences such as
‘Basketball’, ’Bolt’, ‘Freeman3’, ‘Freeman 4’, ‘Girl’ and ‘CarDark’. We conclude
that, failure over ‘Freeman3’, ‘Freeman 4’ and ‘CarDark’ sequences is due
to the small size of the initial bounding box (with an area of resp. 156, 240,
667 px2), which causes the number of votes stored during training to be low.
Failure in the ‘Basketball’, ’Bolt’, ‘Girl’ and ‘CarDark’ sequences are instead
mostly determined by the additional presence of background clutter and lack
of contrast between the objects and their surroundings in the grayscale images.
Once these sequences are left out from the evaluation, we observe that the
performance gap between our approach and the others remarkably increase to
our favor, as witnessed by Fig. 5.7, which shows the results, in terms of success
and precision, on 44 sequences (45 targets), where the 6 benchmark sequences
having smallest resolution and target size were excluded.
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5.3.3 Discussion

We presented a novel method for robust object tracking which uses dictionaries
in a new fashion: generic, non object-specific information is learned from
random images and it is used to reconstruct the object of interest patch-
wise. The locality of these reconstructions coupled with the robustness of
Hough voting allows the algorithm to perform in presence of large occlusions,
illumination changes, motion blur and background clutter. Our approach
outperforms the state of the art on every sequence apart from the ones that
suffer from very low resolutions and depict very small, hard to distinguish,
target objects. As a future work we plan to investigate a similar strategy using
deep sparse auto-encoders instead of dictionaries.
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Conclusion and Outlook

Hough voting can be used in its generalized form to solve a wide range of
problems in computer vision and medical image analysis. As shown in this
thesis, voting methods find applications in fields such as detection, segmenta-
tion and tracking. Using voting it is possible to handle the limitation of most
current machine learning approaches that often deliver imperfect results due
to their generalization capabilities, the limited amount of available annotated
training data and the characteristics of the images which can contain noise,
artifacts and illumination changes. In other words, we have shown that we can
accomplish through voting tasks that otherwise would have been impossible
to solve by relying on more standard, end-to-end machine learning techniques.
We can summarize here the findings of this thesis with respect to segmentation,
detection and tracking.

In Chapter 3 we have shown how to segment one or more hardly visi-
ble structure in medical volumes with different voting based approaches. In
particular, different methods were employed to extract meaningful features
from image patches and fast nearest neighbors search allowed to retrieve votes
and segmentation patches from a database assembled during training. This
allowed for both more robust results and shape consistency of the final segmen-
tation. Additionally it has been demonstrated that voting based approaches
are much superior when compared to patch based classification or to the fully
convolutional neural network approach presented in [116].

In Chapter 4 we have seen how voting based approaches can be used to
perform RGBd object detection and pose estimation using the same principle
introduced in Chapter 3 with some minor changes. The results achieved by the
presented approach scale well when a great number of objects is present in the
scene, and exhibit robustness to occlusions and other sources of performance
decrease such as specular reflections etc.

In Chapter 5 the same finding has been demonstrated by employing dic-
tionary learning and applying this technique in a truly unique fashion to the
problem at hand. Differently than other recent approaches, and differently
from the catheter detection work presented in Chapter 4, we learn the dictio-
nary from small patches coming from unrelated images and we apply this
knowledge to reconstruct patches from the objects that we want to track. Then
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we associate the atoms used in these reconstructions with votes such that when
similar atoms will be employed again in future reconstructions the votes will
be cast and a robust detection result will be achieved.

6.1 Limitations

One of the main limitations of the presented approaches is their limited scal-
ability. The works presented in Chapter 3 are all limited by the K nearest
neighbors (K-NN) search algorithm efficiency and moreover require storage
of segmentation patches, or at least an atlas of annotated volumes in order to
work. Additionally, these approaches cannot be currently trained in a end-to-
end fashion, due to the huge limitations that the voting strategy introduces
computationally when we make it differentiable by replacing the K-NN selec-
tion strategy with "all-NN" where all the features extracted from the image are
compared with the whole database and cast all the votes. Therefore, although
this end-to-end training strategy is in theory possible, even simple experiment
proving its effectiveness have not delivered interesting results so far.

