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A discrete tomography algorithm is presented for the reconstruction of grain

maps based on X-ray diffraction data. This is the first algorithm for this task,

inherently exploiting the discrete structure of grain maps. Gibbs potentials serve

to characterize the statistics of the local morphology of the grain boundaries. A

Monte Carlo based algorithm is applied as a restoration method for improving

the quality of grain maps produced by a classical (non-discrete) tomography

algorithm (ART). The quality of the restored maps is demonstrated and

quantified by simulation studies. The robustness of the algorithm with respect to

the choice of Gibbs potentials is investigated.

1. Introduction

Three-dimensional X-ray diffraction (3DXRD) microscopy is

an emerging methodology for the structural characterization

of polycrystals (Poulsen, 2004). Based on diffraction by

monochromatic hard X-rays, area detectors, and reconstruc-

tion principles, three-dimensional maps can be generated,

capturing the morphology of the individual grains within

millimetre-thick specimens (Poulsen et al., 2001; Poulsen & Fu,

2003; Markussen et al., 2004). Furthermore, in favourable

cases, three-dimensional movies can be produced (Schmidt et

al., 2004). Hence, for the first time the local dynamics of

processes such as recrystallization and grain growth can be

observed directly under realistic bulk conditions. This is seen

as a pre-requisite to establishing first-principles models for

these industrially very important processes.

More specifically, a tomographic-type reconstruction

procedure, 2D-ART (two-dimensional algebraic reconstruc-

tion technique), has been demonstrated for undeformed

specimens (Poulsen & Fu, 2003). In this procedure, layers

(two-dimensional sections) within the sample are illuminated

consecutively. To generate three-dimensional maps, the results

for the layers are stacked. Furthermore, as the diffraction

spots associated with different grains typically do not overlap

on the detector, the spots can be sorted with respect to the

grain of origin by a polycrystal indexing routine (Lauridsen et

al., 2001). As a result, the reconstruction can be performed for

each grain separately, based on the intensity distributions

within the associated spots. For a given discretized layer in a

specimen, one can assign a 0/1 value to each cell/pixel, indi-

cating whether this pixel is occupied by the grain in question.

All the occupied pixels contribute linearly to the signal

intensity measured on the detector. Thus, we suppose that the

collection of pixels is associated with a 0/1 valued vector x,

which characterizes the morphology of the grain. In a forward-

projection model, we can then compute the intensities within

the individual pixels on the detector (collected in a vector b),

by a linear function, Ax, which follows from the experimental

geometry. In this way we can represent the process by a linear

system of equations: Ax = b.

The problem at hand is the inverse problem: given A and b,

compute x. The algorithm previously used is a variant of the

algebraic reconstruction technique (ART) used in biomedical

imaging (Gordon et al., 1970), which is an iterative method for

solving systems of linear equations, especially tailored to

tomographical data acquisition settings. Notably ART is a

classical/non-discrete algorithm, which generates real-valued

results. However, the condition 0 � xj � 1 can be imposed for

all elements j in the vector x. The values xj are interpreted as

grey levels, giving an indication whether or not a pixel belongs

to a grain. In the 2D-ART approach, the solution is binarized

(pixels belong to the grain or not) by setting a threshold at 0.5.

Presently, the spatial resolution of 2D-ART maps is mainly

limited by the number of useful diffraction spots per grain.

Due to variation in structure and Lorentz factors with Bragg

angle, geometry of available detectors and the wish to mini-

mize acquisition times for grain maps (in order to be able to

perform in situ annealing studies), the number of spots per

grain may be as few as five (Poulsen & Fu, 2003). As a result,

the system of equations, Ax = b, is very underdetermined. Due

to this, along with experimental noise and the fact that grains

are reconstructed independently, the association of some

pixels at the boundary between grains will be ambiguous. In

particular, 2D-ART may associate some pixels with two or

more grains and some with no grains at all.

In this paper, we aim at improving the quality of grain maps

generated by 2D-ART and making them space-filling by

applying a subsequent ‘restoration algorithm’ to the ambig-



uous parts of the map. The basis of the restoration is twofold.

