
Machine intelligence for
adaptable closed loop and open

loop production engineering
systems

Johannes Günther





Technische Universität München
Lehrstuhl für Datenverarbeitung

Machine intelligence for adaptable closed loop and
open loop production engineering systems

Johannes Günther

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. rer. nat. Oliver Hayden 

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Klaus Diepold

2. Prof. Patrick M. Pilarski, Ph.D., University of Alberta

Die Dissertation wurde am 20.09.2017 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 22.01.2018
angenommen.



Johannes Günther. Machine intelligence for adaptable closed loop and open loop produc-
tion engineering systems. Dissertation, Technische Universität München, Munich, Ger-
many, 2018.

c© 2018 Johannes Günther

Institute for Data Processing, Technische Universität München, 80290 München, Germany,
http://www.ldv.ei.tum.de.

This work is licenced under the Creative Commons Attribution 3.0 Germany License. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/de/ or send
a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California
94105, USA.

http://www.ldv.ei.tum.de


Acknowledgements

I would like to thank my supervisor Professor Diepold for giving me the amazing opportunity
to perform research on my own. Especially as I am not an electrical engineer by training,
he demonstrated trust in me and my abilities to learn, when deciding to let me work under
his guidance.

I also want to thank Professor Richard Sutton and especially Professor Patrick Pilarski
from the University of Edmonton. Not only did they invite me to visit for several months, but
they provided invaluable help and enabled me to develop my own ideas within the field of
applied reinforcement learning. Furthermore I want to thank Nadia Ady from the University
of Alberta for proofreading and providing uncountable suggestions.

And last, but by no means least, I would like to thank my family for their never ending
support, my friends for always having an open ear for all my problems during this time and
my dog for distracting me from my work, whenever I needed it most.

3





Abstract

This thesis investigates the application of machine learning algorithms for industrial pro-
duction engineering processes. There exist a wide range of applications, where traditional
closed loop control approaches fail. In the setting of a closed loop control process, the con-
trollers are usually strongly dependent on an a priori model and therefore cannot adapt to
varying conditions and changing system dynamics. This might result in a poor control per-
formance and a non sufficient disturbance rejection. There furthermore exist processes,
where a closed loop control approach is not applicable at all, due to missing feedback. This
is often the case for complex systems, where the process quality cannot be measured ap-
propriately. This work will introduce new approaches addressing both problems.

In the first part, a traditional PID controller is enhanced by a general dynamic neural net-
work to improve the disturbance rejection and control performance. It is evaluated using
four typical control challenges. The control performance is tested with and without noise
and a disturbance is applied. The results for this novel approach are compared to a stan-
dard PID controller and to one state of the art model-based control approach.

The adaptive PID controller proves to be superior to the standard PID controller for all con-
ducted experiments. It furthermore outperforms model-based approaches in 13 out of 16
comparisons. The results indicate this approach to be robust and well suited for problems
with changing dynamics, as the new approach can continue to learn, while running.

The second part takes industrial laser welding as an example of a complex process that
can neither be modeled nor sufficiently observed, resulting in an open loop process. To
overcome this shortcoming, a new intelligent architecture is introduced, combining deep
learning neural networks and general value functions to provide a quality signal. Using this
feedback, closed loop control via an actor-critic reinforcement learner is enabled.

The newly combined architecture demonstrates that a learning approach cannot only pro-
vide a certain degree of invariant perception of the laser welding process but furthermore
can reliably extract a quality signal out of the sensor data. This allows closed loop control.
The appropriate control signals are learned and provided by the actor-critic algorithm.

Together, the two parts in this work demonstrate how modern industrial processes can ben-
efit from the application of machine learning algorithms. As the approaches are generic,
they are not limited to the particular examples but can be applied to a wide range of in-
dustrial processes. Furthermore, the machine learning algorithms introduced in this thesis
can continue to learn and adapt, yielding great potential for autonomous systems.
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1 Introduction

This chapter will explain the motivation of this work by introducing the general research
problem, showing already existing approaches and solutions as well as their limitations.
Furthermore the implications in terms of open questions and possible improvements will
be presented and the structure of this work will be outlined.

1.1 Problem statement

Labour was the first price, the original purchase-money that was paid for all things. It
was not by gold or by silver, but by labour, that all the wealth of the world was originally
purchased.
-Adam Smith, The Wealth of Nations Book I, Chapter 1

When considering the cost of any good, the largest portion will typically be the labour
necessary to create it. During the last centuries, numerous efforts have been made to
reduce the (manual) labour required by production processes. Specialization and automa-
tion during the first industrial revolution not only dramatically increased productivity but at
the same time reduced the price for goods, thus making them available to a broader circle
of customers. The development of production via automation is still ongoing. The intro-
duction of technologies like new powering methods and the capability of running processes
without the need for human supervision were significant breakthroughs for industrial pro-
cesses.

To remove the need for human supervision from automated processes, we need an ap-
proach called closed loop control. In a closed loop system, the system output, in the form
of a feedback signal, is fed back in a loop to improve the control performance; therefore,
these systems are also called feedback systems. The feedback signal is usually provided
by an appropriate sensor, sampling the system output. One of the first sensors to be used
for a closed loop control system was a centrifugal governor [1], a sensor based on the
simple physical relation between angular speed and centrifugal force.

The actual output is compared to the set point, which is the desired output, and the dif-
ference is the control error. As the controller receives this error as input, it has means to
react to the actual system output and provide the correct control signal. Unfortunately, the
output of a system cannot always be measured, due to a lack of sufficient sensors. In this
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1 Introduction

case, an open loop control approach is applied. Here, the controller provides a control sig-
nal to the system, but without feedback it cannot evaluate the effect of the provided signal.
Such production processes necessitate either a very costly setup, requiring huge amounts
of time and manual labour, or a costly quality inspection afterwards—or both.

Even with an adequate feedback signal, a closed loop control approach might not prove
sufficient. If unforeseen disturbances occur or the applied controller fails to account for the
complexity of the system to be controlled, it might still fail to achieve a sufficient control
performance.

An ideal control system would not rely on an a priori model or any assumptions about the
control system, but independently identify the system dynamics, learn them and consis-
tently adapt its understanding of the system dynamics to be controlled. Another important
feature for control systems is the disturbance rejection. This defines the ability to identify
and counter disturbances in the system as they occur. Furthermore, the control system
needs to be able to change its own parametrization to adapt the control output to the re-
quirements of the control system. Such a control approach would ideally neither require
human assistance during the setup process nor during its control performance.

Increasing demand for customization and shorter product life cycles have motivated com-
pletely new approaches for process control, namely data-driven and connected ones. By
combining physical systems with modern computer science, a connected and communi-
cating production environment, called “Industrie 4.0” was introduced. This environment
includes modular programming with the actual hardware in order to easily change produc-
tion processes, based on individual requirements. As the number of connected processes
increases, so does the available data. Collecting and analyzing the data is a first step
towards improving production processes in a data-driven way. Making use of the collected
data is the second step in order to not only learn from processes in the aftermath, but to
use this data to improve processes while they are running. A way to not only monitor, but
learn from data and apply the learned information for improvement is machine learning.
Machine learning algorithms yield great potential to automatizing processes [2]. However,
determining the most beneficial way to apply them is still ongoing research.

This thesis provides suggestions for two different philosophies of applying machine learn-
ing algorithms for industrial production systems to generate flexible and self-learning sys-
tems. Such systems promise to result in further decrease of manual labour and costs.
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1.2 State of the art and limitations of existing approaches

1.2 State of the art and limitations of existing approaches

The following section will provide an overview of traditional control algorithms for both con-
trol approaches, briefly explain their main principles and also highlight their shortcomings.

1.2.1 Closed loop control systems

For simple feedback control tasks, numerous controllers have been invented and applied.
One of the first controllers to be used for closed loop control was the proportional integral
differential controller (PID controller) [3]. For a detailed introduction to PID control, see
Section 2.2.1. A PID controller calculates its control output based on the current error,
the error derivative and the error, integrated over time. Each measure is multiplied with a
constant and then summed up. The constants are chosen based on the system. The PID
controller is one of the most widespread controllers, likely due to its simplicity.

Regrettably, PID controllers are limited when dealing with disturbances or complex sys-
tems. As the PID controller is inherently based on a linear model, it is mostly applicable
to linear systems [3]. Nonlinear systems have to be linearized around the set point. This
procedure results in a susceptibility to disturbances [4]. A big enough disturbance will force
the PID controller out of the range in which the assumption of linearity holds. Outside of
this range, the initially chosen constants are no longer correct for the system’s behaviour.
A way to compensate up to a certain degree for such a disturbance is to increase the gain.
The term “gain” refers to the constant multiplied with the current error in a PID controller,
and to the analogue in other controllers, and so determines the controller’s response to
the current control error. A controller with a high gain will react with a high controller output
in order to quickly reduce the control error. This will push the controller back towards the
linearized range. With a high enough gain, the effects of other parameters will be negli-
gible and the disturbances can be controlled. Unfortunately, a high gain can also result
in overshooting and oscillations, which might lead to instability, thus resulting in a failed
control approach.

To achieve both disturbance rejection and stability, robust control approaches were intro-
duced [5, 6]. There exist a significant number of different approaches for robust control,
such as H∞ controllers [7, 8, 9], model-based controllers [10, 11, 12] or controllers based
on Lyapunov equations [13, 14, 15]. Robust control designs have successfully been ap-
plied to a wide range of control problems, including UAVs [16], wind turbines [17], thermo-
dynamic problems [18], smart grids [19] and electric circuits [20]. Robust control relies on
initial parametrization of the controller based on a priori models. Because of this depen-
dency on a priori models and failure to adapt to operational conditions, robust control is still
susceptible to significant changes in the control system and to changing and unforeseen
conditions.
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1 Introduction

An extension of robust control is adaptive control, where the controller tries to adapt to
changing conditions [21]. Adaptive control can be categorized into four different classes
[22].

The first approach to adaptive control is gain scheduling. Here, an auxiliary variable is
introduced that is highly correlated with changes in the system dynamics. The controller
gain is then adapted based on the auxiliary variable. Gain scheduling is very popular in
practice and has been applied to a variety of different problems [23, 24, 25]. However,
the performance of gain scheduling is mainly dependent on the correlation of the auxiliary
variable with the process. As this dependency has no feedback loop, it is structured in an
open loop. If the system dynamics change, the correlation of the auxiliary variable with the
process might decrease, resulting in inappropriate gain scheduling [22].

The second type of adaptive control is based on reference models. Model-based adaptive
control can be implemented using either a series high-gain scheme or a parallel scheme
[22]. The series high-gain scheme was originally introduced for applications in flight con-
trol. Like the simple high-gain scheme described above, the series high-gain scheme for
model-based adaptive control uses high gain to rapidly achieve a desired set-point. The
utilized reference model is designed to provide the desired output, i.e. the set-point, in
response to an input. Due to the high gain, the system is forced to follow the reference
model’s output [26, 27, 28, 29]. This type of control does not account for circumstances
unforeseen by the designer of the reference model. Ideally, the gain is set as high as
possible, but decreased whenever instability is sensed. Although being quite intuitive, this
scheme has the drawback of consistent oscillations. Furthermore, the system becomes
unstable when the reference inputs enter saturation, due to no longer being able to sense
the increasing oscillations [22].

In the second model-based approach, the adaptive controller is organized in a parallel
scheme. Again, the model specifies the desired system output. The typical scheme con-
sists of two loops, where the inner loop resembles a classical closed loop setting and the
outer loop adjusts the controller parameters. The outer loop tries to adjust the parameters
in a way that the system output matches the model output. Early parallel adaptive control
schemes were lacking stability proofs that could only be provided by applying Lyapunov
theory as of 1966 [30]. Parallel model-based adaptive control schemes have been suc-
cessfully applied to different control tasks, including robotics [31], traffic [32] and aircraft
[33]. The adaptive control approaches introduced so far follow a direct approach in the
sense that they directly update the controller parameters based on the system behaviour.

The third method for adaptive control uses self-tuning regulator algorithms. Self-tuning
regulators have two sets of parameters, one for the controller and one for the system. The
system parameters are initialized based on a control design for a known system that is
similar to the system at hand. As these parameters might not be correct, they are refined
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by a procedure known as a recursive system identification algorithm. The estimated sys-
tem parameters, which are assumed to be true, are then used to compute the controller
parameters. This procedure follows the certainty equivalence principle [22]. The process
of system identification and parameter computation is ongoing. Self-tuning regulators were
originally introduced by Kalman [34]. The scheme consists of two loops, one for the con-
trol and one for the system identification. This setup is very flexible in terms of the utilized
algorithms, as the specific controller and the system identification can be performed by
any given capable algorithm. However, the control will eventually only perform as well as
the system identification. Additionally, the stability and convergence analysis turns out to
be nontrivial due to the usually nonlinear transformation from the system identification to
the controller parameters. Self-tuning adaptive algorithms have been successfully applied
to numerous problems [35, 36, 37]. In contrast to the direct adaptive control approaches,
where the the controller followed the provided model, here the adaption is done indirectly
by first identifying the system and then adapting the controller. System identification and
control are therefore separated.