Another limitation stems from the compute time required by the approaches
presented in this thesis. Although some approaches are almost real time and
are employed in a setting, such as medical volume segmentation, where wait
times of a handful of seconds are acceptable our tracking algorithm and RGBd
detection algorithm are still running at a reduced frame-rate.

6.2 Future Work

As a future work we would like to invesitgate how we can create more effective
features to achieve better voting in a faster manner by selecting a smaller K in
K-NN search. Moreover, a smart voting strategy that relies on voters that are
not uniformely distributed in a grid would surely bring benefits to the runtime
of the algorithm.

One of the main reasons to use Hough voting in segmentation is their
capability to enforce an implicit shape prior of the anatomy at hand therefore
improving the results by avoiding delivering anatomically implausible segmen-
tations. As a future work we are currently looking at ways to include strong
shape priors in methods that are more flexible such as the FCNN method
employed in [116].

6.3 Epilogue

Extensive experimental evaluation and comparison of the approaches pre-
sented in this thesis with state of the art methods indicate that voting strategies
are particularly effective in challenging problems and can improve the perfor-
mances of current machine learning based methods. These findings motivate
future research and the development of novel ideas which build on top of the
approaches presented in this thesis.
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Authored and Co-authored
Publications

Authored:

1. Milletari, F., Yigitsoy, M., Navab, N.: Left ventricle segmentation in cardiac
ultrasound using hough-forests with implicit shape and appearance
priors pp. 49–56 (2014)

2. Milletari, F., Ahmadi, S.A., Kroll, C., Hennersperger, C., Tombari, F., Shah,
A., Plate, A., Boetzel, K., Navab, N.: Robust segmentation of various
anatomies in 3d ultrasound using hough forests and learned data rep-
resentations. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015, pp. 111–118. Springer (2015)

3. Milletari, F., Ahmadi, S.A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J.,
Levin, J., Dietrich, O., Ertl-Wagner, B., Bötzel, K., et al.: Hough-cnn: Deep
learning for segmentation of deep brain regions in mri and ultrasound.
Computer Vision and Image Understanding (2017)

4. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In: 3D Vision
(3DV), 2016 Fourth International Conference on, pp. 565–571. IEEE (2016)

5. Milletari, F., Navab, N., Fallavollita, P.: Automatic detection of multiple
and overlapping ep catheters in fluoroscopic sequences. In: Interna-
tional Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 371–379. Springer (2013)

6. Milletari, F., Belagiannis, V., Navab, N., Fallavollita, P.: Fully automatic
catheter localization in c-arm images using â„“1-sparse coding. In: In-
ternational Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 570–577. Springer (2014)

7. Milletari, F., Kehl, W., Tombari, F., Ilic, S., Ahmadi, S.A., Navab, N.:
Universal hough dictionaries for object tracking. In: BMVC, pp. 122–1
(2015)
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Co-authored:

1. Kehl, W., Milletari, F., Tombari, F., Ilic, S., Navab, N.: Deep learning of
local rgb-d patches for 3d object detection and 6d pose estimation. In:
European Conference on Computer Vision, pp. 205–220. Springer (2016)

2. Zettinig, O., Shah, A., Hennersperger, C., Eiber, M., Kroll, C., Kübler, H.,
Maurer, T., Milletarì, F., Rackerseder, J., zu Berge, C.S., et al.: Multimodal
image-guided prostate fusion biopsy based on automatic deformable
registration. International journal of computer assisted radiology and
surgery 10(12), 1997–2007 (2015)