First, a stochastic approach is used that simultaneously oper-

ates on all grains. Second, grain morphologies are not random

and, as such, some local boundary configurations are highly

unlikely. Making use of this, the restoration algorithm is an

application (and, in part, extension) of the ‘discrete tomo-

graphy using Gibbs priors’ formalism presented by Herman &

Kuba (1999) and Carvalho et al. (1999). To our knowledge, it is

the first time that this class of algorithms, which inherently

takes the discrete nature of grain maps into account, has been

applied in materials science.

In the next section we outline the suggested approach. In x3,

the quality of resulting grain maps is characterized by means

of simulations, and restorations with and without the use of

Gibbs priors are compared with pure 2D-ART reconstruc-

tions. Furthermore, the robustness of the algorithm with

respect to the choice of values for the Gibbs priors and system

parameters is investigated. Finally, the applicability of the

method and its extensions to full-beam 3DXRD using 3D-

ART (Markussen et al., 2004) is discussed. A formal definition

of the Gibbs priors used in this work has been provided in a

preliminary paper with focus on the mathematical aspects

(Alpers et al., 2005).

2. Approach

The method is based on statistics over the local morphology. It

is designed to be simple and computationally efficient, but

nevertheless efficacious. A (discretized) grain map can be

interpreted as a multi-colour image, where different colours

correspond to different grains. For each position in a grain

map, we define its local configuration as a 3 � 3 array of black

and white pixels as follows: the central pixel is always white

and any other pixel is white if, and only if, it belongs to the

same grain as the central pixel. These configurations are

partitioned into seven classes, G0, G1, . . . , G6, each containing

configurations of similar morphology, such as ‘grain interior’,

‘grain edge’, etc. For 1 � i � 6, the class Gi consists of the

configuration illustrated in Fig. 1 and all the configurations

that can be obtained from it by a sequence of 90� rotations

around the centre and mirror reflections about the central

vertical line. Configurations not in any of G1, . . . , G6 are put

into G0. [The physical assumptions inherent in this model can

be roughly stated as: (i) at the scale of 3 � 3 configurations the

grain’s morphology does not depend on the orientation of its

neighbours, (ii) at the same scale, triple junctions play a minor

role (that is, the grain boundary characteristics are statistically

independent of whether there are two or three neighbours),

and (iii) the grain microstructure is isotropic. These assump-

tions are at least partially justified by the success, as reported

below, of the method based on them.]

Next, we approximate the distribution of grain maps by a

Gibbs distribution, i.e. we assume that the distribution � of all

grain maps f that have to be restored can be approximated by

�ðf Þ ¼
1

Z
exp �

P6

i¼1

NiUi

� �
; ð1Þ

where Ui is the Gibbs potential associated with the class Gi, Ni

is the number of configurations of class Gi in this map, � is the

inverse temperature and Z is a normalization constant. We

used an approach based on counting 3 � 3 configurations in a

typical microstructure (the training set) for determining the

Gibbs potentials. Since the distribution � does not change if

we add a constant to all Gibbs potentials, we put U0 = 0.

The restoration algorithm seeks to maximize the expression

�ðf Þ ¼
1

Z
exp �

P6

i¼1

NiUi � � k Pf � P k1

� �� �
; ð2Þ

where P is a vector representing the measured pixel intensities

on the detector, while Pf represents the simulated (projected)

pixel intensities given the map f. The scale parameter �
determines how much weight is put on correspondence with

data as compared with obeying the Gibbs distribution. Both �
and � are system parameters to be optimized by simulations.

The maximization is performed by the Metropolis algorithm

(Metropolis et al., 1953; Brémaud, 1999), which is directly

applicable to expression (2). Following Vardi et al. (2001), a

‘look-up’ table is used to speed up the maximization.

