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Abstract— The design of humanoid robots naturally requires
the simultaneous control of a high number of joints. Moreover,
the performance of the overall robot is strongly determined
by the low-level control system as all high-level software e.g.
for locomotion planning and control is built on top of it. In
order to achieve high update rates and high bandwidth for the
joint control, an advanced real-time control system architecture
is required. However, outdated communication protocols with
associated limits in the achievable update rates are still used
in nowadays humanoid robots. Moreover, the performance of
the low-level control systems is not analyzed in detail or the
systems rely on specialized hardware, which lacks reliability
and persistence. We present a reliable and high-performance
control system architecture for humanoid robots based on the
ETHERCAT technology. To the authors’ knowledge this is the
only system, which operates at control rates beyond 2 khz and
input/output latencies below 1ms. Furthermore, we present a
novel learning-based feedforward control strategy to improve
joint tracking performance. This improved joint control method
and the communication system are evaluated on our humanoid
robot LOLA. Our software framework is available online to
allow other researchers to benefit from our experiences.

I. INTRODUCTION

Legged robots have the potential to navigate through
very unstructured and uneven terrain, where conventional
wheeled robots may fail to find a feasible path. The ability
to overcome obstacles by stepping or using the arms as an
additional support comes with the drawback of a very high
number of actuated joints. The simultaneous control of a high
number of degrees of freedoms requires fast and reliable low-
level control systems to achieve high control rates and overall
reliability of the robot. This is particularly important for the
operation in uneven and/or unknown terrain, as the system
must detect and react to disturbances quickly, [1].

For robot control, often cascaded control structures are
used. With torque-controlled joints, an inner position control
loop allows to track positional trajectories, whereas for
position-controlled joints, a force-control scheme is used as
an inner loop to stabilize the robot. For both concepts the
bandwidth of the inner loop is limited by the bandwidth of
the outer loop (hardware layer). In general, all high-level
software is restricted by the update rates of the hardware
layer, which is the connection to the physical machine.
With a lot of ongoing research in the field of robotics,
the high-level control methods for humanoid robots become
increasingly sophisticated. Consequently, also the hardware
layer becomes more and more important for the performance
of the overall robot.

Despite significant progress in modern communication
systems and joint controllers, many robots still include

hardware layers with relatively low update rates, often con-
strained by the used fieldbus technology. Furthermore, the
performance of these hardware layers is seldom analyzed
in detail, but specified only by the corresponding update
rate. The latencies, transmission delays and the synchronicity
of simultaneous control commands, however, are equally
important to the performance of the whole system. In this
paper, we present a control system architecture based on
the ETHERCATE] fieldbus as well as the corresponding real-
time software framework. We focus on the ability for hard
real-time constraints, a reliable architecture and backwards-
compatibility e.g. for devices with CAN interface. The
hardware-layer software framework is available online to
allow other researchers to easily equip their robots with
this high-performance control system. The high achievable
update rates enable the use of an improved joint control con-
cept, which is additionally described in this paper. This in-
cludes an online-learning based feedforward control method
as well as target data interpolation. Although we evaluate this
control system on our humanoid robot LOLA with position-
controlled joints, the general methods are applicable to other
humanoid robot platforms and control structures, e.g. with
torque-controlled joints.

In the following section, we describe the state of the art
for control systems in humanoid robots. The used hardware
components are then presented in Section In Section
we describe the real-time software framework and improved
joint control concept of our approach. The system perfor-
mance of the communication system, joint controller and
real-time software is analyzed in Section [VI} Lastly, Sec-
tion includes a discussion on the results, conclusion and
comments on future work.

II. RELATED WORK

Although modern real-time bus technologies have been
available for quite some time, only few humanoids are
equipped with these high-performance communication sys-
tems. In contrast to distributed control systems with a digital
bus communication system, central control concepts were
used e.g. in the Honda humanoid robot [2], HRP-2 [3], or
Wabian-2 [4]. In these architectures, all sensors and actuators
are directly attached to I/O interface boards in the central
control computer. As an advantage, high update rates are
possible as no communication bus is needed. However, the
complexity of the system is high, as all peripheral sensors
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and actuators must be connected directly to the central con-
trol unit. Due to their high complexity, centralized systems
are in general more error-prone than distributed systems,
where some error checking and handling is already executed
on the intelligent distributed slaves. With decentralized con-
trol concepts, parts of the computational effort can be off-
loaded to the intelligent actuator controls. This also allows
for very high update rates of the local control cycles (e.g.
20 khz current control).

