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Abstract

A fundamental component of a robotic navigation platform is a perception system that can

deal with unknown scenarios, providing an environment model on which a planning system

can find a feasible path. However, existing perception systems are either too computationally

expensive to handle dynamic environments during walking or make strong simplifying as-

sumptions and cannot effectively deal with complex environments. This thesis aims to close

the gap between complex perception systems and real-time autonomous navigation.

After an introduction to perception systems and their integration into a humanoid robot, a

new 3D modeling strategy for unknown environments is introduced. Based on this envi-

ronment representation, a new perception system is developed that is capable of processing

unknown complex dynamic environments online. It is validated with a standard, inexpensive

RGB-D sensor to make it compatible with other robotic systems. With this vision system, the

full-size humanoid robot Lola is capable of navigating through previously unknown dynamic

scenarios including moving persons, fixed obstacles and platforms. Efficient environment

representations and inexpensive sensors, however, come at a cost: high inaccuracies in the

provided information which may affect the robot’s stability. In order to deal with this issue as

well as to increase the robot’s robustness against irregular terrains, a new walking controller

is presented. The control optimizes the environment model based on the robot’s dynamics

and deals with unexpected contact situations using direct contact sensing.

Some algorithms presented in this work are additionally validated for their use on robot

manipulators. Furthermore, the different tools developed during this project, including an

augmented reality system for external visualization devices, are released as open source for

the benefit of the community. The contributions of this thesis intend to bring biped robots

one step closer to their application in real life scenarios.
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Zusammenfassung

In mobilen Robotiksystemen ist die Perzeption unverzichtbar: sie nimmt unbekannten Umge-

bungen wahr und stellt ein Umgebungsmodel zum Navigieren bereit. Existierende Perzep-

tionssysteme sind allerdings noch zu rechenintensiv um Navigation in Echtzeit in dynamis-

chen Umgebungen zu erlauben oder nutzen zu viele Vereinfachungen um komplexe Umge-

bungen akkurat zu modellieren. Ziel dieser Arbeit ist diese Lücke zwischen komplexen

Perzeptionsalgorithmen und autonomer Echtzeitnavigation zu schließen.

Nach einer Einführung zu Perzeptionssystemen und ihrer Nutzung in der humanoiden

Robotik, wird eine neue 3D Modellierungsstrategie für unbekannte Umgebungen eingeführt.

Diese Strategie wurde in einem Perzeptionssystem umgesetzt. Damit ist es in der Lage, un-

bekannte und komplexe Umgebungen in Echtzeit zu modellieren. Um es kompatibel zu an-

deren Robotikanwendungen zu machen, nutzt es in der vorgestellten Implementierung einen

günstigen Standard RGB-D Sensor. Das vorgestellte System erlaubt es dem humanoiden

Roboter Lola sich in unbekannten und dynamischen Umgebungen, welche sich bewegende

Menschen, Hindernisse und Plattformen beinhaltet, zu bewegen. Die Messungenauigkeiten

der günstigen Sensoren und die effiziente Umgebungsdarstellung beeinflussen allerdings die

Stabilität des Roboters. Um diesem Problem zu begegnen und zudem die Robustheit des

Roboters in unebenem Gelände zu verbessern, wurde eine neue Laufregelung entwickelt.

Die Regelung optimiert die Umgebungsmodellierung basierend auf der Dynamik des Robot-

ers und nutzt Kontaktsensoren um mit nicht erwarteten Bodenkontakten umzugehen.

Einige der vorgestellten Algorithmen wurden zusätzlich im Einsatz mit Manipulatoren valid-

ert. Zudem sind alle während des Projekts entwickelten Werkzeuge, inklusive eines Aug-

mented Reallity Systems, als Open Source veröffentlicht. Die Beiträge dieser Arbeit sollen

zweibeinige Roboter näher zu ihrer Anwendung in echten Szenarien bringen.
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Chapter 1

Introduction

History and Motivation behind Humanoid Robots

Since early in history, humankind has been fascinated with the idea of creating artificial be-

ings in their own image. Even before technology had reached a stage where autonomous

machines became possible, the concept of creating humanoid beings was long present in the

literature and folklore. In Greek mythology, the God Hephaestus created artificial helpers to

aid him in his workshop; Jewish legends contain several mention of golems, anthropomor-

phic beings created magically out of clay; Pinocchio comes to life after being carved by Mr.

Geppetto while Victor Frankenstein creates the Monster during a scientific experiment.

This fascination with anthropomorphic beings was not restricted to literature. Since early in

human history, animated humanoid figures called automata were built to entertain people,

serve as toys or demonstrations of mechanical principles. Using cleverly build mechanisms,

they were able to perform extremely complex but predefined tasks such as playing the flute

or writing [10].

Since the industrial revolution, machines started replacing humans in tasks requiring physical

labor. However, people were still required for tasks that are not repetitive or require certain

intelligence, flexibility or adaptability (and still are). If a machine could be created with the

exact shape and capabilities of humans, then it could replace them in all tasks they find either

tedious or physically challenging. In his 1920 play “Rossum’s Universal Robots”, Karel C̆apek

introduced the term robot (meaning “forced laborer”) to designate the artificial people cre-

ated by humans to replace them in production and hard work [22]. Since then, the term has

become widely popular, first in modern literature and then in science. Interestingly, the term

robotics was first used by the science fiction writer Isaac Asimov referring to the study and

development of robots and their principles [5]. Even though Asimov’s robot stories usually

dealt with anthropomorphic machines, the term has since been used to designate all kinds of

autonomous machines [167].

If the purpose of a robot is to help or replace humans in tedious or difficult tasks, it is natural

to ask if it necessarily must have an anthropomorphic shape. One argument has been men-

tioned already and refers to its application as a human substitute. As explained by Asimov in

one of his early stories:

“[The robot] is designed like a man so that it can use all the tools and machines

that have, after all, been designed to be used by a man.” [6]

However, that argument alone is not entirely convincing, especially when considering that

the price of robots may be high enough to justify the modification of the tools and machines

themselves. Without talking about the particular difficulties in controlling these robots, a hu-

manoid configuration may not be the most adequate or efficient depending on the particular

task. For example, large industrial manipulators are better capable of executing tasks requir-

ing high forces; wheeled or flying machines are more adequate for transportation or access of

1



2 1 Introduction

remote locations than anthropomorphic robots. Additionally, humanoid robots have a high

number of degrees of freedom (DoFs), requiring numerous actuators and mechanisms: even

though the cost of electronic components has been rapidly declining in the last years and will

probably continue to do so, that is not the case of mechanical costs [118]. Therefore, more

mechanically-simple machines may be more cost-effective for certain applications.

Nevertheless, anthropomorphic robots are particularly well-suited for applications that de-

pend on human-centered scenarios. Adapting Asimov’s argument, humanoid robots are de-

veloped to operate in environments that were specifically designed for humans or that are

co-inhabited by humans. They are the natural candidates for tasks like collaborating with

housework or helping elder people, as well as replacing humans in dangerous scenarios. For

example in a Nuclear Plant, where corridors and corners are designed for people, an anthro-

pomorphic robot would have more access than e.g. a wheeled robot and would be therefore

better suited to help in case of an accident. Additionally, the development of humanoid robots

has enormous potential applications in medicine, from the testing of human accessories to

the improvement of bio-mechanical prostheses.

This work deals with the mobility and navigation of humanoid robots, an area that is still in

the research phase. The complexity of humanoid robot control lies, on the one hand, in the

robot’s configuration. Due to the limited one-sided contact with the ground at the feet, these

robots can exert limited force and torque against it and cannot arbitrarily adopt any pose or

configuration as they might fall down. Therefore, a humanoid robot is underactuated, mean-

ing it has more DoFs (its position and orientation with respect to the ground in addition to

its own articulations) than actuators. As a result, not every conceivable motion is achievable

or safe, resulting in a more complex control system. On the other hand, the high number of

degrees of freedom makes it computationally challenging to perform real-time motion plan-

ning and control: every desired action must be executed by synchronously controlling all the

robot’s actuators without compromising its stability.

One popular solution to overcome these problems is the use of reduced models to approx-

imate the robot’s dynamics, as explained in chapter 2 of this thesis. Humanoid robots can

nowadays execute stable motions in real-time and quickly adapt their trajectories to the user’s

input [14, 85, 108, 133, 177]. Once the robot can be robustly controlled, that still leaves the

problem of achieving autonomous navigation. After all, if humanoid robots are to become

really useful one day, they have to be able to safely navigate through irregular terrain without

having a human indicating where to place each footstep. In order to exploit their kinematic

ability and present an advantage over wheeled platforms, they must be able to perform com-

plex motions such as climbing stairs or walking over obstacles. This multiple number of

high-dimensional motions make the problem of navigation a more complex one in humanoid

robots than in wheeled ones, from the detail of the required environment representation to

the planning, execution and stabilization of robot motion.

In order to advance humanoid locomotion capabilities in such scenarios, the project Versatile

and Robust Walking in Uneven Terrain, financially supported by the German Research Foun-

dation1, was started at the Chair of Applied Mechanics, Technical University of Munich. With

the parallel work of three Ph.D. candidates, a framework for autonomous biped navigation

in unknown environments is developed, including capabilities to model the environment and

generate safe trajectories in real-time, as well as adapting those trajectories on-the-fly to sta-

bilize the robot against external disturbances.

In this context, the work presented in this thesis deals with the acquisition and processing of

environment information, as well as with the analysis and compensation of inaccuracies of

the environment data on the robot’s stability. The relationship between these parallel works

is presented in chapter 2 and the final developed framework is discussed in chapter 7. In

1DFG project BU 2736/1-1
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the following, a review of related work is given, followed by an overview of the hardware

platforms used throughout this project and the main contributions of this thesis.

Related Work

In this section, a review of relevant work on autonomous biped navigation is given, focus-

ing on the navigation in unknown, irregular scenarios. It is divided into the main existing

projects and research groups. More subject-specific reviews are given in each corresponding

chapter throughout this thesis. The interested reader can find a thorough review of humanoid

hardware and their mechanical complexity in Lohmeier [110] while a review of humanoid

simulation and control strategies can be found in Buschmann [13]. In direct relationship

with this work, Hildebrandt [66] gives a detailed review of navigation and motion planning

approaches for humanoid robots while Wittmann [200] presents a thorough review of hu-

manoid stabilization and robust locomotion strategies.

Traditionally, humanoid robots were a niche area of research, with most work being carried

on in Japan and without attracting too much attention or funding due to their limited per-

formance. In 2011, however, a massive earthquake and an accompanying tsunami hit the

west coast of Japan with disastrous consequences on the Fukushima Daiichi nuclear power

plant. It was the second largest nuclear disaster in history, after the Chernobyl accident

[129]. Due to safety reasons, the Japanese government and power plant operators refrained

from sending in people to contain the damage. The obvious answer was the use of robots: in

the span of several missions, robots were sent to assess and limit the environmental damage.

Nevertheless, the mobility of existing robotic systems in such an environment was extremely

constrained and difficult [129]; their limitations resulted in an unprecedented interest in an-

thropomorphic robots. Legged robots are theoretically better suited for navigating through

cluttered environments and could potentially be used in such hazardous areas. Unfortu-

nately, there was no robot sufficiently advanced to be used in Fukushima at the time (and

there still isn’t). A few years later, the United States Defense Advanced Research Projects

Agency (DARPA) launched the DARPA Robotics Challenge (DRC) [31], in which teams with

different robots tried to solve several tasks inspired by those scenarios (see fig. 1.1). Even

though the completion of the tasks relied strongly on teleoperation and none of the partici-

pating teams performed completely autonomous navigation (as far as the author knows), the

DRC helped to evaluate the state of the art in humanoid technology as well as to motivate

new research. Still, not all relevant research groups participated in the DRC. In the following,

a review of the most relevant laboratories and projects on autonomous biped navigation is

presented.

Japan and Korea

As mentioned before, Japan has been a pioneer in humanoid robotic research. The first func-

tional biped robot, WABOT-1, was developed at the Waseda University in 1973. Since then,

they have demonstrated various advanced mobility and control capabilities and developed

multiple legged robots; the latest one is called WABIAN-2 [4].

The Tokyo University JSK Laboratory has a long tradition of biped locomotion research. To-

gether with Kawada Industries, they developed the H6 and H7 humanoid robots, on which

some of the earlier work on autonomous biped navigation was done [82]. By creating a

height-map of the environment, the H7 is capable of generating collision-free trajectories

and stepping over simple obstacles. However, motions are planned at the beginning of the
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Figure 1.1: The DARPA Robotics Challenge tested robots with tasks inspired by the Fukushima disaster. In this

picture, the Japanese robot HRP-2 tries to solve a task consisting on turning a valve. Photograph by the author.
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sequence before walking due to the computational limitations.

Better known are the results of the Humanoid Robotics Project (HRP), a joint project between

Japan’s National Institute of Advanced Industrial Science and Technology (AIST), Kawada In-

dustries and several Japanese universities [89]. One of the prototypes developed, the HRP-2

[90] (see fig. 1.1), has become a standard platform for humanoid research [83]. Much of to-

day’s reference literature for autonomous biped navigation has been developed for this robot

[125, 134–137], particularly at AIST. In their work, the robot is able to walk over obstacles,

platforms and ramps in real-time. The limitations of the system are the assumption of static

environments which are scanned each step with a pivoting laser and the simplicity of the

tested scenarios, which are simply represented by a height-map and don’t require complex

or dynamic motions by the robot. Out of this research group, a spin-off called Shaft was

founded to participate in the DRC, where it won the first round (or “trials”) by a clear margin

[31] before being bought by Google and starting working in almost total secrecy [3].

At the Sony Corporation, the 0.6 m-tall QRIO robot was developed for entertainment pur-

poses. Even though it wasn’t particularly successful as a toy, researchers at the company

achieved a high level of autonomy, recognizing and avoiding obstacles and climbing stairs in

static environments [59, 60].

Perhaps the most impressive work on humanoid robots in Japan has been done by the Honda

Motor Corporation since 1986. After ten years of secret research and development, they

disclosed their P2 robot, the world’s first self-stabilizing, two-legged humanoid robot to the

public [73]. Since then, they have demonstrated amazing locomotion capabilities and in-

spired other projects such as the HRP. Their latest series of prototypes, called Asimo, were

developed to operate in actual human living environments [161] and represent the closest

achievement towards that goal. As Honda does not usually publish too many details about

their research, it is difficult to know how much level of autonomy their robots have. Nev-

ertheless, from public demonstrations and personal conversations one can safely infer their

advanced capabilities on object recognition, manipulation, stair climbing and even ball kick-

ing. Some details of their control system were later published as papers as well [177–180].

While Asimo’s capabilities in a household are impressive, it cannot adequately walk in un-

known, non-structured environments. That is why, after the Fukushima disaster, Honda set

up in developing another prototype specifically built for disaster response which they just

recently disclosed [207]. Although details on the level of autonomy are scarce, it is capable

of amazing mobility feats, such as bipedal and quadrupedal fast walking, stairs, ladder and

piping climbing as well as sideways walking while being resistant to dust, water and high

temperatures. These capabilities make the robot a promising platform for future research.

In Korea, the most relevant work on humanoid robotics has been done at the Korea Advanced

Institute of Science and Technology (KAIST), where a series of humanoid robots called HUBO

were developed [141]. Built after Honda’s Asimo robots, these prototypes have demonstrated

walking, running and manipulation capabilities. They became notorious by winning the DRC

final round [31]. Among their achievements are a dual walking-wheeling locomotion mode

[8] and a robust perception processing strategy [166], developed specifically to recognize

different features during the challenge.

United States of America

First at the Carnegie Mellon University and later at the Massachusetts Institute of Technology,

researchers led by Marc Raibert did pioneering work on legged locomotion [153]. Although

the work was done mainly on hoping (instead of walking), their robots showed impressive

and very stable locomotion capabilities in various kinds of terrain using hydraulic actuators

[74]. In 1992, Raibert used these advancements to found a spin-off called Boston Dynamics
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Figure 1.2: Humanoid robots by Honda. From left to right, some of the earlier prototypes (P1, P2, P3 and P4)

[123] and the 1.3 m-tall Asimo [186].

[168]. Supported by the DARPA, they have since then continued to disclose videos showing

amazing capabilities by their hydraulic legged robots. Perhaps one of their best known cre-

ations, the quadruped Big Dog is capable of navigating through different kinds of irregular

terrain as well as maintaining stability against external disturbances [154]. In 2012 they dis-

closed their first humanoid robot, PETMAN, an hydraulic machine to test chemical protective

clothing [131]. In recent years they developed a series of humanoid robots called Atlas to

serve as the official robotic platform at the DRC for teams that didn’t have their own robots

(see fig. 1.3). The robot was used at the DRC by teams from the Massachusetts Institute of

technology, the Florida Institute of Human and Machine Cognition, the Virginia Institute of

Technology together with the German Technische Universität Darmstadt, among many others

[31]. There is little doubt that the company has been able to build impressive machines that

have little or no rival in terms of mobility and robustness (in partly thanks to the hydraulic

actuation, which allows for more powerful movements). Unfortunately, it has always worked

under strict secrecy due to potential military applications. A few years ago, it was acquired

by Google, which reduced the already limited amount of publications and announcements.

Nowadays, it is owned by SoftBank [168], but it is not clear what path the company is going

to take in the future. Nevertheless, a little bit can be inferred from the published videos,

personal conversations and live demonstrations at the DRC. The robots are mostly teleoper-

ated: the adaption to irregular terrain is a result of their robust control [154] while a human

operator gives navigational commands. Although the company has never been specific about

the level of autonomy of their robots, displays of their perception and planning system in

videos leave little doubt that they make use of techniques which are comparable to the ones

presented throughout this work [169].

At the Massachusetts Institute of Technology, there has been interesting work on motion

planning and autonomous biped navigation based on optimization strategies. Though they

have shown results achieving autonomous and robust locomotion, these techniques have

the downside that they require high computational power and are not easily applicable to

changing environments [29, 32, 47, 100].

There are many other interesting projects in the USA dealing with humanoid locomotion,

especially since the DRC. However, focus lies mostly on control and trajectory generation

and not on autonomous navigation. Still, it is worth to mention a few of them, as they

follow walking control strategies that differ from the approach used by most bipeds that

are based on maintaining the robot’s stability by controlling the position of the center of



1.2 Related Work 7

Figure 1.3: Legged robots with hydraulic actuation by Boston Dynamics. On the left, one of their latest

quadrupeds, the 0.94 m-tall Spot (photograph by the author). On the right, the 1.8 m-tall Atlas humanoid robot,

built for the DRC.

pressure (see chapter 2). At the Florida Institute of Human and Machine Cognition, they

achieve stable walking by calculating “capture points”, which indicate the locations where the

robot must place its foot to stop its motion [150]. Another interesting approach is called the

“hybrid zero dynamics”, which obtains a solution for stable walking by including the virtual

constraints in an optimization problem that controls the actuated DoFs; the underactuated

DoFs are included as inequality constraints in the optimization formulation [195]. These

control strategies have been successfully applied to semi-passive robots with compliant joints

for energy efficiency [171]. Such a robot, called ATRIAS, was recently developed at the

Oregon State University. It is able to perform stable walking on two point-feet by controlling

the forces between the robot and the ground [78].

Europe

The Chair of Applied Mechanics at the Technical University of Munich has a long tradition

of building autonomous robots. In 2002, the humanoid robot Johnnie, capable of stable

human-like walking and jogging, was presented [108]. In terms of autonomy, it is able to

step over obstacles and climb stairs [28]. Although the on-board perception system is capa-

ble of localizing those environment features, their geometry was known in advance. In 2010,

a follow-up prototype called Lola was presented [111]. At the time, it was able to safely

navigate changing environments by checking two-dimensional safe paths [16]. It is the main

platform used for this project and is referenced thoroughly throughout this thesis.

In recent years, several torque-controlled robot manipulators were developed at the German

Aerospace Center (DLR) [99]. In 2013, the biped robot TORO was presented based on this

technology. Although it is capable of performing remarkable capabilities in terms of bal-

ancing thanks to the torque information at the joints, its walking control is still based on a

position-based control of the joints and capture points [41]. At the University of Freiburg,

interesting work on autonomous navigation was presented for the Nao humanoid robot, a

research platform originally developed by the French company Aldebaran Robotics for the

RoboCup which is 0.58 m tall. They achieved collision-free navigation using texture and

color for environment classification [114, 116]. More recently, at the University of Bonn,

they presented fast planning capabilities in dynamic environments using a more simple envi-
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ronment representation model [91, 92]. Other interesting works were developed in France

and Italy. At the French National Center for Scientific Research (CNRS), many results have

been published based on the HRP-2 robot and collaboration with Japan’s AIST [206]. Their

work is mainly focus on trajectory generation, based on a mathematical optimization formu-

lation of the motion problem [39]. Although their system could be integrated with perception

information [155], the framework is not yet fast enough to be applicable in dynamic, com-

plex environments. At the Italian Institute of Technology, several robots have been developed

including one for participation at the DRC [31, 106].

Autonomous Vehicles

Another related research area worth mentioning in this section is the autonomous vehicles

industry, where dynamic scenarios are taken into account for real-time navigation. The main

difficulty in assessing the state of the art in this area is that it has mainly been developed

by private companies which avoid disclosing too much information in order to protect their

know-how. Nevertheless, some information can be inferred from a few available publications

[42, 95], magazine or newspaper articles [151] and demonstration videos [182].

The first important characteristic of autonomous driving is that the environment is not en-

tirely unknown. By previously scanning and acquiring a labeled 3D map of streets, traffic

signs and landmarks, the car already has detailed information on the environment surround-

ing it. Using GPS signals and comparing features its map and sensor information, it is able to

know its position in the world map, simplifying both the perception and planning strategies

[2]. The perception system is constrained to identifying known features of the environment

(such as traffic lights wich it already knows where to look for) and recognizing external com-

ponents to it. These, however, consist mostly of usual elements of the scene, such as other

vehicles, bicycles and pedestrians which can be recognized using learning methods [42]. As

the problem of vehicle navigation is a two-dimensional one, all these and other objects can

be modeled with simple bounding boxes [182] which are usually enough for autonomous

driving. On an interesting note, the limitations of such systems become apparent when deal-

ing with strange objects which are not part of their two-dimensional world, such as jumping

kangaroos on the road [45]; these and similar cases could be solved with more general en-

vironment representations and perception systems such as the one presented in this thesis

(chapter 5).

The available information about the environment and its representation together with the

small dimensionality of the planning problem for an autonomous car (a two-dimensional

robot) make the navigation problem of autonomous vehicles a restricted one compared to

the one for high-dimensional, underactuated humanoid robots. Nevertheless, the state of this

area of research is arguably more advanced than the one of humanoid robotics and important

lessons are to be learned from it, especially when dealing with dynamic environments.

Experimental Platforms

The contributions of this thesis are repeatedly verified in simulations and experiments with

the humanid robot Lola (fig. 1.4). It was developed at the Chair of Applied Mechanics be-

tween 2004 and 2010 based on the lessons learned with Johnnie. A detailed description

about its mechanical design and realization can be found in Lohmeier [110]. Buschmann

[13] developed the main control system for the robot as well as a simulation platform that

handles unilateral and compliant contacts with the ground and takes motor dynamics and
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Figure 1.4: Photo and kinematic structure of the humanoid robot Lola with an RGB-D sensor mounted on top.

control loops into consideration.

Lola is an electrically actuated robot with 24 DoFs which weighs approximately 60 kg and is

1.8 m tall. It is capable of stable walking at a speed of up to 0.94 m/s. Each leg has 7 DoFs

including an actuated toe. It has no dexterous hands, its arms (3 DoFs each) are mainly used

for the compensation of angular momentum and center of gravity dynamics [164]. Besides

having position sensors at every joint, Lola has a high-precision inertia measurement unit

(IMU) at the chest and force/torque sensors at the ankles. As explained in chapter 2, these

are used for balancing and tracking of the center of pressure (in other words, these are the

sensors that are used to keep the robot from falling down). In fig. 1.4, a photo and the kine-

matic configuration of the robot can be seen. During the course of this project, it is decided

to use a standard RGB-D sensor Asus Xtion PRO LIVE [7] (30 Hz) for 3D sensing (chapter 3)

which can be seen mounted on top. The walking controller and the perception system run

on two parallel on–board computers with Intel Core i7-4770S@3.1 GHz (4x) processors and

8GB RAM and communicate via Ethernet using UDP and TCP/IP (see chapter 7). An up-

to-date description of Lola’s hardware and low-level control can be found in Sygulla et al.

[176].

The methods discussed throughout this thesis are intended to be as generally applicable as

possible, even on other kinds of robots besides humanoids. Therefore, they are repeatedly

validated on a robotic manipulator as well. For that purpose, the CROPS platform, developed

at the Chair of Applied Mechanics, is used (see fig. 1.5). Its development was part of a Euro-
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Figure 1.5: The CROPS first generation manipulator prototype with 9 DoFs: one translational DoF (vertical) and

eight rotational DoFs.

pean project which focused on an autonomous multi-purpose robot system for the selective

harvest of sweet pepper and apple as well as the precision spraying on grapes. Details on

the project can be found in Bontsema et al. [11] while the manipulator system as used in the

experiments is described by Schütz et al. [163] and Ulbrich et al. [184].

The CROPS robot has a total of nine DoFs and is mounted on a fixed platform. It is capable

of processing and executing motion commands in real-time, as well as generating trajectories

between given points in its workspace. In this thesis, it is used to test calibration (chapter 3),

environment recognition (chapter 4) and obstacle avoidance (chapter 8) methods.

Objectives and Structure of this Thesis

This thesis aims to close the gap between complex perception systems and real-time au-

tonomous navigation. As mentioned, one of the greatest challenges to develop useful, robust

humanoid robots is their navigation capabilities in unknown environments. Most existing so-

lutions assume static scenarios and use simple environment representations which limit their

applicability in the real world.

In order to be useful in real scenarios, a framework for autonomous biped navigation based

on perception information must satisfy the following requirements:

1. Online processing of perception information during walking to react to dynamic envi-

ronments.

2. Efficient representation of complex scenarios to enable both real-time planning and

elaborated navigation motions.

3. Robust against inevitable uncertainties in environment data.

The problem is approached sequentially. In chapters 2 to 4, the basic concepts and prelimi-

nary conclusions about humanoid navigation and perception are presented. An introduction
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Figure 1.6: Concept of this thesis. A humanoid robot has to navigate dynamic environments using perception

information from an adequate sensor; out of that information an abstract model of the environment is created

which can be quickly processed by a planning algorithm; a reduced dynamic model of the robot is used to deal

with perception inaccuracies.

about the basic principles of humanoid locomotion is given in chapter 2, together with the

extended framework developed for this project. Different environment sensing technologies

are discussed in chapter 3 together with the considerations for their application to humanoid

navigation and new automatic calibration procedures for the integration of sensor data with

the robot’s planning system. In chapter 4, both existing and new strategies for environment

recognition and modeling are presented.