Evidently, different samples (and sample regions) will be

associated with different Gibbs potentials. It would be

cumbersome, and in some cases impossible, to establish these

potentials prior to every 3DXRD experiment. However, grain

microstructures are broadly speaking similar (e.g. grain

growth is often associated with self-similar patterns). Hence,

we predict that the algorithm is sufficiently robust with respect

to choice of Gibbs potentials, and so one set of parameters can

be of use for a large set of samples. This prediction will be

tested below.
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Figure 1
Top: example of producing a local configuration. A 3 � 3 pixel region
(that overlaps three different grains) produces the local configuration for
its central pixel by assigning white to those pixels that belong to the same
grain as the central one, and black to the others. Bottom: representative
elements of the six classes G1, . . . , G6 of 3 � 3 local configurations used in
the model. (The other elements of a class can be obtained from the
representative element by a sequence of rotations and mirroring.) The
class G0 contains all other (‘random’) configurations; we also show one
element of this class.



3. Simulations

Simulations were performed to optimize the parameters of the

algorithm and to characterize quantitatively the quality of the

reconstructions as functions of the experimental noise and the

number of spots per grain.

The simulations were based on a 128 � 128 pixel orienta-

tion map of an annealed Al sample, shown in Fig. 2 (left). This

map was acquired by electron microscopy using the EBSD

(electron back-scatter diffraction) technique (Alam et al.,

1954; Lassen et al., 1992). The orientation map was trans-

formed into a grain map in which pixels are associated with

grain number rather than orientation. By sweeping the 3 � 3

grid over the image, the numbers Ki of configurations

belonging to class Gi, i = 0, . . . , 6 were determined. The

appropriate Gibbs potentials can then be estimated as in the

work of Carvalho et al. (1999):

Ui ¼ � ln
Ki

jGij
þ 1

� �
� ln

K0

jG0j
þ 1

� �� �
; ð3Þ

where |Gi| denotes the number of configurations in class Gi, i.e.

(|G0|, |G1|, |G2|, |G3|, |G4|, |G5|, |G6|) = (227, 1, 4, 8, 4, 8, 4).

Applying this equation with � such that the largest number

is 1.4 (which is an arbitrary choice), the following Gibbs

potentials were derived: U 1 = (U1, U2, U3, U4, U5, U6) = (1.4,

0.71, 0.61, 0.79, 0.5, 0.61). That the choice of � can indeed be

arbitrarily adjusted follows from the observation that the same

values are obtained for � in equation (2) if we change the �
and adjust the values of � and � accordingly.

Next, the 3DXRD diffraction patterns associated with the

orientation map were simulated. We generated 91 images

corresponding to equally spaced rotation angles over a rota-

tion range of 90�. The {111}, {200}, {222} and {311} reflection

families were included. The simulated patterns were generated

from the EBSD grain map. The EBSD data also provide the

orientation of each grain. For each grain and each reflection

within a given reflection family, the diffraction vector was

computed, and it was determined at which rotation step the

associated diffraction spot would appear. Successively, each

pixel within the grain was projected along this diffraction

vector onto the detector and intensities were summed

accordingly. The detector geometry mimicked the experi-

mental setup at the 3DXRD microscope at the European

Synchrotron Radiation Facility (ESRF) at the time, implying

that on average only eight diffraction spots per grain were

acquired. The details of the setup are as follows. The X-ray

energy was 50 keV. The sample area to be reconstructed

comprised 128 � 128 pixels and had dimensions of 294.4 �

294.4 mm. The two-dimensional detector had 1024 � 1536

pixels; positioned at a distance of 4.186 mm to the centre of

the sample, its field-of-view was 2.4 � 3.5 mm. The typical

pixel intensity within a diffraction spot was 4.3 counts.

To evaluate the quality of the reconstruction that was

computed by our algorithm when applied to grain-by-grain

reconstructions by 2D-ART (in which the resulting composed

grain map has overlapping and missing pixels, which form

areas of ambiguity), we performed 2D-ARTreconstructions of

the individual grains at a fixed threshold. The ambiguous areas

were defined as the set of pixels which either became asso-

ciated with zero grains or with several grains. These areas are

shown as white areas in Fig. 2 (right). The total number of

pixels in these ambiguity areas was 1490. Note that 682 of the

non-white pixels were assigned to the wrong grains by 2D-

ART (mainly due to calibration problems), and since the

restoring algorithm processes only white pixels, these incorrect

assignments cannot be undone.