Because of its easiness and reliability, the Controller-Area-
Network (CAN) is a prevalent technique for the communica-
tion in distributed control systems of humanoid robots. It is
used in popular robots such as the HRP robots version 3 and
4 [5], [6], Hubo-2 [7] and the iCub [8] to send and receive
data to and from the distributed joint controllers. However,
the maximum bandwidth of CAN is relatively low (1 Mbifs)
and communication is only partially deterministic (for high
priority messages). Therefore, multiple CAN networks are
used in parallel for robots with a high number of degree
of freedoms (DoFs). Still, the maximum achievable update
rates for joint-controller set-points are considerably low. The
DRC-Hubo uses CAN for communication and is limited to
a control rate of 200 Hz [9]. With the use of four parallel
CAN-Buses CHIMP reaches an update rate of 500 Hz [10].
In addition, the CAN protocol does not allow to compensate
for the transmission delays, i.e. allow synchronous execution
of commands on the distributed joint controllers.

Several different approaches were used in literature to
overcome the drawbacks of CAN. [11] proposes the use of
multiple RS422 connections with an effective data rate of
6 Mbits per connection and a central control system with
ART Linux operating system. However, it is unclear what
kind of protocol and media access control is used in the
daisy-chain setup of the RS422 interface. In [12], a real-
time communication system based on the Ethernet protocol
is developed for the HRP-3P (prototype). It uses a custom
protocol to link several bus nodes, which operate an ART-
Linux real-time operating system. While originally designed
to replace the unreliable central control system of the HRP-2,
the AIST group later switched to CAN for the final HRP-
3 humanoid “... to improve reliability and maintenance of
the system.”, [5, p.2476]. PETMAN [13] uses a modified
CAN bus to reach an update frequency of 1 khz, details have
however not been published so far. Unfortunately, there is
only little information on the hardware of ATLAS (1khz
update rate) [14] and no information on the inner structure
of Honda’s ASIMO. For the robot TORO [15], a Sercos-II
bus with a bandwidth of up to 16 Mbifs is used. Although this
enables a 1khz control rate, the bitrate would probably not
allow for much higher update rates. The former hardware
design of our humanoid robot LOLA used a Sercos-III bus
based on 100 Mbifs-Ethernet [16]. However, the distributed
I/O boards and interfaces to the actual joint drives were in-
house made and complex. As this introduces another source
of errors, the reliability of the whole solution was limited.
For the design of newer robots, the ETHERCAT Bus became
increasingly popular, as it is fast, reliable and a widely-used

technology. In-house made electronics are often used for the
actual joint control and fault handling in such systems [17],
[18]. In our experience, this greatly reduces the reliability and
persistence of such solutions. Team RoboSimian from the
DRC used a hardware structure quite similar to ours, with an
ETHERCAT bus and the same commercial joint controllers
to control their robot at 1khz, [19].

In addition to the communication concept, the joint control
method is important for the performance of the overall
system. Advanced feedforward control strategies provide a
high potential for improving joint tracking and can be found
in other mechatronic disciplines. For example, [21] uses a
self-tuning feedforward strategy for the control of a milling
machine. [20] gives a good overview on the application to
robots. They present an offline learning based strategy, which
works on position-level and uses a previously identified
linear error model. In [14], experimentally identified velocity
feedforward gains are used to improve positional tracking for
torque-controlled joints. To the authors’ knowledge, this is
the only other application of velocity feedforward gains to
bipedal robots.

Compared to the systems found in literature, our control
architecture allows to operate at an update rate of 2 khz and
above. Furthermore, we use reliable and available hardware
modules, and focus on low latency of the overall control loop.
In addition, we present an online-learning based feedforward
control method, which operates on velocity-level. As it is
based on reinforcement learning, no prior knowledge on the
joint design is necessary. In comparison to related work,
it is not necessary to invert a measurement matrix in the
identification/learning process.