Based on a new 3D environment representation, a perception system is presented in chapter 5

that is capable of processing dynamic environments online. With it, the full-size humanoid

robot Lola is capable of navigating through previously unknown dynamic scenarios including

moving persons, fixed obstacles and platforms.

Nevertheless, inaccuracies in the perception system and irregular terrain may affect the

robot’s stability. A new walking controller is presented in chapter 6 that increases the robot’s

robustness against unexpected contact situations.

A graphical representation of the concept behind this thesis can be seen in fig. 1.6. In it, an

example of a complex scenario is shown. In order for a robot to navigate through it (chap-

ter 2), an adequate sensor is required (chapter 3). Perception information must be processed

(chapter 4) and an adequate model of the environment is sent to the motion planning (chap-

ter 5). Inaccuracies in perception information are dealt with a new walking controller based

on a reduced dynamic model of the robot (chapter 6).

The final framework developed together with other two Ph.D. candidates for this project is



12 1 Introduction

described in chapter 7. In it, an augmented reality system for online visualization of the

framework’s results is presented. This thesis concludes with the experimental results (chap-

ter 8) and a discussion on accomplishments, limitations and future work (chapter 9).



Chapter 2

Biped Walking

Approach to Biped Walking Control

Humanoid robots are complex machines with high number of degrees of freedom (DoFs),

which are not fixed to the ground (see fig. 1.4). As such, the motion and balance of these

multi-body systems depend heavily on the dynamics of the different moving parts. These

have to be taken into account when designing walking controllers. A first and thorough

approach to the problem of motion generation and control would be to write the equations

of motion (EoMs) of the complete system and perform an optimization process considering

the trajectories of all DoFs. However, there are several problems with this approach. To begin

with, it is not clear if a mathematical solution to such a high-dimensional problem even exists.

Assuming some kind of solution can be found, the necessary calculations would take too long

to be performed in real-time [88]. Additionally (and most importantly), any kind of physical

model cannot perfectly reflect real machines in real conditions and some kind of corrective

feedback would be needed anyway.

For these reasons, a more pragmatic approach is used when designing both walking robots

and controllers: a simplified, approximate physical model is made on which control laws and

trajectories can be more easily performed; using a hierarchical structure, a feedback control

loop monitors the state of the robot - typically via force/torque sensors on the feet and/or

inertial measurement units (IMU) - and applies a corrective signal that enables a stable gait

in real environments. In this chapter, an overview of classical robot models and controllers

is first given, with special focus on the one used by Lola. It is based mainly on the works

of Buschmann [13] and Kajita et al. [88], where interested readers may find more details

and information. Afterwards, the more encompassing framework for autonomous walking

in unknown scenarios, co-developed with A.-C. Hildebrandt and R. Wittmann during this

project, is presented. This chapter provides the basic motivation and background for the rest

of this thesis and is referred to in subsequent chapters.

Simplified Robot Models

As mentioned before, a reduced model of the robot is needed to deduce basic physical rela-

tionships and develop comprehensive control laws. The most simple model that is applicable

to a humanoid robot is a two-dimensional, linear inverted pendulum model (LIPM). It has

been widely used in literature [33, 61, 84–86, 108, 124, 133, 173, 197] due to its simplicity

and the possibility of arriving to closed-form mathematical solutions. It consists of a point

mass - on the robot’s center of gravity (CoG), where the complete robot’s mass is concentrated

- balancing with constant height on an extensible leg. In fig. 2.1 the LIPM is depicted on top

of a figure of Lola in the sagittal plane. From this point on, the analysis of two-dimensional

13
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models is often reduced to the sagittal plane, as it is analogous to the frontal plane. This

two-dimensional abstraction results in decoupled equations for the x and y directions1, sim-

plifying the implementation in the walking controller.

For this and all following models, a few simplifying assumptions are made:

• The robot is standing on one foot only (also called single support phase or SSP).

• Only vertical forces between foot and ground are of interest. Horizontal (or friction)

forces are assumed to be large enough to prevent slipping.

• The robot is assumed to be in stable contact with the ground (i.e. the robot is not

tipping -or about to tip- over and the foot is not leaving -or about to leave- contact with

the ground).

• The change rate of angular momentum of the robot with respect to its center of gravity

( L̇CoG) is assumed to be negligible (the robot keeps standing approximately straight).

The total sum of vertical forces between the ground and the foot can be represented by an

equivalent, concentrate force and torque on one single point. Moreover, if that single point

is chosen as the foot’s center of pressure (CoP), the equivalent torque is zero, reason why

it is often referred to as the “Zero Moment Point” (ZMP) [187]. Intuitively, one can guess

that the CoP should lie inside the robot’s foot during the single support phase. Physically, the

position of the CoP represents the imaginary point where the vertical contact forces can be

replaced by a single force. If the CoP coincides with the edge of the foot, that means that all

contact forces are concentrated on that edge and the robot is balancing itself on that single

edge, possibly tipping over. When both feet are on the ground during the double support

phase (DSP), the CoP may lie anywere inside the smallest convex polygon containing both

feet without the robot tilting over. This polygon is called Support Polygon and is generally

referred to indicate the smallest convex polygon containing all contact area with the ground

- being it one or two feet. For a more thorough discussion on this topic, see Kajita et al. [88].

Linear Inverted Pendulum Model

The LIPM is based on the dynamic relationship between the center of pressure (CoP) and

the center of gravity (CoG), where the robot’s whole mass is represented by a single point.

Both points are joined with an extensible leg (see fig. 2.1). In addition to the assumption

that L̇CoG ≃ 0, the motion of the CoG is constrained to the horizontal direction (hence the

term linear and the need for an extensible leg). Therefore, the dynamics of the system can

be written as:

mẍGzG −mg (xG − xP) = 0 (2.1)

where m is the mass of the robot, g refers to the gravity acceleration, (xG , zG)
T is the location

of the CoG and xP the location of the CoP. Solving for ẍG yields:

ẍG =
g

zG

(xG − xP) (2.2)

which is a direct relationship between the CoG acceleration and the CoP position (zG is con-

stant). An interesting feature of this relationship is that it sets the basis for a walking con-

troller: given a trajectory for the CoP, a trajectory for the CoG can be obtained (eq. (2.2) can be

1At some points, the term horizontal direction is used as a general term to refer to x or/and y in contrast to
the vertical direction z.
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Figure 2.1: Robot and linear inverted pendulum model with one mass m for the upper body at the center of

gravity (CoG), with location (xG , zG)
T. Through an extensible leg it is connected to a support point at the center of

pressure (CoP), located at xp, on which it balances. Sagittal plane (the frontal plane corresponds to y − z in this

case).

solved both numerically and analytically [88]). As explained earlier, the CoP should lie inside

the support polygon to prevent the robot from tilting over. Therefore, a walking controller

can be designed by first planning safe CoP trajectories and then solving the CoG trajectories.

Solving then the robot’s inverse kinematics yields the full set of trajectories [14, 85, 108, 133,

177]. Feedback control is introduced to compensate for modeling errors and external distur-

bances [15, 87, 136, 180]. This relationship was first noted by Vukobratovic et al. [187] and

resulted in the popularity of the LIPM model, used by most existing walking controllers, also

called ZMP-based Controllers. These are based on the strategy of keeping the CoP (or ZMP) in-

side the support polygon at all times2. Kajita et al. [88] presents an alternative model, called

the “Table-Cart Model”, to illustrate the difference between first defining the CoP trajectory

and then obtaining the CoG trajectory and otherwise, though both models are described by

eq. (2.2).

Three Mass Model

Naturally, the LIPM is an extremely strong simplification of a biped robot, which fails to reflect

the dynamics of the extremities. Buschmann et al. [14] propose a three mass model (3MM)

instead, with one point mass for the upper body and one point mass for each leg (located at

the feet) as can be seen in fig. 2.2. Other authors have proposed ZMP-based controllers using

different models as well [88, 177] but the procedure is similar to the one presented here. It

is important to note that the right model to use depends strongly on the particular robot. In

2Having the CoP inside the support polygon means that the robot is able to exert torque against the ground
and is not yet tilting over. Some authors call this a state of “dynamical stability”, though it is a slightly misleading
term as the torque that the robot can exert on the ground is limited by the polygon’s size. The CoP might lie
inside the support polygon while the robot’s accelerations being such that the robot cannot possibly recover and
will become unstable in the future [13].
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Figure 2.2: Robot and three mass model with one mass mb for the upper body and two masses m1,2 for the feet

at the locations xb and x1,2, respectively. Sagittal plane (the frontal plane corresponds to y − z in this case).

the case of Lola, where 60 % of the robot’s mass is located at the legs, the 3MM results in an

adequate simplification of the robot’s dynamics [13].

Again, it is assumed that L̇CoG ≃ 0, but the vertical acceleration of each mass points is not

discarded. The dynamics of the system in both sagittal and frontal planes can be represented

by the following set of equations (see fig. 2.2):

mbzb ẍb −mb xb(z̈b + g) = Ty +m1 x1(z̈1 + g)−m1z1 ẍ1 +m2 x2(z̈2 + g)−m2z2 ẍ2 (2.3)

mbzb ÿb −mb yb(z̈b + g) = −Tx +m1 y1(z̈1 + g)−m1z1 ÿ1 +m2 y2(z̈2 + g)−m2z2 ÿ2 (2.4)

mbz̈b −mb g = Fz −m1z̈1 −m2z̈2 (2.5)

where:

• mb, m1 and m2 are the condensed masses of the upper body and both legs respectively,

• xb = (xb, yb, zb)
T, x1 = (x1, y1, z1)

T and x2 = (x2, y2, z2)
T the positions of the upper body

and both feet, respectively and

• Ty , Tx and Fz are the ground moments and forces on the robot.

In a condensed form, eqs. (2.3) to (2.5) can be written as:

Mbẍb + h= f−M1ẍ1 −M2ẍ2 (2.6)

where f = (Ty ,−Tx , Fz)
T, h contains the gravity terms and Mb, M1 and M2 the corresponding

mass matrices for the upper body and both feet. In this case, the trajectory of the CoP

determines f. Additionally, the trajectories of x1 and x2 have to be defined and then eq. (2.6)

can be used to obtain xb [13].

To summarize, regardless of the model used, solving its reduced dynamic equations allows

to obtain a relationship between the trajectories of the elements of the model and the CoP

which can be used to build a hierarchical control for real-time motion generation. In the

following, such a control for the robot Lola is explained in detail.
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Figure 2.3: Walking Pattern Generation: obtaining feasible trajectories for a humanoid robot in real-time.

Walking Pattern Generation

One of the main components of a walking controller is a module that generates feasible tra-

jectories for the the robot’s different joints. The key to enable reactions to the environment or

high-level commands is generating these trajectories in real-time3, instead of pre-calculating

them using complex optimization methods [39]. This can be achieved by sequentially gen-

erating different components’ trajectories based on the dynamic relationships of a simple

model (section 2.2), following the design objective of keeping the CoP inside the robot’s

support polygon. Such a process is usually called Walking Pattern Generation and runs as

following (see fig. 2.3):

1. High-level commands define basic parameters such as desired walking speed and direc-

tion.

2. A step duration is defined and step lengths are adjusted based on the desired walking

speed; with these parameters, future footstep positions are obtained.

3. The swing foot follows a predefined, parameterized trajectory; its parameters are ad-

justed based on the step duration, height and length.

4. The CoP trajectory is constrained to remain inside the resulting support polygon: con-

fined to the stance foot during the SSP and shifting between both feet during the DSP.

5. The CoG trajectory can be quickly obtained from the model dynamics (eq. (2.6)) and

the feet and CoP trajectories.

3In this case, the [real-time] requirement refers to the ability to generate new trajectories during each walking
step, in order to adapt the robot’s motion to a changing environment.
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Figure 2.4: Lola’s real-time basic walking control system.

6. The joint trajectories can be generated using inverse kinematics.

In the case of the Lola robot, the following predefined trajectories are used as a first approxi-

mation for generating the final motion (for more details, see [13]).

• Swing foot: is parameterized by piecewise quintic polynomials between footstep posi-

tions, where it reaches zero velocity and acceleration.

• CoP: shifts linearly between both feet during the DSP and along one foot during the

SSP.

• CoG: is generated from eq. (2.6). A solution to the initial value problem is numerically

unstable and could diverge. Thus, periodicity conditions are imposed on position and

velocity in order to achieve a periodic gait after the third and fourth steps. The resulting

boundary value problem is solved by spline collocation.

Naturally, these ideal trajectories cannot be perfectly executed in a real robot with model

and system errors as well as external disturbances. Therefore, a feedback module has to be

included in a hierarchical control to stabilize the robot during walking.

Hierarchical Control

The robot’s hierarchical control starts with a state machine in charge of defining the walk-

ing state, which defines the dynamics of the system. The different walking states depend

first on the intended action (e.g. start/stop walking) and the planned contact state (e.g. sin-

gle/double support) and are synchronized with predefined timings. These determine the

phase of the walking controller and thus the control strategy according to the assumed con-

tact state. As explained before, the Walking Pattern Generation module generates feasible,

ideal trajectories based on high-level parameters or commands from the user. These, how-

ever, cannot be perfectly executed due to errors and disturbances and the robot has to be

stabilized using sensor feedback as shown in fig. 2.4.

The robot’s walking is affected by system and modeling errors as well as by external distur-

bances, all of which result in a deviation from the ideally planned trajectories. Within the
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reduced model (section 2.2), these multiple error sources result in errors in the upper body

(or CoG) height and orientation (robot’s inclination with respect to the ground) [13]. The

Feedback Control module4 is in charge of reducing those errors which, by the basic laws of

mechanics, can only be compensated by exerting forces and torques against the environment

(the ground in this case).

The Feedback Control is based on information from the force/torque sensors located on the

feet and the inertia measurement unit (IMU) in the upper body (see section 1.3). Using a

PD control law the height and orientation of the upper body can be stabilized via the forces

and torques between the feet and the ground: the load is distributed between both feet de-

pending on which foot is on the ground; during the DSP, this Load Distribution shifts linearly

between both feet. Additionally, the feedback control module keeps track of the CoP and

makes sure it stays inside the support polygon to prevent the robot from tilting over. A hybrid

position/force control law [15] is implemented to track the resulting forces and torques of

the CoP trajectory (component f of eq. (2.6)).

The total effect of the feedback control module is modifying the reference trajectories in task

space5. Afterwards, joint trajectories can be computed using inverse kinematics. Due to the

redundancy of the robot configuration, these are solved using a resolved motion rate control

as presented by Whitney [196]. Joint trajectories (position and velocity) are finally sent to

the distributed drivers that control the individual robot joints.

Walking in Unknown Environments

Even though the framework presented above can achieve stable bipedal walking in laboratory

conditions [17], there are certain limitations which prevent its application to real world

scenarios:

(a) An ideal environment is assumed.

(b) A collision-free, horizontal ground is assumed when defining footstep positions.

(c) Timings are fixed to the predefined step duration, which makes the robot extremely

sensible to irregular terrain.

(d) The presented scheme depends on a stabilizing feedback control for error or distur-

bance compensation which is inherently limited, as the maximum torque that can be

exerted against the ground is determined by the foot’s size.

The objective of the present project is to deal with these issues and provide the robot with the

capability to autonomously walk in unknown environments. For this purpose, an extended

framework for biped walking is depicted in fig. 2.5 that introduces three main extra modules,

of which the first one is the subject of this thesis:

• Perception System. In order to navigate in complex scenarios, the robot has to obtain

information about them (item (a)). However, this is not a simple task if the environ-

ment is completely unknown and non-static. Moreover, meaningful information has to

4In Lola‘s case, the Feedback Control module is implemented before the inverse kinematics computation.
5In robotics, task space refers to the mathematical description (or parameters) of the geometrical coordinates

where the robot acts (usually the cartesian or “world” coordinate system), in contrast with the joint/configuration

space which refers to the mathematical description (or parameters) which define a robot’s geometrical state
(usually its joint angles).
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Figure 2.5: Lola’s real-time extended walking control system.

be obtained quickly in order to react and adapt the robot’s walking in real-time. This

is the main subject of this thesis: the acquisition of perception information by a robot

is discussed in chapter 3 while the different strategies to process this information are

discussed in chapter 4 and the perception system developed for this work is presented

in chapter 5. Additionally, a modified walking controller is introduced in chapter 6 to

overcome perception limitations and terrain irregularities (item (c)).

• Planning Unit Instead of a “blind” walking pattern generation module (item (b)), a

planning unit is introduced to adapt the robot’s motion to the environment model re-

sulting from the perception system. A Navigation module takes the walking parameters

and collisions with the environment into account to generate safe footstep locations

for the next several steps. These are optimized in the Parameter Optimization module

by considering the robot’s kinematics. This work is developed in a parallel thesis by

Hildebrandt [66].

• Trajectory Adaptation During walking, wrong assumptions about the environment or

large external disturbances may destabilize the robot beyond the limits of the feedback

control (item (d)). Once the robot starts tilting over, its actuation capabilities are sev-

erly reduced and a quick modification of the swing foot trajectory becomes necessary to

avoid completely falling over. This work is developed in a parallel thesis by Wittmann

[200].

In chapter 7 a summary of the final control framework is given, followed by experimental

results of the robot Lola in unknown scenarios in chapter 8.



Chapter 3

Environment Sensing

Background

Animals are able to navigate specific environments by first obtaining information about them.

In the case of humans, this is done via different senses, mainly sight, touch and hearing. Out

of these, the sense of sight gives us some of the most relevant information and allows us to

quickly adapt to different kinds of scenarios by providing a geometrical model of the world

ahead, even regions of it we are not in contact with. The sense of touch, meanwhile, gives

us more precise physical information (other than shape) of these regions and allows us to

adapt our stride to different kinds of terrain, even when visual information is not sufficiently

precise or incomplete. The sense of hearing allows us to identify some dynamic components

(or vibrations) of the environment and to maintain vertical stability [19].

Just as humans with their sense of hearing and touch, robots such as Lola use an IMU and

force/torque sensors in the feet to maintain vertical stability while walking (see chapter 2).

Later in this thesis (see chapter 6) it is shown how more detailed touch information can be

used to improve the robot’s robustness against perception errors while walking over irregular

terrain. In this chapter, it is shown how to obtain perception information in the first place.

Christensen et al. [25] include the perception process as part of the more general process of

exteroception, which refers to the “sensing and estimation to recover the state of the external

world”. Throughout this thesis, the term “perception” is used to indicate the acquisition of

geometric information about the environment. Humans and many other animals have the

sense of sight but other animals have developed different senses for this purpose, such as the

animal echolocation (based on emitting and hearing the echo of ultrasounds, also called bio

sonar) typically present in bats1 or the magnetoreception used by many birds for orientation

and navigation [93]. In the case of robots, different technologies have been used throughout

history (some of them, but not all, inspired by nature) depending on the application require-

ments, available computational power and technical capabilities [167].

This chapter deals with perception technologies for robotic navigation. In order to under-

stand the idea and motivation of the environment recognition and modeling strategies dis-

cussed in chapters 4 and 5 it is useful to understand the kind of information that is available

to the robot. The first objective of this chapter is to give an overview and assessment of

the main existing perception sensors available. In order to do that, the difference between

the different types of perception information is explained. The conclusions reached in this

chapter set the path to the development of a perception system (chapter 5) that is as general

as possible in order to be applicable to other systems and scenarios. The second objective of

this chapter is to discuss the integration of these sensors into a robotic system and present

new calibration strategies for imprecise sensors in humanoid robots (as well as manipula-

tors). Even though these calibration procedures are fundamental for a correct performance

of a robotic systems, they are difficult to find in the existing literature. The topics discussed

1Interestingly, echolocation capabilities can sometimes also be found on humans [183]

21
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Figure 3.1: Unidirectional sensors are usually applied for proximity detection. Among the most popular types are

ultrasonic (left) or infrared (right) [170].

throughout this chapter form the basis to adapt the framework presented in this thesis to

other robotic systems.

Perception Sensors

Due to the vast amount of existing sensors and information available on them, some system

of classification becomes useful when analyzing a robotics application. One popular crite-

rion is the one presented by Christensen et al. [25], who classifies robotic sensors according

to sensing objective and method. For example, in the case of GPS, the sensing objective is

exteroception and the method is “active”. A further classification is made based on typical

application (such as haptic sensors or speed/motion sensors). Among those used for percep-

tion information, only sensors that do not require contact (such as tactile or haptic sensors)

are considered here. The reason behind is that the planning of the robot’s future motion de-

pends on the environment information being available in advance. Contact sensors are used

in a further stage, as shown in chapter 6. Beacon based sensors are also not considered as

they are usually used for the inverse problem: finding the location of the sensor with respect

to an external frame of reference which is known, instead of finding information about the

environment surrounding the sensor [25]. As the focus of this work lies on the application

of perception sensors (and not the principles behind them), these are classified according to

their output for the purposes of this thesis:

(a) unidirectional sensors (e.g. ultrasonic),

(b) 2D sensors (e.g. monocular cameras) or

(c) 3D sensors (e.g. lidars).

In fig. 3.1, two examples of unidirectional sensors can be found. Naturally, the use of mechan-

ical devices can turn any directional sensors into full-range 3D sensors (as will be explained

later). Sonar sensors, for example, have been used by some authors to obtain environment

maps [122] in the past. Nevertheless, even though the use of advanced signal processing

algorithms has increased the resolution and applicability of these sensors, their low accuracy

and focusing capabilities compared to other technologies still prevent their application as

reliable range sensors [96]. Even though these and other kinds of unidirectional sensors can

be used for simple obstacle detection [25], advanced navigation algorithms depend on more

complex environment representations [49]. Therefore, they are discarded for the present

application.

In the case of direct 2D computer vision, a similar problem is encountered. Pure monocular

vision is typically used for abstract recognition or scene understanding [162]. For 3D navi-

gation applications, cameras are usually found in pairs (also called “stereo cameras”) with a
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Figure 3.2: Monocular SLAM. Using single RGB images from different viewpoints a 3D point cloud can be obtained

and the camera itself can be tracked.

fixed distance between them so that the stereo problem can be solved and thus 3D informa-

tion can be obtained [49]. However, assuming that the stereo matching problem is solved

(there are many proven algorithms to do it, see Lazaros et al. [104]), these cameras can be

considered as 3D sensors due to the information they provide.

Recently, some authors have shown autonomous navigation using only a monocular sensor

[157]. However, this is achieved by creating a 3D map out of different monocular images.

In other words, by solving the stereo problem a posteriori out of different, non simultaneous

perspectives from a single camera (see fig. 3.2). This field of research is often called Structure

from Motion (SfR) or Monocular Simultaneous Localization and Mapping (Monocular SLAM)

and has been actively developed in recent years [40, 127, 132]. While achieving impressive

results, even in real-time, these methods have several drawbacks. First and most importantly,

as there are no references, these methods cannot correctly estimate scale [181]. Secondly, as

they depend on easily recognizable, invariant features in the scene, they can loose tracking

from time to time [127]. For the same reason, they are not robust to dynamic environments

where those same features may move independently from the camera. These drawbacks can

be compensated using external references, such as IMU data or machine learning [181], but

these techniques are relatively new and still in the experimental phase.

In order to be able to work in complex environments and ensure a safe interaction with

them, robotic navigation systems use as much information about their surroundings as they

can possibly get. That is why almost all perception systems are based on some kind of 3D

sensor (also called “range sensors”), sometimes combined with other sensors as well [49]. 3D

sensors are used to create an accurate representation of the environment, which can be later

used for processing (see chapter 4). In order to ensure maximum compatibility with other

robotic systems, this work is based on standard 3D information and not especially restricted

to a particular kind of sensor. In the following, the most popular types of 3D sensors are

mentioned, together with their most relevant characteristics.

• Stereo Cameras. These sensors consist of two monocular cameras at a known distance

and angle from each other. Similarly to the human vision sense, distances can be calcu-

lated by matching image features between both cameras and using the known transfor-

mation between them as reference to solve a triangulation problem (see fig. 3.3). While

they have been the subject of intensive research, stereo-solving algorithms can be con-
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Figure 3.3: Stereo Cameras on the Lola robot. Previously, Lola was equipped with a pair of monocular cameras

for autonomous navigation [16].

sidered state-of-the-art nowadays [104]. These sensors have the advantage that the

3D information is inherently matched against the RGB image, allowing for interesting

computer vision algorithms. Additionally, they can work outdoors (provided lighting

conditions are favorable) and can have high precision over a range depending on the

distance between cameras (error increases for points too far away due to triangulation).

Even though higher precision comes with the cost of more requirements on computer

power, there already are cameras which are able to provide near real-time informa-

tion by solving the stereo algorithm directly on the computer’s GPU. The ZED camera

[209] is a perfect example of this, providing up to 60 Hz update rates using standard

hardware.

One important disadvantage is that images have to be rich in features in order to be

able to match points between both images and texture-less areas will not be recognized

correctly. This can sometimes be solved using active stereovision. The Intel RealSense

[79] is a popular stereo camera that actively projects patterned light to the scene to

improve performance on texture-less surfaces but computing requirements are high.

Other interesting works consist of modifications to improve the field of view (FoV) such

as the one by Jamaluddin et al. [81], who present a combination of a stereo camera

with additional fish-eye cameras for this purpose. These are areas of ongoing research.

It is worth mentioning that these are the main kind of passive sensors, while almost

all other 3D sensors are based on actively projecting the measurement source into the

environment (explained in the following).

• Time-of-Flight Sensors. The name of these sensors is self-explaining. By projecting a

beam into the environment and measuring the time it takes for the reflection to reach

the sensor the distance to the reflection point can be measured (assuming a known and

constant beam velocity, naturally). The easiest way to do this is using ultrasound due

to its relatively low velocity. However, as explained before, its resolution is not good

enough for reliable map generation [96]. However, light can be used as well. The old-

est and most known of these sensors in popular culture is the RADAR, which has wide

applications in the aerospace and military sectors but poor spatial resolution and high

cost has prevented its use in robotic applications [25].

Sensors that use a laser source are called LIDARs or LADARs [49]. Among its multiple



3.2 Perception Sensors 25

Figure 3.4: Autonomous cars depend on LIDAR sensors for perception. Here such a sensor can be seen on top

of an autonomous vehicle prototype by Google’s spin-off Waymo [194]. Adapted from Grendelkhan [56].

advantages, they provide high robustness (they work outdoors under varying condi-

tions), high resolution, low level of noise and greater field of view - usually, by means

of a rotating mirror [49]. These advantages have made these sensors the most popular

sensors for high-end robotic applications such as autonomous navigation [77, 151] or

biped locomotion [47]. Some authors have even proposed object recognition applica-

tions in larger areas such as airports [126]. However, their high price still prevent them

from being used more often. Due to the industry’s effort to make autonomous cars af-

fordable (see fig. 3.4), an objective which is mainly hindered due to high sensor costs,

there are now several companies that promise to provide low-cost LIDAR sensors in the

near future [1]. This promises to have an enormous impact on robotic applications.