The three previously introduced approaches were based on heuristics. While those heuris-
tic approaches do perform well, they are usually mainly dependent on the provided model.
The last class of adaptive controllers are stochastic control approaches. A stochastic ap-
proach could be seen as a unified adaptive learning framework, as it includes the indirect
adaptive control approach using system identification with the direct, where the controller
parameters are directly updated based on the systems output [22].

In stochastic adaptive control, the system is represented by a stochastic model. This
stochastic model uses a state estimator, which learns a mapping from controller output
and system output to appropriate controller parameters. The performance of the stochastic
model is measured against an optimization criterion and improved based on a loss func-
tion. Depending on the optimization approach, the typical exploration-exploitation dilemma
[38] can occur: While the controller does need to experience new outputs in order to learn
about them, the control performance will usually drop, as exploration might mean to deviate
from the set point. If the controller only tries to achieve the best possible control perfor-
mance, based on its current information about the system, it might not learn enough about
the control problem at hand. Additionally, the convergence and stability for this method
cannot be formulated in general [39, 40, 41], as they depend on the choice of stochastic
approach. These limitations lead to the field of stochastic adaptive control not being as
well investigated as the other adaptive control approaches.

With the exception of stochastic adaptive control, a general drawback of adaptive control is
the need for an a priori model. The performance of any of these adaptive control approach
is limited by the applicability of the employed model, limiting the ability to learning and
adapting to completely new and unforeseen changes in the process. Traditional adaptive
control is therefore only usable within a narrow range, where the disturbances are limited
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and the general system dynamics do not change significantly. Successfully applied control
approaches like Backstepping, LQ-regulators or Smith predictors suffer from these prob-
lems and are prone to these difficulties [42].

The effect of unexpected influences and changing or uncertain systems on the process
is in fact a big challenge in control theory and by far not solved for the possible variety
of possible disturbances. Instead of attempting to create a complex a priori model that
includes all possible disturbances and system dynamic changes, this work follows the idea
of data-driven learning. By applying modern machine learning algorithms it should be pos-
sible to learn and react purely based on sensory data and therefore without the assistance
of human beings, both for controller design and operation. Using machine learning in such
a data-driven way to consistently learn and update the implicit model for the system dy-
namics is closely related to the approach of stochastic adaptive control. If successfully
applied to different control tasks, a machine learning based autonomous adaptive control
approach can be seen as a further unified version of the previously introduced stochastic
adaptive control approach. The ability for a controller to consistently improve its own per-
formance would be an important stepping stone towards self-learning and self-improving
processes that might help to fulfill modern production requirements [43].

Introducing such new controllers into production systems to replace controllers that are
already in-place is expensive. To apply model-based controllers, the system has to be
analyzed to find a model for the controller and the new control approach has to be
implemented—either in software or in hardware. Another option is to modify the already
in-place controllers to extend their capabilities. Machine learning can be used in a closed
loop setting in a very intuitive way. It can be integrated into the already in-place controller
with minimal effort and only be provided with the measurements that were already used
for the controller so far. This approach has the advantage of being applicable with only
minimal changes to the set up. It can therefore be used in almost every production sys-
tem where the special capabilities of machine learning promise a benefit. Such a machine
learning extended control approach can be realized using microcontrollers or other small
and inexpensive computational units, minimizing the cost.

In this thesis, an approach to extend existing systems and hardware by machine learning
is shown by using general dynamic neural networks for online PID tuning. Neural networks
are a type machine learning algorithms and they will be introduced in detail in Section 2.4.
Even without changing the general setup, by integrating a general dynamic neural network
into the regular PID control framework, the PID controller parameters can constantly be
tuned, ensuring an ideal parametrization at all time.

Neural networks have already been introduced to PID parameter tuning in three different
ways. The different approaches mainly vary in the specific type of neural network to be
included into the closed loop control approach.
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The very first approach to include neural networks into a closed loop control setting was
utilized simple feed-forward neural networks [44, 45, 46]. Such neural networks are deter-
ministic after training such that the same input will always result in the same output. While
they can learn highly nonlinear mappings from input to output and represent any possible
function, they are not well suited for time varying problems due to their insensitivity towards
temporal structure.

To provide such a temporal sensitivity, external dynamics have been included into the neu-
ral network PID tuning approach. Additional information about the system’s previous states
and outputs is externally stored and provided to the neural network via additional inputs.
As expected, the performance for parameter tuning is improved by the addition of temporal
information [47], but it comes at a price, but comes at a price. The additional inputs enlarge
the neural network, making it not only more expensive to compute, but they also increase
the requirements for memory. Furthermore, bigger neural networks tend to get stuck in
local minima, rather than converging to the global minimum, resulting in a diminished per-
formance [48].

To keep the neural networks as small as possible but still make use of temporal informa-
tion, neural networks where temporal information can be stored within the neural network
were evaluated for their performance on PID parameter tuning. In a first step, recurrent
neural networks were utilized. The term “recurrent neural networks” comes from the recur-
rent connections of specific neurons, i.e. the neuron passes its output to itself for the next
temporal step. This way, previous inputs are stored within the neural network and influ-
ence the mapping of current inputs. These recurrent neural networks have demonstrated
a superior performance for linear [49] and coupled linear benchmark systems [50]. They
also show the capability to reject small disturbances significantly better than standard PID
controllers [49, 51]. To successfully control single-input single-output nonlinear systems,
diagonal [52] and quasi diagonal recurrent neural networks have been used [53]. However,
all these approaches introduce strong restrictions onto the structure of the neural networks.
They were specifically designed for the given control by hand, resulting in significant man-
ual labour during the design process. Furthermore, all neural network based PID tuners
were only applied to specific control tasks that do not resemble the full spectrum of control
challenges. Eventually. all the proposed papers do only evaluate the performance of the
PID tuning approach via neural networks in a qualitative way, not using typical numerical
measure.

1.2.2 Open loop control systems

In the previous section, only closed loop systems were considered. Open loop control
problems require very different control approaches. While some open loop control prob-
lems can be run without feedback, more complex systems require feedback but have out-
put that can only be described by multimodal and multidimensional sensor signals. Such
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signals cannot feasibly be used as direct input to a controller, but motivate data-driven
approaches for control. In this thesis, an industrial laser welding setting is investigated as
a representative system of this type. Laser welding is introduced in more detail in Sec-
tion 2.1. Numerous techniques have been introduced, for laser welding specifically, to
fuse sensor signals and compress information into lower dimensions and extract important
underlying structures, e.g. principal component analysis (PCA) [54], linear discriminant
analysis (LDA) [55] or ISOMAP [56]. However, most of these techniques have problems
dealing with variance within the original data, rendering them almost useless for processes
where variance might be introduced due to environmental disturbances or changes in the
sensor setup.

The inability to evaluate the current process quality at any time is another huge constraint
when open loop control is applied. There are several approaches to address this issue for
laser welding, e.g., a priori models [57], envelope curves [58, 59] or look-up tables [60].
However these techniques are restricted either in applicability (a priori models), accuracy
(envelope curves) or scalability (look-up tables). A way to overcome those problems is to
use machine-made predictions about the processes, but most of these approaches are
dominated by linear models, which often fail to account for the complexity of nonlinear and
time-varying problems [61]. These techniques are also limited in their ability to adapt to
changing process parameters or are not even capable of adapting at all.

To develop techniques which adapt over time and are furthermore not necessarily limited
to a priori models, machine learning can be used to learn from the available sensor data. In
a first machine learning approach for laser welding, a principal component analysis (PCA)
and a support vector machine (SVM) were combined [62]. While the combination of these
two algorithms is able to adjust the laser power for a process with a changing laser welding
velocity, it is only valid for a defined setup. Such a closely controlled setup is not reason-
able in a real production environment. With even small deviations in the sensor setup, the
representation provided by the PCA is rendered useless. Furthermore, a human expert is
needed every time the process is set up to train and evaluate the PCA and SVM.

1.3 Formulation of the research problem

Classical model-based control approaches cannot sufficiently solve the problems created
by increasingly complex systems and new demands for flexible and adaptive processes.
As a result, new ways to deal with these problems have to be found. A promising approach
is data-driven closed loop control. This thesis will evaluate two different methods to apply
data-driven closed loop control to solve the upcoming questions. The first method is to
evaluate the extension of already in-place closed loop controllers by machine learning to
answer the following questions:

• Can a data-driven machine learning approach, based on general dynamic neural
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networks, be applied to create a unified stochastic approach for adaptive control for
PID control?

• How well does this novel approach perform in terms of convergence and disturbance
rejection, when compared to standard PID controllers and state of the art adaptive
control algorithms?

More complex systems might result in a problem, where the systems output in terms of
process quality is not easily measurable. In such a setting, a closed loop control approach
is not naturally applicable, but still desirable. Industrial laser welding is such a process and
will be employed as a use case. For this open loop control problem a second machine
learning approach is utilized to answer the following questions:

• Can a combination of machine learning algorithms be applied in a way to enable
a closed loop control approach for industrial laser welding, as a representative for
complex industrial production processes without appropriate feedback signals?

• How can different machine learning algorithms be combined in a useful way to solve
complex problems and which algorithms serve this architecture?

• How can we use machine learning to solve control problems without feedback sig-
nals?

If all these questions can be answered in a positively way, the answers can lead to an
extension of existing control tasks. Additionally, they open the possibility of applying closed
loop control to production processes that so far have to be run in an open loop setting,
consequently of requiring extensive manual labour to evaluate the processes’ performance
afterwards.

1.4 Contributions

This thesis motivates and answers the formulated research questions.

I define the requirements for industrial process control to enable learning and adapta-
tion during production. For closed loop control systems, I describe the most common
controllers, like PID control, robust control and adaptive control. All of these control ap-
proaches are evaluated on whether they meet the requirements and their shortcomings
are explained in relation to the required properties. I then proceed to introduce existing
neural network based PID control approaches. To improve these existing approaches and
evaluate them properly, I introduce a stochastic adaptive control approach, based on neu-
ral networks with arbitrary connections and delays.

To evaluate the new suggested control approach, I take an empirical approach using four
different simulated test systems chosen as representative of the most common challenges
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in control theory. I implement a standard PID controller and, for each test system, one state
of the art controller from either the family of adaptive control or the family of predictive con-
trol. The performance of these controllers is compared with the new approach through
evaluation in the different test systems, including simulations with noise and disturbances,
and compared to the state of the art algorithms.

For the open loop control systems, I use an industrial laser welding system as a suitable
representative embodying the most typical challenges. I introduce the common open loop
industrial procedures and a new machine learning based closed loop approach and explain
their shortcomings, compared to the formulated required capabilities of a suiting controller.

To enable a machine learning based closed loop control approach for laser welding, I col-
lect a sufficient laser welding data set in the laboratory, that consists of 100 individual
laser welds. I then created a novel architecture that employs machine learning algorithms
from the fields of deep learning and reinforcement learning to resemble basic human ca-
pabilities. This architecture perceives the laser welding process and extracts information
about the current laser welding quality, allowing a closed loop control approach. For all
used machine learning algorithms, an extensive parameter search is conducted and their
final performances is evaluated, using the typical machine learning error measurements,
e.g. F-scores. To evaluate a reinforcement learning based control algorithm, I program a
laser welding simulator, including suggestions and feedback from industrial laser welding
experts. The control algorithm proved to be able to successfully find the correct solution
and achieve a steady laser welding depth, thus closing the loop for an automated laser
welding system.

1.5 Scientific approach and structure of this work

Together, the information in the following chapter will provide the basic knowledge to follow
the later introduced ideas on applied machine learning for production processes. The fol-
lowing chapter will provide a comprehensive introduction to the industrial process of laser
welding, as this process will be considered as an example of a complex and hard to control
industrial open loop control system. In addition, the idea of closed loop control in general
and PID control in particular will be provided, followed by the introduction of the applied
machine learning algorithms.

In the third chapter, the classic case of closed loop control via PID controller will be consid-
ered and enhanced. The general setting will be a control task where the system’s output
can easily be observed via sensors and therefore a closed loop PID control can be ap-
plied. Within this thesis, PID controllers will be extended by a general dynamic neural
network that has access to the PID parameters in order to adjust them while the control
process is running. All four different evaluation systems, namely the non-linear two-tank
system, the inverted pendulum on a cart, the system with a non-neglectable time delay
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and the chaotic fluid system, will be implemented, using their respective differential equa-
tions. Each system will be implemented with and without noise and the algorithms will
be tested for robustness, using disturbances that typically can occur in each system. To
ensure independence from pseudo random numbers, all results will be averaged over 30
independent runs.