Based on the set of Gibbs potentials U1, the diffraction

images and the ambiguity areas defined above, a series of

restorations were made with varying system parameters �, �,

the number of Monte Carlo cycles (MCC, where one MCC is

defined to consist of as many steps in the Metropolis algorithm

as the number of initially ambiguous pixels), as well as the

noise. Noise was implemented by adding a value of 1 to

randomly chosen detector pixels. In the following, noise levels

will be indicated in percent as the ratio of the total number of

added 1’s to all the detector pixels. The quality of the

restorations is determined by the ‘number of errors’, which is

the number of pixels in the white areas that have been

assigned to a grain in the restored map that is different from

the grain in the original map. To improve the statistics, each

simulation was repeated ten times with different initial seeds

to the Metropolis algorithm.

The restorations were found to converge rapidly. The

variations in number of errors as function of (�, �) at MCC =

1000 are shown in Fig. 3. For noise levels clearly below 100%, a

range that is expected to include the level of noise in real

3DXRD experiments, a broad optimum is roughly found

around the values (�0, �0) = (1, 1). The exact values showing

the quality of reconstruction are listed in Table 1. The

dependency of �0 and �0 on the noise level is discussed in

more detail by Alpers et al. (2005), and is shown to be quite

robust, as can also be seen from Fig. 3. For the rest of this

paper, the system parameters (�, �) are fixed at (1, 1).

The variation with noise of the restoration based on equa-

tion (2) is compared in Fig. 4 with results for projections only.

‘Projections only’ means no use of Gibbs priors, i.e. based on

equation (2), �ðf Þ = ð1=ZÞ expð�� k Pf � P k1Þ, with � = 1 and

research papers

584 A. Alpers et al. � Discrete tomography algorithm J. Appl. Cryst. (2006). 39, 582–588

Figure 2
Left: the grain map (experimentally determined by electron microscopy)
upon which the simulations are based. Colours represent orientations
according to a scheme based on Euler angles. Right: a simulated result of
grain-by-grain reconstruction by 2D-ART from 3DXRD data of the grain
map shown on the left. Due to the limited number of diffraction spots
included in the 3DXRD analysis, there are areas of ambiguity (shown in
white). The aim of the restoration is to resolve the ambiguities in the
white areas.



� = 1. Also shown is the result of a pure 2D-ART recon-

struction based on the simulated diffraction images. Ambig-

uous pixels were in this case allocated to the grain yielding the

highest value in the single-grain reconstructions. Pixels with

value 0 in all individual reconstructions can, in this case, leave

holes inside the map. Apart from differences that may be seen

directly by inspecting sample reconstructions (Fig. 5), a more

detailed study shows that there are significant differences in

performance between the three methods. These results are

interpreted as follows.

The ‘projections only’ restoration and pure 2D-ART both

optimize grain maps based only on the correspondence

between the projection of the map and the diffraction data.

Previous work has demonstrated that 2D-ART can provide

high-quality reconstructions of one single grain (Poulsen &

Fu, 2003). Hence, it appears that the difference in perfor-

mance between ‘projections only’ and 2D-ART is (at least

partly) caused by the restoration algorithm allocating pixels

based on an optimization with respect to all neighbouring

grains simultaneously, while 2D-ART treats grains separately.

An alternative route to the same effect has been presented by

Poulsen & Fu (2003). However, this is the first time that the

superior effect of a simultaneous reconstruction (as compared

with a single grain reconstruction) has been quantified. The

difference between restorations based on Gibbs priors plus

projections and projections only is evidently due to the use of

the additional information in the priors.

Similar results are shown in Fig. 6 for the variation with

average number of useful spots per grain (at noise levels of 0%

and 100% for the figures on the left and right, respectively).

The number of spots was varied by removing spots from the

simulated detector images. The removal was carried out

arbitrarily, by terminating the spot simulation (favouring no

particular kind of spots) after a prescribed amount of spots

occurred on the detector. Again the superior quality of the
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Table 1
Values of reconstruction quality for low noise levels as depicted in Figs. 3,
4 and 8.