• Modulation Range Sensors. Instead of timing, these sensors measure a shift in phase

between the projected and reflected light. This makes them less complicated and

cheaper to produce which makes them more popular among the community [27]. They

generally do not perform very well outdoors and have generally less precision and ro-

bustness than time-of-flight sensors [49]. However, in order to overcome these short-

comings, some authors have proposed a combination between modulation sensors and

2D sensors using low-cost components [52].

• Triangulation Range Sensors. Triangulation refers to the process by which depth in-

formation of an observed point in space can be inferred if such point is observed from

two different viewpoints. As explained before, this is a basic step of stereo cameras,

where the most difficulty consists of matching features between both images. The term

triangulation sensors is applied to those sensors which manage to overcome the match-

ing step so that only the triangulation step has to be performed. Typically this is done

by projecting a laser beam of a particular frequency on the scene, which can be easily

identified by a corresponding sensor. Thus, by knowing exactly in which direction the

beam was projected and unequivocally recognizing it on a displaced sensor depth can

be obtained via triangulation [49].

If, instead of projecting a single point on the scene, several are projected simultane-

ously using a known pattern which can also be easily identified, 3D information can

be obtained with higher update rates. Sensors using this technology are often called
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Figure 3.5: Structured Light Sensors: Microsoft’s original Kinect [120].

Structured Light Sensors2. As their frequencies usually lie in the infrared range these

sensors do not perform well outdoors (or with reflective surfaces). Additionally, some

regions can be worse recognized than others, introducing noise (these sensors usually

present higher levels of noise than other kinds, see Khoshelham et al. [95]). Neverthe-

less, despite presenting high levels of noise, they can be relatively robust (they don’t

depend on textured surfaces) for a smaller price than other sensors. A few years ago,

Microsoft commercialized such a sensor, called Kinect, as an accessory to their Xbox

console to recognize gestures (see fig. 3.5). However, its ability to provide ready 3D in-

formation for a very low price (thanks to mass production) and adequate support made

it a perfect tool for robotic research applications [102], completely transforming the

field [210]. These applications include not only tracking of people and gestures [112],

but robotic navigation as well [80, 95]. Other companies quickly provided compatible

sensors (using the same technology developed by the company PrimeSense, see Zhang

[210]) with wider support for researchers and different operating systems.

Sensor Requirements for Autonomous Navigation

When choosing any kind of sensor, its requirements are determined by its application in the

overall system. The objective of a perception sensor for autonomous robotics is to provide

the most complete, robust and accurate information about the environment surrounding

it. As explained before, of all perception sensors available, 3D sensors are the ones which

provide most information about the environment for the purposes of autonomous navigation.

However, choosing the right 3D sensor for a robotic application is not an easy task due to

the many technologies available. Moreover, these kinds of sensors are being continuously

improved [1], which makes the choice even more difficult. For this reason, it is important to

remain flexible: the complete system should be adaptable to a possible sensor update in the

future.

In the field of 3D computer vision, the availability of small and inexpensive 3D sensors [210]

motivated new research and developments in 3D data processing (see for example Rusu et

al. [160]). The most general representation of 3D information is a 3D point cloud (PC),

which consists of a set of 3D coordinates, corresponding to the discrete measurements of

the environments (analogous to pixels of an RGB frame). If color information is available as

well, as is the case of stereo cameras, it can be either passed along as a separate RGB frame

2Sometimes these sensors are referred to as “2.5D sensors”, as they provide a depth map measured from the
sensor’s image plane. However, any kind of localized sensor is affected by occlusion and limited by the sensor’s
position. Weather the information is obtained as a depth matrix with a fixed FoV or by a revolving laser unit,
it can still be expressed as a point cloud. Therefore, the term “3D sensor” is loosely used to refer to any sensor
capable of providing information in the form of a 3D point cloud throughout this work, including structured light
sensors.
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Figure 3.6: Different levels of information. Left: an RGB image from a CROPS scene using a 2D camera. Middle:

a 3D point cloud obtained by a structured light sensor against the robot’s simulation. Right: the same point cloud

with color information. Adapted from Grundner [57].

or included in the point cloud by associating an RGB value with each coordinate, resulting in

a “colored” PC (see fig. 3.6). In this context, the open-source Point Cloud Library (PCL) [144]

has been developed. It provides tools to efficiently handle and process 3D point clouds (PCs)

(for further information about its basic principles and algorithms, see Rusu [158]).

In order to obtain flexibility and adaptability to different sensors and systems, it was decided

to develop a vision system based on direct 3D point cloud processing for this work (see

chapter 5). That way, the sensor becomes interchangeable and the vision system can be

applied to other robots as well. Moreover, it was decided to rely only on 3D information

(and not on RGB), to make this flexibility as broad as possible (most 3D sensor types don’t

provide color information). To summarize, the perception sensor for this application just has

to provide 3D information (in the form of a PC) and not have any special characteristics that

would make it irreplaceable.

However, there are still some considerations which must be taken for choosing a sensor that

directly depend on the considered application of autonomous robotic navigation in unknown

environment:

• Framerate. For real-time applications, it is important to consider the frequency of in-

formation acquisition. It is usually measured in Hz or frames per second (fps). From ex-

periments performed, it has been found that a 10 Hz update rate (or higher) is enough

to reliably consider different scenarios while taking the robot’s motion and reaction

times into account. However, higher update rates allow for more accurate environ-

ment modeling, especially in dynamic scenarios (see chapter 5). Additionally, some

sensors such as pivoting laser units require the robot to stand still while scanning and

become less reliable in dynamic environments. For this reason, they are discarded for

the present application.

• Field of View (FoV). When navigating through unknown terrain, the robot should be

able to gather as much information about its surroundings as possible. However, the

section of the environment right in front of the robot tends to be the most relevant.

In this work, the field of view was chosen as a function of the tested scenarios and

available sensors. The developed algorithms can be applied regardlessly of how much

of the surroundings are detected, though naturally the degree of robustness and ability

to navigate unknown environments depend on the information available.

• Range. A sensor has to reliably cover the area surrounding the robot to provide com-

plete information to the motion planner. In full-size humanoid applications the first few
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centimeters in front of the sensor are usually not considered (if something is detected

in this range it is already too late to react to it) while information further than 5 m away

become less relevant when considering dynamic scenarios and real-time capabilities.

• Accuracy. As explained in chapter 6, errors of more than a few cm in perception

information can have disastrous consequences for a humanoid robot. According to our

experiments, sensors with a better accuracy than 5 cm are desirable.

• Compatibility. As explained before, the objective of this project is to provide a system

as open and flexible as possible. That means that sensor information should be easy to

access and compatible with standard tools (such as PCL) to make them interchangeable.

There are numerous sensors that comply with the mentioned characteristics. It was found

out, however, that the most critical aspect was the sensor’s accuracy. Detecting a platform

in the wrong location can potentially destabilize the robot (see chapter 6). However, if

an extremely accurate sensor is chosen, there is a risk of developing an application that is

strongly dependent on high sensing accuracy and thus incompatible with many other systems.

Moreover, it could limit the application of the robot to a restricted kind of scenarios: certain

kinds of terrain, such as grass or other non-rigid floors are inherently difficult to model

correctly, regardless of the sensor used.

Therefore, it was decided to use a standard structured light (or RGB-D) sensor for this work,

in order to ensure compatibility with other systems and scenarios (see fig. 1.4). Authors

usually name two main disadvantages of these kind of sensors, which are their low accuracy

and poor performance under sunlight. However, choosing such a sensor serves to ensure

compatibility with other systems:

• As Lola is developed as a prototype to be used inside the laboratory, the sunlight incom-

patibility is not an issue at this stage of research.

• The sensor’s low accuracy serves as a performance test. A system that performs correctly

with this sensor is clearly compatible with more accurate sensors.

• Additionally, the low accuracy serves as a simulation of real world scenarios. The ro-

bustness of the robot against irregular terrain can be tested by performing laboratory

experiments over regular surfaces with inaccurate perception information (see chap-

ter 6).

To summarize, the objective is to develop a framework as general as possible that can be

applied to other systems and scenarios. If it performs correctly with an inaccurate sensor, it

will probably perform correctly with other sensors or scenarios as well.

Calibration

Regardless of the sensor chosen, a calibration process always has to be performed in order

to make the sensor information compatible with the planning system. A 3D sensor provides

spatial information with respect to a local coordinate system, which almost always differs

from the one used by the robot’s motion planner. Most often sensors don’t even provide

a physical indication of their reference coordinate system. Ideally, all sensory information

should be joined together into one coordinate system to make it compatible with the rest of

the robot’s modules. If many different sensors are available, this process is known as “sensor

fusion”[37]. Before continuing, it is important to make a distinction between two main kinds

of calibration:
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(a) Intrinsic Calibration. Due to errors during fabrication, differences in temperature or

other conditions, each particular sensor may provide slightly different information with

varying degrees of accuracy. If it is compared to a reference, more accurate sensor, a

calibration function may obtained to correct data before its processing.

(b) Extrinsic Calibration. After the intrinsic calibration is performed, the sensor itself must

be calibrated against the robot in order to correctly identify its coordinate system. If

a physical procedure is not supplied by the sensor’s provider, the extrinsic calibration

usually consists of identifying some reference feature (that is already calibrated against

or even part of the robot itself) from the sensor information and then matching both

references.

Therefore, the intrinsic calibration is the process performed on each particular sensor to

correct fabrication errors, while the extrinsic calibration has to be performed when mounting

the sensor in each particular robot to make its data compatible with the robot’s control. As

it is strongly dependent on each particular kind of sensor, the intrinsic calibration is only

briefly mentioned here for the chosen sensor. On the other hand, the extrinsic calibration

depends mostly on the particular robot and different systems require different procedures. In

this section, a standard extrinsic calibration process is mentioned for the CROPS robot while

a new one is introduced for the Lola robot.

Intrinsic Calibration

In the previous section, it is explained how the choice of an RGB-D sensor was done after

considering that a noisy sensor would ensure the system’s robustness against other sensors

and scenarios. However, RGB-D sensors are not intended as measurement devices and their

errors are higher than the ones admissible by Lola’s control system (see chapter 6). Never-

theless, a simple intrinsic calibration procedure helps greatly reduce them. It is based on

the works by Jalobeanu et al. [80] and Khoshelham et al. [95], where the interested reader

may find additional information. It is important to know that the greater source of error in

these systems comes from the miss-alignment of the structured light projector and sensor,

which results in a triangulation error. In order to solve this, Jalobeanu et al. [80] mounted

the sensor’s internal components into a fixed metal case. However, for many applications, a

simple correcting function is sufficient [95].

A simplified characterization of the sensor was performed against a laser range sensor3, mea-

suring perpendicularly and averaging along a plane in the central half FoV of the camera.

Several sensors were tested, each of them presenting a similar response. The measurement

error can be, for present purposes, roughly approximated using a linear regression line [95],

which significantly improves the sensor’s precision (see fig. 3.7).

Extrinsic Calibration on Manipulators

If a sensor is mounted on a robot in such a way that part of the robot itself lies inside the sen-

sor’s FoV, the extrinsic calibration can be performed straightforward with the help of markers

and fixed references to the robot. The interested reader may find a thorough analysis in the

work by Wang [193]. Here it is shortly illustrated taking the CROPS robot as an example (the

methods presented are the result of a collaboration with Sahand Yousefpour [208]). In the

current setting, an RGB-D sensor is mounted on top of the robot’s base (see fig. 3.8). This

3Bosch PLR 50 Digital Laser Measure, Typical accuracy = 2.0mm.
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Figure 3.7: Characterization of the Xtion Kamera. Error of the measurements (red) together with the linear

regression approximation (green)

stationary position ensures maximum possible field of view towards the workspace environ-

ment, where fake lab fruits are hanged for the robot to pick them up.

The objective of the extrinsic calibration is to find the precise location and orientation of

the sensor with respect to the robot’s world frame. In order to do this, an initial “guess” is

provided based on the position where the camera is mounted. Then, if a closed chain of

known transformations that include the sensor itself can be obtained, the error of that closed

chain can be interpreted as the transformation between the initial guess and the actual sen-

sor pose. The whole idea consists of using a known reference which can be identified by the

sensor and precisely located from the robot. In this case, the simplest reference consist of a

marker - which can be easily identified by the sensor using standard tools such as the ArUco

library [53] - attached to the manipulator, as can be seen in fig. 3.8.

This way, the following closed chain of transformations is obtained (ref. fig. 3.8):

M
tcpT

tcp

W T = M
C T C

Ĉ
T Ĉ

W T (3.1)

where B
A T denotes the transformation from frame A to frame B, following the convention of

Craig [26]. C

Ĉ
T is the transformation between the sensor’s initial guess and it’s actual pose,

and is the unknown in eq. (3.1).
tcp

W T contains the transformation between the robot’s world

coordinate system and the end-effector pose (measured by the robot) during the marker

detection step. M
tcpT is a fixed transformation between the end-effector and the marker board.

Ĉ
W T is the guessed pose of the sensor in the robot’s world coordinate system and M

C T is the

pose of the marker board measured by the sensor.

If, instead of obtaining one closed chain, the process is repeated for a number of different

observations, the real sensor position can be more accurately obtained via least squares.

The manipulator is instructed to move to different positions, making the system observe the

marker. At each position, an average value of marker poses are computed to eliminate any

possible local error. Then, a set of equations (3.1) for the different detected values of M
C T is

obtained. For the sake of implementation, the transformation attributes are decoupled into

rotation and translation. The rotational component of eq. (3.1) reads as:

M
tcpR

tcp

W R = M
C R C

Ĉ
R Ĉ

W R (3.2)

where C

Ĉ
R is unknown; eq. (3.2) can be rewritten as:

J =
�

M
tcpR .

tcp

W R
�−1

. M
C R . C

Ĉ
R . Ĉ

W R (3.3)

where J is a 3x3 matrix which, in an ideal case, would be equal to the identity matrix.

However, during multiple observations, system errors result in different solutions to eq. (3.2).
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Figure 3.8: Extrinsic calibration using markers. Top: robot with sensor (indicated in red) and marker and the

corresponding kinematic chain. Bottom: recognition of the marker pose using standard tools. Adapted from

Yousefpour [208].
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The least squares method finds an optimum value for C

Ĉ
R that “minimizes” the different values

J when the sum, S, of squared residuals:

S =

n
∑

i=1

Rri
2 (3.4)

is minimum, where n is the number of observations. To build the rotational residuals Rri, the

Euler angles are extracted from each Ji matrix:

RVi =
�

αi βi γi

�T
(3.5)

where α, β and γ denote the rotation around x , y and z axes respectively and the rotational

residuals become:

Rri = ‖RVi‖ (3.6)

Thus, the value of C

Ĉ
R that minimizes the residual angles can be found.

The translational component of C

Ĉ
T is computed analogously. Similar to eq. (3.3), rearranging

eq. (3.1) gives:

K =
�

M
tcpT .

tcp

W T
�−1

. M
C T . C

Ĉ
T . Ĉ

W T (3.7)

where K is a 4x4 matrix. The first three components of the last column of this matrix (con-

taining the translation) are extracted for each equation:

T Vi =
�

x i yi zi

�T
(3.8)

and the translational residuals are computed as:

T ri = ‖T Vi‖ (3.9)

Applying least squares yields the optimal transformation C

Ĉ
T and the sensor is now calibrated

against the robot, resulting in the coherent point clouds shown in fig. 3.6.

Extrinsic Calibration on Humanoids

The extrinsic calibration of a sensor on a humanoid robot follows the same idea as the one

on a manipulator, but with a fundamental difference: there is no section of the robot inside

the camera’s FoV and the range that is of interest is the area away from the robot (calibrating

using the robot’s hand would not yield the desired results due to the varying performance of

the sensor over distance). Additionally, the robot is not fixed to the environment, which com-

plicates the task of finding an adequate reference. Unfortunately, even though the calibration

of a sensor of a humanoid robot is a topic of interest for the community due to its unique

characteristics, authors systematically omit this subject in publications. Moreover, most other

works depend on off-board systems. In this work, a simple but effective calibration routine

and tool for on-board sensing are proposed which may be useful to future researchers. The

idea consists on using the environment itself as reference.

Rewriting eq. (3.1) for this case leads to:

E
W T = E

C T C

Ĉ
T Ĉ

W T (3.10)
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Figure 3.9: Extrinsic calibration using the environment as reference. Right: the robot is placed on a flat ground

with a couple of simple objects in front. Left: both objects and the ground can be identified and located using a

simple tool (green and red represent points above and below the ideal ground, respectively).

where E refers to the environment reference. Similarly to eq. (3.2), the rotational compo-

nents of eq. (3.10) can be written as:

E
W R = E

CR C

Ĉ
R Ĉ

W R (3.11)

If the robot is placed on a flat ground and the stabilization control is active (see chapter 2),

the feet - as well as the robot’s local coordinate system - can be assumed to be parallel to the

ground (or as parallel to the ground as they can be). If the ground itself is E, E
W R becomes the

identity matrix. The orientation of the ground as seen from the camera E
CR can be obtained

by fitting a plane to the detected point cloud. However, the detected point cloud shows only

an homogeneous section of the ground. Applying a vertical rotation or an horizontal transla-

tion to the camera would result in an identical point cloud, assuming the ground is perfectly

flat. Thus, the orientation around the vertical axis is thereby not determined. Similarly, the

translation along the vertical axis can be obtained from the plane identification but not the

other components of the translation.

In order to find these unknowns, a few simple objects that can be easily identified (chap-

ter 5) are precisely placed in front of the robot at known distances from the robot’s feet

(see fig. 3.9). This way, the identification of these objects together with the ground can be

combined to obtain E
C T .

Based on the author’s experience, RGB-D sensors exhibit variable behavior with time and

temperature, reaching a stationary state after around one minute. Additionally, high levels of

noise may compromise the whole calibration process. It becomes relevant, therefore, to visu-

alize the calibration results online. Using a simple tool which is published open source (see

chapter 5), live results from the calibration chain can be projected to a viewer (see fig. 3.9)

which indicates both positon and orientation of the ground and obstacles (these are detected

using the algorithms presented in chapter 5). By manually changing the rotational and trans-

lational components of C

Ĉ
T the extrinsic calibration can be easily completed without the risk

of reaching local minima with an unsupervised least squares method. The viewer calculates

and displays the mean vertical value of all detected ground points and their variance against

the mean horizontal plane, which can be used as indicators for the manual calibration (see

algorithm 1). Nevertheless, this process can naturally be automated if needed (for example,
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when using more accurate and reliable sensors). This tool can be additionally used to per-

form the intrinsic calibration mentioned earlier, by detecting the wall instead of the ground;

in this case, the variance is used for aligning the 3D sensor and the mean is compared against

an accurate unidirectional sensor (such as a laser range sensor).

Algorithm 1 Extrinsic Calibration on a Humanoid Robot

1: Start the calibration tool to display the mean value (along the vertical axis) and the variance value (against
the mean horizontal plane) of the ground plane as well as the locations of detected obstacles

2: repeat

3: Modify the rotational components (Euler Angles) of C

Ĉ
T

4: until the variance reaches a minimum
5: repeat

6: Modify translational components of C

Ĉ
T (and the rotation around the vertical axis)

7: until the mean is closest to 0 and the object’s locations are correct



Chapter 4

Environment Representation

Interpretation of the Environment: Recognition vs. Modeling

In the previous chapter, different perception technologies were discussed and the integration

of 3D sensors into a robotic system was presented. These sensors provide information in

the form of a 3D point cloud which, by itself, is useless for robotic navigation. In order to

be able to navigate along the sensed environment, this information must be interpreted in a

meaningful way. This process is often called 3D image processing. In the particular case of

autonomous navigation, there are two main strategies to do this.

The first one is called Environment Recognition and consists of finding previously known com-

ponents (such as objects) in an image with the aim of executing predefined actions. This has

been the topic of extensive research, both in 2D and 3D image processing [36]. It has the ad-

vantage of reducing the number of unknowns in complex scenarios: if the main components

of such a scenario are known, predefined actions can be taken reducing both planning time

and failure risk. This strategy is widely used for robot grasping and manipulation as shown

below, but is very limited for robot navigation as it cannot easily deal with new, or previously

unknown, scenarios.

On the contrary, the second strategy, Environment Modeling, specifically deals with these sce-

narios. Its main idea consists of generating an abstract, geometrical model of the environment

which can later be handled by a corresponding planning system. For example, in the case of

a small wheeled robot navigating on a flat surface the environment could be represented by a

2D map, which would suffice for that particular problem. In general, the adequate modeling

strategy differs greatly depending on the application: an autonomous rover navigating on

the open surface of mars will require different level of detail and world representation than

an autonomous quad-copter flying inside a factory.

In recent times, however, new developments in machine learning methods as well as avail-

able computational power are increasing the applicability of environment recognition meth-

ods: by using large amounts of data, more and more components of the environment can be

recognized, even if they don’t exactly match the previous ones [162]. Using an everyday ex-

ample, Google Photos can presently filter pictures containing elements such as dogs, sunsets,

or a beach scenery with impressive accuracy [109]. It is possible that, in the future, systems

based on sufficiently large amounts of data are able to correctly interpret all components of

the scene in which a specific robot may find itself.

Nevertheless, these environment recognition methods cannot guarantee a 100% effective-

ness and there will always be cases where unknown scenarios will have to be dealt with.

Moreover, some applications such as collision avoidance can easily and effectively be solved

by an environment modeling strategy and there is no need to rely on these more complicated

and less reliable methods. The author considers that ideal perception systems for advanced

robots should include a combination of both strategies: sections of the environment that can-

not be correctly (or confidently) recognized shall be approximated using a modeling strategy

35



36 4 Environment Representation

to ensure correct behavior. An example of such a combined environment recognition and

modeling system is presented in this chapter, where a robot performs manipulation tasks on

known objects while avoiding unknown obstacles.

The rest of this thesis deals mainly with environment modeling strategies. The objective is to

provide a system capable of dealing with completely unknown environments for robot navi-

gation which could also be combined with environment recognition algorithms in the future.

After the aforementioned example, existing environment modeling strategies along with their

limitations are discussed. Finally, a new environment modeling strategy with key advantages

for humanoid navigation is presented. Some of the results presented in this chapter have

been previously published in more compact form in international journals and conferences

[69, 189].

Example of a General Perception System: the European Robotics Chal-

lenges

In order to illustrate the perception system concept, an example is given in the context of

an industrial application (a more complete overview on environment recognition algorithms

can be found in Daniilidis et al. [30]). In 2014, the EU-funded project European Robotics

Challenges (EuRoC)1 [44] was started. In three concurrent tracks, competitor teams from

European research institutes and universities are developing integrated robot systems for au-

tonomous manufacturing and inspection applications in close cooperation with technology

suppliers, system integrators and end-users. The team AM-Robotics, composed of four PhD

candidates of the Chair of Applied Mechanics (including the author) and nine students, ob-

tained first place (among 39 international contestants) during the first phase of the EuRoC’s

Challenge 2. This track consists of the development of autonomous robot systems for use in

logistics and as robotic co-workers. The challenge platform is a KUKA omniRob (consisting of

a mobile platform with a KUKA iiwa manipulator and several sensors on top, see fig. 4.1). For

the first phase of the challenge, an intelligent and flexible framework for autonomous pick-

and-place tasks in previously unknown scenarios was developed using the Robot Operating

System (ROS)[152]. The vision module, for which the author was responsible, combines

algorithms for environment recognition and modeling and is presented in this section.

Framework and Software Architecture

The classical application of robots in industry involves repetitive processes. A manipulator

must follow pre-defined motions for specific tasks in completely known and enclosed envi-

ronments. New robotic systems with enhanced sensing capabilities allow for more complex

applications, where the robot shares a dynamic workspace with humans. In order to exploit

this potential, the robot has to adapt to changing conditions and tasks. The use of additional

sensor feedback offers many options for these applications, including detection of various ob-

jects and obstacles, safe navigation in human workspaces and precise positioning with known

uncertainties. Manipulator platforms are able to combine advanced sensing and handling ca-

pabilities in an autonomous, mobile unit that seems ideal for these kinds of applications.

Several of these platforms with integrated sensors and control systems for autonomous tasks

have been presented for academic and research use (e.g. PR2 by Willow Garage [198], youbot

by KUKA [101]). In robotics research, algorithms and software frameworks have been de-

veloped over many years aimed at achieving high levels of autonomy. However, autonomous

1European Robotics Challenges, 2014–2017, Grant Agreement No.608849.
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Figure 4.1: Challenge platform for Challenge 2 of the EuRoC [44].

mobile platforms for manipulation tasks are not common in industrial production since they

have not yet shown the necessary level of robustness [69]. At the time of the challenge, to the

best of the author’s knowledge, no appropriate framework for the tasks of the EuRoC were

available. For that reason, the team AM-Robotics developed an in-house approach which was

released as open source2, in the hope that it helps not only other EuRoC teams but other

researchers in the field as well.

Stage 13 of the EuRoC took place between July and November of 2014 and consisted of dif-

ferent pick-and-place tasks in a simulated environment (see fig. 4.2). The simulated robotic

system (running on Gazebo [54]) consists of a KUKA iiwa 7 DoF manipulator with gripper

mounted on a 2 DoF mobile basis, emulating the omniRob platform. Two simulated RGB-D

sensors with artificial noise record the scene, one is mounted on the gripper and the other

one on a fixed stand with pan-tilt-unit. Both the pan-tilt-unit and the manipulator’s DoF can

be position-controlled. The tasks to be solved consist of different pick-and-place scenarios,

which are previously unknown.

During each task, the simulator provides a list of objects to be found. These are defined by

their respective geometry and color, selected from a predefined set. The objective is to find

and place those objects according to a predefined sequence in different kinds of pick-and-

place scenarios that include obstacles, puzzle solving and moving objects.

The framework consists of independent modules, each of which is responsible for a certain

subtask of the overall pick-and-place process. These are: state machine, state observer, vision

system, grasping and motion planning. An overview of the overall system architecture is

shown in fig. 4.3.

The central communication and coordination, including the overall task sequence and the

interaction between the modules, is performed by the state machine. The sequence to solve

a basic task is depicted in algorithm 2. To maintain consistent coordinate systems between

the main modules, an additional supporting node is introduced. It uses the ROS tf-package

and continuously publishes all relevant coordinate transformations. The main modules use it

to express location data in the “world” coordinate system. The vision module, for example,

transforms the data from each sensor into world coordinates.