III. HARDWARE OVERVIEW

This chapter gives an overview of the overall mechatronic
system of our humanoid robot LOLA, which we used for
evaluation of our control system architecture. Special effort is
put on sensors, actuators and the real-time system. All joints
are electrically actuated using high power brushless DC
motors operating at 80 VDC except for the head (24 VDC).
Most of the robot’s joints are equipped with stiff high ratio
Harmonic Drive transmission gears except for the ankle
and knee. The ankle joints are actuated over a parallel
kinematics using two spatial slider crank mechanisms. The
knee joints are based on a roller-screw based linear drive
with a four-bar linkage mechanism. Each joint is equipped
with an incremental encoder on motor side and an absolute
encoder on link side. An additional limit switch is used for
safety issues. Following a decentralized concept, local servo
controllers from ELMO MOTION CONTROIP are used for
each joint. They allow to apply feedback control at high
sampling rates while the overall wiring effort is reduced.
The servo controllers provide an ETHERCAT-interface. An
overview of one joint is shown in Fig. [T]

The robot has an Inertial Measurement Unit (IMU), which
is the commercial high precision system iVRU-FC-C167
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Fig. 1: Cabling overview of one joint: motor, incremental
encoder (IncEnc), absolut encoder (AbsEnc), and ELMO
servo controller.

from iIMAR Navigation. The sensor is rigidly fixed to the
upper body of the robot and consists of three fiber-optic
gyroscopes and three MEMS accelerometers. The system
provides data at a frequency of 200Hz and runs internal
sensor fusion algorithms as well as error compensation mod-
els. The generated data can be accessed via CAN. LOLA’s
feet are equipped with in-house made 6 axis force/torque
sensors (FTS) with an optimized shear-beam geometry and
strain gauges to measure deformations. They are mounted
between ankle joint and foot in order to measure the reaction
forces acting on the robot. This data and the contact state are
post-processed with two in-house developed microcontroller
boards (Cortex-M4, one for each leg), which provide a CAN
interface. A commercial CAN gateway with a throughput
of 1Mbifs is used to integrate CAN data from IMU and
FTS into the ETHERCAT bus. It provides a CAN message
queue for receiving and sending data from the master. A
GPIO ETHERCAT-slave with A/D inputs allows to include
additional measurements or triggers of external sensors and
devices. It is based on a Beckhoff EK110(F] with several I/0
modules.

All ETHERCAT slaves are connected to a central con-
trol unit (ETHERCAT master) via a line topology. The
central control unit runs the real-time operating system
QNX NEUTRINO 6.6 and is mounted on the back of the
robot. It consists of a mini-ITX embedded board with Intel
Core i7-4770S@3.1GHz (4x) processor and 8GB RAM. An
additional watchdog circuit to enable or disable the motor
power is integrated, and directly controlled by digital outputs
of the embedded motherboard. The vision system consists
of an RGB-D sensor (Asus Xtion PRO LIVE E[) located
at the head as well as an onboard computer identical to
the one of the central control unit. The vision computer
runs a Linux OS and both computers are mounted on a
common frame (cf. Fig. 2). The onboard computers and an
external monitoring computer use TCP/UDP to communicate
via standard Ethernet. An overview of the hardware is shown

in Fig. 2}
IV. COMMUNICATION AND CONTROL SOFTWARE

The walking control system of LOLA is based on a
hierarchical approach, see Fig. 3] Based on user-inputs, a
high-level planning module first generates ideal trajectories
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Fig. 2: Mechatronic network overview. The elements in the
black dotted frame are physically located on the robot.

w;q in task-space, which are then modified by predictive and
local stabilization methods to reject external disturbances.
The desired joint trajectories g, are finally calculated by
inverse kinematics and sent to the decentralized position-
controllers of each joint. Simultaneously, sensor data is read
and stored for the next planning/control cycle. While the
planning of trajectories is triggered every time a new walking
step is executed, the local stabilization strategies run with a
cycle time of Atcyy = 1 ms. Therefore, we aim at an update
rate of at least 1 kHz for sensor and target data.