3. Bernard, O., Bosch, J.G., Heyde, B., Alessandrini, M., Barbosa, D., Camarasu-
Pop, S., Cervenansky, F., Valette, S., Mirea, O., Bernier, M., et al.: Stan-
dardized evaluation system for left ventricular segmentation algorithms
in 3d echocardiography. IEEE transactions on medical imaging 35(4),
967–977 (2016)

4. Ahmadi, S.A., Milletari, F., Navab, N., Schuberth, M., Plate, A., Bötzel, K.:
3d transcranial ultrasound as a novel intra-operative imaging technique
for dbs surgery: a feasibility study. International journal of computer
assisted radiology and surgery 10(6), 891–900 (2015)

5. Bortsova, G., Sterr, M., Wang, L., Milletari, F., Navab, N., Böttcher, A.,
Lickert, H., Theis, F., Peng, T.: Mitosis detection in intestinal crypt images
with hough forest and conditional random fields. In: International Work-
shop on Machine Learning in Medical Imaging, pp. 287–295. Springer
(2016)

6. Kroll, C., Milletari, F., Navab, N., Ahmadi, S.A.: Coupling convolutional
neural networks and hough voting for robust segmentation of ultrasound
volumes. In: German Conference on Pattern Recognition, pp. 439–450.
Springer (2016)

7. Ahmadi, S.A., Plate, A., Schuberth, M., Milletari, F., Navab, N., Bötzel, K.:
P116. dbs electrode imaging using 3d transcranial ultrasound–a feasibility
study with first quantitative results. Clinical Neurophysiology 126(8),
e106–e107 (2015)

8. Riva, M., Hennersperger, C., Milletari, F., Katouzian, A., Pessina, F.,
Gutierrez-Becker, B., Castellano, A., Navab, N., Bello, L.: 3d intra-operative
ultrasound and mr image guidance: pursuing an ultrasound-based man-
agement of brainshift to enhance neuronavigation. International Journal
of Computer Assisted Radiology and Surgery pp. 1–15 (2017)

9. Baur, C., Milletari, F., Belagiannis, V., Navab, N., Fallavollita, P.: Auto-
matic 3d reconstruction of electrophysiology catheters from two-view
monoplane c-arm image sequences. International journal of computer
assisted radiology and surgery 11(7), 1319–1328 (2016)
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[83] Hodaň, T., Zabulis, X., Lourakis, M., Obdržálek, Š., Matas, J.: Detection
and fine 3d pose estimation of texture-less objects in rgb-d images. In:
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pp. 4421–4428. IEEE (2015)

[84] Ionasec, R., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Vega-Higuera, F.,
Navab, N., Comaniciu, D.: Patient-specific modeling and quantification
of the aortic and mitral valves from 4-d cardiac ct and tee. Medical
Imaging, IEEE Transactions on 29(9), 1636–1651 (2010). doi: 10.1109/
TMI.2010.2048756

[85] Ionasec, R.I., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Vega-Higuera,
F., Navab, N., Comaniciu, D.: Patient-specific modeling and quantifica-
tion of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE
Trans Med Imaging 29(9), 1636–1651 (2010)

[86] Ivancevich, N., Dahl, J., Light, E., Nicoletto, H., Seism, M., Laskowitz, D.,
Trahey, G., Smith, S.: 2b-2 phase aberration correction on a 3d ultrasound
scanner using rf speckle from moving targets. In: Ultrasonics Symposium,
2006. IEEE, pp. 120–123 (2006)

[87] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093 (2014)

[88] Kalal, Z., Matas, J., Mikolajczyk, K.: Pn learning: Bootstrapping binary
classifiers by structural constraints. In: Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pp. 49–56. IEEE (2010)

[89] Kehl, W., Milletari, F., Tombari, F., Ilic, S., Navab, N.: Deep learning of
local rgb-d patches for 3d object detection and 6d pose estimation. In:
European Conference on Computer Vision, pp. 205–220. Springer (2016)

