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Abstract

In this thesis, we consider the problem of super-resolution on certain manifolds. Broadly speaking,
super-resolution aims to recover higher resolution information from low resolution measurements. In
this context, the given information has to be understood in the regime of analyzing signals with respect
to the eigenfunctions of the Laplace-Beltrami operator on the manifold. Especially, the two manifolds
SO(3) of rotation matrices in three dimensions and the two-dimensional Euclidean sphere S2 are of
interest to us. On the one hand, these naturally appear in applications and on the other hand, these
considerations generalize the previous work on super-resolution, which is mainly situated on the one-
dimensional torus T, to more complex geometries. More concrete, the problem consists of recovering a
weighted sum of Dirac measures from its low-frequency information only. On the rotation group, the low
frequency information are moments of the sought measure with respect to Wigner D-functions, whereas
on the sphere the given moments are with respect to spherical harmonics. We investigate the recovery
of the sought measure using a total variation minimization approach. Regarding the theoretical aspects,
we provide recovery guarantees of a discrete signed measure both on the rotation group and the sphere in
terms of the separation distance of the support of the sought measure. In addition, we give error estimates
for the recovery on the rotation group in the presence of noise in the given data. The main ingredients
for the theoretical aspects are localization estimates for interpolation kernels and their derivatives. We
make numerical considerations regarding the recovery on the rotation group and investigate two different
recovery algorithms, one that utilizes a semi-definite relaxation of an infinite-dimensional optimization
problem and one that builds on an a priori discretization.
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Zusammenfassung

In dieser Arbeit untersuchen wir die Problemstellung der Superauflösung auf speziellen Mannigfaltigkeiten.
Grob gesprochen zielt die Superauflösung darauf ab höher auflösende Informationen aus niedrig au-
flösenden zu rekonstruieren. In diesem Kontext verstehen wir Informationen als Analyse von Signalen
mittels Eigenfunktionen des Laplace-Operators auf der Mannigfaltigkeit. Insbesondere die Mannig-
faltigkeit SO(3) der Rotationsmatrizen in drei Dimensionen und die zweidimensionale Euklidische Sphäre
S2 stehen im Fokus dieser Arbeit, da diese Manigfaltigkeiten zum einen in natürlicher Weise in den An-
wendungen von Bedeutung sind und zum anderen die Betrachtung dieser die bisherigen Arbeiten zur
Superauflösung, die sich zum größten Teil mit dem eindimensionalen Torus befassen, auf kompliziertere
Geometrien verallgemeinert. Genauer betrachtet besteht das Problem der Superauflösung in der Rekon-
struktion einer gewichteten Summe von Dirac-Maßen nur mithilfe der niedrigfrequenten Informationen.
Auf der Rotationsgruppe bestehen diese niedrigfrequenten Informationen aus Momenten des gesuchten
Maßes bezüglich der sogenannten Wigner D-Funktionen eines bestimmten Grades. Auf der Sphäre hinge-
gen sind die Momente des gesuchten Maßes gegeben bezüglich der Kugelflächenfunktionen. Wir unter-
suchen die Möglichkeit das gesuchte Maß über die Minimierung der Totalvariation zu rekonstruieren.
Bezüglich der theoretischen Aspekte betrachten wir Rekonstruktionsgarantien abhängig von der Separa-
tionsdistanz des Trägers des gesuchten Maßes sowohl auf der Rotationsgruppe als auch auf der Sphäre.
Für den Fall der Rotationsgruppe geben wir in der Situation von gestörten Daten Fehlerabschätzungen
an. Das Fundament für diese theoretischen Überlegungen bilden Lokalisationsabschätzungen für Interpo-
lationskerne und deren Ableitungen. Wir diskutieren zwei unterschiedliche Algorithmen für die Rekon-
struktion eines diskreten Maßes auf der Rotationsgruppe, wobei der eine auf der semidefiniten Relaxation
eines unendlichdimensionalen Optimierungsproblems beruht und der andere eine a priori Diskretisierung
verwendet.
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Introduction

The meaning of the expression super-resolution is manifold. Depending on the field of studies, quite
different phenomena and techniques are subsumed under this term. In optics, the phrase super-resolution
denotes instrumental techniques to overcome the diffraction limit of an optical system, [Lindberg, 2012].
Especially, the development of super-resolution fluorescence microscopy makes it possible to observe
biological structure beyond the diffraction limit, see e.g. [Huang et al., 2009], [Schermelleh et al., 2010]
and [Cremer and Masters, 2013].

In contrast to this instrumental super-resolution, in the field of imaging the process of recovering a
high-resolution image from several low-resolution images is also called super-resolution, see e.g. [Park
et al., 2003] and [Nasrollahi and Moeslund, 2014] for a good overview. To distinguish these algorithmic
techniques from the instrumental techniques, sometimes the term computational super-resolution is used,
see [Bertero and Boccacci, 2003].

In this thesis, we will use the term super-resolution to describe the recovery of a spatially highly
resolved signal from its coarse scale information only. To make this statement more precise, the highly
resolved signal is modeled by a weighted sum of Dirac measures, i.e.

µ? =
∑
j

cjδxj .

The coarse scale information is a measurement, modeled as a linear mapping A∗, such that A∗µ? is an
approximation to the measure µ?, but this approximation may not point out the locations xi of the support
of µ?. One can think of the information A∗µ? as a smooth function, which approximates the measure
µ? so badly, that the unknown locations xi of the support of the measure are not identifiable anymore.
The process of super-resolution aims to recover the unknown parameters xi and ci from this coarse scale
information.

To make this abstract problem more concrete, consider a 2π-periodic signal of the form

f(t) =

M∑
j=1

cje
−ixjt, t ∈ R,

with unknown parameters cj ∈ C, xj ∈ T = R/2πZ andM ∈ N, i.e. a non-harmonic Fourier expansion,
see e.g. [Young, 2001]. What we can access are the samples

f(k) =

M∑
j=1

cje
−ixjk, k = −N, . . . , N, (1)

which we want to use to recover the unknown parameters. From a statistical point of view, this problem
is also known as spectral line estimation, see [Tang et al., 2015]. This problem of detecting hidden
frequencies was first considered by G.R de Prony in 1795. He proposed a method to extract the unknown
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2 INTRODUCTION

frequencies as the simple roots of a certain polynomial, the Prony polynomial, whose coefficients can be
computed from the samples f(k) by solving a system of equations. Nevertheless, the locations of the
roots are sensitive to perturbation on the samples, which makes Prony’s method unstable in the presence
of noise. An additional restriction of Prony’s method is given by the fact, that one has to know the number
M of hidden frequencies, or at least a good estimate of it.

Recently, Prony’s method is undergoing a revival in order to stabilize and generalize the method in
various directions. To name only a few, stabilization approaches are ESPRIT [Roy and Kailath, 1989],
MUSIC [Schmidt, 1986], Approximate Prony methods [Potts and Tasche, 2010], [Potts and Tasche, 2011]
and [Potts and Tasche, 2013], the Matrix pencil method [Hua and Sarkar, 1990] and the use of orthogonal
polynomials on the unit circle (OPUC) [Filbir et al., 2012]. We point out, that this is only a small selection
and we refer to the book [Stoica et al., 2005] and the thesis [Peter, 2013] for a detailed overview of existing
work in this direction. Generalization to higher dimensions using projections can be found in [Plonka and
Wischerhoff, 2013], [Diederichs and Iske, 2015], and [Wischerhoff and Plonka, 2016]. A generalization
to higher dimensions, revealing the algebraic structure of Prony’s method can be found in [Kunis et al.,
2016b].

To relate the problem of detecting hidden frequencies to a measure recovery problem, observe that
the samples in equation (1) can also be interpreted in the following way. Consider the measure

µ? =
M∑
j=1

cjδxj . (2)

Observe, that for the expressions in equation (1) we have

f(k) = µ̂?(k), k = −N, . . . , N, (3)

where µ̂?(k) =
∑M
j=1 cje

−ixjk denotes the k-th Fourier moment of the measure. Thus, we can observe
the first 2N+1 Fourier moments of µ?. In other words, we can only access a band-limited approximation
of µ? of the form

N∑
k=−N

µ̂?(k)eikt.

In this approximation the ’peaks’ of the Dirac measures are ’smoothed out’ and their locations are not
clear any more.

Very recently, several authors proposed a variational recovery method, that does not need to know the
number of support points of the measure beforehand, see [de Castro and Gamboa, 2012], [Candés and
Fernandez-Granda, 2014]. They proposed to minimize the total variation over the space of regular Borel
measures, given the low-frequency information in (3). It turns out, that the total variation norm induces
discreteness of the measure, which solves the restricted minimization problem. Thus, minimizing the total
variation norm over the space of measure can be seen as having a sparsifying property on the support of
the measure, analog to the minimization of the `1 norm on a finite space. In the following, we will
shortly describe, what we mean by sparsifying property. Beurling considered the following extrapolation
problem, see [Beurling, 1989a], [Beurling, 1989b]. Given a complex measure on the real line R, we know
its Fourier-Stieltjes transform only on a subset [−λ, λ] ⊂ R. He considered to extrapolate from this subset
by taking the Fourier-Stieltjes transform of a measure, whose transform agrees with the given data on
[−λ, λ] and that minimizes the total variation norm. His observation is, that under certain conditions such
a measure always exists, is unique and is a discrete measure, regardless of whether the data generating
measure itself is discrete or not. Hence, minimizing the total variation with respect to the given data
results in a discrete measure. He called this measure minimal extrapolation. The authors of [Benedetto
and Li, 2016] considered this extrapolation problem for measures on the torus T and observed the same
behavior, i.e. under certain conditions the minimal extrapolation is always a discrete measure.
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The natural question, that rises is under which conditions is the minimal extrapolation of a discrete
measure the measure itself? In other words, when is the measure µ?, given in (2), the unique solution of
the minimization problem

min
µ∈M(T,C)

‖µ‖TV , subject to µ̂(k) = µ̂?(k), for |k| ≤ N. (TP)

The authors of [de Castro and Gamboa, 2012] and [Candés and Fernandez-Granda, 2014] investigate
this question using measure theoretic techniques. A sufficient criteria for µ? being the unique solution is
the existence of so called dual certificates. In more detail, consider the support points {xj}Mj=1 given in
the definition (2) of the measure µ?. If for each sign sequence {uj}Mj=1 ⊂ C, i.e. |uj | = 1, there is a
trigonometric polynomial of degree N , the so-called dual certificate, that interpolates the sign uj at the
location xj and is strictly smaller than one in absolute value everywhere else, then µ? is the unique solu-
tion of the minimization problem (TP). This somehow technical condition becomes more clear in view
of the convexity of the problem (TP), which we will see later on. Understandably, using this technique,
the points {xj}Mj=1 cannot become arbitrarily close, since the existence of dual certificates would conflict
with Bernstein’s inequality for trigonometric polynomials. In [Candés and Fernandez-Granda, 2014], the
authors show, that a minimal separation of 4π

N is sufficient for the existence of dual certificates and thus
µ? being the unique solution of the total variation minimization. The method of proof relies on an explicit
construction of a dual certificate by solving a Hermite interpolation problem.

Apart from the theoretical considerations, the optimization problem (TP) is an infinite-dimensional
problem and therefore not feasible directly. The authors of [Candés and Fernandez-Granda, 2014] pro-
pose to solve the convex dual problem. In the dual problem, the minimization takes place on the space
of trigonometric polynomials of a fixed degree and is therefore finite-dimensional, but the constraints of
the minimization are infinite-dimensional in the form of a supremum norm bound on the trigonometric
polynomial. Nevertheless, this supremum norm bound on the trigonometric polynomial can be equally
cast as a semi-definite constraint by introducing an auxiliary matrix variable, based on the representation
of non-negative trigonometric polynomials as sum of squares. Using this, the dual problem is equivalent
to a finite-dimensional semi-definite program and can be solved by standard solvers for convex problems.
The solution of the convex problem is a trigonometric polynomial that acts as a dual certificate, i.e. it
interpolates the sign of the sought measure at its support points and is strictly smaller than one in absolute
value everywhere else. Thus, the support of the sought measure can be identified as those points, where
the solution of the dual problem approaches one in absolute value.

Next to the fundamental papers [Candés and Fernandez-Granda, 2014], [de Castro and Gamboa,
2012], the trigonometric super-resolution problem gained a lot attention very recently. Considerations re-
garding recovery from trigonometric moments corrupted by noise is considered in [Candés and Fernandez-
Granda, 2013], [Tang et al., 2015], [Duval and Peyré, 2015], [Li and Tang, 2016], [Fernandez-Granda,
2016] and [Boyer et al., 2017]. Also, the restriction to the case of positive measures gained attention, see
e.g. [Morgenshtern and Candés, 2014], [Denoyelle et al., 2015b] and [Denoyelle et al., 2015a]. The gen-
eralization to higher dimensions is considered in [Xu et al., 2014]. Numerical treatment of the problem is
the content of [Duval and Peyré, 2015] and [Duval and Peyré, 2016].

Beside the fact that this variational recovery approach does not need the number of unknown points
as prior information, an advantage is the adaptability to more general settings than recovery on the torus.
Indeed, one could consider the problem of recovery of a weighted sum of Dirac measures from its mo-
ments with respect to a systems of functions in a quite general setting. Concentrating on the problem
of super-resolution, i.e. recovering of highly resolved signals from coarse scale information, a straight-
forward generalization would be to consider signals on a compact smooth Riemannian manifold and
moments with respect to the eigenfunctions of the first few eigenvalues of the Laplace-Beltrami opera-
tor on the manifold. Nevertheless, considering the problem in this generality has the drawback, that the
eigenfunctions are not known explicitly in most cases, which makes it more difficult to construct the dual
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certificates. In this thesis, we concentrate on two concrete examples, which are also interesting from the
viewpoint of applications, the rotation group SO(3) and the two-dimensional Euclidean sphere S2.

The group SO(3) of all rotation matrices in dimension three plays a crucial role in various applications
ranging from crystallographic texture analysis, see [Bunge, 1982], [Hielscher et al., 2008], [v.d. Boogart
et al., 2007], [Schaeben and v.d. Boogart, 2003], over the calculation of magnetic resonance spectra
[Stevensson and Edén, 2011] to applications in biology such as protein-protein docking, see [Castrillon-
Candas et al., 2005], [Bajaj et al., 2013], [Kovacs et al., 2003]. For a good overview regarding applications
see also [Chirikjian and Kyatkin, 2000]. Signals or functions on the rotation group SO(3) are often
analyzed with respect to a harmonic basis arising from representation theory of the group, the so called
Wigner-D functions. Since these functions are also eigenfunctions of the Laplace operator on the manifold
SO(3), they can be regarded as a natural analog to Fourier series in the case of the torus group. Thus, the
super-resolution problem on the rotation group corresponds to the recovery of a weighted sum of Dirac
measures from its low degree approximation with respect to those Wigner D-functions. In this thesis,
we investigate the recovery from Wigner D-moments using a total variation minimization approach. We
analyze the problem using the concept of dual certificates as described before. We adapt the construction
of a dual certificate by solving a Hermite interpolation problem to signals on the rotation group SO(3)
and provide sufficient recovery guarantees in terms of the separation distance of the support points of
the sought measure. The crucial ingredient for this are localization estimates for interpolation kernels
and their derivatives on the rotation group. We also consider the numerical solution of the involved
optimization problems using two different approaches.

The second example, we consider in this thesis, corresponds to the two-dimensional Euclidean sphere
S2. In this geometry, the involved harmonic basis functions are known as spherical harmonics. Appli-
cations are ranging from acoustic source detection [Teutsch and Kellermann, 2006] over astrophysics
[Vielva et al., 2003] to magnetic resonance imaging [Deslauriers-Gauthier and Marziliano, 2012]. The
recovery of weighted sums of Dirac measures on the sphere from moments with respect to spherical
harmonics has been considered using different approaches such as sampling at finite rate of innova-
tion [Deslauriers-Gauthier and Marziliano, 2013] and Prony like methods [Kunis et al., 2016a]. Recovery
using a total variation minimization approach was first considered in [Bendory et al., 2015a]. Although
the authors analyze the recovery using dual certificates, there are gaps in the construction of those. In
this thesis, we close these gaps and provide explicit reconstruction guarantees in terms of the separation
distance of the support points of the sought measure.

Contribution

In this thesis, we consider the super-resolution problem on the rotation group and the sphere in the context
of recovery using a total variation minimization. We contribute in the following aspects. On the rotation
group, we provide an explicit recovery guarantee of a discrete signed measure in terms of the separation
distance of its support. The guarantee builds on the construction of dual certificates, which we approach
using a Hermite interpolation. Fundamental for the involved bounds are localization estimates for certain
interpolation kernels and their derivatives. We construct interpolation kernels from weights, that are
generated by sampling certain B-splines. These kernels allow for bounds with explicit constants, which
is necessary in the construction of the dual certificates. Next to the recovery guarantee, we provide error
estimates in the presence of noise. Beside the theoretical aspects, we investigate two different recovery
algorithms. Whereas the first approach is build on a semi-definite relaxation of the dual problem and does
not need an a priori discretization, the second corresponds to recovery on a predefined grid.

On the sphere, we follow the meta-scheme of constructing dual certificates as the solution of Hermite
interpolation problems. We provide new bounds that involve derivatives of the Jackson kernel, which
are necessary for the construction. Building on this, similar to that on the rotation group, we provide a
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recovery guarantee of a discrete signed measure in terms of the separation distance of its support.

Outline of the Thesis

Chapter 1: In the first part of this chapter, we introduce the recovery of a discrete measure from lin-
ear measurements in an abstract setting. We formulate the recovery from these measurements using a
minimization of the total variation over the space of regular Borel measures. The key ingredients for
the analysis of this convex optimization problem is the notion of the null-space property of an operator
and the existence of so called dual certificates. The bottom line of this part is, that the existence of dual
certificates guarantees the recovery of the sought measure by minimizing the total variation.

The second part of this chapter is meant to introduce the problem of super-resolution on the rotation
group SO(3) in more detail. We give a short overview on the analysis on the rotation group and introduce
the recovery problem from moments with respect to Wigner D-functions. In this setting, a dual certificate
corresponds to a finite linear combination of Wigner D-functions up to a given degree, which interpolates
a given sign on the support of the sought measure and is less than one in absolute value elsewhere. We
close the part with a glimpse on the construction of dual certificates in this setting using a Hermite inter-
polation.

Chapter 2: To show the existence of a solution of the proposed Hermite interpolation problem, in
this chapter we construct polynomial interpolation kernels, i.e. kernels that have a finite expansion with
respect to Wigner D-functions. We show pointwise bounds for these kernels and their derivatives, which
we call localization estimates. These sort of estimates are used to show the invertibility of the matrix
arising from the Hermite interpolation problem. To derive suitable bounds on the coefficients of the in-
terpolation problem, we need explicit constants in all estimates. Beside the application to the problem of
super-resolution on the rotation group, these localization estimates might be of interest on their own.

Chapter 3: Building on the derived estimates from Chapter 2, we show that under a suitable sep-
aration condition on the support points of the sought measure, it is the unique solution with minimal
total variation given the available data. We show, that, if the minimal separation of a point set scales
proportional to 1/N , where N is the degree of the given Wigner D-moments, there is always a dual cer-
tificate, which interpolates any given real sign at these points and is strictly smaller than one in absolute
value elsewhere. This guarantees the recovery of a signed measure, whose support obeys the prescribed
separation condition, from exact data.

In addition to the theoretical recovery guarantee for the noise-free data case, we analyze the case of
noisy data. We derive L∞-error estimates for the super-resolution, seen as a spectral extrapolation prob-
lem.

Chapter 4: Whereas the previous chapters correspond to theoretical considerations, we investigate
the numerical aspects of the proposed total variation minimization. Due to the infinite-dimensional nature
of the optimization problem, it is not tractable directly.

In this chapter, we propose two different strategies to search for a solution of the minimization prob-
lem. The first considers the dual problem. This problem can be relaxed to a finite-dimensional semi-
definite program, building on the Bounded Real Lemma. From the solution of the dual problem, we can
compute the support of the sought measure. In the second approach, we discretize the problem on a
predefined grid and solve the resulting finite-dimensional problem. We analyze the convergence of the
solutions as the predefined discretization gets finer. For both approaches we provide numerical experi-
ments, which should be understood as proof of principle.
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Chapter 5: This chapter covers the super-resolution problem on the two-dimensional Euclidean
sphere S2. In contrast to the super-resolution problem on the rotation group, the problem on the sphere has
been considered before by different authors. Nevertheless, we provide the first valid proof for recovery
guarantees on the sphere.



Chapter 1

Super-Resolution and Exact Recovery

At the beginning of this chapter, we give a short introduction to the problem of super-resolution. Af-
terwards, in Section 1.1 we formulate the problem in an abstract setting as an exact recovery problem.
The second part of this chapter introduces the super-resolution problem on the rotation group SO(3). We
briefly state the necessary analysis results connected to the rotation group and discuss dual certificates in
this setting.

Broadly speaking, the problem of super-resolution aims to resolve a spatial highly resolved signal,
modeled by a sum of Dirac measures, using only its low frequency information. In the spectral domain,
this corresponds to an extrapolation of the given spectrum.

The setting we will use for this introduction is a signal on the torus T = R/2πZ, i.e. a 2π-periodic
signal, that is analyzed using its Fourier coefficients. More concrete, consider a discrete measure having
M support points, i.e.

µ? =

M∑
j=1

cjδxj , (1.1)

where xj are unknown locations in [−π, π] and cj ∈ C are unknown amplitudes. What we can observe
are the first 2N + 1 Fourier moments, given by

yk = µ̂?(k) =

∫ π

−π
e−ikx dµ?(x), (1.2)

for −N ≤ k ≤ N . On the spatial side, this means that we observe a convolved version of the signal,
given by

(µ? ∗DN )(x) =

∫ π

−π
DN (x− t) dµ?(t), x ∈ [−π, π],

where DN (t) =
∑N
k=−N eikt is the Dirichlet kernel. The process of super-resolution aims to deconvolve

this signal to recover the measure µ?, i.e. the unknown locations xj and amplitudes cj . The difficult part
of this is the recovery of the support locations xj , since after finding the support, the amplitudes can be
computed by solving a linear system.

At a first sight, the recovery seems not to be possible, since one theoretically needs all frequency
information to recover the support exactly. The problem becomes even more difficult, if the low frequency
information is not exact but corrupted by noise, due to the measurement process. In order to still be
able to recover the sought measure, one has to incorporate the knowledge of the special structure of the
measure µ? into the recovery process. It turns out, that the discreteness of the measure in combination
with a separation condition on its support enables the recovery by minimizing the total variation over the
measure space with respect to the given Fourier information.

7



8 CHAPTER 1. SUPER-RESOLUTION AND EXACT RECOVERY

(a) The discrete measure µ?. (b) Its convolved version (µ? ∗D10).

(c) Real part of the Fourier coefficients µ̂∗(k). (d) Available frequency information up to N = 10.

Figure 1.1: Illustration of the problem of super-resolution. On the spatial side, it can be seen as a decon-
volution problem, whereas on the spectral domain, it is an extrapolation problem.

To clarify the capability of recovering via total variation minimization, we look at the problem of
super-resolution as an extension problem in the frequency space. We give a short excursion to the problem
of Beurlings minimal extrapolation, which was stated by A. Beurling in [Beurling, 1938], [Beurling,
1989a], [Beurling, 1989b]. Denote the space of bounded complex Borel measures on the real line by
M(R,C), see Appendix B. The Fourier-Stieltjes transform of µ? ∈M(R,C) is given by

µ̂?(ξ) =

∫
R

e−iξtdµ?(t).

Suppose, we know µ̂? on the interval Λ = [−λ, λ]. A measure µ ∈ M(R,C) is called minimal extrapo-
lation from Λ, if

µ̂(ξ) = µ̂?(ξ), ξ ∈ Λ,

‖µ‖TV = inf{‖ν‖TV : ν ∈M(R,C), ν̂(ξ) = µ̂?(ξ), ξ ∈ Λ}.
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Beurling asked the question about the existence and uniqueness of a minimal extrapolation. He showed,
that if we denote

m := inf{‖ν‖TV : ν ∈M(R,C), ν̂(ξ) = µ̂?(ξ), ξ ∈ Λ},

the measure µ? admits a unique minimal extrapolation provided that

|µ̂?(ξ)| 6= m, for all ξ ∈ Λ.

Moreover, he showed that this extrapolation is a discrete measure, i.e it is of the form

µ =

∞∑
j=1

cjδxj ,

for (xj)j∈N ⊂ R, (cj)j∈N ⊂ C. This is true for all µ? ∈M(R,C), regardless of whether µ? is a discrete
measure itself or not. If one likes, one can call this a sparsifying property of the total variation norm.
Building on the work of Beurling, Donoho considered the recovery of a discrete measure on R supported
on a grid, see [Donoho, 1992].

Very recently, the authors of [Benedetto and Li, 2016] showed, that this behavior holds true for mea-
sures on the Torus T. To be more precise, they showed that for µ? ∈M(T,C) the minimal extrapolation
µ, such that

µ̂(k) = µ̂?(k), k ∈ Λ = {−N, . . .N},
‖µ‖TV = inf{‖ν‖TV : ν ∈M(T,C), ν̂(k) = µ̂?(k), k ∈ Λ}.

exists, is unique and a discrete measure of the form (1.1), if

µ̂?(k) 6= inf{‖ν‖TV : ν ∈M(T,C), ν̂(k) = µ̂?(k), k ∈ Λ}, for all k ∈ Λ. (1.3)

For the cases, such that (1.3) is not satisfied, Λ ⊂ Z is a more general subset or the extension problem is
on the d-dimensional Torus Td, we refer to [Benedetto and Li, 2016].

In short, under certain conditions the minimal extrapolation always gives a discrete measure, regard-
less of whether µ? is itself discrete or not. In the case µ? is known to be discrete, this immediately raises
the question of whether the minimal extrapolation is µ? itself? In other words, when is the measure µ?

the unique solution of the minimization problem

min
µ∈M(T)

‖µ‖TV , subject to µ̂(k) = µ̂?(k), for |k| ≤ N. (TP)

In the articles [de Castro and Gamboa, 2012] and [Candés and Fernandez-Granda, 2014] it was pro-
posed to use the minimization (TP) to recover a discrete measure on the torus T from its low frequency
information. Both articles show that the sought measure µ? is a solution of the minimization problem
under certain separation conditions on the points in the support of the discrete measure µ?. If we denote
X = supp(µ?) = {xi}Mi=1, the separation distance is given by

ρ(X ) = min
xi 6=xj

|xi − xj |, xi, xj ∈ X .

Whereas in [de Castro and Gamboa, 2012] it was shown, that under the assumption

N ≥ 2√
π

( √
e

ρ(X )

)5/2+1+ρ(X )

the measure µ? is a solution of the minimization problem (TP), the authors of [Candés and Fernandez-
Granda, 2014] showed the following.
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Theorem 1.1 ( [Candés and Fernandez-Granda, 2014], Thm. 1.2). Suppose the measure µ? is given by
(1.1) and one can observe its Fourier coefficients µ̂?(k) up to order N ≥ 128, given by (1.2). If the
support of the measure X = {xi}Mi=1 obeys

ρ(X ) ≥ 4π

N
,

then µ∗ is the unique solution of the optimization problem

min
µ∈M(T)

‖µ‖TV , subject to µ̂(k) = µ̂?(k), for |k| ≤ N. (TP)

The backbone of the proof is the construction of a so called dual certificate. This is a trigonometric
polynomial of maximal degree N , that interpolates a given sign pattern on the support of the measure
µ? and is strictly less than one in absolute value elsewhere. We will provide more details in Section 1.1.
Interestingly, a very similar concept already appears in the work of Beurling, where he calls it extremal
function, see [Beurling, 1989b, pp. 360− 362].

We give several examples, that the recovery of discrete measures is a general theme. We start with the
recovery from low frequency information, which is the analog to the previous example of trigonometric
moments. We state this problem for two specific settings, which are the main topic of this thesis, the
rotation group SO(3) and the two-dimensional sphere S2. The finite trigonometric moment problem and
both these examples can be understood as the realization of an abstract super-resolution problem.

Example 1.2 (Super-resolution). Let X be a compact smooth Riemannian manifold. In this setting, it
is common to analyze functions with respect to the eigenspaces of differential operators, especially the
Laplace-Beltrami operator on X . Since this operator is compact in the L2-topology, the eigenspaces are
dense in L2(X) = L2(X, ν), where ν is the Riemannian volume measure. This means,

L2(X) = cl‖·‖2

∞⋃
l=1

Hl,

where Hl is the eigenspace to the l−th eigenvalue. The frequency information is now carried in the
ascending spaces

ΠN (X) = span

N⋃
l=1

Hl, N = 1, 2 . . . .

The L2-projection operator onto the space ΠN (X) for a fixed N can be written in the following way.
Choose for each l = 1, 2, . . . an orthonormal basis {ϕl,k}dim(Hl)

k=1 of Hl and set

KN (x, y) =

N∑
l=1

dim(Hl)∑
k=1

ϕl,k(x)ϕl,k(y).

Then the projection operator SN : L2(X)→ C(X) onto the space ΠN (X) can be written as

SNf(x) =

∫
X

f(y)KN (x, y)dν(y).

This is the setting of most interest to us, since this corresponds to the reconstruction of point measures
from low frequency information in the meaning of analysis of functions with respect to eigenspaces of a
differential operator. The super-resolution problem now reads as follows. Given a discrete measure

µ? =

M∑
j=1

cjδxj ,
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with xj ∈ X and cj ∈ C, recover µ? from the low frequency information S∗Nµ?.
In the case X = T this resembles the trigonometric setting with

ϕl,l(x) = eilx, l = −N, . . . , N

and KN (x, y) = DN (x− y) is the classical Dirichlet kernel.
In this thesis, we concentrate on two concrete realizations of this abstract super-resolution problem.

The first regards to measures on the group SO(3) of rotations in three dimensions. Here, the eigenspaces
of the Laplace-Beltrami operator are spanned by the so called Wigner D-functions and the kernel of the
projection operator has the form

KN (x, y) =

N∑
l=0

(2l + 1)U2l

(
cos

(
ω(x−1y)

2

))
,

where Un denotes the n-th Chebychev polynomial of the second kind and ω(x−1y) is the rotation angle
of the rotation matrix x−1y. We give more details in Section 1.2. To the best of our knowledge, the
super-resolution problem on the rotation group is first considered in this thesis.

Secondly, we consider measures on the 2−Sphere, i.e. S2 = {x ∈ R3, ‖x‖ = 1}. The involved basis
functions of the eigenspaces are called spherical harmonics. The kernel of the projection operator has
the form

KN (x, y) =

N∑
l=1

2l + 1

4π
Pl(x · y),

where Pl is the l-th Legendre polynomial. This setting was first considered in [Bendory et al., 2015a],
[Bendory et al., 2015b] and [Bendory and Eldar, 2015]. Nevertheless, there are severe gaps in the proofs,
which we discuss and close in Chapter 5.

Example 1.3 (Generalized moment problem). The recovery of measures from a given set of moments
was also considered under other assumptions than discreteness of the sought measure like positivity or
absolute continuity with respect to a given prior measure, see e.g. [Gamboa and Gassiat, 1994], [Gamboa
and Gassiat, 1996], [Lewis, 1996] and references therein.

To introduce a moment problem in the context of sparsity assumptions, let X = [−1, 1] and consider
a discrete measure µ? =

∑M
j=1 cjδxj , with cj ∈ C, xj ∈ [−1, 1],M ∈ N and its polynomial moments.

yk =

∫ 1

−1

xk dµ?(x), for k = 0, . . . , N.

In [Bendory et al., 2014] and [Castro and Mijoule, 2015] these polynomial moment information were
used to recover unknown knots of non-uniform spline approximations using total variation minimization.
More general, one can consider any system of continuous functions ϕk and the moments

yk =

∫ 1

−1

ϕk(x) dµ?(x), for k = 0, . . . , N.

The generalized moment problem asks to recover the measure µ? from these moments. In the case,
that {ϕk}∞k=0 is a Markov system, the recovery of a discrete measure using the total variation norm
minimization was analyzed in [de Castro and Gamboa, 2012]. By Markov system, we mean that for each
N the system {ϕk}Nk=0 is a Chebychev system, i.e. each non-trivial function in span{ϕk}Nk=0 has at most
N zeros. Nevertheless, the presented theory depends on ϕk being a Markov system and thus is restricted
to univariate settings by the Mairhuber-Curtis Theorem, see [Mairhuber, 1956], which states that there
are no Chebyshev systems on higher-dimensional domains.

For numerical considerations regarding polynomial moments on semi-algebraic sets, also in higher
dimensions, see [De Castro et al., 2017].
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Example 1.4 (Point-spread deconvolution). LetX ⊂ Rd be a compact set. Suppose, we measure a signal
of the form

f(x) =

M∑
i=i

ciK(x, xi)

for a given continuous kernel K : X × X → R and would like to recover the unknown parameters
ci ∈ C, xi ∈ X,M ∈ N. Typically the kernel K is a radial kernel, i.e. it is of the form

K(x, y) = K̃(ε‖x− y‖2),

where ε is called scaling parameter and K̃ is called point spread function. Again, this can be understood
to recover the discrete measure

µ? =

M∑
j=1

cjδxj

from the linear measurement. ∫
X

K(x, y)dµ?(x).

Approaches, using a total variation minimization for recovery from measurements of this kind, can be
found in [Duval and Peyré, 2015], [Bendory et al., 2016a], [Bendory et al., 2016b], [Bendory, 2017]
and [Bernstein and Fernandez-Granda, 2017].

Building on these examples, in the next section of this chapter we discuss the possibility of recovering
a discrete measure from linear measurements in an abstract setting using a total variation minimization
approach. It turns out, that the crucial ingredient to analyze this convex minimization problem is the
existence of so-called dual certificates.

1.1 Exact Recovery in an Abstract Setting
We state the problem of exact recovery in a more abstract way, which was also considered in [Bredies
and Pikkarainen, 2013], to incorporate several different measurement situations. Let X be a compact
Hausdorff space and X ⊂ X a finite subset. The measure is given by

µ? =
∑
x∈X

c(x)δx, (1.4)

with c(x) ∈ K, where K is C or R, for all x ∈ X . Let H be a Hilbert space and

A : H → C(X,K)

be a bounded linear operator. Then the adjoint A∗ : M(X,K) → H is weak? to weak continuous and
will serve as a model for the measurements of the sought measure, i.e. given the measurements

y = A∗µ?,

one has to reconstruct the measure µ?. For example, in the recovery problem from Fourier coefficients,
discussed in the previous section, A is the convolution with the Dirichlet kernel.

To find the measure µ? given the information A∗µ? one can consider the following minimization
problem

inf{|X | : µ =
∑
x∈X

c(x)δx,X finite set, c(x) ∈ K}, subject to A∗µ = y, (GP0)
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with y = A∗µ?, i.e. minimizing the sparsity with respect to the given information provided by the map-
ping A∗. Even in a complete finite-dimensional setting, i.e. X is finite and ran(A∗) is finite-dimensional,
this problem is in general NP-hard, see e.g. [Rauhut and Foucart, 2013].

We observe that for some t > 0 the measure µ? is an element of

t · conv(E),

where E = {s · δx, x ∈ X, s ∈ {−1, 1, i,−i}} and conv(E) denotes the convex hull of E . In the finite-
dimensional case, i.e. X is finite and ran(A∗) is finite-dimensional, the authors of [Chandrasekaran et al.,
2012] propose to use the convex surrogate

inf{t : µ ∈ t · conv(E), t ≥ 0},

which leads to the ‖ · ‖`1 -norm, since conv(E) is the norm one ball with respect to ‖ · ‖`1 . This is the
classical Basis pursuit problem, see [Chen et al., 1998].

In the case X is not finite, one replaces conv(E) with

B1 = clw? conv(E).

The theorem of Krein-Milman, see e.g. [Simon, 2011], shows that B1 is indeed the norm one ball with
respect to ‖ · ‖TV and

‖µ‖TV = inf{t : µ ∈ t ·B1, t ≥ 0},

being the corresponding convex surrogate. Accordingly, one replaces the optimization problem (GP0)
with the convex relaxation

min
µ∈M(X,K)

‖µ‖TV , subject to A∗µ = y. (GP)

Now the question is, under which conditions on the operator A∗ and the set X does the minimization of
the convex objective functional leads to the sought measure.

1.1.1 Null Space Property and Dual Certificates

Similarly to the finite-dimensional case, the null space of the mapping A∗, i.e. the set of all measures
with A∗µ = 0, plays a crucial role in determining the uniqueness of the minimizers. In this section, we
see that the sought measure µ? is the unique minimizer of the problem (GP), if and only if the mapping
A∗ has the null space property. In the following, we state a sufficient criteria for the null space property
to hold true, i.e. the existence of so called dual certificates, which is a major tool to study the solutions
of the convex minimization problem (GP).

Definition 1.5. [Null-space property] Let X ⊂ X be a discrete set. The operator A∗ : M(X,K) → H
has the null space property with respect to X , if for all µ ∈ ker(A∗) \ {0}

‖µX ‖TV < ‖µX c‖TV , (NSP)

where µ = µX + µX c is the Lebesgue decomposition of µ with respect to the measure ν =
∑
b∈X δb.
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Theorem 1.6. Let X ⊂ X be a discrete set. Then each µ? ∈ M(X,K) with supp(µ?) ⊆ X is the
unique minimizer of

min
µ∈M(X,K)

‖µ‖TV , subject to A∗µ = y,

with y = A∗µ?, if and only if A∗ has the null space property (NSP) with respect to X .

Proof. First, we argue that the minimization problem has a solution. For this, set

χy(µ) :=

{
0, A∗µ = y,

∞, else,

i.e. χy is the indicator function of the feasible set of the optimization problem (GP). Hence, the mini-
mization is equivalent to the unconstrained minimization

min
µ∈M(X,K)

J(µ),

with
J(µ) = ‖µ‖TV + χy(µ). (1.5)

Due to the dual representation of the norm ‖ · ‖TV , see appendix B, one veryfies that the norm is se-
quentially lower semicontinuous with respect to the weak?-topology (w?-s.l.s.c.) onM(X,K). Since the
effective domain of χy is w?-sequentially closed, χy is also w?-s.l.s.c. Therefore, J is w?-s.l.s.c and the
existence of a minimizer follows by a compactness argument, see Lemma D.1.

Let µ ∈ ker(A∗), with the Lebesgue decomposition

µ = µX + µX c .

By assumption, µX is the unique minimizer of the optimization problem (GP) with the data given by
y = A∗µX . Moreover, A∗µX = −A∗µX c and µX 6= µX c , which yields

‖µX ‖TV < ‖µX c‖TV ,

since otherwise µX c would be a minimizer of (GP).
For the opposite direction, assume that µ0 = µ? + λ is a minimizer and the difference measure λ is

non-zero. By assumption we have λ ∈ ker(A∗) \ {0} and

‖λX ‖TV < ‖λX c‖TV ,

where λ = λX + λX c , with λX c 6= 0, is the Lebesgue decomposition with respect to the measure
ν =

∑
x∈X δx. Since supp(µ?) ⊆ X , the measures µ?+λX and λX c are mutually singular. Consequently

‖µ?‖TV ≥ ‖µ? + λ‖TV = ‖µ? + λX ‖TV + ‖λX c‖TV ,
≥ ‖µ?‖TV − ‖λX ‖TV + ‖λX c‖TV > ‖µ?‖TV ,

which is a contradiction, meaning λ = 0 and µ? is the unique minimizer.

Although the null-space property is an equivalent characterization, it is still hard to check this prop-
erty. However, it is well known, how to derive a sufficient condition for the null-space property. This
condition involves the existence of so-called dual certificates or dual interpolating polynomials. This con-
nection has been explicitly exploited in various settings, see e.g. [de Castro and Gamboa, 2012], [Candés
and Fernandez-Granda, 2014], [Bendory et al., 2014] and [Bendory et al., 2015a]. For completeness, we
will state this condition in our abstract setting, as the proof is purely measure theoretic.
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Theorem 1.7. Suppose for all sign combinations u(x) ∈ K, where K is either R or C, i.e. |u(x)| = 1,
there is a function q ∈ ran(A), such that

q(x) = u(x), for x ∈ X , (DC)
|q(x)| < 1, for x ∈ X c = X \ X ,

then A∗ has the null space property (NSP) with respect to X .

Proof. Let λ ∈ ker(A?) \ {0} and
λ = λX + λX c

be the Lebesgue decomposition with respect to ν =
∑
x∈X δx. If λX = 0, then the inequality

0 = ‖λX ‖TV < ‖λX c‖TV

holds trivially since λ 6= 0.
Otherwise, using the polar decomposition of λX , see Appendix B, we find a function u with |u(x)| =

1 for all x ∈ X , such that
λX = u · |λX |.

By assumption, we can find q ∈ ran(A), i.e. q = Ac for some c ∈ H , such that

q(x) = u(x), for x ∈ X ,
|q(x)| < 1, for x ∈ X c = X \ X ,

which yields together with A∗λ = 0,

‖λX ‖TV + 〈λX c , q〉 = 〈λ, q〉 = 〈A∗λ, c〉H = 0.

If λX c = 0, then λX = 0, otherwise

|〈λX c , q〉| < ‖λX c‖TV ,

and thus
‖λX ‖TV < ‖λX c‖TV .

Remark 1.8. In the case the measure is real-valued and one restricts the minimization to the space
M(X,R) of signed measures, the proof shows that it is sufficient to fulfill the condition (DC) only for
real-valued signs, i.e. u(x) ∈ {−1, 1}. Later on, in the case of the rotation group and the sphere, we
will restrict ourselves to signed measures. Furthermore, if the measure is known to be real-valued and
positive, one can even restrict to u ≡ 1.