A. Overview on Lola’s Control Software

The hierarchical walking control system basically consists
of three main parts, which are realized via parallel processes

User commands

l 9 every step
ideal walking pattern

generation
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predictive bipedal walking
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i Wmod, wmod
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Fig. 3: Overview of the walking control system.
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on our central control unit. This general software-structure
has already been introduced in [22] and can be summarized
as follows:

e The Planning Process: Contains all software compo-
nents to generate the ideal trajectories based on current
user input. Predictive Stabilization also takes place here.

o The Stabilization Process: Receives the trajectories
from the planning process via a shared memory in-
terface with a FIFO-based ring-buffer. Based on the
desired and actual state of the robot (including all sensor
data), a local stabilization is executed.

o The Hardware-Driver Process: Gets desired values for
the current time-step from the Stabilization Process.
Handles the communication with the actual hardware
and runs other low-level tasks. Sensor data received via
the communication bus is sent to both the Planning- and
Stabilization Process via a shared memory interface.

In the following, a new hardware-layer for this software
concept is described. We use the commercial ETHERCAT
master stack from ACONTISE| on the QNX real-time oper-
ating system. The code for our hardware layer framework
(with interfaces to the commercial ETHERCAT master stack
as well as the commercial motion controllers) is available

onlineEl

B. Real-Time Bus Middleware

To allow an easy integration of future real-time bus
systems and/or unproblematic change of the ETHERCAT
master-stack, we implemented an additional layer to separate
the hardware-near software from the application code. It
may be used to wrap any PDO/SD(ﬂ based communication
system. This middleware provides an easy and powerful
interface on the application side to write and read data from
the ETHERCAT bus via “Bus Variables”. On the other side, it
contains interfaces to an ETHERCAT master stack. Basically,
a Bus Variable is an instance of a special class used in the
application side of the hardware driver. This class represents
a variable of a certain predefined primitive data type (such as
int, float, char,...) and may be used as any standard variable
in the application code. However, the application can tell the
middleware software to link the data of this variable to a
certain ETHERCAT slave variable (PDOs). If the value of
an output variable is changed, the middleware automatically
sends the new data to the corresponding slave. Equivalently,
the data in input variables is updated every time a new
ETHERCAT frame is received. The connection between the
Bus Variables in the application code and the variables on
the slaves is made through the respective slave and variable
names defined in the ETHERCAT Network Information File
(ENI). Bus Variables are thread-safe and implement an
automated data-type checking during runtime. The concept
is visualized in Fig. @ For asynchronous communication,
the middleware implements an interface to send and receive

Shttp://www.acontis.com/eng/products/ethercat/
ec-master/

®https://github.com/am-1lola/lolaCAT

"Process- (PDO) and Service Data Objects (SDO)

ENI File

v Master

Acontis ETHERCAT Stack

Device Abstraction

BusUInt32<BusOutput> desPosition;
BusUInt32<BusInput> actPosition;

Slave 2

Slave2.actPos
Slave2.trgtPos

Slave 1

Slavel.actPos

Slavel.trgtPos
~

1inkPDOVar ("Slavel.trgtPos", &desPosition);
1inkPDOVar ("Slavel.actPos", &actPosition);

PDO Map !

void process () {

00 10 45 69 5A 3F
c3 a3[EA 00 00 0K

desPosition = 234; Automatic Mutex L

}

Fig. 4: The concept of Bus Variables, which automatically
links application code to data on the ETHERCAT slaves.

Service Data Objects (SDOs). Furthermore, communication
errors on the bus are handled and delegated to the safety
code in the hardware driver.

C. Device Abstraction Layer

On top of the middleware layer, all devices on the bus
are represented by Device Abstraction Classes. These map
internal logic and physical behavior of the slaves to the
software. The Device Abstraction Classes are derived from a
general “BusSlave” class provided by the middleware, which
enables the use of Bus Variables. In our setup, we use a
device class for the Elmo Motion Controllers, as well as for
the CAN gateway, our IMU, and the FTS sensors. Every
device class implements a state-machine, specialized error
handling and provides a high-level interface to control the
corresponding device in the hardware driver. On the motion
controller device class for example, get and set methods for
the actual and desired position are provided.