The fourth chapter will address the challenge of complex systems, whose system output is
not measurable in terms of quality and therefore does not allow closed loop control without
further effort. The laser welding process will be used as an example and real laser welding
data from different laboratories will be investigated. Different machine learning algorithms
will be implemented and applied to the data to generate an artificial systems output which
can then be used in a closed loop way. The suggested combination of algorithms follows
an architecture that combines them in a way to resemble an intelligence inspired way of
processing information in three steps—representation, prediction and control. Each step
will be individually explained in detail and also evaluated. For the representation, two differ-
ent deep learning approaches will be introduced and compared. The prediction algorithm
will be tested, using a leave one out cross-validation to evaluate its performance. Lastly
the control algorithm will be evaluated, using an appropriate laser welding simulator.

The fifth chapter will critically discuss the results and the thesis will be concluded in the
following sixth chapter.
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This chapter introduces the industrial process of laser welding, which will serve as a use
case. The general setup and the specific challenges that arise from laser welding will
be explained, as well as the sensor setting used in the experiments. Furthermore, the
foundations of control theory in general and the PID controller in special will be introduced.
As this work suggests the application of machine learning algorithms for control problems,
machine learning algorithms that will be used in this thesis are explained in this chapter in
general and the applied algorithms in more detail. This will include neural networks and
reinforcement learning.

2.1 Laser welding

Joining technologies are among the most important manufacturing techniques in industry.
Among various joining techniques, laser welding combines the highest precision with a
fast joining speed [63]. An example of a laser welding configuration can be seen in Figure
2.1. The laser is fed through a fiberglass cable, passes the collimation lens and is focused
on the welding area by the focus lens. Where the laser hits the workpiece, the material is
heated until it vaporizes. As the vaporizing metal expands, a tunnel or the so called “key-
hole”, is created. This keyhole remains open for as long as the process is running. Laser
welding achieves its unique precision through a very small heat-inflicted zone around the
keyhole.

The advantages of this particular joining technique are paid for with certain limitations and
problems. The process is too complex and noisy to be accurately modeled by a mathemat-
ical model and therefore not controllable by any model-based control approach [64]. The
current best solution is to closely and consistently monitor the process [65]. A successful
approach for closed loop control has not been established, at this point.

In Figure 2.2, the main problem that arises for control purposes is illustrated. Shown are
top views and cross-sections for an overlap welding configuration, which means the two
workpieces to be combined are lying on top of each other. The figure shows an ideal weld
on the left side and a completely insufficient weld on the right. From the top view it is
hard to differentiate the qualities—only the cross-section reveals the true weld quality. The
two metal plates are not connected at all. However, humans, even when seeing only the
top view, can use the smoothness of the welding seam to distinguish the difference. This
assessment is not trivial for an automated control approach and cannot be done, so far.
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Figure 2.1: Example laser welding setup with a butt joint configuration. Courtesy of Stefan Müller-
Meerkatz.

This is one example of the difficulties arising when the laser welding process is only con-
trolled and observed by a camera system. Recent work has shown a cognitive approach
that performs well for a defined and pretrained workpiece in a lab environment [66]. In
real production systems these preconditions can not be fulfilled. Besides changing envi-
ronmental conditions, like variations in temperature, humidity or the welding gas quality,
there might also be variations in the workpiece itself. These contain, but are not limited to,
changes in the chemical composition, the thickness of the workpiece and contamination of
the surface [67].

A very common process monitoring setting—which was also used for the experiments de-
scribed in Chapter 4—is to observe the process using a camera-based system in combina-
tion with photodiodes [68]. While the camera provides important geometrical information
about the size and shape of the keyhole [69] and its surrounding heat affected area [70],
the photodiodes monitor the process at different wavelengths in order to provide informa-
tion about the process temperature (1100–1800nm), the plasma radiation (400–600nm)
and the laser back reflection (1050–1080nm). A typical frequency with which the keyhole
oscillates is around 500Hz [71] and therefore all sensors have to sample with at least twice
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this frequency. In the monitoring devices at hand, the camera samples with a frequency
of 1500Hz and a resolution of 144 × 176 pixels, while the photodiodes sample with up to
40kHz.

Usually, the control of the robot arm that moves the laser and the control for the laser itself
are separated. For a potential control algorithm to be inexpensively applied to such an
existing setup, it is natural for the control algorithm to only influence the system through
changes to the laser power.

Figure 2.2: Laser welds and corresponding cross-sections for zinc-coated steel in overlap position.
[72]

2.2 Control theory

Control theory, in its widest definition, deals with the behavior of dynamic systems, de-
pendent on their inputs. It can be divided into two main approaches—open loop control
and closed loop control. In an open loop control setting, the controller receives a set point
signal and calculates and passes its input into the system (plant) in order to trigger a cer-
tain system output. The main problem with open loop control is that for this approach to
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work well, the system has to behave exactly as the controller anticipates. Any unforeseen
system behaviour or external influences will lead to the control approach failing. As this
assumption does not hold for most control problems, especially in the manufacturing do-
main, the system’s output is usually used in a closed loop form, shown in Figure 2.3. By
subtracting the system’s output z from the set point z∗, the control error e is calculated and
fed back into the controller. As this setup allows the controller to react to the actual system
output, a closed loop control usually leads to better disturbance rejection, stabilization of
unstable processes, improved tracking of the set point and less sensitivity to parameter
variations. A more detailed introduction into control theory can be found in [73, 74, 75].

The most simple form of control problems are linear and time-invariant systems. When
deciding upon a controller for such a problem or on the parametrization of the controller,
either the knowledge of the systems transfer function or a state-space representation is
required. The very basic idea is to create a mapping of the form

z = T (z∗), (2.1)

where z is the system’s output, z∗ is the input and T is the transfer function. Using this
approach, the complete system can be checked for observability and controllability. While
observability describes whether each internal state can be observed through the system
output, controllability further indicates whether it is possible to force the system into each
possible internal state via the input signal. If a system is completely observable and com-
pletely controllable it is a minimal or stable system [76].

-

Plantz∗ z
e

Controller
u

Figure 2.3: Closed loop control setting with a negative feedback loop.

2.2.1 PID control

The Proportional-Integral-Derivative controller (PID controller) is one of the most basic and
most widely used controllers. There are over 75 patents on PID tuning in the world and
more than 45 commercial PID software packages [3]. The idea of not only using the current
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control error but also its derivative and past control error comes from observing helmsmen
trying to keep ships on course [77]. This control approach can be mathematically explained
by the equation

u(t) = KPe(t) + KI

∫ t

0
e(τ )dτ + KD

d
dt

e(t), (2.2)

where u(t) is the output of the controller, e(t) is the control error and KP , KD and KI are
the constants for the proportional, differential and integral parts, while τ is the variable for
the integration. A graphical interpretation of this dependency in the Laplace domain is de-
picted in Figure 2.4. The different constants can be seen as different filters to reduce the
steady-state error. The proportional term serves as an all-pass, while the integral term and
the differential term compensate for low frequencies and high frequencies, respectively [3].
Choosing these three parameters is referred to as tuning the controller. There are differ-
ent measurements to evaluate the controller performance, namely: rise time, overshoot,
settling time, steady-state error and stability. Each measurement is differently influenced
by changing the parameters, so finding the best combination is the most important task
when implementing PID controllers. An extensive introduction on PID control system anal-
ysis can be found in [3]. As the PID controller has only three variables, its performance
for complex systems is limited. Especially for nonlinear problems, there does not exist a
single set of parameters that suffice to cover the control needs for every possible state.

-
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Figure 2.4: A closed loop control setting, using a PID controller.

2.2.2 Parametrization of PID controllers

Tuning a PID controller can be a challenging task, depending on the system. The fact
that the three parameters have different effects on the typical performance measures can
make tuning especially difficult. While increasing the parameter KP will lead to a decrease
in the rise time, it will also result in an increased overshoot. Decreasing KI results in an
increasing overshoot but decreases the settling time. All three parameters must be tuned
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correctly at the same time to achieve a good performance. As already mentioned, there
exist numerous approaches for PID parameter tuning and an extensive overview can be
found in [78, 79] and [80]. In this thesis, two classic approaches were mainly used for PID
parameter tuning and will briefly be explained in the following paragraphs. Both are offline
approaches, meaning that the PID parameters are found first and then applied without
changing during the test performance.

Ziegler-Nichols: The Ziegler-Nichols tuning approach [81] was introduced in 1942 and
is considered one of the most familiar and easiest tuning approaches in practice [3]. This
procedure is based on a heuristic procedure. The KP parameter is consecutively increased
until the system is in consistent and stable oscillation. This state is described by the ulti-
mate gain KU and the period TU . Now, the three PID parameters are set to KP = 0.6KU ,
KI = 0.5TU and KD = 0.12TU . This parametrization is mainly used for disturbance control,
as it creates a quarter wave decay, meaning a reduction of 1

4 for the amplitude within one
oscillation period. It has to be noted that these parameters usually result in an aggressive
gain due to the high KP value, causing a significant overshoot that might lead to instability,
which is one of the drawbacks of this tuning approach.

Genetic Algorithms: Genetic algorithms [82] are another example of a heuristic ap-
proach that has successfully been applied to PID tuning [83, 84]. There are three main
ideas that are combined to form a genetic algorithm: selection, crossover and mutation.
Genetic algorithms are supposed to mimic evolutionary processes in order to find a so-
lution. For applying a genetic algorithm, the problem is usually stated in binary. In the
case of PID parameter tuning, the PID parameters are converted into binary code. For
example, the double standard parameter KP = 3.65 would be translated into the binary
0100000000001101001100110011001100110011001100110011001100110011. Each
individual 0 or 1 is called a gene, while the whole sequence is called a chromosome. To
start the genetic algorithm, random chromosomes are initialized and represent the whole
population. For each member of the population, the fitness is evaluated, according to
a fitness function. This function has to be chosen based on the problem at hand. To
parametrize a PID controller, the fitness function can be a weighted combination of the
typical performance measures, i.e. rise time, overshoot, settling time, steady-state error
and stability. A member with higher fitness will be more likely to be chosen for the selection
process. The selection is performed, using the roulette wheel approach [85]. The chosen
parents are now combined in the crossover: The chromosome of each parents is split at
a random point and the two are exchanged, resulting in two offspring that combine the
characteristics of both parents. An example would be the two offspring 00011 and 11100
as a result of the crossover of the two parents 00000 and 11111. In a last step, with a
very small probability, a random gene is mutated. After the three steps are performed, a
new generation is now available for evaluation. This procedure is repeated until a certain
performance threshold is met.
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Algorithm 1 Pseudo code for Genetic Algorithm
1: initialize: random population at time t
2: determine: fitness for population at time t
3: repeat: until best individual is good enough:
4: select: parents from population at time t
5: perform: crossover on parents, creating population at time t+1
6: perform: mutation on population at time t+1
7: determine: fitness for population at time t+1

Table 2.1: Genetic algorithm for finding PID parameters.

2.3 Machine learning

Machine learning refers to a subfield of computer science that enables machines to learn.
For a huge variety of problems, computers can be used in an efficient way to solve them.
They are usually empowered to complete these tasks by being programmed. However,
some tasks are not easy to be programmed. This might be because they cannot be well
defined, because they involve a relationship that is hidden in a huge amount of data, or be-
cause they have changing characteristics and unforeseen environmental conditions. Ma-
chine learning can help with these sorts of tasks by finding hidden structure and patterns
within the data or construct useful approximations for the problem at hand. For example,
while sorting numbers can easily be programmed as an algorithm, the task of identify-
ing spam emails is not that easy [86]. Still, the latter task can be formulated in a typical
algorithmic formulation: The input is the questionable email, while the output is the clas-
sification as spam or non-spam. It is unreasonable to write an algorithm that can identify
each possible spam email, but, given the amount of available data, it is better to learn
the solution to this task from data. As the machine has the ability to change its inherent
model of the problem, this data-driven approach is called machine learning. The machine
learning algorithm takes examples for spam and non-spam emails and will create its own
rules for handling the problem. These rules might not necessarily be easily understood
by humans, depending on the employed machine learning algorithm. Machine learning
approaches have recently become more and more applicable to real-world problems due
to advances in computer technology. Larger storage capabilities enable us to store more
data, and at the same time, that data can be accessed worldwide by networks with in-
creasing bandwidth.

A very wide definition for machine learning is given by [87]: “A computer program is said to
learn from experience E with respect to some class of tasks T and performance measure
P if its performance at tasks in T, as measured by P, improves with experience E.” This def-
inition already indicates that an individual machine learning algorithm only performs well
for an individual task, which is known as the no free lunch theorem [88]. Each individual
task requires its own machine learning algorithm with a period of learning from samples
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in order to perform well on unknown samples from the same problem. Therefore, to solve
complex problems in a semi-intelligent way, it might be necessary to combine different ma-
chine learning algorithms.