The connection of the existence of dual certificates to the minimization property of the measure be-
comes more clear in the context of the convexity of the problem. We state this connection in order to make
clear the relation of the condition (DC) and a slightly different condition, that can be found in [de Castro
and Gamboa, 2012, Lemma 1.1]. In view of Fermat’s rule, µ ∈ M(X,K) is a minimizer of (GP), if and
only if

0 ∈ ∂J(µ),

where J is given in (1.5) and ∂J(µ) is the subdifferential of J at µ, see Appendix D. By the Moreau-
Rockafellar Theorem, this is equivalent to

0 ∈ ∂‖ · ‖TV (µ) + ∂χy(µ),
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particularly there is Q ∈ ∂‖ · ‖TV (µ) such that −Q ∈ ∂χy(µ). Since

∂χy(µ) = {Q ∈M(X,K)′ : 〈Q, ν − µ〉 ≤ 0, for all ν ∈M(X,K), A∗ν = y},

we have
∂χy(µ) = ker(A∗)⊥ = {Q ∈M(X,K)′ : 〈Q, ν〉 = 0, for all ν ∈ ker(A∗)},

i.e. the annihilator of ker(A∗), meaning µ is a minimum if and only if there is a subgradient at µ that is
’perpendicular’ to ker(A∗). By duality, one always has ran(A∗∗) ⊆ ker(A∗)⊥ and the stronger assump-
tion ran(A∗∗) ∩ ∂‖ · ‖TV (µ) 6= ∅, which means there exists h ∈ H , such that

A∗∗h ∈ ∂‖ · ‖TV (µ), (SC)

is an additional regularity assumption for the measure µ. In the context of inverse problems, the condition
(SC) is known as source condition, see e.g. [Bredies and Pikkarainen, 2013], [Burger and Osher, 2004],
[Hofmann et al., 2007] and [Scherzer and Walch, 2009].

In the case ran(A∗) is closed, one can show ker(A∗)⊥ = ran(A∗∗), which means µ is a minimizer
of (GP), if and only if the condition (SC) holds.

In the situation A∗ is the adjoint of some operator, one can further simplify this condition. Following
[Bredies and Pikkarainen, 2013], we have

∂‖ · ‖TV (µ) = {Q ∈M(X,K)′ : 〈Q,µ〉 = ‖µ‖TV , ‖Q‖M(X,K)′ = 1},

and therefore (SC) is equivalent to

∃ h ∈ H, such that 〈A∗∗q, µ〉 = ‖µ‖TV , and ‖A∗∗q‖M(X,K)′ = 1,

or
∃ h ∈ H, such that 〈µ,Ah〉 = ‖µ‖TV , and ‖Ah‖∞ = 1.

Using the polar decomposition µ = signµ ·|µ|, we have 〈µ,Ah〉 = ‖µ‖TV is equivalent to∫
B

(1−Ah(x) · signµ(x)) d|µ|(x) = 0,

which means Ah(x) · signµ(x) = 1 for |µ|−almost all x ∈ X . In the case the measure is discrete with
supp(µ) ⊂ X , this is equivalent to to the existence of h ∈ H such that

Ah(x) = signµ(x), x ∈ X , (1.6)

|Ah(x)| ≤ 1, x ∈ X c. (1.7)

This means, in the case that ran(A∗) is closed, µ is a minimizer of (GP), if and only if there exists
q = Ah ∈ ran(A) such that the interpolation condition (1.6), i.e. interpolation of the sign of the measure
µ is fulfilled and the supremum norm of Ah is bounded by one. Such an element q = Ah certifies the
optimality of the measure µ, hence the name dual certificate.

If one tightens the condition (1.7) to

|Ah(x)| < 1, x ∈ X c,

then one can show in addition, that each minimizer is a discrete measure with support inX , see [de Castro
and Gamboa, 2012, Lemma A.1]. Finally, the assumption thatA∗ is injective on all measures with support
in X is sufficient for recovery of the measure µ. Summarizing, the condition

Ah(x) = signµ(x), x ∈ X ,
|Ah(x)| < 1, x ∈ X c,

A∗ν = 0, supp(ν) ⊂ X =⇒ ν = 0,

(DCa)
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guarantees recovery of the specific measure µ by minimizing (GP), see [de Castro and Gamboa, 2012,
Lemma 1.1]. The proof is very similar to that of Theorem 1.7, despite the fact that one only gets recovery
of the specific measure µ. Indeed, the condition (DC) implies the condition (DCa).

1.1.2 Exact Recovery as an Inverse Problem
In general, one cannot assume to have access to the pure information y = A∗µ? but rather to a noisy
version yδ of it. It is therefore necessary to replace the minimization problem (GP) including the exact
side condition A∗µ = y. One popular approach is to solve the Thikonov-type minimization problem

min
µ∈M(X,K)

1

2
‖yδ −A∗µ‖2H + λ‖µ‖TV . (GPλ)

The aim of this section is to summarize the convergence properties of the minimizers of (GPλ) to the
minimizers of (GP) as yδ converges to y and λ→ 0. In the most general setting, the convergence results
are stated in terms of Bregman distances and we refer mainly to results especially from [Burger and
Osher, 2004], [Hofmann et al., 2007], [Scherzer and Walch, 2009] and [Bredies and Pikkarainen, 2013].

As utilized in these references, we will choose a deterministic noise model. This means, for δ > 0 we
will assume that yδ obeys

‖y − yδ‖H ≤ δ,
where y = A∗µ? denotes the exact data. The first theorem states, that under the additional regularity
condition on the measure µ?, given by the specialized source condition (DCa) discussed in the previous
section, there is a a priori parameter choice for λ depending on the noise level δ, such that the solution of
the Thikonov-type problems converge to the exact solution µ?.

Theorem 1.9. Suppose µ? is a discrete measure as given in (1.4), that fulfils the source condition (DCa).
Further assume sequences δn → 0, λn → 0 monotonically decreasing, such that

δ2
n

λn
→ 0.

Then each sequence of solution µλn,δn of

min
µ∈M(X,K)

1

2
‖yδn −A∗µ‖2H + λn‖µ‖TV ,

converges to µ? in the weak? topology.

Proof. The specialized source condition assures that µ? is the unique solution to the exact problem (GP).
Then the statement is a consequence of [Hofmann et al., 2007, Thm. 3.5], respectively [Bredies and
Pikkarainen, 2013, Prop. 5].

To show quantitative estimates in this very general setting, one has to make use of the notion of gen-
eralized Bregman distances introduced in the context of inverse problems in [Burger and Osher, 2004]. In
this case the distances between two measures is a set of distance functions depending on the subgradient,
i.e. for q ∈ ∂‖ · ‖TV (ν) a distance is given by

Dq(µ, ν) = ‖µ‖TV − Re(〈q, µ〉).

For a good overview of Bregman distances in the context of inverse problems and further references,
see [Burger, 2016]. Assuming the source condition (DCa), one can derive the following bound

DA∗∗h(µλ,δ, µ
?) ≤ ‖h‖

2
H

2λ
+
λδ2

2
,

see e.g. [Burger and Osher, 2004, Thm. 2]. Instead of further exploring this very general setting, we will
concentrate on the special case of harmonic information on the rotation group in the next section.
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1.2 Super-Resolution on the Rotation Group
In this section, we further investigate the problem of super-resolution on the rotation group. We start this
section with a short reminder on analysis on the rotation group, including the smooth structure as well as
the analysis with respect to harmonic basis functions.

In the second subsection, we state the problem of super-resolution on the rotation group in more
detail. As seen in the previous section, the key ingredient to analyze the recovery via total variation
minimization is the existence of dual certificates. We describe a possible construction of a dual certificate
using a Hermite interpolation.

1.2.1 Analysis on the Rotation Group
The rotation group SO(3) is defined as the space of matrices

SO(3) := {x ∈ R3×3 : xTx = I, detx = 1},

which is a group under the action of matrix multiplication. We will use two different parametrizations of
the rotation group.

By Euler’s Rotation Theorem, there is for each x ∈ SO(3) a unit vector e ∈ R3 and an angle
ω ∈ [0, π], such that x is a rotation with rotation axis e and rotation angle ω. Using Rodrigues rotation
formula yields

x = I cos(ω) + (1− cos(ω))eeT + [e] sin(ω),

where

[e] =

 0 −e3 e2

e3 0 −e1

−e2 e1 0

 .

This identification shows that SO(3) is diffeomorphic to the real three-dimensional projective space and
is therefore a connected compact Lie group. The corresponding Lie algebra of the Lie group SO(3) is
given by the skew symmetric matrices,

so(3) = {v ∈ R3×3 : vT = −v}.

The tangent space at x ∈ SO(3) can be written as

TxSO(3) = {v ∈ R3×3 : vxT = −xvT } = {v ∈ R3×3 : v = xw,w ∈ so(3)}.

The generators of the Lie-Algebra so(3) are given by

L1 =

0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

0 −1 0
1 0 0
0 0 0

 , (1.8)

with the commutator relations

[L1,L2] = L1L2 − L2L1 = L3, [L3,L1] = L2, [L2,L3] = L1.

A basis of the tangent space at x ∈ SO(3) is thus given by xL1, xL2, xL3.
The exponential map expx : TxSO(3)→ SO(3) at x ∈ SO(3) is defined by

expx(v) = xex
T v,
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where eA =
∑
k
Ak

k! denotes the matrix exponential. The unique geodesic originating from x ∈ SO(3)
in direction v ∈ TxSO(3) has the form

γx,v(t) = expx(tv).

Set
Bε(0) = {v ∈ R3×3 : ‖v‖F < ε},

where ‖v‖F =
√

tr(vT v) denotes the Frobenius norm. Restricted to the set TxSO(3) ∩ Bε(0) the
exponential map is invertible for ε < log(2) and its inverse logx : SO(3) ∩Bδ(x)→ TxSO(3) ∩Bε(0)
is given by

logx(w) = x log(xTw),

where log(A) =
∑∞
k=1(−1)k+1 (A−I)k

k denotes the matrix logarithm and

Bδ(x) = {w ∈ R3×3 : ‖ log(xTw)‖F < δ},

with δ =
√

2ε. This parametrization is called normal coordinates. The Riemannian metric is defined for
x ∈ SO(3) as

gx(v, w) =
1

2
tr(vTw), v, w ∈ TxSO(3),

and xL1, xL2, xL3 is an orthogonal basis with respect to this inner product. Hence, the gradient of f in
normal coordinates centered at x is represented by

∇f(x) =

3∑
i=1

Xif(x) · xLi,

where
Xif(x) = lim

t→0
t−1(f(xetLi)− f(x)),

whenever f is differentiable. For t ∈ R, the corresponding elements in SO(3) are given by

etL1 =

1 0 0
0 cos(t) − sin(t)
0 sin(t) cos(t)

 , etL2 =

 cos(t) 0 sin(t)
0 1 0

− sin(t) 0 cos(t)

 ,

etL3 =

cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1

 .

Similarly, for a two times differentiable function f the Hessian can be represented in normal coordi-
nates by the matrix

Hf =

X1X1f X1X2f X1X3f
X2X1f X2X2f X2X3f
X3X1f X3X2f X3X3f

− 1

2

 0 X3f −X2f
−X3f 0 X1f
X2f −X1f 0

 . (1.9)

Using these differential operators, we have the following Taylor formula, see e.g. [Chirikjian, 2012].
Let f : SO(3) → R be a two times continuous differentiable function and Y ∈ so(3) with ‖Y ‖F = 1,
then for x ∈ SO(3) and t ∈ R

f(x exp(tY )) = f(x) + t∇f(x)T e(Y ) +
t2

2
e(Y )THf(x exp(ξY ))e(Y ), (1.10)
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for some ξ with |ξ| ≤ |t|, where e(Y ) =
(
e1(Y ) e2(Y ) e3(Y )

)T
and Y =

∑3
i=1 ei(Y )Li.

The second parametrization we will use is given by Euler angles. Each element x ∈ SO(3) can be
represented by

x = RZ(α)RY (β)RZ(γ),

with (α, β, γ) ∈ [0, 2π)× [0, π]× [0, 2π) and

RZ(t) =

cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1

 , RY (t) =

 cos(t) 0 sin(t)
0 1 0

− sin(t) 0 cos(t)

 .

The triplet (α, β, γ) is called Euler angles in the ZY Z-convention.
A distance on SO(3), that is compatible with its topology and invariant with respect to the group

action, is given by

ω(y−1x) := arccos

(
tr(y−1x)− 1

2

)
=

1√
2
‖ log(yTx)‖F ,

which is equal to the rotation angle of the matrix y−1x.
Since SO(3) is a compact group, there is a regular Borel measure λ, that is invariant under the group

action, i.e. λ(xB) = λ(B) = λ(Bx) for all Borel sets B. This measure can be normalized such that∫
SO(3)

dλ(x) = 1.

Using an Euler angle parametrization, we can write down the integral for each measurable function
f : SO(3)→ C explicitly as∫

SO(3)

f(x)dλ(x) =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

f(x(α, β, γ)) sin(β)dαdβdγ.

For functions that only depend on the rotation angle, i.e. f(x) = f̃(ω(x)) the integral reduces to∫
SO(3)

f(x)dλ(x) =
2

π

∫ π

0

f̃(t) sin2

(
t

2

)
dt.

The space L2(SO(3)) of square-integrable functions with respect to λ is defined in the usual way. The
Peter-Weyl Theorem now states that the right regular representation of SO(3) splits up into an orthogonal
direct sum of irreducible finite-dimensional representations and the matrix coefficients of these irreducible
representation form an orthogonal basis for L2(SO(3)). The dimensions of the irreducible representa-
tions are given by 2l + 1, l ∈ N and the matrix coefficients Dl

k,m, −l ≤ k,m ≤ l are called Wigner-D
functions. We have that

{
√

2l + 1Dl
k,m,−l ≤ k,m ≤ l, l ∈ N}

form an orthonormal basis of L2(SO(3)). The value l ∈ N is called degree. In the Euler angle
parametrization the Wigner D-functions are given for l ∈ N and −l ≤ k,m ≤ l by

Dl
k,m(α, β, γ) = e−ikαdlk,m(cos(β))e−imγ ,

where dlk,m is defined as

dlk,m(t) = Cl,k,m(1− t)−(m−k)/2(1 + t)−(m+k)/2 d
l−m

dtl−m
(
(1− t)l−k(1 + t)l+k

)
,
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with Cl,k,m = (−1)l−k

2l(l−k)!

√
(l−k)!(l+m)!
(l+k)!(l−m)! .

Another very useful representation of the functions dlk,m is given by

dlk,m(cos(β)) = im+k
l∑

j=−l

(−1)jdlj,k(0)dlm,j(0)eijβ , (1.11)

see e.g. [Edmonds, 1957, p. 62] or [Risbo, 1996]. The addition theorem for Wigner D-functions states∑
−l≤k,m≤l

Dl
k,m(x)Dl

k,m(y) = U2l

(
cos

(
ω(y−1x)

2

))
, (1.12)

where Un denotes the n-th Chebychev polynomial of the second kind.
The space of all finite linear combinations of Wigner-D functions with degree less or equal to N is be

denoted as
ΠN (SO(3)) := span{Dl

k,m : −l ≤ k,m ≤ l, l ≤ N}

and is also called generalized polynomials of degree N . The projection onto the space of generalized
polynomials of degree N can be written as

SN : L2(SO(3))→ C(SO(3)),

SNf(x) =

∫
SO(3)

f(y)DN (x, y)dλ(y),

where

DN (x, y) =

N∑
l=0

(2l + 1)

l∑
k,m=−l

Dl
k,m(x)Dl

k,m(y),

is the Dirichlet kernel on the rotation group. Using the addition theorem, one also has

DN (x, y) =

N∑
l=0

(2l + 1)U2l

(
cos(ω(y−1x)))

2

)
.

The closed form expression of DN is given by DN (x, y) = D̃N (ω(y−1x)), with

D̃N (ω) =

{
(2N+3) sin(N+1/2)ω)−(2N+1) sin((N+3/2)ω)

4 sin3(ω/2)
, ω 6= 0,

1
3 (N + 1)(2N + 1)(2N + 3), ω = 0,

see [Schmid, 2008]. The differential operators defined above map ΠN (SO(3)) to itself. More concrete,
we have

X1D
l
k,m(x) =

1

2
icl−mD

l
k,m−1(x) +

1

2
iclmD

l
k,m(x),

X2D
l
k,m(x) = −1

2
cl−mD

l
k,m−1(x) +

1

2
clmD

l
k,m(x),

X3D
l
k,m(x) = −imDl

k,m(x),

with clm =
√

(l −m)(l +m+ 1), see e.g. [Chirikjian and Kyatkin, 2000].
Having introduced the Wigner D-functions, we show a possible construction of a dual certificate in

the next subsection, which is the important part to analyze the recovery with respect to these Wigner
D-functions.
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1.2.2 A Dual Certificate on the Rotation Group
In the following, we will introduce the problem of super-resolution on the rotation group, i.e. exact
recovery of Dirac measures from low frequency information. To be more specific, consider a Dirac
measure of the form

µ? =

M∑
i=1

ciδxi , (1.13)

where M ∈ N, ci ∈ R are real valued coefficients and δxi are the point measures centered at pairwise
distinct xi ∈ SO(3). All parameters M, ci, xi are unknown and we can only access

S∗Nµ?(x) =

∫
SO(3)

DN (x, y)dµ?(y),

for a possible low degree N . On the spectral side, this means we can access the moments of µ? with
respect to the functions Dl

k,m for −l ≤ k,m ≤ l only for l ≤ N , i.e.

〈µ∗, Dl
k,m〉 :=

∫
SO(3)

Dl
k,m(x)dµ?(x) =

M∑
i=1

ciDl
k,m(xi),

for −l ≤ k,m ≤ l, l ≤ N . The question is, under which conditions on the support of the measure µ? it
is the solution of the total variation minimizaton

min
µ∈M(SO(3),R)

‖µ‖TV , subject to S∗Nµ = S∗Nµ?. (RP)

As seen in the previous section, this relies on the existence of a dual certificate, i.e. a q ∈ ΠN (SO(3)),
such that

q(xi) = ui, for xi ∈ X ,
|q(x)| < 1, for x ∈ SO(3) \ X .

Clearly, the existence of such a function should be coupled to the minimal separation of the support
points, i.e. the value

ρ(X ) := min
xi 6=xj

ω(x−1
j xi).

Otherwise, two collapsing interpolation points would result in a growing value of the derivatives, which
is not possible due to the Bernstein inequality

‖Xiq‖∞ ≤ N‖q‖∞, for q ∈ ΠN (SO(3)), (1.14)

see [Schmid, 2008].
Indeed, a proportional coupling of the minimal separation to the degree of the given moments is

sufficient for the existence of a dual certificate. More precisely, if

ρ(X ) ≥ 36

N + 1

for N ≥ 20, then for each sign combination ui ∈ {−1, 1}, there is a q ∈ ΠN (SO(3)) such that

q(xi) = ui, for xi ∈ X ,
|q(x)| < 1, for x ∈ SO(3) \ X .

(1.15)
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The proof is based on an explicit construction of the dual certificate. We will follow ideas from [Candés
and Fernandez-Granda, 2014], where the construction was done for trigonometric polynomials. Here, we
shortly describe the construction process to point out the importance of localization estimates for kernels
and their derivatives, which are established in Chapter 2. The actual proof, i.e. showing the properties
(1.15), is postponed to the proof of Theorem 3.6 in Chapter 3.

In order to satisfy the conditions (1.15), one formulates the Hermite-type interpolation problem

q(xi) = ui,

X1q(xi) = X2q(xi) = X3q(xi) = 0,
(1.16)

for xi ∈ X , where Xk are the differential operators defined in Section 1.2.1. This means, beside the
interpolation itself, we ask for local extrema at the interpolation points. One then seeks a solution q to
this interpolation problem in the space ΠN (SO(3)), that satisfies, due to the local extrema conditions,
|q(x)| < 1 for x ∈ SO(3) \ X . The constructed interpolant is of the form

q(x) =

M∑
i=1

αi,0σN (x, xi) + αi,1X
y
1σN (x, xi) + αj,2X

y
2σN (x, xi) + αj,3X

y
3σN (x, xi),

where σN is an interpolation kernel of the form

σN (x, y) =

N∑
l=0

hN (l)
∑

−l≤k,m≤l

Dl
k,m(x)Dl

k,m(y),

with positive weights hN (l) > 0. Observe, that the expressions σN (x, xi) and Xy
j σN (x, xi), where the

superscript indicates the action of the differential operator on the second variable, are by construction
generalized polynomials of degree N in the first variable, which means q ∈ ΠN (SO(3)). Applying the
interpolation conditions (1.16) leads to the linear system of equations

Kα :=


σN Xx

1 σN Xx
2 σN Xx

3 σN
Xy

1σN Xx
1X

y
1σN Xx

2X
y
1σN Xx

3X
y
1σN

Xy
2σN Xx

1X
y
2σN Xx

2X
y
2σN Xx

3X
y
2σN

Xy
3σN Xx

1X
y
3σN Xx

2X
y
3σN Xx

3X
y
3σN



α0

α1

α2

α3

 =


u
0
0
0

 , (1.17)

where the entries in the matrix corresponds to blocks of the form σN = (σN (xi, xj))
M
i,j=1 and in the

same way for the derivatives. The blocks in the vectors are given by αk = (αk,j)
M
j=1 for k = 0, 1, 2, 3

and u = (uj)
M
j=1. To find the coefficients, we have to show the invertibility of the matrix K. Due to the

block structure of K this is done using an iterative block inversion, explained in Section 3, and the fact
that a matrix A is invertible if

‖I −A‖∞ < 1,

where ‖A‖∞ = maxi
∑
j |ai,j |. In this case the norm of the inverse is bounded by

‖A−1‖∞ ≤
1

1− ‖I −A‖∞
,

see Appendix C. Thus, to show the invertibility of the matrixK, we have to employ localization estimates
for the entries of the matrixK, which means we have to bound the expressions |σN (xi, xj)|, |Xy

kσN (xi, xj)|
and |Xx

nX
y
kσN (xi, xj)|. The values of these expressions should decrease, if the distance of ω(x−1

j xi)
becomes bigger. We are locking for estimates of the form

|σN (xi, xj)| ≤
c

((N + 1)ω(y−1x))s
,
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for some constants s and c only depending on the weights hN and similar estimates for the derivatives.
Using these estimates we find explicit bounds on the supremum norm of the coefficients. Once we have
bound the coefficients, we have to show the condition |q(x)| < 1, where x is not an interpolation point.
This includes convexity arguments for the interpolant q, which means we have to deal with the entries of
the Hessian matrix of q, where third mixed derivatives appear. For this reason, we also need localization
estimates for third derivatives.

The key ingredients for the construction of the interpolant q are localization estimates for the inter-
polation kernel σN and its various derivatives. Moreover, we need explicit constants in these estimates to
show the claimed properties of the interpolant. This is the topic of the next chapter.

Notes and References. The assertions regarding the abstract recovery problem can be found in one
form or another in [Burger and Osher, 2004], [Hofmann et al., 2007], [Scherzer and Walch, 2009]
and [Bredies and Pikkarainen, 2013]. Especially the existence of minimizers and the notion of source
conditions are concepts, that are valid for general Banach spaces.

The abstract setting we chose in Section 1.1 is very close to that chosen in [Bredies and Pikkarainen,
2013], including the connection of a dual certificate to a source condition. Rather than originality, the
intention of Section 1.1 is to give a concise summary of the ’standard’ framework for the recovery via the
convex minimization problem (GP) and to point out the central importance of a dual certificate.

To the best of our knowledge, the problem of super-resolution on the rotation group SO(3) is first
considered in this thesis. The construction of the candidate of a dual certificate, i.e. solving the Hermite
interpolation problem (1.16), is inspired by the article [Candés and Fernandez-Granda, 2014], where
this procedure was proposed for trigonometric moments. Nevertheless, the realization of this so to say
meta-principle is the crucial point and the content of the Chapters 2 and 3.



Chapter 2

Localized Kernels

As seen in the previous chapter, the proposed construction of a dual certificate by solving the linear system
(1.17) requires to control pointwise the quantities |σN (x, y)|, |Xy

nσN (x, y)| and |Xx
i X

y
nσN (x, y)| for an

interpolation kernel σN . By pointwise control we mean estimates of the form

|σN (x, y)| ≤ cs
(N + 1)sω(x−1y)s

, (2.1)

where s > 0 and cs is a constant depending only on s. In addition, since bounds of the form (2.1) are
only meaningful in the case that x and y are sufficiently separated, we need different bounds for x and y
being close to each other. Deriving bounds of the form (2.1) and bounds that control the behavior of the
kernels near the diagonal x = y is the content of this chapter.

The kernels we use are of the form

σN (x, y) =

N∑
l=0

hN (l)
∑

−l≤k,m≤l

Dl
k,m(x)Dl

k,m(y),

with positive weights hN (l) > 0. By the addition formula (1.12) for Wigner D-functions, this can also
be written as

σN (x, y) =

N∑
l=0

hN (l)U2l

(
cos

(
ω(y−1x)

2

))
=

N∑
l=0

hN (l)

l∑
k=−l

eikω(y−1x), (2.2)

where U2l is the Chebyshev polynomial of the second kind of order 2l. In other words, the interpolation
kernels are radial kernels, i.e. they are of the form

σN (x, y) = σ̃N (ω(x−1y)),

where σ̃N is a trigonometric polynomial. For this reason, the localization properties of the interpolation
kernel can be derived from corresponding localization principles for trigonometric polynomials, see e.g.
[Gräf and Kunis, 2008]. In contrast to this, the derivatives of these interpolation kernels are no longer
radial, but should be controllable by the ordinary derivatives of the trigonometric polynomial σ̃N , which
we show in Section 2.2. Beforehand, we choose specific weights, that allow for good control of the
trigonometric polynomial σ̃N and its derivatives, which is the content of Section 2.1.

25
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2.1 Localized Trigonometric Polynomials
We start this section by fixing specific weights in the kernel expansion (2.2). The weights are generated
by sampling a function. More specific, we define the weights hN (l) by

hN (l) =
1

‖g‖1,N

g
(

l
2(N+1)

)
− g

(
l+1

2(N+1)

)
, 0 ≤ l < N,

g
(

N
2(N+1)

)
, l = N,

where g : R → R+ is a symmetric positive function with supp(g) ⊆ [− 1
2 ,

1
2 ], which is decreasing for

positive values. Its discrete coefficient norm is given by

‖g‖1,N :=

N∑
l=−N

g

(
l

2(N + 1)

)
.

This results in

σN (x, y) = σ̃N (ω(y−1x)) =
1

‖g‖1,N

N∑
k=−N

g

(
k

2(N + 1)

)
eikω(y−1x).

In [Mhaskar and Prestin, 2000] and also in [Kunis and Potts, 2007], it was shown that a trigonometric
polynomial of the form

N∑
k=−N

g

(
k

2(N + 1)

)
eikt

obeys a localization property, as long as the function g is sufficiently smooth with derivatives of bounded
variation. The variation of a function f defined on

[
− 1

2 ,
1
2

]
is given by

|f |V := sup

{
n−1∑
i=1

|f(ti+1)− f(ti)|

}
,

where the supremum is taken over all partitions (ti)
n
i=1 of the interval [− 1

2 ,
1
2 ]. The space of (s−1)-times

differentiable functions g with compact support in
[
− 1

2 ,
1
2

]
, such that |g(s−1)|V < ∞, will be denoted

as BVs−1
0 ([− 1

2 ,
1
2 ]). Equipped with these definitions, we have for g ∈ BVs−1

0 ([− 1
2 ,

1
2 ]), see [Kunis and

Potts, 2007, Lemma 3.2],∣∣∣∣∣
N∑

k=−N

g

(
k

2(N + 1)

)
eikt

∣∣∣∣∣ ≤ (2s − 1)ζ(s)|g(s−1)|V
(4(N + 1))s−1|t|s

, (2.3)

for t ∈ (0, π] with N ≥ s − 1 ≥ 1. Here, ζ(s) =
∑∞
k=1

1
ns denotes the Riemannian zeta function. In

addition, for positive g ∈ BVs−1
0 ([− 1

2 ,
1
2 ]) one has the bounds(

‖g‖1 −
2ζ(s)

(2Nπ)s
|g(s−1)|V

)
≤ ‖g‖1,N

2(N + 1)
≤
(
‖g‖1 +

2ζ(s)

(2Nπ)s
|g(s−1)|V

)
, (2.4)

see [Kunis and Potts, 2007, Lemma 3.2]. This leads to explicit constants for localization results of the
trigonometric polynomial

σ̃N (t) =
1

‖g‖1,N

N∑
k=−N

g

(
k

2(N + 1)

)
eikt,
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as long as one can compute the L1−norm of the filter function and the total variation of its (s − 1)-th
derivative. The l−th derivative of the trigonometric polynomial σ̃N is given by

σ̃
(l)
N (t) =

(2(N + 1)i)l

‖g‖1,N

N∑
k=−N

(
k

2(N + 1)

)l
g

(
k

2(N + 1)

)
eikt.

Thus, to achieve an analog localization result for the derivatives we have to estimate the total variation of
the function (zlgs(z))

(s−1). To be able to bound the corresponding norms and variations, we will choose
a specific function to be sampled. We seek for a (s − 1)-smooth function, whose (s − 1)-th derivative
has small total variation. This leads to functions, whose (s− 1)-th derivative is piecewise constant. One
way to construct such a function is to use a B-spline function of order s − 1, see e.g. [Gräf and Kunis,
2008]. We will use the so called perfect B-spline of order s − 1 as filter function, since in this case
|g(s−1)(x)| = 1. These functions are given by

gs−1(x) =
(−1)s−1

(s− 2)!

∫ x

−1

s−1∑
k=0

(−1)kχ(cos( k+1
s π),cos( ks π)](t)(x− t)

s−2dt,

for s ∈ 2N. For reasons of clarity and comprehensibility, the details, properties and bounds for the
corresponding variations and norms are stated in appendix A.

The aim of this section is to show, that for this specific choice of weights the trigonometric polynomial
σ̃N and its derivatives obey

|σ̃(l)
N (t)| ≤ cl,s

(N + 1)s−l|t|s
, l = 0, . . . , 3,

with explicit constants cl,s depending only on the order of the B-spline and the order of the derivative.
The scaled function

g̃s−1(x) = gs−1(2x)

has its support in [− 1
2 ,

1
2 ] and we have g̃s−1 ∈ BVs−1

0 ([− 1
2 ,

1
2 ]). We define the kernel by

σ̃N (t) =
1

‖g̃s‖1,N

N∑
k=−N

g̃s−1

(
k

2(N + 1)

)
eikt.

Theorem 2.1. Let s ≥ 6, s ∈ 2N and N ≥ 2s. Using the scaled perfect B-spline g̃s−1 as filter function
leads to localization estimates for the kernel σ̃N and its derivatives up to order 3, i.e. for t ∈ [−π, π]\{0}
we have

|σ̃(l)
N (t)| ≤ cl,s

(N + 1)s−l|t|s
, l = 0, . . . , 3, (2.5)

where the constants are given by

c0,s = 1.02 · (s− 1)! · 2s · s,
c1,s = 1.02 · (s− 1)! · 2s · 2s,
c2,s = 1.02 · (s− 1)! · 2s · (4s+ 1),

c3,s = 1.02 · (s− 1)! · 2s · (9s− 2) .

Proof. The kernel and its derivatives up to order 3 are given by

σ̃
(l)
N (t) =

(2(N + 1)i)l

‖g̃s−1‖1,N

N∑
k=−N

(
k

2(N + 1)

)l
g̃s−1

(
k

2(N + 1)

)
eikt, l = 0, . . . , 3.
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In view of Proposition A.1 and Lemma A.3, we have ‖g̃s−1‖1 = 1
2‖gs−1‖1 = 1

(s−1)!2s−1 and |g̃(s−1)
s−1 |V =

2ss. Thus, using estimate (2.4) we can bound the discrete norm ‖g̃s−1‖1,N from below by

‖g̃s−1‖1,N ≥
N + 1

2s−2

(
1

(s− 1)!
− ζ(s)s

(πs)s

)
. (2.6)

Combining this with the localization estimate (2.3) yields

|σ̃(l)
N (t)| ≤ (2(N + 1))l(2s − 1)ζ(s)

4s−1(N + 1)s−1|t|s
|(zlg̃s−1)(s−1)|V

2s

4(N + 1)
(

1
(s−1)! −

ζ(s)s
(πs)s

) ,
=

2l|(zlg̃s−1)(s−1)|V
(N + 1)s−l|t|s

(2s − 1)ζ(s)

2s
(

1
(s−1)! −

ζ(s)s
(πs)s

) ,
=

2l|(zlg̃s−1)(s−1)|V
(N + 1)s−l|t|s

(s− 1)!(
1
ζ(s) −

s(s−1)!
(πs)s

) .
Observe, that the sequences 1

ζ(s) and −s(s−1)!
(πs)s are monotonically increasing in s. This means, we can

bound them from below by the first possible value for s, that is s = 6. This gives the upper bound

1(
1
ζ(s) −

s(s−1)!
(πs)s

) ≤ 1(
945
π6 − 720

π666

) ≤ 1.02,

which results in

|σ̃(l)
N (t)| ≤ 1.02(s− 1)!2l|(zlg̃s−1)(s−1)|V

(N + 1)s−l|t|s
.

In view of

(zlg̃s−1)(s−1) =

l∑
n=0

(
s− 1

n

)
(zl)(n)g̃

(s−1−n)
s−1 ,

and
|uv|V ≤ ‖u‖∞|v|V + ‖v‖∞|u|V ,

for two functions u and v, we get for l ≤ s− 1

|(zlg̃s−1)(s−1)|V =

∣∣∣∣∣
l∑

n=0

(
s− 1

n

)
(zl)(n)g̃

(s−1−n)
s−1

∣∣∣∣∣
V

,

≤
l∑

n=0

l!

(l − n)!

(
s− 1

n

)
|zl−ng̃(s−1−n)

s−1 |V ,

≤
l∑

n=0

l!

(l − n)!

(
s− 1

n

)(
‖zl−n‖∞|g̃(s−1−n)

s−1 |V + ‖g̃(s−1−n)
s−1 ‖∞|zl−n|V

)
.

Since ‖zl−n‖∞ = 1
2l−n

and |zl−n|V = 1
2l−n−1 for n < l, we have

|(zlg̃s−1)(s−1)|V ≤
l−1∑
n=0

l!

(l − n)!

(
s− 1

n

)
1

2l−n

(
|g̃(s−1−n)
s−1 |V + 2‖g̃(s−1−n)

s−1 ‖∞
)

(2.7)
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+ l!

(
s− 1

l

)
|g̃(s−1−l)
s−1 |V .

Using inequality (2.7) for the variation of the derivative of products together with Lemma A.3 and the
estimate tan

(
π
2s

)
≤ 2

s for s ≥ 6 yields

|(zg̃s−1(z))(s−1)|V ≤ 2ss,

|(z2g̃s−1(z))(s−1)|V ≤ 2s−2 (4s+ 1) ,

|(z3g̃s−1(z))(s−1)|V ≤ 2s−3 (9s− 2) .

and therefore the constants.

The bounds of the previous theorem are only meaningful if ω is well separated from zero. For values
of ω close to zero we will use different bounds derived from series expansion around zero. For this
purpose, we need upper and lower bounds for the values of the second and fourth derivative of σ̃N at
zero.

Lemma 2.2. Let s ≥ 8, s ∈ 2N and N ≥ 2s. Using the scaled perfect B-spline g̃s−1 as filter function
leads to the following bounds

cs(N + 1)2 ≤ |σ̃
′′

N (0)| ≤ c̃s(N + 1)2,

with
cs =

0.999

2(s+ 1)
, c̃s =

1.001

2(s+ 1)
,

and
ds(N + 1)4 ≤ |σ̃(4)

N (0)| ≤ d̃s(N + 1)4,

with
ds =

3 · 0.999

4(s+ 2)(s+ 1)
, d̃s =

3 · 1.001

4(s+ 2)(s+ 1)
.

In the case s = 8 we have for N ≥ 20

|σ̃(6)
N (0)| ≤ 1.011 · 15

8
· 8!

11!
· (N + 1)6. (2.8)

Proof. We have for m ∈ N

|σ̃(2m)
N (0)| = (2(N + 1))2m

‖g̃s−1‖1,N

N∑
k=−N

(
k

2(N + 1)

)2m

g̃s−1

(
k

2(N + 1)

)
,

=
(2(N + 1))2m

‖g̃s−1‖1,N
‖z2mg̃s−1(z)‖1,N .

To estimate the expressions, we have to bound the discrete norms of the filter function. Using inequality
(2.4), we have to calculate the L1-norms of the functions z2mg̃s−1 on [− 1

2 ,
1
2 ], which are given by

‖z2mg̃s−1(z)‖1 =
(2m)! · s

4m ·m! · 2s+2m−1(s+m)!
,

see Lemma A.2. Together with the bounds of the variations derived in Lemma A.3, we get by applying
inequality (2.4)

|σ̃
′′

N (0)| = (2(N + 1))2 ‖z2g̃s−1(z)‖1,N
‖g̃s−1‖1,N

,
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≥ (2(N + 1))2

(
‖z2g̃s−1(z)‖1 − 2ζ(s)

(4πs)s |(z
2g̃s−1(z))(s−1)|V

)
(
‖g̃s−1‖1 + 2ζ(s)

(4πs)s |g̃
(s−1)
s−1 |V

) ,

≥ (2(N + 1))2

8(s+ 1)

1− 2(s+ 1)(s− 1)! ζ(s)(πs)s (4s+ 1)

1 + s! ζ(s)(πs)s

. (2.9)

We can bound the second quotient in (2.9) from below by its value at s = 8, i.e

1− 2(s+ 1)(s− 1)! ζ(s)(πs)s (4s+ 1)

1 + s! ζ(s)(πs)s

≥
1− 25

4·38

1 + 1
35·38·25

≥ 0.999.

Using the same argument, we can bound from above

|σ̃
′′

N (0)| ≤ (2(N + 1))2

8(s+ 1)

1 + 2(s+ 1)(s− 1)! ζ(s)(πs)s (4s+ 1)

1− s! ζ(s)(πs)s

,

≤ 1.001

2(s+ 1)
(N + 1)2.

By Lemma A.3 and inequality (2.7) as well as sin
(
π
2s

)
≤ π

2s and cos
(
π
2s

) (
2 cos

(
π
s

)
− 1
)
≥ 3

4 we have

|(z4g̃s−1(z))(s−1)|V ≤ 2s−4(35s− 19)

and with the same argumentation as before

|σ̃(4)
N (0)| ≤ 3(N + 1)4

4(s+ 2)(s+ 1)

1 + 4
3
ζ(s)(s+2)!

(πs)ss (35s− 19)

1− ζ(s)s!
(πs)s

,

≤ 3(N + 1)4

4(s+ 2)(s+ 1)
1.001,

and

|σ̃(4)
N (0)| ≥ 3(N + 1)4

4(s+ 2)(s+ 1)
0.999.

In the case s = 8 we have again by using Lemma A.3 and inequality (2.7)

|(z6g̃7(z))(7)|V ≤ 5.0896 · 103.

The same argument as before shows

|σ̃(6)
N (0)| ≤ 1.011 · 15

8
· s!

(s+ 3)!
· (N + 1)6 = 1.011 · 15

8
· 8!

11!
· (N + 1)6.

Having established the localization estimates for the trigonometric polynomial σ̃N and its derivatives,
we are now able to state analog bounds for the kernel σN and its derivatives on the rotation group in the
next section.
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2.2 Localized Kernels on the Rotation Group
Since the kernel σN is of the form

σN (x, y) = σ̃N (ω(y−1x)),

the derived estimates of the last section immediately yield

|σN (x, y)| ≤ c0,s
((N + 1)ω(y−1x))s

, (2.10)

which shows the localization of the kernel σN itself. The derivative kernels Xy
nσN , X

x
i X

y
nσN and

Xx
j X

x
i X

y
nσN are no longer radial functions. Nevertheless, they obey analog localization estimates with

the same constants as in the trigonometric case. Thereby, Theorem 2.3 provides estimates for the en-
tries of the interpolation matrix in (1.17), whereas Lemma 2.4 and 2.5 give bounds for the entries of the
Hessian.

Theorem 2.3. We have for s ∈ 2N, s ≥ 6, N ≥ 2s, ω(y−1x) ≥ π
2(N+1)

|Xy
nσN (x, y)| ≤ c1,s

(N + 1)s−1ω(y−1x)s
,

|Xx
i X

y
nσN (x, y)| ≤ c2,s

(N + 1)s−2ω(y−1x)s
,

and cl,s are the constants of Theorem 2.1.

Proof. We calculate the derivative kernel Xy
1σN . For ω(y−1x) /∈ {0, π}, we have

σN (x, yetL1)− σN (x, y)

t

=
σ̃N (ω(e−tL1y−1x))− σ̃N (ω(y−1x))

ω(e−tL1y−1x)− ω(y−1x)
· ω(e−tL1y−1x)− ω(y−1x)

tr(e−tL1y−1x)− tr(y−1x)

· tr(e−tL1y−1x)− tr(y−1x)

t
.

The limits are given by

lim
t→0

ω(e−tL1y−1x)− ω(y−1x)

tr(e−tL1y−1x)− tr(y−1x)
=

1

−2
√

1− ( tr(y−1x)−1
2 )2

and

lim
t→0

tr(e−tL1y−1x)− tr(y−1x)

t
= ((y−1x)32 − (y−1x)23).

Hence,

Xy
1σN (x, y) = σ̃′N (ω(y−1x))

((y−1x)32 − (y−1x)23)

−2
√

1− ( tr(y−1x)−1
2 )2

= σ̃′N (ω(y−1x))
((y−1x)32 − (y−1x)23)

−2 sin(ω(y−1x))
= −σ̃′N (ω(y−1x))e1,
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where e1 = e1(y−1x) is the first component of the unit vector describing the rotation axis of y−1x. In
the same way, one can calculate

Xy
2σN (x, y) = σ̃′N (ω(y−1x))

((y−1x)31 − (y−1x)13)

2 sin(ω(y−1x))
= −σ̃′N (ω(y−1x))e2,

Xy
3σN (x, y) = σ̃′N (ω(y−1x))

((y−1x)12 − (y−1x)21)

2 sin(ω(y−1x))
= −σ̃′N (ω(y−1x))e3.

Also observe, that we have
Xx
nσN (x, y) = −Xy

nσN (x, y).

This gives

|Xy
nσN (x, y)| ≤ |σ̃′N (ω(y−1x))| ≤ c1,s

(N + 1)s−1ω(y−1x)s
.

These estimates are valid for all x, y ∈ SO(3) with tr(y−1x) /∈ {1, 3}. We know that Xy
nσN (x, y)

is always a finite sum of products of Wigner D-functions, since each operator Xi maps a Wigner D-
function to sums of Wigner D-functions, see e.g. [Chirikjian and Kyatkin, 2000]. Thus, we know for
a fixed x ∈ SO(3) that Xy

nσN (x, y) exists for all y ∈ SO(3) and is continuous, which means that by
limit considerations the estimates above are also valid if ω(y−1x) = π. In the case y = x, we have by
limit considerations Xy

nσN (x, x) = σ̃′N (0) = 0. This leads to the estimate for the first derivatives of the
kernel.