D. Low-Level Hardware Driver

The Hardware-Driver Process contains both the device
abstraction layer and the middleware. It spawns several child
threads for error handling and safety measures, the bus com-
munication, logging, and the inter-process communication
with the other two control framework processes. The main
thread basically operates as the central data hub, i.e. it
processes raw data sent from and to the ETHERCAT slaves,
and sends interpreted actual values to - as well as accepts new
target values from - the stabilization and planning process.
Furthermore, a state machine represents the global state of
the hardware system and reacts to changed user commands or
hardware states. In case of an error, a software watchdog in
a separate child process automatically triggers an emergency
stop with motor voltage shutdown. The main thread executes
these tasks in a loop and is synchronized to a higher-priority
“ETHERCAT thread” (EC) to ensure minimum latency of
input and output data. Within the EC-thread, methods of the
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D Name Description

14 waitForNextCycle  Block the thread until the ETHERCAT Cy-

~ cle Time has elapsed

4 updateDes Get new desired values from the stabiliza-
tion process (if available)

6 waitForRXData Block the thread until new input data has

been processed in EC-thread

Process raw input data in Device Abstrac-
tions

Push processed input data to shared memory
(this triggers a new calculation of target
data)

13 updateSTM Execute hardware driver state-machine logic
v and error handling

10 procData

11 updateAct

TABLE I: Methods called in the main thread of the Hardware
Driver.

bus middleware and the ETHERCAT master stack are exe-
cuted. This includes copying data between the Bus Variables
and the actual ETHERCAT PDO Map as well as sending the
cyclic and acyclic ETHERCAT frames. To keep the timing
between consecutive ETHERCAT cycles precise, a separate
timing task with highest priority is used to trigger execution
of the EC-thread. All important methods executed in the main
and EC-thread are described in Tab. [l and Tab. [ Note
that the communication with the stabilization and planning
processes is asynchronous, i.e. the main thread is not blocked
if no new data is available. This allows to set the bus cycle
time Aty to values equal or lower than the stabilization
update interval Atgop.

V. IMPROVED DECENTRALIZED JOINT CONTROL

Each decentralized joint controller receives target position,
target velocity and electric current feedforward values from
the central control unit. The electric current feedforward
values are calculated from inverse dynamics of the robot
and the motor specifications. In case the bus system runs
faster than the central control loop, Aty < Atcone With
Ateont = Atyys -1, new trajectory data is only available every
ny bus cycle. For the intermediate bus cycles, the last target
position for each joint is linearly extrapolated using the last
target velocity. This enables interpolated set-points for the

1D Name Description

1~ waitForTimingEvent ~ Wait for an event from the timing thread

2 signalNewCycle Unblocks the main thread

3 RX Process the frames received in the last cycle
(ETHERCAT Stack)

5 copyRXData Copy incoming data from the ETHERCAT
Stack to the Bus Variables

7 copyTXData Copy outgoing data from the Bus Variables
to the ETHERCAT Stack

8 signalRXData Signal main thread new incoming data is
available

9 sendFrames Queue cyclic ETHERCAT frames to be sent
on the bus

12 adminStuff Send acyclic frames and execute adminis-

A trative stuff of the ETHERCAT Stack

TABLE II: Methods called in the ETHERCAT thread of the
Hardware Driver.
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Fig. 5: Cascaded decentral motor control.

joint controllers with higher update rates than the central
control unit’s stabilization process.

The structure of one decentralized control unit is shown in
Fig. 5] It consists of a P-control for the motor position, a PI-
control for the velocity and PI-control for current. Sampling
times are 0.1ms for position and velocity and SOps for
current feedback. Feedback of the motor motion (6, 6) is
obtained from the incremental encoders and current (/) is
measured by an integrated sensor. Additional feedforward
values for velocity (éd) and current (I;) are commanded
to the controllers. We identified that a modification of
the feedforward velocity 64 improves the overall tracking
performance. Experiments revealed that a constant gain k¢
multiplied by 04 can be used to estimate the tracking error
of the position Af = 6; — 0 for the closed loop system

NI (1)

Considering the gain of the position controller K, this can be
used to add a corresponding factor to the overall commanded
velocity

kvel,ff:1+kaff:1+k€' 2)