Wherever � and � are not specified, they are both equal to 1, and wherever the
choice of Gibbs potential is not specified, it is U 1.

Noise

Method 0% 25% 50% 75% 100%

� = 1, � = 1 24.8 31.7 50.3 96.7 176.8
� = 1, � = 2 26.5 35.4 49.9 86.5 148.5
� = 0.5, � = 1 27.9 41.4 72.6 120.7 190.9
� = 1, � = 0.5 30.2 51.8 107.8 203.4 324.8
� = 2, � = 1 35.8 40.8 61.4 117.3 205.4
Projections only 43.5 58.5 116.8 232.6 359.6
U 2 25.8 34.1 52.7 96.3 174.5
U 3 25.9 32.9 51.7 102.5 175.9
U 4 27.0 33.3 55.4 97.7 182.5
U 5 25.7 32.5 51.1 93.2 171.9
U 6 32.7 42.7 78.3 159.6 274.9

Figure 4
Reconstruction quality as a function of the amount of additive noise in
the simulated detector images. Two map restoration methods are
compared: restoration by projection only and restoration by projections
plus the Gibbs prior based on U 1 (see text). In addition, the result for
reconstruction based purely on 2D-ART for a noise level of 0% is
indicated.

Figure 5
Error in the reconstruction of grain maps by three different methods: (a)
restoration by projections and Gibbs priors; (b) restoration by projections
only; (c) reconstruction based purely on 2D-ARTwhere ambiguous pixels
have been assigned to the grain yielding the highest rational number in
the reconstruction. Erroneously assigned pixels in the defined ambiguous
areas (the white areas in Fig. 2, right) are indicated in red; incorrect
assignments in other parts, due to errors in the initial map, are indicated
in blue. Grey pixels indicate correct assignments. In all cases, on average,
five useful spots per grain were used, and the noise level was 0%. The
number of erroneously assigned pixels in the ambiguous areas is (a) 27,
(b) 49 and (c) 471 pixels.

Figure 3
Optimization of system variables � and �. For various (�, �), the variation
in restoration quality, defined as the total number of pixels within the
ambiguous areas of the reconstructed map (the white areas in Fig. 2,
right) which are assigned to the wrong grain, is shown as a function of the
‘additive noise’ in the simulated detector images. The error bars mark the
standard deviation of the ten Monte Carlo simulations.



mapping based on the restoration algorithm with Gibbs priors

over the pure 2D-ART approach is evident.

Finally, the robustness of the method with respect to the

choice of Gibbs potentials was tested. In order to do so, five

other sets of potentials were defined. Samples of the six

associated grain map distributions are shown in Fig. 7. Four of

the sets were based on counting configurations in existing

EBSD maps of an aluminium alloy with 0.13% Mg.

U 1 = (1.4, 0.71, 0.61, 0.79, 0.5, 0.61): a medium-scale grain

structure (deformed at a strain of 10 and annealed for 1 h at

573 K).

U 2 = (1.4, 0.8, 0.8, 0.94, 0.19, 0.82): a coarse-grained struc-

ture (deformed at a strain of 10 and annealed for 1 h at 673 K).

U 3 = (1.4, 0.94, 0.94, 1.09, 0.12, 1.01): a fine-grained struc-

ture (deformed at a strain of 10 and annealed for 1 h at 498 K).

U 4 = (1.4, 0.91, 0.91, 1.08, 0.02, 1.0): a partially recrystallized

sample (deformed at a strain of 3 and annealed for 1 h at

498 K).

The following two sets of potentials (U 5 and U 6) were

determined based on visual inspection of Monte Carlo simu-

lations. For various choices of the potentials, the grain maps

were allowed to develop from random noise for 1000 MCC

using no projection data (i.e. � = 0) and � = 1.5.

U 5 = (1.5, 1.2, 0.84, 1, 1.25, 0.6) displayed grain-like features.