For the estimation of the second kind of kernel, we use the product rule and the calculations above to
show

Xx
i X

y
nσN (x, y) = −Xx

i en(x, y)σ̃
′

N (ω(y−1x))− en(y−1x)Xx
i (σ̃′N (ω(y−1x))).

In the same way as before, we can show

Xx
i (σ̃′N (ω(y−1x))) = σ̃

′′

N (ω(y−1x))ei(y
−1x),

and consequently

Xx
i X

y
nσN (x, y) = −Xx

i en(x, y)σ̃′N (ω(y−1x))− en(y−1x)σ̃
′′

N (ω(y−1x))ei(y
−1x).

Thus, the only part we have to calculate is Xx
i en(x, y). Again, at first we restrict ourselves to ω(y−1x) /∈

{0, π} and extend afterwards by continuity. We concentrate on the example n = 1, i = 3. We have

e1(y−1xetL3)− e1(y−1x)

=

[
(y−1xetL3)32 − (y−1xetL3)23

2 sin(ω(y−1xetL3))
− (y−1x)32 − (y−1x)23

2 sin(ω(y−1x))

]
,

=
1

2 sin(ω(y−1xetL3))

[
(y−1x)32

(
cos(t)− sin(ω(y−1xetL3))

sin(ω(y−1x))

)
+ . . .

. . . (y−1x)23

(
sin(ω(y−1xetL3))

sin(ω(y−1x))
− 1

)
− (y−1x)31 sin(t)

]
.

Using the rule of L’Hôpital, we have

lim
t→0

cos(t)− sin(ω(y−1xetL3 ))
sin(ω(y−1x))

t
= −e3(y−1x)

(
cos(ω(y−1x))

sin(ω(y−1x))

)
,
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where e3(y−1x) denotes the third component of the unit vector representing the rotation axis of y−1x. In
the same way, we get

lim
t→0

sin(ω(y−1xetL3 ))
sin(ω(y−1x)) − 1

t
= e3(y−1x)

(
cos(ω(y−1x))

sin(ω(y−1x))

)
.

Combining all this, we end up with

Xx
3 e1(x, y) = lim

t→0
t−1(e1(y−1xetL3)− e1(y−1x));

=
1

2 sin(ω(y−1x))

[
((y−1x)23 − (y−1x)32)e3(y−1x)

(
cos(ω(y−1x))

sin(ω(y−1x))

)
− (y−1x)31

]
= −e1(y−1x)e3(y−1x)

(
cos(ω(y−1x))

sin(ω(y−1x))

)
− (y−1x)31

2 sin(ω(y−1x))
.

Again, we use the Rodrigues formula for (y−1x)31 = (1− cos(ω))e1e3 − sin(ω)e2 and get

Xx
3 e1(x, y) = −e1(y−1x)e3(y−1x)(1 + cos(ω(y−1x)))

2 sin(ω(y−1x))
+
e2(y−1x)

2
.

Similarly, we can calculate

Xx
2 e1(x, y) = −e1(y−1x)e2(y−1x)(1 + cos(ω(y−1x)))

2 sin(ω(y−1x))
− e3(y−1x)

2

and

Xx
1 e1(x, y) =

1 + cos(ω(y−1x))

2 sin(ω(y−1x))
(1− e1(y−1x)2).

For the other components of the rotation axis, the differentials are computed in the same way and are
given by

Xx
1 e2(x, y) = −e1(y−1x)e2(y−1x)(1 + cos(ω(y−1x)))

2 sin(ω(y−1x))
+
e3(y−1x)

2
,

Xx
2 e2(x, y) =

1 + cos(ω(y−1x))

2 sin(ω(y−1x))
(1− e2(y−1x)2),

Xx
3 e2(x, y) = −e2(y−1x)e3(y−1x)(1 + cos(ω(y−1x)))

2 sin(ω(y−1x))
− e1(y−1x)

2
, (2.11)

Xx
1 e3(x, y) = −e1(y−1x)e3(y−1x)(1 + cos(ω(y−1x)))

2 sin(ω(y−1x))
− e2(y−1x)

2
,

Xx
2 e3(x, y) = −e2(y−1x)e3(y−1x)(1 + cos(ω(y−1x)))

2 sin(ω(y−1x))
+
e1(y−1x)

2
,

Xx
3 e3(x, y) =

1 + cos(ω(y−1x))

2 sin(ω(y−1x))
(1− e3(y−1x)2).

Observe, that we have

sin(ω) ≥ 2

π
ω, for ω ∈ (0, π/2]. (2.12)
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Accordingly, for ω ∈ ( π
2(N+1) ,

π
2 ] we simply estimate∣∣∣∣1 + cos(ω)

sin(ω)
σ̃′N (ω)

∣∣∣∣ ≤ π |σ̃′N (ω)|
|ω|

≤ 2(N + 1)|σ̃′N (ω)|.

For ω ∈ (π2 , π] we have ∣∣∣∣1 + cos(ω)

sin(ω)

∣∣∣∣ =
∣∣∣cot

(ω
2

)∣∣∣ ≤ 1

and consequently ∣∣∣∣1 + cos(ω)

sin(ω)
σ̃′N (ω)

∣∣∣∣ ≤ |σ̃′N (ω)|.

Since |eiej | ≤ 1
2 and N ≥ 2s ≥ 12, we have the estimate

|Xx
j X

y
i σN (x, y)| ≤

(
1

2
(N + 1) +

1

2

)
|σ̃′N (ω(y−1x))|+ 1

2
|σ̃
′′

N (ω(y−1x))|,

≤ (N + 1)|σ̃′N (ω(y−1x))|+ 1

2
|σ̃
′′

N (ω(y−1x))|.

Using the localization result of Theorem 2.1 together with c1,s ≤ 1
2c2,s results in

|Xx
j X

y
i σN (x, y)| ≤

c1,s + 1
2c2,s

(N + 1)s−2ω(y−1x)s
≤ c2,s

(N + 1)s−2ω(y−1x)s
.

If i = j, we have

|Xx
i X

y
i σN (x, y)| ≤ (1− e2

i )(N + 1)|σ̃
′

N (ω(y−1x))|+ e2
i |σ̃
′′

N (ω(y−1x))|,

≤ (1− e2
i )c1,s + e2

i c2,s
(N + 1)s−2ω(y−1x)s

≤ c2,s
(N + 1)s−2ω(y−1x)s

.

For x = y we have
Xx
i X

y
i σN (x, x) = −σ̃

′′

N (0), Xx
j X

y
i σN (x, x) = 0.

The derived bounds are useful for estimating the entries of the interpolation matrix. In addition, we
need localization estimates for the entries of the Hessian matrix. We have to distinguish between two
cases, namely ω(y−1x) is well separated from zero, covered by Lemma 2.4, and ω(y−1x) approaches
zeros, which is handled in Lemma 2.5.

Lemma 2.4. For s ∈ 2N, s ≥ 6, N ≥ 2s, ω(y−1x) ≥ π
2(N+1) , the entries of the Hessian matrix of σN

and Xy
kσN in normal coordinates, see (1.9), obey

|(HσN (x, y))ij | ≤
c2,s

(N + 1)s−3ω(y−1x)s
,

|(HXy
kσN (x, y))ij | ≤

1.2 · c3,s
(N + 1)s−3ω(y−1x)s

.

Proof. The proof works in the same way as the proof of Theorem 2.3. First the derivatives are calculated
directly via the product rule, then the according terms are grouped together in the right way, and an
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estimate is shown. For abbreviation, we suppress the dependence on x, y in the following. By the product
rule we have

Xx
i X

x
i X

y
kσN = −Xx

i X
x
i ekσ̃

′

N − (2eiX
x
i ek + ekX

x
i ei)σ̃

′′

N − e2
i ekσ̃

′′′

N . (2.13)

Suppose we have

Xx
i ek = −eiek

(
1 + cos(ω)

2 sin(ω)

)
± ej

2
,

see (2.11), then the factor in front of σ̃
′

N is calculated as

Xx
i X

x
i ek =

(
1 + cos(ω)

2 sin(ω)

)2 (
e2
i ek − (1− e2

i )ek
)

+

(
1 + cos(ω)

2 sin(ω)

)(
e2
i ek

sin(ω)
∓ eiej

)
∓ ek

4
,

and the factor in front of σ̃
′′

N as

(2eiX
x
i ek + ekX

x
i ei) =

(
1 + cos(ω)

2 sin(ω)

)(
−2e2

i ek + ek(1− e2
i )
)
± eiej .

This means,

Xx
i X

x
i X

y
kσN =

(
(3eke

2
i − ek)

(
1 + cos(ω)

2 sin(ω)

)
∓ eiej

)
σ̃
′′

N (ω)

+

(
(2eke

2
i − ek)

(
1 + cos(ω)

2 sin(ω)

)2

− eke2
i

(
1 + cos(ω)

2 sin2(ω)

)

± eiej
(

1 + cos(ω)

2 sin(ω)

)
± ek

4

)
σ̃
′

N (ω)

− e2
i ekσ̃

′′′

N . (2.14)

For this reason, again by using (2.12) we have for ω ∈ ( π
2(N+1) ,

π
2 ]

|Xx
i X

x
i X

y
kσN | ≤

(
|3eke2

i − ek|(N + 1) + |eiej |
)
|σ̃
′′

N |+ |e2
i ek||σ̃

′′′

N |

+

(∣∣∣∣eke2
i cos(ω)− ek

(
1 + cos(ω)

2

)∣∣∣∣ (N + 1)2

+ |eiej |(N + 1) +
|ek|
4

)
|σ̃
′

N |.

Now, we use that |3eke2
i − ek| ≤ 1, |eke2

i |, |eie2
k| ≤ 2

3
√

3
, |eiej | ≤ 1

2 , and∣∣∣∣eke2
i cos(ω)− ek

(
1 + cos(ω)

2

)∣∣∣∣ ≤ 1,

to derive for N ≥ 2s ≥ 12

|Xx
i X

x
i X

y
kσN | ≤ (N + 1)1.04|σ̃

′′

N |+
2

3
√

3
|σ̃
′′′

N |+ (N + 1)21.04|σ̃
′

N |.
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With Theorem 2.1 and the observation that

c2,s
c3,s

=
4s+ 1

9s− 2
≤ 1

2
,

c1,s
c3,s

=
2s

9s− 2
≤ 1

4
,

we have
|Xx

i X
x
i X

y
kσN (x, y)| ≤ 1.2 · c3,s

(N + 1)s−3ω(y−1x)s
.

In the case k = i, we calculate

Xx
i X

x
i X

y
i σN = −3ei(1− e2

i )

(
1 + cos(ω)

2 sin(ω)

)
σ̃
′′

N (ω) + 2ei(1− e2
i )

(
1 + cos(ω)

2 sin(ω)

)2

σ̃
′

N (ω)

+ ei(1− e2
i )

(
1 + cos(ω)

2 sin2(ω)

)
σ̃
′

N (ω)− e3
i σ̃
′′′

N (ω), (2.15)

which yields

|Xx
i X

x
i X

y
i σN | ≤ 3|ei(1− e2

i )|(N + 1)
(
|σ̃
′′

N |+ (N + 1)2|σ̃
′

N |
)

+ |e3
i ||σ̃

′′′

N |,

≤ 1

(N + 1)s−3ωs
|ei|
(
3(1− e2

i ) (c2,s + c1,s) + e2
i c3,s

)
,

≤ c3,s
(N + 1)s−3ωs

|ei|(2.25− 1.25e2
i )︸ ︷︷ ︸

≤1.2

≤ 1.2 · c3,s
(N + 1)s−3ωs

.

This shows the estimate for the on-diagonal entries of the Hessian. For the off-diagonal entries observe,
that we have for n 6= j, i the following sign combination

Xx
i en = −eien

(
1 + cos(ω)

2 sin(ω)

)
± ej

2
,

Xx
j en = −ejen

(
1 + cos(ω)

2 sin(ω)

)
∓ ei

2
,

Xx
j ei = −ejei

(
1 + cos(ω)

2 sin(ω)

)
± en

2
.

This gives

Xx
i X

x
nσN ∓

1

2
Xx
j σN = eien

(
σ̃
′′

N (ω)− 1 + cos(ω)

2 sin(ω)
σ̃
′

N (ω)

)
and therefore, using (2.12) and Theorem 2.1,

|Xx
i X

x
nσN ∓

1

2
Xx
j σN | ≤ |eien|

(
|σ̃
′′

N (ω)|+ (N + 1)|σ̃
′

N (ω)|
)
,

≤ |eien|
(N + 1)s−2ωs

(c2,s + c1,s) .

Since c1,s
c2,s
≤ 1

2 and |eien| ≤ 1
2 , we get

|Xx
i X

x
nσN ∓

1

2
Xx
j σN | ≤

c2,s
(N + 1)s−2ωs

,
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which shows the first inequality. For the second one, we calculate

Xx
j X

x
i X

y
nσN ∓

1

2
Xx
nX

y
nσN = −Xx

j X
x
i enσ̃

′
N (ω)−

(
ejX

x
i en + enX

x
j ei + eiX

x
j en

)
σ̃
′′

N (ω)

− eiejenσ̃
′′′

N (ω)∓ 1

2

(
−Xx

nenσ̃
′
N (ω)− e2

nσ̃
′′

N (ω)
)
,

= −Xx
j X

x
i enσ̃

′
N (ω)−

(
ejX

x
i en + enX

x
j ei + eiX

x
j en

)
σ̃
′′

N (ω)

− eiejenσ̃
′′′

N (ω)± 1

2

(
(1− e2

n)

(
1 + cos(ω)

2 sin(ω)

)
σ̃′N (ω) + e2

nσ̃
′′

N (ω)

)
,

with

Xx
j X

x
i en = 2ejeien

(
1 + cos(ω)

2 sin(ω)

)2

∓
e2
n + e2

j − e2
i

2

(
1 + cos(ω)

2 sin(ω)

)
+
eiejen
sin(ω)

(
1 + cos(ω)

2 sin(ω)

)
± 1

2

(
1 + cos(ω)

2 sin(ω)

)
and (

ejX
x
i en + enX

x
j ei + eiX

x
j en

)
= (−3eienej)

(
1 + cos(ω)

2 sin(ω)

)
±
e2
j + e2

n − e2
i

2
.

Putting this together yields

Xx
j X

x
i X

y
nσN ∓

1

2
Xx
nX

y
nσN =

(
3eiejen

(
1 + cos(ω)

2 sin(ω)

)
±
e2
i − e2

j

2

)
σ̃
′′

N (ω)

−

(
2eiejen

(
1 + cos(ω)

2 sin(ω)

)2

+ eiejen

(
1 + cos(ω)

2 sin2(ω)

)

±
e2
i − e2

j

2

(
1 + cos(ω)

2 sin(ω)

))
σ̃
′

N (ω)− eienej σ̃
′′′

N (ω). (2.16)

Again using (2.12), we can estimate

|Xx
j X

x
i X

y
nσN ∓

1

2
Xx
nX

y
nσN | ≤

(
3|eiejen|(N + 1) +

|e2
i − e2

j |
2

)
|σ̃
′′

N (ω)|

+

(
3|eiejen|(N + 1)2 +

|e2
i − e2

j |
2

(N + 1)

)
|σ̃
′

N (ω)|

+ |eienej ||σ̃
′′′

N (ω)|.

With Theorem 2.1 and |eienej | ≤
(

1√
3

)3

≤ 1
5 , as well as c2,s

c3,s
≤ 1

2 and c1,s
c3,s
≤ 1

4 , we have for
N ≥ 2s ≥ 12

|Xx
j X

x
i X

y
nσN ∓

1

2
Xx
nX

y
nσN | ≤

c3,s
(N + 1)s−3ωs

.

In the same way one calculates

Xx
j X

x
i X

y
i σN ∓

1

2
Xx
nX

y
i σN =

(
ej(3e

2
i − 1)

(
1 + cos(ω)

2 sin(ω)

)
∓ eiej

2

)
σ̃
′′

N (ω)
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−

(
2e2
i ej

(
1 + cos(ω)

2 sin(ω)

)2

+ ej(1− e2
i )

(
1 + cos(ω)

2 sin2(ω)

)

∓ eien
2

(
1 + cos(ω)

2 sin(ω)

)
± ej

4

)
σ̃
′

N (ω)− e2
i ej σ̃

′′′

N (ω), (2.17)

leading to the estimate

|Xx
j X

x
i X

y
i σN ∓

1

2
Xx
nX

y
i σN | ≤

(
|ej(3e2

i − 1)|(N + 1) +
|eiej |

2

)
|σ̃
′′

N (ω)|

+

(
|ej(e2

i cos(ω) + 1)|(N + 1)2

+
|eien|

2
(N + 1) +

|ej |
4

)
|σ̃
′

N (ω)|+ |e2
i ej ||σ̃

′′′

N (ω)|.

We have |ej(3e2
i − 1)| ≤ 1, |ej(e2

i cos(ω) + 1)| ≤ 1.1, |eiej | ≤ 1
2 , |e2

i ej | ≤ 2
3
√

3
, and thus for N ≥ 2s ≥

12

|Xx
j X

x
i X

y
i σN ∓

1

2
Xx
nX

y
i σN | ≤

1.2 · c3,s
(N + 1)s−3ωs

.

For the last inequality one finds

Xx
j X

x
i X

y
j σN ∓

1

2
Xx
nX

y
j σN =

(
ei(3e

2
j − 1)

(
1 + cos(ω)

2 sin(ω)

)
∓ enej

2

)
σ̃
′′

N (ω)

−

(
(2eie

2
j − ei)

(
1 + cos(ω)

2 sin(ω)

)2

+ eie
2
j

(
1 + cos(ω)

2 sin2(ω)

)

+
ejen

2

(
1 + cos(ω)

2 sin(ω)

))
σ̃
′

N (ω)− eie2
j σ̃
′′′

N (ω). (2.18)

Using similar estimations as before, one shows

|Xx
j X

x
i X

y
j σN ∓

1

2
Xx
nX

y
j σN | ≤

1.2 · c3,s
(N + 1)s−3ωs

.

Lemma 2.5. For s ∈ 2N, s ≥ 8, N ≥ 2s, ω(y−1x) ≤ δ
N+1 , 0 ≤ δ ≤ π

2 we have the following estimates∣∣∣(HσN (x, y))ii − σ̃
′′

N (0)
∣∣∣ ≤ d̃s

2
(N + 1)2δ2,

|(HσN (x, y))ij | ≤
d̃s
4

(N + 1)2δ2, i 6= j

|(HXy
kσN (x, y))ij | ≤ d̃s

(
(N + 1)3δ +

1

4
(N + 1)2δ2

)
+
c̃s
4

(N + 1)δ.

Proof. Since

Xx
i X

x
i σN =

1 + cos(ω)

2 sin(ω)
(1− e2

i )σ̃
′

N (ω) + e2
i σ̃
′′

N (ω),
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where ω = ω(y−1x) again denotes the rotation angle and ei = ei(y
−1x) denotes the i-th component of

the rotation axis, we can write(
Xx
i X

x
i σN − σ̃

′′

N (0)
)

= (1− e2
i )

(
1 + cos(ω)

2 sin(ω)
σ̃
′

N (ω)− σ̃
′′

N (ω)

)
(2.19)

+
(
σ̃
′′

N (ω)− σ̃
′′

N (0)
)
.

The second term can be estimated using

(1− cos(kω)) ≤ k2ω2

2
, ω ∈ [0,

δ

N + 1
]. (2.20)

For this reason, we can estimate using Lemma 2.2

(
σ̃
′′

N (ω)− σ̃
′′

N (0)
)

=
1

‖g̃s−1‖1,N
2

N∑
k=1

g̃s

(
k

2(N + 1)

)
k2(1− cos(kω)),

≤ ω2

2
|σ̃(4)
N (0)| ≤ d̃s

2
(N + 1)2δ2.

We show that the first term in (2.19) is less or equal to zero and bounded in absolute value by the second
term. Since(

1 + cos(ω)

2 sin(ω)
σ̃
′

N (ω)− σ̃
′′

N (ω)

)
=

2

‖g̃s−1‖1,N

N∑
k=1

g̃s

(
k

2(N + 1)

)
k2

(
cos(kω)− 1 + cos(ω)

2k sin(ω)
sin(kω)

)
,

it is sufficient to show that for each 1 ≤ k ≤ N(
cos(kω)− 1 + cos(ω)

2k sin(ω)
sin(kω)

)
≤ 0, ω ∈ [0,

δ

N + 1
]. (2.21)

First, observe that the lefthand side in (2.21) equals zero at ω = 0. Now we show that the lefthand side is
also monotonically decreasing. Its derivative is given by

− k sin(kω) +
1

2

(
1 + cos(ω)

sin(ω)

)(
sin(kω)

k sin(ω)
− cos(kω)

)
. (2.22)

To proceed, we show that for each 1 ≤ k ≤ N(
1 + cos(ω)

sin(ω)

)(
sin(kω)

k sin(ω)
− cos(kω)

)
≤ k sin(kω). (2.23)

On the interval [0, δ
N+1 ] this is equivalent to

k cos(ω)− cos(kω) sin(ω)

sin(kω)
≤ k − 1

k
. (2.24)

The function on the left hand side equals k − 1
k for ω = 0. To get the desired estimate we show that

the function on the lefthand side of (2.24) attains its maximum on the interval [0, δ
N+1 ] at ω = 0. The

derivative of the left hand side of (2.24) is given by

−k sin(ω) +
k sin(ω)

sin2(kω)
− cos(kω) cos(ω)

sin(kω)
= k cot(kω) sin(ω)

(
cos(kω)

sin(kω)
− cos(ω)

k sin(ω)

)
.
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We have k sin(ω)
cos(ω) < sin(kω)

cos(kω) , due to the power series representation of the tangent function, and accord-
ingly (

cos(kω)

sin(kω)
− cos(ω)

k sin(ω)

)
< 0. (2.25)

This means the function given by the left hand side of (2.24) is strictly monotonic decreasing on the
interval [0, δ

N+1 ]. Thus, it attains its maximum at ω = 0. Hence, the function in (2.22) is strictly negative,
which implies that the inequality (2.21) holds. The first term of (2.19) can be bounded in absolute value
by∣∣∣∣1 + cos(ω)

2 sin(ω)
σ̃
′

N (ω)− σ̃
′′

N (ω)

∣∣∣∣ =
2

‖g̃s−1‖1,N

N∑
k=1

g̃s

(
k

2(N + 1)

)
k2

∣∣∣∣cos(kω)− 1 + cos(ω)

2k sin(ω)
sin(kω)

∣∣∣∣ .
As seen before in (2.21), we already know that∣∣∣∣cos(kω)− 1 + cos(ω)

2k sin(ω)
sin(kω)

∣∣∣∣ =

(
1 + cos(ω)

2k sin(ω)
sin(kω)− cos(kω)

)
,

=
1 + cos(ω)

2k sin(ω)
sin(kω)− cos(kω).

Since sin(kω) ≤ k sin(ω), we see∣∣∣∣cos(kω)− 1 + cos(ω)

2k sin(ω)
sin(kω)

∣∣∣∣ ≤ 1− cos(kω) ≤ k2ω2

2
, ω ∈ [0,

δ

N + 1
], (2.26)

which shows ∣∣∣Xx
i X

x
i σN − σ̃

′′

N (0)
∣∣∣ ≤ d̃s

2
(N + 1)2δ2.

Moreover, ∣∣∣∣1 + cos(ω)

2 sin(ω)
σ̃
′

N (ω)− σ̃
′′

N (ω)

∣∣∣∣ ≤ d̃s
2

(N + 1)2δ2, ω ∈ [0,
δ

N + 1
]. (2.27)

Similarly, we have

Xx
i X

x
nσN ∓

1

2
Xx
j σN = eien

(
σ̃
′′

N (ω)− 1 + cos(ω)

2 sin(ω)
σ̃
′

N (ω)

)
,

which yields, since |eiej | ≤ 1
2 ,

|Xx
i X

x
nσN ∓Xx

j σN | ≤
d̃s
4

(N + 1)2δ2.

For the third mixed derivatives one has in the case n 6= i

Xx
i X

x
i X

y
nσN = (2ene

2
i − en)

(
1 + cos(ω)

2 sin(ω)

)(
σ̃
′′

N (ω)−
(

1 + cos(ω)

2 sin(ω)

)
σ̃N (ω)

)
+ ene

2
i

(
1 + cos(ω)

2 sin(ω)

)(
σ̃
′′

N (ω)− σ̃N (ω)

sin(ω)

)
± eiej

((
1 + cos(ω)

2 sin(ω)

)
σ̃N (ω)− σ̃

′′

N (ω)

)
− e2

i enσ̃
′′′

N ±
en
4
σ̃′N (ω),
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as seen already in (2.14). Since 1+cos(ω)
2 ≤ 1, we have(

1 + cos(ω)

sin(ω)

)((
1 + cos(ω)

2 sin(ω)

)
sin(kω)

k
− cos(kω)

)
≤
(

1 + cos(ω)

sin(ω)

)(
sin(kω)

k sin(ω)
− cos(kω)

)
,

(2.28)

≤ k sin(kω),

see (2.23). Consequently, since | en2 |(|2e
2
i − 1|+ 3e2

i ) ≤ 1, this yields

|Xx
i X

x
i X

y
nσN | ≤ d̃s

(
(N + 1)3δ +

1

4
(N + 1)2δ2

)
+
c̃s
4

(N + 1)δ.

In the case n = i we have, see (2.15),

Xx
i X

x
i X

y
i σN = 2ei(1− e2

i )

(
1 + cos(ω)

2 sin(ω)

)((
1 + cos(ω)

2 sin(ω)

)
σ̃N (ω)− σ̃

′′

N (ω)

)
+ ei(1− e2

i )

(
1 + cos(ω)

2 sin(ω)

)(
σ̃N (ω)

sin(ω)
− σ̃

′′

N (ω)

)
− e3

i σ̃
′′′

N (ω).

Using 3
2 |ei|(1− e

2
i ) + |e3

i | ≤ 1, this results in

|Xx
i X

x
i X

y
i σN | ≤ d̃s(N + 1)3δ.

Observe that we have for n 6= j, i the following sign combination

Xx
i en = −eien

(
1 + cos(ω)

2 sin(ω)

)
± ej

2
,

Xx
j en = −ejen

(
1 + cos(ω)

2 sin(ω)

)
∓ ei

2
,

Xx
j ei = −ejei

(
1 + cos(ω)

2 sin(ω)

)
± en

2
.

Accordingly, as seen in (2.16),

Xx
j X

x
i X

y
nσN ∓

1

2
Xx
nX

y
nσN = 2eiejen

(
1 + cos(ω)

2 sin(ω)

)(
σ̃
′′

N (ω)−
(

1 + cos(ω)

2 sin(ω)

)
σ̃′N (ω)

)
+ eiejen

(
1 + cos(ω)

2 sin(ω)

)(
σ̃
′′

N (ω)− σ̃′N (ω)

sin(ω)

)
− eienej σ̃

′′′

N (ω)

±
e2
i − e2

j

2

(
σ̃
′′

N (ω)−
(

1 + cos(ω)

2 sin(ω)

)
σ̃′N (ω)

)
,

so we can estimate using (2.28) together with |eienej | ≤
(

1√
3

)3

≤ 1
5∣∣∣∣Xx

j X
x
i X

y
nσN ∓

1

2
Xx
nX

y
nσN

∣∣∣∣ ≤ d̃s(1

2
(N + 1)3δ +

1

4
(N + 1)2δ2

)
.

Similarly, we have, see (2.17) and (2.18),

Xx
j X

x
i X

y
i σN ∓

1

2
Xx
nX

y
i σN = 2e2

i ej

(
1 + cos(ω)

2 sin(ω)

)(
σ̃
′′

N (ω)−
(

1 + cos(ω)

2 sin(ω)

)
σ̃′N (ω)

)
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− ej(1− e2
i )

(
1 + cos(ω)

2 sin(ω)

)(
σ̃
′′

N (ω)− σ̃′N (ω)

sin(ω)

)
− e2

i ej σ̃
′′′

N (ω)

∓ eien
2

(
σ̃
′′

N (ω)−
(

1 + cos(ω)

2 sin(ω)

)
σ̃′N (ω)

)
∓ ej

4
σ̃
′

N (ω)

and

Xx
j X

x
i X

y
j σN ∓

1

2
Xx
nX

y
j σN = (2eie

2
j − ei)

(
1 + cos(ω)

2 sin(ω)

)(
σ̃
′′

N (ω)−
(

1 + cos(ω)

2 sin(ω)

)
σ̃N (ω)

)
+ eie

2
j

(
1 + cos(ω)

2 sin(ω)

)(
σ̃
′′

N (ω)− σ̃N (ω)

sin(ω)

)
− eie2

j σ̃
′′′

N (ω)

± enej
2

(
σ̃
′′

N (ω)−
(

1 + cos(ω)

2 sin(ω)

)
σ̃N (ω)

)
,

which yields∣∣∣∣Xx
j X

x
i X

y
i σN ∓

1

2
Xx
nX

y
i σN

∣∣∣∣ ≤ d̃s((N + 1)3δ +
1

8
(N + 1)2δ2

)
+
cs
4

(N + 1)δ,∣∣∣∣Xx
j X

x
i X

y
j σN ∓

1

2
Xx
nX

y
j σN

∣∣∣∣ ≤ d̃s((N + 1)3δ +
1

8
(N + 1)2δ2

)
.

The previous statements, i.e. Theorem 2.3, Lemma 2.4 and Lemma 2.5, give pointwise control of
the absolute value of the interpolation kernel and its various derivatives. The last lemma of this section
provides bounds for summing up those pointwise expressions. In combination with Theorem 2.3 and
Lemma 2.4, we use it in the next section to bound off-diagonal entries of the interpolation and the Hessian
matrix.

Lemma 2.6. Let xj ∈ X , where X ⊂ SO(3) is a discrete set obeying a separation condition of ρ(X ) ≥
ν

N+1 with ν ≥ π, and let x ∈ SO(3) such that d(x, xj) ≤ ε ν
N+1 , for 0 ≤ ε ≤ 1/2. Suppose f :

SO(3)× SO(3)→ C obeys,

|f(x, y)| ≤ cf
((N + 1) · ω(y−1x))

s ,

for x 6= y and s > 3, then ∑
xi∈X\xj

|f(x, xi)| ≤
cfaε
νs

,

where aε = ζ(s− 2) ·min{27 · (1− ε)−s + 124, 124 · (1− ε)−s}. Here ζ denotes the Riemannian Zeta
function.

Proof. For x ∈ SO(3), with d(x, xj) ≤ ε ν
N+1 for some xj ∈ X , we define the ring about x by

Sm := {y ∈ SO(3) :
νm

N + 1
≤ d(x, y) ≤ ν(m+ 1)

N + 1
},

for m ∈ N. By definition we have Sm = ∅ for mν
N+1 > π. Moreover, as shown in [Schmid, 2009] we can

estimate the number of elements in the intersection of Sm with the set X \ {xj} for m ≥ 1 by

card(X \ {xj} ∩ Sm) ≤ 48m2 + 48m+ 28 ≤ 124m2.
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Observe, that B ν
2(N+1)

(xi) ∩B ν
2(N+1)

(xn) = ∅ for xi, xn ∈ X \ {xj} ∩ S0 and⋃
xi∈X\{xj}∩S0

B ν
2(N+1)

(xi) ⊆ B 3ν
2(N+1)

(x).

By the translation invariance of the Haar-measure λ, this shows

card(X \ {xj} ∩ S0) ≤
λ
(
B 3ν

2(N+1)
(e)
)

λ
(
B ν

2(N+1)
(e)
) =

3ν
2(N+1) − sin( 3ν

2(N+1) )
ν

2(N+1) − sin( ν
2(N+1) )

.

We derive the following bound
3r − sin(3r)

r − sin(r)
≤ 27

or equivalently sin(3r)− 27 sin(3r) + 24r ≥ 0 for r ∈ [0, π]. Observe, that the lefthandside equals zero
for r = 0. For 0 < r ≤ π the derivative obeys

3 cos(3r)− 27 cos(r) + 24 = 48 sin4
(r

2

)
(cos(r) + 2) ≥ 0,

which shows
card(X \ {xj} ∩ S0) ≤ 27.

Since d(x, xj) ≤ ε ν
N+1 , we have d(x, xi) ≥ (1−ε)ν

N+1 for xi ∈ X \ {xj} ∩ S0. Using this and the locality
result (2.3), we can estimate for s ≥ 4∑
xi∈X\xj

|f(x, xi)| ≤
∑

xi∈(X\xj)∩S0

cf
((N + 1) · d(x, xi))

s +

∞∑
m=1

∑
xi∈(X\xj)∩Sm

cf
((N + 1) · d(x, xi))s

,

≤ 27cf (1− ε)−s

νs
+ 124cf

∞∑
m=1

m2

(mν)s
,

≤ 27cf (1− ε)−s

νs
+

124cf
νs

∞∑
m=1

1

ms−2
,

≤ (27(1− ε)−s + 124)cfζ(s− 2)

νs
,

where the last inequality follows by the definition of the Zeta function. On the other hand, we can define
the rings around xj again by

S̃m := {y ∈ SO(3) :
(1− ε)νm
N + 1

≤ d(xj , y) ≤ (1− ε)ν(m+ 1)

N + 1
}.

Since d(x, xj) ≤ ε ν
N+1 , we have d(x, xj) ≤ εd(xi, xj) for xi ∈ (X \ xj) ∩ S̃m and consequently

d(x, xi) ≥ d(xi, xj) − d(x, xj) ≥ (1−ε)νm
N+1 . Using this and the locality result (2.3), we can estimate for

s ≥ 4 ∑
xi∈X\xj

|f(x, xi)| ≤
∞∑
m=1

∑
xi∈(X\xj)∩S̃m

cf
((N + 1)d(x, xi))s

,

≤ 124cf

∞∑
m=1

m2

(1− ε)s(mν)s
,
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≤ 124cf
(1− ε)sνs

∞∑
m=1

1

ms−2
=

124cfζ(s− 2)

(1− ε)sνs
.

The derived bounds for the kernel and its various derivatives are used in the next chapter to construct
and validate a dual certificate, that ensures the unique solvability of the minimization problem

min
µ∈M(SO(3),R)

‖µ‖TV , subject to S∗Nµ = S∗Nµ?. (RP)

As discussed in Section 1.2.2, the dual certificate is constructed as the solution of a Hermite-type inter-
polation problem, which we see in more detail in the next chapter.

Notes and References. Localization estimates for trigonometric polynomials with coefficients generated
by sampling a smooth function are well known, see e.g. [Mhaskar and Prestin, 2000] and [Kunis and
Potts, 2007]. The paradigm of building localized kernels from orthogonal function systems, that obey
estimates similar to (2.1), is valid in very general settings, see [Filbir and Mhaskar, 2010]. Nevertheless,
those kernels only allow for asymptotic estimates, as the appearing constants are not known explicitly
and the behavior near the diagonal is not clear in general.

Localization estimates with application to stability results in scattered data interpolation on the ro-
tation group can be found in [Gräf and Kunis, 2008], where also weights generated by sampling Spline
functions are considered. The contribution of this chapter is to provide analog estimates for the various
derivatives of a kernel of this form and to get pointwise bounds near the diagonal.



Chapter 3

Dual Certificate and Error Estimates

The aim of this chapter is to construct a dual certificate, i.e. a function q ∈ ΠN (SO(3)), such that for a
given set of points X = {x1, . . . , xM} ⊂ SO(3) and a given sign u(x) ∈ {−1, 1}, we have

q(xi) = u(xi), xi ∈ X ,
|q(x)| < 1, x ∈ SO(3) \ X .

(3.1)

As seen in Section 1.1, constructing such a dual certificate for all possible signs is a sufficient criteria for
a signed measure µ? with supp(µ?) = X to be the unique solution of the minimization

min
µ∈M(SO(3),R)

‖µ‖TV , subject to S∗Nµ = S∗Nµ?. (RP)

Since we have to find an interpolating function q ∈ ΠN (SO(3)) for each possible sign, the support points
x1, . . . , xM cannot get arbitrarily close. We demand a minimal separation on the support points, i.e. a
condition of the form

ρ(X ) = min
xi,xj∈X ,xi 6=xj

ω(x−1
i xj) ≥

ν

N + 1
, (3.2)

where ν is a given constant. In Section 3.1, we construct a candidate for a dual certificate using a Hermite
interpolation under the separation assumption (3.2). We see in Section 3.2, that ν = 36 is a sufficient
assumption for the candidate function being a dual certificate, i.e. obeying the conditions (3.1).

We close this chapter considering the case, that we cannot access the low frequency information S∗Nµ?
exactly, but only corrupted by noise of the form

S∗N (µ? + η),

with ‖S∗η‖L2(SO(3)) ≤ ε. In this case, we solve the Thikonov type minimization problem

min
µ∈M(SO(3),R)

1

2
‖S∗N (µ− µ? − η)‖2L2(SO(3)) + τ‖µ‖TV . (RPτ )

For a polynomial operator KL mapping to ΠL(SO(3)) for L ≥ N , i.e.

KLf(x) =

∫
SO(3)

f(y)KL(x, y)dλ(y),

choosing τ = ε yields bounds of the form

‖K∗L(µτ − µ?)‖∞ ≤ C · ‖KL‖∞ · s2
L,N · τ,

where µτ is the unique solution of the problem (RPτ ) and sL,N = L
N is called super-resolution factor.

This is the content of Section 3.3.

45
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3.1 Solution of the Interpolation Problem
In this section, we construct a candidate for a dual certificate, i.e. a function q ∈ ΠN (SO(3)), such that
the conditions

q(xi) = u(xi), xi ∈ X ,
|q(x)| < 1, x ∈ SO(3) \ X

are fulfilled. Heuristically, the interpolation points are local extrema of the function q, which means
that the first derivatives have to vanish at an interpolation point. We consequently solve the Hermite
interpolation problem

q(xj) = uj ,

X1q(xj) = X2q(xj) = X3q(xj) = 0,

for j = 1, . . . ,M . To find a solution of the Hermite interpolation problem in the space ΠN (SO(3)), we
determine coefficients αj,0, αj,1, αj,2, αj,3 for j = 1, . . . ,M in the kernel expansion

q(x) =

M∑
j=1

αj,0σN (x, xj) + αj,1X
y
1σN (x, xj) + αj,2X

y
2σN (x, xj) + αj,3X

y
3σN (x, xj),

satisfying

Kα :=


σN Xx

1 σN Xx
2 σN Xx

3 σN
Xy

1σN Xx
1X

y
1σN Xx

2X
y
1σN Xx

3X
y
1σN

Xy
2σN Xx

1X
y
2σN Xx

2X
y
2σN Xx

3X
y
2σN

Xy
3σN Xx

1X
y
3σN Xx

2X
y
3σN Xx

3X
y
3σN



α0

α1

α2

α3

 =


u
0
0
0

 , (3.3)

where the entries in the matrix corresponds to blocks of the form σN = (σN (xi, xj))
M
i,j=1 and in the

same way for the derivatives. The blocks in the vectors are given by αk = (αk,j)
M
j=1, for k = 0, 1, 2, 3,

and u = (uj)
M
j=1. In the case this matrix is invertible, we have that q satisfies the Hermite interpolation

conditions. Moreover, by construction of the kernel σN , the function q is always a polynomial of degree
at most N . For abbreviation, we write

σij = Xx
i X

y
j σN , i, j = 1, . . . , 3.

We have to show, that the block matrix

K =

(
K0 K̃1

K1 K2

)
,

with blocks given by

K0 = σ00 = σN ,

K1 =
[
σ01 σ02 σ03

]T
=
[
Xy

1σN Xy
2σN Xy

3σN
]T
,

K̃1 =
[
σ10 σ20 σ30

]
=
[
Xx

1 σN Xx
2 σN Xx

3 σN
]
,

K2 =

σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33

 =

Xx
1X

y
1σN Xx

2X
y
1σN Xx

3X
y
1σN

Xx
1X

y
2σN Xx

2X
y
2σN Xx

3X
y
2σN

Xx
1X

y
3σN Xx

2X
y
3σN Xx

3X
y
3σN
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is invertible. To do this, we use an two step block inversion to show that both the matrix K2 and its Schur
complement K/K2 = K0 − K̃1K

−1
2 K1 are invertible. To show the invertibility of K2, we split up K2

in the first step furthermore into blocks as

K2 =

(
K2,0 K̃2,1

K2,1 K2,2

)
,

with

K2,0 = σ11,

K2,1 =
[
σ12 σ13

]T
,

K̃2,1 =
[
σ21 σ31

]
,

K2,2 =

[
σ22 σ32

σ23 σ33

]
.

This shows that K2 is invertible, if K2,2 is invertible and its Shur complement in K2 given by

S = K2/K2,2 = K2,0 − K̃2,1K
−1
2,2K2,1

is invertible. For the invertibility of K2,2, we proof the invertibility of

σ33 = Xx
3X

y
3σN

and its Schur complement in K2,2 given by

T = K2,2/σ33 = σ22 − σ32 (σ33)
−1
σ23.

Having this, we go backwards determining the inverse of K2 and in the end of K. For this purpose, we
use that a matrix A is invertible if

‖I −A‖∞ < 1,

where ‖A‖∞ = maxi
∑
j |ai,j |. In this case the norm of the inverse is bounded by

‖A−1‖∞ ≤
1

1− ‖I −A‖∞
,

see Appendix C. In the following Lemma we bound the norms of the corresponding entries in the kernel
matrix K.

Lemma 3.1. If the separation condition (3.2) is satisfied, we have for any s ≥ 6 even, N ≥ 2s with
Ci,s = 124ci,sζ(s− 2) and cs = 0.999

2(s+1) the estimates

‖I − σ00‖∞ ≤
C0,s

νs
,
∥∥σ−1

00

∥∥
∞ ≤

1

1− C0,s

νs

,

‖σ0i‖∞ , ‖σi0‖∞ ≤
C1,s(N + 1)

νs
, ‖σij‖∞ ≤

C2,s(N + 1)2

νs
, for i 6= j, i, j 6= 0,∥∥∥−σ̃′′N (0)I − σii

∥∥∥
∞
≤ C2,s(N + 1)2

νs
,
∥∥σ−1

ii

∥∥
∞ ≤

1

cs(N + 1)2
(

1− C2,s

csνs

) ,
where the constants ci,s are given in Theorem 2.1.