To enable an automatic computation of the feedforward gain
k. a reinforcement learning [23] based strategy is used. This
has the advantage that the optimal gains can be identified
online when the joint control system or motor are changed.
Initially, all gains are set to k. = 0, which equals a standard
velocity feedforward scheme. The robot is stepping in place
and its joint tracking errors are recorded for the learning
process. A cost function is defined with the root mean
squared error (RMSE) over a time period of two steps. The
simple policy of increasing k. by 0.1 increments as long as
the cost function decreases is used. This is performed for all
joints simultaneously. As example, the learning progress for
the hip joint is depicted in Fig. [f] The algorithm finds the
best gain k. = 1.0 and can reduce the RMSE of the tracking
error by approximately 90 %. Similar results are obtained for
all other joints.

VI. SYSTEM PERFORMANCE

We evaluated the performance of our real-time system
in three different ways. First, by measuring timing and
statistics on the software processes. Second, by evaluating
the performance of the ETHERCAT Bus communication.
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Fig. 6: Tracking error and gain k. during the learning process
of the hip joint.

And third, by analyzing the tracking behavior of the joint
controllers.

A. Software Performance

The performance and quality of the software system is
evaluated on our QNX real-time system by using an event
tracelogger. This enables to get precise information on the
timing of individual program sections. For the test we chose
an update rate of 2 khz for the communication bus. The exact
execution times for all operations in one ETHERCAT bus
cycle (500 us) are shown in Fig. [/| For a description of the
shown program sections, refer to Subsection The total
cpu time per cycle is only 86 us, which is well below the
actual bus cycle time (500 us). New desired values are copied
to the PDO map right before the frames are sent on the
bus, which allows for minimal latency in desired values. The
actual sensor values however are taken from the received data
from the Ethernet frame of the last cycle. This ensures all
frames have been received by the time the update is done and
can lead to an input-data latency of up to Atp,s+20 pus. Note
that we do not know the latency between the execution of
sendFrames and the actual beginning of the communication
on the bus. Furthermore, the bus latency, which is analyzed
in the following section, must be added. Note that the pairs
copyRXData, procData and updateDes, copyTXData access
the same memory areas (protected via mutual exclusion).
However, simultaneous requests to the same memory are
also excluded by the order of the function calls to reduce
jitter and latenc By measuring the absolute time (with a
high-precision timer) between consecutive bus cycle loops,
we observe a high precision of the timing in the software
concept. The average software cycle time is 500.34 ys, with
a standard deviation of 1.02 us.

B. Bus Performance

We use a total of 294 Bus Variables for the communication
with the 25 slaves, which equals 1026 bytes of input/output
data. As input and output variables can share the same

8Because of the QNX scheduling timeslice, mutual exclusion with try-
lock commands would still lead to large delays

space in an ETHERCAT frame (data is written on-the-fly),
one Ethernet frame with 846 bytes total size is sufficient
in our case. With a link speed of 100Mbifs, the theoretical
transmission delay is

. 8 bits/byte - 846 bytes
o 100 Mbit/s

T = 67.7 us. 3)
However, propagation delays (copper wires) and latencies
within the slaves must be added to get the minimum bus
cycle time Atp,. As it is difficult to estimate these values,
we measured the total delay by attaching an Ethernet switch
to the bus and analyzing the packages with the open-source
software Wiresharkﬂ This is a conservative measurement,
as additional latencies from the switch and measurement
computer increase the total packet delay. The mean value
of the minimum bus cycle time (or total delay) over a
period of 10 seconds is Aty = 124.1 us with a standard
deviation of 10.2 us. Consequently, much higher bus update
rates (> 4khz) are possible with the ETHERCAT bus and
our framework.

To compensate for the transmission delays, which are
different for the output data sent to each slave, we use the
Distributed Clocks technology supported by the ETHERCAT
bus and our motion controller slaves. We operate the system
in BusShift mode, with the first motion controller as a
reference clock. Fig. [§] shows the difference of the master
and the slave clocks to the global system time during bus
initialization. Once the bus is in operational state, the mean
absolute error for the slave clocks is as low as 0.12 us
(standard-deviation of 0.11 us). The mean absolute error for
the master clock is 3.25 us (standard-devation of 2.45 us),
and is limited by the drift of the clock in the consumer-type
master-computer. Still, the synchronization of the system
time ensures target set points for the motion controllers are
executed at the same point in time, independently of the bus
delay.