Machine learning approaches have in common that they do not rely on a human provided
model to learn and perform. These techniques are purely data-driven and can therefore be
applied to every problem that provides a sufficient amount of training data. Machine learn-
ing algorithms prove to be especially successful for tasks that humans consider mentally
difficult but can be described by mathematical rules, like chess [89] or Go [90]. It is only re-
cently that more intuitive problems like face and image recognition have successfully been
solved by machine learning algorithms with human-like performance or even with better
performance [91, 92].

To be useful, machine learning algorithms have to be able to extract important information
from the provided data and learn to generalize from them. This means that the algorithm
should perform well on new, previously unseen data. In a typical setting, the data is pro-
vided as a data set. This data set is used to train the machine learning algorithm and is
therefore called training set. The training itself is performed by adapting the parameters of
the algorithm to minimize the error between the training set and the algorithms output. The
result is a performance measure, called the training error. This measure, however, does
not give information about the ability to generalize. To evaluate the algorithm’s generaliza-
tion capacity, it needs to perform well on unseen samples. Therefore, new data from a so
called test set is used to calculate another performance measure, the test set error. Even-
tually, the algorithm’s training and test set error should be small. If the algorithm’s training
error remains big, the algorithm is underfitting the data. Its capacity is not big enough to
contain all relevant information to learn the problem. If the training error is small, but the
test error is big, the algorithm is overfitting. It is too specialized on the training data and is
no longer able to generalize [93].

Splitting the limited amount of available data unfortunately leads to another problem. As
machine learning algorithms rely on data to learn their models, they perform better the
more data they can sample. The more data is moved from the training set to the test set,
the worse the algorithms performance will become. In addition, this approach is highly
susceptible to variance as the training and test error strongly depend on the data, which
is assigned to the test set and the training set. In the worst case, an important phenom-
ena might only be included, either in the training set or in the test set, resulting in a poor
performance. To avoid this dilemma, cross validation is applied. Here, the data is divided
into training and test samples repeatedly and the average over all training-test splits is
calculated. Figure 2.5 demonstrates a leave one out cross validation for a data set with
K samples. In each run, only one sample is moved into the test set and the remaining
samples form the training set. Therefore, each sample in the whole data set will be tested
during the cross validation. This approach makes the best use of the data. After the best
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Figure 2.5: Leave one out cross validation procedure.

model is evaluated by using cross validation, the model can be learned on all available
data and then be applied to new data.

Machine learning has close relations to some fields of traditional math and engineering.
Numerous methods of machine learning use statistical approaches and measures for an-
alyzing data. Another source of inspiration for machine learning are biological systems.
The functioning of neural networks is closely related and inspired by neurons in the human
brain [94], while the mechanism of reinforcement learning have been shown to resemble
the function of dopamine [95]. Lastly, a natural application for machine learning is adaptive
control theory, as control processes inherent a certain degree of uncertainty and are prone
to changing conditions and dynamics.

Machine learning algorithms can be classified into two major classes, called unsupervised
learning and supervised learning. The distinction is made, based on the provided feedback
signal. In supervised learning the data is traditionally available as labeled data and expert
knowledge is available. In unsupervised learning the data is usually not labeled.

2.3.1 Supervised learning

Supervised learning is defined by a machine learning class, where a feedback signal is
provided, and is primarily a case of learning from labeled examples. The general task for
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a supervised algorithm is to find a mapping, following the equation

y = f (x , w), (2.3)

where x is the input, w are the model parameters and y is the output. One of the most
common problems for supervised learning is the classification task [96, 97, 98]. Following
the notation of Equation 2.3, x would be the data to be assigned to a class and y the class
to be assigned to. For the algorithm to learn the mapping, i.e. adjusting the parameters,
it has to be provided with a labeled data set. This set consists of labeled samples, where
the true class is known for each input sample. Eventually, the learned mapping function
f (x , w) should be usable as a reliable classifier for new input samples.

To evaluate the performance of the algorithm as a classifier a second labeled data set,
the test set, is used. The inputs of this second data set are fed into the classifier and the
classification rate, i.e. the percentage of correct classified samples, is measured. This
gives information about how well the algorithm learned the classification task.

Supervised machine learning algorithms are not limited to classification tasks, however.
Another application for this type of algorithm are prediction tasks, which are also named
regression tasks. For this type of task the algorithm does not try to find the correct class
for a given sample, but rather a correct associated numerical value. The training and test
procedure still remain the same.

Supervised learning algorithms include, but are not limited to, logistic regression ap-
proaches [99], support vector machines [100], neural networks [101] and non-parametric
algorithms, like k-nearest neighbor [102] or decision trees [103]. A detailed overview over
supervised machine learning techniques can be found in [104, 105].

2.3.2 Unsupervised learning

Unsupervised learning refers to a class of machine learning algorithms that learn without a
feedback or supervision signal. As an unsupervised machine learning algorithm still needs
a measure to evaluate its performance, these type of algorithm usually try to maximize
or minimize a value that is contained in the data set itself. This performance measure
strongly depends on the specific application.

A typical task for an unsupervised machine learning algorithm is to find a better represen-
tation for data. The term “better” is hereby strongly dependent on the application. Possible
better representations include low-dimensional representations, sparse representations or
invariant representations or a combination of these attributes. There exist a huge variety
of algorithms to find new representations. It includes simple statistic approaches, like the
PCA [106], sparse approaches [107] or autoencoding neural networks [108, 109].
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Another common task for unsupervised learning is clustering. When using a non-
hierarchical approach like k-means [110] clustering, the data is partitioned into k inde-
pendent clusters. The approach of clustering can be extended to not only find clusters
within the structure of the data, but also generate a hierarchical structure [111]. This
way, the data set can be better understood and visualized as data points that are similar
will be assigned to the same cluster. Clustering can furthermore be used for anomaly
detection. Under the assumption that the majority of the data is normal and the anomalies
are qualitative different from the normal data, it can easily be checked whether a new
sample is an outlier or not.

2.4 Neural networks

The concept of artificial neural networks was introduced in 1958 by Frank Rosenblatt with
his perceptron [94]. A single perceptron can be viewed as the smallest version of an
artificial neural network. It is limited to linear computations. The output of a perceptron can
be calculated as the solution to the equation

y = f
(

w>x + b
)

, (2.4)

where x ∈ Rp are the input signals, w ∈ Rp are the corresponding weights, b ∈ R is a
bias and f is an activation function. If several perceptrons are connected to each other
and ordered in different layers, every differentiable function can be approximated. This
structure is called multilayer perceptron (MLP) and can be seen in Figure 2.6. The mul-
tilayer perceptron is a simple feed-forward neural network that consists of multiple layers
of perceptrons, that are visited once from the input to the output. In the given example,
they are ordered into three layers. The first layer acts as the input layer, the second layer
is a hidden layer, mapping the inputs based on the connection weights and the bias, while
the third layer acts as an output layer. The MLP is capable of representing more complex
functions than a simple perceptron. The most simple form of neural networks are strict
feed-forward networks. Here, each neuron is only connected to the neurons in the previ-
ous and subsequent layer. From equation 2.4 can be seen that the output for a given input
is only dependent on the weights w and biases b. These are called parameters and have
to be learned. The standard learning algorithm for a feed-forward neural network is back-
propagation [112]. In backpropagation, the input is fed into the network and processed
during a forward pass. During the forward pass, each neuron has a certain activity, based
on its corresponding weights and the chosen activation function. At the output layer, the
actual output is compared to the desired output and the error is calculated as the solution
of a loss function. Such a loss function is usually chosen based on the learning problem.
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An example of a loss function is the quadratic loss function given by the equation

L(y , y∗) =
1
2

n∑
i=1

(y∗i − yi )2, (2.5)

where y∗ is the desired network output, y is the network output and n is the number of
samples. The error is then propagated backwards through the network, according to the
activation of each neuron in the forward pass and the weights are adjusted, based on a
gradient descent method. To further improve the learning of neural networks, various tech-
niques have been invented. The training samples are usually provided in form of batches
[113] to speed up the training process and improve convergence. Further improvement
can be achieved by applying a momentum [114, 115]. In order to achieve a better general-
ization and prevent overfitting, for fully connected neural networks a regularization term in
the form of a weight decay is added [116, 117]. For real valued inputs, such as images, the
suggested activation function is the linear rectifier function [118, 98, 119], as it does not
clinch the input, leads to a sparser representation [120] and improves the backpropagation
performance.
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Figure 2.6: A multilayer perceptron with 7 neurons, arranged in 3 layers.
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2.4.1 Autoencoder

An autoencoder is a neural network, arranged in a special way. The most simple autoen-
coder consists of three layers: the input layer, one hidden layer and an output layer. The
number of neurons in the hidden layer is smaller than the number of neurons in the input
layer, forcing the information of the input to be compressed. The output layer will have the
same amount of neurons as the input layer. As input and output are of the same dimen-
sion, they can be compared for an unsupervised learning approach. If input and output
are identical, all information has been kept during the transformation and compression in
the smaller hidden layer, yielding a compact representation. Given a number of p neurons
in the input and output layer and q neurons in the hidden layer, the feature value at the i-th
neuron in the hidden layer can be calculated as solution of the equation

hi (x) := f
(

w>i x + bi

)
, for all i = 1, ... , q, (2.6)

where wi ∈ Rp denotes the weighting coefficients associated with the i-th neuron, and
bi ∈ R is the corresponding bias (offset). After calculating the features in the hidden
layer, the hidden representation will serve as an input for the decoding/output layer. Let us
denote by

h := [h1(x), h2(x), ... , hq(x)]> ∈ Rq (2.7)

the representation vector in the hidden layer. Then, the computation in the output layer is
done as follows

yj (h) := f ′
(

w
′>
j h + b′j

)
, for all j = 1, ... , p, (2.8)

where w ′j ∈ Rq and b′j ∈ R are the parameters associated to the j-th neuron in the
output layer. Let us denote W := [w1, ... , wq ] ∈ Rp×q and W ′ := [w ′1, ... , wp] ∈ Rq×p.
It has to be noted that the activation function f ′ is not required to be the same activation
function as f . If the decoder weights W ′ are tied to the encoder weights W , i.e., W ′ = W>,
the working of an auto-encoder is comparable to the behavior of a Restricted Boltzmann
Machine [108]. The loss function for an autoencoder is slightly different to the loss function
of a regular feed-forward neural network, as encoder and decoder do not necessarily share
the weights, and follows the equation

L(x , y , w , w ′) =
1
2

n∑
i=1

(xi − yi )2 +
λ1

2
‖w‖2

F +
λ2

2
‖w ′‖2

F , (2.9)

where x is the input, y is the output, W and W ′ are the weights, λ is a regularizing term
and ‖ · ‖F is the Frobenius norm of matrices. This loss function minimizes the difference
between the input and the output, that has been computed based on the hidden represen-
tation. It can therefore be seen as a measure for the quality of the hidden representation.

A more extensive introduction on fully connected denoising stacked autoencoders can
be found in [108]. Similar to the development in neural networks for classification, the
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technique of convolutional neural networks have been extended to autoencoding as well
[121, 122].

In this thesis, stacked denoising autoencoders and stacked convolutional autoencoders
will be used and explained in more detail in Section 4.3.

2.4.2 Convolutional neural networks

Convolutional neural networks were firstly applied to computer vision problems. This type
of network performs especially well on data that has a known grid-like structure [93], e.g.
time-series data or images. They are inspired by the receptive fields within the visual sys-
tems of cats [123, 124]. Similar to the visual cortex in these animals, neurons are not
connected to all neurons in the previous and subsequent layers (fully connected), but only
to a small subset of neurons [125]. The two basic ideas for changing the connection be-
tween the neurons in convolutional neural networks are sparse connectivity and weight
sharing and can can be seen in Figure 2.7. On the left side, the sparse connectivity—only
three neurons are connected to a neuron in a subsequent layer— is depicted. This leads to
a dramatic decrease in parameters, speeding up the learning process and eliminating nu-
merous local minima in the optimization process. The right side shows the shared weights,
indicated by connections of the same color. The idea of weight sharing leads to the same
parametrization in terms of weight w and bias b for the similar connections between the
layers. Together, these ideas generate a feature map that identifies patterns through-
out the complete input. Mathematically, this can be expressed as a convolution, giving

Figure 2.7: Concept of sparse connectivity (left) and weight sharing (right).

the name for this type of neural network. The convolutional layers are the first essential
building blocks for convolutional neural networks. While the filters are usually randomly
initialized they are learned autonomously during the training process. When trained on
patches of natural images, these filters tend to become gabor-like [126, 127, 128]. The
influence of different filters on the convolved image can be seen in Table 2.2. The second
essential building block for convolutional neural networks is max pooling, which is depicted
in Figure 2.8. Within a given size, only the pixel with the highest value is passed further
through the neural network. Max pooling has two essential functions: First, it creates an
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invariance to translation, rotation or scaling. Within the range of the max pooling mask,
the pixel with the highest value can change its position, without changing the reaction of
the neural network. It can therefore experience small amounts of translation, rotation or
scaling without any effect for the later representation. Second, by applying max pooling,
the representation of the input is compressed, dependent on the size of the max pooling
mask. This significantly decreases the computational complexity and in addition prevents
the neural network from overfitting. The first convolutional neural network that caught sig-
nificant attention from the computer vision community was the “AlexNet” [98]. Since then,
convolutional neural networks have won all important computer vision challenges and even
demonstrated human like performance or outperformed them for specific tasks [91, 129].
Convolutional architectures can be used in a supervised way for image classification as
well as in an unsupervised way for autoencoders [130].