Proof. The proof follows directly from applying Lemma 2.6 together with the bound for |σ̃′′N (0)| given
in Lemma 2.2.
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Theorem 3.2. Suppose the separation condition (3.2) is satisfied for some ν ≥ π, such that for s ≥ 8
even and N ≥ 2s, there is a constant b > 4, with

νs ≥ bC2,s

cs
, (3.4)

where the constant cs is given in Lemma 2.2 and C2,s in Lemma 3.1. Then the matrix K is invertible and
for u, b1, b2, b3 ∈ CM×1 such that 

α0

α1

α2

α3

 = K−1


u
b1
b2
b3

 ,

we have

‖α0‖∞ ≤ C(b, s)

(
4(b− 3)‖u‖∞ +

2

(N + 1)
(‖b1‖∞ + ‖b2‖∞ + ‖b3‖∞)

)
,

‖α1‖∞ ≤ C(b, s)

(
2‖u‖∞
(N + 1)

+
4

cs(N + 1)2

(
(b− 2)‖b1‖∞ + ‖b2‖∞ + ‖b3‖∞

))
,

‖α2‖∞ ≤ C(b, s)

(
2‖u‖∞
(N + 1)

+
4

cs(N + 1)2

(
(b− 2)‖b2‖∞ + ‖b1‖∞ + ‖b3‖∞

))
,

‖α3‖∞ ≤ C(b, s)

(
2‖u‖∞
(N + 1)

+
4

cs(N + 1)2

(
(b− 2)‖b3‖∞ + ‖b2‖∞ + ‖b3‖∞

))
,

with C(b, s) = 1
4(b−3)−cs . Moreover, if |ui| = 1, ‖u‖∞ ≤ 1 and b1 = b2 = b3 = 0 we have the bound

|α0,i| ≥ 1− cs
4(b− 3)− cs

.

Proof. In this proof, the quotient C2,s

csνs
appears quite often, so we will denote it for abbreviation by

a1 :=
C2,s

csνs
.

It represents the quotient of the off-diagonal upper bound and the on-diagonal lower bound. The assump-
tion of the theorem then reads as

a1 ≤
1

b
,

with b > 4. Oberve, that we automatically have b > 3 + cs
2 for all s ∈ 2N. Using Lemma 3.1, we can

estimate ∥∥σ−1
33

∥∥
∞ ≤

1

cs(N + 1)2 (1− a1)

and ∥∥∥σ̃′′N (0)I −K2,2/σ33

∥∥∥
∞
≤
∥∥∥σ̃′′N (0)I − σ22

∥∥∥
∞

+ ‖σ32‖∞
∥∥σ−1

33

∥∥
∞ ‖σ23‖∞ ,

≤ C2,s(N + 1)2

νs

(
1 +

C2,s

csνs − C2,s

)
.

This means ∥∥∥∥I − K2,2/σ33

σ̃
′′
N (0)

∥∥∥∥
∞
≤ 1

|σ̃′′N (0)|
C2,s(N + 1)2

νs

(
1 +

Cs,2
csνs − C2,s

)
.
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For the expression on the right hand side, we get

C2,s

csνs

(
1 +

C2,s

csνs − C2,s

)
=

C2,s

csνs − C2,s
=

a1

1− a1
. (3.5)

Since a1 <
1
b with b > 3 + cs

2 , we have the bound

a1

1− a1
≤ 1

b− 1
< 1 (3.6)

and consequently ∥∥∥(K2,2/σ33)
−1
∥∥∥
∞
≤ (N + 1)−2(b− 1)

cs(b− 2)
.

This shows the invertibility of K2,2. Accordingly, this yields with T = K2,2/σ33 the representation

(K2,2)
−1

=

(
T−1 −T−1σ32 (σ33)

−1

− (σ33)
−1
σ23T

−1 (σ33)
−1

+ (σ33)
−1
σ23T

−1σ32 (σ33)
−1

)
. (3.7)

In the next step we show the invertibility of the Schur complement of K2,2 in K2, which is given by
K2/K2,2 = K2,0− K̃2,1K

−1
2,2K2,1. By the quotient formula for Schur complements, see Lemma C.2, we

can express K2/K2,2 as
K2/K2,2 = (K2/σ33)/(K2,2/σ33).

Thus, we have to look at the matrix K2/σ33. Using the alternative partition of K2, given by

K2 =

(
A B
C σ33

)
,

with

A =

[
σ11 σ21

σ12 σ22

]
,

B =
[
σ31 σ32

]T
,

C =
[
σ13 σ23

]
,

shows that we have

K2/σ33 = A−B (σ33)
−1
C,

=

(
σ11 − σ31 (σ33)

−1
σ13 σ21 − σ31 (σ33)

−1
σ23

σ12 − σ32 (σ33)
−1
σ13 σ22 − σ32 (σ33)

−1
σ23

)
,

=:

(
K2,0 K̃2,1

K2,1 K2,2/σ33

)
. (3.8)

This means

K2/K2,2 = (K2/σ33)/(K2,2/σ33)

= σ11 − σ31 (σ33)
−1
σ13 − K̃2,1 (K2,2/σ33)

−1K2,1.

So we can estimate using Lemma 3.1 and the derived bound for (K2,2/σ33)
−1,∥∥∥−σ̃′′N (0)I −K2/K2,2

∥∥∥
∞
≤
∥∥∥σ̃′′N (0)I − σ11

∥∥∥+
∥∥∥σ31 (σ33)

−1
σ13

∥∥∥
∞
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+
∥∥∥K̃2,1 (K2,2/σ33)

−1K2,1

∥∥∥
∞
,

≤ cs(N + 1)2 a1

1− 2a1
.

For this reason, ∥∥∥∥I − K2/K2,2

−σ̃′′N (0)

∥∥∥∥
∞
≤ a1

1− 2a1
.

Again, we have

a1

1− 2a1
≤ 1

b− 2
< 1,

which gives the invertibility of K2/K2,2 with∥∥∥(K2/K2,2)
−1
∥∥∥
∞
≤ (N + 1)−2(b− 2)

cs(b− 3)
.

This shows the invertibility of K2. If we denote S = K2/K2,2, then the inverse is given by

K−1
2 =

(
S−1 −S−1K̃2,1K

−1
2,2

−K−1
2,2K2,1S

−1 K−1
2,2 +K−1

2,2K2,1S
−1K̃2,1K

−1
2,2

)
,

which has the blockwise representation

K−1
2 =

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 , (3.9)

where

A1,1 = S−1, A2,1 = −T−1K2,1A1,1, A1,2 = −A1,1K̃2,1T
−1

A1,3 = −(A1,1σ31 +A1,2σ32)σ−1
33 , A3,1 = −σ−1

33 (σ13A1,1 + σ23A2,1)

A2,2 = T−1(id−K2,1A1,2), A3,2 = −σ−1
33 (σ23A2,2 + σ1,3A1,2)

A2,3 = −(A2,2σ32 +A2,1σ31)σ−1
33 , A3,3 = σ−1

33 (id− (σ23A2,3 + σ13A1,3)),

and K2,1, K̃2,1 are given in (3.8). This leads to the following norm bounds

‖Ai,j‖∞ ≤

{
(N+1)−2(b−2)

cs(b−3) , i = j,
(N+1)−2

cs(b−3) , i 6= j.

In the last step, we apply the same procedure to show the invertibility of R = K/K2. So, as seen before,
we use the quotient rule

K/K2 = (K/K2,2)/(K2/K2,2).

To calculate K/K2,2 we split K into blocks as

K =

(
A B
C K2,2

)
,
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with

A =

[
σ00 σ10

σ01 σ11

]
,

B =

[
σ20 σ30

σ21 σ31

]
,

C =

[
σ02 σ12

σ03 σ13

]
,

which leads to
K/K2,2 = A−B (K2,2)

−1
C.

A lengthy calculation shows that we can write

K/K2,2 = A−B (K2,2)
−1
C =

(
K0 K̃1

K1 K2/K2,2

)
,

with

K0 =
(
σ00 − σ30 (σ33)

−1
σ03

)
− C̃2,1T−1C2,1,

K̃1 = G̃2,1 − C̃2,1T−1K2,1,

K1 = G2,1 − K̃2,1T
−1C2,1,

where K2,1, K̃2,1 are given by (3.8) and

C2,1 = σ02 − σ32 (σ33)
−1
σ03,

C̃2,1 = σ20 − σ30 (σ33)
−1
σ23,

G2,1 = σ01 − σ31 (σ33)
−1
σ03,

G̃2,1 = σ10 − σ30 (σ33)
−1
σ13.

This yields
K/K2 = K0 − K̃1 (K2/K2,2)

−1K1,

and therefore

‖I −K/K2‖∞ ≤ ‖I −K0‖∞ + ‖K̃1‖∞‖K1‖∞
∥∥∥(K2/K2,2)

−1
∥∥∥
∞
.

Observe, that we have the bounds

‖C2,1‖∞, ‖C̃2,1‖∞, ‖G2,1‖∞, ‖G̃2,1‖∞ ≤
C1,s(N + 1)

νs
1

1− a1
.

Using this, we can derive

‖I −K0‖∞ ≤ ‖I − σ00‖∞ + ‖σ30‖∞ ‖σ03‖∞
∥∥∥(σ33)

−1
∥∥∥
∞

+ ‖C2,1‖∞‖C̃2,1‖∞‖T−1‖∞,

≤ C0,s

νs
+

(
C1,s

νs

)2
2

cs(1− 2a1)
,

and similarly

‖K̃1‖∞, ‖K1‖∞ ≤
C1,s(N + 1)

νs
1

1− 2a1
.
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This results in

‖I −K/K2‖∞ ≤
C0,s

νs
+

(
C1,s

νs

)2
3

cs(1− 3a1)
.

Since 2C0,s ≤ C1,s ≤ C2,s

2 and b > 3 + cs
2 , we can estimate

C0,s

νs
+

(
C1,s

νs

)2
3

cs(1− 3a1)
≤ 1

4
cs

a1

1− 3a1
<

cs
4(b− 3)

< 1,

and K/K2 is invertible with ∥∥∥(K/K2)
−1
∥∥∥
∞
≤ 1 +

cs
4(b− 3)− cs

.

This completes the last step and gives the invertibility of K. With R = K/K2 we have

K−1 =

(
R−1 −R−1K̃1K

−1
2

−K−1
2 K1R

−1 K−1
2 +K−1

2 K1R
−1K̃1K

−1
2

)
.

Using the representations (3.9) of the inverse ofK2, a lengthy calculation shows the following block-wise
representation

K−1 =


B1,1 B1,2 B1,3 B1,4

B2,1 B2,2 B2,3 B2,4

B3,1 B3,2 B3,3 B3,4

B4,1 B4,2 B4,3 B4,4

 ,

with

B1,1 = R−1, B1,2 = −R−1K̃1S
−1,

B2,1 = −S−1K1R
−1, B2,2 = S−1(id+K1R

−1K̃1S
−1)

and

B1,3 = −(B1,2K̃2,1 + B1,1C̃2,1)T−1, B1,4 = −(B1,1σ30 + B1,2σ31 + B1,3σ32)σ−1
33

B3,1 = −T−1(K2,1B2,1 + C2,1B1,1), B4,1 = −σ−1
33 (σ03B1,1 + σ13B2,1 + σ23B3,1),

B2,3 = −(B22K̃2,1 + B2,1C̃2,1)T−1, B3,2 = −T−1(K2,1B22 + C2,1B1,2),

B3,3 = T−1(id− (K2,1B2,3 + C2,1B1,3)), B4,2 = −σ−1
33 (σ23B3,2 + σ13B2,2 + σ03B1,2),

B2,4 = −(B2,3σ32 + B2,2σ31 + B2,1σ30)σ−1
33 , B3,4 = −(B3,1σ30 + B3,2σ31 + B3,3σ32)σ−1

33 ,

B4,3 = −σ−1
33 (σ03B1,3 + σ13B2,3 + σ23B3,3), B4,4 = σ−1

33 (id− (σ03B14 + σ13B24 + σ23B34)).

Accordingly, we can derive the following norm bounds

‖B1,1‖∞ ≤ 1 +
cs

4(b− 3)− cs
, ‖B1,2‖∞, ‖B2,1‖∞ ≤

2(N + 1)−1

(4(b− 3)− cs)
,

‖B2,2‖∞ ≤
(4(b− 2)− cs)(N + 1)−2

cs(4(b− 3)− cs)
,

‖B1,3‖∞, ‖B3,1‖∞ ≤
2(b− 3)(N + 1)−1

(b− 2)(4(b− 3)− cs)
+

(N + 1)−2

(b− 2)(4(b− 3)− cs)
≤ 2(N + 1)−1

(4(b− 3)− cs)
,

‖B1,4‖∞, ‖B4,1‖∞ ≤
2(b− 3)(N + 1)−1

(b− 1)(4(b− 3)− cs)
+

(b− 5)(N + 1)−2

(b− 1)(4(b− 3)− cs)
+

(N + 1)−3

2(b− 2)(b− 1)(4(b− 3)− cs)
,
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≤ 2(N + 1)−1

(4(b− 3)− cs)
,

‖B2,3‖∞, ‖B3,2‖∞ ≤
(N + 1)−2

(b− 2)(4(b− 3)− cs)
+

(4(b− 2)− cs)(N + 1)−2

cs(b− 2)(4(b− 3)− cs)
≤ 4(N + 1)−2

cs(4(b− 3)− cs)
,

‖B3,3‖∞ ≤
(4(b− 2)− cs)(N + 1)−2

cs(4(b− 3)− cs)
,

‖B2,4‖∞, ‖B4,2‖∞ ≤
4(N + 1)−2

cs(4(b− 3)− cs)
, ‖B3,4‖∞, ‖B4,3‖∞ ≤

4(N + 1)−2

cs(4(b− 3)− cs)
,

‖B4,4‖∞ ≤
(4(b− 2)− cs)(N + 1)−2

cs(4(b− 3)− cs)
.

Using these norm bounds, we get the bound

‖α0‖ = ‖B1,1u+ B1,2b1 + B1,3b2 + B1,4b3‖∞,
≤ ‖B1,1‖∞‖u‖∞ + ‖B1,2‖∞‖b1‖∞ + ‖B1,3‖∞‖b2‖∞ + ‖B1,4‖∞‖b3‖∞,

≤ 1

4(b− 3)− cs
(4(b− 3)‖u‖∞ + 2(N + 1)−1(‖b1‖∞ + ‖b2‖∞ + ‖b3‖∞))

and in a similar way the desired bounds for α1, α2, α3. Moreover, if |ui| = 1, ‖u‖∞ ≤ 1 and b1 = b2 =
b3 = 0, we can estimate

|α0,i| =
∣∣∣((I − (I − (K/K2)

−1
))

u
)
i

∣∣∣ ,
=
∣∣∣ui − ((I − (K/K2)

−1
)
u
)
i

∣∣∣ ,
≥
∣∣∣|ui| − ∣∣∣((I − (K/K2)

−1
)
u
)
i

∣∣∣∣∣∣ ,
≥
∣∣∣1− ∣∣∣(I −K/K2) (K/K2)

−1
ui

∣∣∣∣∣∣ .
Since b > 3 + cs

2 , we have∣∣∣(I −K/K2) (K/K2)
−1
ui

∣∣∣ ≤ ‖I −K/K2‖∞‖ (K/K2)
−1 ‖∞,

≤ cs
4(b− 3)− cs

< 1,

and therefore
|α0,i| ≥ 1− cs

4(b− 3)− cs
.

Corollary 3.3. Suppose the interpolation points X = {x1, . . . , xM} obey the separation condition

min
xi 6=xj

ω(x−1
j xi) ≥

36

N + 1
(3.10)

for N ≥ 20. Then the interpolation problem (3.3) has a unique solution, such that the coefficients obey

‖α0‖∞ ≤ 1 + 6 · 10−4, ‖αj‖∞ ≤
0.02 + 2 · 10−5

(N + 1)
, j = 1, 2, 3,

and
|α0,i| ≥ 1− 6 · 10−4.

Proof. It can be checked that the condition (3.4) is fulfilled for the parameters ν = 36, b = 28 and
s = 8.
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3.2 Bound for the Interpolant
Next to the interpolation conditions, guaranteed by Corollary 3.3, we have to show that the interpolant q
fulfills the second assumption in (3.1), namely |q(x)| < 1 for x not being an interpolation point. We split
the proof into those x ∈ SO(3), which are close to an interpolation point, which is Lemma 3.4, and those
which are well separated, governed by Lemma 3.5.

Lemma 3.4. Suppose the separation condition (3.10) is satisfied for N ≥ 20. Then for all x ∈ SO(3),
such that there is a xm with ω(x−1

m x) ≤ π
2(N+1) , we have for the interpolating function q of Corollary

3.3
|q(x)| < 1.

Proof. The proof is based on a concavity respectively a convexity argument. We show that in the pre-
scribed neighbourhood of an interpolation point xm the Hessian is negative definite in the case um = 1
and positive definite in the case um = −1, using the Theorem of Gerschgorin. For this, first observe that
the Hessian matrix for a function f is given by

Hf =

X1X1f X1X2f X1X3f
X2X1f X2X2f X2X3f
X3X1f X3X2f X3X3f

− 1

2

 0 X3f −X2f
−X3f 0 X1f
X2f −X1f 0

 . (3.11)

If we apply this to the function constructed from the interpolation problem

q(x) =

M∑
j=1

αj,0σN (x, xj) + αj,1X
y
1σN (x, xj) + αj,2X

y
2σN (x, xj) + αj,3X

y
3σN (x, xj),

the diagonal entries of the matrix are given by

Xx
i X

x
i q(x) =

M∑
j=1

αj,0X
x
i X

x
i σN (x, xj) + αj,1X

x
i X

x
i X

y
1σN (x, xj) + αj,2X

x
i X

x
i X

y
2σN (x, xj)

+ αj,3X
x
i X

x
i X

y
3σN (x, xj).

For the estimates of the entries of the Hessian, we use Lemma 2.4, 2.5, 2.6, 3.2 and 2.2 with the following
parameters s = 8, ν = 36, b = 28, δ = π

2 , c8 = 0.999
18 , c̃8 = 1.001

18 and d̃8 = 3·1.001
40·9 . We assume

that um = 1, since the estimates for um = −1 are completely analog. The first step is to show, that the
diagonal entries are negative. For this, we estimate

Xx
i X

x
i q(x) ≤ α0,mX

x
i X

x
i σN (x, xm) +

3∑
n=1

‖αn‖∞ |Xx
i X

x
i X

y
nσN (x, xm)|

+ ‖α0‖∞
∑

xj 6=xm

|Xx
i X

x
i σN (x, xj)|+

3∑
n=1

‖αn‖∞
∑

xj 6=xm

|Xx
i X

x
i X

y
nσN (x, xj)| .

The first term can be estimated using the bounds of Lemma 2.2 and Theorem 3.2

α0,mX
x
i X

x
i σN (x, xm) = α0,mX

x
i X

x
i σN (x, x) + α0,m (Xx

i X
x
i σN (x, xm)−Xx

i X
x
i σN (x, x)) ,

= α0,mσ̃
′′

N (0) + α0,m

(
Xx
i X

x
i σN (x, xm)− σ̃

′′

N (0)
)
,

≤ −c8(N + 1)2

(
1− c8

4(b− 3)− c8

)
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+

(
1 +

c8
4(b− 3)− c8

)(
Xx
i X

x
i σN (x, xm)− σ̃

′′

N (0)
)
.

By Lemma 2.5, we have the bound(
Xx
i X

x
i σN (x, xm)− σ̃

′′

N (0)
)
≤ d̃8

2
(N + 1)2δ2, ω ∈ [0,

δ

N + 1
],

which yields

α0,mX
x
i X

x
i σN (x, xm) ≤ −(N + 1)2

(
1 +

c8
4(b− 3)− c8

)
c8

(
1− c8

2(b− 3)
− δ2d̃8

2c8

)
≤ −4.518 · 10−2 · (N + 1)2.

In addition, we have again using Lemma 2.5 and Theorem 3.2

3∑
n=1

‖αn‖∞ |Xx
i X

x
i X

y
nσN (x, xm)| ≤ d̃8

6(N + 1)2δ

4(b− 3)− c8

(
1 +

δ

4 · 21
+

c̃8

4d̃8 · 212

)
,

≤ 8.044 · 10−4 · (N + 1)2,

as well as, using Lemma 2.6 with aδ/ν = min{ 27
124 (1 − δ

ν )−8 + 1, (1 − δ
ν )−8} and the assumption

νs > b
C2,8

c8
,

‖α0‖∞
∑

xj 6=xm

|Xx
i X

x
i σN (x, xj)| ≤

(
1 +

c8
4(b− 3)− c8

)
c8aδ/ν(N + 1)2

b
,

≤ 2.601 · 10−3 · (N + 1)2

and

3∑
n=1

‖αn‖∞
∑

xj 6=xm

|Xx
i X

x
i X

y
nσN (x, xj)| ≤ 3 · c3,8

c2,8
·

2csa δ
ν

b(4(b− 3)− c8)
,

≤ 3.31 · 10−4 · (N + 1)2.

Inserting the parameters, we find

Xx
i X

x
i q(x) ≤ −4.144 · 10−2 · (N + 1)2.

For the off-diagonal entries of the Hessian matrix we have

Xx
j X

x
i q ∓

1

2
Xx
nq =

M∑
j=1

αj,0

(
Xx
j X

x
i σN (x, xj)∓

1

2
Xx
nσN (x, xj)

)

+

3∑
k=1

αj,k

(
Xx
j X

x
i X

y
kσN (x, xj)∓

1

2
Xx
nX

x
kσN (x, xj)

)
and therefore we can estimate

|Xx
j X

x
i q ∓

1

2
Xx
nq| ≤ ‖α0‖∞

∣∣∣∣Xx
j X

x
i σN (x, xm)∓ 1

2
Xx
nσN (x, xm)

∣∣∣∣
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+

3∑
k=1

‖αk‖∞
∣∣∣∣Xx

j X
x
i X

y
kσN (x, xm)∓ 1

2
Xx
nX

x
kσN (x, xm)

∣∣∣∣
+ ‖α0‖∞

∑
xj 6=xm

∣∣∣∣Xx
j X

x
i σN (x, xj)∓

1

2
Xx
nσN (x, xj)

∣∣∣∣
+

3∑
k=1

‖αk‖∞
∑

xj 6=xm

∣∣∣∣Xx
j X

x
i X

y
kσN (x, xj)∓

1

2
Xx
nX

x
kσN (x, xj)

∣∣∣∣ .
Lemma 2.5 and Theorem 3.2 yield

‖α0‖∞
∣∣∣∣Xx

j X
x
i σN (x, xm)∓ 1

2
Xx
nσN (x, xm)

∣∣∣∣ ≤ (1 +
c8

4(b− 3)− c8

)
(N + 1)2 d̃8

4
δ2,

≤ 5.149 · 10−3 · (N + 1)2,

as well as
3∑
k=1

‖αk‖∞
∣∣∣∣Xx

j X
x
i X

y
kσN (x, xm)∓ 1

2
Xx
nX

x
kσN (x, xm)

∣∣∣∣
≤ d̃8

6(N + 1)2δ

4(b− 3)− c8

(
1 +

δ

4 · 21
+

c̃8

4d̃8 · 212

)
,

≤ 8.044 · 10−4 · (N + 1)2.

Furthermore, we apply Lemma 2.4 to derive

‖α0‖∞
∑

xj 6=xm

∣∣∣∣Xx
j X

x
i σN (x, xj)∓

1

2
Xx
nσN (x, xj)

∣∣∣∣
≤
(

1 +
c8

4(b− 3)− c8

)
c8aδ/ν(N + 1)2

b
,

≤ 2.601 · 10−3 · (N + 1)2

and
3∑
k=1

‖αk‖∞
∑

xj 6=xm

∣∣∣∣Xx
j X

x
i X

y
kσN (x, xj)∓

1

2
Xx
nX

x
kσN (x, xj)

∣∣∣∣
≤ 3 · c3,8

c2,8
·

2csa δ
ν

b(4(b− 3)− c8)
,

≤ 3.31 · 10−4 · (N + 1)2.

Inserting the parameters results in

|Xx
j X

x
i q ∓

1

2
Xx
nq| ≤ 8.886 · 10−3 · (N + 1)2.

Since
|Xx

i X
x
i q(x)| > 2|Xx

j X
x
i q ∓

1

2
Xx
nq|,

and Xx
i X

x
i q(x) < 0 for i = 1, 2, 3, we see that the Hessian matrix is negative definite at x with

λmax(Hq(x)) ≤ −2.36 · 10−2 · (N + 1)2.
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The definitness shows q(x) < 1. To show q(x) > −1 observe, that

q(x) ≥ α0,mσN (x, xm)−
3∑
k=1

‖αk‖∞|Xy
kσN (x, xm)| − ‖α0‖∞

∑
xj 6=xm

|σN (x, xj)|

−
3∑
k=1

‖αk‖∞
∑

xj 6=xm

|Xx
kσN (x, xj)|.

We have, using the Taylor expansion of cosine at zero,

α0,mσN (x, xm) ≥
(

1− c8
4(b− 3)− c8

)
·
(

1− c̃8
2
δ2

)
≥ 0.93

and

‖αk‖∞|Xy
kσN (x, xm)| ≤ 2c̃8δ

4(b− 3)− c8
≤ 1.8 · 10−3.

Using Lemma 2.6 yields

‖α0‖∞
∑

xj 6=xm

|σN (x, xj)| ≤
(

1 +
c8

4(b− 3)− c8

)
·
c8aδ/ν

4b
≤ 6.501 · 10−4,

‖αk‖∞
∑

xj 6=xm

|Xx
kσN (x, xj)| ≤

2

4(b− 3)− c8
·
c8aδ/ν

2b
≤ 2.601 · 10−5.

Combining this results in

q(x) ≥ 0.92.

The case ui = −1 is completely analog and one has λmin(Hq(x)) ≥ 2.36 · 10−2 · (N + 1)2 and q(x) ≤
−0.92.

Lemma 3.5. Under the assumptions of Lemma 3.4, we have that for all x ∈ SO(3) with ω(x−1
m x) ≥

π
2(N+1) for all xm ∈ X the interpolating function q of Corollary 3.3 fulfills

|q(x)| < 1.

Proof. We can estimate

|q(x)| ≤ ‖α0‖∞|σN (x, xm)|+
3∑
k=1

‖αk‖∞|Xy
kσN (x, xm)|

+ ‖α0‖∞
∑

xj 6=xm

|σN (x, xj)|+
3∑
k=1

‖αk‖∞
∑

xj 6=xm

|Xx
kσN (x, xj)|. (3.12)

First, assume that there is an xm, such that ω(x−1
m x) ≤ 2.45π

N+1 . Using the Taylor expansion of the cosine
function at zero, we have with Lemma 2.2

σN (x, xm) ≥ 1−
|σ̃(2)
N (0)|

2
ω2 +

|σ̃(4)
N (0)|
24

ω4 −
|σ̃(6)
N (0)|
6!

ω6,
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≥ 1− 1.001

36
(N + 1)2ω2 +

0.999

24 · 120
(N + 1)4ω4 − 1.011

6! · 11 · 48
(N + 1)6ω6.

It can be shown that the polynomial

1− 1.001

36
t2 +

0.999

24 · 120
t4 − 1.011

6! · 11 · 48
t6

is positive for t ∈ [0, 2.45π], since its derivative is strictly negative on this interval and the polynomial is
positive evaluated at t = 2.45π. Therefore,

|σN (x, xm)| = σN (x, xm),

≤ 1−
|σ̃(2)
N (0)|

2
ω2 +

|σ̃(4)
N (0)|
24

ω4,

≤ 1− 1.001

36
(N + 1)2ω2 +

0.999

24 · 120
(N + 1)4ω4. (3.13)

The right hand side of (3.13) is strictly monotonic decreasing for ω ∈
[

π
2(N+1) ,

t0
(N+1)

]
with t0 =

2
√

10 · 1.001
0.999 and strictly increasing for ω ∈

[
t0

(N+1) ,
2.45π
(N+1)

]
. Furthermore, we can estimate

|Xy
kσN (x, xm)| ≤ c̃s(N + 1)t, (3.14)

as well as using Lemma 2.6 ∑
xj 6=xm

|σN (x, xj)| ≤
csat/ν

4b
,

∑
xj 6=xm

|Xx
kσN (x, xj)| ≤

csat/ν(N + 1)

2b
,

for t = (N + 1)ω. Inserting the values b = 28, ν = 36 and s = 8 for the bounds of the coefficients in
Theorem 3.2 results in

|q(x)| ≤ 0.96, for ω(x−1
m x) ∈

[
π

2(N + 1)
,

t0
(N + 1)

]
,

|q(x)| ≤ 0.60, for ω(x−1
m x) ∈

[
t0

(N + 1)
,

2.45π

(N + 1)

]
.

If there is a xm such that 2.45π
N+1 ≤ ω(x−1

m x) ≤ 18
N+1 , we can estimate in a similar way, but instead of the

Taylor expansion we use the asymptotic bound of Theorem 2.3, i.e.

|σN (x, xm)| ≤ c0,8
(N + 1)8ω8

.

For the derivative we use the Bernstein inequality (1.14) to get

|Xy
kσN (x, xm)| ≤ (N + 1)‖σN (·, xm)‖∞ = (N + 1).

This results in
|q(x)| ≤ 0.95,
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for 2.45π
N+1 ≤ ω(x−1

m x) ≤ 18
N+1 . In the case ω(x−1

j x) ≥ 18
(N+1) for all xj , we derive with Theorem 3.2 and

estimates similar to those of Lemma 2.6

|q(x)| ≤ ‖α0‖∞
∑
xj

|σN (x, xj)|+
3∑
k=1

‖αk‖∞
∑
xj

|Xy
kσN (x, xj)|,

≤
csa1/2

4(b− 3)− cs
≤ 0.032.

The combination of Corollary 3.3, Lemma 3.4 and Lemma 3.5 gives the main result of this section.

Theorem 3.6. Suppose the points X = {x1, . . . , xM} obey a separation distance of ρ(X ) ≥ 36
N+1 for

N ≥ 20. Then for each sign combination ui ∈ {−1, 1}, there is a q ∈ ΠN such that

q(xi) = ui, for xi ∈ X ,
|q(x)| < 1, for x ∈ SO(3) \ X .

As seen in Chapter 1, the existence of a dual certificate guarantees, that the measure µ? is the unique
solution of the total variation minimization. For completeness, we will state this as a corollary.

Corollary 3.7. Suppose the support of the signed measure µ? obeys the separation condition

min
x 6=y

ω(y−1x) ≥ 36

N + 1
, x, y ∈ supp(µ?),

for N ≥ 20, then µ? is the unique real solution of the minimization problem

min
µ∈M(SO(3),R)

‖µ‖TV , subject to S∗Nµ = S∗Nµ?. (RP)

Proof. Theorem 3.6 guarantuees the existence of a dual certificate. Hence, by Theorem 1.7, S∗N has
the null-space property with respect to supp(µ?) and Theorem 1.6 shows that µ? is the unique real
solution.

On the spectral side, this recovery result means, that we can recover high frequency information of
the measure µ? from its low frequency moments. Which means, we get access to

〈µ?, Dl
k,m〉, |k|, |m| ≤ l

for all l ∈ N, and therefore can extrapolate the spectrum exactly from its low frequency parts. In other
words, we can construct the polynomial approximation S∗L to the measure µ? for all L ≥ N , i.e. S∗Lµ =
S∗Lµ? for the solution µ of the total variation minimization (RP). If we cannot measure the low frequency
information of µ? exactly, this is no longer possible. Instead, we introduce an error by extrapolating the
spectrum measured by the function

S∗Lµ? − S∗Lµ

for any approximation µ to the sought measure µ?, that we construct via any process, and the higher
frequency L ≥ N . Clearly, the induced extrapolation error, or super-resolution error, should depend on
the relation between N and L. This is the content of the next section.
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3.3 Super-Resolution Error Estimates
In the last section, we concentrated on the construction of a dual certificate, that guarantees the exact
recovery of the sought measure in the case of exact data. Nevertheless, one cannot assume that the given
moments of the measure are exact, but corrupted by noise. In this case, we cannot hope to recover the
sought measure exactly, but only up to an error, which needs to be controlled. It is therefore convenient
to substitute the minimization (RP) with a regularized version of it. In this section, we consider the
Thikonov-type problem

min
µ∈M(SO(3),R)

1

2
‖S∗N (µ− µ? − η)‖2L2(SO(3)) + τ‖µ‖TV . (RPτ )

We choose a deterministic noise model, i.e. the noise η satisfies

‖S∗Nη‖L2(SO(3)) ≤ ε,

and ε > 0 is called noise level. Since the functional

Jτ (µ) =
1

2
‖S∗N (µ− µ? − η)‖2L2(SO(3)) + τ‖µ‖TV

is weakly? lower-semicontinuous and strictly convex, we know that there is a unique solution of (RPτ ),
which we will denote by µτ . As seen in Chapter 1, see Theorem 1.9, we already know, that µτ will
converge to µ? in the weak? topology, as long as the regularization paramter τ is coupled adequately to
the noise level ε.

In the following, we consider the extrapolation error induced by µτ , i.e. we would like to control the
difference

S∗Lµ? − S∗Lµτ ,
with L ≥ N . In the trigonometric setting, the first estimates in this direction can be found in [Candés
and Fernandez-Granda, 2013]. The authors give bounds for the L1-error of the convolution of the differ-
ence measure with a high frequency Fejér kernel. Very recently, see [Li, 2017], those estimates where
generalized to L∞ estimates, using a more general class of kernels.

We build on the work [Li, 2017] to show analog estimates for polynomial kernels on the rotation
group. Let KL be a polynomial positive semi-definite kernel of the form

KL(x, y) =

L∑
l=0

al

l∑
k,m=−l

Dl
k,m(x)Dl

k,m(y), (3.15)

with al > 0 and al ≥ al+1. As seen in chapter 2, KL(x, y) = K̃L(ω(y−1x)) with

K̃L(ω) =

L∑
k=−L

bkeikω

and bk =
∑
l≥|k| al. Clearly, this includes the Dirichlet kernel DL(x, y) as well as the kernel constructed

from the B-spline filters seen in Chapter 2. With this kernel we define the approximation operator KL :
L2(SO(3))→ C(SO(3)),

KLf(x) =

∫
SO(3)

f(y)KL(x, y)dλ(y).

The bound on the difference K∗L(µτ − µ?) depends on the quotient of N and L given by

sL,N =
L

N
,
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which is called super-reolution factor. The aim of this section is to show the estimate

‖K∗L(µτ − µ?)‖∞ ≤ C · ‖K̃L‖∞ · s2
L,N · τ.

It relies on two pillars. First, the volume with respect to the difference measure |µ? − µτ | of sets close
to the support of µ? and its complement can be controlled by τ , which is shown in Lemma 3.8 and is
independent of the chosen kernel KL. Second, any kernel KL of the form (3.15) can be quadratically
approximated near the support of µ? with a low frequency function f ∈ ΠN , which is the statement of
Lemma 3.9. Both statements are built upon the estimates shown in Chapter 2 as well as the construction
of the dual certificate seen in the previous section. Consequently, we will assume that the support set
X = {xj} of the measure µ? obeys the separation condition

min
xi 6=xj

ω(x−1
j xi) ≥

36

N + 1
, (3.16)

for N ≥ 20.

Lemma 3.8. Suppose the support X = {xj} of the measure µ? obeys the separation condition (3.16)
and µτ is the unique solution of the minimization

min
µ∈M(SO(3),R)

1

2
‖S∗N (µ− µ? − η)‖2L2(SO(3)) + τ‖µ‖TV ,

with ‖S∗Nη‖L2(SO(3)) ≤ τ . Then ∫
(
⋃
j Br(xj))

c
d|µτ − µ?| ≤ 100 · τ,

∑
j

∫
Br(xj)

ω(x−1
j x)2d|µτ − µ?|(x) ≤ 213 · τ · (N + 1)−2,

(3.17)

for r = π
2(N+1) .

Proof. First, we show that the solution of the regularized problem admits the following property

‖µτ‖TV ≤ ‖µ?‖TV +
τ

2
,

‖S∗N (µτ − µ?)‖L2(SO(3)) ≤ 2τ.
(3.18)

Since µτ is a solution of the regularized problem, we have

τ‖µτ‖TV ≤ τ‖µ?‖TV +
1

2
‖S∗N (µ? − µ? − η)‖2L2(SO(3)) ≤ τ‖µ

?‖TV +
τ2

2
,

which shows the first inequality. Again, since µτ is a minimizer of

min
µ∈SO(3)

τ‖µ‖TV + J(µ),

with J(µ) = 1
2‖S

∗
N (µ− µ? − η)‖2L2(SO(3)), we know by Fermat’s rule that

0 ∈ ∂(τ‖ · ‖TV + J(·))(µτ ),

and consequently by the Moreau-Rockafellar Theorem that

τ−1J ′ ∈ ∂‖ · ‖TV (µτ ),
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where J ′ denotes the Fréchet derivative of J at µτ . We have

J ′(µ) = Re (〈S∗Nµ, S∗N (µτ − µ? − η)〉L2) ,

= Re (〈µ, S∗N (µτ − µ? − η)〉) .

Since τ−1J ′ ∈ ∂‖µτ‖TV , we know that

1 = τ−1‖J ′‖M′(SO(3)) ≥ τ−1‖S∗N (µτ − µ? − η)‖∞.

This yields,

‖S∗N (µτ − µ?)‖L2(SO(3)) ≤ ‖S∗N (µτ − µ? − η)‖L2(SO(3)) + ‖S∗Nη‖L2(SO(3)) ≤ 2τ.

For abbreviation, we now set v = µτ − µ?. The polar decomposition of ν yields a function signν , such
that ν = signν ·|ν|. By Theorem 3.6, we find a function q ∈ ΠN with ‖q‖∞ ≤ 1, which interpolates
signν on X . Moreover, by inspection of the proof of Lemma 3.5, we have that

|q(x)| ≤ 0.96 = 1− 0.04, for x ∈

⋃
j

Br(xj)

c

.

For x ∈ Br(xj), we can expand q locally in a Taylor series given by

q(x) = q(xj exp(ω(x−1
j x) log(x−1

j x))),

= q(xj) +
ω(x−1

j x)2

2
e(x−1

j x)THq(xj exp(ξ log(x−1
j x)))e(x−1

j x),

with |ξ| ≤ ω(x−1
j x). Close to an interpolation point xj , the proof of Lemma 3.4 shows that the Hessian

is negative definite in the case xj = 1 and positive definite in the case xj = −1. We therefore have,

|q(x)| ≤

1 +
ω(x−1

j x)2

2 τmax(Hq(xj exp(ξ log(x−1
j x)))), xj = 1,

1 +
ω(x−1

j x)2

2 τmin(Hq(xj exp(ξ log(x−1
j x)))), xj = −1,

and in both cases the absolute value of the eigenvalues can be bounded by 2.36 ·10−2 · (N +1)2, yielding

|q(x)| ≤ 1− 1.18 · 10−2 · (N + 1)2ω(x−1
j x)2, for x ∈

⋃
j

Br(xj).

With these properties of q we have∫
X

d|ν| =
∫
X
q(x)dν(x),

≤

∣∣∣∣∣
∫
SO(3)

q(x)dν(x)

∣∣∣∣∣+

∣∣∣∣∣
∫
(
⋃
j Br(xj))

c
q(x)dν(x)

∣∣∣∣∣+

∣∣∣∣∣∣
∑
j

∫
Br(xj)\{xj}

q(x)dν(x)

∣∣∣∣∣∣ ,
≤

∣∣∣∣∣
∫
SO(3)

q(x)dν(x)

∣∣∣∣∣+

∫
X c

d|ν| − 0.04 ·
∫

(
⋃
j Br(xj))

c
d|ν|

− 1.18 · 10−2 · (N + 1)2
∑
j

∫
⋃
j Br(xj)

ω(x−1
j x)2d|ν|(x).
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Rearranging yields∑
j

∫
⋃
j Br(xj)

ω(x−1
j x)2d|ν|(x)

≤ 85 · (N + 1)−2 ·

(∣∣∣∣∣
∫
SO(3)

q(x)dν(x)

∣∣∣∣∣+

∫
X c

d|ν| −
∫
X

d|ν|

)

and ∫
(
⋃
j Br(xj))

c
d|ν|

≤ 40 ·

(∣∣∣∣∣
∫
SO(3)

q(x)dν(x)

∣∣∣∣∣+

∫
X c

d|ν| −
∫
X

d|ν|

)
.

For the first term on the right hand side, we have using (3.18)∣∣∣∣∣
∫
SO(3)

q(x)dν(x)

∣∣∣∣∣ = |〈ν, q〉| = |〈ν, SNq〉| = |〈S∗Nν, q〉L2 | ,

≤ ‖S∗Nν‖L2(SO(3)) · ‖q‖L2(SO(3)) ≤ 2τ.

For the other terms on the right hand side, observe that since µ? is supported in X , the inverse triangle
inequality shows ∫

X
d|µ?|+

∫
X c

d|ν| −
∫
X

d|ν| ≤ ‖µ? + ν‖TV = ‖µτ‖TV .

Since ‖µτ‖TV ≤ ‖µ?‖TV + τ/2, it follows, that∫
X c

d|ν| −
∫
X

d|ν| ≤ τ

2
.

This means, (∣∣∣∣∣
∫
SO(3)

q(x)dν(x)

∣∣∣∣∣+

∫
X c

d|ν| −
∫
X

d|ν|

)
≤ 2.5τ

and the estimates (3.17) follows.

Lemma 3.9. Suppose the points X = {xj} obey the separation condition (3.16). Then there is a function
f ∈ ΠN , with ‖f‖∞ ≤ 23 · sL,N · ‖K̃L‖∞, which fulfills for all x ∈ SO(3)

|f(yx)−KL(x, y)| ≤ (1.5s2
L,N + 153sL,N ) · ‖K̃L‖∞(N + 1)2ω(x−1

j y),

for all y ∈ Br(xj) and all xj ∈ X with r = π
2(N+1) .