[90] Kehl, W., Tombari, F., Navab, N., Ilic, S., Lepetit, V.: Hashmod: a hashing
method for scalable 3d object detection. arXiv preprint arXiv:1607.06062
(2016)

[91] Keraudren, K., Oktay, O., Shi, W., Hajnal, J.V., Rueckert, D.: Endocardial
3d ultrasound segmentation using autocontext random forests. In: Proc.
MICCAI CETUS, pp. 41–48 (2014)

[92] Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang,
M.C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., et al.: Evaluation
of 14 nonlinear deformation algorithms applied to human brain mri
registration. Neuroimage 46(3), 786–802 (2009)

122



BIBLIOGRAPHY

[93] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. In: Advances in Neural Information
Processing Systems, pp. 1097–1105 (2012)

[94] Kroll, C., Milletari, F., Navab, N., Ahmadi, S.A.: Coupling convolutional
neural networks and hough voting for robust segmentation of ultrasound
volumes. In: German Conference on Pattern Recognition, pp. 439–450.
Springer (2016)

[95] Lasso, A., Heffter, T., Rankin, A., Pinter, C., Ungi, T., Fichtinger, G.: Plus:
open-source toolkit for ultrasound-guided intervention systems. IEEE
Transactions on Biomedical Engineering 61(10), 2527–2537 (2014)

[96] Le, Q.V.: Building high-level features using large scale unsupervised
learning. In: Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pp. 8595–8598. IEEE (2013)

[97] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553),
436–444 (2015)

[98] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86(11), 2278–
2324 (1998)

[99] Li, H., Li, Y., Porikli, F.: Robust online visual tracking with a single
convolutional neural network. In: Computer Vision–ACCV 2014, pp.
194–209. Springer (2015)

[100] Liang, X., Liu, S., Shen, X., Yang, J., Liu, L., Dong, J., Lin, L., Yan, S.: Deep
human parsing with active template regression. CoRR abs/1503.02391
(2015)

[101] Litjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra, S., van Ginneken,
B., Vincent, G., Guillard, G., Birbeck, N., Zhang, J., et al.: Evaluation of
prostate segmentation algorithms for MRI: the PROMISE12 challenge.
Medical image analysis 18(2), 359–373 (2014)

[102] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for
semantic segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

[103] Lowe, D.G.: Distinctive image features from scale-invariant keypoints.
International journal of computer vision 60(2), 91–110 (2004)

[104] Ma, Y., Gao, G., Gijsbers, G., Rinaldi, C.A., Gill, J., Razavi, R., Rhode,
K.S.: Image-based automatic ablation point tagging system with motion
correction for cardiac ablation procedures. In: Information Processing in
Computer-Assisted Interventions, pp. 145–155. Springer (2011)

[105] Ma, Y., Gogin, N., Cathier, P., Housden, R.J., Gijsbers, G., Cooklin, M.,
O’Neill, M., Gill, J., Rinaldi, C.A., Razavi, R., et al.: Real-time x-ray
fluoroscopy-based catheter detection and tracking for cardiac electro-
physiology interventions. Medical physics 40(7), 071,902 (2013)

123



BIBLIOGRAPHY

[106] Ma, Y., King, A.P., Gogin, N., Rinaldi, C.A., Gill, J., Razavi, R., Rhode, K.S.:
Real-time respiratory motion correction for cardiac electrophysiology
procedures using image-based coronary sinus catheter tracking. In:
MICCAI 2010, pp. 391–399. Springer (2010)

[107] Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning
for sparse coding. In: Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 689–696. ACM (2009)

[108] McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics 5(4), 115–133
(1943)

[109] Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In:
Computer Vision, 2009 IEEE 12th International Conference on, pp. 1436–
1443. IEEE (2009)

[110] Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality
of keypoints for local feature-based 3d object retrieval from cluttered
scenes. International Journal of Computer Vision 89(2), 348–361 (2010)