2Available under https://github.com/AppliedMechanics/EuRoC.
3The challenge is divided into 3 stages: Stage 1, simulation contest; Stage 2, realistic labs; Stage 3, field tests.

https://github.com/AppliedMechanics/EuRoC
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Figure 4.2: Simulation environment of course 2, stage 1. The manipulator (7 DoF) has a movable base and

performs several pick-and-place tasks while avoiding obstacles. All environment data is based on RGB-D sensors

mounted on a stationary pan-tilt unit and on the manipulator’s end-effector.
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Figure 4.3: Control system (challenger application) overview including the main modules and communication

data.
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Algorithm 2 Pick & Place control sequence

1: Request task & start simulation
2: Get task-description
3: Scan environment
4: Set n = 1
5: repeat

6: Locate Object n
7: Calculate possible grasping poses
8: Move to object
9: Grasp object

10: Move to target zone
11: Place object n
12: if Object in zone then

13: Set object finished
14: n→ n+1

15: until All objects finished
16: save log & stop simulator

Vision Module

The perception information is processed and handled by the vision module. Its purpose is

to find the location of the sought-after objects and model surrounding obstacles, performing

both environment recognition and modeling functions. The vision module serves as a typical

example of a combined environment recognition and modeling system as mentioned at the

beginning of this chapter. In this case, it obtains an RGB image and a 2.5D depth stream

from each of the simulated RGB-D sensors. This data contains varying levels of Gaussian

noise depending on the task (refer to fig. 4.5). Pose and geometric properties of the camera

are available so that depth and RGB information can be correlated. This correlation becomes

relevant for filtering out and determining the pose of the objects - which differ in shape and

color. Unknown sections of the environment are considered as obstacles and modeled as a

3D map for safe navigation.

An overview of conventional and modern approaches for 3D object recognition can be found

in Wöhler [204]. As explained, most 2D (and some 3D) pose estimation algorithms rely on

previous feature learning from a training set of images of the object. These were not consid-

ered optimal for these tasks because object characteristics (shape, color) are only specified

once the task has started. Instead, geometric methods (also called 3D descriptor methods

or template methods, see Hinterstoisser et al. [72]) are more appropriate in this case. The

objects consist of combinations of regular surfaces for which normal-based descriptors are

particularly robust. The presented application is based on PCL, which is integrated into ROS.

The Fast Point Feature Histogram as described by Rusu et al. [159] is used for pose estimation

as it allows taking noise and incomplete data into account. The general strategy for image

processing is shown in fig. 4.4 and comprises the following steps:

a) Scan Environment. As the environment is not dynamic, multiple images are taken from

different viewpoints (using both the scene and the tool center point (TCP) camera). By

transforming the 3D PCs into world coordinates, they are combined and known parts

of the environment (e.g. table, robot and pan-tilt camera unit) are filtered out. In the

challenge tasks, objects can have only one out of six different colors. Therefore, for later

object recognition, each PC is separated into six colored sub-PCs via HSV-filtering. The

same procedure could be applied for a more general case by storing a colored PC (where

each point is assigned an RGB value) and performing the color-filtering afterwards. An

example of this procedure is shown in figs. 4.5 to 4.7.

b) Environment Recognition. For object pose estimation, an ideal PC is created based on
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Figure 4.4: Image processing strategy and integration in the overall framework. Bottom left: environment recog-

nition. Bottom right: environment modeling.

its geometric description (with a point density similar to the voxelized PCs). The cor-

responding colored PC is clustered into separate sub-PCs. These are classified based on

their bounding box size to filter out obstacles or other objects. Finally, using the Fast

Point Feature Histogram both PCs are compared iteratively in order to find the correct

transformation (see fig. 4.7).

c) Environment Modeling. The PCs are created, combined and voxelized (both for com-

putational efficiency and to obtain a homogeneous distribution of points, necessary for

the pose estimation algorithm). The total (not color-filtered) PC is modeled using a

compact 3D discretization called Octomaps [76] and sent to the planning module for

collision checking (see fig. 4.6).

Results for Autonomous Pick and Place Tasks

In this section an exemplary result for a pick-and-place task is presented. A video showing

the different simulation tasks can be found online at https://youtu.be/OTWEZd6BMk8. In

these tasks, the robot must locate objects, pick them and place them in the corresponding

target zones while avoiding obstacles and complying with its dynamic and kinematic limits.

A plan view of the setup is shown in fig. 4.8 and algorithm 2 describes the overall strategy.

First, the environment is scanned (since some parts of it are not visible for the scene camera,

the environment has to be scanned successively using the views of the TCP camera as well).

This way, a fuller, more complete PC is created by fusing together PCs from different perspec-

tives. Using the PC-data from the vision module the Octomap-based environment model is

generated for collision checking.

Subsequently, objects are sequentially located. For a located object the grasping module

calculates feasible grasping poses and the pick-and-place procedure is performed as follows

(see fig. 4.9): the robot moves to a predefined transport-configuration and approaches the

located object (1). Once the distance between the robot and the object is less than a pre-

defined threshold the grasping sequence is performed (2). After picking up the object, the

https://youtu.be/OTWEZd6BMk8
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Figure 4.5: RGB image and 2.5D depth stream (top) sent by the simulated sensor, and the resulting 3D PC

(bottom).

Figure 4.6: Filtered total PC (left) and Octomap-based environment model sent to the motion planning module for

collision avoidance (right).

Figure 4.7: Environment Recognition. Color “blue” PC (left) and the feature comparison (right) of the ideal PC

(purple) and the clustered color PC (blue) for pose estimation.
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Figure 4.8: Plan view of the scene Pick-and-place in obstructed environments. The object (magenta) has to be

located and placed in the target zone while avoiding obstacles (blue, green). Four different poses of the TCP

camera for exploring the environment are shown.

robot moves to the corresponding target zone switching back to the transport-configuration

(3) and performs a placing procedure similar to the grasping sequence (4).

It is important to note how both the environment recognition and modeling strategies come

into play here. The object pose estimation algorithm allows to generate a grasping pose

which becomes the objective of motion planning module. In order to reach this objective, it

generates a feasible, collision-free motion based on the environment model.

1 2 3 4

Figure 4.9: Pick-and-place task in obstructed environment: 1) Scan environment. 2) Grasp object (cyan cylinder)

3) Move to target zone in 2 DoF transport-configuration. 4) Place object into target zone.

Application and Perspectives

When applying this strategy to real, non-simulated, scenarios, more factors have to be taken

into account (e.g. lighting conditions for color filtering). Nevertheless, this approach can

be applied to the CROPS robot for the autonomous harvesting of fruits. Such real-world

applications involve further challenges for an autonomous robot as it must work outdoors,

under changing conditions and in obstructed environments. Nevertheless, the vision module

presented above has already been tested on artificial sweet peppers in the laboratory. Only

some of the parameters used were modified. Using the calibrated sensor mounted on the top

of the manipulator (section 3.4) and an ideal sweet-pepper model as reference, the robot is

able to find and pick the fruit autonomously (fig. 4.10).
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Figure 4.10: Testing the vision system in a real environment. Top left: an external RGB-D sensor mounted on top

of the manipulator captures the scene. Top right: the filtered point cloud is compared against an ideal model of a

sweet pepper. Bottom: the object’s pose is sent to the robot which picks it up.
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The framework presented in this section serves as an example of a combined vision system

for environment recognition and modeling. As was shown, such a system can be successfully

applied to pick-and-place tasks. However, it is not exempt from certain limitations which pre-

vents its use in other kinds of applications. The main ones concern timing and its applicability

to dynamic scenarios:

(a) Data acquisition. The Scan Environment routine assumes a static scene and can there-

fore be used for sensor fusion during post-processing. In real dynamic scenarios, data-

acquisition and sensor fusion must be performed in real time [126], limiting the avail-

ability of additional viewpoints and the possibility of filtering out noise. Thus, 3D data

becomes incomplete and less reliable.

(b) Processing time. The results of the presented framework show an underlying problem of

the selected strategies, which is runtime. Both the vision and motion planning modules

require several seconds to process the EuRoC’s simple scenes using modern comput-

ers. In the case of the vision module, the use of geometrical descriptors requires more

computational power than machine learning strategies but, as explained before, these

are not easily applicable in the considered scenarios. Furthermore, the presented strat-

egy relies on simple color filtering based on previously known information. If color

information was not available, both runtime and robustness would be badly affected.

Even without considering the vision system’s performance, the motion planning mod-

ule would still be a problem: during experiments, it took sometimes up to one minute

to find a collision-free path in complex scenarios4. The reason for this is that 3D map

representations such as the one used are not exactly efficient for collision avoidance

as the number of distances that have to be calculated becomes extremely large. This

makes them unsuitable for dynamic scenarios.

Due to these reasons, the methods presented above cannot be presently applied to systems

which either contain a large number of DoFs or which require low processing times due

to either their own dynamics or changing environments. Humanoid robots in particularly

fall into all of these cases. Therefore, previous frameworks for autonomous walking have

always included strategies for environment modeling with a wide range of complexity. In

the following, these are discussed and an original environment representation is presented

afterwards.

Unknown Environments

A general concept for a perception application for autonomous robots can be seen in fig. 4.11.

As explained before, object recognition techniques, which have lately become more robust

with the use of deep learning methods [94], enable all kinds of applications such as ma-

nipulation and interaction. Still, there will always be sections of the environment (or even

complete scenarios) that will not be recognized by the most comprehensive database; these

can be modeled in parallel using basic geometries, which the robot’s planning can handle.

Furthermore, for obstacle avoidance applications a rough approximation of an object is not

only sufficient but desirable for computational reasons.

The interaction between environment modeling and motion planning is discussed in this sec-

tion. These modules represent two of the main components of an autonomous navigation

system. In order for a robot to navigate in a real environment, the perception module has

4For the final framework, many motions were reduced to the DoFs at the base using a rigid manipulator to
reduce processing time as can be seen in the videos



4.3 Unknown Environments 45

Scene

Recognition

Environment

Modeling

Sensor

Figure 4.11: Concept for a Perception System for Autonomous Navigation: sections of the environment which are

not recognized by learning methods (Scene Recognition) are modeled by an approximation strategy (Environment

Modeling) with a set of pre-defined geometries.

to acquire an abstract representation (or model) of it, which is then used by the planning

module to find a feasible path while avoiding collisions [62]. The modeling strategy restricts

the kind of environments the robot can navigate through and determines the capabilities of

the motion planner.

In what is usually considered to be the first example of autonomous robotic navigation, 2D

maps were used to represent the environment and the A* algorithm was presented to navigate

an unknown scenario avoiding static walls [62]. Later works included height information in

a 2D grid to generate “height-maps” and navigate in uncluttered, relatively horizontal terrain

[122]. Using this approach, wheeled robots have been able to achieve impressive feats [63].

As explained in chapter 1, legged robots are better suited than wheeled robots for navigating

through cluttered environments. However, providing legged robots with autonomous navi-

gation capabilities is a more challenging task. The complexity of this problem lies, on the

one hand, in the particular dynamics of biped robots. Besides being naturally underactuated,

their high number of degrees of freedom makes it computationally challenging to perform

real-time motion planning and control. In order to solve this, reduced models are used for

approximating the robot’s dynamics (chapter 2).

On the other hand, a detailed model of the environment (such as the Octomap representa-

tion used in section 4.2) is not suited for real-time navigation due to its computational costs,

both on the computer vision and the motion planning side. Therefore, real-time humanoid

navigation5 has only been achieved using simplified environment models on relatively un-

complicated, static scenarios (see fig. 4.12). In the first application of height-maps to biped

navigation, static scenes could be traversed in real-time due to its simplified representation

[82]. An extension to this representation, consisting on the segmentation and classification of

these “2.5D” maps, is a very popular approach in humanoid research as it permits a real-time

solution of the motion planning problem [24, 59, 60, 68, 91, 137]. However, it still limits the

complexity of applicable scenarios.

In summary, existing environment modeling strategies are either limited in their representa-

tion of complex scenarios (2D, 2.5D) or require too much processing time to be implemented

in real-time, dynamic applications (see table 4.1). This work tries to bridge this gap by

introducing a full 3D environment representation which can represent complex, dynamic

scenarios and can be processed in real-time by the motion planner. In the following, the basic

concept of this representation is presented. The next chapter is dedicated to explain how

such a representation can be obtained online from 3D point clouds when facing unknown

dynamic environments.

5Compared to a robotic manipulator in a limited workspace, the problem of biped navigation in large envi-
ronments is more challenging in terms of processing time constraints. A biped navigation system is considered to
run in real-time if trajectories and motions can be adapted or recomputed in the span of one walking step.
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Figure 4.12: Different Environment Modeling Strategies. A simple 2D model can be useful for e.g. wheeled robots

(top left). If height information is included, a discrete 2.5D map can be obtained (top right). By segmenting such a

2.5D map, surfaces or obstacles in simple environments can be recognized (bottom left). A dense 3D voxelization

offers detailed information at the cost of increased runtime (bottom right).

Table 4.1: Environment Modeling Strategies

Type Computational Cost Dynamic Environments Example

2D very low yes Hart et al. [62]

2.5D very low yes Kagami et al. [82]

Segmented 2.5D low possible Nishiwaki et al. [137]

3D high no Hornung et al. [76]
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3D Environment Modeling

The following approach for environment modeling is based on using simple geometries that

are particularly well suited for collision calculation and motion planning. This new environ-

ment modeling strategy is particularly well suited for humanoid robots. When performing

autonomous biped navigation, the surrounding environment can be classified in two: sec-

tions over which the robot can walk and obstacles which have to be avoided. Walkable areas

of the environment have to be represented in a way that is compatible with a fast walking

pattern generation strategy (chapter 2), while obstacles are to be represented with shapes

that allow for quick collision checking.

An example of such geometries are the swept-sphere-volumes (SSVs), defined as the expan-

sion of basic geometric shapes (e.g. point, line or triangle) in all possible directions with a

fixed offset or radius. They consist of rounded shapes (e.g. spheres, capsules or rounded

triangles) that have been repeatedly used for efficient collision checking by different authors

[65, 68, 165]. The advantage of these shapes becomes evident when calculating the distance

between two of them:

dist (SSV (a, ra) , SSV (b, rb)) = dist (a, b)− ra − rb (4.1)

where SSV (n, rn) is the SSV expansion of shape n with radius rn. For example, the distance

between a sphere and a capsule is equal to the distance between a point and a segment minus

both radii (see fig. 4.13). This representation of objects allows for fast planning and obstacle

avoidance in cluttered environments. Collisions -both internal and external- are checked in

3D in real-time [67]. Due to their efficiency for distance calculation with respect to other

shapes, point- and line-SSVs (spheres and capsules) are used to represent obstacles.

b
a

ra

rb

Figure 4.13: SSV approximation for fast collision checking. The distance between two SSVs out of the geometric

shapes a and b is calculated as the distance between a and b minus the corresponding radii, ra and rb. In this

example, a and b are a point and a segment, respectively.

Walkable areas are meanwhile represented with convex polygons, which facilitate the task of

finding safe footstep positions (chapter 7). However, it is not safe for the robot to step on

the border of the surface and it is therefore represented as a set of line-SSVs. The complete

environment representation can be seen in fig. 4.14, where scenarios are represented as a list

of polygons and SSVs that represent safe and non-safe regions for the robot. Additionally,

the robot itself is represented by SSVs in order to easily calculate 3D collisions against itself

and the environment. As shown in different examples throughout this thesis, complex sce-

narios can be efficiently represented by this full 3D modeling strategy and, more importantly,

processed by the motion planning module in real-time.

This representation is not only useful for humanoids but can be applied to other kinds of

robots as well. In the following section an example application of this modeling strategy to
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Figure 4.14: Environment modeling. Left: obstacles are represented as point- and line-SSVs; surfaces as poly-

gons with line-SSVs at the edges. Right: environment representation enables real-time 3D planning and collision

avoidance.

obstacle avoidance with manipulators is given. The following chapter deals with the appli-

cability to real humanoid robots, explaining how such an environment representation can be

computed online, during walking, without previous information about it and depending only

on on-board sensing.

Obstacle Modeling for Robotic Manipulators

The most convenient application of the presented object modeling strategy is 3D obstacle

avoidance, which is a general problem for any kind of robot. Besides the robot Lola, this

concept can be potentially applied to other kinds of robots such as robotic manipulators. It

has already been successfully tested on the CROPS manipulator [199] for evaluating different

strategies for collision avoidance. In fig. 4.15, it can be seen how the SSV approximation

can be used to perform obstacle avoidance6. A video of the experiments can be found in

https://youtu.be/uDiXij2O5Y4.

6In this example, the perception system is not present.

https://youtu.be/uDiXij2O5Y4
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Figure 4.15: Obstacle Avoidance with robot manipulators. Left: both the robot and the obstacles can be modeled

using SSVs. Right: the robot is controlled via tele-operation but adapts its path to avoid a vertical object.





Chapter 5

Perception System

Related Work: Robot Perception

In previous chapters, it has been discussed how robots obtain raw data from the environment

(chapter 3) and how to extract meaningful information from it (chapter 4). As explained

before, for this work it was decided to develop a perception system that is compatible with

open source libraries and a broad range of 3D sensors in order to make it adaptable to other

robots and systems (chapter 3). The requirements of this perception system are to model

completely unknown, dynamic scenarios online (while the robot is moving) and based only

on on-board processing. This chapter describes the perception system itself, which generates

a representation of the environment out of 3D point clouds using basic geometries (chap-

ter 4). It is the result of collaboration with Fabian Bräu, Marko Lalić, Irem Uygur, Sahand

Yousefpour, Christian Buttner, Dominik Gutermuth, Gregor Schwarz, Adnan Makhani, Tamas

Bates and Stefan Floeren [12, 20, 50, 58, 103, 117, 185]. Some of the results presented in

this chapter have been previously published or submitted for publication in more compact

form in international journals and conferences [188, 192].

Existing perception systems for biped navigation are considerably limited in their application

to unknown environments. In 2003, 2.5D maps were used to represent a sufficiently struc-

tured terrain [82]. The authors could generate collision-free trajectories for their H7 robot.

Other early approaches include a 2D classification of the environment [28] in which the biped

robot Johnnie could navigate over obstacles and surfaces of which the geometry was previ-

ously known. In order to deal with more complex scenarios, a 3D occupancy grid was added

to the 2.5D map in order to recognize obstacles [59, 60], but relied on textured surfaces to

climb stairs with the QRIO robot. In one of the few works dealing with dynamic environments

[23], the Asimo robot managed to safely navigate between 2D moving obstacles; these were

previously known and moved only with constant speed in the lateral direction. An impressive

degree of autonomy was showed by the HRP-2 robot [24, 137]. Out of a structured environ-

ment, it could extract planes and label other regions as obstacles for walking over them and

onto platforms. It relied on a pivoting laser scanner for which static scenarios were assumed.

In 2010, a 2D-based occupancy approach was used for quickly generating collision-free tra-

jectories in non-static environments [16], but it didn’t consider complex obstacle avoidance

motions such as stepping over. A different representation of the environment using octrees

was presented later [114, 116]. The authors achieved collision-free navigation with the Nao

robot, though they used texture and color for classification. Complex motions such as walk-

ing over obstacles were achieved when using height-maps [115]. Using this representation,

they recently presented impressive results in dynamic environments [92]. Motivated by the

DRC, some authors [47, 172] presented autonomous navigation results of the Atlas robot.

However, they do not consider dynamic environments. In one of these works, a height-map

of relatively simple scenarios was generated while the robot was standing [172] and simple

collision checking was done via Octomaps. In another one [47], accurate and dense 3D maps

51
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of the environment were used to extract walkable surfaces (but not obstacles) from static

terrains. The robot was able to plan future footsteps during walking.

The works mentioned above present several limitations. In most cases, the scenarios consid-

ered are relatively simple, such that they can be represented using height-maps. Additionally,

collision checking is based only on footstep locations and heuristics. Most importantly, either

the perception system, motion planner or both take too long to be applied to unknown dy-

namic environments. The system presented in this thesis overcomes all of these issues with an

efficient environment representation based on direct point cloud processing. On the percep-

tion side, it is fast enough to be generated online while the robot is moving. On the planning

side, it enables reactive footstep planning and real-time 3D collision avoidance. Compared to

all previous works, it presents a greater degree of applicability, as it can simultaneously pro-

cess unknown walkable surfaces and obstacles of different sizes, shapes, static or dynamic.

No other work, as far as the author knows, is able to handle unknown dynamic obstacles.

The perception system is designed in a modular fashion so that it can be integrated as a mix

of vision processing and visualization libraries easily into other systems. These libraries are

available open source in the group’s repository1 and include tools for local visualization2 and

mixed reality with either an external camera or Microsoft’s HoloLens (see chapter 7). More

information about the visualization library can be found in appendix A.

Framework and Software Architecture

In fig. 5.1, the structure of the perception system for environment modeling can be seen. It

can process 3D point clouds directly and provides the motion planning system with a set of

walkable surfaces and obstacles. In order to allow for a fast update rate, a parallel structure

allows to speed up the whole system and to make use of multi-threading computation: each

process runs with its own cycle time and can access the latest scene information regardless

of the other parallel processes. The first step to achieve this kind of architecture is defining

classification criteria. In this work, the environment is classified according to whether it is

walkable or not. For other robotic systems, different criteria could be applied, making use of

the same approximation algorithms.

The main idea behind this system is to have one process for classifying points in the point

cloud (either as surfaces or obstacles) and other parallel processes to obtain the geometric

models for each subset of points. As shown in fig. 5.1, the classification process (Plane Seg-

mentation) finds points in the scene (planes) which can potentially be walked over by the

robot. Using the latest plane coefficients obtained, both the Surface and Obstacle Modeling

filter out the new incoming point cloud (the Surface Modeling keeps points belonging to the

planes and the Obstacle Modeling discards them) for generating the corresponding basic ge-

ometries. Note that, even though the coefficients are taken from previous frames (less than

50 ms old, see chapter 8), they should still be valid in the considered application scenar-

ios. Fast moving surfaces, such as escalators, are therefore treated as obstacles because their

points do not correspond with earlier plane parameters (which is acceptable, as they cannot

be handled by the existing motion planner anyway). In fig. 5.2, the approximation of an

example scene using polygons and SSVs can be seen.

Both approximation processes follow a similar strategy that consists of the following steps:

• clustering, where points are grouped into separate “clusters”,

• tracking, where each surface or obstacle is tracked and filtered across frames and

1https://github.com/am-lola/lepp3
2https://github.com/am-lola/ARVisualizer

https://github.com/am-lola/lepp3
https://github.com/am-lola/ARVisualizer
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Surface
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not-so-RANSAC Clustering

Approximation

Tracking
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Figure 5.1: Environment Modeling Structure. The Plane Segmentation process classifies the incoming point cloud

into walkable surfaces (for the Surface Modeling) and collision objects (for the Obstacle Modeling).

Figure 5.2: Result of the vision system. Left: RGB image of an example scene (for reference). Right: surfaces

(including the ground) are modeled with polygons and obstacles with SSVs.
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sensor’s FoV

objects are not updated

Figure 5.3: The sensor’s field of view is limited. Objects that enter the skyblue region stop being updated and are

not removed. Objects outside both the FoV and skyblue region are removed.

• approximation, where each cluster of points is assigned one or more approximating

geometries.

In the tracking step the data is additionally checked for consistency. High levels of sensor

noise (chapter 3) can cause the false detection of non-existing objects. Therefore, surfaces or

obstacles have to appear in several consecutive frames before they are considered real and

can be sent to the planner. Moreover, as the sensor’s FoV does not include the section of the

ground nearest the robot, objects stop being updated once they get close to the robot and

before they leave the FoV (see fig. 5.3).

The walking control system continuously updates the kinematics transformation from the

camera to a reference world coordinate system (W), fixed to the ground at the starting position

of the robot. By transforming the incoming point cloud (PC) from the camera coordinate

system into W , objects can be successfully tracked despite the robot’s motion. It is worth

noting that this is not intended as a SLAM strategy, as a map of the environment is not

kept or updated; instead, each incoming PC is analyzed separately. W will be affected by

inaccuracies in the robot’s motion (e.g. sliding on the ground) and will change slowly with

time, but that is not relevant for this application as only on-board sensing is considered

and measurements of the environment are continuously updated and correct with respect

to the robot. Therefore, odometry errors are always kept low enough for safe navigation.

Additionally, a simple voxelization of the PC into a 3D grid with 1cm size is applied in order

to have a homogeneous PC in the following steps regardless of the sensor used. Thus, the

dependence of the processing algorithms on the type of sensor is reduced and parameters

don’t have to be re-adjusted. In the following, the different processes in fig. 5.1 are explained

in detail. As stated before, a real-time application is the main motivation behind the proposed

system. Throughout its implementation, strategies were chosen by prioritizing robustness

and runtime over optimality in order to achieve safe, if not optimal, navigation. The following

algorithms satisfy these criteria and are the result of extensive testing and iterations, where

both new and state-of-the-art algorithms are combined to make this system as efficient and

robust as possible.
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Plane Segmentation

The segmentation submodule classifies points according to whether they belong to a walking

surface or an obstacle. Several standard algorithms were evaluated against a set of compli-

cated, dense scenes to assess their worst-case performance. Algorithms tested can be split in

three main categories:

a) Depth-map-based. These algorithms are based on the direct processing of the depth-

map of structured light sensors. Besides being incompatible with other kinds of sensors

such as LIDARs, they often fail to segment plane regions from objects that lie on top of

them, such as ramps or prisms.

b) Normal-based. These algorithms first calculate a map of vectors normal to the point

cloud’s points (and their corresponding neighbor points). Regions are then separated

based on the normal gradients. Apart from their sensibility to noise, the main problem

with these algorithms lie in the long processing time needed to calculating the normal

maps.

c) Random Sample Consensus (RANSAC). This algorithm was introduced by Fischler et al.

[48] and is based on the random fitting of sensor data to a model. Due to their direct

evaluation approach (as explained below) it can be very efficient to fit ideal models

such as planes.

Other novel approaches to fast plane detection were discarded for their dependency of partic-

ular sensing technologies [146], RGB data [64] or height-maps [119]. The chosen segmen-

tation strategy is based on RANSAC. Besides the characteristics mentioned above, it proved

to be faster, more robust and transferable throughout different frames (key for this parallel

approach).

The PCL’s Sample Consensus Segmentation [145] provides a RANSAC implementation which

randomly selects 3 points of a point cloud to get a plane’s coefficients ((a, b, c, d) | ax + b y +

cz+ d = 0) and tests them against the remaining points. If enough points belong to the plane

(within a certain threshold), these are removed and the process starts over. As the algorithm

finds different planes’ sections separately, these are joined and clustered in the end to obtain

complete surfaces. The system selects only surfaces that are sufficiently large to fit the robot’s

foot and which are nearly horizontal (up to 20◦ slope in the present configuration) and, thus,

walkable. Additionally, the following two modifications are introduced:

1. Not-so-RANSAC. In order to speed up the process, old plane parameters are tested

against the incoming point cloud before starting RANSAC, so that previously existing

surfaces can be quickly identified. This can speed up the segmentation routine up to

seven times.