Proof. The proof is based on Taylor expansion locally around each xj ∈ X . Under the separation
condition on the points xj , we know by Theorem 3.2, that there is for each x ∈ SO(3) a function
fx ∈ ΠN , which fulfils the following interpolation conditions

fx(xj) = KL(x, xj),

Xifx(xj) = (∇KL(x, xj))i = −K̃ ′L(ω(x−1
j x))ei(x

−1
j x), i = 1, 2, 3,
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for xj ∈ X . Indeed, we again set the parameters to s = 8 and b = 28 and f has the form

fx(y) =
∑
k

(
α0,kσN (y, xk) +

3∑
n=1

αn,kX
y
nσN (y, xk)

)
,

such that

‖α0‖∞ ≤
106 · sL,N
100− c8

‖K̃L‖∞ ≤ 1.07 · sL,N · ‖K̃L‖∞,

‖αn‖∞ ≤
sL,N

(N + 1)(100− c8)
‖K̃L‖∞

(
2 +

112

c8

)
,

≤ 21 · sL,N ·
‖K̃L‖∞
(N + 1)

, n = 1, 2, 3,

(3.19)

with c8 = 0.999
18 . Thus, Taylor expansion around xj ∈ X yields

|fx(y)−KL(x, y)| ≤
ω(x−1

j y)2

2

∣∣e(x−1
j y)T (Hfx(zj)−HKL(x, zj))e(x

−1
j y)

∣∣ ,
with zj = xj exp(ξj log(x−1

j y)) and |ξj | ≤ ω(x−1
j y), meaning ω(x−1

j zj) ≤ ω(x−1
j y) ≤ π

2(N+1) . Now
we estimate the spectral radius of Hfx(zj) respectively HKL(x, zj) using the Theorem of Gershgorin.
For the diagonal entries of Hfx(zj), we get

XiXifx(zj) = α0,jX
x
i X

x
i σN (zj , xj) +

3∑
n=1

αn,jX
x
i X

x
i X

y
nσN (zj , xj)

∑
k 6=j

(
α0,kX

x
i X

x
i σN (zj , xk) +

3∑
n=1

αn,kX
x
i X

x
i X

y
nσN (zj , xk)

)
.

As seen in Lemma 2.5, we have for the interpolation point close to zj

|Xx
i X

x
i σN (zj , xj)| ≤ |σ̃′′N (0)| ≤ c̃8(N + 1)2 ≤ 0.06 · (N + 1)2,

|Xx
i X

x
i X

y
nσN (zj , xj)| ≤ d̃8

(
(N + 1)3π

2
+

1

4
(N + 1)2π

2

4

)
+
c̃8
4

(N + 1)
π

2
≤ 1.61 · (N + 1)3,

with c̃8 = 1.001
18 and d̃8 = 3·1.001

360 . Moreover, applying Lemma 2.6 with the parameters s = 8, ν = 36,
b = 28 and ε = π

2·ν yields for the remaining interpolation points

∑
k 6=j

|Xx
i X

x
i σN (zj , xk)| ≤ c8aε(N + 1)2

124 · ζ(6) · b
≤ 3 · 10−3 · (N + 1)2,

3∑
n=1

∑
k 6=j

|Xx
i X

x
i X

y
nσN (zj , xk)| ≤ 8.4 · c8aε(N + 1)3

124 · ζ(6) · b
≤ 3 · 10−2 · (N + 1)3.

Combining these estimates results in

|XiXifx(zj)| = ‖α0‖∞|Xx
i X

x
i σN (zj , xj)|+

3∑
n=1

‖αn‖∞|Xx
i X

x
i X

y
nσN (zj , xj)|
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∑
k 6=j

(
‖α0‖∞|Xx

i X
x
i σN (zj , xk)|+

3∑
n=1

‖αn‖∞|Xx
i X

x
i X

y
nσN (zj , xk)|

)
,

≤ 102 · sL,N · ‖K̃L‖∞ · (N + 1)2.

In the same way, we can establish estimates for the off-diagonal entries of Hfx(zj), given by

XjXifx(y)∓ 1

2
Xnfx(y) =

∑
k

αj,0

(
Xx
j X

x
i σN (y, xk)∓ 1

2
Xx
nσN (y, xk)

)

+

3∑
n=1

αn,k

(
Xx
j X

x
i X

y
kσN (y, xk)∓ 1

2
Xx
nX

x
kσN (y, xk)

)
.

For the interpolation point near zj we have

|Xx
j X

x
i σN (x, xj)∓

1

2
Xx
nσN (x, xj)| ≤ 0.03 · (N + 1)2,

|Xx
j X

x
i X

y
kσN (x, xj)∓

1

2
Xx
nX

x
kσN (x, xj)| ≤ 1.61 · (N + 1)3

and for the points separated from xj∑
k 6=j

|Xx
j X

x
i σN (x, xk)∓ 1

2
Xx
nσN (x, xk)| ≤ 3 · 10−3 · (N + 1)2,

3∑
n=1

∑
k 6=j

|Xx
j X

x
i X

y
kσN (x, xk)∓ 1

2
Xx
nX

x
kσN (x, xk)| ≤ 3 · 10−2 · (N + 1)3.

Again, this yields

|XjXifx ∓
1

2
Xnfx| ≤ 102 · sL,N · ‖K̃L‖∞ · (N + 1)2.

Using the Theorem of Gershgorin, we therefore have the bound∣∣e(x−1
j y)THfx(zj)e(x

−1
j y)

∣∣ ≤ 306 · sL,N · ‖K̃L‖∞ · (N + 1)2.

In a similar way, we proceed with the spectral radius of HKL(x, zj). We have to distinguish between
two cases, ω(x−1zj) >

π
2(N+1) and ω(x−1zj) ≤ π

2(N+1) . In the first case, we know by inspection of the
proofs of Theorem 2.3 and Lemma 2.4 that

|Xx
i X

y
i KL(x, zj)| ≤ (1− e2

i )(N + 1)|K̃
′

L(ω(x−1zj))|+ e2
i |K̃

′′

L(ω(x−1zj))|,

|Xx
i X

x
nKL(x, zj)∓

1

2
Xx
jKL(x, zj)| ≤

1

2

(
|K̃
′′

L(ω(x−1zj))|+ (N + 1)|K̃
′

L(ω(x−1zj))|
)
,

where ei = ei(x
−1zj) is the i-th component of the rotation axis of x−1zj . Since K̃L is a trigonometric

polynomial of degree L, so are K̃ ′L and K̃ ′′L and we have by the Bernstein inequality for trigonometric
polynomials

‖K̃ ′′L‖∞ ≤ L‖K̃ ′L‖∞ ≤ L2‖K̃L‖∞.

This yields

|Xx
i X

y
i KL(x, zj)| ≤ s2

L,N · (N + 1)2‖K̃L‖∞,
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|Xx
i X

x
nKL(x, zj)∓

1

2
Xx
jKL(x, zj)| ≤ s2

L,N · (N + 1)2‖K̃L‖∞,

and consequently ∣∣e(x−1
j y)THKL(x, zj)e(x

−1
j y)

∣∣ ≤ 3 · s2
L,N · (N + 1)2‖K̃L‖∞.

In the second case, i.e. ω(x−1zj) ≤ π
2(N+1) , we have, as seen in the proof of Lemma 2.5,

|Xx
i X

x
i KL(x, zj)| ≤ |K̃ ′′L(0)|,

|Xx
i X

x
nKL(x, zj)∓Xx

jKL(x, zj)| ≤
1

2
|D̃′′M (0)− K̃ ′′L(ω)| ≤ |K̃ ′′L(0)|,

which yields the same bound as for the first case. Combining these results yields

|fx(y)−KL(x, y)| ≤ (1.5s2
L,N + 153sL,N ) · ‖K̃L‖∞(N + 1)2ω(x−1

j y).

In addition, we see that fx(y) = fu(yx), where u ∈ SO(3) is the identity. Setting f = fu, it remains to
show the bound for its maximal value. We proceed in the same way as in Lemma 3.5. We split the argu-
ment into three cases in order to bound |f(x)| for x ∈ SO(3). Namely, first there is an interpolation point
xj such that ω(x−1

j x) ≤ 2.45π
(N+1) , second we have 2.45π

(N+1) < ω(x−1
j x) ≤ 18

N+1 and third all interpolation
points are sufficiently separated, i.e ω(x−1

k x) > 18
N+1 for all xk ∈ X . For the first case, we have

|σN (x, xj)| ≤ 1,

|Xy
nσN (x, xj)| ≤ c̃8(N + 1)2ω(x−1

j x) ≤ (N + 1)

2
,

as well as using Lemma 2.6 ∑
xk 6=xj

|σN (x, xk)| ≤ 2 · 10−3,

∑
xk 6=xj

|Xy
nσN (x, xk)| ≤ 4 · 10−3 · (N + 1).

Together with the bounds (3.19) on the coefficients of f we get

|f(x)| ≤ 12 · sL,N · ‖K̃L‖∞.

For the second case, we have using the bound of Theorem 2.3

|σN (x, xj)| ≤ 0.86,

as well as using the Bernstein inequality (1.14)

|Xy
nσN (x, xj)| ≤ (N + 1) · ‖σN (·, xj)‖∞ = (N + 1),

Again, applying Lemma 2.6 results in∑
xk 6=xj

|σN (x, xk)| ≤ 3 · 10−2,

∑
xk 6=xj

|Xx
kσN (x, xk)| ≤ 6 · 10−2 · (N + 1),
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which yields
|f(x)| ≤ 23sL,N · ‖K̃L‖∞.

In the last case, i.e. ω(x−1
k x) > 18

N+1 for all xk ∈ X , we simply use the estimates of Lemma 2.6 for the
set X ∪ {x} to derive

|f(x)| ≤ 4sL,N · ‖K̃L‖∞.

After establishing the results from the previous two lemmas, we can now state the main result of this
section, i.e. bounding the super-resolution error in the L∞ norm by a constant depending on the kernel
and the super-resolution factor times the noise level.

Theorem 3.10. Suppose the support X = {xj} of the measure µ? obeys the separation condition (3.16).
Then the unique solution µτ , τ > 0, of the minimization

min
µ∈M(SO(3),R)

1

2
‖S∗N (µ− µ? − η)‖2L2(SO(3)) + τ‖µ‖TV ,

with ‖S∗Nη‖L2(SO(3)) ≤ τ fulfills for L ≥ N

‖K∗L(µ? − µτ )‖∞ ≤ 320 · p(sL,N ) · ‖K̃L‖∞ · τ, (3.20)

with p(sL,N ) = (s2
L,N + 110sL,N + 1).

Proof. Again, we write ν = µτ − µ? for abbreviation. For x ∈ SO(3) we have, using Lemma 3.8,

|K∗Lν(x)| =

∣∣∣∣∣
∫
SO(3)

KL(x, y)dν(y)

∣∣∣∣∣ ,
≤

∣∣∣∣∣∣
∑
j

∫
Br(xj)

KL(x, y)dν(y)

∣∣∣∣∣∣+ sup
y∈SO(3)

|KL(x, y)|
∫

(
⋃
j Br(xj))

c
d|ν|,

≤

∣∣∣∣∣∣
∑
j

∫
Br(xj)

KL(x, y)dν(y)

∣∣∣∣∣∣+ 100 · ‖K̃L‖∞ · τ.

For the first term, we use the low frequency function f ∈ ΠN of Lemma 3.9 to derive∣∣∣∣∣∣
∑
j

∫
Br(xj)

KL(x, y)dν(y)

∣∣∣∣∣∣
≤
∑
j

∫
Br(xj)

|f(yx)−KL(x, y)|d|ν|(y) +

∣∣∣∣∣∣
∑
j

∫
Br(xj)

f(yx)dν(y)

∣∣∣∣∣∣ ,
≤ (1.5s2

L,N + 153sL,N ) · ‖K̃L‖∞(N + 1)2
∑
j

∫
Br(xj)

ω(x−1
j y)2dν(y)

+

∣∣∣∣∣∣
∑
j

∫
Br(xj)

f(yx)dν(y)

∣∣∣∣∣∣ .

(3.21)
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With Lemma 3.8, we see that

(1.5s2
L,N + 153sL,N ) · ‖K̃L‖∞(N + 1)2

∑
j

∫
Br(xj)

ω(x−1
j y)2dν(y)

≤ 213 · (1.5s2
L,N + 153sL,N ) · ‖K̃L‖∞ · τ.

It remains to estimate the second term of the right hand side of (3.21). We have,∣∣∣∣∣∣
∑
j

∫
Br(xj)

f(yx)dν(y)

∣∣∣∣∣∣ ≤
∣∣∣∣∣
∫

(
⋃
j Br(xj))

c
f(yx)dν(y)

∣∣∣∣∣+

∣∣∣∣∣
∫
SO(3)

f(yx)dν(y)

∣∣∣∣∣ ,
≤ ‖f‖∞

∫
(
⋃
j Br(xj))

c
d|ν|(y) +

∣∣∣∣∣
∫
SO(3)

f(yx)dν(y)

∣∣∣∣∣ .
Again, the first term can be estimated using Lemma 3.8 and the supremum norm bound on the function f
derived in Lemma 3.9, i.e.

‖f‖∞
∫

(
⋃
j Br(xj))

c
d|ν|(y) ≤ 23 · 102 · sL,N · ‖K̃L‖∞ · τ.

For the second term, observe, since the function fx = f(·x) ∈ ΠN for all x ∈ SO(3), that∣∣∣∣∣
∫
SO(3)

f(yx)dν(y)

∣∣∣∣∣ = |〈ν, fx〉| = |〈ν,SNfx〉| = |〈S∗Nν, fx〉L2 | ,

≤ ‖f‖L2‖S∗Nν‖L2 ≤ ‖f‖∞‖S∗Nν‖L2 ,

≤ 23 · sL,N · ‖K̃L‖∞ · ‖S∗Nν‖L2 .

As seen in the proof of Lemma 3.8, see (3.18), we know that ‖S∗Nν‖L2 ≤ 2τ and therefore∣∣∣∣∣
∫
SO(3)

f(yx)dν(y)

∣∣∣∣∣ ≤ 46 · sL,N · ‖K̃L‖∞ · τ.

Thus ∣∣∣∣∣∣
∑
j

∫
Br(xj)

f(yx)dν(y)

∣∣∣∣∣∣ ≤ 23 · 102 · sL,N · ‖K̃L‖∞ · τ

and combining this with the estimate (3.21) yields∣∣∣∣∣∣
∑
j

∫
Br(xj)

KL(x, y)dν(y)

∣∣∣∣∣∣ ≤ 320 · (s2
L,N + 110sL,N ) · ‖K̃L‖∞ · τ.

Finally, we therefore have the bound

‖K∗Lν‖∞ ≤ 320 · (s2
L,N + 110sL,N + 1) · ‖K̃L‖∞ · τ.

Observe, that by sending τ to zero in an appropriate way and L to infinity , this results in the noise
free recovery case.
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Notes and References. Measuring the error of the recovery in the noisy case by measuring the distance
in higher frequencies was first considered for trigonometric moments in [Candés and Fernandez-Granda,
2013]. Next to L1 error estimates for a deterministic noise model, the authors considered a Gaussian
noise model. We believe, that those kind of estimates can be transferred to signals on the rotation group.

The derived estimates of this section are in the spirit of the estimates in [Li, 2017] for the case of
trigonometric moments. Nevertheless, the generalization to the super-resolution problem on the rotation
group heavily relies on the localization estimates of Chapter 2 and the construction of interpolating
functions in Section 3.1.
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Chapter 4

Numerical Solution of the
Optimization Problem

In the previous chapter, we have seen that the sought measure is uniquely determined as the solution of a
total variation minimization on the space of signed Borel measures. Nevertheless, the minimization takes
place in an infinite-dimensional vector space and is therefore not feasible at a first sight.

In this chapter, we present two different approaches to tackle the minimization problem

min
µ∈M(SO(3))

‖µ‖TV , subject to S∗Nµ = S∗Nµ?, (RP)

respectively the Thikonov-type problem

min
µ∈M(SO(3))

1

2
‖S∗N (µ− µ? − η)‖2L2(SO(3)) + τ‖µ‖TV . (RPτ )

In the first approach, we solve a semi-definite relaxation of the dual problems, given by

max
f∈ΠN

Re〈f,S∗Nµ?〉, subject to ‖f‖∞ ≤ 1, (dRP)

respectively

max
f∈ΠN

Re〈S∗N (µ? + η), f〉 − τ‖f‖2L2(SO(3)), subject to ‖f‖∞ ≤ 1. (dRPτ )

Observe, that, although the objective of the pre-dual problem is finite-dimensional, the side condition is an
infinite-dimensional constraint. We substitute this infinite-dimensional constraint with a sufficient finite-
dimensional constraint, following the works [Candés and Fernandez-Granda, 2013] for trigonometric
moments and [Bendory et al., 2015b] for spherical harmonics.

In the second approach, w discretize the primal problems beforehand and solve the corresponding
finite-dimensional optimization problem. In the analysis of the convergence of this process, we build on
results stated in [Tang et al., 2013].

4.1 Semi-Definite Formulation
To start this section, we recap the super-resolution problem in the case of Fourier moments, as it was
solved in [Candés and Fernandez-Granda, 2014]. It is based on a Bounded Real Lemma, derived from
Gramian parametrizations of non-negative polynomials and the Fejér-Riesz theorem. A good overview
on this topic can be found in [Dumitrescu, 2007]. For the sake of completeness, we present the essential
ingredients to formulate our first algorithm.

71
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4.1.1 Recovery from Trigonometric Moments and the Bounded Real Lemma
The minimization problem, given by

min
µ∈M(T)

‖µ‖TV , subject to µ̂(k) = yk, for |k| ≤ N, (TP)

is an infinite-dimensional optimization problem over the whole measure spaceM(T) and thus not directly
tractable. The convex pre-dual problem to (TP), is given by

max
c∈C(2N+1)

Re(〈c, y〉), such that ‖FNc‖∞ ≤ 1, (dTP)

where FNc(t) =
∑N
k=−N cke

ikt is the Fourier summation operator. In the pre-dual problem, the
objective is finite-dimensional, but the constraints are infinite-dimensional. Since ran(FN ) is finite-
dimensional, the pre-dual problem always has a solution. Moreover, due to a Slater condition, we now
that the duality gap is zero, see Theorem D.4, which implies any solution c? ∈ C2N+1 obeys

Re(〈c?, y〉) = Re(〈c?, F ∗Nµ?〉) = Re(〈µ?, FNc?〉) = ‖µ?‖TV ,

where µ? is a solution to the primal problem (TP). In the case µ? is discrete, this leads to the interpolation

FNc
?(xi) = signµ?(xi),

as seen in (1.6). This means, the support set of µ? is contained in the set of zeros of

1− |FNc?(t)|2.

In the univariate case, one can now obtain the zeros by computing the unit magnitude eigenvalues of
the companion matrix. Afterwards, one can obtain the amplitudes by solving a least squares problem.
Observe, that the side condition is equivalent to the non-negativity of the trigonometric polynomial

R(t) = 1− |FNc(t)|2. (4.1)

The Fejér-Riesz theorem states, that a trigonometric polynomial R of degree n, i.e.

R(t) =

n∑
k=−n

rke−ikt, t ∈ T,

is non-negative, if and only if there is a causal trigonometric polynomial H , i.e. it has the form

H(t) =

n∑
k=0

hke−ikt, (4.2)

such that
R(t) = H(t) ·H(t) = |H(t)|2. (4.3)

If we write
H(t) = ϕn(t)Hh,

where

ϕn(t) =


1

eit

...
eint

 , h =


h0

h1

...
hn

 ,
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then equation (4.3) reads as
R(t) = ϕ(t)HhhHϕ(t).

On the other hand, each trigonometric polynomial of degree n of the form

R(t) = ϕn(t)HQϕn(t), (4.4)

where Q ∈ C(n+1)×(n+1) is hermitian positive semi-definite is non-negative. The matrix Q is called a
Gramian matrix representing R. There is the following connection between the coefficients of R and any
Gramian matrix representing R.

Theorem 4.1 ( [Dumitrescu, 2007, Thm. 2.3]). If R(t) =
∑n
k=−n rke−ikt and Q is a Gramian matrix

representing R, then

rk = tr(ΘkQ) =

min(n+k,n)∑
i=max(0,k)

Qi,i−k, k = −n, . . . , n, (4.5)

where Θk is the elementary Toeplitz matrix with ones on the k-th diagonal and zeros elsewhere.

This is known as trace parametrization of a non-negative trigonometric polynomial. Now, again
consider the case

R(t) = 1− |FNc(t)|2.

This can be written in the form
R(t) = 1− |e−iNt · FNc(t)|2,

which means R(t) = 1− |H0(t)|2, where

H0(t) = e−iNt · FNc(t),

=

2N∑
k=0

(h0)ke−ikt = ϕ(t)Hh0,

with (h0)k = ck−N is a monic polynomial of the form (4.2), with n = 2N . The Fejér-Riesz Theorem now
states, that there has to be a positive semi-definite Gramian Q0 representing the polynomial identically to
one, i.e.

δ0,k = tr(ΘkQ0), k = −N, . . . , N, (4.6)

sucht that

R(t) = 1− |H0(t)|2 = ϕ(t)H(Q0 − h0h
H
0 )ϕ(t).

This means R(t) ≥ 0, if and only if
Q = Q0 − h0h

H
0

is positive semidefinite. Observe, that given the matrix(
Q0 h0

hH0 1

)
, (4.7)

the matrix Q is the Schur complement of the block ’1’ in the matrix (4.7). Therefor, Q is positive semi-
definite if and only if the matrix (4.7) is positive semi-definite, see Lemma C.1. Concluding, one has that
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R(t) = 1 − |FNc(t)|2 is non-negative, if and only if, there is a positive semi-definite hermitian matrix
Q0 ∈ C(2N+1)×(2N+1) obeying(

Q0 c
cH 1

)
< 0, such that tr(ΘkQ0) = δ0,k, k = −N, . . . , N. (4.8)

Consequently, the constraint ‖FNc‖∞ ≤ 1 in (dTP) can equivalently be written as (4.8). Thus, the dual
program becomes

max
Q0,c

Re(〈c, y〉), subject to (4.8),

and is therefore a finite-dimensional semi-definite program with (2N + 1)2/2 variables. As seen, the
sufficiency is based on trace parametrizations and the necessity utilizes in addition that every univariate
non-negative trigonometric polynomial is a sum of squares, which is the assertion of the Fejér-Riesz
theorem.

In higher dimension, the equality of non-negative and sum of squares polynomials does no longer
hold true. Thus, we cannot hope to find an equivalent characterization of the supremum norm con-
straint in dimensions higher than one. Nevertheless, the construction of a sufficient condition utilizing
trace parametrizations is still possible by replacing the non-negativity constraint by a sum of squares as-
sumption. This is known as sum of squares relaxation. For this purpose, following [Dumitrescu, 2007],
consider multivariate trigonometric polynomials of the form

R(t) =

n∑
k=−n

rke−ik·t, t ∈ Td,

where k ∈ Zd denotes a multiindex k = (k1, . . . , kd), t = (t1, . . . , td) and k = −n, . . . , n is meant
elementwise. Positive orthant polynomials are of the form

H(t) =

n∑
k=0

hkeik·t, t ∈ T.

More generally, to state trace parametrizations of constant trigonometric polynomials, we need the notion
of a halfspace. A setH ⊂ Zd is called halfspace, ifH∩ (−H) = {0},H∪ (−H) = Zd andH+H ⊂ H.
A standard way to construct a halfspace is given iteratively. We start with H1 = N and say that k ∈ Hd,
if either kd > 0, or kd = 0 and (k1, . . . , kd−1) ∈ Hd−1. We say, that the trigonometric polynomial R is
a sum of squares, if

R(t) =

ν∑
l=1

|Hl(t)|2, (4.9)

where Hl are positive orthant polynomials. Observe, that the maximal degree m of the trigonometric
polynomials Hl are allowed to be higher than the degree of R, i.e. m ≥ n. This additional degree of free-
dom allows for the following. Every positive trigonometric polynomial is a sum of squares polynomial,
see [Dumitrescu, 2007, Thm. 3.5]. To get a more comprehensive representation in analogy to (4.4), set
the (m+ 1)-dimensional vector

Φm(t) = ϕm(td)⊗ · · · ⊗ ϕm(t1),

where ⊗ denotes the Kronecker product and ϕm(tj) = (1, . . . , eimtj )T , for m ≥ n. This is only a
suitable enumeration of the exponentials. In two dimensions, for example, this would read as

Φm(t) = ϕm(t2)⊗ ϕm(t1) =


1 · ϕm(t1)

eit2 · ϕm(t1)
...

eimt2 · ϕm(t1)

 .
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Using this notation, every positive orthant trigonometric polynomial can be written in the form

H(t) = Φm(t)Hh,

where h ∈ C(m+1)d contains the coefficients of H according to the ordering of the indices in Φm. This
means, every sum of squares polynomial R can be written as

R(t) = Φm(t)HQΦm(t), (4.10)

where Q ∈ C(m+1)d×(m+1)d is hermitian positive semi-definite and m is the maximal degree appearing
in the representation (4.9). Again, the important part is a trace parametrization.

Theorem 4.2 ( [Dumitrescu, 2007, Thm. 3.13]). Suppose that R(t) =
∑n

k=−n rke−ik·t and Q ∈
C(m+1)d×(m+1)d such that (4.10) holds. Then

r̃k = tr(ΘkQ),

where
Θk = Θkd ⊗ · · · ⊗Θk1 ,

and Θkj again denotes the elementary Toeplitz matrix with ones on the kj-th diagonal and zeros elsewhere
and r̃ ∈ C(m+1)d denotes the continuation of r ∈ C(m+1)d with zeros.

Again, consider the case that R(t) = 1 − |H0(t)|2, where H0(t) is a positive orthant polynomial
of degree n with coefficients h0. Then a sufficient condition for the non-negativity of R can be stated
as follows. Find a trace parametrization of the trigonometric polynomial identically one, i.e. there is
Q0 ∈ C(m+1)d×(m+1)d obeying

δ0,k = tr(ΘkQ0), k ∈ H, k ≤ m,

whereH is a halfspace, such that Q = Q0− h̃0h̃
H
0 < 0 and h̃0 ∈ C(m+1)d is the continuation of h0 with

zeros. Indeed, in this case

R(t) = 1− |H0(t)|2 = Φm(t)H(Q0 − h̃0h̃
H
0 )Φm(t) ≥ 0.

As in the one-dimensional case, the condition

‖FNc‖∞ ≤ 1,

where

FNc(t) =

N∑
k=−N

ckeik·t,

is equivalently to the non-negativity of

R(t) = 1− |e−iNt · FNc(t)|2 = 1− |H0(t)|2,

where H0(t) =
∑2N

k=0 ck−Ne−ik·t is a positive orthant polynomial. The relaxation of the side condition
consists of replacing the non-negativity condition with a sums of squares representation of R(t) with
squares of degree M ≥ N , to derive a finite-dimensional sufficient criteria. More concrete, as seen
before, the supremum norm bound is fulfilled, if there is Q0 ∈ C(2M+1)d×(2M+1)d for M ≥ N and a
halfspaceH, obeying(

Q0 c̃
c̃H 1

)
< 0, such that tr(ΘkQ0) = δ0,k, k ∈ H, −M ≤ k ≤M,
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where again c̃ ∈ C(2M+1)d is the continuation of c by zeros. This is a generalization of (4.8) to higher
dimensions, with the difference that this condition is only sufficient, but not necessary. In addition, there
is an extra relaxation parameter M ≥ N , coming from the assumption, that the polynomial R(t) =
1 − |e−iNt · FNc(t)|2 is a sum of squares, with squares of degree M . Summarizing, to derive the
non-negativity of the trigonometric polynomial one replaces the non-negativity with a sum of squares
condition.

In the next section, we will see, that we only need to relax the non-negativity conditions on an al-
gebraic subset of the torus. To be as close as possible to the original non-negativity condition, we make
use of a slight generalization of the previous relaxation for globally non-negative polynomials, which is
known as the Bounded Real Lemma. For reasons of completeness, we comprehensively state the neces-
sary results from [Dumitrescu, 2007]. An algebraic subset D ⊂ Td has the form

D = {t ∈ Td : Dl(t) ≥ 0, l = 1, . . . , L}, (4.11)

where Dl(t) =
∑

k dl,ke−ik·t are given trigonometric polynomials. If a trigonometric polynomial
R(t) =

∑n
k=−n rke−ik·t has the representation

R(t) = S0(t) +

L∑
l=1

Dl(t)Sl(t), (4.12)

where Sl, l = 0, . . . , L, are sum of squares polynomials, then R(t) ≥ 0 for t ∈ D. Again, one assumes
an upper bound on the degree of the polynomials Sl. If deg(R) = n and deg(S0) = m, with m ≥ n,
then one choice is deg(Sl) = m−deg(Dl), such that the productsDlSl have degreem, see [Dumitrescu,
2007, Rem. 4.17]. In this case, the following trace representation is valid and can be derived from the
previous trace parametrization, see [Dumitrescu, 2007, Thm. 4.15].

r̃k = tr(ΘkQ0 +

L∑
l=1

Ψl,kQl), k ∈ H, −m ≤ k ≤ m,

where
Ψl,k =

∑
j+l=k

dl,jΘl. (4.13)

The matrices Ql ∈ C(deg(Sl)+1)d×(deg(Sl)+1)d , l = 0, . . . , L are Gramians associated to the polynomials
Sl and the dimension of Θl, appearing in Ψl,k is given accordingly. From this, one gets an sufficient
condition for a norm bound on the set D, that is known as Bounded Real Lemma.

Lemma 4.3 (Bounded Real Lemma, [Dumitrescu, 2007, Cor. 4.25]). Suppose H(t) =
∑n

k=0 hke−ik·t

is a positive orthant trigonometric polynomial and D is a frequency domain as given in (4.11). If there
exist hermitian positive semi-definite matrices Ql, l = 0, . . . , L, and a halfspaceH for m ≥ n, obeying(

Q0 h̃

h̃H 1

)
< 0, such that tr(ΘkQ0 +

L∑
l=1

Ψl,kQl) = δ0,k, k ∈ H, k ≤ m,

where Ψl,k are given in (4.13), then

|H(t)| ≤ 1, for t ∈ D.

In the next section, we will utilize the Bounded Real Lemma to derive our first reconstruction algo-
rithm in the case of Wigner D-moments.
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4.1.2 Recovery from Wigner D-moments
In this section, we formulate a finite-dimensional relaxation for the total variation minimization in the case
of Wigner D-moments. It is based on a special representation of the Wigner D-functions in combination
with the Bounded Real Lemma from the previous section.

As seen before, under a suitable separation condition for the support of the sought measure µ? it can
be recovered as the solution of the minimization problem

min
µ∈M(SO(3))

‖µ‖TV , subject to S∗Nµ = g, (RP)

where

S∗Nµ(x) =

N∑
l=0

(2l + 1)

l∑
k,m=−l

〈µ,Dl
k,m〉Dl

k,m(x)

is the partial summation operator with respect to the Wigner D-functions and g = S∗Nµ?. Since the
objective space is infinite-dimensional, the optimization problem is not feasible. The convex pre-dual of
the minimization problem (RP) is given by

max
f∈L2(SO(3))

Re〈g,SNf〉, subject to ‖SNf‖∞ ≤ 1,

or equivalently
max
f∈ΠN

Re〈g, f〉, subject to ‖f‖∞ ≤ 1, (dRP)

where
ΠN = ran(SN ) = span{Dl

k,m : l ≤ N,−l ≤ k,m ≤ l}.

Let f? be a solution of the pre-dual problem, which always exists. Again, by strong duality we know that

Re〈g, f?〉 = Re〈µ?,SNf?〉 = ‖µ?‖TV ,

if µ? is a solution of the primal problem. In the case µ? is discrete, we have that

f?(xi) = signµ?(xi), xi ∈ supp(µ?)

meaning the support points are a subset of the zeros of the function 1 − |f?(x)|2 ∈ Π2N . To replace
the norm constraint in the dual problem (dRP) with a finite-dimensional condition, we use Lemma 4.3
from the previous section. In order to point out this connection, remember from (1.11), that in the Euler
angle parametrization (α, β, γ) ∈ (0, 2π] × (0, π] × (0, 2π] we have the representation of the Wigner
D-functions

Dl
k,m(α, β, γ) = e−ikα

 l∑
j=−l

d̂lkm(j)e−ijβ

 e−imγ ,

with d̂lkm(j) = im+k(−1)jdl−j,k(0)dlm,−j(0). Thus, if f ∈ ΠN , we have in the Euler angle parametriza-
tion (α, β, γ) ∈ (0, 2π]× (0, π]× (0, 2π]

f(x(α, β, γ)) =

N∑
l=0

(2l + 1)

l∑
k,m=−l

〈f,Dl
k,m〉Dl

k,m(α, β, γ),

=

N∑
j,k,m=−N

 N∑
l=max(|j|,|k|,|m|)

d̂lkm(j)(2l + 1)〈f,Dl
k,m〉

 e−i(jβ+kα+mγ),
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or equivalently for (α, β, γ) ∈ (−π, π]× (−π, 0]× (−π, π]

f(x(α+ π, β + π, γ + π)) =

N∑
j,k,m=−N

 N∑
l=max(|j|,|k|,|m|)

(−1)j+k+md̂lkm(j)(2l + 1)〈f,Dl
k,m〉


· e−i(jβ+kα+mγ),

which means on the set (−π, π] × (−π, 0] × (−π, π] f is equal to a trigonometric polynomial. For
abbreviation, define the mapping TMf : ΠN → C(M+1)d ,

TMf =

{∑N
l=max(|j|,|k|,|m|)(−1)j+k+md̂lkm(j)(2l + 1)〈f,Dl

k,m〉, max(|j|, |k|, |m|) ≤ N,
0, else,

and the algebraic set

D = [−π, π]× [−π, 0]× [−π, π] =
{

(α, β, γ) ∈ T3 : − sin(β) ≥ 0
}
.

We can write− sin(β) = i
2 (eiβ−e−iβ), thus, in the context of Lemma 4.3, we define Ψk ∈ C(2M)3×(2M)3

for k = (j, k,m) as

Ψk =
i

2
Θ

k−
(

1
0
0

) − i

2
Θ

k+

(
1
0
0

), (4.14)

with the convention that Θl = 0, if one of the entries of l exceeds 2M − 1 in absolute value. Concluding,
we have the following Lemma.

Lemma 4.4. Suppose f ∈ ΠN . If for M ≥ N there are hermitian positive semi-definite matrices
Q0 ∈ C(2M+1)3×(2M+1)3 and Q1 ∈ C(2M)3×(2M)3 and a halfspaceH such that

tr (ΘkQ0 + ΨkQ1) = δ0,k, k ∈ H, −2M ≤ k ≤ 2M,(
Q0 TMf

TMf
H 1

)
< 0,

(4.15)

where Ψk is given in (4.14), then ‖f‖∞ ≤ 1.

Proof. The lemma follows immediately from Lemma 4.3.

In order to formulate our first algorithm, we substitute the infinite-dimensional constraint in the dual
problem (dRP) with the finite-dimensional constraint (4.15). We would like to mention again, that in
contrast to the case of the univariate Fourier moments this is not an equivalent formulation but a relaxation
of the pre-dual problem, which depends on the following assumption.

Assumption. The solution f? of the pre-dual problem (dRP) fulfills the following. The trigonometric
polynomial with the coefficients TMf has a sums of squares representation of the form

FNTMf
?(t) = S0(t)− sin(t2)S1(t), t ∈ T3, (SOS)

where S0 is a sum of squares polynomial of degree M and S1 is a sum of squares polynomial of degree
M − 1.

Under which conditions on the primal solution µ? this assumption is valid, remains an open and
difficult problem. Nevertheless, we have the following.
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Theorem 4.5. Let f? ∈ ΠN be a solution of the pre-dual problem (dRP). If f? fulfills the Assumption
(SOS) for M ≥ N , then it is the solution of the problem

max
f∈ΠN ,Q0,Q1

Re〈g, f〉, subject to (4.15), (dRPrel)

where Q0 ∈ C(2M+1)3×(2M+1)3 and Q1 ∈ C(2M)3×(2M)3 have to be hermitian positive semi-definite.

In contrast to the pre-dual problem (dRP), the optimization problem (dRPrel) is inherently finite-
dimensional. In the case of the pre-dual problem (dRPτ ) to the Thikonov-type problem (RPτ ), we substi-
tute it with the minimization

max
f∈ΠN ,Q0,Q1

Re〈g, f〉 − τ‖f‖2L2(SO(3)), subject to (4.15). (dRPτ,rel)

To solve the convex optimization problem, we use MATLAB R© in combination with CVX, a free
package for specifying and solving convex programs, see [Grant and Boyd, 2014] and [Grant and Boyd,
2008]. We set the preferences of CVX to call the open source solver SeDuMi, see [Sturm, 1999], at
the highest precision. This solver uses a primal-dual interior point method to approximate a solution of
(dRPrel) from the interior of the feasible set and we will use it as a ’black box’ solver. For further details
see [Sturm, 1997] and [Sturm, 1999]. For the same argument as in [Candés and Fernandez-Granda,
2014, Sec. 4], it is highly unlikely, that the result of the interior point method gives a constant function
equally to one in absolute value. After solving the program (dRPrel), we determine the minima of the
function

p(x) = 1− |f?(x)|2.

This part is a problem of its own interest. We describe one possible solution in the following. To find
all local minimizer of the function p = 1 − |f?(·)|2, we will apply a simultaneous conjugate gradient
method with inexact line search using the Wolfe condition, as described in [Gräf and Hielscher, 2015].
For initialization, we choose randomly P initial points. For completeness, we briefly state the conjugate
gradient algorithm as procedure 1. The expressions ∇p(x) and Hp(x), that have to be computed, have
a local representation in Euler angles, which makes it possible to use fast Fourier techniques for the
simultaneous computation at different points, see [Potts et al., 2009], [Keiner and Vollrath, 2012]. For a
detailed discussion on this, including convergence rates, see [Gräf and Hielscher, 2015] and [Gräf, 2013a].
For our computations, we use an implementation of this algorithm from the C++ Library LORM [Gräf,
2013b], provided by the authors of [Gräf and Hielscher, 2015].
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Procedure 1: CG method with inexact line search
Input: p ∈ C2(SO(3)), x(0) ∈ SO(3)
Parameters: 0 < c1 <

1
2 , 0 < c1 < c2, tolcg > 0

initialization: g(0) = ∇p(x(0)), d(0) = −∇p(x(0)), r = ‖∇p(x(0))‖2, k = 0;
while r > tolcg do

//Step size via Wolfe condition
choose α(k) maximal such that

p(γx(k),d(k)(α
(k)))− p(x(k)) ≤ c1α(k)d(k)T∇p(x(k)),

d(k)T∇p(γx(k),d(k)(α
(k))) ≥ c2∇p(x(k));

//Updating the argument and the conjugate direction

x(k+1) = γx(k),d(k)(α
(k));

g(k+1) = ∇p(x(k+1));

d̃(k) = γ̇x(k),d(k)(α
(k));

//Step size for descent direction update

β(k) =

 g(k+1)THp(x(k+1))d̃(k)

d̃(k)THp(x(k+1))d̃(k)
, d̃(k)THp(x(k+1))d̃(k) 6= 0,

0, else;

d(k) = −g(k) + β(k)d̃(k);

x? = x(k+1);
r = 1

L

∑L
i=1 |∇p(xki )|;

k = k + 1;
end
Output: x? ∈ SO(3)

We can now formulate our first reconstruction algorithm, Algorithm 1, and test it in several numerical
experiments.

Experiment 1 (Noise-free recovery). In the first experiment, we provide some reconstruction examples
of noiseless recovery. To illustrate the result of the semi-definite program, involved in Algorithm 1, we
simulate a point measure

µ? =

6∑
i=1

ciδxi ,

where xi = xi(αi, βi, γi) are six randomly distributed support points and ci are randomly generated
amplitudes, given in table 4.1. The support points are chosen, such that the minimal separation obeys

min
i 6=j

ω(x−1
i xj) > 2.01.

From this test measure we generate moments up to degree N = 2 and solve the semi-definite program
(dRPrel) with M = N . To see the difference between the given low frequency information S∗2µ? and the
solution f? of the optimization (dRPrel), we plot the squared absolute value of both functions on three
slices along the second Euler angle. This is illustrated in figure 4.1.
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Algorithm 1: Super-resolution on SO(3) via SDP
Input: low-frequency approximation g ∈ ΠN of µ?

Parameters: relaxation parameter M ≥ N , regularization parameter τ , P ∈ N, tol > 0
initialization: X = ∅
do

Solve for f? ∈ ΠN , Q0 ∈ C(2M+1)3×(2M+1)3 , Q1 ∈ C(2M)3×(2M)3

max
f∈ΠN ,Q0,Q1

Re〈g, f〉 − τ‖f‖2L2(SO(3)), subject to (4.15), (dRPτ,rel)

using an interior point method;

Randomly choose P initial points {x1, . . . , xP } ⊂ SO(3);

for l = 1, . . . , P do
Find x?l via Procedure 1 with initialization point xl;
if (1− |f?(x?l )| < tol) then
X = X ∪ {x?l };

end
end
Set ν =

∑
xi∈X ciδxi , with ci such that

ν = argmin ‖S∗Nν − g‖2;

end;
Output: ν ∈M(SO(3))

i αi βi γi ci
1 0.8277 1.0964 4.3325 -0.6911
2 0.6007 1.5683 0.8292 0.7511
3 3.9386 1.7086 3.7938 0.7696
4 4.1735 2.2986 0.8480 0.3185
5 2.7859 0.4716 0.4551 -0.9460
6 1.6728 2.4994 3.0875 0.9161

Table 4.1: The support points and amplitudes of the test measure µ?.
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(a) f? at slice β1 (b) S∗2µ? at slice β1

(c) f? at slice β2 (d) S∗2µ? at slice β2

(e) f? at slice β4 (f) S∗2µ? at slice β4

Figure 4.1: The squared absolute value of the solution f? of (dRP) against the scaled squared absolute
value of the given low frequency information S∗2µ? on different slices along the second Euler angle. The
support of the measure µ? is indicated by the red bars.
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One observes, that the solution f? of the minimization acts as a dual certificate, i.e. it equals one
in absolute value at the unknown support points of µ?, whereas the low frequency approximation has
several local maxima that cannot be distinguished from the unknown support. Even if one restricts to the
slices in the second Euler angels of the unknown support points of µ?, the biggest local extrema of S∗2µ?
are located elsewhere and the true support point may even not be a local extremum of S∗2µ?.

After computing the solution f?, we randomly choose P = 20000 initial points and apply the simulta-
neous conjugate gradient method described in Procedure 1 to the function 1−|f?|2. We set the tolerance
to tol = 10−8 and identify the resulting minima xrec

i , which fulfill 1−|f?(xrec
i )|2 < tol, as support points.