Figure 2.8: 2× 2 max pooling with a stride of 2.

2.4.3 General dynamic neural networks

Regular feed-forward networks are defined by the property that no neuron can be vis-
ited twice from the input to the output. By this definition, neural networks with shortcuts
and lateral connections [131] still remain feed-forward networks. Simple feed-forward net-
works have proven to learn a sufficient model for most Markov problems. For non-Markov
problems however, taking time into consideration significantly improves the performance
of neural networks. This led to the first neural networks that were not feed-forward net-
works. By feeding the output back into the input layer via a so called ‘context neuron’ a
superior performance was achieved. Additionally the context neurons in the input layer
are recurrently connected to themselves. By introducing recurrent connections within the
neural network, the output is no longer only dependent on the input but also on previous
inputs. The neural network has gained a short-time memory. This type of network has
been named Jordan networks [132]. To avoid an algebraic loop and make this network
computable, the context neurons have delay of 1. Jordan networks are applied to different
problems and proven to be superior to simple feed-forward neural networks for some tasks
[133, 134, 135]. A slightly different configuration that was introduced to specifically deal
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Operation Filter Convolved Image

Identity

0 0 0
0 1 0
0 0 0


Identity

 1 0 −1
0 0 0
−1 0 1


Edge 1

Edge detection

0 1 0
1 −4 1
0 1 0


Edge 2

−1 −1 −1
−1 8 −1
−1 −1 −1


Edge 3

Sharpen

 0 −1 0
−1 5 −1
0 −1 0


Sharpen

Box blur

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9


Box blur

Gaussian Blue

 1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16


Gaussian blur

Table 2.2: Convolutions with different filter, image courtesy of Massachusetts Institute of Technol-
ogy.

with temporal structure are Elman networks that were presented in 1990 [136]. In this type
of network the context neurons do not receive their input from the output layer but from
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the first hidden layer. Elman networks demonstrated to successfully make use of tempo-
ral structure for different applications [137, 138]. So far, the neural networks had a very
specific architecture and are special cases of general dynamic neural networks. Here, it
is possible to connect each neuron with each neurons with arbitrary delays. This degree
of freedom introduces a wide range of neural network architecture, even if the neural net-
work consists only of a small number of neurons. An example of a general dynamic neural
network is given in Figure 2.9. For a general dynamic neural network, a two dimensional
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Figure 2.9: A general dynamic neural network, including shortcuts and recurrent connections.

adjacency matrix, i.e. the matrix containing all weights, does not suffice. For each new
time delay, a new two dimensional adjacency matrix is needed, creating a three dimen-
sional matrix to represent the weights for such a neural network. A three dimensional
adjacency matrix can be seen in Figure 2.10. The corresponding neural network consists
of n neurons and ψ delays, represented by n × n × ψ matrix.

To apply backpropagation to a neural network that is not a feed-forward neural network, it
has to be temporally unfolded [139]. The unfolding of a recurrent neural network can be
seen in Figure 2.11. Temporally unfolding means that the neural network is transformed
into a feed-forward neural network by replicating it. A neural network with a recurrent con-
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Figure 2.10: A three dimensional adjacency matrix for a neural network with n neurons and ψ
delays.

nection has to be replicated g times for g + 1 time steps. Special cases of general dynamic
neural networks, i.e. recurrent neural networks, have shown their capabilities for solving
nonlinear convex programming problems [140] or handwriting recognition [141].
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Figure 2.11: A neural network with a delay of one is temporally unfolded for g + 1 time steps.
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2.5 Reinforcement learning

Reinforcement learning (RL) is a branch of machine learning and artificial intelligence that
is not characterized by specific learning methods, but rather driven by the problem to be
learned. It focuses on goal-directed learning and decision making. While the optimization
function in other machine learning approaches is often specifically defined for the algo-
rithm at hand, reinforcement learning is always concerned with the long time maximization
of one particular signal—the reward signal. This scalar signal provides the reinforcement
learner with an indicator for success or failure. It does not need to be provided by an ex-
ternal supervisor, thus enabling the reinforcement learner to learn on its own by trial and
error.

Interactions with the environment happen on a simple basis of sensory sensation, taken
action and collected reward, which can be seen as the most intuitive and simplest form of
learning. This simple setup is depicted in Figure 2.12. The reinforcement learning setup
is similar to a regular closed loop control approach, except for the set point and the error
being delivered by the same signal—the reward. As the reinforcement learning agent has
the capability of evaluating its own decisions, i.e. the actions taken, it can also change the
way these actions are selected to improve its performance. By assigning values to specific
sensory sensations and also the sensation-action pair, the reinforcement learning agent
can compare those values and improve its action-selection. This again will change the
assigned values for the sensations, resulting in an iterative process.

The mapping from sensations (states) to actions is called policy and the assigned eval-
uation of a states value is called value function. An important attribute of reinforcement
learning is the fact that not only immediate rewards are taken into account but also the
long time performance. The reinforcement learning agent might at some point decide to
take an action with a smaller immediate reward to transit into a more promising state. This
long term planing turns out to be a significant feature for problems that require complex
solutions rather than step by step optimization. Together with the ability of learning from
ongoing sequences of experience, reinforcement learning is well suited for changing en-
vironments and varying conditions. There are two major developments in reinforcement
learning: The first is the usage of general value functions to learn and apply predictions
from samples of experience (prediction learning), while the second uses samples of expe-
rience to adapt a policy in order to maximize the outcome (control learning). Examples of
reinforcement learning include problems such as the mountain car problem [142], robotics
[143, 144] or playing computer games [145].

To formalize the reinforcement learning problem, the following subsections will introduce
the underlying assumptions and introduce the most important concepts of reinforcement
learning that have been utilized in this thesis.
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Figure 2.12: The general reinforcement learning framework [146].

2.5.1 Markov decision processes

Reinforcement learning assumes each problem at hand to resemble a Markov decision
process. The learner progresses through states by taking actions and receives rewards
during the transition. This can be described by the quintuple (S,A,P ,R, γ). Here, S
denotes the set of states, A the set of admissible actions, P : S × A × S → [0, 1] the
transition probabilities between states, R : S × A × S → R the rewards observed on
these transitions and γ ∈ [0, 1] the discount rate. At each time step t ∈ {0, ..., T}, where
T is the final time step, the learner chooses an action a ∈ A in state s ∈ S, following
a policy π : S → A. This action will result in a successor state s′ ∈ S and a reward
r = R(s, a, s′) ∈ R, according to the transition probabilities and rewards given by P andR.
Within this environment, the reinforcement learning agent tries to maximize the expected
sum of future rewards, which is called return and defined as

gt =
∞∑

k=0

γk rt+k+1, (2.10)

where γ is the discount rate that weights immediate reward against future reward. If γ <
1, then the sum of future rewards is bounded. It is a measure for how far-sighted the
algorithms is. By adapting γ, the learner can range from considering only immediate
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rewards (γ = 0) to taking the complete future into account (γ = 1). Reinforcement learning
divides problems into episodic and continuous tasks. While an episodic task has a natural
ending that occurs as soon as a final state is reached, continuous tasks do not have a
natural ending. If γ = 1 in a continuous tasks, the expected return is not bounded, but
approaches infinity. While the agent samples the environment, according to a policy π,
it learns a value function vπ : S → Eπ[gt | st = s] that is a mapping from states to the
expected return or a state-action value function qπ : S × A → Eπ[gt | st = s, at = a] that
maps from states and actions to the expected return. These functions are approximations
of the true expected return and are used to subsequently improve the policy π. As value
function and policy depend on each other and improve each other, this scheme is an
iterative process, called general policy iteration. Eventually, the policy π and the value
function vπ or qπ are the outputs or solutions of reinforcement learning.

2.5.2 Value functions and general value functions

A value function describes an estimate of the discounted sum of future rewards. It can be
defined as

vπ(s) = Eπ[gt | st = s] = Eπ[
∞∑

k=0

γk rt+k+1 | st = s], (2.11)

where Eπ[gt | st = s] denotes the expected return, following policy π and starting in state
s. This relationship can also be described by the Bellman equation in a recursive scheme,
following equation

vπ(s) =
∑
a∈A

π(a | s)
∑
s′∈S
Pπ(s, a, s′)[r (s, a, s′) + γvπ(s′)], (2.12)

where Pπ(s, a, s′) is the probability of transitioning from s to s′ while taking action a and
vπ(s′) is the value of the successor state s′. Value functions are closely related to decision
making in the traditional reinforcement learning setting. The value function is a means
to determine a policy π for a given problem in order to maximize the expected long term
return Eπ[gt | st = s]. Once the value function has converged towards the true values, a
greedy policy is sufficient for decision making, as an optimal value function with a greedy
policy will result in optimal control.

General value functions on the other hand are not necessarily related to control questions,
but to predictions. Their purpose is to learn dependencies between states and predictions
about the environment. The setting for a general value function is essentially the same—
the agent experiences a quadruple of (s, a, r, s’), while sampling the process. Here, r is
the signal of interest to be learned. It is called pseudo-reward or cumulant. [147]. The
general value function is a mapping from state s to prediction v , with the three auxiliary
inputs policy π : S → A, discount rate γ ∈ [0, 1] and the cumulant r : S → R and is
defined as

v (s,π, γ, r ) = Eπ[gt | st = s], (2.13)
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where gt is the return, calculated from the discounted cumulants.

The performance of the learned general value function is the difference between target
(discounted cumulants) and prediction. As the cumulants can be arbitrary signals of in-
terest, the general value function can learn and represent potentially useful predictive
knowledge about the environment [147]. Furthermore, by applying classical reinforcement
learning, we can benefit from its scalability and performance guarantees.

As the return is not only defined by the future sum of rewards, but also a discount factor
γ, so is the target in the general value function setting. Although a changing γ results in a
broader range of potentially predictive knowledge, in this thesis only a fixed γ will be used.
Such a fixed γ will result in a prediction with a fix time horizon, allowing a predictive control
approach. In order to learn an approximate general value function, tile coding and classical
temporal-difference learning can be used. An important advantage of general value func-
tions is the fact, that due to function approximation the learned value function does neither
need extensive computation, nor memory. It is therefore possible to learn multiple general
value functions on different time scales simultaneously. A comprehensive introduction and
further applications for general value functions and predictive knowledge in reinforcement
learning can be found in [147].

2.5.3 Linear function approximation

Almost all machine learning approaches suffer from the curse of dimensionality, when
applied to real-world problems [148] and so does reinforcement learning [142]. Even a rel-
ative simple game like chess has an estimated number of 1056 possible positions that can
be reached [149]. It is therefore not only reasonable but necessary to introduce a way of
approximating states in order to make problems computationally solvable. Although there
exist a variety of potential function approximation techniques, linear function approximation
is one of the most commonly used approaches in reinforcement learning [150, 151]. One
drawback of linear function approximation is the limited capability to represent nonlinear
dependencies. This can be compensated by using tile coding, which includes nonlinear
basis functions. The eventual approximate value function will still be linear, but the rep-
resentation of nonlinear problems can be improved significantly. A typical approach is to
linear approximate the learned value function, according to the equation

v (s) ≈ v̂ (s, w) = w>χ(s) =
n∑

i=1

wiχi (s), (2.14)

where w ∈ Rn is a vector of weights and χ(s) ∈ Bn is a binary, sparse tile coded state
vector and n is the memory size. As this function approximation is linear with respect to
the weights w , it is guaranteed to converge to or near a global minimum, when used in
combination with gradient descent. The gradient can simple be calculated as the solution
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of the equation
∇w v̂ (s, w) = χ(s), (2.15)

where ∇w v̂ (s, w) is the derivative with respect to the weights. Linear function approxima-
tion can also be used to approximate action-value functions or policies in a policy gradient
setting.