U 6 = (0.5, 0.4, 1.0, 0.8, 0.1, 0.6) did not produce grain-like

features.

Based on these six sets of potentials, but otherwise with the

same settings of system parameters (� = � = 1), restorations

were made to the grain map shown on the right in Fig. 2.

Similar to the results shown in Fig. 4, the variation in perfor-

mance with noise was simulated at an average of eight spots

per grain. The results are shown in Fig. 8. (For clarity of

display, error-bars have been omitted; their magnitudes are

similar to those in Figs. 3 and 4.) Evidently, the quality of

reconstruction based on the five sets of potentials related to

grain-like features is nearly identical. This is seen as a strong

indication that reconstructions of reasonably similar samples

with unknown microstructures can be based on a set of Gibbs
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Figure 7
Samples of the grain map distributions defined by the six sets of Gibbs
potentials U 1, U 2, U 3, U 4, U 5 and U 6 (see text).

Figure 8
Test of robustness of the method. The quality of restoration is shown as a
function of noise for six sets of Gibbs potentials U 1, U 2, U 3, U 4, U 5 and
U 6. (Samples of the associated grain map distributions are shown in Fig. 7.)

Figure 6
Reconstruction quality as a function of the average number of useful spots per grain. Left: at a noise level of 0%, two map restoration methods are
compared: restoration by projection only and restoration by projections plus the optimized Gibbs priors. Right: similar results for a noise level of 100%.
In addition, for the noise-free case, results for reconstruction based purely on 2D-ART are also indicated.



potentials derived from electron microscopy investigations of

one representative.

4. Discussion and outlook

The reported performance obtained using Gibbs priors is

statistical. Relying on the restoration may be dangerous, e.g.

for determining the local grain boundary curvature near a

specific triple junction. However, the method is applicable to

any 3DXRD study in which the focus is on deriving statistical

properties.

Likewise, we are not claiming that distributions of physical

grain maps can be precisely represented by Gibbs distribu-

tions. In fact, typical grain maps are not representative of

steady-state processes, but snapshots of grain growth

processes, and as such Gibbs distributions may not apply.

Hence, the Gibbs distributed configurations are introduced

here as a convenient approximate representation of the

microstructure. The simulations described above demonstrate

the validity of the approach. Alternative representations of

the local microstructure may be possible, and for all we know

these may give rise to similar or even better restorations.

Similarly, we are aware that our simple model does not

capture some aspects of the nature of real microstructures, e.g.

the fact that the local curvature of grain boundaries is corre-

lated to the orientation relationships between the associated

neighbouring grains. Also, most microstructures are not

completely isotropic. Again, the simulations above demon-

strate the validity of these approximations.

One important factor affecting the reconstruction quality is

the quality of the initial grain map, which determines the

ambiguous (white) areas. In the simulations presented in x3,

2D-ART was used to generate this map. Notably, one could be

more conservative with the results from 2D-ART (dilating the

white regions by some pixels) or other algorithms could be

used to generate the initial map, such as the program

GRAINSWEEPER (Schmidt, 2006), to be presented else-

where.

An extreme approach is to rely only on the outcome of

GRAINDEX (see Poulsen, 2004); that is, the information that

there are M grains in the map and a list of their orientations.

To test this approach, simulations were repeated with an initial

grain map where all the 10299 non-black pixels of the grain

map in Fig. 2 were assigned to be white points. Reconstruc-

tions (including Gibbs priors) for 0%, 50% and 100% noise

are shown in Fig. 9. The running time was six times longer than

for the results presented in x3. The total numbers of incor-

rectly assigned pixels in the three cases are 120, 586 and 5482.

Notably, for 0% noise the total number of errors is smaller

than the corresponding result with an initial map provided by

2D-ART, while the number of errors in the ambiguous parts is

larger. The results for the 100% noise case are much worse

than those obtained using an initial map, due to the fact that

the Metropolis algorithm is stuck in a local minimum, which

might be resolved by vastly increasing the number of MCC.

These results indicate that an optimal trade-off between the

accuracy of the initial map and the presented method with

respect to running time, noise and reconstruction quality has

to be found. This optimum may depend on the specifics of the

grain map and is a topic of current research.