Finally, we solve for the amplitudes in

µrec =
∑
i

crec
i δxrec

i

via the least squares minimization

crec = argmin ‖S∗2µrec − S∗2µ?‖2.

With this procedure, we obtain six points xrec
i , such that the maximal distance to the points xi fulfills

max
i

min
j
ω(x−1

i xrec
j ) < 8.6 · 10−7,

and the correctly ordered amplitudes obey maxi |ci − crec
i | < 7.7 · 10−8. We plot the result in figure 4.2.

Moreover, we can apply Algorithm 1 to complexed valued measures. Some reconstruction examples
for different number of unknown points and values of N are given in figure 4.3.

Experiment 2 (Influence of the separation). In this experiment, we give a glimpse on the influence of
the separation distance of the support points. Remember, the support points {xi} are supposed to obey a
separation condition of the form

ω(x−1
i xj) ≥

ν

N
.

As seen in Chapter 3, ν = 36 is a sufficient criteria. Nevertheless, the actual minimal constant may be
much smaller, which the following experiment indicates. For this, we partition the interval [1, N · π],
i.e. we choose 1 = ν0 < ν1 < · · · < νn = N · π and generate for each subinterval [νi, νi+1] twenty
sets of two points, that are separated by νi

N but not by νi+1

N , and choose random complex amplitudes.
Afterwards, we compute the moments for N = 1 and N = 2 and apply Algorithm 1 with M = N , τ = 0
and L = 20000. We say that the recovery is successful, if

max
i

min
j
ω(x−1

i xrec
j ) < 10−4,

where xrec
j are the recovered points. To underpin the observations, we partition the interval [2.5, 3.5]

and generate for each subinterval ten sets of two points separated by the corresponding distance and
apply Algorithm 1 to moments of order N = 3. One can observe, that in these cases for ν

N , where ν is
slightly larger than 3, we get exact recovery using Algorithm 1. The measured recovery rate is plotted in
figure 4.4. Due to the high complexity of solving the semidefinite program (dRPrel), testing Algorithm 1
for higher order moments is sophisticated. To consolidate the transition to exact recovery at a constant
slightly larger than 3, one has to test even on higher available moments, which demands for the use of
customized solvers for the semidefinite program (dRPrel) to make the computation feasible, which goes
beyond the scope of this thesis. We leave this for future research.

Remark 4.6 (Relaxation parameter). In Experiment 2, we choose the minimal relaxation parameter, i.e.
M = N . We find, that increasingM toM = N+1 does not change the recovery rate, at least forN = 1
and N = 2. The influences of the relaxation parameter on the recovery is closely related to the validity
of the Assumption (SOS). How to chose the parameter depending on the measure to recover is an open
problem.
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Figure 4.2: Reconstruction of the measure µ?, defined in table 4.1. The representation is done in the
axis-angle parametrization. The unknown points xi are marked with circles, located on the top of a ray,
whose direction correspond to the axis given as a point on the sphere, plotted in light grey, and its length
to the angle. The unknown amplitudes are color coded in different shadows of red corresponding to the
value of the amplitude. The reconstructions xrec

i by algorithm 1 are marked by little small crosses and the
reconstructed amplitudes crec

i are color coded as described before.
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(a) 4 points with separation 3, N = 1 (b) 10 points with separation 1.9, N = 2

(c) 22 points with separation 1.3, N = 3 (d) 40 points with separation 1.0, N = 4

Figure 4.3: Reconstruction examples for different number of unknown points and values of N . The
representation is done in the axis-angle parametrization. The unknown points are marked with circles,
located on the top of a ray, whose direction correspond to the axis and its length to the angle. The
unknown amplitudes are colour coded , the real part in red and the imaginary in blue. The reconstructions
by algorithm 1 are marked by little small crosses. All examples show a nearly perfect recovery.
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(a) Recovery rate for N = 1. (b) Recovery rate for N = 2. (c) Recovery rate for N = 3.

Figure 4.4: The recovery rate of Algorithm 1 for different values of N . On the x-axis, we plotted the
constant appearing in the separation condition ν

N , whereas on the y-axis we have the recovery rate.

Experiment 3 (Noisy data). In this experiment, we test the behavior of Algorithm 1 on noisy data. For
this, we randomly generate sets of eight points on the rotation group, randomly generate corresponding
amplitudes and compute moments of order N = 2. We normalize the amplitudes, such that we always
have ‖S∗Nµ‖2 = 1. The generated point sets are separated by 4

N , as Experiment 2 suggests that we can
expect exact noiseless recovery in this case. We choose nine different values of τ ranging from 0.5 to 0.01
and randomly disturb the low frequency information with noise S∗Nη, such that

‖S∗Nη‖L2 ≤ τ.

After generating the data, we apply Algorithm 1 for the different values of τ and different data sets with
the parametersM = N and P = 30000. Again, we first evaluate the recovery by measuring the maximal
distance

max
i

min
j
ω(x−1

i xrec
j ), (4.16)

where xrec
j are the recovered points and xj denote the true support points. We plot the recovery error

averaged over the twenty sets in Figure 4.5(a).

To measure the error induced by the super-resolution process, we plot the quantity ‖S∗L(µ? − µτ )‖2
in Figure 4.5(b) for values of L ranging from 2 to 32. Here, µ? is the sought measure and µτ is the
measure recovered from the noisy measurements. Observe, that the theoretical L∞ bound of Section 3.3
also yields a corresponding L2-estimate. The quadratic growth of the error with respect to the super-
resolution factor can be observed in Figure 4.5(b).

Lastly, we plot the recovered measures for different values of the noiselevel τ for one test measure in
Figure 4.6. One observes, that the noise on the measurements induces artificial support points close to
the true support of the sought measure.
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(a) Recovery error as defined in (4.16). (b) Super-resolution error ‖S∗L(µ
? − µτ )‖2.

Figure 4.5: (a) The recovery error for moments of order N = 2 and different values of the noise level τ
averaged over twenty test sets. (b) The induced super-resolution error for values of the super-resolution
factor L

N ranging from 1 to 16 for a noiselevel of τ = 0.1 averaged over the test measures.

(a) τ = 0.5 (b) τ = 0.4 (c) τ = 0.3

(d) τ = 0.2 (e) τ = 0.1 (f) τ = 0.05

(g) τ = 0.03 (h) τ = 0.02 (i) τ = 0.01

Figure 4.6: Recovered support points for different values of τ . The representation is done in Euler angles.
The true support of the measure µ? are marked with blue circles and the recovered points with orange
crosses. One observes, that although the recovered points approach the support of the sought measure as
the noiselevel decreases, the noise on the measurements induces artificial support points close to the true
support.
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We would like to mention, that Algorithm 1 do not use any a priori discretization. Nevertheless, the
complexity of the semi-definite program grows dramatically in N , the order of the given moments. More
concrete, the inspection of Algorithm 1 shows that the number of variables of the semi-definite program
grows like O(N6). A very important question is, how to adapt Algorithm 1 to make it applicable for
higher order moments. One possibility is the use of customized solvers for the semi-definite program,
which we leave for future research.

Instead, we consider a different approach, that relies on an a priori discretization, the solution of a
finite-dimensional problem and a clustering step in the next section.

4.2 Discretization of the Optimization Problem
Due to the high complexity of the semi-definite program for higher order moments, we propose to use a
discretization of the primal problems (RP) and (RPτ ). This means, we choose a sequence of discrete sets
Gn ⊂ SO(3) and solve for the discretized problems

min
supp(µ)⊂Gn

‖µ‖TV , subject to S∗Nµ = S∗Nµ?, (RPn)

respectively

min
supp(µ)⊂Gn

1

2
‖S∗N (µ− µ? − η)‖2L2(SO(3)) + τ‖µ‖TV . (RPτ,n)

In this section, we consider the convergence behavior of the solutions of the discretized problems. The
convergence depends on the filling distance of the chosen discretization Gn, given by

h(Gn) = sup
x∈SO(3)

inf
y∈Gn

ω(x−1y).

By doing this, we follow ideas from [Tang et al., 2013], where the convergence for continuously parametrized
dictionaries has been examined.

Theorem 4.7. Assume µ? =
∑
i ciδxi is the unique solution of (RP) and the sequence Gn of discretiza-

tions is chosen, such that
h(Gn)→ 0.

Then each sequence of solutions µn of (RPn) converges to µ? and the solutions µτ,n of (RPτ,n) converges
to the unique solution µτ of (RPτ ) in the weak?-topology.

Moreover, there exist ε > 0, such that

µn(Bε(xi))→ ci, |µn|(Bε(xi))→ |ci|,

and
|µn| ((∪iBε(xi))c)→ 0. (4.17)

Proof. The proof is quite similar to the proof of [Tang et al., 2013, Thm. 2]. We show, that each sequence
of solutions is bounded and thus, due to the sequentially Banach-Alaoglu Theorem, admits a weak?

convergent subsequence, which converges to a solution of the continuous problems (RP) respectively
(RPτ ). The uniqueness of the solution to the continuous problems than guarantees the convergence of the
whole sequence by an subsequence-subsequence argument.

For the boundedness, consider the convex dual problems

max
f∈ΠN

Re(〈f,S∗Nµ?〉), s.t. |f(x)| ≤ 1, x ∈ Gn, (dRPn)



4.2. DISCRETIZATION OF THE OPTIMIZATION PROBLEM 89

respectively

max
f∈ΠN

Re〈S∗N (µ? + η), f〉 − τ‖f‖2L2(SO(3)), s.t. |f(x)| ≤ 1, x ∈ Gn. (dRPτ,n)

For abbreviation, we write

Q(f) = Re(〈f,S∗Nµ?〉),
Qτ (f) = Re〈S∗N (µ? + η), f〉 − τ‖f‖2L2(SO(3)).

We show, that the feasible sets of the dual problems, i.e. the sets of f ∈ ΠN such that |f(x)| ≤ 1 for
x ∈ Gn, are bounded in ΠN and therefore compact. Since h(Gn)→ 0, we have that for large enough n,

h(Gn) <
1

N
.

Applying a Marcinkiewicz-Zygmund inequality, see [Schmid, 2008, Thm. 4.4], yields for all f ∈ ΠN

‖f‖∞ ≤ (1−Nh(Gn))
−1

max
x∈Gn

|f(x)|,

meaning all feasible sets are uniformly bounded and thus compact. This shows, that each discretized
problem has a solution. In the case of the problem (dRPτ,n), this solution is unique, due to the strict
convexity of the objective function Qτ . We denote these minimizer sequences by fn respectively fτ,n.

The rest of the proof is identical to the proof of [Tang et al., 2013, Thm. 2]. We will sketch it briefly.
Due to the uniform boundedness, one can show, that each sequence fn converges to a solution f? of the
continuous dual problem

max
f∈ΠN

Q(f), subject to ‖f‖∞ ≤ 1, (dRP)

and the sequence fτ,n converges to the unique solution fτ of

max
f∈ΠN

Qτ (f), subject to ‖f‖∞ ≤ 1. (dRPτ )

Since strong duality holds for the discretized problems as well as for the continuous ones, one knows that

Q(fn) = ‖µn‖TV ,

Qτ (fτ,n) =
1

2
‖S∗N (µτ,n − µ? − η)‖2L2(SO(3)) + τ‖µτ,n‖TV

and

Q(f?) = ‖µ?‖TV ,

Qτ (fτ ) =
1

2
‖S∗N (µτ − µ? − η)‖2L2(SO(3)) + τ‖µτ‖TV .

This shows, that the sequences µn and µτ,n are bounded. Again, by the Banach-Alaoglu Theorem, one
gets the weak? convergence to the minimizers µ? respectively µτ .

The convergence of the measure of the epsilon balls follows identically as in [Tang et al., 2013, Cor.
1].

As also mentioned in [Tang et al., 2013], heuristically the property (4.17) suggests that for fine enough
discretization the support of the solution of the minimization problem clusters around the true support of
the sought measure. In the following, we will consider this behavior numerically.
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First, we have to chose an appropriate discretization. We consider the following grid, defined in the
Euler angle parametrization. For n ∈ N, set

αk1 =
2πk1

2n
, βk2 =

π(2k3 + 1)

4n
, γk3 =

2πk3

2n
, (4.18)

for 0 ≤ k1, k2, k3 ≤ 2n − 1, generating a grid Gn of 8n3 sampling points. As shown in [Kostelec
and Rockmore, 2008], with this choice of sampling one can compute the coefficients of any f ∈ Πn−1

exactly. More concrete, there are quadrature weights wk2 , k2 = 0, . . . , 2n− 1 such that

〈f,Dl
k,m〉 =

1

(2n)2

2n−1∑
k1,k2,k3=0

wk2f(x(αk1 , βk2 , γk3))Dl
k,m(x(αk1 , βk2 , γk3)),

for all l ≤ n − 1, i.e. the quadrature is exact on Πn−1, see [Kostelec and Rockmore, 2008, Thm. 2.1].
More important to us, using the equally spaced Euler angle grid makes it possible to use fast Fourier
summation to calculate the matrix vector products with the matrix DN ∈ C(2n)3×dim(ΠN ), whose entries
are given by the evaluation of the Wigner D-functions up to degree N on the sampling grid Gn given by
(4.18), i.e.

DN = (Dl
k,m(x(αk1 , βk2 , γk3)))k1,k2,k3l,k,m , (4.19)

with l ≤ N ≤ n− 1. With this matrix notation, the problem (RPn) reads as

min
c∈C8n3

‖c‖1, subject to D∗Nc = g, (4.20)

with g = (〈µ?, Dl
k,m〉)l,k,m, i.e. it is a finite-dimensional basis pursuit problem involving the matrix D∗N .

In the same way, the Thikonov-type problem (RPτ,n) can be written as

min
c∈C8n3

1

2
‖D∗Nc− gη‖22 + τ‖c‖1, (4.21)

with gη = (〈µ? + η,Dl
k,m〉)l,k,m.

Experiment 4 (Noise-free recovery on finite grids). In this experiment, we solve the finite-dimensional
basis pursuit problem (4.20). For this, consider the measure µ? defined in Experiment 1, given by table
4.1. We compute moments with respect to the Wigner D-functions up to order N = 2 and solve the
problem on the grids Gn, for n = 8, 12, 16, 20 using again CVX calling the open source solver SeDuMi
at the highest precision. We plot the absolute value of the solution vector in figure 4.7.

Since the support points of µ? are not contained in Gn, we cannot hope to exactly recover µ?. Even
worse, the recovered solution has much more spikes, than the measure µ?, actually in this examples, each
entry of the solution vector is non-zero. This phenomenon is known as basis mismatch, see e.g. [Chi et al.,
2011].

Nevertheless, only few entries are large in absolute value and it makes sense to keep only those,
which are above a certain threshold in absolute value. More concrete, if we denote the solution of the
minimization by c? ∈ C(2n)3 , we keep only those recovered points in Gn, such that the corresponding
coefficient obeys

|c?i | > thres,

for some thres > 0. The result of this process for different values of thres are plotted in figure 4.8. One
observes, that the recovered grid points cluster around the true support of the the measure µ?. Moreover,
the effect of the basis mismatch gets smaller for increasing grid size, such that the thresholding becomes
more accurate for denser grids, which is in line with the theoretical convergence statement (4.17).
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(a) n = 8 (b) n = 12

(c) n = 16 (d) n = 20

Figure 4.7: Absolute value of the 8n3 recovered coefficients of the solution of the minimization problem
(4.20) for different grids Gn. One observes, that an increase of the grid size yields a better concentration
on few coefficients, whose corresponding grid points are close to a true support point of the sought
measure.
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(a) n = 8, thres = 10−8 (b) n = 8, thres = 10−4 (c) n = 8, thres = 10−2

(d) n = 12, thres = 10−8 (e) n = 12, thres = 10−4 (f) n = 12, thres = 10−2

(g) n = 16, thres = 10−8 (h) n = 16, thres = 10−4 (i) n = 16, thres = 10−2

(j) n = 20, thres = 10−8 (k) n = 20, thres = 10−4 (l) n = 20, thres = 10−2

Figure 4.8: Recovered support points on the grid Gn for different values of n and values of the threshold
thres. The representation is done in Euler angles. The true support of the measure µ? are marked with
blue circles and the recovered grid points with orange crosses.
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The previous experiment suggests, that we can recover clusters around the true support of the sought
measure via the discrete recovery process in combination with a thresholding step.

To find the clusters, we use an algorithm known as mean-shift clustering, see e.g. [Tuzel et al., 2005],
[Comaniciu and Meer, 2002]. We will describe it briefly in the following. We assume, that the recovered
points are samples of an unknown distribution, which is localized around the true support points of the
sought measure. A popular way to approximate this distribution, is to approximate it using a kernel-
density estimator, see e.g. [Pelletier, 2005], [Hielscher, 2013] and references therein. More concrete, if
we denote the recovered grid points by {x?i }n

?

i=1 ⊂ Gn, we set

fψ(x) =
1

n?

n?∑
i=1

ψ(ω(x−1x?i )),

where ψ : R → R+ is a suitable profile function. When the profile function is suitably localized, the
clustering of the recovered points leads to local maximizer of fψ near the the unknown true support points.
For the profile function, we will use the function

ψε(t) =

 15
16

(
1−

(
t
ε

)2)2

, |t| ≤ ε,
0, else,

which is known as quartic kernel scaled with parameter ε > 0. Calculating the gradient of fψε at x yields
for ε <

√
2 log(2),

∇fψε(x) =
1

n?

n?∑
i=1

x

3∑
j=1

ej(x
−1x?i )Ljψ′ε(ω(x−1x?i )),

= x
1

n?

n?∑
i=1

log(x−1x?i )ψ
′
ε(ω(x−1x?i )) ∈ TxSO(3).

Observe, that this computation is valid due to the compact support of the kernel ψε. The mean shift of x
takes a weighted gradient ascent step in the tangent space TxSO(3) given by

mψε(x) = x

∑n?

i=1 log(x−1x?i )ψ
′
ε(ω(x−1x?i ))∑n?

i=1 ψ
′
ε(ω(x−1x?i ))

and projecting back with the exponential map

x expx(mψε(x)).

We start this procedure at each point, which appears in the solution of the minimization (4.20) and whose
corresponding amplitude exceeds the threshold thres in absolute value and is iterated until convergence.
For convergence results of this procedure, see e.g. [Comaniciu and Meer, 2002]. For better readability,
we summarize the mean-shift procedure in Procedure 2.

After introducing the mean-shift clustering, we formulate our second recovery algorithm based on
the finite-dimensional optimization problem (RPn), respectively (RPτ,n). We state it in Algorithm 2. To
test the algorithm, we generate randomly twenty points with random complex amplitudes and compute
moments of order N = 4. The points are generated in a way, such that they are separated by 4

N . We
generate a grid with parameter n = 20, see (4.18). As the support points are in general located off the
grid, similar to the case of noisy data, we cannot hope to have equality in the side condition of the problem
(4.20). Instead, we solve the regularized problem (4.21) with regularization parameter τ = 1. We set the
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Procedure 2: Local mean-shift iteration
Input: Point set {xi}ni=1 ⊂ SO(3).
Parameters: Scaling parameter ε and 0 < tol < 1.
initialization: res = 1;
while res > tol do

for i=1:n do
Compute the mean-shift

mψ(xi) =

(∑
xj

log(x−1
i xj)ψ

′
ε

(
ω(x−1

i xj)
))(∑

xj
ψ′ε
(
ω(x−1

i xj)
)) ;

end
Update

xi = xi exp(mψ(xi)), i = 1, . . . , n;

Set
res = max

i
‖mψ(xi)‖2;

end

xmean
i = xi, i = 1, . . . , n;

Output: Set of mean rotations {xmean
i }ni=1 ⊂ SO(3).

threshold parameter to thres = 10−8, the scaling parameter of the kernel to ε = 8 and the tolerance for
terminating the mean-shift iteration to tol = 10−10. The result of Algorithm 2 are plotted in Figure 4.9.
The distance of the true support to the recovered points obeys

max
i

min
j
ω(x−1

i xrec
j ) < 0.078.

Remark 4.8 (Influence of the parameters). We would like to informally discuss the influence of the pa-
rameters appearing in Algorithm 2. The most obvious parameter is the grid parameter, since we can only
recover grid points in the minimization process. The higher the grid parameter, the closer is the grid
to the unknown support points, which becomes important if two support points become close. Since we
demand a minimal separation condition for the unknown support points of the form c

N , where N ∈ N is
the order of the given moments and c > 0 is a relatively small constant, the grid parameter should be
coupled to N . If n is to small in comparison to the order N of given moments, then two unknown points
close to each other may not be distinguished by the algorithm. On the other hand, if n is too big, then the
matrix DN , given in (4.19), is ’nearly singular’, which may degrade the recovery process at all. However,
a good rule for choosing the pre-defined grid depending on the given order of moments is missing.

Closely related to the ’nearly singularity’ of the matrix DN is the choice of the regularization param-
eter τ . For a parameter τ , which is too small, the minimizer of the minimization (4.21) has weights on
nearly all grid points and the clusters that should indicate the unknown support points are not identifiable
any more. If τ is chosen too big, it may happen that some support points are completely missed, i.e. no
surrounding grid point is assigned a weight by the minimization.

The thresholding parameter thres should avoid, that all grid points are considered, since typically
all points are assigned a weight, but away from a support point, these are usually small as also seen in
Experiment 4. We found that a small value like thres = 10−8 is sufficient.
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Algorithm 2: Recovery on a pre-defined grid
Input: low-frequency approximation g ∈ ΠN of µ?

Parameters: grid-parameter n ∈ N, regularization parameter τ , threshold thres > 0, scaling
parameter ε, tol > 0
initialization: X = ∅
do

Solve for c? ∈ C8n3

,

min
c∈C8n3

1

2
‖D∗Nc− gη‖22 + τ‖c‖1,

where DN is given in (4.19), using an interior point method;

Choose those xi ∈ Gn, such that
|ci| > thres,

and set X = {xi}i;

Apply Procedure 2 with parameters ε and tol to the set X = {xi}i and generate

X = {xmean
i }i;

Set ν =
∑
xi∈X ciδxi , with ci such that

ν = argmin ‖S∗Nν − g‖2;

end;
Output: ν ∈M(SO(3))

(a) Result of minimization with regularization parameter τ = 1
and thresholding with thres = 10−8.

(b) Application of mean-shift clustering with scaling parameter
ε = 8 and tolerance tol = 10−10.

Figure 4.9: Application of Algorithm 2 to recover a measure µ? with 20 support points from moments of
order N = 4. The true support of the measure µ? are marked with blue circles and the recovered grid
points with orange crosses. The left picture shows the result of the minimization and thresholding step,
whereas the right picture shows the result of the mean-shift iteration.
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Regarding the scaling parameter ε of the mean-shift clustering, we would like to mention, that a
parameter chosen to high results in generating too many clusters, i.e. two grid points actually associated
to one unknown support points are assigned to two different clusters producing an artificial support point.
In the case the scaling parameter is chosen to small, two different clusters belonging to two different
support points may be merged resulting in completely missed support points. We observe, that choosing
ε proportional to the order N of given moments with a small proportional constant works well.

We found, that the choice of the tolerance tol for terminating the mean-shift iteration is rather uncrit-
ical. The value tol = 10−10 is typically achieved within three to ten iterations.

Summarizing, the dominant problem is the choice of the grid parameter n ∈ N in combination with
the regularization parameter τ > 0.

Notes and References. Relaxing non-negativity constraints for trigonometric polynomials with sum of
squares representations is a wide used tool in signal processing, see [Dumitrescu, 2006], [Dumitrescu,
2007]. This relaxation leads to finite-dimensional semi-definite programs, which can be solved using
standard convex optimization algorithms. Nevertheless, the number of variables of these programs grows
exponentially in the degree of the involved polynomial. More concrete, in our case the number of vari-
ables grows likeO(N6), whenN is the order of given moments. Recently, several authors proposed to use
customized interior point algorithms to solve semi-definite programs stemming from sum of squares re-
laxations of non-negativity constraints of trigonometric polynomials, see [Roh and Vandenberghe, 2006]
and [Roh et al., 2007]. An interesting question for future research is the adaption of those proposed
methods to solve the optimization problems (dRPrel) and (dRPτ,rel) appearing in Algorithm 1.

A different line of future research is due to the a priori discretized optimization problems (RPn) resp.
(RPτ,n) involved in Algorithm 2. Since the number of variables is 8n3, where n ∈ N is the grid parameter,
it may be valuable to use specialized interior point methods or first order methods in combination with
fast algorithm for the matrix vector product with the matrix DN resp. D∗N , see [Kostelec and Rockmore,
2008]. One could also consider a local refinement of the grid near the points recovered after the mean-
shift clustering and restart the minimization process involving the new discretization. We leave these
considerations for future research.



Chapter 5

Super-Resolution on the Sphere

In this chapter, we show the applicability of the approach of the previous chapters, i.e. using Hermite
interpolation to construct a dual certificate, to the super-resolution problem on the two dimensional Eu-
clidean sphere.

Beforehand, we discuss the limitation of extending this approach to more general settings. Indeed,
one could consider the recovery of point measures on a smooth compact Riemannian manifoldM from
low order moments with respect to the eigenfunctions {ϕk}k of the Laplace-Beltrami operator on the
manifold, which includes the described setting of the rotation group and the sphere.

In order to construct a dual certificate, one can formulate the Hermite interpolation problem again.
As seen in Chapter 2 and 3, it was crucial to control quantities of the form

Xx
i X

y
j ΦN (x, y), x, y ∈M,

where Xx
i , X

y
j are vector fields and ΦN :M×M→ R is an interpolation kernel of the form

ΦN (x, y) =

N∑
k=0

akϕk(x)ϕk(y).

Although, there are asymptotic results of the form

|Xx
i X

y
j ΦN (x, y)| ≤ C

Nsd(x, y)s
, (5.1)

where d(x, y) is the geodesic distance, see [Filbir and Mhaskar, 2010], the constant C > 0 is in general
not accessible. In addition, the behavior near the diagonal is in general not clear. The consequence is,
that, although one can show the invertibility of the interpolation matrix for a minimal separation distance
big enough, it is not possible to show the bound

|q(x)| < 1,

where q is the solution of the interpolation problem and x is near an interpolation point, using only
asymptotic estimates of the form (5.1) with unknown constants.

Thus, the approach using Hermite interpolation to construct a dual certificate seems limited to those
cases, where one can construct interpolation kernels obeying asymptotic localization estimates of the
form (5.1) with explicit constants and can be controlled well near the diagonal, by using e.g. Taylor
expansions.
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In this chapter, we consider the recovery of point measures on the two dimensional sphere from low
order moments with respect to spherical harmonics. This setting has been considered at first in [Bendory
et al., 2015a]. Nevertheless, there are severe gaps in the proofs due to the choice of interpolation kernel,
that do not allow for good control of its pointwise behavior. We aim to close these gaps in the following
chapter.

At first, we start by describing the setting of super-resolution on the sphere in Section 5.1, including
the differentiable structure on the sphere, the involved basis function, called Spherical harmonics, as well
as the recovery problem from moments with respect to these basis functions. Afterwards, in Section
5.2, we derive the needed localization estimates for a specific interpolation kernel. Finally, we construct
the dual certificate in Section 5.3. In short, the structure of this chapter is based on the structure of the
previous chapters, dedicated to the recovery on the rotation group.

5.1 Analysis on the Sphere
In this section, we briefly summarize the analytical tools on the sphere, which are needed in the following,
and formulate the super-resolution problem on the sphere.

The two-dimensional sphere is given by

S2 = {x ∈ R3 : ‖x‖2 = 1}.

It is a two-dimensional smooth manifold and a metric, which is compatible with its topology, is the
great-circle distance

d(x, y) = arccos(〈x, y〉), x, y ∈ S2.

The tangent space at a point x ∈ S2 is

TxS2 = {y ∈ R3 : 〈x, y〉 = 0}.

In the following we shortly describe the differential structure on the sphere. We will use two different
local coordinates on S2. First, for v ∈ TxS2, there is a unique geodesic γx,v such that γx,v(0) = x and
γ′x,v(0) = v. It has the form

γx,v(t) = cos(‖v‖2t)x+ sin(‖v‖2t)
v

‖v‖2
.

The exponential map at s ∈ S2 is
expx(v) = γx,v(1).

We fix an orthonormal basis ηx1 , η
x
2 in TxS2, such that ηx2 = ηx1 × x and thus ηx1 = x × ηx2 . This is

always possible, although we cannot choose the local bases in a continuous way, as there is no continuous
nowhere vanishing vector field on the sphere, due to the Hairy ball theorem. This is in contrast to the
case of the rotation group, where the tangent space is basically a translation of the tangent space at the
identity. One way to obtain ηxi is to chose a z ∈ S2 and an orthonormal basis ηz1 , η

z
2 of TzS2 and set

ηxi =

{
ed(x,z)·[ z×x

sin(d,z) ]ηzi , x 6= −z,
−ηzi , x = −z,

where for a vector v ∈ R3

[v] =

 0 −v3 v2

v3 0 −v1

−v2 v1 0
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is the corresponding skew-symmetric matrix in the algebra so(3). In other words, we rotate the local
coordinate system at z, which is continuous for all points but the antipodal point −z.

Combining the coordinates due to this basis with the exponential map yields the normal coordinates
centered at x ∈ S2, i.e. we parametrize a neighborhood of x by

ϕ(v1, v2) = cos(‖v‖2)x+ sin(‖v‖2)
v1η

x
1 + v2η

2
x

‖v‖2
,

and the inverse parametrization for z in a neighborhood of x is given by

vi(z) =
d(z, x)

sin(d(x, z)
〈z, ηxi 〉, i = 1, 2.

The vectors
∂

∂v1
ϕ(v1(z), v2(z)),

∂

∂v2
ϕ(v1(z), v2(z))

form an basis of TzS2. One can schow, that in the center of the normal coordinates

∂2

∂v2
i

ϕ(v1(x), v2(x)) = −x, ∂2

∂vivj
ϕ(v1(x), v2(x)) = 0.

In this local coordinates centered at x ∈ S2, the gradient of a differentiable function f at x has the
representation

∇f(x) =

(
X1f(x)
X2f(x)

)
,

with

Xif(x) =
∂

∂vi
(f ◦ ϕ)(v1(x), v2(x)) = lim

t→0
t−1(f(γx,ηxi (t))− f(x)). (5.2)

In the center x of the normal coordinates, the Hessian of a two times differentiable function f has the
representation (

X1X1f(x) X1X2f(x)
X2X1f(x) X2X2f(x)

)
.

This is only true in the center of the normal coordinates, since the Christoffel symbols vanish. For dif-
ferent points, we would have to compute the Christoffel symbols with respect to the normal coordinates,
which becomes quite complicated.

Alternatively, we introduce a second set of coordinates, such that the computation of the Christoffel
symbols is much simpler. For a point z ∈ S2, we parametrize the set Bπ(0) \ {0} by

v(r, θ) = r(cos(θ)ηz1 + sin(θ)ηz2)

for (r, θ) ∈ (0, π)× [0, 2π). Combining this with the exponential map, i.e.

ϕpol(r, θ) = expz(v(r, θ)),

yields the polar coordinates centered at z ∈ S2, which parametrize S2 \ {z,−z}. For z = (0, 0, 1)T ,
these are the usual spherical coordinates on the sphere, given bycos(r) sin(θ)

sin(r) sin(θ)
cos(r)

 .
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For S2 \ {z,−z}, the inverse parametrization, is given by

r(x) = arccos(〈x, z〉) = d(x, z),

θ(x) = arctan2 (〈x, ηz2〉, 〈x, ηz1〉) ,

where arctan2(y, x) denotes the arctan of yx with respect to the different branches of the tangent function,
which means

cos(θ(x)) =
〈x, ηz1〉

sin(d(x, z))
,

sin(θ(x)) =
〈x, ηz2〉

sin(d(x, z))
.

For each x 6= z,−z, the vectors

γx1 =
∂ϕpol

∂r
(r(x), θ(x)), γx2 =

1

sin(r(x))

∂ϕpol

∂θ
(r(x), θ(x)) (5.3)

form an orthonormal basis of the tangent space TxS2. Notably, we have γx2 = γx1 × x and γx1 = x× γx2 .
In these coordinates, the Riemannian metric takes the form

g(r, θ) =

(
1 0
0 sin2(r)

)
,

and the Christoffel symbols in this coordinates are therefore given by

Γr(r, θ) =

(
0 0
0 − sin(r) cos(r)

)
, Γθ(r, θ) =

(
0 cot(r)

cot(r) 0

)
.

For a two times differentiable function f and x ∈ S2 \ {z,−z}, the Hessian with respect to the polar
coordinates centered at z, i.e. with respect to the basis (5.3), is represented by the matrix

Hf =

(
∂2f◦ϕpol

∂r2
1

sin(r)
∂2f◦ϕpol

∂r∂θ
1

sin(r)
∂2f◦ϕpol

∂θ∂r
1

sin2(r)
∂2f◦ϕpol

∂θ2

)
− 1

sin2(r)

∂f ◦ ϕpol

∂r
Γr − 1

sin(r)

∂f ◦ ϕpol

∂θ
Γθ.

Next, we describe the involved basis functions known as spherical harmonics. For a detailed overview,
see [Atkinson and Han, 2012]. The space L2(S2) is given by all functions f such that

‖f‖2 :=

(∫
S2
|f(x)|2dΩ(x)

) 1
2

<∞,

where Ω is the Riemannian volume form on S2 for the metric g. In spherical coordinates, this can be
written as

‖f‖2 =

(∫ 2π

0

∫ π

0

|f(r, θ)|2 sin(r)drdθ

) 1
2

.

It is well known, that the space L2(S2) can be decomposed into an orthogonal sum

L2(S2) = cl‖·‖L2

∞⊕
l=0

Hl,
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where Hl is the eigenspace to the eigenvalue λl = −l(l+ 1) of the Laplace-Beltrami operator on S2. We
have dim(Hl) = 2l + 1. Set

ΠN (S2) =

N⋃
l=0

Hl,

then for f ∈ ΠN1
(S2), g ∈ ΠN2

(S2)

f · g ∈ ΠN1+N2(S2).

We choose the orthonormal basis that separates in spherical coordinates. They are given in spherical
coordinates by

Y lm(x(r, θ)) = NlmP
m
l (cos(r))eimθ, −l ≤ m ≤ l,

where

Nlm =
1√
2π

√
2l + 1

2

(l −m)!

(l +m)!

is the normalization constant and

Pml (t) =
(−1)m

2ll!
(1− t2)

m
2

dl+m

dtl+m
(t2 − 1)l

are called associated Legendre polynomials. With this, we have that the system

{Y lm : l ∈ N,−l ≤ m ≤ l}

is an orthogonal basis of L2(S2). Moreover, the following addition theorem is true

Pl(〈x, y〉) := P 0
l (〈x, y〉) =

4π

2l + 1

l∑
m=−l

Y lm(x)Y lm(y).

Thus, the projection PN : L2(S2)→ C(S2), onto the space ΠN (S2) can be written as

PNf(x) =

∫
S2
f(y)DN (x, y)dΩ(y),

with

DN (x, y) =

N∑
l=0

2l + 1

4π
Pl(〈x, y〉).

With this preparation, we are now able to describe the problem of super-resolution on the sphere. Given
a discrete measure

µ? =

M∑
i=1

ciδxi

consisting of M support points xi with amplitudes ci, the super-resolution problem on the sphere is to
recover the unknown parameters X = {xi}, c = (ci) from the low frequency information

P∗Nµ?(x) =

∫
S2
DN (x, y)dµ?(y).

Again, we discuss the recovery of µ? via the minimization

min
µ∈M(S2,R)

‖µ‖TV , subject to P∗Nµ = P∗Nµ?. (SP)



102 CHAPTER 5. SUPER-RESOLUTION ON THE SPHERE

As seen in Chapter 1, see Theorem 1.7, to ensure that µ? is the unique minimizer of (SP), one has to
construct for each sign sequence ui a function q ∈ ΠN (S2), such that

q(xi) = ui, xi ∈ X ,
|q(x)| < 1, x ∈ S2 \ X .

In complete analogy to the previous discussion regarding the recovery on the rotation group, see (1.16),
we formulate the Hermite interpolation problem

q(xi) = ui,

X1q(xi) = X2q(xi) = 0,

for xi ∈ X , and Xnq is defined in (5.2). In order to tackle the interpolation problem, we choose a kernel
JN : S2×S2 → R, such that JN (·, y), Xy

nJN (·, y) ∈ ΠN (S2) for all y ∈ S2, and solve for the coefficient
vector in the linear system

Kα :=

 JN Xx
1 JN Xx

2 JN
Xy

1JN Xx
1X

y
1JN Xx

2X
y
1JN

Xy
2JN Xx

1X
y
2JN Xx

2X
y
2JN

α0

α1

α2

 =

u0
0

 .

Thus, the interpolant is of the form

q(x) =

M∑
i=1

a0,iJN (x, xi) + a1,iX
y
1JN (x, xi) + a2,iX

y
2JN (x, xi) ∈ ΠN (S2).

To control the interpolant properly, we need localization results for the kernel JN and its derivatives. In
the next section, we therefore choose a specific kernel, that is of the form

JN (x, y) = J̃N (d(x, y))

and show analog localization estimates similar to those in Chapter 2.

5.2 Localization Estimates
The aim of this section is to show the necessary localization results for the construction of the dual
certificate. We start by discussing the choice of the interpolation kernel. First, the interpolation kernel
must have a polynomial expansion. To be more concrete, we choose a kernel that has an expansion of the
form

JN (x, y) =

N∑
l=0

ŵl

l∑
m=−l

Y lm(x)Y lm(y) =

N∑
l=0

2l + 1

4π
ŵlPl(〈x, y〉),

which means JN is a zonal function. Thus, by construction we have JN (·, y), Xy
nJN (·, y) ∈ ΠN (S2) for

all y ∈ S2. In addition, the kernel has a representation of the form

JN (x, y) = J̃N (d(x, y)),

where J̃N is a trigonometric polynomial. We therefore derive estimates of the interpolation kernel from
the corresponding bounds on the trigonometric function J̃N .

As interpolation kernel, we chose the specific kernel, given by

JN (x, y) = J̃N (d(x, y)) =
1

bN/2c+ 1

sin4((bN/2c+ 1)d(x, y)/2)

sin4(d(x, y)/2)
, (5.4)

i.e. the classical trigonometric Jackson kernel evaluated at the distance of x, y ∈ S2.
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Lemma 5.1. The Jackson kernel JN (x, y) has an expansion of the form

JN (x, y) =

N∑
l=0

2l + 1

4π
ŵlPl(〈x, y〉)

with positive Legendre coefficients

ŵl = 2π

∫ 1

−1

Pl(t)J̃N (arccos(t))dt,

and thus JN (·, y), Xy
nJN (·, y) ∈ ΠN (S2) for all y ∈ S2.

Proof. Set for t ∈ [−1, 1]

F̃n(arccos(t)) =
1

(n+ 1)2

sin2((n+ 1) arccos(t)/2)

sin2(arccos(t)/2)
,

i.e. the Fejér kernel evaluated at arccos(t). Then

J̃N (arccos(t)) = F̃ 2
n(arccos(t)), n =

⌊
N

2

⌋
.

In [Keiner et al., 2007, Lemma 7], it was shown, that

F̃n(arccos(t)) =

M∑
l=1

2l + 1

4π
v̂lPl(t),

which shows F̃n(d(x, ·)), F̃n(d(·, y)) ∈ Πn(S2) for all x, y ∈ S2 and therefore J̃N (d(x, ·)), J̃N (d(·, y)) ∈
ΠN (S2). The positivity of the coefficients ŵl follows from the positivity of the linearization coefficients
of a product of two Legendre polynomials

Pn(t)Pm(t) =

min(m,n)∑
l=0

2m+ 2n− 4l + 1

2m+ 2n− 2l + 1

A(m− l)A(l)A(n− l)
A(n+m− l)

Pm+n−2l(t),

where

A(m) =
1 · 3 · 5 · · · · · (2m− 1)

m!
,

see e.g. [Adams, 1878].

Before we state the necessary localization estimates for the Jackson kernel, we would like to mention
a different behavior for these kernels, than for the kernels we discussed on the rotation group. It turns
out, that the geodesic distance on the sphere behaves differently with respect to the boundedness of the
derivatives. As seen in Chapter 2, the geodesic distance ω(x−1y) is not differentiable at x = y and
whenever ω(x−1y) = π, i.e. y is an element of the cut-locus of x. Nevertheless, the derivatives only
have a true pole at x = y, which can be handled using the pointwise-wise estimates of Lemma 2.5,
which are summand-wise estimates of the trigonometric representations of the kernels. On the sphere,
the derivatives of the geodesic distance d(x, y) have true poles at x = y and x = −y. Whereas the first
case is again covered by estimates similar to those of Lemma 2.5, the second case can not be covered
by summand-wise estimation, since the sign of cos(kd(x, y)) and sin(kd(x, y)) alternates with k in a
neighborhood of x = −y. Consequently, we have do deal with the singularity at x = −y induced by the
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derivatives of the geodesic distance in a different way. Especially, we have to bound the trigonometric
expressions

G1(ω) =
J̃ ′N (ω)

sin(ω)
, G2(ω) = J̃ ′′N (ω)− J̃ ′N (ω) cos(ω)

sin(ω)
,

G3(ω) =
J̃ ′′N (ω) sin(ω)− J̃ ′N (ω) cos(ω)

sin2(ω)
,

(5.5)

that appear in the spherical derivatives. Knowing only asymptotic estimates for J̃ ′N and J̃ ′′N is not suffi-
cient, we have to consider the differences in closed form, which prohibits the use of the B-spline kernels,
that we considered for the rotation group. To achieve this, we use the closed form expression (5.4) of the
Jackson kernel.