2. Classification. The standard segmentation process is not robust against intersecting

surfaces with similar inclinations (such as the grond and a ramp); when joining sections

of planes together, both surfaces may be joined into one single plane (see fig. 5.4).

Therefore, before this step, planes’ sections are classified according to their inclination

so that all different plane parameters are correctly identified and adjacent surfaces

separately approximated. As shown in the next section, this simple modification also

helps speed up the surface modeling routine.

The final list of plane coefficients {ai , bi , ci , di} , 1 ≤ i ≤ nplanes is sent to both Surface and

Obstacle Approximation processes which are explained in the following.
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Figure 5.4: RANSAC Classification. Left: the standard RANSAC implementation includes a clustering step that

may merge planes with different inclination together (such as the floor and the ramp). Right: preliminary surfaces

are classified according to their inclination before clustering so they can be separately approximated.

Surface Modeling

Clustering

After filtering surface-points with the plane coefficients, these must be clustered into separate

surface objects. Even points with the same plane coefficients might belong to separate sur-

faces (e.g. two separated platforms with equal height). Standard clustering algorithms (e.g.

PCL’s Euclidean Clustering [145]) are computationally expensive, partly because they are im-

plemented for 3D point clouds (see fig. 5.5). However, thanks to the modified RANSAC

implementation, the clustering step is reduced to a 2D problem: as planes are already clas-

sified according to their inclination and position, only points belonging to the same plane

have to be clustered further. Thus, points can be projected into their corresponding plane

and clustered using local 2D coordinates.

Clustering (78%)

Segmentation (18%)

Downsampling (3%)

Other (1%)

Figure 5.5: Profiled performance of a sequential Surface Modeling implementation using the standard PCL’s

Euclidean Clustering algorithm for surface clustering. Adapted from Gutermuth et al. [58].

For this application, clustering criteria depend on the robot’s feet. A cluster can be defined

such that the distance between neighboring points is considerably smaller than the foot size.

For clustering a given plane, a simple grid discretization is used: all points are grouped ac-

cording to a grid with a relatively small unit length (5 cm in the present implementation) and

define connectivity based on neighboring occupied cells (note that the grid is only used for

clustering while the original points are passed along to further stages).

This implementation was tested against different clustering algorithms using varied scenes

with multiple separated platforms of equal height. Algorithms tested include: PCL’s 3D Eu-

clidean Clustering [145], OpenCV’s 2D Euclidean Clustering [139] and a local implemen-

tation of DBSCAN [43]. The difference in clustering results is always less than 1% of the
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number of points while the difference in runtime is significant: the grid strategy (runtime of

less than 2 ms in the most complicated scenarios) performs more than 50 times faster than

every other algorithm (see appendix B for more details).

Approximation

As explained before, surfaces are approximated by simple polygons. At present, concave or

incomplete surfaces are not considered due to the way footstep locations are optimized for

collision avoidance (chapter 7). The approximation starts by projecting the cluster point

clouds to the corresponding ideal plane and applying the popular QuickHull algorithm [21,

38] (chosen for its runtime and easy parallelization). It iteratively expands a polygon until it

contains all points, as shown in fig. 5.6.

Figure 5.6: A simple example to illustrate the QuickHull algorithm (from left to right and top to bottom). First,

the two extremal points of one dimension are selected; the line connecting these two points splits the set into

two halves (red and blue), continuing with each half separately. Then, for each half, the point with the maximal

distance to the line is found and added to the hull; all points within the triangle (red) are removed from the set. The

remaining points are again split into two separate groups (red and blue) and the process continues until there are

no points left. Adapted from Gutermuth et al. [58].

The result is a group of polygons with varying number of vertices. In order to facilitate the

integration with the motion planner these are reduced to a maximum number of vertices

nvertices (nvertices = 8 in the experiments) by iteratively removing those vertices which subtract

the smallest area from the polygon (see algorithm 3). A graphic example of the algorithm is

shown in fig. 5.7.
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Algorithm 3 Reduction of convex polygons

1: Polygon P with adjacent vertices P[i]

2: repeat

3: for all modified vertices j do

4: Update area △P[ j] of the triangle 〈P[ j − 1], P[ j], P[ j + 1]〉

5: Remove vertex corresponding to △P[m] =min (△P[i])

6: Update P

7: until Polygon contains desired number of vertices

Figure 5.7: Reduction of convex polygons (from left to right). First, areas are computed for all triangles made

of three consecutive vertices (example). Then, the vertex corresponding to the triangle with the smallest area is

removed. For the next iteration, only two new triangle areas have to be computed. Finally, the algorithm finishes

when the desired number of vertices is reached. Adapted from Gutermuth et al. [58].

Tracking

Due to sensor’s noise and a limited FoV, the approximation process results in different polygon

approximations from frame to frame. Surfaces are matched between frames by comparing

plane coefficients and positions. If a corresponding previous polygon is found, it is updated

(at the approximation step) by averaging both polygons. For this purpose, a geometric in-

terpretation of the classic low-pass filter, or geometric low-pass filter is introduced. The main

problem when averaging two polygons is that there is no clear correspondence between both

sets of parameters (vertices). Methods which simplify filtering using the polygon’s center

or area often result in inaccurate approximations of the surface’s perimeter, which is ex-

tremely relevant to this application3. Instead of matching vertices from both polygons with

one another, each polygon vertex is matched with its closest point (or projection) in the other

polygon. Then, the positions of each vertex and its corresponding projection are averaged

with a factor α. This can be interpreted as a low-pass filter (with inverted factors for both

polygons for consistency) as seen in fig. 5.8. This results in a polygon with double as many

points that can be reduced using algorithm 3 (see algorithm 4).

Algorithm 4 Geometric low-pass filter

1: Polygons A, B, with nverticesA,B
vertices A[i], B[ j]

2: for all i, j do

3: Compute projection of A[i] in B, A[i]B
4: Compute projection of B[ j] in A, B[ j]A

5: Compute pre-filtered polygon C =

{αA[i] + (1−α)A[i]B} ∪ {(1−α)B[ j] +αB[ j]A}∀i, j

with 0≤ α≤ 1

6: Perform algorithm 3 on C

3As shown in the next section, using an object’s center for tracking is instead applicable to obstacles, where
the object’s margins can be represented with less accuracy.
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A[i]

B[ j]

A

B

B[ j]A

A[i]B
α (B[ j]− B[ j]A)

α (A[i]B − A[i])

C[i]

C[n+ j]

Figure 5.8: “Geometric low-pass filter” for filtering successive polygon approximations of surfaces (see algo-

rithm 4). Note that the value of α determines the weight between both polygons A (cyan) and B (orange). By

shifting it closer to the old or new polygons, the algorithm becomes either more or less damped, respectively

(α= 0.5 in the experiments).

Obstacle Modeling

Clustering

When processing 3D point clouds, there are several standard clustering strategies available,

such as PCL’s Euclidean Clustering [145]. One of their main limitations is long runtime (see

fig. 5.5), which usually depends on the complexity of the scene (effectively restricting the

amount and velocity of objects). In figs. 5.9 and 5.10, the performance of the obstacle

modeling system using an euclidean clustering implementation is shown for two separate

experiments. The robot walks among different scenarios with varying complexity. As can be

seen, the total cycle time is strongly correlated with the number of objects in the scene.

In order to overcome this problem, clustering and tracking methods are presented which are

both more robust and dynamic, handling extremely complex scenarios faster than the sen-

sor’s frame rate (30 Hz). They are adapted from probabilistic theory and machine learning

methods to dynamic scenarios.

In machine learning theory, data clustering is a fundamental problem of unsupervised learn-

ing. The objective is to determine correlation relationships between variables out of training

data sets, without any additional information. A common approach [128] is the Gaussian

Mixture Model (GMM), which consists of a set of probabilistic Gaussian distributions (or

Gaussians) with the form:

p (x i |θ ) =

K
∑

k=1

πkN (x i |µk,Σk) (5.1)

where K is the number of Gaussians and N (x i |µk,Σk) is the normal distribution of Gaussian

k with mean µk, covariance Σk and mixing weight πk. These weights satisfy 0 ≤ πk ≤ 1 and
∑K

k=1πk = 1, to ensure a correct probability distribution p (x i |θ ) of the n points x i (in this

case, x i has three coordinates) with the list of parameters θ , which consist of {πk,µk,Σk} ∀k
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Figure 5.9: First experiment. Top: calculation time of the PC transformation and filtering step (red) and total time

performance of the obstacle modeling (green) for each frame. Bottom: number of objects recognized in each

frame.
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Figure 5.10: Second experiment. Top: calculation time of the PC transformation and filtering step (red) and total

time performance of the obstacle modeling (green) for each frame. Bottom: number of objects recognized in each

frame.
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in this case [128].

These models are potentially well suited for the present application as they don’t require

many assumptions on the data and their probabilistic nature make them robust against sen-

sor noise. Additionally, the implicit principal axis decomposition analysis can be directly

used for the SSV approximation, as explained below. However, classical implementations

are based on static data sets and require an iteration procedure which converges to a local

maximum likelihood estimate (MLE). Even though other authors have recently shown appli-

cations to object tracking [98], these are still too complex for real-time applications (other

works achieve faster times but depend on the color image as well as the point cloud [105,

112, 142]). For the obstacle clustering and tracking application, the following adaptation of

the Expectation Maximization (EM) algorithm is proposed which, combined with a Kalman

Filter, can be successfully applied for online tracking of unknown, dynamic objects.

In order to improve runtime, only one EM-iteration is performed for each new point cloud.

They classically consist of:

• Expectation (E) step: compute an auxiliary responsibility rik for each point x i and Gaus-

sian k.

rik =
πkN (x i |µk,Σk)
∑K

j=1π jN (x i |µ j ,Σ j)
(5.2)

• Maximization (M) step: for each Gaussian k, compute new estimates for the weights

πnew
k

and parameters {µnew
k

,Σnew
k
}.

πnew
k
=

1

n

n
∑

i=1

rik =
Rk

n
(5.3)

µnew
k
=

1

Rk

n
∑

i=1

rik x i (5.4)

Σ
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Rk
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−µnew
k

�
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k
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(5.5)

Even though an MLE is not guaranteed for dynamic data, experiments in real environments

show that it typically converges within a few frames and effectively tracks existing objects

afterwards. Nevertheless, eqs. (5.4) and (5.5) do not take into account dynamic scenarios (or

changing data). In order to deal with these scenarios, several modifications are introduced

to the EM algorithm that take objects’ dynamics directly into account and are explained in

the following.

Tracking

It is interesting to note that the use of GMMs makes tracking much easier. Compared to the

euclidean segmentation [188], where new objects have to be matched against old ones, the

iterative nature the EM algorithm means that cluster identities and parameters are kept from

frame to frame. However, data is supposed to be static, meaning that new values of µnew
k

do

not take into account the object’s velocities and are always “lagging behind” the motions of

the objects. For this reason, a Kalman filter is applied to the values of µnew
k

which results in a

more dynamic update procedure and better tracking4.

4Even though the obstacles might be correctly approximated after some frames without the Kalman filter if
the update rate is fast enough, it is still useful as a velocity estimator.
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A standard version of the random accelerations model is taken for the Kalman filter [128],

where both position and velocity are subject to Gaussian noise and only the position is ob-

served. The state vector xkt
for each Gaussian k at time t is defined as:

xT
kt
= (xkt

, ykt
, zkt

, ẋkt
, ẏkt

, żkt
) (5.6)

where (xkt
, ykt

, zkt
)T is the value of µk at time t. The corresponding transition matrix Fkt

for

a linear motion is:

Fkt
=















1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1















(5.7)

where ∆t is the sampling time (or time between frames). The observation matrix Hk is

constant:

Hk =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



 (5.8)

The system is described by the state transition:

xkt
= Fkt

xkt−1
+wkt

(5.9)

where wkt
∼N (0,Qkt

) is the system noise, assumed as a normal distribution with covariance

Qkt
. Every time t, an observation of the true state is performed. In this case, the observation

corresponds to µnew
k

. In the Kalman model, it can be expressed as:

µnew
kt
= Hkxkt

+ vkt
(5.10)

where the observation noise vkt
is also assumed to be a normal distribution with covariance

Rkt
: vkt
∼ N (0,Rkt

). Qkt
is defined as diag{σpos,σpos,σpos,σvel ,σvel ,σvel} and Rkt

as σobs I .

The noise parameters σpos, σvel and σobs can be set by the user and are based on sensor noise

and odometry errors.

Each new value of µnew
k

is introduced in the Kalman update step to obtain the estimated value:

µ̂new
k
= Hkxk (5.11)

Therefore, eq. (5.11) is used to replace eq. (5.4). This combination of the EM and Kalman

filter algorithms results in the effective tracking of multiple dynamic elements[51], as can be

seen in fig. 5.11. Furthermore, the estimate of the velocity can be passed along to the robot

in order to directly consider objects’ motions in the motion planning module.

For what concerns Σ, the estimation in eq. (5.5) depends strongly on the present data and

thus can vary from frame to frame. In the present application, it means that separate dy-

namic objects are quickly joined once they are close, preventing correct tracking and velocity

estimation. Therefore, it is replaced with a maximum a posteriori estimation [128], which

can be interpreted as a low-pass filter that keeps separate obstacles separated (see fig. 5.12):

Σ̂
new
k
= λΣk + (1−λ)Σ

new
k

with 0≤ λ ≤ 1 (5.12)
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Figure 5.11: GMM clustering with Kalman filter for obstacle tracking. Left: in the reference RGB figure it can

be seen how a person suddenly kicks a ball. Right: several SSVs can be tracked simultaneously (surfaces are

discarded for this example); velocity vectors are shown as black segments.

Figure 5.12: Keeping separate obstacles separated. In this example, a ball rolls under a chair (top left). The

standard application of the EM algorithm doesn’t take into account dynamic scenes and obstacles are joined

together (top right, λ = 0). A low-pass filter on Σ (see eq. (5.12)) keeps a better track of the ball (bottom,

λ = 0.95). Only the Gaussians are shown here for simplicity.
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Figure 5.13: Determination of the correct number of Gaussians. From left to right: two chairs, voxel grid for quick

clustering and point cloud with approximating Gaussians (the ground is hidden).

Figure 5.14: Filtered trajectories and estimated velocities of a ball bouncing off two obstacles. The ball is correctly

tracked in three separate experiments.

An intrinsic problem of such a probabilistic method consists of determining the correct num-

ber of Gaussians (or obstacles) in the scene, especially when handling dynamic scenarios. In

order to solve it, the points are grouped according to a simple voxel grid with a coarse reso-

lution (see fig. 5.13) such as the one used for surface clustering (section 5.4) but in 3D (note

again that the 3D grid is only used for clustering while the original points are passed along to

further stages). Again a quick clustering of the scene is obtained, consisting of several “qclus-

ters”. These are used to split Gaussians that contain a considerable amount of points in more

than one qcluster (see middle image in fig. 5.13). Additionally, new obstacles are created

when a qcluster is found on which most points don’t belong to previous Gaussians. Obstacles

are removed when they present low weight values πk, as they are not needed to represent

existing points. Using these criteria to add, split and remove Gaussians from the scene, the

distribution is initialized with one Gaussian for the entire point cloud and iterated further.

Even in complex scenarios, initialization time is fast enough for the present application (note

that each obstacle can be approximated with more than one SSV later). In fig. 5.14 the final

result of the tracking algorithm can be seen: a ball is consistently tracked when bouncing

against two other static objects.
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Figure 5.15: Geometries used by the vision system for the approximation of objects: point-SSVs (left) and line-

SSVs (right)

Approximation

The SSV approximation is based on the maximum, middle and minimum principal moments

of inertia Imax, Imid and Imin of every obstacle point cloud (sometimes called “principal axis

decomposition”). The quotients ξ1 =
Imin

Imax
and ξ2 =

Imid

Imax
are geometric invariants, as they

don’t depend on the scale of the point cloud. Other authors used similar invariants to fit PCs

using prisms or superellipsoids [34, 35]. In this case, the environment approximation uses

only point- and line-SSVs (see fig. 5.15), which satisfy:

• Ideal point-SSVs have ξ1 = ξ2 = 1

• Ideal line-SSVs have ξ1 < ξ2 = 1

These criteria could be directly used to approximate objects. However, as detected point

clouds are incomplete, they have to be adapted to experimental values. The geometric in-

variants ξ1 and ξ2 were analized for a series of objects resembling point- and line-SSVs. They

differ from the ideal values due to the point clouds being hollow, incomplete and noisy. Based

on results of these PCs, the following characteristics were obtained:

• Real spheres satisfy (ξ1 > 0.1)∩ (ξ2 > 0.8)

• Real capsules satisfy (ξ2 < 0.25)

In this way, point clouds (PCs) that satisfy either condition are directly approximated with

a corresponding sphere or capsule. When neither criterion is satisfied, a more detailed ap-

proximation could be achieved by iteratively splitting the point cloud (again) and assigning

more than one SSV object to every obstacle (e.g. the chair approximation in fig. 5.2). How-

ever, splitting is not always helpful or necessary. To prevent the scene approximation from

reaching unnecessary complexity levels, PCs are split until any of the following conditions

apply:

1. It “resembles” a perfect sphere or capsule (using the above mentioned criteria).

2. The distance to the robot is bigger than a certain threshold.

3. Its volume is smaller than a certain threshold.

4. It is the result of a certain number of “splitting steps”.

These conditions have the purpose of using more detailed representations of obstacles only

when they are needed. They keep the necessary number of SSVs to represent the environ-

ment at a minimum, thus reducing the computational cost of the step-planner and collision

avoidance modules. This hierarchical strategy only improves the approximation of objects

that are relevant to the robot’s navigation. As mentioned before, objects that resemble ideal
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Figure 5.16: Approximation of point clouds. From left to right: a picture of the object, the point cloud (black) and

SSV approximation (pink) without splitting, after 1 splitting step, after 2 splitting steps. In the second example, it

can be seen that the splitting operation can result in worse approximations for objects that already resemble ideal

geometries. Adapted from Lalić [103].

geometries don’t require a more detailed approximation. In fact, in these cases the splitting

operation can be counterproductive, as shown in fig. 5.16.

The other conditions are implemented to prevent the algorithm from splitting objects that

are either too far away to have an influence in the planning process or too small compared

to the robot to require a detailed approximation. Additionally, the number of splitting steps

is limited to prevent excessive runtime. A sphere is chosen as the default approximation

geometry for a non-ideal PC due to its reduced distance calculation times. In the following,

a strategy for splitting point clouds is introduced.

Each incoming point cloud PCi is split using a plane ψ that satisfies:

p
(PCi) ∈ψ (5.13)

where p
(PCi) is the PC’s centroid (or center of mass). Thus, each of the resulting sub-PCs PCi1

and PCi2
will have approximately the same number of points. The next question is to decide

which plane to choose (in other words, to define the orientation of ψ). In order to obtain

an efficient representation of the environment, ψ should be chosen in a way that results in

sub-PCs with more resemblance to perfect spheres or capsules, so that they don’t have to be

split again. This is achieved by analyzing the following example of a full symmetric PC (see

fig. 5.17):

Let PCs be a PC plane-symmetric with respect to three orthogonal planes. The coordinate

system S (x , y, z) is defined coincident with the eigenvectors of I (PCs) (principal axes of inertia)

and its origin in p
(PCs). If ψ is chosen as the x− y plane, PCs is split into two identical sub-PCs

PCs1
and PCs2

(any points ∈ ψ are not taken into account). PCs1
and PCs2

are symmetrical

with respect to the planes x − z and y − z, so their principal axes of inertia are parallel to the

axes of S (x , y, z). Applying Steiner’s Parallel Axis Theorem,

I
(PCs)

i j
= 2

�

I

�

PCs1

�

i j
+m

�

PCs1

�

�

∑

k

a2
k
δi j − aia j

��

(5.14)

where
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xy

z

S1 S2

Figure 5.17: Splitting point clouds. In order to illustrate the strategy, a symmetric point cloud is used as an example

(here a symmetric prism is shown for clarity). In this case, the splitting plane corresponds to Imid which results in

objects more similar to ideal line-SSVs.

• I
(PCx )

i j
is the point cloud’s PCx inertia tensor

• i, j, k ∈ {1, 2,3}

• m

�

PCs1

�

is the number of points (mass) of PCs1

• δi j is the Kronecker-delta

• The vector a = (a1, a2, a3)
⊺ = p

(PCs) − p

�

PCs1

�

Because of the choice of ψ, a1 = a2 = 0.
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(5.15)

It is important to observe the relationships obtained in eq. (5.15): as the term
�

m(PCs)a2
z

�

is always positive, the values of Ix x and I y y in the new sub-PCs are proportionally smaller

than the value of Izz with respect to the corresponding values in the initial PC. Supposing

that PCs doesn’t resemble a point- or line-SSV and the axes corresponding to Imax, Imid, Imin

are the same for PCs1
as for PCs, the relationships shown in Table 5.1 are obtained. Out of

Table 5.1: Choosing the splitting plane

z corresponds to Imin z corresponds to Imid

ξ

�

PCs1

�

1 > ξ
(PCs)

1 ξ

�

PCs1

�

1 < ξ
(PCs)

1

ξ

�

PCs1

�

2 < ξ
(PCs)

2 ξ

�

PCs1

�

2 > ξ
(PCs)

2

these relationships it can be concluded that, in this example, splitting a PC through a plane

perpendicular to the axis corresponding to Imin or Imid results in sub-PCs having a closer re-

semblance to ideal point-SSVs or line-SSVs respectively. That means, applying these splitting

strategies to the hollow PCs of symmetric objects would favor reaching the criteria for real

sphere or capsule approximation. Although PCs rarely correspond to symmetrical objects,
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experiments with all kinds of objects and scenarios showed a similar trend. Regardless of the

chosen strategy, a safe approximation is assured in the next step by the chosen fitting values.

The fitting values for each incoming point cloud PCi are also based on its inertial parameters.

The potential collision region is covered by including all obstacle’s points in the SSV. This

is especially relevant as it guarantees a safe approximation, regardless of the identification

and splitting parameters. The fitting values (or SSV approximation parameters) are then

heuristically determined in the following way (see fig. 5.18):

1. Fitting a point-SSV with center o and radius r:

o = p
(PCi) (5.16)

r = max

��

�

�p− p
(PCi)
�

�

�

�

(5.17)

2. Fitting a line-SSV with centers o1 and o2 and radius r:

o1 = p
(PCi) + κ1c (5.18)

o2 = p
(PCi) + κ2c (5.19)

r = max

��

�

�

�

p− p
(PCi)
�

× c

�

�

�

�

(5.20)

where

• c is the directional vector of the principal axis of inertia corresponding to Imin

• κ1 = max
��

p− p
(PCi)
�

c
�

• κ2 = min
��

p− p
(PCi)
�

c
�

• max and min functions are evaluated ∀ point p ∈ PCi

O

r

O1

O2

r

Figure 5.18: SSV approximation of point clouds. After clustering, identification and splitting, point-SSVs (left)

and line-SSVs (right) are fitted using the centroid O and projections O1 and O2 to the Imin-corresponding axis,

respectively. The radius r corresponds to the farthest-away-point in each case. On the right, the axis of inertia

and projections on it are represented with black lines.

Evaluation

Before implementing such a system on a real robot, it is useful to evaluate its performance in

simulation. By creating artificial scenarios, perception and planning algorithms can be tested
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and adjusted to obtain the desired results. This strategy has become especially important

in the last few years thanks to the development of autonomous vehicles [113]. In order to

evaluate the effectiveness of the perception algorithms, several environments are simulated

using synthetic point clouds.

List of Predefined Objects Transform and Concatenate PCs Filter using Camera’s FOV

Figure 5.19: Generation of synthetic point clouds. Using a large database of predefined objects and a random

list of positions and transformations, infinite scenarios can be simulated. The result is filtered using the camera’s

position and FOV and then sent to the perception system.

The process is illustrated in fig. 5.19. First, a dataset of 3D files is created, including one for

a large floor area from which point clouds are generated and transformed into point cloud

files. By scaling, transforming and combining these objects, increasingly complex scenes can

automatically and randomly created. Moreover, moving objects can be simulated by applying

frame-varying transformations and generating a stream of point clouds. Additionally, in order

to better recreate the real scenario, the robot’s point of view and its resulting occlusion effect

are also taken into account by frustum culling and ray casting [145]. They consist of filters

that simulate the existence of a camera. By defining a camera position, orientation and

parameters, points are first reduced to the ones existing inside the camera’s field of view and

range (frustum culling); then, they are iteratively checked for occlusion against the camera

position and removed (ray casting). The result can be seen in fig. 5.20.

With these synthetic scenarios, the approximation of obstacles, surfaces and tracking of dy-

namic objects are evaluated. By randomly varying scale, transformation and combinations of

platforms and objects with different shapes, parameters are adjusted and the results of both

the Surface and Obstacle Approximation can be compared against scaled ideal values of the

original object dataset. Around 100 different scenarios were tested.

For the polygon evaluation, inclined platforms were used with different sizes and the fol-

lowing shapes: circles, rectangles with normal/round corners, ellipses, regular and irregular

convex polygons and polygons with some rounded corners. The error in inclination is neg-

ligible in all cases. While the error in area lies in the range of 0-4 % for polygons, the error

in area can be up to 10 % in the case of rounded shapes: this is mainly caused by the limited

number of vertices used in the polygon approximation. However, the approximated area is

always smaller than the original area and the remaining points are approximated with SSVs

so the result is always safe for navigation.

In the case of the SSV evaluation, prisms, cylinders, platforms and combinations of more than

one shape were used. The volume of the approximating SSVs varies between 100-300 % of

the original shapes, with the best results corresponding to rounded shapes and higher num-

ber of splitting steps. As expected, the volume of the approximation is consistently higher

than the original shapes (due to the conservative fitting strategy).

Using a stream of point clouds, the obstacle tracking is first evaluated (see fig. 5.21). The

obstacle tracking algorithm, running at 30 Hz, is capable of tracking objects moving with

constant speeds up to 3 m/s (at higher speeds, the displacement between frames is too large

to be correctly matched). Around 200 simulations of randomly-sampled velocities between

0.01 m/s and 3 m/s were performed. Convergence of the estimated velocities to a value with

less than 3 % error takes between 30-60 frames for the fastest moving objects5.

The evaluation of synthetic point clouds is a valuable tool for development. Additionally, it

helps to validate the capacities of the developed system. It is capable of correctly approxi-

mating a large variety of dynamic scenarios. Errors may become significant due to the sim-

5The initialization time of the algorithm required when starting the robot is not taken into account.
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Figure 5.20: Evaluation of the algorithm via synthetic point clouds: 3D objects (top left) are transformed into point

clouds (bottom left) which are combined with the floor, filtered via frustum culling and ray casting, and approximated

by the vision system (right).