2.5.4 Policy gradient

Traditionally, reinforcement learning algorithms were used to learn an (approximated) value
function, which could then be utilized to derive a policy. These value functions might have
been either state value functions or state-action value functions. Instead of taking a “de-
tour” via the value function, policy gradient approaches directly learn a parametrized policy
π(a | s, θ), depending on the state and the learned weights. Here θ are the weights
for the policy. During the learning the weights are adapted, based on the gradient of a
performance measure η(θ) with respect to the policy weights to maximize the algorithms
performance, i.e. the expected return as solution of the equation

θt+1 = θt + α∇η(θt ), (2.16)

where ∇η(θt ) is a stochastic estimate. However, policy gradient approaches do not ex-
clude learning an additional value function, as can be seen in actor-critic algorithms that
combine learning a parametrized policy with learning a value function. Policy gradient has
several advantages, compared to value function learning algorithms. Most value function
learner use a greedy or an ε-greedy action selection. A greedy action with respect to the
value function is the action that maximizes the return. An ε-greedy approach chooses a
random action with the probability of ε and the greedy action otherwise. To still ensure
exploration, usually ε is set to be bigger than zero. Policy gradient algorithms can use any
representation for the policy (including neural networks or statistical distributions) that is
differentiable with respect to the weights. This allows a much broader selection. Addition-
ally, these policies can eventually become deterministic, which is not the case for ε-greedy
policies. For some problems, a policy might be significantly easier to learn than a value
function, as problems significantly vary in their complexity of policies and action-value func-
tions. One example of this problem might be a gridworld, where a simple policy performs
better than a state-value function. Furthermore, state-action value functions cannot find
stochastic policies, which can easily be achieved in a policy gradient algorithm. Finally,
by choosing an appropriate initialization for the weights, prior knowledge about potentially
good policies can be included.

One particular policy gradient algorithm that will be used in this thesis is an actor-critic al-
gorithm. It learns a parametrized policy and at the same time a state value function. Using
the regular (bootstrapping) temporal-difference learning makes it especially well suited for
learning from incomplete samples and online learning. As actor-critic algorithms can be
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2 Theoretical background

combined with statistical action selection, they are well suited for huge and continuous ac-
tions spaces. In this thesis, an actor-critic algorithm will be used for learning the choose the
correct laser power for a laser welding problem. The algorithm will be presented in more
detail in Section 4.5, including the stochastic action selection approach and the details for
the specific problem.
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3 General dynamic neural networks for
stochastic adaptive control

As already presented, the standard PID controller, although reliable, relatively easy to
implement and to understand, has certain limitations that render its application limited.
To extend its capabilities beyond the scope of linear and linearized systems, it can be
extended by machine learning. To keep the control loop as simple as possible and only
rely on the closed loop provided data, the machine learning algorithm is integrated in a
way that it receives the same information as the PID controller. The outputs of the machine
learning algorithm are the suggested PID parameter, KP , KI and KD for the corresponding
machine learning input, namely the control error and the systems output. Therefore, no
new sensors are required and the extension only requires access to the PID parameters.
This approach is purely data-driven and does not rely on additional models or filters in
contrast to adaptive control algorithms. The suggested approach can be seen in Fig. 3.1.
The algorithm then adjusts the PID controllers parameter, while the plant is running in
order to improve the control performance. The input for the machine learning algorithm is
the systems output z ∈ Rk , where k is the number of outputs and the control error e ∈ Rk .

3.1 PID tuning by general dynamic neural networks

The implementation of a machine learning based PID tuner will use a general dynamic
neural network. For a plant with k outputs, k neural networks will be implemented within
the control loop. Each applied neural networks will have 2 input neurons, one for the control
error e ∈ Rk and one for the systems output z ∈ Rk . Each neural network will also have
3 output neurons, one for each PID parameter, resulting in 3k output parameter in total.

For the setup shown in Figure 3.1, backpropagation cannot be applied naturally, even if
the neural network would be temporally unfolded. For applying backpropagation, the error
of the neural networks output would be required to be propagated backwards through the
neural network. To calculate this error the ideal parameters for the PID controller would
be required for all possible states. Another approach is to use the error of the system
to be controlled, which only requires the systems output z and the set point z∗ and is
in fact the control error e. To apply a backwards pass through the neural network, the
partial derivative of the error with respect to the weights would be required. As the system
cannot be assumed to be differential or even known, this approach turns out to be not
practicable. Therefore, the Jacobian matrix of the general dynamic neural network with p
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Figure 3.1: The PID auto-tuning structure, including a machine learning algorithm. A machine
learning algorithm is added into the control loop, using the same information as a standard PID
controller.

input neurons, q output neurons, g time steps and ν weighted connections was calculated
numerically according to the equation
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∈ Rgq×ν , (3.1)

where xi ∈ Rp is the input vector at time step i , w ∈ Rν is the vector of weights which
describes the network topology and zi is the i-th output of z(x , w) ∈ Rq . According to
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Algorithm 2 Compute Jacobian numer-
ically

1: Input: Dynamical system z(x , W ), inputs x , weights W
2: Output: Estimate of Jacobian matrix ĴW

3: foreach:Weight Wi do
4: ztmp,1 ← z, ztmp,2 ← z // Cache internal state of z
5: ε← max

(
1, |Wi |

)√
εmin // Calculate ε

6: For j = 1 to g do
7: ξ ← ztmp,1(xj , W ), ξ̂ ← ztmp,2(xj , W − hε)
8: For o = 1 to q do

9: ĴW (jm+o,i) ← ξν−ξ̂ν
ε Backward difference

10: Return: ĴW

z(x , W ) ∈ Rq : Dynamical system output
x ∈ Rg×n: Inputs
W ∈ Rν : Weights

Table 3.1: Algorithm to numerically calculate the approximated Jacobian matrix.

[152], it is sufficient to calculate the partial derivatives of the systems output instead of the
error function.

As the analytic calculation would result in extensive computations, it is numerical approxi-
mated using a difference equation, rather than a differential one as solution of the equation

Ĵw
(
z(x , w)

)
=


J0

J1
...

Jk


T

, Ji =
z(x , w)− z(x , w − ζε(wi ))

ε(wi )
, zetap =

{
1, p = i
0, p 6= i

, (3.2)

where Ĵw is the approximated Jacobian matrix, ζ is the step size and ε is the machine
precision. ε, has to be calculated for each pass as the solution of the equation

ε(wi ) = max
(
1, |wi |

)√
εmin, (3.3)

where w is a vector, containing the weights, and εmin is the implementation data type, dou-
ble precision in this implementation. The complete calculation of the Jacobian matrix can
be found in Table 3.1.

As there exists no way of determining the ideal network architecture, for each system 10
different architectures were tested. All were defined by three layers, consisting of an input
layer, one hidden layer and the output layer. The total number of neurons were within the
neighbourhood of 10 neurons. The connections between those neurons and the delay for
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3 General dynamic neural networks for stochastic adaptive control

the connections were randomly varied. By choosing those parameters on a random basis,
no knowledge about the process or its dynamics were intentionally included, making the
experiments comparable. Furthermore, all the weights within the general dynamic neural
networks were randomly initialized. For the evaluation, the neural network, yielding the
best numerical results was chosen. An example neural network structure can be found in
Figure 3.2. As the system to control has two outputs, the neural network has two input
neurons and consists of 9 neurons in total. The neurons in the second layer feed informa-
tion back to the first layer with a time delay of 1. The three output neurons correspond to
the three parameters of the PID controller.

3
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g-1

1

2

7

8

9

x1

x2

y1

y2

y3

g-1

Figure 3.2: The General dynamic neural network, used to control the inverted pendulum.

3.2 Simulation and experiments

Training procedure: One of the most important decisions, when using machine learning
algorithms, is related to the training data. Although the algorithms are supposed to be able
to generalize from known data to unknown data, this capability is limited to some extent.
For most algorithms, a specific phenomena has to be at least included twice in the training
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3.2 Simulation and experiments

data to be learned and not be regarded as outlier. Geometrically speaking, the algorithm
can not know about a specific subspace if it is not spanned by the training data. Therefore
it will fail to identify it correctly in a test case. When confronted with a control system, the
only way to interact with the system and collect information about it, is to apply an exci-
tation signal. Such a signal will cause the system to assume different states, in order for
the controller to learn about the system dynamics. The challenge is to find a signal that
extracts as much information about the system as possible, but at the same time does not
violate the physical constraints of the system.

In theory, a Dirac signal would immediately lead to the systems transfer function, allowing
to design an appropriate controller. However, this proves difficult in real-world scenarios.
Several excitation signals have been defined to excite control systems in order to collect
information. Some of the most popular are: constant signals, impulse signals, step signals,
rectangular signals or pseudo-random binary signals. All these signals have advantages
and disadvantages. An overview can be found in [153]. In this thesis, four different test
systems will be evaluated, that resemble the most common control problems. Each sys-
tem has a different transfer functions and representing a different control task, including
non-linearity and chaotic behaviour. Therefore the most general excitation signal should
be used for all of them to ensure extracting the most information without the need to specif-
ically adapt the excitation signal. As the pseudo-random binary signal (PRBS) excites all
frequencies equally well, it is the most appropriate candidate. Other positive properties
of PRBS signals are that they are deterministic and can easily be generated using linear
feedback shift registers. These registers consist of several flip-flops that are arranged in a
way such that the output of the former one serves as input for the next and an additional
XOR block to the first flip-flop. All flip-flops share the same clock. Figure 3.3 shows such
a linear feedback shift register with four states. Once the initial state is reached again, the
shift register produces the same output periodically. In principle any state could be used
to initialize the shift register, except for the all-zero state, because the shift register would
then only be able to produce zeros. Table 3.2 shows an example output cycle, created by
the four-state shift register from Figure 3.3 with an initial state of 1111. The final signal will
by cyclic, as the internal state of the shift register is set back to its initial state of 1111 after
the first 15 cycles. For the four shift register example, the signal would have a length—or
maximum period— of 15, according to the equation

lmax = 2nregister − 1, (3.4)

where nregister is the number of shift registers. Although the PRBS excites all frequencies
equally well, this signal does not suffice. To collect a sufficient amount of information about
the systems gain, the PRBS signal should have an ample holding time. This is the maxi-
mum number of 1’s in a row and it naturally equal to the number of register. To prolong the
holding time, the output of the register can be taken κ-times per clock cycle, with κ ∈ N. To
create a signal with a maximum holding time tmax = 100, the two parameters nregister and κ
have to be chosen accordingly. One could, for example, choose κ = 1 and nregister = 100,
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Figure 3.3: A linear feedback shift register with four states.

Table 3.2: One period in the linear feedback shift register from Figure 3.3.

Clock State Output y

0 1111 1
1 0111 1
2 0011 1
3 0001 1
4 1000 0
5 0100 0
6 0010 0
7 1001 1

Clock State Output y

8 1100 0
9 0110 0
10 1011 1
11 0101 1
12 1010 0
13 1101 1
14 1110 0
(15 1111 1)

but this would result in 2100 − 1 states, which is an unreasonable amount to be stored
in the computers RAM. Another set of parameters would be to choose nregister = 4 and
κ = 25, resulting in only 15 states. In addition, the first signal would have a length of
lmax ∗κ = 1023, while the second would have a length of lmax ∗κ = 375. To reach an equiv-
alent signal length of ≈ 1000, the second signal would have to be repeated nearly three
times, resulting in redundant information. This can be interpreted as a simple optimiza-
tion problem, which can easily be solved. For the given example of a signal with desired
holding time tmax = 100 and a desired signal length of ≈ 1000 the ideal parameters are
nregister = 6 and κ = 17, resulting in 63 states and a signal length of 1071, of which the first
1000 values can be used. The corresponding signal can be seen in Figure 3.4.

To find these parameters within reasonable time, the first 64 primitive polynomials, de-
scribing the relationship between the number of shift registers and the signal length can
be stored to speed up the computation. As this results in a maximum signal length of
264 − 1, which is the maximum array size in 64 bit computer architectures, these polyno-
mials are sufficient.
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Figure 3.4: A PRBS with a maximum hold time of 100 seconds.
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Figure 3.5: Transformation of a PRBS (left) to an APRBS (right) based on the amount of intervals.

As the PRBS signal only varies between the values of 0 and 1, it is not suitable for excit-
ing nonlinear systems in a way that it is possible to collect all relevant information about
the systems behaviour. This can be ensured by changing the PRBS in a way that it cov-
ers the whole range of possible input amplitudes. This is called an amplitude modulated
PRBS (APRBS) and it has been shown to excite nonlinear systems appropriately [154].
To uniformly distribute the amplitudes between the desired maximum and minimum of the
APRBS, the step size α between each amplitude step is introduced. It is determined by
dividing the amplitude range by the amount of intervals of the PRBS. By transforming the
PRBS into an APRBS, efficient training signals for the general dynamic neural networks
can be generated. Figure 3.5 shows the transformation of a PRBS into a APRBS signal,
dependent on the step size αAPRBS = 1

12 as a result of the number of intervals.