Lemma 5.2. For |ω| 6= 0, we have for n = bN/2c

|J̃N (ω)| ≤ π4

(n+ 1)4|ω|4
, |J̃ ′N (ω)| ≤ 3 · π4

(n+ 1)3|ω|4
, |J̃ ′′N (ω)| ≤ 12.5 · π4

(n+ 1)2|ω|4

|G1(ω)| ≤ 2 · π4

(n+ 1)2|ω|4
, |G2(ω)| ≤ 14.5 · π4

(n+ 1)2|ω|4
, |G3(ω)| ≤ 8 · π4

(n+ 1)|ω|4
,

|J ′′′N (ω)| ≤ 68 · π4

(n+ 1)|ω|4
,

where G2, G2, G3 are defined in (5.5). For |ω| ≤ π
4(n+1) , we have

∣∣∣J̃ ′′N (0)− cos(ω)G1(ω)
∣∣∣ ≤ J̃

(4)
N (0)

2
|ω|2, |J̃ ′′N (0)− J̃ ′′N (ω)| ≤

J̃
(4)
N (0)

2
|ω|2,

|G2(ω)| ≤
J̃

(4)
N (0)

2
|ω|2, |G3(ω)| ≤ 0.52 · J̃ (4)

N (0)|ω|,∣∣∣∣∣ J̃ ′N (ω)− cos(ω) sin(ω)J̃ ′′N (ω)

sin2(ω)

∣∣∣∣∣ ≤ 0.52 · J̃ (4)
N (0)|ω|, |J̃ ′′′N (ω)| ≤ J̃ (4)

N (0)|ω|.

Moreover,

J̃N (0) = 1, J̃ ′N (0) = J̃ ′′′N (0) = 0, J̃ ′′N (0) = −n(n+ 2)

3
,

J̃
(4)
N (0) =

1

30
n(n+ 2)(9n(n+ 2)− 2).

Proof. We will use the property

| sin(ω/2)| ≥ |ω|
π
, for ω ∈ [−π, π],

for the asymptotic estimates, and component-wise estimates of the expressions for the case |ω| ≤ π
4(n+1) .

The estimate for the kernel itself follows immediately. For the first derivative, we have

J̃ ′N (ω) = 2F̃n(ω)F̃ ′n(ω)

and

F̃ ′n(ω) =
1

2(n+ 1)2 sin2(ω/2)

(
(n+ 1) sin((n+ 1)ω)− 2 cos(ω/2) sin2((n+ 1)ω/2)

sin(ω/2)

)
,
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=
1

2(n+ 1)2 sin2(ω/2)
((n+ 1) sin((n+ 1)ω)− 2 cos(ω/2) sin((n+ 1)ω/2)Un(cos(ω/2))) ,

where Un denotes the n-th order Chebychev polynomial of the second kind. Since ‖Un‖∞ = n, we get

|F̃ ′n(ω)| ≤ 1.5

(n+ 1) sin2(ω/2)
.

Since the Fejér kernel can be written as

F̃n(ω) =
1

(n+ 1)

(
1 + 2

n∑
k=1

(
1− k

n+ 1

)
cos(kω)

)
,

we get F̃ ′n(π) = 0 and therefore J̃ ′N (π) = 0. Moreover, we have

F̃ ′(ω)

sin(ω)
=

1

2(n+ 1)2 sin2(ω/2)

(
(n+ 1)

sin((n+ 1)ω)

sin(ω)
− 2 cos(ω/2) sin2((n+ 1)ω/2)

sin(ω) sin(ω/2)

)
,

=
1

2(n+ 1)2 sin2(ω/2)

(
(n+ 1)Un(cos(ω))− (n+ 1)2F̃n(ω)

)
.

Since ‖F̃n‖∞ = 1, we get ∣∣∣∣∣ F̃ ′n(ω)

sin(ω)

∣∣∣∣∣ ≤ 1

sin2(ω/2)
,

and

lim
ω→0

F̃ ′n(ω)

sin(ω)
= F̃ ′′n (0).

For |ω| ≤ π
4(n+1) , as seen in (2.25), we have,

k2 cos(kω)− k sin(kω) cos(ω)

sin(ω)
≤ 0,

which yields ∣∣∣∣k2 − k sin(kω) cos(ω)

sin(ω)

∣∣∣∣ = k2 − k sin(kω) cos(ω)

sin(d(x, z))
≤ k2(1− cos(kω))),

≤ k4ω
2

2
.

Since,

J̃ ′N (ω) =
1

(n+ 1)2

(
−2

2n∑
k=1

ckk sin(kω)

)
,

with positive Fourier coefficients ck, component-wise estimation shows∣∣∣∣∣J̃ ′′N (0)− cos(ω)J̃ ′N (ω)

sin(ω)

∣∣∣∣∣ ≤ J̃ (4)(0)

2
ω2.

In the same way, one derives

|J̃ ′′N (0)− J̃ ′′N (ω)| ≤ J̃ (4)(0)

2
ω2.
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We compute

G2(ω) = J̃ ′′N (ω)− J̃ ′N (ω) cos(ω)

sin(ω)
= 2

((
F̃ ′n(ω)

)2

+ F̃n(x)

(
F̃ ′′n (ω)− F̃ ′n(ω) cos(ω)

sin(ω)

))
.

Since

F̃ ′′n (ω) =
1

2(n+ 1)2 sin2(ω/2)

(
(n+ 1)2((2 + cos(ω))F̃n(ω) + cos((n+ 1)ω))

− 2(n+ 1)(1 + cos(ω))Un(cos(ω))
)
,

we get

F̃ ′′n (ω)− F̃ ′n(ω) cos(ω)

sin(ω)
=

1

2(n+ 1)2 sin2(ω/2)

(
(n+ 1)2(2(1 + cos(ω))F̃n(ω)

+ cos((n+ 1)ω))− (n+ 1)(2 + 3 cos(ω))Un(cos(ω))
)
,

=
1

2(n+ 1)2 sin2(ω/2)

(
(n+ 1)2(2(1 + cos(ω))

(
F̃n(ω)− Un(cos(ω))

n+ 1

)
+ (n+ 1)2 cos((n+ 1)ω)− (n+ 1) cos(ω)Un(cos(ω))

)
and inserting yields ∣∣∣∣∣J̃ ′′N (ω)− J̃ ′N (ω) cos(ω)

sin(ω)

∣∣∣∣∣ ≤ 14.5π4

(n+ 1)2|ω|4
,

and similarly ∣∣∣J̃ ′′N (ω)
∣∣∣ ≤ 12.5π4

(n+ 1)2|ω|4
.

For |ω| ≤ π
4(n+1) , the estimate follows again by estimating component-wise in the trigonometric repre-

sentation, yielding ∣∣∣∣∣J̃ ′′N (ω)− J̃ ′N (ω) cos(ω)

sin(ω)

∣∣∣∣∣ ≤ J̃ (4)(0)

2
ω2.

Furthermore, we have

J̃ ′′(0) = 2F̃ ′′(0) = − 4

(n+ 1)

n∑
k=1

(
k2 − k3

(n+ 1)

)
= −n(n+ 2)

3
.

Next, we consider the expression

G3(ω) =
J̃ ′′N (ω) sin(ω)− J̃ ′N (ω) cos(ω)

sin2(ω)
.

Observe, that for ω = π the expression is zero. For ω 6= π, we get

J̃ ′′N (ω) sin(ω)− J̃ ′N (ω) cos(ω)

sin2(ω)
= 2

((
F̃ ′n(ω)

sin(ω)

)
F̃ ′n(ω) + F̃n(x)

(
F̃ ′′n (ω) sin(ω)− F̃ ′n(ω) cos(ω)

sin2(ω)

))
,
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and

F̃n(ω)

(
F̃ ′′n (ω) sin(ω)− F̃ ′n(ω) cos(ω)

sin2(ω)

)
=

sin2((n+ 1)/2)

2(n+ 1)4 sin4(ω/2)

(
2(n+ 1)2 (1 + cos(ω))

sin(ω)

(
F̃n(ω)

− Un(cos(ω))

n+ 1

)
+ (n+ 1)

(n+ 1) cos((n+ 1)ω)− cos(ω)Un(cos(ω))

sin(ω)

)
.

For the first summand of the righthand site, we have the bound∣∣∣∣ sin2((n+ 1)/2)

(n+ 1)2 sin4(ω/2)

(1 + cos(ω))

sin(ω)

(
F̃n(ω)− Un(cos(ω))

n+ 1

)∣∣∣∣
=

1

(n+ 1) sin4(ω/2)

∣∣∣∣ sin2((n+ 1)/2)

(n+ 1)

cos(ω/2)

sin(ω/2)

(
F̃n(ω)− Un(cos(ω))

n+ 1

)∣∣∣∣ ,
=

1

(n+ 1) sin4(ω/2)

∣∣∣∣ sin((n+ 1)/2)

(n+ 1) sin(ω/2)

∣∣∣∣ ∣∣∣∣sin((n+ 1)/2) cos(ω/2)

(
F̃n(ω)− Un(cos(ω))

n+ 1

)∣∣∣∣ ,
=

√
F̃n(ω)

(n+ 1) sin4(ω/2)

∣∣∣∣sin((n+ 1)/2) cos(ω/2)

(
F̃n(ω)− Un(cos(ω))

n+ 1

)∣∣∣∣ ≤ 2

(n+ 1) sin4(ω/2)
,

For the second summand, observe that, due to the derivative representation of the Chebyshev polynomials,
we have

(n+ 1) cos((n+ 1)ω)− cos(ω)Un(cos(ω)

sin(ω)
= − sin(ω)U ′n(cos(ω)).

Using the Bernstein inequality for algebraic polynomials, i.e.

|P ′n(t)| ≤ n√
1− x2

‖Pn‖∞, −1 < x < 1,

for a polynomial of degree n, see e.g. [Bernstein, 1912], we derive∣∣∣∣ (n+ 1) cos((n+ 1)ω)− cos(ω)Un(cos(ω)

sin(ω)

∣∣∣∣ ≤ n‖Un‖∞ ≤ (n+ 1)2.

Hence, we can estimate∣∣∣∣ sin2((n+ 1)/2)

2(n+ 1)4 sin4(ω/2)
(n+ 1)

(n+ 1) cos((n+ 1)ω)− cos(ω)Un(cos(ω))

sin(ω)

∣∣∣∣ ≤ 0.5

(n+ 1) sin4(ω/2)
.

Together, this yields∣∣∣∣∣F̃n(ω)

(
F̃ ′′n (ω) sin(ω)− F̃ ′n(ω) cos(ω)

sin2(ω)

)∣∣∣∣∣ ≤ 2.5

(n+ 1) sin4(ω/2)

and consequently ∣∣∣∣∣ J̃ ′′N (ω) sin(ω)− J̃ ′N (ω) cos(ω)

sin2(ω)

∣∣∣∣∣ ≤ 8

(n+ 1) sin4(ω/2)
.
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Again, for |ω| ≤ π
4(n+1) , we estimate the expression component-wise. Observe, that∣∣∣∣k2 cos(kω) sin(ω)− k sin(kω) cos(ω)

sin2(ω)

∣∣∣∣ ≤ 1

1 + cos(ω)
k3 sin(kω),

≤ k4|ω|
1 + cos(ω)

,

see (2.23). For this reason, we have for |ω| ≤ π
4(n+1)∣∣∣∣∣ J̃ ′′N (ω) sin(ω)− J̃ ′N (ω) cos(ω)

sin2(ω)

∣∣∣∣∣ ≤ J̃
(4)
N (0)|ω|

1 + cos(ω)
≤

J̃
(4)
N (0)|ω|

1 + cos(π/(4(n+ 1)))
,

≤
J̃

(4)
N (0)|ω|

1 + cos(π/8)
≤ 0.52 · J̃ (4)

N (0)|ω|.

Very similar to (2.23), one shows∣∣∣∣k2 cos(kω) cos(ω) sin(ω)− k sin(kω)

sin2(ω)

∣∣∣∣ ≤ 1

1 + cos(ω)
k3 sin(kω),

≤ k4|ω|
1 + cos(ω)

,

and thus ∣∣∣∣∣ J̃ ′N (ω)− cos(ω) sin(ω)J̃ ′′N (ω

sin2(ω)

∣∣∣∣∣ ≤ 0.52 · J̃ (4)
N (0)|ω|.

Similarly, we can calculate the third derivative

J̃ ′′′N (ω) = 2(3F̃ ′n(ω)F̃ ′′n (ω) + F̃n(ω)F̃ ′′′n (ω)).

Since,

F̃n(x)F̃ ′′′n (x) =
1

(n+ 1) sin4(x/2)

(
− 1

2(n+ 1)
cos(x/2) sin((n+ 1)x/2)Un(cos(x/2))·

((5 + cos(x))F̃n(x) + cos((n+ 1)x)) +
1

4
sin((n+ 1)x·

(F̃n(x)(10 + cos(x)) + cos((n+ 1)x)− 1)
)

and

F̃ ′n(x)F̃ ′′n (x) =
1

3(n+ 1) sin4(x/2)

(
− 3

2(n+ 1)
cos(x/2) sin((n+ 1)x/2)Un(cos(x/2))·

((2 + cos(x))F̃n(x) + 5 cos((n+ 1)x) + 4) +
3

4
sin((n+ 1)x)·

(F̃n(x)(4 + 3 cos(x)) + cos((n+ 1)x))
)
,

we estimate using the triangle inequality∣∣∣J̃ ′′′N (ω)
∣∣∣ ≤ 68 · π4

(n+ 1)|ω|4
.
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With J̃ ′′′N (π) = 0, we get for |ω| ≤ π
4(n+1)∣∣∣J̃ ′′′N (ω)

∣∣∣ ≤ J̃ (4)
N (0)|ω|.

The fourth derivative can be written as

J̃
(4)
N (ω) = 2

(
3
(
F̃ ′′n (ω)

)2

+ 4F̃ ′n(ω)F̃ ′′′n (ω) + F̃n(ω)F̃ (4)
n (ω)

)
and therefore

J̃
(4)
N (0) = 2

(
3
(
F̃ ′′n (0)

)2

+ F̃ (4)
n (0)

)
.

Because of

F̃ (4)
n (0) =

2

n+ 1

n∑
k=1

(
k4 − k5

n+ 1

)
=
n(n+ 2)

30
(2n(n+ 2)− 1),

we get

J̃
(4)
N (0) =

1

30
n(n+ 2)(9n(n+ 2)− 2).

Now, we are able to state the localization estimates for the spherical derivatives of the Jackson kernel
using the bounds for the trigonometric expressions derived in the previous Lemma. More precise, the
bounds on the derivatives in normal coordinates are stated in Theorem 5.3 and those in polar coordinates
are derived in Theorem 5.4. In the proofs, we make use of several identities, see Appendix C, regarding
the cross product in R3, which for abbreviation is not detailed in the proofs.

Theorem 5.3. The Jackson kernel fulfills for x 6= y and n = bN/2c

|JN (x, y)| ≤ π4

(n+ 1)4d(x, y)4
, |Xy

nJN (x, y)| ≤ 3 · π4

(n+ 1)3d(x, y)4

|Xx
i X

y
nJN (x, y)| ≤ 16.5 · π4

(n+ 1)2d(x, y)4
, |Xx

i X
x
nJN (x, y)| ≤ 16.5 · π4

(n+ 1)2d(x, y)4
,

|Xx
j X

x
i X

y
nJN (x, y)| ≤ 110 · π4

(n+ 1)d(x, y)4

and for x = y

JN (x, x) = 1, Xx
i X

y
i JN (x, x) = −Xx

i X
x
nJN (x, x) = −J̃ ′′N (0),

Xy
nJN (x, x) = Xx

i X
y
nJN (x, x) = Xx

j X
x
i X

y
nJN (x, x) = 0.

Proof. The first estimate follows directly from Lemma 5.2. For the second estimate, we first calculate
the derivative to get

Xy
nJ(x, y) =

N∑
l=0

2l + 1

4π
ŵlP

′
l (〈x, y〉)〈x, ηyn〉,

which immediately yields Xy
nJ(x, x) = Xy

nJ(x,−x) = 0. In the case x 6= −y, y, we can calculate

Xy
nJN (x, y) = −J̃ ′N (d(x, y))

〈x, ηyn〉
sin(d(x, y))

,
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= ±J̃ ′N (d(x, y))
〈x, ηyi × y〉
sin(d(x, y))

,

= ∓J̃ ′N (d(x, y))
〈ηyi , x× y〉
sin(d(x, y))

,

= ∓J̃ ′N (d(x, y))〈ηyi , nx,y〉,

where nx,y denotes the unique unit vector perpendicular to x and y, which yields together with Lemma
5.2 the second estimate. For the next estimate, we compute the derivatives in the same way to derive

Xx
i X

y
nJN (x, y) =

N∑
l=0

2l + 1

4π
ŵl(P

′′
l (〈x, y〉)〈x, ηyn〉〈y, ηxi 〉+ P ′l (〈x, y〉)〈ηxi , ηyn〉),

Xx
i X

x
nJN (x, y) =

N∑
l=0

2l + 1

4π
ŵl(P

′′
l (〈x, y〉)〈ηxn, y〉〈y, ηxi 〉 − δinP ′l (〈x, y〉)〈x, y〉).

For i 6= n, this shows Xx
i X

y
nJN (x, x) = Xx

i X
y
nJN (x,−x) = Xx

i X
x
nJN (x, x) = Xx

i X
x
nJN (x,−x) =

0. In the case i = n, we have

−Xx
i X

x
nJN (x, x) = Xx

i X
y
i JN (x, x) =

N∑
l=0

2l + 1

4π
ŵlP

′
l (1),

= lim
t→1
− J̃
′
N (arccos(t))√

1− t2
= lim
ω→0
− J̃
′
N (ω)

sin(ω)
,

= −J̃ ′′N (0).

(5.6)

In the same way, one shows

−Xx
i X

x
i JN (x,−x) = Xx

i X
y
i JN (x,−x) = −

N∑
l=0

2l + 1

4π
ŵlP

′
l (−1),

= lim
ω→π

J̃ ′N (ω)

sin(ω)
= −J̃ ′′N (π).

For x 6= y,−y, the derivatives have the form

Xx
i X

y
nJN (x, y) = J̃ ′′N (d(x, y))

〈x, ηyn〉〈ηxi , y〉
sin2(d(x, y))

− J̃ ′N (d(x, y))

(
〈x, ηyn〉〈ηxi , y〉 cos(d(x, y))

sin3(d(x, y))
+
〈ηxi , ηyn〉

sin(d(x, y))

)
,

= 〈ηyi , nx,y〉〈η
x
n, nx,y〉G2(ω)− 〈ηxi , ηyn〉G1(ω),

and

Xx
i X

x
nJN (x, y) = 〈ηxi , nx,y〉〈ηxn, nx,y〉G2(ω) + δin cos(d(x, y))G1(ω),

where G1, G2 are defined in (5.5) and again nx,y denotes the unique unit vector perpendicular to both x
and y. This yields

|Xx
i X

x
nJN (x, y)|, |Xx

i X
y
nJN (x, y)| ≤ |G2(d(x, y))|+ |G1(ω)|
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≤ 16.5 · π4

(n+ 1)2d(x, y)4
,

which are the estimates for the second derivatives. For the third derivatives, observe that

Xx
j X

x
i X

y
nJN (x, y) =

N∑
l=0

2l + 1

4π
ŵl

(
P ′′′l (〈x, y〉)〈ηxj , y〉〈ηxi , y〉〈η

y
j , x〉+ P ′′l (〈x, y〉)〈ηxi , y〉〈ηyn, ηxj 〉

P ′′l (〈x, y〉)〈ηxi , ηyn〉〈y, ηxi 〉

− δij(P ′′l (〈x, y〉) + P ′′l (〈x, y〉))〈x, y〉〈x, ηyn〉
)
,

which shows
Xx
j X

x
i X

y
nJN (x, x) = Xx

j X
x
i X

y
nJN (x,−x) = 0.

Again, for x 6= y,−y we compute

Xx
j X

x
i X

y
nJN (x, y) =

〈ηxj , ηyn〉〈ηxi , y〉 − δij〈x, ηyn〉〈x, y〉
sin(d(x, y))

G2(ω)

−
〈x, ηyn〉〈ηxi , y〉〈ηxj , y〉〈x, y〉

sin3(d(x, y))
(J̃ ′′′N (d(x, y)) + J̃ ′N (d(x, y))− 3 cos(d(x, y))G2(ω))

+
〈ηxi , ηyn〉〈ηxj , y〉

sin(d(x, y))
G3(ω) + δi,j cos(d(x, y))G1(ω).

Hence, using the estimates of Lemma 5.2, we have the bound

|Xx
j X

x
i X

y
nJN (x, y)| ≤ 110 · π4

(n+ 1)d(x, y)4
. (5.7)

Theorem 5.4. For x, y, z ∈ S2, pairwise different and x 6= −z, with n = bN/2c, the entries of the
Hessian of JN (·, y), Xy

NJN (·, y) in polar coordinates centered at z obey

|(HJN (x, y))ii| ≤
16.5 · π4

(n+ 1)2d(x, y)4
, |(HJN (x, y))ij | ≤

14.5 · π4

(n+ 1)2d(x, y)4

|(HXy
nJN (x, y))ii| ≤

117 · π4

(n+ 1)d(x, y)4
, |(HXy

nJN (x, y))ij | ≤
109 · π4

(n+ 1)d(x, y)4
.

In the case y = z and d(x, z) ≤ δ
(n+1) , with δ ≤ π/4, we get

|J̃ ′′N (0)− (HJN (x, z))ii| ≤
3

20
δ2(n+ 1)2, |(HJN (x, z))ij | ≤

3

20
δ2(n+ 1)2

|(HXy
nJN (x, z))11| ≤

3

10
δ(n+ 1)3, |(HXy

nJN (x, z))22| ≤
1

5
δ(n+ 1)3,

|(HXy
nJN (x, z))ij | ≤

1

5
δ(n+ 1)3.

Proof. Remember, in polar coordinates centered at z ∈ S, we have the local parametrization

ϕpol(r, θ) = cos(r)z + sin(r)(cos(θ)ηz1 + sin(θ)ηz2),
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where ηz1 , η
z
2 is an orthonormal basis of TzS2, such that ηz2 = ηz1×z. The implicit inverse parametrization

for x 6= z,−z is given by

r(x) = d(x, z),

cos(θ(x)) =
〈x, ηz1〉

sin(d(x, z))
= −〈ηz2 , nz,x〉,

sin(θ(x)) =
〈x, ηz2〉

sin(d(x, z))
= 〈ηz1 , nz,x〉.

We first calculate the partial derivatives of the function fξ(r, θ) = 〈ϕpol(r, θ), ξ〉, for ξ ∈ S2, given by

∂rfξ(r, θ) = − sin(r)〈z, ξ〉+ cos(r)(cos(θ)〈γz1 , ξ〉+ sin(θ)〈γz2 , ξ〉),
∂θfξ(r, θ) = sin(r)(cos(θ)〈γz2 , ξ〉 − sin(θ)〈γz1 , ξ〉),
∂2
rrfξ(r, θ) = − cos(r)〈z, ξ〉 − sin(r)(cos(θ)〈γz1 , ξ〉+ sin(θ)〈γz2 , ξ〉),

∂2
θ,θfξ(r, θ) = − sin(r)(cos(θ)〈γz1 , ξ〉+ sin(θ)〈γz2 , ξ〉),
∂2
rθfξ(r, θ) = ∂2

θ,rfξ(r, θ) = cos(r)(cos(θ)〈γz2 , ξ〉 − sin(θ)〈γz1 , ξ〉).

Inserting the inverse parametrizations a lengthy calculation shows

∂rfξ(r(x), θ(x)) = sin(d(x, ξ))〈nx,ξ, nz,x〉,
∂θfξ(r(x), θ(x)) = sin(d(x, z)) sin(d(x, ξ))〈x, nx,ξ × nz,x〉,
∂2
rrfξ(r(x), θ(x)) = − cos(d(x, ξ)),

∂2
θ,θfξ(r(x), θ(x)) = − sin(d(x, z)) cos(d(x, z)) sin(d(x, ξ))〈nx,ξ, nz,x〉

− sin2(d(x, z)) cos(d(x, ξ))),

∂2
rθfξ(r(x), θ(x)) = cos(d(x, z)) sin(d(x, ξ))〈x, nx,ξ × nz,x〉,

where

nx,ξ =
x× ξ
‖x× ξ‖2

.

After this preparation, we proceed by calculating the full derivatives. We start with the kernel JN (·, y)
and first assume x 6= −y. We calculate

(HJN (x, y))11 = (∂rfy(r(x), θ(x)))
2

(
J̃ ′′N (arccos(f(r(x), θ(x))))

(1− f(r(x), θ(x)))2
− J̃ ′N (arccos(f(r(x), θ(x))))f(r(x), θ(x))

(1− f(r(x), θ(x))2)3/2

)

− ∂2
rrfy(r(x), θ(x))

J̃ ′N (arccos(f(r(x), θ(x))))

(1− f(r(x), θ(x))2)1/2
,

= (〈nx,y, nz,x〉)2G2(ω) + cos(d(x, y))G1(ω),

where G1, G2 are defined in (5.5). Thus, using Lemma 5.2 yields

|(HJN (x, y))11| ≤
16.5 · π4

(n+ 1)2d(x, y)4
. (5.8)

If x = −y, we again use the polynomial representation of JN , given by Lemma 5.1, to derive

(HJN (x,−x))11 =

N∑
l=0

2l + 1

4π
ŵl(P

′′
l (〈x,−x〉) (∂rf(r(x), θ(x)))

2
+ P ′l (〈x,−x〉)∂2

rrf(r(x), θ(x)),
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=

N∑
l=0

2l + 1

4π
ŵl(P

′′
l (−1)(〈x× (−x), nz,x〉)2 − P ′l (−1) cos(d(x,−x))),

=

N∑
l=0

2l + 1

4π
ŵlP

′
l (−1).

With the same argument as in (5.6), we therefore get

(HJN (x,−x))11 = J̃ ′′N (π).

In the case y = z and d(x, z) ≤ π
4(n+1) , we have

(HJN (x, z))11 = J̃ ′′N (d(x, z)),

and Lemma 5.2 yields

|J̃ ′′N (0)− (HJN (x, z))11| ≤
J̃ (4)(0)

2
d(x, z)2 ≤ 3

20
d(x, z)2(n+ 1)4.

For the second diagonal entry, we compute

(HJN (x, y))22 = 〈x, nx,y × nz,x〉2
(
J̃ ′′N (d(x, y))− J̃ ′N (d(x, y)) cos(d(x, y))

sin(d(x, y))

)

+ cos(d(x, y))
J̃ ′N (d(x, y))

sin(d(x, y))
,

= 〈x, nx,y × nz,x〉2G2(ω) + cos(d(x, y))G1(ω),

which means

|(HJN (x, y))22| ≤
16.5π4

(n+ 1)2d(x, y)4
,

and
(HJN (x,−x))22 = 0.

In the case y = z, we get

(HJN (x, z))22 = cos(d(x, z))
J̃ ′N (d(x, z))

sin(d(x, z)
.

and Lemma 5.2 shows

|J̃ ′′N (0)− (HJN (x, z))22| ≤
J̃ (4)(0)

2
d(x, z)2,

≤ 3

20
d(x, z)2(n+ 1)4.

For the off-diagonal entries, we get

(HJN (x, y))ij = 〈nx,y, nz,x〉〈x, nx,y × nz,x〉G2(ω),

and analogous estimates to the bounds above, yield

|(HJN (x, y))ij | ≤
14.5π4

(n+ 1)2d(x, y)4
,
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(HJN (x,−x))ij = 0,

|(HJN (x, z))ij | ≤
3

20
d(x, z)2(n+ 1)4.

For the kernel Xy
nJN (·, y), the estimates are derived in the same way. Remember,

Xy
nJN (x, y) = − J̃

′
N (d(x, y))

sin(d(x, y))
〈x, ηyn〉,

where ηyn ∈ TyS2. Then, with ξ = ηyn and the abbreviations in (5.5)

∂rX
y
nJN (x, y) =

〈x, ξ〉∂rfy(x)

sin2(d(x, y)
G2(d(x, y))− ∂rfξ(x)G1(d(x, y)),

∂θX
y
nJN (x, y) =

〈x, ξ〉∂θfy(x)

sin2(d(x, y)
G1(d(x, y))− ∂θfξ(x)G1(d(x, y)).

In polar coordinates centered at z, we have for y 6= −x

∂rH(d(x, y) = − ∂rfy(x)

sin(d(x, y)
G3(d(x, y))

∂θH(d(x, y)) = − ∂θfy(x)

sin(d(x, y))
G3(d(x, y))

∂rG(d(x, y) = − ∂rfy(x)

sin3(d(x, y))

(
J ′′′N (d(x, y)) + J̃ ′N (d(x, y))− 3 cos(d(x, y))G3(d(x, y))

)
∂θG(d(x, y)) = − ∂θfy(x)

sin3(d(x, y))

(
J ′′′N (d(x, y)) + J̃ ′N (d(x, y))− 3 cos(d(x, y))G3(d(x, y))

)
.

We therefore compute the first diagonal entry as

(HXy
nJn(x, y))11 = ∂2

rrX
y
nJN (x, y),

=
∂rfξ(x)∂rfy(x)

sin(d(x, y))
G3(d(x, y)) +

〈x, ξ〉∂2
rrfy(x)

sin(d(x, y))
G3(d(x, y))

+
〈x, ξ〉∂rfy(x)

sin(d(x, y))
∂rG3(d(x, y))− ∂2

rrfξ(x)G1(d(x, y))− ∂rfξ(x)∂rG1(d(x, y)).

Inserting the precomputed derivatives yields

(HXy
nJn(x, y))11 = 2〈nx,ξ, nz,x〉〈nz,x, nx,y〉 sin(d(x, ξ))G3(d(x, y))

− 〈x, ξ〉 cos(d(x, y))

sin(d(x, y))
G3(d(x, y)) + 〈x, ξ〉G1(d(x, y))

− 〈x, ξ〉〈nz,x, nx,y〉
2

sin(d(x, y))

(
J̃ ′′′N (d(x, y)) + J̃ ′N (d(x, y))

)
+

3〈x, ξ〉〈nz,x, nx,y〉2 cos(d(x, y))

sin(d(x, y))
G3(d(x, y)).

Since,
〈x, ξ〉 = 〈x, ηyn〉 = ±〈ηyi , x× y〉 = ±〈ηyi , nx,y〉 sin(d(x, y))

we know that ∣∣∣∣ 〈x, ξ〉
sin(d(x, y))

∣∣∣∣ ≤ 1,
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and we can estimate using Lemma 5.2 to derive

|(HXy
nJn(x, y))11| ≤

117 · π4

(n+ 1)d(x, y)4
.

In the case y = −x, we again use the polynomial representation of JN to get

(HXy
nJn(x,−x))11 = 0.

In the case y = z and d(x, z) ≤ π
4(n+1) , we have

(HXy
nJn(x, z))11 = − 〈x, ξ〉

sin(d(x, z))
J̃ ′′′N (d(x, z)),

and again the use of Lemma 5.2 results in,

|(HXy
nJn(x, z))11| ≤

1

30
n(n+ 2)(9n(n+ 2)− 2)d(x, z) ≤ 3

10
δ(n+ 1)3

For the second diagonal entry, we get

(HXy
nJn(x, y))22 = 2〈x, nx,ξ × nz,x〉〈x, nx,y × nz,x〉 sin(d(x, ξ))G3(d(x, y))

− 〈x, ξ〉 cos(d(x, y))

sin(d(x, y))
G3(d(x, y)) + 〈x, ξ〉G1(d(x, y))

− 〈x, ξ〉〈x, nx,y × nz,x〉
2

sin(d(x, y))

(
J̃ ′′′N (d(x, y)) + J̃ ′N (d(x, y))

)
+

3〈x, ξ〉〈x, nx,y × nz,x〉2 cos(d(x, y))

sin(d(x, y))
G3(d(x, y)),

which shows

|(HXy
nJn(x, y))22| ≤

117 · π4

(n+ 1)d(x, y)4
.

Moreover, we have (HXy
nJn(x,−x))22 = 0 and using Lemma 5.2 gives

|HXy
nJn(x, z)| =

∣∣∣∣∣ 〈x, ξ〉
sin(d(x, z))

(
J̃ ′N (d(x, z))− cos(d(x, z)) sin(d(x, z)))J̃ ′′N (d(x, z))

sin2(d(x, z))

)∣∣∣∣∣ ,
≤ 0.52 · 1

30
n(n+ 2)(9n(n+ 2)− 2)d(x, z) ≤ δ

5
(n+ 1)3.

Lastly, the off-diagonal entries are computed as

(HXy
nJn(x, y))ij = 〈x, 〈nx,y, nz,x〉(nx,ξ × nz,x)〉 sin(d(x, ξ))G3(d(x, y))

+ 〈x, 〈nx,ξ, nz,x〉(nx,y × nz,x)〉 sin(d(x, ξ))G3(d(x, y))

− 〈x, ξ〉〈x, nx,y × nz,x〉〈nx,y, nz,x〉
sin(d(x, y))

(
J̃ ′′′N (d(x, y)) + J̃ ′N (d(x, y))

)
+

3〈x, ξ〉〈x, nx,y × nz,x〉〈nx,y, nz,x〉 cos(d(x, y))

sin(d(x, y))
G3(d(x, y)),

which results in

|(HXy
nJn(x, y))ij | ≤

109 · π4

(n+ 1)d(x, y)4
,
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(HXy
nJn(x,−x))ij = 0 and

|(HXy
nJn(x, z))ij | = |〈x, nx,ξ × nz,x〉 sin(d(x, ξ))G3(d(x, y))| ,

≤ δ

5
(n+ 1)3.

We finish this section bounding sums of the pointwise expression of the previous theorems. For a
discrete set X ⊂ S2, we assume that its minimal separation is bounded from below in the following way

ρ(X ) = min
xi,xj∈X ,xi 6=xj

d(xi, xj) ≥
ν

n+ 1
.

This is the analog of Lemma 2.6 for the case of the rotation group and involves classical ringing arguments
on the sphere.

Lemma 5.5. Let xj ∈ X , where X ⊂ S2 is a discrete set, which obeys a separation condition of
ρ(X ) ≥ ν

n+1 with ν > 0. Let x ∈ S2 such that d(x, xj) ≤ ε ν
n+1 , for 0 ≤ ε ≤ 1/2. Suppose

f : S2 × S2 → C obeys,

|f(x, y)| ≤ cf
((n+ 1) · d(x, y))

s , (5.9)

for x 6= y and s ≥ 3, then ∑
xi∈X\xj

|f(x, xi)| ≤
cfaε
νs

, (5.10)

where aε = ζ(s − 1) · min{9 · (1 − ε)−s + 25, 25 · (1 − ε)−s}. Here ζ denotes the Riemannian Zeta
function.

Proof. The proof is very similar to that of Lemma 2.6. We use a ringing argument on the sphere. More
concrete, for x ∈ S2, with d(x, xj) ≤ ε ν

n+1 for some xj ∈ X , we define the ring about x by

Sm :=

{
y ∈ S2 :

νm

n+ 1
≤ d(x, y) <

ν(m+ 1)

n+ 1

}
,

for m ∈ N. As shown in [Keiner et al., 2007, Lemma 5], we can estimate the number of elements in the
intersection of Sm with the set X \ {xj} for m ≥ 1 by

card(X \ {xj} ∩ Sm) ≤ 25m.

Thus, it remains to estimate the number of elements inX \{xj}∩S0. We will use the same argument as in
[Keiner et al., 2007, Lemma 5]. Observe, thatB ν

2(n+1)
(xi)∩B ν

2(n+1)
(xn) = ∅ for xi, xn ∈ X \{xj}∩S0

and ⋃
xi∈X\{xj}∩S0

B ν
2(n+1)

(xi) ⊆ B 3ν
2(n+1)

(x).

Since ε ≤ 1/2 and the Riemannian volume form is rotation invariant, we can bound the number of
elements by

card(X \ {xj} ∩ S0) ≤
Ω
(
B 3ν

2(n+1)
(e3)

)
Ω
(
B ν

2(n+1)
(e3)

) ,
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where e3 = (0, 0, 1)T is the north pole on the sphere. In polar coordinates around e3, we consequently
have the bound

card(X \ {xj} ∩ S0) ≤
Ω
(
B 3ν

2(n+1)
(e3)

)
Ω
(
B ν

2(n+1)
(e3)

) =

∫ 3ν
2(n+1)

0 sin(r)dr∫ ν
2(n+1)

0 sin(r)dr
,

=
1− cos

(
3ν

2(n+1)

)
1− cos

(
ν

2(n+1)

) =

(
1 + 2 cos

(
ν

2(n+ 1)

))2

≤ 9.

Because d(x, xj) ≤ ε ν
n+1 , we have d(x, xi) ≥ (1−ε)ν

n+1 for xi ∈ X \ {xj} ∩ S0. Using this and the
locality assumption (2.3), we can therefore estimate

∑
xi∈X\xj

|f(x, xi)| ≤
∑

xi∈(X\xj)∩S0

cf
((n+ 1) · d(x, xi))

s +

∞∑
m=1

∑
xi∈(X\xj)∩Sm

cf
((n+ 1) · d(x, xi))s

,

≤ 9cf (1− ε)−s

νs
+ 25cf

∞∑
m=1

m

(mν)s
,

≤ 9cf (1− ε)−s

νs
+

25cf
νs

∞∑
m=1

1

ms−1
,

≤ (9(1− ε)−s + 25)cfζ(s− 1)

νs
,

where the last inequality follows by the definition of the Zeta function. On the other hand, we can define
the rings around xj again by

S̃m := {y ∈ S2 :
(1− ε)νm
n+ 1

≤ d(xj , y) ≤ (1− ε)ν(m+ 1)

n+ 1
}.

Since d(x, xj) ≤ ε ν
n+1 , we have d(x, xj) ≤ εd(xi, xj) for xi ∈ (X \ xj)∩ S̃m and therefore d(x, xi) ≥

d(xi, xj)− d(x, xj) ≥ (1−ε)νm
n+1 . Using this and the locality assumption (2.3), we can estimate for s ≥ 3

∑
xi∈X\xj

|f(x, xi)| ≤
∞∑
m=1

∑
xi∈(X\xj)∩S̃m

cf
((n+ 1)d(x, xi))s

,

≤ 25cf

∞∑
m=1

m

(1− ε)s(mν)s
,

≤ 25cf
(1− ε)sνs

∞∑
m=1

1

ms−1
=

25cfζ(s− 1)

(1− ε)sνs
.

Having established the necessary localization estimates of the Jackson kernel and its derivatives in
this section, we are now able to construct and validate a dual certificate using the Hermite interpolation
in the next section.
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5.3 Dual Certificate on the Sphere
In this section, we construct a dual certificate as the solution of the Hermite type interpolation problem.
Remember, we would like to solve the interpolation problem

q(xi) = ui,

X1q(xi) = X2q(xi) = 0,

for xi ∈ X , where q needs to be an element of ΠN (S2). The interpolant, we construct, is of the form

q(x) =
∑
i

a0,iJN (x, xi) + a1,iX
y
1JN (x, xi) + a2,iX

y
2JN (x, xi) ∈ ΠN (S2).

Thus, the coefficients should satisfy

Kα :=

 JN Xx
1 JN Xx

2 JN
Xy

1JN Xx
1X

y
1JN Xx

2X
y
1JN

Xy
2JN Xx

1X
y
2JN Xx

2X
y
2JN

α0

α1

α2

 =

u0
0

 , (5.11)

where again the matrix K consists of blocks of the form

Xx
i X

y
j JN = (Xx

i X
y
j JN (xk, xm))k,m.

For abbreviation, we write
Jij = Xx

i X
y
j JN .

We will assume, that the interpolation points X = {xm}m obey a minimal separation distance of the
form

ρ(X ) = min
xk 6=xm

d(xk, xm) ≥ ν

n+ 1
, (5.12)

where again n = bN/2c.
In order to show the existence of q, we need to show the invertibility of the matrix K. Even more,

we need to partially compute its inverse to derive bounds on the coefficients α. The following Lemma is
the counterpart of Lemma 3.1 in the case of the rotation group and bounds the entries of the interpolation
matrix.

Lemma 5.6. Suppose the points satisfy the separation condition (5.12). Then the entries of the interpo-
lation matrix are bounded in the following way

‖I − J00‖∞ ≤
C0

ν4
,

‖J0i‖∞ , ‖Ji0‖∞ ≤
C1(n+ 1)

ν4
, ‖Jij‖∞ ≤

C2(n+ 1)2

ν4
, for i 6= j, i, j 6= 0,∥∥∥−J̃ ′′N (0)I − Jii

∥∥∥
∞
≤ C2(n+ 1)2

ν4
,

with
C0 = 25 · ζ(3) · π4, C1 = 75 · ζ(3) · π4, C2 = 412.5 · ζ(3) · π4.

If n ≥ 9 and ν4 > 3
0.99 · C2, then

∥∥J−1
00

∥∥
∞ ≤

1

1− C0

ν4

,
∥∥J−1

ii

∥∥
∞ ≤

3

0.99(n+ 1)2
(
1− 3C2

0.99ν4

) .
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Proof. The bounds follow directly from Theorem 5.3 and Lemma 5.5, as well as from the invertibility of
a matrix A, if

‖I −A‖∞ < 1,

and the bound on the norm of the inverse given by

‖A−1‖∞ ≤
1

1− ‖I −A‖∞
.

For the bound on J−1
ii , one uses in addition, that for n ≥ 9, |J̃ ′′N (0)| = n(n+2)

3 ≥ 0.99·(n+1)2

3 .

With this preparation, we state the main Theorem of this section, which gives a condition on the
separation of the interpolation points to guarantee the invertibility of the interpolation matrixK and gives
bounds on the coefficients α.

Theorem 5.7. Suppose the separation condition (5.12) is satisfied for some ν ≥ 0, such that there is a
constant b ≥ 3, with

ν4 ≥ 3

0.99
· b · C2, (5.13)

where the constant C2 is given in Lemma 5.6. Then the matrix K is invertible and the coefficients of the
linear system (5.11) satisfy

‖α0‖∞ ≤ 1 +
1

45(b− 2)− 1
,

‖αj‖∞ ≤
(n+ 1)−1

4.5(b− 2)− 0.1
, j = 1, 2.

Moreover, we have the lower bound

|α0,i| ≥ 1− 1

45(b− 2)− 1
.