Figure 5.21: Obstacle tracking performance. An object moves with constant speed and is approximated with an

SSV. Objects moving with constant speeds up to 3 m/s can be successfully tracked.
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plifications necessary for fast processing, but they are always conservative and safe for robot

navigation. The performance of the perception system is further validated with experiments

on Lola as shown in chapter 8.





Chapter 6

Robustness against Perception Errors

Effect of Perception Errors

As with any sensing process, a robotic perception system contains different kinds of error

sources which affect its accuracy. These are mainly the underlying error in the sensing tech-

nology itself (see section 3.2), in the calibration process (see section 3.4) and the processing

algorithms (see chapter 5). Some errors are inherent to the robotic system (for example,

occlusion errors cannot be avoided when relying only on on-board sensing). Others are

variable: sensor errors may depend on lighting conditions or surface reflectivity; the accu-

racy of an approximation strategy may depend on the particular scene being approximated;

the filtering algorithms are affected by the scene’s and the robot’s dynamics (for example,

the odometry information used for calibration may become less accurate when the robot is

moving and the filtering of a particular object depends on the number of frames it can be

perceived).

Naturally, by limiting the environment complexity or the robot’s behavior some of these er-

rors sources could be reduced. For example, a scenario could contain only components of

certain material and regular shapes; the robot could move slowly to reduce odometry errors

and obtain a more accurate representation through filtering and further processing. More-

over, additional or better sensors could be used to reduce occlusion or measurements errors.

However, even though perception errors could be reduced, they cannot be eliminated. There

will always be situations where the robot may deal with inaccurate perception information

or irregular environment.

Instead of trying to improve the sensor’s precision, another possible strategy to deal with per-

ception errors consists of increasing the robustness of the walking controller against them.

One of the main advantages of this approach is that it simultaneously improves the robust-

ness against irregular terrain: a robot walking over structured scenarios with large perception

errors can be compared to a robot with a more accurate perception system over more irregu-

lar terrain1. The perception sensor used in this work is considerably noisy (see section 3.2);

additionally, as explained in chapter 5, perception strategies were chosen for runtime and

performance, not accuracy (in fig. 6.1 the error in the approximation of a platform can be

clearly seen). Therefore, in order to achieve fast walking over irregular terrain, the walk-

ing controller has to be robust against these errors. This chapter deals with this topic: by

considering possible errors explicitly in the planning module this robustness can be greatly

improved. It is the result of collaboration with Tilman Knopp and Yizhe Wu [97, 205]. Some

of the results presented in this chapter have been previously published in more compact form

in international journals and conferences [190, 191].

As explained before, the environment is classified in two: obstacles which the robot has to

avoid and surfaces over which it can walk. Dealing with the obstacle errors is straightforward:

1In this case, “irregular terrain” is used to refer to scenarios where the location of hard contact with the ground
is unclear (such as cobbles) and not as an indication of the terrain properties.

73
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Figure 6.1: Errors in the vision system. The surface modeling of a 12.5 cm high platform during an experiment is

shown against an ideal model of the platform in the robot’s planning system.

a safety factor can be included to maintain a more conservative distance against the obstacles.

However, dealing with errors in surface approximations is considerably more complex (see

fig. 6.1), as these are the objects which the robot is in contact with and on which its stability

depends. In this chapter, the effect of surface approximation errors is analyzed in detail and

a new walking controller is presented which takes them directly into consideration. The

modifications to the walking controller are performed at two different stages. First, before

the planning takes place, the landing location is optimized to reduce the destabilizing effect

of sensor errors depending on the robot’s dynamics. This optimization is complemented at

a later stage with a more robust control: the planning module is modified to include time-

variable phases that directly deal with unexpected contact situations. The methods presented

here can be implemented on any robot following a ZMP-based control, regardless of the

perception sensor used.

Related Work: Robust Walking

Classic biped walking controllers assume a perfectly flat, rigid surface on which the robot

walks (see chapter 2). When using a vision system to detect those surfaces, most authors

assume perception errors to be small enough to be compensated by control [24, 28, 47, 59,

60, 65, 68, 119, 137, 140, 172, 188]. These perception systems employ different kinds of

on-board or external sensors that are subject to errors, regardless of the environment repre-

sentation used afterwards. In the case of Kagami et al. [82], the 2.5D map for their H7 robot

had an accuracy of around 1.5cm. This error didn’t have an influence, as experiments were

performed over flat ground with considerably larger obstacles. In Gutmann et al. [59] and

Gutmann et al. [60], the segmented 2.5D map used to recognize surfaces above the ground

presented an error below 1.5cm. Chestnutt et al. [24], Michel et al. [119], and Nishiwaki
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et al. [137] used a similar representation that allowed their full-sized biped robot to walk

over complex scenarios; reported perception errors lay around 1cm. In the vision systems for

the Atlas robot by Stumpf et al. [172] and Fallon et al. [47] the ground detection error was

less than 3cm. In all these works, experiments were performed on static environments with

relatively flat walking surfaces and at considerably slow walking speeds. Perception errors in

these almost quasi-static conditions could be compensated by the robot’s feedback stabiliza-

tion system.

When walking over more cluttered terrain and at higher speeds, biped robots may experience

larger perception errors with a more pronounced effect on their stability [18]. In order to

cope with such Early Contact (EC) or Late Contact (LC) events, many authors exploit addi-

tional sensor information (typically, contact sensors in the robot’s feet) and phase-switching

mechanisms [18, 125, 147, 149, 171]. Additional robustness may be achieved with state

estimation algorithms and real-time footstep modifications [201–203].

In summary, works available in the literature always (as far as the author knows) compen-

sate perception errors with robust control. As mentioned in chapter 2, this strategy has its

advantages and is therefore applied in this work (section 6.4). However, it is possible to

mitigate the effect of these errors before reaching to that point. Specifically, by modifying the

detected ground height before it is sent to the motion planner. The premise is simple: “is it

possible to find an optimal value for the assumed ground height in terms of stability?”. This

question can become even more relevant when walking over irregular surfaces (e.g. gravel,

grass), where a perception system could provide a variable accuracy factor (e.g. the standard

deviation) for each detected surface. In order to answer that question, the term “stability”

has to be accurately defined and quantified. In the following, a simplified model of the robot

Lola is used to analyze how EC and LC events affect the robot’s walking and deal with this

issue.

Ground Estimation Modification

Problem Statement

The following analysis is not based on specific sensor data. The results presented rely only

on the robot’s dynamics and the consequences of EC and LC events. Therefore, it may be ap-

plicable to many different systems where the robustness may be influenced by this open-loop

control strategy. It is worth mentioning, however, that it is inspired by a scenario consisting

of a biped robot and a perception system for ground (or surface) detection.

It is assumed that the error distribution p of the ground estimation is known beforehand.

For this work, only the error in the vertical (z) direction is considered. In order to obtain

computable results (section 6.3.5), it is assumed that the error is constrained between finite

limits (i.e. errors outside those bonds are neglected). In general:

1=

∫ +∞

−∞

p (z) dz ≃

∫ zmax

zmin

p (z) dz (6.1)

with the limits zmin < zmax.

By considering the system’s expected ground height zexp ∈ [zmin, zmax] and the ground’s real

height zreal ∈ [zmin, zmax], the EC, LC and Ideal Contact (IC) events can be defined:








EC : zexp < zreal

LC : zexp > zreal

IC : zexp = zreal

(6.2)
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In usual cases, zexp is defined as the sensor’s output or expected value zexp,sensor = E (Z) =
∫ +∞

−∞
zp (z) dz. The objective is to find an optimal value zexp,opt such that the negative effect

of all possible EC and LC events on the robot’s stability is minimized. In order to be applicable,

the solution has to be computable online while the robot is walking.

To reduce computational costs and simplify the analysis, it is restricted to the following case:

• The robot’s control uses a fixed step duration Tstep.

• Fixed phase durations and no footstep modification mechanisms are assumed since they

are supposed to work in a later stage.

• The ground is horizontal and zexp,sensor = 0.

• Only the dynamics in the sagittal plane are considered.

As explained throughout this section, these hypothesis enable a fast calculation of an ade-

quate solution which can be applied to more general scenarios with small modifications.

Classical concepts of stability are difficult to apply in non-linear, non-smooth systems such as

biped robots. Although some authors use the concept of basin of attraction to define regions

where a periodical gate might be stable [148], there is no consensus on a practical definition

of stability applied to humanoid robots and it is unclear how it could be quantified [13].

In this section, different variables related to the robot’s stability are introduced and their

potential applicability as quantifiable stability indicators to the present problem is analyzed.

Throughout this work, a stability indicator is defined as a function of the robot’s state that is

convex with respect to
�

zreal − zexp

�

and presents a global minimum at
�

zreal − zexp

�

= 0.

Model and Simulation

The reaction of a robot to unexpected ground heights could be evaluated in experiments, but

other model errors and disturbances make it difficult to isolate a single factor. Repeatability

can only be achieved in simulation. Therefore, Lola’s full multi-body simulation [13], which

handles unilateral and compliant contacts and takes motor dynamics and control loops into

consideration, is used as reference.

However, its high computational cost makes this simulation impractical for generating large

amounts of data or implementing it in a real-time scenario (ref. section 6.3.5). Therefore, a

simplified three-mass model (chapter 2) is used as reference. For this analysis an extension

of the model presented in Wittmann et al. [201] which can handle different ground heights

is used. In the following, the model’s main properties are explained.

The robot is modeled with one point mass for each leg m f at the feet and an upper body with

mass mb (near the center of mass) and inertia Θzz (ref. fig. 6.2).

The upper body and feet are assumed to follow the ideal trajectories xb and x1,2 in the robot’s

Frame of Reference (FoR). These are obtained from a reference run of the multi-body sim-

ulation (the ideal trajectories are generated by the simulated robot control, see chapter 2).

The underactuated state is simulated via two passive DoFs between the FoR and the ground

(xI − zI): a vertical displacement zFoR and an inclination on the sagittal plane ϕFoR.

Contact interactions between feet and ground are modeled as point vertical forces, with a

unilateral, linear spring (kc) and damper (dc) model. The center of pressure is fixed to the

contact point. The force control and upper body stabilization is taken into account with an

additional stabilization variable Tstab. It follows a PD-control (control gains Kp and Kd) based

on the one implemented in Lola’s control:

Tstab = sat(−KpϕFoR − Kdϕ̇FoR) (6.3)
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Figure 6.2: Three-mass model in the sagittal plane with two unactuated DoFs and unilateral compliant contacts.

and is saturated at ±
sole length

2

�

mb + 2m f

�

g. The equations of motion of the system can then

be written as:

M(q, t)q̈+ h(q, q̇, t) = λ(q, q̇, t) (6.4)

where M is the mass matrix, h contains the Coriolis, centrifugal and gravitational forces and

λ the contact forces. The state vector q = [zFoR, ϕFoR]
T consists of the system’s unactuated

degrees of freedom. The trajectories of the three masses xb and x1,2 and their derivatives are

expressed in terms of the inertial coordinate system ICS:

ICSx= ICS
FoRT (q) FoRx (6.5)

where ICS
FoRT is the transformation between both coordinate systems. It consists of a rotation

around ϕFoR and a translation along zFoR.

Out of (6.3) and (6.4) the dynamics can be expressed as a first order differential equation

system:

˙̂x= f(x̂, t) (6.6)

where x̂ = [zFoR,ϕFoR, żFoR, ϕ̇FoR]
T. An empirical initial value for x̂ is chosen so that a stable

gait is fast achieved. Every integration step consists of:

1. calculating the point mass locations,

2. solving the contact forces and the stabilization torque Tstab and

3. integrating (6.6) with an explicit Euler-integrator.

Stability Indicators

Using the model from section 6.3.2, EC, IC and LC events are simulated by changing the

ground height after achieving periodic walking. In figs. 6.3 and 6.4, a simulation example
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of an EC and an LC event, respectively, is shown. A different ground is defined for each foot

to avoid horizontal impacts and evaluate only changes in the z direction. The forces on each

foot and the inclination of the sagittal plane are shown, as well as the position of the robot

(depicted with three segments: one for the upper body and two between xb and x1,2) at three

time instances a, b and c for reference.
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Figure 6.3: A simulation of the three-mass model. Top: the robot position at 3 instances (depicted with three

segments and one circle for each point mass). Bottom: the progress of the contact forces for each foot (blue and

red), total force (dashed) and the inclination of the sagittal plane (cyan) can be seen for an EC event.

These simulations are repeated for different ground heights (positive for EC and negative for

LC events). Thus, the value of different indicators can be evaluated against the IC case. Addi-

tionally, this is performed for different walking parameters. As an example, fig. 6.5 shows the

plot of the angular momentum with respect to the origin for one set of walking parameters

and zreal varying between -0.05 m and 0.03 m. As the foot’s trajectory has a maximum height

h of 0.03 m, higher values of zreal are not relevant in this case (using standard walking pa-

rameters). Besides, the simulations result in the robot loosing balance before reaching those

limit values. In the following, some of the stability indicators considered are discussed. Due

to the high number of parameters, it is not possible to include all simulation results. Instead,

a small selection based on the parameters provided in table 6.1 is be presented. The sagittal
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Figure 6.4: A simulation of the three-mass model. Top: the robot position at 3 instances (depicted with three

segments and one circle for each point mass. Bottom: the progress of the contact forces for each foot (blue and

red), total force (dashed) and the inclination of the sagittal plane (cyan) can be seen for an LC event.

Table 6.1: Simulation Parameters

Walking step duration T 0.8s

h 0.03m

Time discretization 0.0015s

Saturation of Tstab ±80Nm

Walking step length s 0.25m 0.3m 0.35m 0.4m 0.45m

zreal between -0.05m and 0.03m

Simulation duration 4.8s
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inclination of the FoR ϕFoR (upper body inclination) is a potential indicator: a high absolute

value means that the robot is falling. Nevertheless, during normal walking, it oscillates be-

tween -0,012 rad and +0,011 rad. Its periodic motion is not easy to compare or quantify, so

the minimum and maximum values ϕmin, ϕmax along one run are considered. In the case

of an EC, the robot tilts backwards and ϕmin decreases while ϕmax stays relatively constant.

On the other hand, the robot tilts forward in the case of an LC and ϕmax increases while

ϕmin stays relatively constant (this can be observed in fig. 6.9 in the next sub-section). This

behavior is strongly dependent on zreal but not on the walking parameters, except for large

values of |zreal|. An indicator considering both effects (e.g. max (|ϕFoR|)) can be applied to

the present problem.

Note that the robot’s stability is not only influenced by the first contact with an unexpected

floor height: if no more changes on the floor height are assumed, the step after an EC event

consists of an LC, and vice-versa; this is due to the change in the robot’s state, especially how

ϕFoR is affected by EC and LC events (see figs. 6.3 and 6.4). Thus, the values of ϕFoR are

observed at the first and second contact with the ground after the change in zreal, ϕcon1
and

ϕcon2
. In the performed simulations, ϕcon1

shows quasi-linear behaviors for small values of

zreal. More interesting is the behavior of ϕcon2
which is almost 0 for a range of low values

of |zreal| and shows a sudden increase of absolute value outside of that region. This can be

explained by the effect of Tstab, which is able to counteract small variations of zreal. Note that

ϕcon2
indicates the state of the robot at the contact with the ground; at this point, the sudden

change in the acting force (through the new contact situation) might hinder the stabilization

controller. An indicator such as |ϕcon2
| is therefore meaningful for this problem.

The angular momentum L0 with respect to the inertial coordinate system (xI−zFoR in fig. 6.2)

at its origin2 also indicates future states of instability. In fig. 6.5, the value of L0 for one set

of walking parameters and different values of zreal is shown.
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Figure 6.5: Angular momentum with respect to the inertial coordinate system for a walking step length of s =

0.35m. The IC simulation is depicted in green while the values at the time of the first and second contacts with

the modified ground are highlighted in blue and red, respectively.

2Choosing the coordinate system’s origin as reference point might result in fluctuations of L0 according to
whether the robot is closer or further away from it. However, results show this effect to be negligible.
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As with ϕFoR, the maximum and minimum values of L0, L0
min

and L0
max are plotted. These are

shown for different walking parameters in fig. 6.6, which can be interpreted as the limits of

the projection of fig. 6.5 on the zreal − L0 plane.
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Figure 6.6: Maximum and minimum values of L0 along zreal for different simulations.

Even though no discernible trend can be found on L0
max, L0

min
shows a clear constant value for

a range around zreal = 0 and an increasing deviation outside of it. This behavior allows for

a convex indicator in the form of e.g.
�

L0
min
(0)− L0

min
(zreal)
�

. Another indicator is obtained

when considering the timespan tsat in which Tstab is saturated, as any values above zero indi-

cate a limitation of the stability control and thus a potential state of instability (see fig. 6.7).

Other indicators were tested but do not satisfy the problem’s hypotheses. In contrast to L0,

the angular momentum with respect to the FoR LFoR (equivalent to the angular momentum

with respect to the CoG) has been proposed as a stability indicator in Goswami et al. [55],

but was already dismissed by Buschmann [13] for the robot Lola. The performed simulations

showed no clear trend (no convexity) as well. Other indicators analyzed were the distance of

the CoP to the foot’s edge, the value of Tstab and its minima and maxima. However, none of

them show a near convex/concave behavior with respect to
�

zreal − zexp

�

and are not applica-

ble to the present problem.

Discussion and Model Validation

The results presented here are strongly dependent on Lola’s particular walking controller

and model parameters. Nevertheless, the presented strategy and indicators can be easily

applied to other robots. Of all variables analyzed, several fulfill the considered premise (see

section 6.3.1) and can be applied to this problem (namely, ϕmax,min, ϕcon2
, L0

min
, tsat). The
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Figure 6.7: Timespan in which Tstab is saturated along zreal for different simulations.

indicators can be seen in fig. 6.8 for one set of walking parameters. They are all related to

stability in the sense that they can indicate states in which the disturbance is too large to be

compensated by the stabilization torque. There are a priori no criteria by which some may be

better than others for this problem. Those that are less dependent on the walking parameters

could potentially simplify the implementation (see section 6.3.5).

As shown in previous work, the dynamics of a robot such as Lola can be well described by

the presented three-mass model; it allows one to reliably predict future states of instability

and reactions to disturbances [201–203]. In order to confirm the validity of the results, full,

multi-body simulations were performed for different ground heights. In fig. 6.9, it can be

seen that they show a similar trend and are qualitatively equivalent, therefore it does not

affect the validity of the following solution.

Application in Walking Controller

As explained in section 6.3.1, the objective of the proposed strategy to mitigate the effect

of perception errors is to find the optimal expected ground height zexp,opt according to a

stability indicator. Naturally, a weighted combination of several of the presented indicators

can be used as an indicator.

In order to obtain the optimal value, let zmax − zmin = l. For the solution, any indicator K

defined in [zexp− l, zexp+ l] can be used such that a smaller value of K can be associated with

a more stable walk (in other words, K satisfies the definition for stability indicator presented

in section 6.3.1).

Considering any possible value of zexp, z̃ = zreal − zexp is defined. Thus, the indicator value



6.3 Ground Estimation Modification 83

0

20

40

60

80

100

L
O m

in
(0
)
−

L
O m

in

[k
g
·m

2
·s
−

1
]

0

0.1

0.2

0.3

0.4

m
a

x
(|
ϕ

Fo
R
|)

[r
a
d

]

−0.05 −0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03
0

1

2

3

4

zreal[m]

t s
a
t

[s
]

0

0.1

0.2

0.3

0.4

|ϕ
co

n
2
|

[r
a
d

]

Figure 6.8: A comparison of selected stability indicators for s = 0.35m. Any combination of these can be used as

indicator K .
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Figure 6.9: The model can be validated with the full multi-body simulation (top). In the bottom, results for ϕmax

(red) and ϕmax (blue) with s = 0.35m are shown. Lines: simple model. Dots: full multi-body simulation.
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can be calculated as:

Kzexp
= K
�

zreal − zexp

�

= K (z̃) (6.7)

Thus, simulations for zexp = 0 can be applied to other values of zexp. The optimal expected

value is defined as the one for which the accumulated effect of all possible EC, LC and IC

events is minimal:

zexp,opt = arg minẑ∈[zmin,zmax]

∫ zmax

zmin

p (z)K (z − ẑ) dz (6.8)

At this point it is interesting to assume that p is symmetric with respect to zexp,sensor. A

symmetric indicator K results in zexp,opt = zexp,sensor. In that case, the influence of EC and

LC events would be equivalent. It is interesting to observe that solving zexp,opt for several

simulation scenarios with the indicators presented before results in zexp,opt > zexp,sensor. This

result, which is consequent with the asymmetry of fig. 6.8, indicates that EC events have a

greater effect on stability than LC events, and zexp should be overestimated. The precise value

eq. (6.8) depends both on the sensor’s error and robot’s dynamics and cannot be computed

beforehand.

Thus, the worst EC and LC events for zexp can be calculated:

KEC ,max = K
�

zmax − zexp

�

KLC ,max = K
�

zexp − zmin

� (6.9)

The presented solution is very general so that it can be applied regardless of the model

used for analysis. Nevertheless, it is computationally expensive. A thorough implementation

would involve the following process:

(a) perform EC, LC and IC event simulations for a full robot model in the range z̃ ∈ [−l, l],

and obtain the values for K (z̃)

(b) with the result from (a), calculate the integral term in (6.8) for the range zexp ∈

[zmin, zmax] and find the minimum

that would have to be performed every step, as (a) depends on the sensor’s input and walking

parameters. Out of both operations, (b) is computationally inexpensive while (a) presents

the most difficulty.

In order to implement (a) in the real-time walking controller, an initial solution could be to

precompute it offline. Out of a database with detailed simulation results, the values of K (z̃)

could be interpolated during walking. This method has several drawbacks. One of them is

that it makes a change in the stability indicator difficult. Besides, the amount of variables

involved would result in a large amount of data (out of simulations it is observed that results

vary according to the robot’s velocity, step length, swing foot and CoG trajectories). On

the other hand, if the discretization is coarse, then the result’s precision would decrease.

Furthermore, it is not clear if an interpolation could work in this high-dimensional problem.

The author proposes using a reduced robot model (see section 6.3.2) to perform a large

number of simulations online and obtain values for K (z̃). As shown in previous work [201],

simulations of such a reduced model are considerably efficient and can be implemented into

the real-time control. Besides, as explained before, such a reduced model can still reliably

predict the robot’s dynamics. Considering that a small modification of the ground height

does not necessarily imply a re-planning of the footstep positions, these simulations may be

performed throughout one walking step, which is enough for obtaining acceptable results.
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Phase-Switching Strategies and Time-Variable Control

In the previous section it was explained how the landing point for the swing foot can be

modified in order to reduce the effect of surface estimation errors, without modifying the

walking controller itself. However, this modification may not be sufficient to maintain the

robot’s stability over uncertain terrain if the errors are large enough. Robots such as Lola,

which use a ZMP-based control are particularly sensible to unexpected contact situations. As

explained in chapter 2, the sequential trajectory planning performed by the Walking Pattern

Generation module is based on synchronous trajectories of different components with fixed

timings. The time duration of each step is predefined and executed completely, regardless of

when the actual contact with the ground occurs. Thus the planned and real walking phases

can never be perfectly synchronized. Typically, control and modeling errors as well as small

perception errors in laboratory conditions can be compensated using feedback control [24,

47, 59, 137]. Nevertheless, perception errors become larger when walking faster or over

other kinds of non-rigid, non-flat terrain, such as grass or stones (as explained before). In

order to overcome real-world scenarios, some authors presented methods for quick trajectory

regeneration [133, 177] that are based on balance compensation without changing the step

duration. Nishiwaki et al. [136] proposed different strategies for online modification of ZMP

trajectories that allowed their HRP-2 robot to walk over carpet tiles. Other authors treat

these errors as disturbances to be compensated afterwards by modifying future footstep

locations [201–203].

In contrast, in this section a flexible walking control that is intrinsically more robust against

irregular ground is proposed. Instead of fixing the phase durations beforehand, the step

duration is variable and depends on sensed contact with the ground, thus making sure that

the planned and walking phases are always synchronized. Previously, Buschmann et al.

[18] proposed a strategy to adapt the walking phase of Lola to a detected early contact.

It was able to walk over unexpected obstacles on the ground. Here it is combined with a

time variable phase that directly deals with late contacts with the ground from the motion

planning stage (in contrast to using feedback control). The resulting control adapts the

walking phase and motion to a direct ground contact detection, improving the robustness of

Lola’s walking over irregular terrain.

Other authors have also proposed phase switching mechanisms for walking control. A

review of the biologically inspired central pattern generators is given in Buschmann et al.

[18]. These have not (as far as the author knows) yet been successfully applied to full-sized

humanoid robots. Among others, Pratt et al. [149] and Sreenath et al. [171] propose an

interesting control strategy that directly depends on the position of the upper body instead

of time and demonstrate their application in planar robots. Morisawa et al. [125] also use

contact with the ground as a phase switch mechanism, but they expect it inside a fixed

time window. More recently, Hubicki et al. [78] presented a robot capable of walking over

irregular terrain. It shows impressive results but uses a completely different strategy for

walking control based only on controling the contact forces of the legs against the ground.

Instead, the method presented here can be easily implemented in other ZMP-based systems.

It allows making the controller more robust against irregular terrain by eliminating the fixed

timing restriction of phase switching, using direct ground contact detection instead.
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Figure 6.10: Main walking phases during ideal walking. During one step, the robot transitions between a double

support (DSP, duration td ) and a single support (SSP, duration ts) contact state. Step duration is as planned.

Walking Control Concept

As explained in chapter 2, a state machine is in charge of defining the walking state, which

defines the dynamics of the system. The different walking states depend first on the intended

action (e.g. start/stop walking) and the planned contact state (e.g. single/double support)

and are synchronized with pre-defined timings. These determine the phase of the walking

controller and thus the control strategy according to the assumed contact state. For the

purpose of this chapter, focus is put on the two main phases of periodical walking: single

(SSP) and double support (DSP), see fig. 6.10.

The Walking Pattern Generation module of Lola’s control system generates the following tra-

jectories sequentially: Swing foot, CoP, CoG and Load Distribution (see sections 2.3 and 2.4).

In Lola’s original system [13], as well as in most humanoid robot controllers, the timings

for these phase transitions are fixed (see fig. 6.10) independently of the exact time the foot

touches the ground. In this work two event-based transition phases that react to the sensed

ground contact are added, adapting the Walking Pattern Generation and making the step du-

ration effectively time-variable. Changing the step duration results in a displaced CoG: if

the step duration is shortened or extended, the CoG will be behind or ahead of its planned

position with respect to the feet, respectively. In order to compensate for this effect, the next

step is adapted accordingly, as explained in the following:

Early Contact Response. Previously, Buschmann et al. [18] introduced an additional impact

phase that is activated when a contact with the ground is detected during the SSP. As seen

in fig. 6.11, the state machine switches to the impact phase through this early contact (EC)

event, thus shortening the step’s duration:

t∗s = ts − t i (6.10)

ts and t∗s are the planned and modified duration of the SSP respectively and t i the time during

which the impact phase is active. After the EC event, the swing foot is immediately stopped,

using the “stop trajectory” presented in Ewald et al. [46]. During the impact phase, the

Load Distribution re-computed for the longer double support state (consisting of the impact

phase and the DSP) and the CoP and CoG trajectories are unmodified. For more details, see

Buschmann et al. [18].