Experimental design: To find the appropriate parameters for the standard PID controller,
several approaches were implemented. In a first iteration, a genetic algorithm with a pop-
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ulation size and a number of generations of 1000 has been implemented to find the best
parameters. Genetic algorithms have been shown to successfully find PID controller pa-
rameters for complex systems [83, 84] and can therefore be considered to be a competitive
choice. The genetic algorithm was executed 100 times, resulting in 108 evaluated param-
eter sets. Furthermore, all systems were implemented and the MATLAB Control System
Toolbox, as well as classical PID tuning approaches, e.g. Ziegler-Nichols were used. The
resulting parameters were additionally verified by using a grid search approach to ensure
they were the best parameters within their neighbourhood.
For evaluating the different PID tuning approaches in total four different control systems
were implemented and considered. These systems represent the most common chal-
lenges in control theory and therefore provide a comprehensive overview. The systems
are: a nonlinear two-tank system [155], an inverted pendulum on a cart [156], a time-
invariant system with a non neglectable time delay [157] and a chaotic fluidsystem [158].
The systems will be introduced in the next section.

All four systems have been tested in 4 different configurations. First, the system was tested
without any further modifications. Then noise was included to simulate real-world condi-
tions, i.e. noisy sensor measurements.The noise was white Gaussian noise and calculated
with a signal to noise ration SNR = 20dB as solution of the equation

SNR = 10 log10

( zT z
βTβ

)
dB, (3.5)

where z is the systems output and β is the noise signal. The noise was then added
to the systems output. To test all implemented control approaches for robustness, the
systems were disturbed. Each disturbance was increased in strength, until all but one
controller failed to stabilize the system. It is important to note that none of the controllers
had experience with this sort of disturbance, as they were not included in the differential
equations, the parameter tuning or training procedure. These disturbed runs were also
run with and without noise, resulting in a total of 16 different test scenarios. To ensure
the stability of the experiments and to minimize the possibility of numerical effects, all
experiments were run for 30 independent runs with different seeds for the random number
generator. The differential equations were solved using an ode45 solver. As this solver is a
non-stiff solver, the control approaches would have constant access to the system, which
is not feasible. To furthermore simulate real-world conditions, every controller can only
adapt its control signal every 0.01s. This constraint is based on the sample time of a real
sensor, which cannot provide a continuous flow of sensor data but only sample at a specific
rate, based on its sample rate. These limitations are realized by repeatedly running the
solver within this sample rate, while adapting the new starting conditions for each new run.
Thereby a quasi-fixed step size of 0.01s is ensured. During this time, the controller output
is kept constant.
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3.2 Simulation and experiments

3.2.1 Non-linear two-tank system

One of the most considered benchmark system in control theory is the nonlinear two-tank
system [159]. The controller has access to the input voltage u(t), which runs a pump
with a pump constant kP . The goal for the controller is to keep the water level in the
second tank z(t) = x2(t) at a defined level. Both tanks are cylindrical shaped with the
cross sectional areas of A1 and A2, respectively. Furthermore the outlets are defined by
their cross sectional areas of Ao1 and Ao2. The system is characterized by the differential
equations

ẋ1(t) = −Ao1

A1

√
2kgravitationx1(t) +

kpump

A1
u(t) ,

ẋ2(t) =
Ao1

A2

√
2kgravitationx1(t)− Ao2

A2

√
2kgravitationx2(t) = z(t),

(3.6)

and the specific values for the constants can be found in Table 3.3. It was chosen to be
the first system for comparison as it is a standard benchmark system that is widely used
to evaluate controllers for their capability of controlling nonlinear systems. real-world ex-
amples for two-tank systems include, but are not limited to, bio-reactors, filtration system
or nuclear power plants [155]. For such systems it is of enormous importance to keep a
steady water level, as a failing cooling water level might, for example, lead to non suffi-
cient cooling which could lead to explosions. This kind of system can be seen as widely
used and is therefore an important candidate for control. Already existing approaches for
control include neural networks [160], adaptive output feedback [161] and backstepping
[155]. For this work, a backstepping algorithm, which is an adaptive controller [162], was
implemented as a comparative control approach for the PID tuner.

To further evaluate the controllers robustness, the system was disturbed between t = 20s
and t = 40s. In this timespan the input to the system was set to 0, regardless of the con-
trollers actions. This problem would correspond either to a leakage in the inflow or to a
stuck ventilate, given the input was already at 0. Such a problem can widely occur due to
the susceptibility of mechanical components and can be considered a typical incidence.

Table 3.3: Physical parameters of the two-tank system.

Parameter Symbol Value Unit

Tank 1, 2 cross-sectional areas A1, A2 15.38 cm2

Tank 1, 2 orifice cross-sectional areas Ao1, Ao2 0.1781 cm2

Pump constant kpump 4.6 cm3/Vs
Gravitational constant kgravitation 980 cm/s2
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Figure 3.6: The nonlinear two tank system.

3.2.2 Inverted pendulum on a cart

The second test system is an inverted pendulum on a cart. This system is characterized
by its nonlinearity and unstable behaviour. The specific control task is to stabilize the
inverted pendulum at its unstable equilibrium, while the cart is not allowed to exceed a
range of ±0.5m. The dynamics of the system can be expressed as a system of differential
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3.2 Simulation and experiments

Table 3.4: Physical parameters of the inverted pendulum on a cart.

Parameter Symbol Value Unit

Cart mass ρc 1 kg
Pendulum mass ρp 0.1 kg
Pendulum length to mass center lp 0.3 m
Gravitational constant kgravitation 9.8 m/s2

equations which can be seen in equation

ẋ1(t) = x2 ,

ẋ2(t) =
−ρpkgravitation cos(x3) sin(x3) + ρp lp sin(x3)x2

4 + Fx

ρc + ρp sin2(x3)
,

ẋ3(t) = x4 ,

ẋ4(t) =
−ρp lp cos(x3) sin(x3)x2

4 − cos(x3)Fx

ρc lp + ρp lp sin2(x3)
+

(ρc + ρp)kgravitation sin(x3)

ρc lp + ρp lp sin2(x3)
,

(3.7)

where x1 and x2 denote the position x and the speed ẋ of the cart, while x3 and x4 denote
φ and its angular velocity φ̇. In the differential equations, the dependency of the states xi

of t it omitted, such that xi = xi (t). The exact physical parameters for the system can be
found in Table 3.4. It is furthermore a well known and extensively researched problem in
control theory, making it a valuable test system for this comprehensive overview. A practi-
cal application for this type of control problem can be the initial stage of flight for a missile
launch. Very common approaches to control such unstable and nonlinear problem are
LQ-regulators as a represent of adaptive control [163, 164, 165] or a double PID controller
approach [163]. In this work, both approaches were implemented as a comparison.

In order to test all control approaches to robustness, once the system has settled, a force
of 8.5N has been applied to the tip of the pendulum. This is comparable to a strong and
unexpected wind condition during the launch of a missile.

3.2.3 System with non-neglectable time delay

The next control system is a first order linear time invariant (LTI) system with a non-
neglectable time delay. While time delay is a serious and challenging problem in certain
applications, e.g. heating systems or production engineering systems like milling or cut-
ting, it is often not considered while designing controllers [166]. If not appropriately taken
care of, it results in decreased performance or even instability. Most common controllers
for these types of systems are fractional order PID controller [167] or a smith-predictor
[168], which is a member of the predictive control approach [169]. A linear plant with
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Figure 3.7: The inverted pendulum on a cart.

non-neglectable time delay is characterized by a gain K and its input delay TD. The time
constant T is the time the system needs to reach the amplitude of K63 = K (1− 1

e ) ≈ 0.63K
as response to a unit step after the input delay of TD. The system at hand is described by
equation

F (s) =
K

Ts + 1
e−TDs s cẋ1 =

1
T

(
Ku(t − TD)− x1

)
, (3.8)

and its parameters are: K = 0.4, T = 0.9, TD = 1.8 [157].

This system is disturbed by a (dimensionless) disturbance of −5 between t = 50s and
t = 75s. Such a disturbance could correspond to a temporary blockage in a heating
system, the feed rate time in a milling system [170] or a lag in a communications network.
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Figure 3.8: Unit step response of a first order linear time-invariant system with input delay.

3.2.4 Chaotic fluid system

For the fourth system a chaotic thermal convection loop, which is described by the equation

ẋ1(t) = kprandtl (x2 − x1) ,

ẋ2(t) = x1 − x2 − x3(x1 + krayleigh),

ẋ3(t) = x1x2 + krayleigh(x1 + x2)− x3 − u,

(3.9)

was chosen. This system is characterizing a fluid within a torus. While the lower half of
the torus is enclosed by an electric heating system, the upper half is cooled down using
a water cooling. The goal is to achieve a constant flow through the inner torus. Chaotic
behaviour is common in real systems. It occurs where a system is globally bounded but
locally unstable [171], for example in most fluids or due to gravitation. As chaotic behaviour
can lead to vibrations, oscillations and failure in systems it is a very important problem in
control theory and therefore a good test scenario. Due to the lack of sufficient mathematical
models for real chaotic systems a closed loop control is a desirable approach [172]. For
the example of a chaotic thermal convection loop, nonlinear feedback controllers [158] and
backstepping [173, 174, 175] are two established adaptive control approaches. In this
work, a backstepping control approach was implemented for comparison.

During the experiments, a disturbance of −100W between t = 5s and t = 5.5s has been
applied to test the control approaches for robustness. For the system at hand, this can be
interpreted as a change in the cooling water temperature.

3.3 Results

To make all the different approaches comparable, a common error measure has to be
found. The most common error measure in machine learning is the root mean squared
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Figure 3.9: Chaotic thermal convection loop.

Table 3.5: Physical parameters of the thermal convection loop.

Parameter Symbol Value Unit

Prandtl constant kprandtl 10 -
Rayleigh number (substituted) krayleigh 6 -
Convection loop radius r1 38 cm
Tube radius r2 1.5 cm

error (RMSE), which is defined by the equation

RMSD =

√
(z − z∗)T (z − z∗)

n
, (3.10)

where z is the systems output, z∗ is the ideal output and n is the length of the error
vector, or number of samples in the experiment. This measure has the advantage of
considering the performance over the whole experiment and in addition it can be seen
as an average over the classical error measures that are used for PID control problems,
e.g. rise time, overshoot, settling time. It therefore provides an ideal error measure for
an approach, combining classical PID-control technology and modern machine learning
algorithms. For all four introduced systems, the standard PID controller will be compared
to one model-based state of the art control approach and the newly suggested adaptive
PID controller. The systems will be controlled with and without noise as well as with and
without disturbance, resulting in 16 test scenarios in total.
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3.3 Results

The results for all experiments can be found in Table 3.6. For each experiment, the mean
and the variance of the root mean square error are provided. The controller with the
best performance is marked bold. In the experiments, where the variance is zero, the
experimental results for all 30 independent runs were identical, due to the absence of
noise or randomness.

3.3.1 Non-linear two-tank system

The results for the first system can be seen in Figure 3.10. For this system, a standard PID
controller with the values KP = 3.65, KD = −2 and KI = 0.4, a backstepping algorithm [155]
and the adaptive PID controller were implemented. Depicted is the control performance
of all three controllers for the disturbed system without noise. The water levels in both
tanks were initialized to 5 and the set point during the test sequence was created, using a
ARPBS signal with a maximum holding time of 30. For the sake of visibility, the example
without noise was chosen.

It can be seen that all three algorithms are able to stabilize the system after initialization.
While the standard PID controller approaches the target liquid level a bit faster than the
two other approaches, it also overshoots, once the desired level is achieved. The adaptive
PID controller is almost as fast as the standard PID controller but has almost no overshoot,
quickly stabilizing the system at the desired level. The backstepping algorithm also does
not overshoot, but takes considerably more time to reach the correct liquid level.

At the time t = 20s, the disturbance is introduced. For the next 20s all three algorithms fail
to follow the set point, as they lose all influence on the system. After the disturbance, at
t = 40s, the PID-controller shows a significant overshoot, due to the integrator of the con-
troller acquiring a big error during the disturbance. For the rest of the experiment, the PID
controller is able to follow the set point, but it consistently overshoots, resulting in a poor
overall performance. The backstepping is more steady than the standard PID controller,
but lacks a fast response, resulting in a poor rising time and therefore a big control error.
The new suggested adaptive PID controller combines the fast response of the standard
PID controller with the smoothing effect of the backstepping, resulting in a very accurate
and fast performance. As the set point in the simulation changes, it can be observed how
the neural network adapts the parameters, mainly the KP . This consistent tuning and lin-
earization around the actual systems state turns out to result in a good control result. Due
to the convergence and the reduced overshoot, the overall controller output is significantly
smaller for the adaptive PID controller, resulting in less consumed pump power. In the over-
all experiment, the adaptive PID controller has a 14.9% smaller RMSD than the standard
PID controller and a 23.6% smaller error than the backstepping approach. It demonstrates
this superior behaviour for all four tests, conducted on the two-tank system.
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Table 3.6: Control results for the four benchmark systems over 30 independent runs.