[111] Milletari, F., Ahmadi, S.A., Kroll, C., Hennersperger, C., Tombari, F.,
Shah, A., Plate, A., Boetzel, K., Navab, N.: Robust segmentation of
various anatomies in 3d ultrasound using hough forests and learned
data representations. In: Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015, pp. 111–118. Springer (2015)

[112] Milletari, F., Ahmadi, S.A., Kroll, C., Hennersperger, C., Tombari, F.,
Shah, A., Plate, A., Boetzel, K., Navab, N.: Robust segmentation of
various anatomies in 3d ultrasound using hough forests and learned
data representations. In: Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015, pp. 111–118. Springer (2015)

[113] Milletari, F., Ahmadi, S.A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J.,
Levin, J., Dietrich, O., Ertl-Wagner, B., Bötzel, K., et al.: Hough-cnn: Deep
learning for segmentation of deep brain regions in mri and ultrasound.
Computer Vision and Image Understanding (2017)

[114] Milletari, F., Belagiannis, V., Navab, N., Fallavollita, P.: Fully automatic
catheter localization in c-arm images using â„“1-sparse coding. In:
International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 570–577. Springer (2014)

[115] Milletari, F., Kehl, W., Tombari, F., Ilic, S., Ahmadi, S.A., Navab, N.:
Universal hough dictionaries for object tracking. In: BMVC, pp. 122–1
(2015)

[116] Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In: 3D Vision
(3DV), 2016 Fourth International Conference on, pp. 565–571. IEEE (2016)

124



BIBLIOGRAPHY

[117] Milletari, F., Navab, N., Fallavollita, P.: Automatic detection of multiple
and overlapping ep catheters in fluoroscopic sequences. In: Interna-
tional Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 371–379. Springer (2013)

[118] Milletari, F., Yigitsoy, M., Navab, N.: Left ventricle segmentation in car-
diac ultrasound using hough-forests with implicit shape and appearance
priors pp. 49–56 (2014)

[119] Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P., Van der Geest, R.J., Reiber,
J.H., Sonka, M.: 3-d active appearance models: segmentation of cardiac
mr and ultrasound images. IEEE transactions on medical imaging 21(9),
1167–1178 (2002)

[120] Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Crimin-
isi, A.: Entangled decision forests and their application for semantic
segmentation of ct images. In: IPMI (2011)

[121] Mor-Avi, V., Jenkins, C., Kühl, H.P., Nesser, H.J., Marwick, T., Franke, A.,
Ebner, C., Freed, B.H., Steringer-Mascherbauer, R., Pollard, H., et al.: Real-
time 3-dimensional echocardiographic quantification of left ventricular
volumes: multicenter study for validation with magnetic resonance
imaging and investigation of sources of error. JACC: Cardiovascular
Imaging 1(4), 413–423 (2008)

[122] Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high
dimensional data. Pattern Analysis and Machine Intelligence, IEEE Trans.
on 36 (2014)

[123] Ng, A.: Sparse autoencoder. CS294A Lecture notes 72(2011), 1–19 (2011)

[124] Ngo, T.A., Carneiro, G.: Left ventricle segmentation from cardiac mri
combining level set methods with deep belief networks. In: Image
Processing (ICIP), IEEE Intl. Conf. on, pp. 695–699 (2013)

[125] Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey.
IEEE Trans Med Imaging 25(8), 987–1010 (2006)

[126] Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic
segmentation. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 1520–1528 (2015)

[127] Norris, R., White, H., Cross, D., Wild, C., Whitlock, R.: Prognosis after
recovery from myocardial infarction: the relative importance of cardiac
dilatation and coronary stenoses. European heart journal 13(12), 1611–
1618 (1992)

[128] Nouranian, S., Mahdavi, S.S., Spadinger, I., Morris, W.J., Salcudean,
S.E., Abolmaesumi, P.: A multi-atlas-based segmentation framework for
prostate brachytherapy. IEEE transactions on medical imaging 34(4),
950–961 (2015)