Late Contact Response. For this work the impact phase is complemented with a new

glide phase that specifically targets a late contact (LC) scenario. This phase deals with an

unpredicted, extended single support state of the robot until a contact with the ground is

detected, thus extending the step’s duration as seen in fig. 6.12. As explained before, the

following DSP is shortened to prevent a displaced CoG motion:

t∗
d
=max
�

td − tg , tmin

�

(6.11)

where the duration of the glide phase tg is the time from the end of the SSP until the contact is

detected, td and t∗
d

are the planned and modified duration of the following DSP, respectively,
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Figure 6.11: Early contact response. The step is interrupted and the state machine switches to the impact phase

(where the robot is in a double support state) for the rest of the planned step duration.
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Figure 6.12: Late contact response. The step is extended by switching to a glide phase, until contact with the

ground is detected and the DSP can start.

and tmin is a predefined minimum possible duration of the DSP (in this case one control

cycle, or 1 ms). Note that if
�

td − tg

�

is smaller than tmin, the next step is effectively displaced

forward in time and not only shortened by tg (see fig. 6.12). The Walking Pattern Generation

process during the glide phase is explained in detail in the next section.

Time-Variable Phase for Late Contact

In an LC scenario, the predefined phase-switch timing results in the planned CoP making

the transition between both feet before the swing foot is in contact with the ground. The

robot can tilt over when the CoP reaches the limit of the stance foot (when tilting over, the

robot is not able to exert momentum directly to the ground and has a very limited ability

to stabilize itself). Additionally, the inclined state of the robot may cause an initial contact

with the toe, causing further destabilization [13]. The main strategy in this scenario becomes

keeping the robot from tilting over and achieving a more stable contact situation between the

swing foot and the ground. This translates into keeping the CoP inside the stance foot and

maintaining the upper body in a vertical orientation, thus obtaining less strained walking.

In the following, the behavior of the time-variable glide phase throughout all stages of the

Walking Pattern Generation is explained. These stages are the CoP, swing foot and CoG

trajectory generation as well as force control and a necessary footstep re-planning. For the

sake of simplicity, the analysis is limited to the sagittal plane (fig. 6.13), as it is equivalent for

the frontal plane.

CoP trajectory generation. Similar to the normal DSP, during the glide phase the CoP is

shifted until the boundary (with a safety margin) of the stance foot (in the forward or x

direction):

xP (t) =min
�

hg t + cg , xB

�

(6.12)

for t ∈ gl ide, where xP is the location of the CoP (the y component stays constant). hg and

cg are chosen to satisfy continuity in position and velocity with the trajectory of xP during

the SSP and xB is defined as a safety margin from the boundary. Instead of moving linearly

between both feet, the CoP is stopped until contact with the ground is detected, in order to
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Figure 6.13: Robot and three mass model at the end of the SSP in an LC scenario. Sagittal plane.

keep the foot against the ground and maintain the ability to exert torque against the ground.

When the DSP finally starts (after contact is detected), the CoP motion is adapted to the new

phase duration and continued:

xP (t) = hd t + cd (6.13)

for t ∈ DSP. hg and cg are chosen such that the location of the swing foot is reached in t∗
d
.

The y component is analogous.

Swing foot vertical trajectory and load distribution. By the end of the SSP, the ground

is expected and the swing foot’s vertical motion is stopped (see chapter 2). As there is no

information on where the ground may be, planning a vertical motion to reach the ground be-

comes difficult. However, if nothing else is done, the foot stays in the air and does not reach

the ground. While no motion is planned directly, the foot is affected by the modifications

imposed by the force control (which can react to a contact with the ground more quickly).

The load distribution is then shifted between both feet, just as it would during the DSP (see

chapter 2).

CoG trajectory generation. By the end of the SSP, the CoG is located ahead of the stance

foot. In order to keep the CoP from leaving the support polygon, the CoG position is inte-

grated further in eq. (2.6). The inputs of the equation (x1 and x2) correspond to the initially

planned trajectories of the CoP (eqs. (6.12) and (6.13)) and swing foot (constant). The final

trajectories for both the CoP and CoG are obtained from the approximate solution of eq. (2.6)

by spline collocation, as explained in Buschmann et al. [14]. This results in an accelerated

CoG trajectory in the horizontal direction (intuitively, it can be interpreted as the necessary

moment to keep the CoP away from the boundary), increasing the CoG position and velocity

along the forward direction while the stance foot stays fixed to the ground. If the swing

foot’s position is not modified, this increased CoG position and velocity can quickly result in

the robot falling forward on the next step. In order to compensate for this displacement, a

horizontal trajectory is introduced for the swing foot.

Swing foot horizontal trajectory. At this point it is important to recall section 2.2 and

note that a swing foot horizontal motion can easily be taken into account by the robot’s EoM

while generating the CoG trajectory. In this case, the linear inverted pendulum model (LIPM)

is considered (see section 2.2). Kajita et al. [84] define the pendulum’s orbital energy as the
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Figure 6.14: The swing foot horizontal trajectory is generated by analyzing the orbital energy of the linear inverted

pendulum model. Left: reference energy at the end of the SSP. Right: an accelerated CoG requires a displaced

pivot point to slow it down.

sum of the kinetic energy and an imaginary potential energy around the pivot point xP :

E =
1

2

�

ẋ2
G −

g

zG

(xG − xP)
2

�

(6.14)

where g refers to the gravity acceleration, (xG , zG)
T is the location of the CoG and xP the

location of the CoP. To compensate for the CoG velocity, a foot displacement is calculated,

such that the pendulum’s orbital energy is maintained (using the one at the end of the SSP

as reference):

ẋ2
G −

g

zG

(xP − xG)
2 = n ẋG

2 −
g

zG

�

n xG − n x P

�2
(6.15)

where n x refers to the value of xG at the end of the SSP of step n. The right side of eq. (6.15)

is stored at the beginning of the glide phase and xP is calculated every cycle for the actual

values of xG and ẋG (see section 2.2). Note that for the new energy value, the pendulum with

the swing foot is considered instead of the stance foot as shown in fig. 6.14. After obtaining

xP from eq. (6.15), the new modified swing foot position is computed:

x∗
foot
= xfoot +
�

xG − n xG

�

+ k
�

(xP − xG)−
�

n xG − n x P

��

(6.16)

where xfoot and x∗
foot

are the initial and modified planned footstep location respectively and

the second term accounts for the CoG displacement (see fig. 6.14). The third “energy term”

consists of the variation of the CoG-CoP distance with respect to the one at the end of the SSP,

in order to obtain a continuous trajectory. A heuristic factor k is introduced to compensate

for model errors, such as the unaccounted-for swing-foot motion (k = 0.75 in this imple-

mentation). Taking the time derivative of eq. (6.16) and eq. (6.15), the horizontal velocity

becomes:

ẋ∗
foot
= ẋG +

kz

g

ẋG ẍG

xP − xG

(6.17)

and both position and velocity can be sent to the Feedback Control module.

Footstep re-planning Even though the swing foot horizontal motion helps to reduce the
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effect of an accelerated CoG, its high speed can still have a destabilizing effect on further

steps. If the CoG velocity increases beyond a certain margin, the next footstep location is

also modified in order to slow the robot down to the planned walking speed. In the present

implementation, the footstep re-planning is activated when tg > 0.2s.

Again the orbital energy criterion eq. (6.15) is used and the energy at the end of the SSP is

compared for both steps:

n+1 ẋG
2 −

g

zG

�

n+1 x P − n+1 xG

�2
= n ẋG

2 −
g

zG

�

n xG − n x P

�2
(6.18)

where the planned values of n+1 xG and n+1 ẋG are taken. Again eq. (6.18) can be solved for

n+1 x P and the new footstep location is obtained with eq. (6.16).

Simulation Results

In order to obtain comparable results, the presented control strategy is validated with

the multi-body simulation. A video of the simulations can be found at https://youtu.be/

FPpyDLKVlCY.

The first considered scenario is an unexpected LC. The robot starts walking on a platform

which abruptly ends after a few steps. For different heights, the following simulations are

considered:

1. the normal control system [13],

2. only the impact phase active [18] and

3. both impact and glide phases active (this work).

For all the tested scenarios, the impact phase shows a consistent improvement with respect

to the normal control (as was already shown in Buschmann et al. [18]). The reason behind

this is that due to the LC the robot tilts, resulting in an EC for the next step where the impact

phase becomes relevant. Adding the glide phase leads to better results than both previous

cases, as the effect of the initial LC is reduced before the next step is reached.

In fig. 6.15, a screen shot of the normal and “impact+glide” cases for the same platform

height is shown. It can be observed how the glide phase shifts the swing foot away from the

planned position and the stance foot stays in full contact with the ground instead of tilting

over the toe. In terms of robustness, the robot can also consistently overcome a higher change

in the platform height without tilting over. In order to test this, simulations were performed

for each control mode by sequentially increasing the platform height by 0.1 cm (starting at

ground level) until the robot falls down or a joint limit is reached. The maximum height

difference which it can safely overcome can be seen in table 6.2.

Table 6.2: Robustness

Control Strategy Maximum Platform Height

normal 3.4cm

impact 7.7cm

impact+glide 8.7cm

From the stability indicators considered previously, the upper body orientation is taken to

compare the different control schemes. In fig. 6.16 the upper body orientation is plotted for

https://youtu.be/FPpyDLKVlCY
https://youtu.be/FPpyDLKVlCY
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Figure 6.15: Simulation of an LC scenario (3 cm height in this case), before the swing foot touches the ground.

The planned footstep positions, along with the support polygons (orange), are projected on the expected ground.

Top: normal control. The robot starts tilting over the toe and the support polygon is reduced, while the CoP (red)

shifts forward. Bottom: impact and glide phases active. The glide phase keeps the stance foot against the ground,

the CoP (red) inside the actual support polygon and accelerates the swing foot and CoG away from their originally

planned trajectories.
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Figure 6.16: Upper body inclination (around the y axis) for a 3 cm (top) and a 7 cm (bottom) LC scenario with

different control strategies. The vertical line indicates the end of the SSP.

two exemplary height values to compare the different cases. The normal control results in

the robot tilting over for all height values over 3.4 cm (see table 6.2). Therefore, its result

is only plotted for the smaller height value, where the normal control and impact phase

show consistent behavior during the LC up until the next contact with the ground (t ≃ 8s).

Afterwards, the impact phase prevents the robot from tilting backwards and maintains a

smaller value for the upper body orientation henceforward. In contrast to both previous

cases, the glide phase already maintains a low value of the upper body orientation during the

LC, preventing high values which could lead to the robot tilting over (this effect can be better

appreciated in the bottom plot). The glide phase results in a less pronounced EC by the next

step and a more stable walk than both previous cases.

As a final scenario an unexpected obstacle after the platform is considered, to also analyze

how the glide phase performs in an EC situation. A screen shot of the experiment is shown

in fig. 6.17 and the resulting upper body orientation can be seen in fig. 6.18. Similarly to

fig. 6.16, the introduction of the glide phase maintains the upper body orientation during the

LC. This time it becomes even more relevant as it allows the robot to return to a stable walk
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Figure 6.17: Simulation of complex scenario. A few steps after a 6 cm late contact there is an unexpected 4 cm

obstacle (the obstacle location is adapted so that it is directly met by the swing foot in both control cases).

more quickly, thus being able to overcome the latter obstacle. Without the glide phase, the

robot does not recover in time and tilts over after encountering the obstacle.

Discussion

In this chapter, several modifications to ZMP-based walking controllers were presented to

make biped robots more robust against irregular terrain in general, and perception errors

in particular. First, several stability indicators were proposed and analyzed using a reduced

robot model. Using this same model and the presented indicators, an algorithm to calculate

the optimal value for the assumed ground height in the presence of bounded uncertainty was

suggested. This can potentially improve the robustness of the robot against perception er-

rors, without making any changes to the walking control itself. An accuracy factor describing

irregular surfaces (e.g. gravel, grass) can also be taken into account. According to simulation

results, an overestimation of the ground height leads to a more stable walk in most cases.

Additionally, a walking controller for ZMP-based systems that is inherently robust against un-

expected irregular terrain was presented. It complements previous work [18] with an extra

time-variable phase that specifically deals with late contact scenarios. The result is an event-

based walking controller with a variable step duration that depends directly on the detected

ground contact. It improves the robustness and stability of biped robots against irregular

terrain and perception errors.

There are, however, a few limitations in the presented strategies that leave the field open to

further work and discussion.

For the evaluation of the stability indicators as well as the solution to an optimal value for

the surface height value a simplified three-mass model was used. This model was only con-
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Figure 6.18: Upper body inclination (around the y axis) with different control strategies for a combined scenario:

a 6 cm LC followed by a 4 cm EC. The vertical line indicates the end of the SSP before the LC. Without the glide

phase, the disturbance becomes so large that the robot tilts over after the EC.

sidered in the sagittal plane. From the simulations performed it is considered that this choice

offers at first more interesting results than the frontal plane and a valid starting point for

analysis. Nevertheless, by considering the frontal plane as well, the robot’s dynamics could

be represented more accurately. A simple way of doing this would be to compute the chosen

indicator using a combination of the values for both planes, though it would result in twice as

much processing time. Another point to consider is the simplicity of the model itself. For the

considered application and available hardware, it represents a good compromise between an

accurate simulation and low processing time. However, this could change depending on the

robotic system and available processing power. Besides the three point masses, the feet point

contacts also represent a strong simplification. More complex feet models (including e.g.

more contact points or horizontal friction) would result in more accurate results and addi-

tional considerations (such as the effect of initial toe- or heel-contact). Moreover, the present

analysis was performed on a simulated horizontal, planar ground with a sudden increase in

height. By extending the simulation to include more complex scenarios, more detailed results

could be obtained.

More importantly, there is considerable potential applications of the real-time analysis of sta-

bility indicators. This analysis was motivated by the errors in the results of the vision system

and is only used for the optimization of those results in this work (as well as to validate

control strategies). However, these tools can also be applied to directly modify the walking

parameters in real-time. For example, by simulating the behavior of the robot at different

speeds, its velocity could be adapted to the present case. Initial results show that the robot

shows a more stable behavior against vision errors at lower speeds, so that its velocity could

be reduced when walking over areas with less trustworthy information (still, these results

vary when the robot is walking up or down stairs so no general conclusion can be obtained

yet). Other walking parameters such as step length, CoP or swing foot trajectory could be

similarly modified. For example, by modifying the CoP trajectory to stay closer to the foot’s

center during the SSP, the robot would be less prone to falling down when walking over

irregular terrain (however, the modified walking pattern would have to be analyzed as well

as it might have a negative effect).

Regarding the walking controller, future work includes the testing on the actual robot in more
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complicated scenarios. For some particular cases the swing foot trajectory may be counterpro-

ductive (in the case of unexpected narrow holes, for example, the swing foot would laterally

collide with the side of the hole). One possible solution would be the specific monitoring

of horizontal contact (using the force/torque sensors) to better adapt the footstep trajec-

tory [174]. Additionally, a more reactive and comprehensive force control strategy could

yield enormous benefits [175]. Another important point to consider is that these and further

modifications to walking controllers result in increasingly more complicated systems. An in-

teresting research topic would be the development of parameterized walking controllers that

are intrinsically time-variable and can be more simply implemented.



Chapter 7

Robust and Flexible Walking

Overview

As explained in chapter 2, the contributions of this thesis were developed in parallel to other

Ph.D. candidates with the common objective of achieving flexible and robust walking over

unknown terrain. With this in mind, an extended framework for biped control (fig. 2.5)

is proposed with special modules for perception, time-varying walking control, intelligent

navigation and stabilizing trajectory adaptation. The first two modules correspond to the

main contributions of this thesis and are presented in chapter 5 and chapter 6, respectively.

This chapter presents the final developed framework in detail, focusing on the interaction

between its different components. The last two modules are briefly described; more details

can be found in the corresponding theses [66, 200]. The author’s own contributions in this

chapter comprise the final configuration of the robotic system (explained in the following),

part of the communication interfaces between the separate modules and, more importantly,

two different solutions for augmented reality systems that are presented at the end of this

chapter.

In order to better understand the relationship between the different modules of the extended

framework (fig. 2.5), the final configuration of the robotic system is shown in fig. 7.1. The

walking control system runs on a real-time QNX computer and the perception system (chap-

ter 5) runs on a separate linux computer (see section 1.3). Both computers are mounted

on the robot. The Lola Environment Perception Package (LEPP) sends the environment ap-

proximation results to the control computer (Control) while receiving odometry information

from it (State Server). Additionally, two other computers are included in the network for

augmented reality. They both receive the environment approximation results from LEPP, the

actual and planned footstep positions from Control and the odometry information from State

Server.

Extended Hierarchical Control

The final walking control system is shown in fig. 7.2; the perception (chapter 5) and time-

varying control (chapter 6) modules are left out for clarity. It follows a hierarchical approach

and is divided into a global control and a local control module1. Both receive the environment

approximation of the perception system (chapter 5) to plan and execute collision-free tra-

jectories. The global control module calculates an ideal walking pattern over a time horizon

of multiple robot steps. It gets desired step parameters, such as step length, desired goal

positions or a desired velocity vector as an input from the user (chapter 2). Thanks to a cycle

1In this case, global control refers to the long-term planning of future footstep positions and global trajectories
while local control refers to the short-term trajectory adaptation and control.

97
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HoLolaLola Listener

Robot On-Board

LEPP Control

State Server

Linux Perception Computer QNX Control Computer

Detected Obstacles, Surfaces (TCP) Planned Footsteps TCP) Robot Pose & Kinematic Data (UDP Broadcast)

Figure 7.1: Final setup for autonomous walking. The walking controller and perception system run on two parallel

computers on-board. Additionally, two external systems for augmented reality receive information from them

online.
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Figure 7.2: Lola’s real-time walking control system.

time of one walking step (Tstep), it is very responsive to changes in the environment or in user

input. The trajectory adaptation submodule monitors the state of the robot and modifies foot-

step positions in real time to compensate for model inaccuracies or external disturbances and

stabilize the robot. These modified trajectories are the input to the local control submodule.

It is called in a cycle time of 1 ms and adapts the ideal planed trajectories locally according

to sensor feedback and taking the full approximation of the robot and the environment for

collision avoidance into account. Each of these processes is explained in the following.

Motion Planning

The sub-system for navigation and motion planning was developed by Arne-Christoph Hilde-

brandt. Here, this module is shortly explained, focusing on its integration with the main

framework. For more details, see Hildebrandt [66].

Based on the environment representation and the user’s input, the step planner and param-

eter optimization submodule calculates a sequence of parameter sets describing the walking

pattern based on an A∗ search implementation [68]. Using the output of the A∗ search as an

initial solution to the motion planning problem, it optimizes the parameter set and calculates

kinematically feasible, collision-free and dynamically executable trajectories taking the envi-
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Goal

Figure 7.3: A 2D map for goal-oriented navigation. Before planning a discrete set of footsteps, the global walking

direction is determined by avoiding large obstacles (gray). A set of continues paths is evaluated against the rest

of the environment (consisting of surfaces and smaller obstacles, in orange) and one is chosen to guide the A*

search.

ronment representation and the full robot approximation into account [65].

The objective of the navigation module follows ideas from other authors [16, 137]. Its pur-

pose is not to find long distance paths but to give the user a reactive system which is able

to safely navigate in cluttered environments. This is especially important if no full map of

the environment is available and the user as well as the robot depends only on the robot’s

limited field of view (see fig. 5.3). According to the application, the user has the possibility

to guide the robot with a joystick, give it desired walking parameters or set intermediate goal

positions which the robot should reach. The robot then executes these high-level commands

while taking care of navigating a safe and optimal path. In the following, the different steps

in this process are explained.

2D path and A* search

Usual search algorithms for discrete planning require a great amount of computational power

and can only be used to plan a few footsteps in advance [68]. However, it can be useful

to consider the complete trajectory towards a predefined goal to take further areas of the

environment into account. In order to achieve this objective in real-time, a reduced 2D map

of the environment containing only large obstacles is created (see fig. 7.3). In this case, large

obstacles are defined as those too high for the robot to step over. A set of continuous splines

avoiding large obstacles are graded according to their length and the presence of smaller

obstacles or surfaces which may hinder the robot’s navigation (grading is performed taking

the complete environment representation into account), and the easiest (or shortest) path is

chosen for global navigation [70].

Based on the walking direction and a discrete set of footsteps an implicit A*-search is applied

to solve the planning problem and to find a sequence of nSteps steps. The robot’s state s,

representing the nodes of the used A*-search, is described by the current stance foot stance =

(le f t, ri ght), the global position r f = (x f , y f , z f ) and orientation θ f = (θx f
,θy f

,θz f
) of the

stance foot. It follows s = (r f ,θ f , stance).

Since the possible footstep locations are symmetric for the left and the right stance foot, one

action model is defined as a = (∆x f ,∆y f ,∆θz f
, hobst , hStep, ca). The variables ∆x f , ∆y f and

∆θz f
represent the possible displacements and rotations relative to the current stance foot.
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Figure 7.4: Collision model of the step planner for Lola stepping over an obstacle with movable leg segments.

Both the robot and obstacles are modeled with SSVs. Surfaces are represented as polygons with edges modeled

as SSVs to avoid stepping on them using the collision avoidance framework.

∆z f , ∆θx f
and ∆θy f

are not taken into account as part of the action model since they are

directly determined by the current position (x f , y f ) of the robot in the represented world.

The action model is augmented by hobst , which takes into account obstacles the robot has to

step over to reach the next s and by hstep, which denotes the height change the action can

make. The cost for each action is denoted by ca. Further details are explained in Hildebrandt

et al. [68].

Collision Checking

The main difference to other A*-search based footstep planners for biped locomotion [75,

137] is the environment representation (chapter 4) and its consistent consideration in all

modules of trajectory generation – from footstep planning to reactive collision avoidance

[67]. Instead of a grid-based environment representation which is able to check collisions in

a binary way for a 2.5D map, the environment representation presented in this thesis allows

to check for collisions in full 3D. In the footstep planner, collisions are checked not by a

planar rectangle but by a 3D model (based on SSVs) of the lower leg including the foot and

a leg segment approximation. This gives a better representation of the full robot movement,

especially for large strides, and allows for reduced safety margins.

3D Walking

In addition to the viability of a state s and the corresponding action model a, the step planner

has to evaluate the 6D pose of the foothold. As introduced above, the rotation θy f
,θz f

and the

height z f are a direct function of the environment, x f , y f and θz f
. It is classified into regions

the robot has to avoid (obstacles) and areas the robot can step on (surfaces), as can be seen

in fig. 7.4. As explained in section 5.4, surfaces are represented by convex hulls (polygons)

and a normal to the surface (see fig. 4.14). In order to prevent the robot from stepping



102 7 Robust and Flexible Walking

onto the edges of the surfaces, these are modeled as obstacles using line-SSVs. Thus, the

complete foot is in contact with the surface, which helps to maintain the robot’s stability and

prevents additional modifications to the walking controller. This representation has several

advantages:

1. Based on the current x f and y f value of s, the step planner is able to determine the

whole 6D pose of the foot just by checking in which polygon the current s is lying,

which is computationally efficient.

2. Surfaces are completely defined by the corner points and the normal of the surface. This

is an extremely dense, memory-efficient representation that simplifies communication

between planning modules and the perception system. In the current implementation,

a maximum of eight corner points are used. Depending on the desired level of detail it

can be easily extended to a higher (or lower) number of corner points.

3. Additionally, surfaces are included consistently using SSV elements in the collision

avoidance framework. That way, the motion generation modules are able to gener-

ate collision-free whole body motion [65, 67].

Trajectory Adaptation

The sub-system for stabilizing trajectory adaptation was developed by Robert Wittmann.

Here, this module is shortly explained, focusing on its integration with the main framework.

For more details, see Wittmann [200].

To enable the biped to react to unknown disturbances, a model-predictive trajectory adaptation

is introduced (fig. 7.2). It adapts the ideal planned motion w id(t) based on current sensor

data. This is done with a reduced robot model which allows trajectory modifications to be

optimized in real-time for a certain time horizon. This way, the robot dynamics, desired mo-

tion and current state are taken into account. The leg trajectories are modified by changing

final values for ∆x f and ∆y f as well as the final horizontal orientation [201]. The horizontal

CoM trajectories can furthermore be adapted [203].

The main goal of this module is to stabilize the robot’s absolute inclinations with regard to

the ground. For stiff position-controlled robots, they are considered to be the main DoFs that

deviate from the ideal values during disturbances and an indicator of stability (chapter 6).

An overview of the trajectory adaptation strategy is presented in fig. 7.5. In order to enable

fast reaction times, the simplified model presented in section 6.3 is used to predict the fu-

ture state of the robot and enable real-time trajectory modifications. Similarly as before, the

sagittal and frontal directions are assumed to be decoupled and both planes are analyzed

separately.

First, the robot’s absolute inclinations are estimated by filtering the IMU’s measurement data

with a state observer [202]. It is based on an extended Kalman filter with compensation for

model errors and external disturbances.

The footstep displacements are calculated using an optimization formulation. Using the

robot’s estimated state, the robot model is integrated with a certain time horizon into the

future. The optimization problem is formulated to minimize the error of the upper body in-

clination (defined as the difference between the original planned value and the result of the

model integration). It is solved using a direct shooting method [201].
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Figure 7.5: Overview of the trajectory adaptation strategy.

Simultaneous Obstacle Avoidance and Robot Stabilization

The modules presented above are both directly related to footstep placement. While the mo-

tion planning module defines safe footstep positions based on obstacle avoidance and envi-

ronment navigation, the trajectory adaptation module modifies these in real-time to stabilize

the robot in the presence of external disturbances. However, it is not trivial to activate both

modules simultaneously, as the modifications planned by the trajectory adaptation module

could result in unintended collisions with the environment.

To solve this problem, a strategy was developed to include the environment’s collision model

in the trajectory adaptation module (while a brief description is given here, more details can

be found in Hildebrandt et al. [71]). In order to be able to do this, a criterion on the robot’s

priorities has to be defined. Namely, does it modify its trajectories to stabilize itself regard-

less of any potential collision with the environment, does it try to avoid collisions at all cost

or something in between? The first case is most simple to implement although potentially

dangerous. For this work, it is defined that the robot has to avoid collisions at all costs, as

any other case may result of a small modification of this one.