Proof. The proof is in the same line as that of Theorem 3.2. We partition the matrix K into blocks of the
form

K =

(
K0 K̃1

K1 K2

)
,

with blocks given by

K0 = J00 = JN ,

K1 =
[
J01 J02

]T
=
[
Xy

1JN Xy
2JN

]T
,

K̃1 =
[
J10 J20

]
=
[
Xx

1 JN Xx
2 JN

]
,

K2 =

[
J11 J21

J12 J22

]
=

[
Xx

1X
y
1JN Xx

2X
y
1JN

Xx
1X

y
2JN Xx

2X
y
2JN

]
and use an iterative block inversion. Again, we set for abbreviation

a1 :=
3 · C2

0.99ν4
.
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It represents the quotient of the off-diagonal upper bound and the on-diagonal lower bound. The assump-
tion of the theorem then reads as

a1 ≤
1

b
,

with b ≥ 3. The same arguments, as those in the proof of Theorem 3.2 show∥∥∥∥∥I − K2/J22

J̃ ′′N (0)

∥∥∥∥∥
∞

≤ 1

(b− 1)
,

and therefore

‖ (K2/J22)
−1 ‖∞ ≤

3(b− 1)

0.99(n+ 1)2(b− 2)
,

which shows the invertibility of the matrix K2. With the abbreviation T = K2/J22, we have the repre-
sentation

K−1
2 =

(
T−1 −T−1J21 (J22)

−1

− (J22)
−1
J12T

−1 (J22)
−1

+ (J22)
−1
J12T

−1J21 (J22)
−1

)
. (5.14)

In the next step, one can show, that

‖I −K/K2‖∞ ≤
1

45(b− 2)
,

which yields

‖ (K/K2)
−1 ‖∞ ≤

1

1− 1
45(b−2)

and the invertibility of K. Thus, using the representation (5.14) of the inverse of K2 and the abbreviation
S = K/K2, one can calculate the solution of the interpolation problem as

α0 = S−1u,

α1 = −T−1(J01 − J21(J22)−1J02)α0,

α2 = −J−1
22 (J12α1 + J02α0).

This yields the bounds

‖α0‖∞ ≤ 1 +
1

45(b− 2)− 1
,

‖α1‖∞ ≤
(n+ 1)−1

4.5(b− 2)− 0.1
,

‖α2‖∞ ≤
(n+ 1)−1

4.5(b− 2)− 0.1
.

Moreover, we have the estimate

|α0,i| =
∣∣∣((I − (I − (K/K2)

−1
))

u
)
i

∣∣∣ ,
≥
∣∣∣1− ∣∣∣((I − (K/K2)

−1
)
u
)
i

∣∣∣∣∣∣ ,
≥
∣∣∣1− ∣∣∣(I −K/K2) (K/K2)

−1
∣∣∣∣∣∣ .
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Since b ≥ 3, we have∣∣∣(I −K/K2) (K/K2)
−1
∣∣∣ ≤ ‖I −K/K2‖∞‖ (K/K2)

−1 ‖∞,

≤ 1

45(b− 2)− 1
< 1,

and therefore

|α0,i| ≥ 1− 1

45(b− 2)− 1
.

Corollary 5.8. Suppose the interpolation points X = {xi} obey a separation distance of

ρ(X ) ≥ 20π

N
, (5.15)

for N ≥ 20. Then the interpolation problem (5.11) admits a unique solution, such that

‖α0‖∞ ≤ 1 +
1

45 · 6− 1
≤ 1 + 3.8 · 10−3,

‖αj‖∞ ≤
(n+ 1)−1

4.5 · 6− 0.1
≤ 3.8 · 10−2

(n+ 1)
, j = 1, 2,

and we have the lower bound

|α0,i| ≥ 1− 1

45 · 6− 1
≥ 1− 3.8 · 10−3.

Proof. For n = bN/2c, we have (n+ 1) ≥ N/2 and therefore

ρ(X ) ≥ 10π

(n+ 1)
.

One shows, that with ν = 10π, we have

ν4 ≥ 3

0.99
· b · C2,

with b = 8 and Theorem 5.7 yields the assertion.

Using the derived bounds on the coefficients of the interpolant, we proceed by showing the upper
bound in absolute value of the interpolating function q of Corollary 5.8, i.e.

|q(x)| < 1,

whenever x is not an interpolation point. Again, we split the argument into two parts. Points, which
are close to an interpolation point, are covered by Lemma 5.9, where the argument involves convexity
arguments via the definiteness of the Hessian. The bound for points that are well separated from any
interpolation point is the content of Lemma 5.10.



122 CHAPTER 5. SUPER-RESOLUTION ON THE SPHERE

Lemma 5.9. Suppose the interpolation points X obey a separation condition of the form (5.15) and
x ∈ S2 satisfies 0 < d(x, xi) ≤ 0.5

(n+1) , for an interpolation point xi ∈ X . Then the interpolating
function q of Corollary 5.8 fulfills

|q(x)| < 1.

Proof. Remember, the interpolant is of the form

q(x) =
∑
j

a0,jJN (x, xj) + a1,iX
y
1JN (x, xj) + a2,jX

y
2JN (x, xj).

Without loss of generality, we assume that ui = 1 and we have to show that the Hessian is negative
definite. The case ui = −1 is completely analog with changing signs. At the interpolation point xi in
normal coordinates at xi, the Hessian has the form

H̃q(xi) =

(
X1X1q(xi) X1X2q(xi)
X2X1q(xi) X2X2q(xi)

)
.

We have, using the bounds of Theorem 5.3, Lemma 5.5 and Corollary 5.8

XnXnq(xi) =
∑
j

a0,jX
x
nX

x
nJN (xi, xj) + a1,jX

x
nX

x
nX

y
1JN (xi, xj) + a2,jX

x
nX

x
nX

y
2JN (xi, xj),

= a0,iX
x
nX

x
nJN (xi, xi) +

∑
j 6=i

(
a0,jX

x
nX

x
nJN (xi, xj) + a1,iX

x
nX

x
nX

y
1JN (xi, xj)

+ a2,jX
x
nX

x
nX

y
2JN (xi, xj)

)
,

≤ −
(

1− 1

45 · 6− 1

)
n(n+ 2)

3
+

(
1 +

1

45 · 6− 1

)
25ζ(3) · 16.5

104
(n+ 1)2

+
2

4.5 · 6− 0.1

25ζ(3) · 110

104
(n+ 1)2.

Since N ≥ 20, we have (n+ 1) ≥ 10 and therefore

n(n+ 2)

3
≥ n(n+ 2)

(n+ 1)2
· (n+ 1)2

3
≥ 0.99 · (n+ 1)2

3
.

This yields
XnXnq(xi) ≤ −0.25 · (n+ 1)2.

Similarly, we can bound the off-diagonal entries by

|XkXnq(xi)| ≤ 0.075 · (n+ 1)2.

Combining these to bounds, we have

trace(H̃q(xi)) ≤ −0.5 · (n+ 1)2, det(H̃q(xi)) ≥ 0.05 · (n+ 1)2,

which means that the Hessian at xi is strictly negative definite and xi is an isolated local maximal point
of q and q(xi) = 1 is a local maximum.

For x 6= xi, d(x, xi) ≤ 0.5
n+1 we argue in the same way, but instead of the bounds of Theorem 5.3 we

use the bounds derived in Theorem 5.4. Thus, for the diagonal entries we get

(Hq(x))ii =
∑
j

a0,j(HJN (x, xj))ii + a1,i(HX
y
1JN (x, xj))ii + a2,j(HX

y
2JN (x, xj))ii,
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≤ a0,iJ̃
′′
N (0) + ‖α0‖∞

|J̃ ′′N (0)− (HJN (x, xi))ii|+
∑
j 6=i

|(HJN (x, xj))ii|


+ ‖α1‖∞(|(HXy

1JN (x, xj))ii|+
∑
j 6=i

|(HXy
1JN (x, xj))ii|)

+ ‖α2‖∞(|(HXy
2JN (x, xi))ii|+

∑
j 6=i

|(HXy
2JN (x, xj))ii|),

≤ −0.19 · (n+ 1)2

and in the same way for the off-diagonal entries

|(Hq(x))ij | ≤ 0.13(n+ 1)2.

This shows
trace(Hq(xi)) ≤ −0.3 · (n+ 1)2, det(Hq(xi)) ≥ 0.01 · (n+ 1)2.

Hence, the function q is strictly concave on B0.5/(n+1)(xi) \ {xi}, which shows q(x) < 1. Moreover, the
Taylor expansion of the cosine and the sine function shows

JN (x, xi) ≥ 1 +
J̃ ′′N (0)

2
d(x, xi)

2 ≥ 1− (n+ 1)2

6
d(x, xi)

2,

|Xy
nJN (x, xi)| ≤ |J̃ ′N (d(x, xi))| ≤ |J̃ ′′N (0)|d(x, xi) ≤

(n+ 1)2

3
d(x, xi),

meaning for d(x, xi) ≤ 0.5
(n+1)

q(x) ≥ α0,iJ(x, xi)− ‖α1‖∞|Xy
1JN (x, xi)|+ ‖α2‖∞|Xy

2JN (x, xi)|

+
∑
xj 6=xi

‖α0‖∞|JN (x, xj)|+ ‖α1‖∞|Xy
1JN (x, xj)|+ ‖α2‖∞|Xy

2JN (x, xj)|,

≥ 0.93.

Combining this shows 0.93 ≤ q(x) < 1. In the case q(xi) = −1, the analog arguments with changing
signs show, that xi is an isolated local minimal point, q is strictly convex on B0.5/(n+1)(xi) and −1 <
q(x) ≤ 0.93.

Lemma 5.10. Under the assumptions of Lemma 5.9, we have that for all x ∈ S2 with d(x, xm) ≥ 0.5
(n+1)

for all xm ∈ X the interpolating function q of Corollary 5.8 fulfills

|q(x)| < 1.

Proof. We split the proof into three cases. The first case corresponds to those x ∈ S2, such that 0.5
(n+1) ≤

d(x, xm) ≤ 1.1·π
(n+1) , the second to 1.1·π

(n+1) ≤ d(x, xm) ≤ 5·π
(n+1) and the last to those x ∈ S2, such that

d(x, xj) >
5·π

(n+1) for all interpolation points xi. We have to bound the summands in

|q(x)| =
∑
j

a0,jJN (x, xj) + a1,iX
y
1JN (x, xj) + a2,jX

y
2JN (x, xj).,

≤ ‖α0‖∞|JN (x, xm)|+ ‖α1‖∞|Xy
1JN (x, xm)|+ ‖α2‖∞|Xy

2JN (x, xm)|

+
∑

xj 6=xm

‖α0‖∞|JN (x, xj)|+ ‖α1‖∞|Xy
1JN (x, xj)|+ ‖α2‖∞|Xy

2JN (x, xj)|.
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In the first case, we have due to the Taylor expansion of the cosine function and the positivity of the
Jackson kernel

|JN (x, xm)| = J̃N (d(x, xm)) ≤ 1− |J̃
′′
N (0)|
2

d(x, xm)2 +
|J̃ (4)
N (0)|
24

d(x, xm)4.

Since N ≥ 20, we have (n+ 1) ≥ 10 and consequently

|J̃ ′′N (0)| = n(n+ 2)

3
≥ n(n+ 2)

(n+ 1)2
· (n+ 1)2

3
≥ 0.99 · (n+ 1)2

3
.

In addition, we have

|J̃ (4)
N (0)| = 1

30
n(n+ 2)(9n(n+ 2)− 2) ≤ 3

10
(n+ 1)4.

Thus, for t ∈ [0.5, 1.1π], we have the bound

J̃N (t/(n+ 1)) ≤ 1− 0.99

6
t2 +

1

80
t4.

The polynomial on the righthand side is monotonic decreasing for t ∈ [0.5, t0], for t0 =
√

20·0.99
3 and

monotonic increasing for t = [t0, 1.1π]. Similarly, we have due to | sin(kω)| ≤ kω,

|Xy
nJN (x, xm)| ≤ |J̃ ′N (d(x, xm))| ≤ |J̃ ′′N (0)|d(x, xm) ≤ (n+ 1)2

3
d(x, xm).

Accordingly, for 0.5
(n+1) ≤ d(x, xm) ≤ 1.1π

(n+1) , we can estimate using the bounds above and the estimates
of Theorem 5.3, Lemma 5.5 and Corollary 5.8

|q(x)| ≤
(

1 +
1

45 · 6− 1

)(
1− 0.99

6
t2 +

1

80
t4
)

+
2

4.5 · 6− 0.1
· t

3(
1 +

1

45 · 6− 1

)
at/10π

104
+

2

4.5 · 6− 0.1

3at/10π

104
,

where t = d(x, xm)(n+ 1). This results in the bounds

|q(x)| ≤


0.993, 0.5

(n+1) ≤ d(x, xm) ≤ 1
(n+1) ,

0.92, 1
(n+1) ≤ d(x, xm) ≤ t0

(n+1) ,

0.91, t0
(n+1) ≤ d(x, xm) ≤ 1.1π

(n+1) ,

which complete the first case. For the second case, i.e. 1.1·π
(n+1) ≤ d(x, xm) ≤ 5·π

(n+1) , we use the bounds
of Theorem 5.3 to derive

|J(x, xm)| ≤ π4

(n+ 1)4d(x, xm)4
≤ π4

t4
,

|Xy
nJ(x, xm)| ≤ 3π4

(n+ 1)4d(x, xm)4
≤ 3π4

t4
,
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with t = d(x, xm)(n+ 1). For this reason, we have the estimate

|q(x)| ≤
(

1 +
1

45 · 6− 1

)
π4

t4
+

2

4.5 · 6− 0.1
· 3π4

t4(
1 +

1

45 · 6− 1

)
at/10π

104
+

2

4.5 · 6− 0.1

3at/10π

104
,

which shows for 1.1·π
(n+1) ≤ d(x, xm) ≤ 5·π

(n+1)

|q(x)| ≤ 0.87.

Lastly, in the case d(x, xj) >
5π
n+1 for all interpolation points xj , the setX ∪x obeys a separation distance

of 5π
n+1 and we again use the bounds of Theorem 5.3, Lemma 5.5 and Corollary 5.8 to estimate

|q(x)| ≤ ‖a0‖∞
∑
j

|J(x, xj)|+ ‖a1‖∞
∑
j

|Xy
1J(x, xj)|+ ‖a2‖∞

∑
j

|Xy
2J(x, xj)|,

≤
(

1 +
1

45 · 6− 1

)
25 · ζ(3)

54
+

2

4.5 · 6− 0.1
· 75 · ζ(3)

54
≤ 0.06.

Combining Corollary 5.8, Lemma 5.9 and Lemma 5.10, shows the existence of a dual certificate. We
summarize this result in the following theorem.

Theorem 5.11. Suppose the points X = {x1, . . . , xM} obey a separation distance of ρ(X ) ≥ 20π
N for

N ≥ 20. Then for each sign combination ui ∈ {−1, 1}, there is a q ∈ ΠN (S2) such that

q(xi) = ui, for xi ∈ X ,
|q(x)| < 1, for x ∈ S2 \ X .

The existence of a dual certificate immediately yields the recovery of the sought measure via the
minimization of the total variation.

Corollary 5.12. Suppose the support of the signed measure µ? obeys the separation condition

min
x 6=y

d(x, y) ≥ 20π

N
, x, y ∈ supp(µ?),

for N ≥ 20. Then µ? is the unique real solution of the minimization problem

min
µ∈M(S2,R)

‖µ‖TV , subject to P∗Nµ = P∗Nµ?. (SP)

Proof. Theorem 5.11 guarantuees the existence of a dual certificate. Hence, by Theorem 1.7, P∗N has
the null-space property with respect to supp(µ?) and Theorem 1.6 shows that µ? is the unique real
solution.

Notes and References. Whereas the problem of super-resolution on the sphere was first considered
in [Bendory et al., 2015a], we would like to mention, that to the best of our knowledge the first valid
proof for exact recovery in the context of total variation minimization is given in this thesis. We briefly
state the necessary modifications.

The choice of the Jackson kernel as interpolation kernel has two advantages. First, the closed-form
representation (5.4) of the kernel allows for asymptotic estimates with explicit constants, see Theorem
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5.3. Second, the behavior of the derivatives near the diagonal can be controlled efficiently, see Theorem
5.4. Both ingredients are necessary for showing the bound |q(x)| < 1, whenever x is not an interpolation
point. This is in contrast to [Bendory et al., 2015a], where the use of an unspecified polynomial kernel
prohibits those explicit estimates.

In addition, the geometry of the sphere, which plays a crucial role in bounding the Hessian, was not
considered properly in [Bendory et al., 2015a]. Both gaps have been closed in this chapter.

Numerical considerations regarding the super-resolution problem on the sphere were stated in [Ben-
dory et al., 2015b]. The proposed algorithm uses a semi-definite relaxation of the dual problem using the
Bounded Real Lemma and is similar to Algorithm 1 for the case of the rotation group. The authors ob-
serve numerically an exact recovery, whenever the support points of the sought measure obey a separation
distance of 2.5·π

N , which suggests that the constant 20 · π of Theorem 5.11 is not optimal.
Nevertheless, the investigation of the numerical aspects of the super-resolution problem on the sphere,

especially regarding applications, has to be considered in more detail. We leave this for future research.



Appendix A

B-spline Filter

In this section, we derive estimates that involve the perfect B-spline of order s. This function is given by

gs−1(x) =
(−1)s−1

(s− 2)!

∫ x

−1

s−1∑
k=0

(−1)kχ(cos( k+1
s π),cos( ks π)](t)(x− t)

s−2dt. (A.1)

Proposition A.1. [Bojanov et al., 1993, Sec. 6.1] We have for s ∈ N that the function gs−1 given in
(A.1) is a spline of order s − 1 with support [−1, 1] and ‖gs−1‖1 = 1

(s−1)!2s−2 . Moreover, we have for
all n ≤ s− 1 the identity

g
(n)
s−1(x) = fs−1−n(x),

where

f0(x) = (−1)s−1 sign(Us−1(x)), fk(x) =

∫ x

−1

fk−1(t)dt, k > 0,

with the explicit representation for k > 0,

fk(x) =
(−1)s−1

(k − 1)!

∫ x

−1

(x− t)k−1 sign(Us−1(t))dt. (A.2)

Here Us−1 denotes the Chebychev polynomial of the second kind of order s− 1.

Lemma A.2. Denote by g̃s−1 = gs−1(2(·)) the scaled perfect B-spline. Then for m ∈ N, we have

‖z2mg̃s−1(z)‖1 =
(2m)! · s

4m ·m! · 2s+2m−1(s+m)!
.

Proof. By Proposition A.1, we have gs−1(x) = fs−1(x) and integration by parts shows∫ 1
2

− 1
2

x2mg̃s−1(x)dx =
1

22m+1

2m∑
l=0

(−1)l
(2m)!

(2m− l)!
fs+l(1).

Now we use a specific orthogonality relation for Chebeychev polynomials of the second type, see e.g.
[Bojanov et al., 1993]. For each polynomial p of maximal degree s− 2 it is true, that∫ 1

−1

p(t) sign(Us−1(t))dt = 0,

127
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and for m ∈ N ∫ 1

−1

ts+2m sign(Us−1(t))dt = 0,

since the functions ts+2m sign(Us−1(t)) are always odd. Moreover we can calculate∫ 1

−1

ts+2m−1 sign(Us−1(t))dt =

∫ 1

−1

ts+2m−1
s−1∑
k=0

(−1)kχ(cos( k+1
s π),cos( k+1

s π)](t)dt,

=
1

s+ 2

s−1∑
k=0

(−1)k
(

coss+2

(
k

s
π

)
− coss+2

(
k + 1

s
π

))
,

=
2

s+ 2m

(
1 +

s−1∑
k=1

(−1)k coss+2m

(
k

s
π

))
.

We can write
s−1∑
k=1

(−1)k coss+2

(
k

s
π

)
=

1

2s+2

s−1∑
k=1

(−1)k
(

eiπ
k
s + e−iπ

k
s

)s+2

,

=
1

2s+2

s−1∑
k=1

eikπ
s
s

s+2∑
m=0

(
s+ 2

m

)
eiπ

k(2m−s−2)
s ,

=
1

2s+2

s+2∑
m=0

(
s+ 2

m

) s−1∑
k=1

(
e2πim−1

s

)k
.

Since
s−1∑
k=1

(
e2πim−1

s

)k
=

{
−1 + 1−e2πi(m−1)

1−e2πi
m−1
s

= −1, m /∈ {1, s+ 1},

s− 1, m ∈ {1, s+ 1}
we have

s−1∑
k=1

(−1)k coss+2

(
k

s
π

)
=

s

2s+2m−1

(
s+ 2m

m

)
− 1,

which yields ∫ 1

−1

ts+2m−1 sign(Us−1(t))dt =
s · (s+ 2m− 1)!

2s+2m−2 ·m! · (s+m)!
.

Thus, using the explicit representation (A.2) of the fk yields

fs+l(1) =
1

(s− 1)!2s−2

l
2∑

r=0

1

(l − 2r)!

s!

4r · r! · (s+ r)!
, l even ,

fs+l(1) =
1

(s− 1)!2s−2

l−1
2∑

r=0

1

(l − 2r)!

s!

4r · r! · (s+ r)!
, l odd .

Using this, we can derive

‖z2mg̃s−1(z)‖1 =
(2m)! · s

4m ·m! · 2s+2m−1(s+m)!
.
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Lemma A.3. For s ∈ 2N, s ≥ 6 we have

|g̃(s−1)
s−1 |V = 2ss, ‖g̃(s−1)

s−1 ‖∞ = 2s−1,

|g̃(s−2)
s−1 |V = 2s−1, ‖g̃(s−2)

s−1 ‖∞ = 2s−2 tan
( π

2s

)
,

|g̃(s−3)
s−1 |V = 2s−4 tan2

( π
2s

)
s, ‖g̃(s−3)

s−1 ‖∞ = 2s−4 tan2
( π

2s

)
,

|g̃(s−4)
s−1 |V ≤ 2s−4 tan2

( π
2s

)
, ‖g̃(s−4)

s−1 ‖∞ = 2s−4 3 sin2
(
π
2s

)
tan

(
π
2s

)
2 cos

(
π
s

)
− 1

,

|g̃(s−5)
s−1 |V ≤ 2s−4 3 sin2

(
π
2s

)
tan

(
π
2s

)
2 cos

(
π
s

)
− 1

.

In the case s = 8 we have in addition

‖g̃(j)
7 ‖∞ ≤

4j

25(6− j)!
, |g̃(j−1)

7 |V ≤
4j

24(6− j)!
, j = 1, 2, 3.

Proof. First observe that we have for 0 ≤ n ≤ 3

|g̃(s−1−n)
s−1 |V = 2(s−1−n)|g(s−1−n)

s−1 |V , ‖g̃(s−1−n)
s−1 ‖∞ = 2(s−1−n)‖g(s−1−n)

s−1 ‖∞.

By Proposition A.1, we know that g(s−1−n)
s−1 = fn. For n = 0, this means that

g
(s−1)
s−1 = f0(x) = (−1)s−1 sign(Us−1(x))

and since Us−1(x) has s− 1 zeros in the interval (−1, 1) and is not equal to zero for x = 1,−1, we have
that

|g(s−1)
s−1 | = |f0|V = 2s, ‖g(s−1)

s−1 ‖∞ = ‖f0‖∞ = 1.

For n = 1, the total variation of f1 is given by

|f1|V = sup

(∑
i

|f1(xi+1)− f1(xi)|

)
= sup

(∑
i

∣∣∣∣∫ xi+1

xi

f0(t)dt

∣∣∣∣
)
≤ 2,

where the supremum is taken over all partitions of [−1, 1]. Actually, choosing as partition the sequence
of zeros of Us shows that |g(s−2)

s−1 |V = 2. Furthermore, we have the representation

f1(x) =

s−1∑
k=0

(−1)kχ(cos( (s−k)π
s ),cos( (s−k−1)π

s )](x) (A.3)

·
(
x− cos

(
(s− k)π

s

)
− tan

( π
2s

)
sin

(
πk

s

))
,

which shows
‖g(s−2)
s−1 ‖∞ = ‖f1‖∞ = |f1(0)| = tan

( π
2s

)
.

Since f2 is continuously differentiable with f ′2 = f1, we have

|f2|V =

∫ 1

−1

|f ′2(t)|dt =

∫ 1

−1

|f1(t)|dt.
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Using the representation (A.3) of f1, a lengthy calculation shows

|g(s−3)
s−1 |V = |f2|V =

s

2
tan2

( π
2s

)
.

For n = 2, we have the representation

f2(x) =

s−1∑
k=0

(−1)kχ(cos( (s−k)π
s ),cos( (s−k−1)π

s )](x) (A.4)

· 1

2

(
x2 + 2

(
cos

(
kπ

s

)
− tan

( π
2s

)
sin

(
πk

s

))
x

+
1

2

(
1 + cos

(
2πk

s

)
− sin

(
2πk

s

)
tan

(π
s

)))
.

Since the local extrema of f2 are the zeros of f1, which are given by

tan
( π

2s

)
sin

(
πk

s

)
− cos

(
kπ

s

)
,

we can calculate the absolute extreme values of f2 on the intervals
(

cos
(

(s−k)π
s

)
, cos

(
(s−k−1)π

s

)]
for

k = 0, . . . , s− 1. A lengthy calculation shows that the absolute values at these points are given by

1

4
tan2

( π
2s

)(
1−

cos
(

2k+1
s π

)
cos
(
π
s

) )

which becomes maximal for k = s
2 − 1. Since

|f3|V =

∫ 1

−1

|f ′3(t)|dt =

∫ 1

−1

|f2(t)|dt,

we get immediately |f3|V ≤ tan2
(
π
2s

)
. In the same way we can derive a piecewise representation of f3

f3(x) =

s−1∑
k=0

(−1)kχ(cos( (s−k)π
s ),cos( (s−k−1)π

s )](x)

· 1

2

(
x3

3
+ x2

(
cos

(
kπ

s

)
− sin

(
πk

s

)
tan

( π
2s

))

+ x

(
cos

(
kπ

s

)2

− 1

2
sin

(
2πk

s

)
tan

(π
s

))

+
1

3
cos

(
kπ

s

)3

− 1

4
sin

(
kπ

s

)
tan

( π
2s

)
− 1

12
sin

(
3kπ

s

)
tan

(
3π

2s

))
.

and plug in the zeros of f2, which are given by

tan
( π

2s

)
sin

(
πk

s

)
− cos

(
kπ

s

)
+ tan

( π
2s

)√√√√ sin
(
πk
s

)
sin
(
π(k+1)

s

)
cos
(
π
s

) , k = 0, . . . ,
s

2
− 1,
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tan
( π

2s

)
sin

(
πk

s

)
− cos

(
kπ

s

)
− tan

( π
2s

)√√√√ sin
(
πk
s

)
sin
(
π(k+1)

s

)
cos
(
π
s

) , k =
s

2
, . . . , s.

A lengthy calculation for this shows

‖g(s−4)
s−1 ‖∞ = ‖f3‖∞ = |f(0)| = 1

24

(
tan

(
3π

2s

)
− 3 tan

( π
2s

))
=

3 sin2
(
π
2s

)
tan

(
π
2s

)
2 cos

(
π
s

)
− 1

,

and again |g(s−5)
s−1 |V ≤ 2‖f3‖∞.

For the case s = 8, we use the bound

‖g(j)
s−1‖∞ ≤

2j+1

2s−2(s− j − 2)!
,

see [Schumaker, 2007, Thm. 4.36] with a different normalization of the spline and again |g(j−1)
s−1 |V ≤

2‖g(j)
s−1‖∞.
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Appendix B

Measure Theory

Here, we give a quick reminder on the measure theoretic statements, we use in the thesis. These can be
found, e.g. in [Rudin, 1987].

LetX be a locally compact Hausdorff space andB(X) the corresponding Borel σ-algebra. A mapping

µ : B(X)→ C, resp. µ : B(X)→ R,

is called complex resp. signed Borel measure, if it is σ-additive, i.e. for pairwise disjoint E1, E2, · · · ∈
B(X), we have

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei).

The variation of µ on E ∈ B(X) is given by,

|µ|(E) = sup

{∑
i

|µ(Ei)|

}
,

where the supremum is taken over all partitions of E. The mapping |µ| defines a finite positive Borel
measure.

Let µ be a complex or signed Borel measure and ν be a finite positive Borel measure. The measure µ
is called absolutely continuous with respect to ν, denoted by µ� ν, if µ(E) = 0 for all E ∈ B(X), such
that ν(E) = 0. The two complex or signed Borel measures µ, ν are called mutually singular, denoted by
µ ⊥ ν, if there are two disjoint setsA,B ⊂ X , such thatA∪B = X and µ(E) = 0 for allE ∈ B(X)∩A,
while ν(E) = 0 for all E ∈ B(X) ∩B.

Theorem B.1 (Lebesgue decomposition). Let µ be a complex resp. signed Borel measure and ν be a
finite positive Borel measure. Then µ has a unique decomposition of the form

µ = µν + µν⊥ ,

such that µν , µν⊥ are complex resp. signed measures, with the property µν � ν and µν⊥ ⊥ ν. If µ is
positive, so are µν and µν⊥ .
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Theorem B.2 (Polar decomposition). Let µ be a complex or signed measure. Then there is a measurable
function h, such that |h(x)| = 1 for all x ∈ X and

µ = h · |µ|.

Using the polar decomposition, we can define integration with respect to a complex measure µ, by∫
A

f(x)dµ(x) =

∫
A

f(x)h(x)d|µ|(x),

for all |µ|-measurable sets. We set

〈µ, f〉 :=

∫
X

f(x)dµ(x),

whenever this is well-defined.
A complex resp. signed Borel measure is called regular, if for all E ∈ B(X),

|µ|(E) = sup{|µ|(C) : C ⊂ E,C compact},
= inf{|µ|(O) : E ⊂ O,O open}.

Definition B.3. The space of all regular complex resp. signed measures is denoted byM(X,C) resp.
M(X,R).

The total variation of a measure, given by

‖µ‖TV := |µ|(X),

defines a norm onM(X,C) resp.M(X,R) and (M(X,C), ‖·‖TV ) and (M(X,R), ‖·‖TV ) are Banach
spaces. If assertion hold for both spaces, we writeM(X,K) or simplyM(X).

The space of complex resp. real-valued continuous functions is denoted by C(X,C) resp. C(X,R).
The subspace of function that vanish at infinity is given by

C0(X,C) := {f ∈ C(X,C) : {x ∈ X : ‖f(x)‖ ≥ ε} is compact f.a ε > 0}

and in the same way for real-valued functions. Equipped with the supremum norm

‖f‖∞ = sup
x∈X
|f(x)|,

they are Banach spaces.

Theorem B.4 (Representation Theorem of Riesz). For a locally compact Hausdorff space X , we have
that (C0(X,C))′ ∼= M(X,C) and (C0(X,R))′ ∼= M(X,R). Moreover, the positive functionals on
C0(X,R), denoted by (C0(X,R))′+ can be identified with the positive Borel measures, denoted by
M+(X,R). Moreover, we have

‖µ‖TV = sup
f∈C(X,C),‖f‖∞≤1

|〈µ, g〉| = sup
f∈C(X,C),‖f‖∞≤1

Re(〈µ, f〉).

Let µ ∈M(X,R) be non-negative, then the Lp-spaces are defined in the usual way for 1 ≤ p <∞

Lp(X,µ) =

{
f : X → C, measurable :

∫
X

|f(x)|pdµ(x) <∞
}
,

N = {f ∈ Lp(X,µ), f = 0µ− a.e},
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Lp(X,µ) = Lp(X,µ) \ N .

With ‖f‖p =
(∫
X
|f(x)|pdµ(x)

)1/p
, these spaces are Banach spaces. For p = 2, it is a Hilbert space

with the inner product

〈f, g〉L2 =

∫
X

f(x)g(x)dµ(x), f, g ∈ L2(X,µ).
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Appendix C

Linear Algebra

In this section, we state several results, that are useful to us. This includes results regarding Schur com-
plements, which can be found e.g. in [Zhang, 2006], and assertions regarding the cross product of vectors
in R3.

Given a block matrix X ∈ Cd×d of the form

X =

(
A B
C D

)
,

where D is invertible, the Schur complement of D in X is given by

X/D = A−BD−1C.

Lemma C.1. The matrix X is invertible, if D and X/D are invertible. In the case that

X =

(
A B
BH C

)
,

with C � 0, the matrix X is positive semi-definite, if and only if, A < 0 and X/C < 0.

Lemma C.2 (Quotient rule). Let X,D,E be nonsingular square matrices such that

X =

(
A B
C D

)
, D =

(
E F
G H

)
.

Then

X/D = (X/H)/(D/H).

The induced operator norm for the l∞-norm on Cd is given by

‖X‖∞ = max
i

∑
j

|xi,j |.
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Lemma C.3 (Neumann series). Let X ∈ Cd×d. If ‖I −X‖∞ < 1, then X is invertible with

X−1 =

∞∑
k=0

(I −X)k.

Moreover, we have ‖X−1‖∞ < 1
1−‖I−X‖∞ .

In the following we state some identities regarding the cross product of vectors in R3. Let a, b ∈ R3,
then the cross product is given by the vector

a× b = |a||b| sin(θ)na,b,

where θ is the angle between a and b and na,b is the unit vector perpendicular to a and b such that a, b, na,b
follow the right hand rule. Its components are given by

a× b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 .

Lemma C.4 (Identities cross product). Let a, b, c, d ∈ R3, then

(i) a× b = −(b× a),

(ii) a · (b× c) = b · (c× a) = c · (a× b),

(iii) a× (b× c) = b(a · c)− c(a · b),

(iv) (a× b)× (a× c) = (a · (b× c))a,

(v) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).



Appendix D

Convex Analysis

A short reminder on convex analysis, which can be found e.g. in [Peypouquet, 2015], which is used for
the optimization problem in the measure spaceM(X), see also [Bredies and Pikkarainen, 2013].

Let (B, τ) be a Hausdorff space and J : B → R∪{∞} be an extended real-valued function. We give
a quick reminder on the existence and uniqueness of minimizers of the minimization problem

min
x∈B

J(x).

The function f is called proper if its effective domain, given by

dom(J) := {x ∈ B : J(x) <∞},

is not empty. A simple example is given by the indicator function of a subset C ⊂ B, i.e.

χC(x) =

{
0, x ∈ B,
∞, x /∈ C.

A function f is called sequentially lower semi-continuous at x0 ∈ dom(J) if

lim inf
x→x0

J(x) ≥ J(x0)

and sequentially lower semi-continuous if it is sequentially lower semi-continuous for all points in dom(J).
For abbreviation we write s.l.s.c. Given two s.l.s.c functions J,G, the sum

J + αG

is s.l.s.c for α ≥ 0. The property of sequentially lower semi-continuity can be employed to show existence
of minimizers, which is known as the direct method in the calculus of variations.

Lemma D.1. Suppose B is the dual of a separable normed space and J : B → R ∪ {∞} is proper and
s.l.s.c with respect to the weak?-topology on B. Then J has a minimizer.

Proof. Choose a minimizing sequence {xn}n∈N, i.e.

lim
n→∞

J(xn) = inf
x∈B

J(x).
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Using the sequential Banach-Alaoglu Theorem, i.e. bounded sets are sequentially compact with respect

to the weak?-topology, there is a subsequence {xnk}k∈N with xnk
w?−→ x. By the sequential lower

semi-continuity of J we have

inf
x∈B

J(x) = lim
k→∞

J(xnk) ≥ lim inf
k→∞

J(xnk) ≥ J(x) ≥ inf
x∈B

J(x).

A set C ⊂ B is convex if
tx+ (1− t)y ∈ C,

for all x, y ∈ C and t ∈ (0, 1). An extended real-valued function J is called convex, if

J(tx+ (1− t)y) ≤ tJ(x) + (1− t)J(y), (D.1)

for all x, y ∈ X and t ∈ [0, 1]. If the inequality is strict, whenever x 6= y and t ∈ (0, 1), J is called
strictly convex. It is easy to check that the indicator function χC is convex, if and only if the set C is
convex. Again, for J,G convex, we have the convexity of

J + αG

for α ≥ 0, meaning the proper, convex and lower semi-continuous functions are forming a convex cone.
The subdifferential of a proper convex function J is given by

∂J(x) = {x∗ ∈ B∗ : J(y) ≥ J(x) + 〈x∗, y − x〉, for all y ∈ B}.

Theorem D.2 (Fermat’s Rule). Let J : B → R∪{∞} be proper and convex, then x is a global minimizer
of J if, and only if, 0 ∈ ∂J(x).

Theorem D.3 (Moreau-Rockafellar Theorem). Let J,G : B → R ∪ {∞} be proper, convex, and lower-
semicontinuous. For each x ∈ B, we have

∂J(x) + ∂G(x) ⊆ ∂(J +G)(x).

Equality holds for every x ∈ B if f is continuous at some x0 ∈ dom(G).

In the following, we concentrate on the caseB =M(X,C), where (X, g) is a compact d-dimensional
smooth Riemannian manifold. Since the Laplace-Beltrami operator is compact in the L2-topology, the
eigenspaces Hl are dense in L2(X) = L2(X, ν), where ν is the Riemannian volume measure. This
means,

L2(X) = cl‖·‖2

∞⋃
l=1

Hl,

where Hl is the eigenspace to the l−th eigenvalue. The frequency information is now carried in the
ascending spaces

ΠN (X) = span

N⋃
l=1

Hl, N = 1, 2 . . . .

In this setting, the L2-projection operator onto the space ΠN (X) for a fixed N can be written in the
following way. Choose for each l = 1, 2, . . . an orthonormal basis {ϕl,k}dim(Hl)

k=1 of Hl, and set

KN (x, y) =

N∑
l=1

dim(Hl)∑
k=1

ϕl,k(x)ϕl,k(y).
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Then the projection operator SN : L2(X)→ C(X) onto the space ΠN (X) can be written as

SNf(x) =

∫
X

f(y)KN (x, y)dν(y).

For a measure µ? ∈ M(X,K), the available information are given by S∗Nµ? for some N ∈ N. We state
the necessary strong duality result in the following theorem.

Theorem D.4 (Strong duality). Let X be a compact d-dimensional smooth Riemannian manifold and
µ? ∈ M(X,K). Then for all N ∈ N, τ > 0, ε > 0 and η ∈ M(X,K), such that ‖S∗Nη‖L2 ≤ ε , we
have the following duality result. The values

p? = inf
µ∈M(X,K)

{‖µ‖TV : S∗Nµ = S∗Nµ?},

d? = sup
f∈ΠN (X)

{Re〈f,S∗Nµ?〉L2 : ‖f‖∞ ≤ 1},

p?τ = inf
µ∈M(X,K)

1

2
‖S∗N (µ− µ? − η)‖2L2 + τ‖µ‖TV ,

d?τ = sup
f∈ΠN (X)

{Re〈S∗N (µ? + η), f〉L2 − τ‖f‖2L2 : ‖f‖∞ ≤ 1},

are finite and p? = d? and p?τ = d?τ .

Proof. The proof follows from standard Fenchel-duality results, which can be found e.g. in [Borwein and
Zhu, 2005], and the fact that

‖µ‖TV = sup
f∈C(X)

{Re(〈µ, f〉) : ‖f‖∞ ≤ 1}.

In the following, we briefly state some notions on Riemannian manifolds, which can be found e.g.
in [Udriste, 1994]. Let (X, g) be a compact d-dimensional smooth Riemannian manifold. For a point
x ∈ X and a neighborhood U of x with a chart ϕ : U → Rd, we consider all curves γ : (−1, 1) → X
such that ϕ ◦ γ : (−1, 1)→ Rd is differentiable and we call

γ̇(0) = (ϕ ◦ γ)′(0) ∈ Rd

a tangent vector at x ∈ X . Calling two curves γ1, γ2 equivalent if γ̇1(0) = γ̇2(0), the set of equivalence
classes is called the tangent space TxX at x, which is a d-dimensional vector space. At each point x ∈ X
the Riemannian metric g defines an inner product on TxX ,

gx : TxX × TxX → R,

that varies smoothly in x. A smooth curve γ0 : [a, b] → R is called a geodesic, if it has minimal length
for all curves joining γ0(a) and γ0(b), i.e.

γ0 = argminγ

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t))dt.

The value

d(x, y) = min

∫ a

b

√
gγ(t)(γ̇(t), γ̇(t))dt,
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where the minimization is taken with respect to all curves γ : [a, b] → R, such that γ(a) = x and
γ(b) = y, is called geodesic distance of x, y ∈ X . It defines a metric on X , that is compatible with the
topology of X , i.e. the geodesic balls

Br(x) = {y ∈ X : d(x, y) < r},

generate the topology. For each x ∈ X and v ∈ TxX , there is a unique geodesic γx,v , such that
γx,v(0) = x and γ̇x,v(0) = v. The mapping

expx : TxX → X, v 7→ γx,v(1),

is called exponential map at x ∈ X . Taking the canonical coordinates x1, . . . , xd of TxX yields the
Riemannian normal coordinates centered at x ∈ X . Parametrizing the d-dimensional euclidean space
TxX by d-dimensional spherical coordinates (r, θ1, . . . , θd−1), yields the polar coordinates centered at
x ∈ X . In these local coordinates, the Riemannian metric is represented by a symmetric positive definite
matrix (gij(y)) ∈ Rd×d. Its inverse is denoted by (gij(y)) = (gij(y))−1. At the center x ∈ X of
Riemannian normal coordinates we have gij(x) = δij . If we denote the normal coordinate mapping
centered at x ∈ X by ϕ, then the gradient of a smooth function is given locally by

(∇f)i =

d∑
j=1

gij∂j(f ◦ ϕ), i = 1, . . . , d.

The Christoffel symbols are given in normal coordinates centered at x ∈ X for y in a neighborhood of x
by

Γikl(y) =
1

2

d∑
m=1

gim(y)

(
∂gmk(y)

∂xl
+
∂gml(y)

∂xk
− ∂gkl(y)

∂xm

)
.

The Christoffel symbols Γ̃ikl for the polar coordinates are defined analogous. If we denote the normal
coordinate mapping centered at x ∈ X by ϕ and the polar coordinate mapping by ϕ̃, then the local
expression of the Hessian of a smooth function is given for r > 0, smaller than the injectivity radius of
X , by

(Hf(y))ij = ∂ij(f ◦ ϕ)(ϕ−1(y))−
d∑
k=1

Γkij(y)∂k(f ◦ ϕ)(ϕ−1(y)), y ∈ Br(x),

respectively

(H̃f(y))ij = ∂ij(f ◦ ϕ̃)(ϕ̃−1(y))−
d∑
k=1

Γ̃kij(y)∂k(f ◦ ϕ̃)(ϕ̃−1(y)), y ∈ Br(x) \ {x}.

Lemma D.5 (Local minimizer). Let r > 0 be smaller than the injectivity radius of X and f : X → R
be a smooth function. If x ∈ X is an isolated local minimizer of f and the matrix (Hf(y))ij respectively
(H̃f(y))ij is positive definite for all y ∈ Br(x) \ {x}, then x is an isolated minimizer of f on Br(x).
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