125



BIBLIOGRAPHY

[129] Oktay, O., Shi, W., Keraudren, K., Caballero, J., Rueckert, D., Hajnal, J.:
Learning shape representations for multi-atlas endocardium segmenta-
tion in 3d echo images. Proceedings MICCAI Challenge on Echocardio-
graphic Three-Dimensional Ultrasound Segmentation (CETUS), Boston,
MIDAS Journal pp. 57–64 (2014)

[130] Oppenheim, A.v., Schafer, R., Stockham, T.: Nonlinear filtering of multi-
plied and convolved signals. IEEE transactions on audio and electroa-
coustics 16(3), 437–466 (1968)

[131] Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M.: A bayesian
model of shape and appearance for subcortical brain segmentation. Neu-
roImage 56(3), 907 – 922 (2011)

[132] Pauly, O., Ahmadi, S.A., Plate, A., Boetzel, K., Navab, N.: Detection of
substantia nigra echogenicities in 3d transcranial ultrasound for early
diagnosis of parkinson disease. In: N. Ayache, H. Delingette, P. Golland,
K. Mori (eds.) Medical Image Computing and Computer-Assisted Inter-
vention MICCAI 2012, Lecture Notes in Computer Science, vol. 7512, pp. 443–
450. Springer Berlin Heidelberg (2012). doi: 10.1007/978-3-642-33454-2_
55. URL http://dx.doi.org/10.1007/978-3-642-33454-2_55

[133] Pauly, O., Glocker, B., Criminisi, A., Mateus, D., Martinez-Moeller, A.,
Nekolla, S., Navab, N.: Fast multiple organ detection and localization in
whole-body mr dixon sequences. In: Proc. MICCAI (2011)

[134] Payan, A., Montana, G.: Predicting alzheimer’s disease: a neuroimaging
study with 3d convolutional neural networks. CoRR abs/1502.02506
(2015)

[135] Plate, A., Ahmadi, S.A., Pauly, O., Klein, T., Navab, N., Bötzel, K.: Three-
dimensional sonographic examination of the midbrain for computer-
aided diagnosis of movement disorders. Ultrasound Med Biol 38(12),
2041–2050 (2012)

[136] Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.:
Deep feature learning for knee cartilage segmentation using a triplanar
convolutional neural network. Med Image Comput Comput Assist Interv
16(Pt 2), 246–253 (2013)

[137] Prince, S.J.: Computer vision: models, learning, and inference. Cam-
bridge University Press (2012)

[138] Qiu, W., Rajchl, M., Guo, F., Sun, Y., Ukwatta, E., Fenster, A., Yuan,
J.: 3D prostate TRUS segmentation using globally optimized volume-
preserving prior. Med Image Comput Comput Assist Interv 17(Pt 1),
796–803 (2014)

[139] Ranftl, R., Pock, T.: A deep variational model for image segmentation.
In: Pattern Recognition, vol. 8753, pp. 107–118 (2014)

126



BIBLIOGRAPHY

[140] Rematas, K., Leibe, B.: Efficient object detection and segmentation with
a cascaded hough forest ism. In: Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on, pp. 966–973 (2011).
doi: 10.1109/ICCVW.2011.6130356

[141] Riegler, G., Ferstl, D., Rüther, M., Bischof, H.: Hough networks for head
pose estimation and facial feature localization. Journal of Computer
Vision 101(3), 437–458 (2013)

[142] Riemenschneider, H., Sternig, S., Donoser, M., Roth, P., Bischof, H.:
Hough regions for joining instance localization and segmentation. In:
A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, C. Schmid (eds.) Computer
Vision â€“ ECCV 2012, Lecture Notes in Computer Science, vol. 7574, pp. 258–
271. Springer Berlin Heidelberg (2012). doi: 10.1007/978-3-642-33712-3_
19

[143] Rios-Cabrera, R., Tuytelaars, T.: Discriminatively trained templates for
3d object detection: A real time scalable approach. In: Proceedings of
the IEEE International Conference on Computer Vision, pp. 2048–2055
(2013)