To perform collision avoidance inside the trajectory adaptation module it is important to note

that collision checking needs to be performed at a considerably faster rate than before (it

runs with a cycle time of 20 ms). For this reason, the environment representation is further

simplified. In fig. 7.6 the process is depicted. Obstacles are projected onto the ground and ap-

proximated with convex polygons. Furthermore, the robot’s foot and the area of the ground

that is reachable by it (determined by its kinematic capabilities) are also approximated by

a convex polygon. The remaining safe area is checked for safe footstep positions using the

foot’s polygon. The result of this process are further convex regions which are safe for the

robot to step into. These are then included in the optimization problem as linear inequalities.

In order to enhance the robot’s stability in spite of this limitation, further walking steps are

also taken into account.

Augmented Reality

When developing an autonomous navigation system, as well as when performing teleoper-

ation with a robot, it is useful to visualize the results of the different framework modules.

During development, it helps finding errors and optimizing the system. During task execu-

tion, a clear understanding of the robot’s intentions is of tremendous value to the user and

facilitates human-robot interaction.
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Obstacles

Valid convex regions

Figure 7.6: Collision avoidance during footstep modification. Obstacles (orange) are represented as convex

polygons in 2D. The kinematically reachable area (white) is represented by a convex polygon as well. The safe

area is divided into possible regions for footstep placement (gray).

In order to help visualize both the results of the perception system as well as its influence

on the motion planner, an augmented reality (AR) system is developed. It projects collision

geometries, surface approximations and step positions online into the scene. This is done

either via an external RGB video feed from the scene2 or using Microsoft’s HoloLens3; both

tools are available open source in the repository for the benefit of the community.

The objective of these systems is to provide immediate feedback about the perception sys-

tem’s accuracy and the quality of the motion planner’s output in a context which can be

immediately understoood at a glance. In the following, both implementations are described.

They are the result of collaboration with Tamas Bates [9].

External RGB-D Camera

The results of the first system (called “Lola Listener” in fig. 7.1) are shown in fig. 7.7. In order

to render the data correctly and obtain a good registration between the virtual objects and the

RGB video feed, two things need to be taken care of. First, the camera’s intrinsic parameters

have to be measured and used to modify the projection. Virtual objects are rendered to

reproduce (as much as possible) the physical camera’s characteristics (such as FoV or lens

distortion) with a virtual camera. This ensures that if a virtual object and a physical object

lie at the same location relative to the camera, they should cover the same pixels in the RGB

image. Second, in order to place virtual objects correctly, the transformation between the

camera 6D pose and the robot’s coordinate system has to be found.

While the first point can be solved using standard camera calibration routines, there is no

simple, adequate solution available for the second one. Markers (see chapter 3) are typically

used for such applications, but the precision of marker detection algorithms that are based

only on RGB data is too low to obtain a correctly rendered image. To solve this, a sensor with

correlated RGB and 3D data is used4. The transformation between the camera and robot

coordinate systems is obtained in two steps. First, the camera’s RGB feed is used to locate

a marker on the robot (whose transformation to the robot’s origin is known from odometry

data), using the ArUco library [53]. It can provide the full 6D pose of a detected marker,

but the accuracy is too low for this application. Therefore, by estimating the marker’s plane

using its corresponding 3D information the pose is improved. However, it is still not accurate

enough to obtain a precise transformation.

Because the camera in the lab is typically fixed in place, it is possible to further exploit the

2https://github.com/am-lola/LolAR
3https://github.com/am-lola/HoLola
4The system is tested using a standard RGB-D sensor such as the one used for perception.

https://github.com/am-lola/LolAR
https://github.com/am-lola/HoLola
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Figure 7.7: Augmented reality system with a structured light sensor. In this picture, calibration is performed

manually. Left: the planned steps and results of the perception system at one point are projected into the RGB

feed. Right: the accumulated results of the perception system and the step planner during the complete run

against the initial RGB frame.

3D information to improve the estimation of the camera-robot transformation further. The

robot’s origin is initialized on top of the ground, so an estimate of the ground’s location

and orientation relative to the camera also helps improving the transformation between the

camera and the robot coordinate system. To summarize, the transformation between the

robot and the camera can be expressed as:

R
C T = R

C T
�

RαC , RβC , RγC , R xC , R yC , RzC

�

(7.1)

where R
C T denotes the transformation from the robot coordinate system to the camera (fol-

lowing the convention of Craig [26]). It can be expressed as a set of six independent vari-

ables: (RαC , RβC , RγC), which correspond to the rotation around the robot coordinate system’s

x , y and z axes respectively and (R xC , R yC , RzC), the translation vector along those same axes.

Out of these variables, RαC , RβC and RzC are obtained from the localization of the ground

while RγC , R xC and R yC are obtained from the improved marker estimation5. Having ob-

tained these parameters and the camera intrinsic parameters, the information can be easily

displayed using the developed visualization software (appendix A).

Augmented Reality Glasses

Even though an augmented reality system on an external screen can be useful, an immersive

system using AR glasses is considerably more helpful according to the author’s experience.

Therefore, a less budget-sensitive6 augmented reality system (called “HoLola” in fig. 7.1) is

developed for the Microsoft HoloLens [121]. The visual feed through the HoloLens can be

seen in fig. 7.8. A short video is available online at https://youtu.be/EeDR1UNDpIY. The

HoloLens is a self-contained head-mounted computer with an array of on-board sensors de-

signed specifically for 6-DoF head-tracking and AR rendering in arbitrary environments. This

5The robot coordinate system lies on the ground with a vertical z axis (see fig. 1.4).
6Compared to the external RGB-D camera.

https://youtu.be/EeDR1UNDpIY
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Figure 7.8: Augmented reality system with the HoloLens. Both the results of the perception system and the

motion planning are projected into the environment (the ground plane is left out for clarity). The executed footsteps

are depicted in blue and green and the planned ones in the same, but semi-transparent colors. The calibration is

performed by placing a virtual coordinate system (depicted with a yellow sphere at the origin and red, green and

blue spheres corresponding to the x , y and z axes, respectively) coincident with the one of the robot at the foot.

The small error in the obstacle approximation is due to self-occlusion (chapter 5).

allows users to not just visualize data from a fixed point of view, but to actually walk around

and examine it up close in detail, which makes inspecting things like footstep path trajectories

much more practical. The HoloLens application is built in two layers: a simple visualization

layer which draws/removes data as the robot generates new object approximations and foot-

step plans, and a low-level networking layer for communication with the robot’s computers

(section 1.3). Because the HoloLens localizes itself very accurately, rather than trying to iden-

tify the device in the robot’s coordinate system a common reference is used. The users can

place a coordinate frame anywhere in the HoloLens’ map of the world and, by aligning this

with the robot coordinate system, all data from the robot can easily be rendered. The location

selected by users in this way is anchored to the features that the HoloLens uses for tracking

and persists between executions of the application, so it only has to be adjusted when the

location of the robot coordinate system’s origin changes. It can also be updated on the fly at

any time. The HoloLens also provides an RGB feed from a front-facing camera on the device

which could be used to locate a marker on the robot, as with the external camera application.



Chapter 8

Autonomous Walking Results

Experimental Validation

Using the complete framework developed throughout this project (see chapter 7), the robot

Lola was able to navigate different kinds of unknown scenarios. As mentioned before, the

objective of this work is to provide humanoid robots with the ability to autonomously navi-

gate over irregular terrain in order for them to be applied in real-world environments where

wheeled robots have inherent limitations. In order to validate the proposed methods, sev-

eral experiments where performed with the robot Lola in the laboratory, including static and

dynamic obstacles of different sizes, platforms, persons and disturbances. Many of the re-

sults presented in this chapter have been published in conferences and journals, and videos

of them are available on the Chair’s YouTube Channel1. Moreover, demonstrations of these

results were presented in front of live audiences 2.

At the time of writing, the results presented here represent the fastest demonstration of au-

tonomous humanoid walking in unknown dynamic environments (and the only published

work dealing with unknown dynamic scenarios). Thanks to its combination of fast envi-

ronment modeling and real-time planning, Lola is able to walk among static and dynamic

obstacles as well as other surfaces without stopping at an average speed of 0.4 m/s. This is

faster than other full-size robots [24, 47, 130, 137] and considerably faster than the demon-

strations at the DRC[31]. The performance results indicate that higher speeds are achievable

with this same system though it would require additional tuning efforts. In this chapter, a

selection of experiments is discussed and the performance of the perception system presented

in chapter 5 is analyzed.

Walking in Unknown Scenarios

The framework presented in chapter 7 was tested repeatedly by making the robot Lola

autonomously navigate in different scenarios. It is important to note that, throughout

all experiments performed, the robot walks continuously without stopping and both the

perception system and the motion planning module react to previously unknown scenarios

during walking. In order to highlight the features presented throughout in this work, a

selection of them are presented in this chapter. A video including most of them is available

at https://youtu.be/VceqNJucPiw (other videos are mentioned where pertinent). In the

following, the experiments are classified according to the kind of scenario that the robot

must navigate.

1All videos available at https://www.youtube.com/appliedmechanicstum
2A video showing the demonstration of these results in front of live audiences is available at https://youtu.

be/g6UACMHgt20
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Figure 8.1: Experiment with unexpected obstacles. Left: the robot tries to find a way through the room obstructed

by obstacles on the ground. Right: the results of the perception system. The ground is approximated with a

polygon (red) while obstacles are approximated with SSVs (cyan); the point cloud is cropped to the walking area.

Walking amongst Obstacles

The first group of experiments validate the ability of the robot to avoid unexpected obstacles,

using motions such as stepping over or sideways. A sequence of the video and the results of

the perception system for one experiment are depicted in fig. 8.1. The robot has to find a

way through the room which is blocked with relatively small, previously unknown obstacles

in the ground. It receives a signal to walk forward. As can be seen, the robot deviates its

path to find the easiest way to advance through the room, stepping over obstacles when

necessary. In fig. 8.2, the real robot is compared to the world representation during another

experiment where the robot steps over an obstacle (a video is available at https://youtu.be/

6PLN6B4vSHM).

Walking over a Platform

These experiments test the reaction of the framework to uneven terrain, such as platforms or

stairs. They validate both the ability of the perception system to detect and model surfaces

accurately and fast enough during walking and the flexibility of the motion planner to adapt

the walking sequence in real-time. A sequence of the video and the results of the perception

system are depicted in fig. 8.3. A platform (12 cm high) together with a few obstacles (to

https://youtu.be/6PLN6B4vSHM
https://youtu.be/6PLN6B4vSHM
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Figure 8.2: Side view of obstacles experiment. The robot is shown stepping over an obstacle (top) and the

collision model of the robot (blue) and the obstacle (blue with red border) is shown for reference.
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Figure 8.3: Experiment with unexpected platform. Left: the robot walks up and down an unexpected platform

which stands in the way to the end of the room. Right: the results of the perception system. Surfaces are

approximated with polygons (red and green) while obstacles are approximated with SSVs (cyan); the point cloud

is cropped to the walking area.

block alternative paths around the platform) are placed on the ground, obstructing the way

through the room. Finding no other alternative, the robot walks up and down the platform

on its way forward without stopping (see fig. 8.4).

Highly Dynamic Scenarios with Large Obstacles and Humans

These experiments test one of the most important contributions of this work: the modeling

and reaction to unknown dynamic scenarios. They validate both the ability of the perception

system to track large dynamic objects during walking and the fast reaction times from the

motion planner [70]. Furthermore, the FOV of the camera is manually reduced to provoke

more sudden reaction and shorter planning times. A sequence of the video and the results of

the perception system are depicted in fig. 8.5. The robot gets a goal position in an initially

empty area. When the robot starts moving, a person walks in, blocking its path. When the

robot turns to avoid the person, the person blocks its path again with a chair. After avoiding

the chair and the person, the robot’s path is blocked yet again so that it is prevented from

reaching the goal position. The robot’s reaction (which depends on the sensor’s limited FoV)

and sudden change of direction can be appreciated in fig. 8.5, emphasizing the real-time

capabilities of this framework.
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Figure 8.4: Collision world. Left: the robot walks up an unexpected platform which stands in the way to the end

of the room. Right: representation of the 3D collision world including the robot and external obstacles modeled as

SSVs, the platform modeled as a polygon and the planned footstep locations.

Static Obstacles and External Disturbances

These experiments put the stability of the robot to test. Besides the perception system and

the motion planning, the stabilizing trajectory adaptation is active. A sequence of the ex-

periment is shown in fig. 8.7. The robot is commanded to walk forward in a room with

scattered obstacles on the ground. The difference with previous experiments is that the

robot is pushed several times during walking. While the robot is avoiding obstacles de-

tected by the perception system, it must adapt its swing foot motion in real-time to compen-

sate for external disturbances (see chapter 7). The overall ideal step sequence and modi-

fied footstep positions are shown in fig. 8.6. A video of this experiment is available under

https://youtu.be/RjqAh3Blxng. As can be seen, the system is capable of simultaneously de-

tecting and avoiding obstacles while compensating external disturbances.

Perception System Performance

Here the performance of the perception system during experiments is analyzed. In order to

obtain a greater amount of data and validate the capabilities of the system in more complex

environments, a series of dynamic scenarios with people, objects and platforms are recorded

in front of the robot’s camera. These include dynamic scenes with several objects and plat-

forms of different shapes and sizes (e.g. figs. 5.2 and 5.11 to 5.14 and transitions between

them). The duration of the different processes can be seen in table 8.1. In the Surface Mod-

eling process, higher runtimes correspond to frames that consist mostly of walkable planes,

as the different algorithms have to iterate through a high number of points. In the case of

the Obstacle Modeling process, higher runtimes are the result of sudden changes of the scene

where the algorithm has to re-converge; they improve considerably after a few frames. The

final list of obstacles and surfaces are sent to the motion planning module with a set fre-

quency of around 5 Hz. The future eight walking footsteps are re-planned every walking step

https://youtu.be/RjqAh3Blxng
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Figure 8.5: Experiment in dynamic scenarios. Left: the robot tries to reach a goal position in the room despite a

person repeatedly blocking its way. Right: the results of the perception system. The ground is approximated with

a polygon (red) while obstacles are approximated with SSVs (cyan); the point cloud is cropped to the walking area

and further-away points are removed to evaluate limited reaction times.
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Figure 8.6: Experiment 2: Ideal step sequence is represented as black boxes. Modified and executed steps are

represented as filled boxes. Relevant obstacles in orange (see fig. 8.7).

(0.8 s).

Unfortunately, open source perception systems for humanoids are extremely uncommon.

Most relevant publications in the field don’t release their source code and often omit thorough

performance results, which makes it difficult to perform an objective comparison. Neverthe-

less, a few examples are mentioned for reference. The framework presented by Nishiwaki

et al. [137] requires a 1 second sensor sweep with the robot still to acquire and process per-

ception information to create 2.5D maps. Using a similar sensor and resolution as this work,

the framework presented by Maier et al. [114] for the Nao robot runs at a frequency of 6 Hz

and uses a 3D voxelization to model environments, without performing surface segmenta-

tion. More recently, Fallon et al. [47] presented an approach for sensor fusion and plane

detection. It is based on 2.5D maps which are reduced by removing points belonging to

the ground. In its actual configuration, the segmentation process takes 615 ms in average.

Even though the algorithm runs during motion, each walking step takes 4 s, which is five

times slower than the presented experiments with Lola. Moreover, all these frameworks as-

sume static environments in their application. A notable exception is the one presented by

Karkowski et al. [92], which achieved fast segmentation times of only a few milliseconds in

dynamic environments although the final implementation runs at 10 Hz. However, it is based

on a limited height-map representation and only performs 2D collision checking. Compared

to the results mentioned above, the framework presented in this work proved to be faster as

well as more flexible and generally applicable.
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Figure 8.7: External Disturbances. From 1 to 6, the robot finds his way through cluttered terrain while being

repeatedly disturbed by a human.

Spatial Plane Segmentation Surface Modeling Obstacle Modeling

Resolution max min mean max min mean max min mean

1cm3

(∼ 65000 points)
45 6 13 373 1 92 353 8 107

2cm3

(∼ 21000 points)
19 2 6 123 1 21 284 3 57

Table 8.1: Performance of Perception System. Runtime (in ms) for different point cloud resolutions of the sepa-

rate parallel processes of the perception system (maximum, minimum and mean values) for highly complex and

dynamic scenarios spanning 500 frames approximately.



Chapter 9

Conclusions

Contributions of this Thesis

Humanoid robots have great potential to be used as human replacements where the human

form is an important factor. However, they are still a long way from being directly applicable.

The main reasons behind this are their high number of degrees of freedom and possible

motions as well as their state of underactuation and potential instability. For the present time,

exploration missions will surely continue to be realized with wheeled robots, flying robots

(such as quadcopters) or a combination of both. The first real world applications of legged

robots will most probably use quadrupeds due to their superior stability (see chapter 1).

Nevertheless, humanoid robots still have countless of applications, from the development of

medical prostheses to the testing of human accessories (such as protective clothing) and safe

exploration of human-made environments.

Before reaching that point, humanoid robots will have to (among other things) achieve a

level of flexibility and robustness in locomotion that is at least comparable to humans. The

work presented in this thesis was developed as part of a project intended to advance the state

of the art in that direction. The result is a general framework for autonomous navigation with

special modules for perception, motion planning and robot stabilization. With it, the robot is

able to autonomously navigate in unknown dynamic environments by avoiding obstacles or

stepping over platforms while resisting external disturbances. Moreover, it is able to do it in

real-time while walking at speeds of around 0.5 m/s, which is faster than any other published

works, as far as the author knows.

Particularly, this thesis deals with the acquisition and modeling of perception information as

well as with the integration of perception inaccuracies into the robot’s control system. Its

most important contributions are:

• A review and analysis of perception sensing technology (chapter 3).

• A new procedure for integrating and calibrating such a sensor into a robotic system

(chapter 3).

• A strategy for the combination of environment recognition and modeling algorithms,

together with a new environment modeling strategy for unknown environments (chap-

ter 4).

• An efficient, open source perception system that is capable of processing dynamic envi-

ronments in 3D during the robot’s motion. It can track and model unknown obstacles

and surfaces faster than any other published system, as far as the author knows (chap-

ter 5).

• A new walking control strategy for humanoid robots. It includes methods to adapt

the robot’s walking based on the inaccuracies of the perception system and a modifi-
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cation to ZMP-based controllers to increase their robustness against these inaccuracies

(chapter 6).

• An set of open source augmented reality systems for online visualization of perception

and planning information (chapter 7).

Many of the presented systems are released as open source for the benefit of the community.

They can be of help for other researchers who may use them to test and improve their systems

or build on top of them. The results presented in chapter 8 should serve as a demonstration

of the application possibilities of such robotic systems as well as a motivation to develop

them further. In the following, the limitations of the presented work are discussed and future

research directions are suggested.

Shortcomings and Open Issues

For this project, focus was laid on two-legged locomotion. Lola does not even posses actuated

hands, its arms are used for the compensation of angular momentum and center of gravity

trajectories [164]. The development of the methods and algorithms presented in this thesis

takes mostly the robot’s legs into consideration.

One area in which this is evident is the environment modeling strategy and perception sys-

tem. The classification of the environment into walkable and non-walkable components does

not take grasping or arm contact possibilities into consideration. In order to do this, fur-

ther classification of the environment and new modeling strategies would have to be im-

plemented. Another limitation of this modeling strategy is that it doesn’t perform well in

enclosed spaces, as walls are identified as obstacles due to their high inclination. Their

approximation with SSVs is sometimes a problem as it restricts the available walking area

considerably.

One of the main objectives of this work was to achieve real-time performance in dynamic

environments. This was accomplished at the sake of strong simplifications in the environ-

ment modeling strategy and perception system as well as the walking controller, including

the planning system and stabilization strategies. The sum of these approximations results in

a system performance that is not ideal, sometimes failing to find safe paths or stabilize the

robot in time. As processing power increases, all of these systems could be improved result-

ing in a better performance.

Another important assumption taken throughout this work is the rigidity of the environment.

Walkable surfaces are assumed to be clearly defined and rigid, serving as firm ground for

the robot’s walking. Non-walkable obstacles are considered rigid and fatal upon contact,

which restricts the navigation possibilities of the robot. Naturally, there are countless of cases

where these assumptions fail. Humans are able to walk over non-rigid terrain, adapting their

walking to it. They are also capable of recognizing and traversing flexible obstacles, such

as curtains or tree leaves. In the future, artificial intelligence techniques could help identify

these cases in order to correctly deal with them.

Potential Directions of Future Research

As explained above, the presented framework is still considerably constrained in its appli-

cability and is far away from a real world application. Some of the topics on which future

research could be done are mentioned in this section.
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• Environment Modeling and Perception System. As discussed before, the strategy pre-

sented in this work fails to perform adequately in some cases and does not take actions

as arm-environment contact or manipulation into account. One interesting direction of

research would be to apply the concept discussed in chapter 4 to this problem, finding

an environment classification and modeling strategy that can be efficiently processed

by a corresponding planning framework. Another interesting problem is the correct

modeling and processing of enclosed areas in a way that can be taken into account for

real-time navigation.

• Machine Learning and Artificial Intelligence. As was repeatedly mentioned, this work

assumes completely unknown environments and focuses on general environment mod-

eling strategies. Nevertheless, for tasks such as manipulation or direct interaction with

the environment learning methods will become increasingly relevant in the near future.

Moreover, in order to deal with non-standard environments, such as traversable objects

or non-rigid terrain they may be the only effective alternative. Artificial Intelligence

can be potentially applied to the walking planning and control modules as well: they

depend on a large number of factors, which are presently set by the user but might be

automatically adapted to the task and walking scenario by such methods.

• Control. Even assuming a perfect environment representation and ideal motion plan-

ning, humanoid robots are not nearly as capable of maintaining stability on irregular

terrain or in the presence of disturbances as human beings. One of the ways to improve

this is through faster, more capable force control and whole-body control strategies. By

including additional or more precise sensors, properties about the environment could

be directly considered by a control framework. In the author’s opinion, this is an area

that is fundamental to achieve real world applicability.

• Planning in Dynamic Environments. Even though dynamic obstacles can be tracked

by the perception system (chapter 5) and their velocity can be estimated, the motion

planning module considers the environment static: fast reactions are achieved through

high update-rates. This is done because of the limited processing power available in

a real-time application. An interesting direction of research would be to include time

as an additional variable in the planning system to take dynamic components of the

environment directly into consideration.

Naturally, these are just a few suggestions based on considerations taken during this project.

The field of humanoid navigation is still an open one and there is not even a clear consensus

on which control principles are most effective for such a system. One sure thing is that the

technology will continue to advance in the near future and its performance may soon be

surprising compared to the results presented in this work. It may still be that this generation

will see the first real world applications of such robotic systems.





Appendix A

Visualization Library

Naturally, one of the key components for easier development and debugging of perception al-

gorithms is a powerful, comprehensive visualization tool. Due to the nature of the presented

application, such a tool would have to be able to display not only point clouds but also the

geometries used for approximating the different components of the environments. In order

to be usable during experiments, it also should be efficient in its use of computational re-

sources.

There are a few visualizatin tools available, such as the RViz for ROS [156] or PCL’s Visual-

izer [144]. However, the PCL Visualizer is slow and not easily customizable and RViz requires

the complete ROS overhead to work which makes it impractical for other purposes outside

ROS-specific applications. Besides, none of these tools provides interfaces that allow to take

control of the visualizer’s camera parameters, which is necessary for augmented reality ap-

plications (see chapter 7).

With these issues in mind, a new open source visualization tool was developed. It is available

in the institute’s repository1 and consists of a C++ library based on OpenGL [138] which

can be called from any C++ application. Its structure can be seen in fig. A.1. In order to

implement it, the user deals with one interface called “ARVisualizer” in which characteristics

such as background and camera parameters (for augmented reality applications), graphical

user interface windows, objects and actions can be set. Each instance of the ARVisualizer

starts a separate window that can be used for different kinds of applications, such as camera

calibration (chapter 3), visualization of point clouds and geometric approximations (chap-

ter 5) or augmented reality (chapter 7). Various examples of visualization applications are

provided in the repository.

1https://github.com/am-lola/ARVisualizer
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Figure A.1: High-level diagram of library architecture



Appendix B

Surface Clustering

The clustering of data into different objects is a very common problem in computer science.

There are numerous algorithms that deal with this issue which have different advantages and

disadvantages. For the surface approximation process, 3D points have to be clustered into

different surfaces that the robot may step onto. The problem seems at first to be fit for a 3D

clustering algorithm. However, if information about the point cloud’s planes is available, it

can be simplified considerably: by projecting the points to their corresponding surface planes

the problem is reduced to a 2D clustering (chapter 5). For this work, several algorithms were

evaluated:

• K-means [107]. This algorithm assigns points to different clusters and iteratively mini-

mizes the total squared error between each point and its cluster center. It is additionally

necessary to detect the number of clusters, using an algorithm such as the one described

by Pham et al. [143]. One of its main disadvantages is that, as a result of assigning ev-

ery single point to one cluster, it is highly sensible to sensor noise.

• Gaussian Mixture Models. This algorithm works by iteratively estimating probabilis-

tic distributions of points [128] and is popular among machine learning applications.

These probabilistic algorithms often fail to separate non-uniformly distributed clusters

and, due to their iterative nature and long runtime, are not well suited for dynamic

scenarios (chapter 5).

• 2D/3D Euclidean Clustering [139, 145]. It separates points by iteratively evaluating

their distance to their neighbors.

• DBSCAN [43]. This algorithm starts from a single point, a given neighbor distance

and a minimum number of neighbors. It first joins the initial point together with all

neighbors within the given distance. Every subsequent point that has the minimum

number of neighbors within the given distance belongs to the cluster. When no more

points comply, a new cluster is started. By providing the right parameters, it can obtain

very accurate results.

• 2D Grid. By projecting the points to a discrete grid, clustering can be performed by

simple connectivity check between grid cells. Its runtime and accuracy depend on the

grid cell size.

The performance of the local implementation of the 2D grid was compared against the DB-

SCAN and 2D/3D Euclidean Clustering algorithms for a set of examples. In terms of quality

of results, the difference number of points belonging to the separate clusters is consistently

below 1% between algorithms, and usually corresponds to noisy data around the borders.

The most notable differences can be found in runtime, where the 2D Grid consistently out-

performs the other algorithms by a factor of 50 or more. In table B.1, the results for an

example scenario can be seen.
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Plane 3D Euclidean 2D Euclidean DBSCAN 2D Grid

1 157.4 1155.9 425.1 1.1

2 62.8 289.1 160.0 0.6

3 20.0 35.3 50.8 0.2

4 12.0 17.0 26.7 0.2

Table B.1: Performance of Clustering Algorithms. Runtime (in ms) of different algorithms for the four existing

planes on a lab scenario. Adapted from Floeren [50].
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