The method presented was implemented as a C program on

a state-of-the-art PC. The running time for each restoration in

x3 (based on 1000 MCC and 1490 ambiguous pixels) was 10 s.

Real 3DXRD maps may have a size of up to 500 � 500 or even

1000 � 1000. It is difficult to predict exactly how the running

time scales with the size of the map, since other issues such as

spot overlap, size of grains, spatial resolution and quality of

initial map may play a role. In the case of constant grain size,

fixed spatial resolution and negligible spot overlap, a near

linear increase may be expected, as the reconstruction in this

case can be divided into a set of nearly independent smaller

reconstructions. Fortunately, the algorithm can be run in

parallel in several ways, e.g. each layer can be processed

separately, and even within one layer one can simultaneously

restore disjoint ambiguity areas.

Next we comment on some details of the approach. First,

the Gibbs potentials were determined from experimental data

by the so-called ‘heuristic method’ [equation (3)] (Carvalho et

al., 1999). In the work of Liao & Herman (2004) two alter-

native expressions are presented for deriving the potentials by

means of counting. Under idealized conditions, these are

shown to lead to more accurate potentials and ultimately to

superior restorations. We have not investigated the effect of

these alternative expressions here, as we believe that the

inaccuracy in determining the potentials for one sample based

on counting is less than the variation between typical samples.

Second, as for any optimization involving the Metropolis

algorithm, the optimization can be further improved by

decreasing the temperature with time. Such ‘simulated

annealing’ was not attempted here, because of the substantial

overhead in running time and the already good quality of the

reconstructions achieved without annealing.

In outlook, the main application of the Gibbs-prior-based

restoration method may be for a different type of 3DXRD

study. Recently, it has been shown that the ART algorithm can

also be applied to data obtained by illuminating the full

sample rather than one layer at a time: 3D-ART (Markussen

et al., 2004). This development is of major interest for in situ

studies as the total data acquisition time is substantially

reduced. However, it was also shown that the number of
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Figure 9
Reconstructed grain maps based on an initial map where the ambiguity
area of Fig. 2 (right) is extended to include all non-black points of that
map. Optimizing with respect to both projections and Gibbs priors,
reconstructions are shown for 0% (left), 50% (middle) and 100% (right)
noise. The numbers of erroneously assigned pixels are 120, 586 and 5482
pixels, respectively.



diffraction spots per grain needed for a good reconstruction in

3D-ART is twice the number needed for 2D-ART. This

requirement is likely to be an issue, even when applying

detectors with a geometry optimized for 3DXRD. Fortunately,

the generalization of the Gibbs-prior method to three

dimensions is straightforward. The main difference is that the

local configurations will change to dimensions of 3 � 3 � 3.

The running time of the two-dimensional and three-dimen-

sional versions of the restoration algorithm may even scale

linearly; this at least was observed during analogous studies in

other fields (Liao & Herman, 2005)

Finally, we suggest that the Gibbs priors could be of rele-

vance for conventional absorption contrast tomography in

cases where the number of projections is limited, e.g. due to

radiation concerns or the wish to increase time resolution. In

that respect the methodology introduced above represents a

generalization from a two-phase (binary) to multi-phase

systems.

5. Conclusion

A novel stochastic method for reconstruction of tomographic

images of two-phase systems has been extended for use with

diffraction and multi-valued systems. It is applied to the

restoration of two-dimensional grain maps obtained by

3DXRD. The simulation results clearly demonstrate (a) the

superior performance of the stochastic restoration algorithm

(with or without priors) in comparison with reconstructions

based on patching individual grains generated by 2D-ART

together into a map; (b) the superior quality of the restored

maps obtained when including Gibbs priors over reconstruc-

tions using only projection data, in particular for the experi-

mentally relevant cases of a medium noise level and a low

number of available spots per grain.

The qualities of reconstructions based on the same

diffraction data but different sets of Gibbs potentials, as

derived from typical microstructures, were shown to be very

similar.
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