[144] Riva, M., Hennersperger, C., Milletari, F., Katouzian, A., Pessina, F.,
Gutierrez-Becker, B., Castellano, A., Navab, N., Bello, L.: 3d intra-
operative ultrasound and mr image guidance: pursuing an ultrasound-
based management of brainshift to enhance neuronavigation. Interna-
tional Journal of Computer Assisted Radiology and Surgery pp. 1–15
(2017)

[145] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks
for Biomedical Image Segmentation. In: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015, pp. 234–241. Springer
(2015)

[146] Roth, H., Lu, L., Seff, A., Cherry, K., Hoffman, J., Wang, S., Liu, J., Turkbey,
E., Summers, R.: A new 2.5d representation for lymph node detection
using random sets of deep convolutional neural network observations.
In: Med Image Comput Comput Assist Interv, vol. 8673, pp. 520–527
(2014)

[147] Schapire, R.E.: The strength of weak learnability. Machine learning 5(2),
197–227 (1990)

[148] Schenderlein, M., Stierlin, S., Manzke, R., Rasche, V., Dietmayer, K.:
Catheter tracking in asynchronous biplane fluoroscopy images by 3d
b-snakes. In: SPIE Medical Imaging, pp. 76,251U–76,251U. International
Society for Optics and Photonics (2010)

[149] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun,
Y.: Overfeat: Integrated recognition, localization and detection using
convolutional networks. arXiv:1312.6229 (2013)

127



BIBLIOGRAPHY

[150] Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio,
M., Moore, R., Kohli, P., Criminisi, A., Kipman, A., et al.: Efficient human
pose estimation from single depth images. IEEE Transactions on Pattern
Analysis and Machine Intelligence 35(12), 2821–2840 (2013)

[151] Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

[152] Smistad, E., Lindseth, F.: Real-time tracking of the left ventricle in 3d
ultrasound using kalman filter and mean value coordinates. Medical
Image Segmentation for Improved Surgical Navigation p. 189 (2014)

[153] Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806
(2014)

[154] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In:
Computer Vision and Pattern Recognition, IEEE Conf. on (2015)

[155] Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object
detection. In: Advances in Neural Information Processing Systems 26,
pp. 2553–2561 (2013)

[156] Tang, J., Miller, S., Singh, A., Abbeel, P.: A textured object recognition
pipeline for color and depth image data. In: Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pp. 3467–3474. IEEE
(2012)

[157] Tejani, A., Tang, D., Kouskouridas, R., Kim, T.K.: Latent-class hough
forests for 3d object detection and pose estimation. In: European Confer-
ence on Computer Vision, pp. 462–477. Springer (2014)

[158] Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In:
Computer Vision, 1998. Sixth International Conference on, pp. 839–846.
IEEE (1998)

[159] Tosic, I., Frossard, P.: Dictionary learning. Signal Processing Magazine,
IEEE 28(2), 27–38 (2011)

[160] Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson,
W.E., Willsky, A.: A shape-based approach to the segmentation of medical
imagery using level sets. IEEE transactions on medical imaging 22(2),
137–154 (2003)

[161] Turaga, S.C., Murray, J.F., Jain, V., Roth, F., Helmstaedter, M., Briggman,
K., Denk, W., Seung, H.S.: Convolutional networks can learn to generate
affinity graphs for image segmentation. Neural Comput 22(2), 511–538
(2010)

[162] Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich,
P.A., Gee, J.C.: N4ITK: improved N3 bias correction. Medical Imaging,
IEEE Transactions on 29(6), 1310–1320 (2010)

128



BIBLIOGRAPHY

[163] Van Stralen, M., Haak, A., Leung, K., Van Burken, G., Bosch, J.G.: Seg-
mentation of multi-center 3d left ventricular echocardiograms by active
appearance models. In: Proc. MICCAI CETUS, pp. 73–80 (2014)