C. Joint Controller Performance

We tested the performance of the joint-controllers in
walking scenarios with our humanoid robot LOLA. For this
experiments, the robot is commanded to walk 5 m straight on
even terrain with a speed of 2.7 kwh. For comparison of the
joint tracking performance, the root mean squared position
tracking error of the hip joint (flexion) is computed from
joint encoder measurements. The results are shown in Tab.
for settings without learned feedforward gains (k. = 0,
ref), with learned feedforward gains (1khz w/ff), and with
feedforward gains as well as a higher bus update rate and
extrapolation of target positions (2khz w/ff). Relative to the
reference, our methods reduce the tracking error by ~ 94 %.
The maximum tracking error is also reduced significantly,
which is observable in the time-domain data in Fig. [0] Note
that the standard velocity feedforward control scheme is used
throughout all three variants.

9http://www.wireshark.org
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Additionally, we analyzed the bandwidth for the positional
tracking of the closed loop. Hereby, we excited the hip-
joint (flexion) with target trajectories based on a chirp
signal, which contains frequencies from 10Hz to 500 Hz
at an amplitude of 0.0002rad. By measuring the response
of the closed loop system via the incremental encoders, we
generated an estimation for the transfer function, which is
shown in Fig.[I0] The raw data is additionally filtered in the
frequency domain to reduce the effect of noise. We identified
the bandwidth of the system at 0 dB to 241.28 Hz. Given this
includes the whole mechanical components from hip to toe,
the attained bandwidth is beyond our expectations.

VII. CONCLUSION

In this paper we presented a control system architecture
for humanoid robots. Hereby, we used commercial motion
control modules at the joint, and the ETHERCAT technol-
ogy for communication. In order to integrate a commercial

TABLE III: Root mean squared (RMS) error on the hip joint
in walking experiments for reference, with learned feedfor-
ward gains and for a 2khz update rate with extrapolated target
positions and learned feedforward gains.

Ateont = 1khz Atpys = Atpys = Atus =
1 khz 1 khz 2khz
ref w/tf w/tf

RMS tracking error [rad] | 0.0047 | 0.0004 | 0.0003

t s]
1khz ref — 1khz w/ff — 2khz w/ff —

Fig. 9: Closed loop tracking error of the hip-joint (flexion)
without learned feedforward gains (1khz ref), with learned
feedforward gains (1khz w/ff), and with 2khz bus update rate
including target data extrapolation and learned feedforward
gains (2khz w/ff).

raw —
15 filtered —
) 10 0 dB@241.28 Hz
= 5
O o
-5
—10 | | | |

100 150 200

Frequency [Hz]

250 300

Fig. 10: Bandwidth for positional tracking of the closed loop
system (hip flexion). The data is obtained by estimating the
transfer function from measurement data.



ETHERCAT master stack to our robot’s control software, we
implemented a middleware layer. This software is available
online and provides an easy and powerful interface for
PDO/SDO communication with ETHERCAT devices. Tests
on our humanoid robot LOLA showed a total control loop
latency of only At = 644 us at a 2khz bus update rate. By
utilizing the distributed clocks functionality of the ETHER-
CAT bus, we attained high synchronicity (Atgyn. < 1 us) for
the set-point commands of each joint controller. Comparing
with the only other example we could find in literature, the
control loop of the humanoid robot TORO has a 2 ms latency
at a 1 khz bus update rate [15].

In addition to software and communication, we introduced
a feedforward control method for the joint-controllers based
on reinforcement learning. Furthermore, we use our high bus
update rates to extrapolate target data for the joint controllers.
Using these techniques, the tracking error for a normal
walking sequence reduces by ~ 94 %. We experimentally
identified the bandwidth of the closed-loop joint controllers
to ~ 240Hz. For future work, we will concentrate on
further methods to increase the overall system’s tracking
performance.
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