[164] Vincent, G., Guillard, G., Bowes, M.: Fully automatic segmentation of
the prostate using active appearance models. MICCAI Grand Challenge
PROMISE 2012 (2012)

[165] Viola, P., Jones, M.J.: Robust real-time face detection. International
journal of computer vision 57(2), 137–154 (2004)

[166] Wachinger, C., Wein, W., Navab, N.: Registration strategies and simi-
larity measures for three-dimensional ultrasound mosaicing. Academic
radiology 15(11), 1404–1415 (2008)

[167] Walter, U., Dressler, D., Probst, T., Wolters, A., Abu-Mugheisib, M.,
Wittstock, M., Benecke, R.: Transcranial brain sonography findings in
discriminating between parkinsonism and idiopathic Parkinson disease.
Arch. Neurol. 64(11), 1635–1640 (2007)

[168] White, H.D., Norris, R.M., Brown, M.A., Brandt, P., Whitlock, R., Wild,
C.J.: Left ventricular end-systolic volume as the major determinant of
survival after recovery from myocardial infarction. Circulation 76(1),
44–51 (1987)

[169] Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and
3d pose estimation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3109–3118 (2015)

[170] Wu, W., Chen, T., Barbu, A., Wang, P., Strobel, N., Zhou, S.K., Comaniciu,
D.: Learning-based hypothesis fusion for robust catheter tracking in 2d
x-ray fluoroscopy. In: CVPR, pp. 1097–1104. IEEE (2011)

[171] Wu, W., Chen, T., Strobel, N., Comaniciu, D.: Fast tracking of catheters
in 2d fluoroscopic images using an integrated cpu-gpu framework. In:
ISBI, pp. 1184–1187. IEEE (2012)

[172] Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2013)

[173] Xie, Y., Kong, X., Xing, F., Liu, F., Su, H., Yang, L.: Deep voting: A robust
approach toward nucleus localization in microscopy images. In: Medical
Image Computing and Computer-Assisted Intervention–MICCAI 2015,
pp. 374–382. Springer (2015)

[174] Xie, Z., Singh, A., Uang, J., Narayan, K.S., Abbeel, P.: Multimodal
blending for high-accuracy instance recognition. In: Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on, pp.
2214–2221. IEEE (2013)

129



BIBLIOGRAPHY

[175] Xing, J., Gao, J., Li, B., Hu, W., Yan, S.: Robust object tracking with online
multi-lifespan dictionary learning. In: Computer Vision (ICCV), 2013
IEEE International Conference on, pp. 665–672. IEEE (2013)

[176] Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and
trends in visual tracking: A review. Neurocomputing 74(18), 3823–3831
(2011)

[177] Yatziv, L., Chartouni, M., Datta, S., Sapiro, G.: Toward multiple catheters
detection in fluoroscopic image guided interventions. Information Tech-
nology in Biomedicine, IEEE Transactions on 16(4), 770–781 (2012)

[178] Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional
networks. In: Computer vision–ECCV 2014, pp. 818–833. Springer (2014)

[179] Zettinig, O., Shah, A., Hennersperger, C., Eiber, M., Kroll, C., Kübler, H.,
Maurer, T., Milletarì, F., Rackerseder, J., zu Berge, C.S., et al.: Multimodal
image-guided prostate fusion biopsy based on automatic deformable
registration. International journal of computer assisted radiology and
surgery 10(12), 1997–2007 (2015)

[180] Zhang, L., Zhong, J., Lu, G.: Multimodality mr imaging findings of
low-grade brain edema in hepatic encephalopathy. American Journal of
Neuroradiology 34(4), 707–715 (2013)

[181] Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via
multi-task sparse learning. In: Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pp. 2042–2049. IEEE (2012)

[182] Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-
based collaborative model. In: Computer vision and pattern recognition
(CVPR), 2012 IEEE Conference on, pp. 1838–1845. IEEE (2012)

130