Control Benchmark RMSE on test data over 50 independent runs

Disturbance - - X X
SNR - 20 dB - 20 dB

Two-tank system

M
ea

n Standard PID 9.5 · 10−1 9.9 · 10−1 1.0 · 100 1.1 · 100

Backstepping 1.1 · 100 1.1 · 100 1.2 · 100 1.1 · 100

Adaptive PID 7.4 · 10−1 8.6 · 10−1 8.4 · 10−1 1.0 · 100

Va
ria

nc
e Standard PID 2.5 · 10−3 2.3 · 10−3 5.2 · 10−3 6.3 · 10−3

Backstepping 1.6 · 10−3 1.8 · 10−3 3.6 · 10−3 2.4 · 10−3

Adaptive PID 3.6 · 10−3 4.0 · 10−3 5.6 · 10−3 4.6 · 10−2

LTI system with input delay

M
ea

n Standard PID 2.2 · 10−1 2.3 · 10−1 3.6 · 10−1 3.8 · 10−1

Smith predictor 1.8 · 10−1 1.9 · 10−1 1.9 · 10−1 2.0 · 10−1

Adaptive PID 1.3 · 10−1 1.5 · 10−1 2.6 · 10−1 2.8 · 10−1

Va
ria

nc
e Standard PID 6.7 · 10−4 6.1 · 10−4 4.0 · 10−4 3.2 · 10−4

Smith predictor 5.6 · 10−4 4.7 · 10−4 4.9 · 10−4 3.2 · 10−4

Adaptive PID 6.0 · 10−4 5.3 · 10−4 6.8 · 10−4 3.4 · 10−4

Inverted pendulum

M
ea

n Standard PID 3.5 · 10−2 3.6 · 10−2 1.4 · 102 1.4 · 102

LQ regulator 5.2 · 10−2 5.3 · 10−2 1.4 · 102 1.4 · 102

Adaptive PID 3.4 · 10−2 1.8 · 10−2 9.0 · 10−2 2.7 · 10−2

Va
ria

nc
e Standard PID 0 1.1 · 10−7 0 2.3 · 10−3

LQ regulator 0 3.3 · 10−9 0 2.2 · 10−3

Adaptive PID 4.0 · 10−4 2.6 · 10−4 4.9 · 10−2 7.3 · 10−4

Thermal convection loop

M
ea

n Standard PID 2.4 · 10−1 1.6 · 100 1.3 · 101 4.2 · 100

Backstepping 2.6 · 10−1 8.9 · 10−1 9.8 · 100 9.8 · 100

Adaptive PID 2.3 · 10−1 9.0 · 10−1 1.9 · 100 1.7 · 100

Va
ria

nc
e Standard PD 0 2.0 · 100 0 1.4 · 100

Backstepping 0 1.3 · 10−4 0 1.4 · 10−5

Adaptive PID 1.2 · 10−5 3.1 · 10−4 1.6 · 10−1 2.2 · 10−1
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Figure 3.10: Control results for the two-tank system without noise and with disturbance between
t = 20s and t = 40s.

3.3.2 Inverted pendulum on a cart

For the inverted pendulum on a cart, a standard PID controller stack [156], a LQ regulator
[163] and the adaptive PID controller were evaluated. As this system is a single-input, mul-
tiple output system, two adaptive PID controllers are implemented, similar to the stacked
PID approach [156]. The values for the two standard PID controllers are taken from [156].
For the PID controller, responsible for the position the values are KP = −2.4, KD = −0.75
and KI = −1 and for the angle KP = 25, KD = 3 and KI = 15. It has to be noted that
the PID controller for the angle has a positive feedback loop. The system was initialized
with the cart at position x = 0 and the pendulum at an angle of φ = 1rad . As this system
is unstable, it was the controllers goal to stabilize it at its equilibrium. The results for the
system without noise and with a disturbance are shown in Figure 3.11.

All three approaches are able to stabilize the system in the beginning. While the LQ regu-
lator has almost no overshoot, it takes the longest time to control the system in a way that
the x position and the angle are correct. The standard PID controller is faster than the LQ
regulator but has a bigger overshoot, due to its aggressive behaviour. The adaptive PID
controller is the fastest of the three and has a smaller overshoot than the standard PID
controller, resulting in the best initial performance.

At the time t = 10s, the system is disturbed with a force of 8.5N at the tip of the inverted
pendulum for 0.5s. The value of 8.5N was determined by continuously increasing the force
from 0N, until all but one controller fail. The disturbance was not included in the training

65
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data, so none of the controllers was familiar with it. It can be seen that both traditional
control approaches, the standard PID controller and the LQ regulator, fail to stabilize the
system after the disturbance is applied. The cart moves out of the limited range and the
inverted pendulum falls over. Only the adaptive PID controller manages to regain balance
within the restrictions of the system by adapting the PID parameters. It is interesting to no-
tice that there is almost no change in the PID parameters for the angle but only in the ones
for the PID controller, responsible for the position. This could indicate that the adaptive
PID controller aims for a fast movement of the cart to first stabilize the inverted pendulum
and then slowly moves it back to its set point. The graphs, showing the position and angle
support this. During the whole experiment there is only a small controller output necessary,
except for the stabilizing in the beginning and after the disturbance. As the traditional con-
trollers fail to stabilize the system, the adaptive PID controller has a 99.9% smaller RMSD.
It also demonstrates to be superior in all four test cases. This is especially remarkable, as
the adaptive PID controller has only access to the set point and the current control error,
while the LQ regulator has significantly more information about the system.
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Figure 3.11: Control results for the inverted pendulum on a cart without noise but with disturbance
at t = 10s.

3.3.3 System with non-neglectable time delay

The system with a non-neglectable time delay was controlled, using the standard PID
controller with the parameters KP = 1.5, KD = −0.1 and KI = 0.7, a smith predictor [176]
and the adaptive PID controller. The test signal, i.e. the set point, was created, using an
ARPBS signal, with a range of [−1, 1] and a maximum holding time of 50. The control
results with disturbance but without noise can be seen in Figure 3.12. Between the time
t = 50s and t = 75s, a dimensionless disturbance of −5 was applied to the system to test
all three controllers for robustness. Such a disturbance might correspond to a blockage in
a fluid transport system.

67
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Especially between the time t = 65 and t = 70, the influence of the time delay on the con-
trol performance can be inspected. While all controllers are eventually able to reach the
set point, the smith predictor performs best. This result was to be expected, as the smith
controller does have additional knowledge about the exact time delay, while the standard
PID controller and the adaptive PID controller rely on the control error. However, the adap-
tive PID controller still performs better than the smith predictor for the two test scenarios
without disturbance. It furthermore outperforms the standard PID controller by 31.1%. This
is achieved by only a minimal parameter adaption. The parameters varied from 6.21918 to
6.2255 for KP , from 1.1285 to 1.13003 for KI and from −0.44297 to −0.441411 for KD.
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Figure 3.12: Control results for the system with a non-neglectable time delay without noise and
with disturbance from t = 50s till t = 75s.

3.3.4 Chaotic fluid system

The last system to be evaluated is the chaotic fluid system. To control the system, three
controllers—a standard PID controller, a backstepping algorithm and the adaptive PID
controller—were implemented. The solution for the PID parameters, found by the genetic
algorithm, got stuck at a value of x1 = −6. This behaviour can be explained by investigat-
ing the differential equations. If the value of x1 becomes equal to the negative Rayleigh
number of 6, the term x3(x1 − β) in the second equation becomes 0, canceling the influ-
ence of x3 on the other two differential equations. However, the controller has only access
to the x3 and therefore gives up control, letting the system slowly but continuously drift
away from the set point. This unusual behaviour is a result of the optimization target for
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the genetic algorithm. It evaluates the RMSE within the experimental time and tries to min-
imize it. As the experiments only run for a limited time, this result was the best within the
neighbourhood of the parameters. The algorithm got stuck on a local, but not the global
minimum, as it yielded the best numerically result, regardless of the fact that the controller
did not control at all. After evaluation, this result was dropped and more classical PID
tuning approaches,e.g. the Ziegler-Nichols approach and also the MATLAB Control Sys-
tem Toolbox, were evaluated. To further ensure the best solution, a brute force random
search, using a fractal experimental design was tested. The final PID parameters were
KP = 25.3, KD = 8.9 and KI = 0.

The initial conditions for the system were x1 = x2 = x3 = 5. As the chaotic fluid system is
an unstable system, the goal for all three controllers was to stabilize the system at x1 = 0.
The control results for the disturbed system without noise can be seen in Figure 3.13. All
three algorithms are capable of stabilizing the system within a very short time horizon. The
backstepping has a very small overshoot and quickly approaches the set point, neverthe-
less having the highest control error until the steady state is reached. The standard PID
controller is more aggressive, resulting in a higher overshoot but eventually a smaller time
until convergence. The adaptive PID controller performs best, as it finds a good balance
between a short rising time and overshooting. During the first seconds, the standard PID
controller iterates the output between the maximum and the minimum with a continuously
falling amplitude. The backstepping and the adaptive PID controller need considerable
less power to stabilize the system.

Between the time t = 5s and t = 5.5s, the disturbance of −100W is applied, regardless
of the controllers control actions. Again, the value of −100W was chosen, as all but one
controller fail. The standard PID and the backstepping algorithm are not able to stabilize
the system. However, the system does not become unstable, either. Both algorithms it-
erate between the maximum and the minimum controller output, resulting in a metastable
process. Only the adaptive PID controller is capable of controlling the process and transfer
the flow velocity back into its equilibrium. As the process is stabilized again, the controller
output for the adaptive PID controller approaches 0, again. Similar to the final parameters
for the standard PID controller, the KI parameter for the adaptive PID controller stays al-
most 0 for the whole experiment, while KP and KD are adapted. It is interesting to note
that the backstepping algorithm outperforms the adaptive PID controller for the experiment
without disturbance but with noise as can be seen in Table 3.6. This can be explained by
the fact that the backstepping algorithm was implemented, using the differential equations,
therefore knowing the underlying, true structure of the problem. The adaptive PID con-
troller on the other side can only act in a data-driven way and is therefore more prone to
noisy measurements.
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Figure 3.13: Control results for the chaotic fluid System without noise and with disturbance between
t = 5s and t = 5.5s.

3.4 Internal dynamics vs. external dynamics

As this chapter suggests the usage of general dynamic neural networks for PID param-
eter tuning, the questions arises whether the general dynamic property actually yields
a superior performance over more simple feed-forward neural networks. To investigate
this question, a general dynamic neural network was compared with a static feed-forward
neural network and with a static feed-forward neural network that was extended by an
external dynamic. The general dynamic neural network was the eventually found to control
the system and is depicted in Figure 3.2. For the static feed-forward neural network, the
same network without the recurrent connections in the first layer was used. Furthermore,
a feed-forward neural network with an external dynamic was implemented as an inter-
mediate step between the general dynamic one and the static one [47]. As the neural
network with an external dynamic achieves makes use of additional inputs to include
the temporal structure of the data, this type of approach will grow in dimension for each
additional system output. To address and evaluate this quality, the inverted pendulum
on a cart was chosen as the benchmark system. This system is nonlinear and it has an
unstable equilibrium at φ = 0 rad, making it hard to control. All three neural networks were
repeatedly randomly initialized and tested for convergence and performance.

From Figure 3.14 it can be seen that the recurrent neural network that was suggested in
this thesis has a significantly higher success rate than the other two approaches. While it
stabilized the system with a 72.2% rate, the neural network with an external dynamic only
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Figure 3.14: Comparison of the recurrent neural network, used for the inverted pendulum on a
cart, with a feed-forward network and a feed-forward network with an external dynamic.

achieved a rate of 12.4% and the feed-forward network without external dynamic 11.1%.
In addition, the control performance of the successful recurrent neural networks were
significantly better than for the two approaches without an internal memory. The numeric
values were RMSD = 2.2 ∗ 10−1 for the recurrent neural network, RMSD = 4.0 ∗ 10−1

for the neural network with an external dynamic and RMSD = 6.8 ∗ 10−1 for the simple
feed-forward neural network. These results suggest that the internal memory, which is
introduced into the neural network by recurrent and arbitrary connections do significantly
improve the usability for control problems. The higher success rate indicates that the train-
ing process using such a neural network, will be considerably shorter as fewer random
initializations have to be performed to find a stable solution.
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3.5 Conclusions and contributions of this chapter

In this chapter we introduced the idea of using general dynamic neural networks for an
adaptive PID controller and compared those machine learning based controllers with stan-
dard PID controllers and adaptive control approaches [177]. The adaptive PID controller
proved to be superior in 13 out of 16 cases.

Via the extension by neural networks, the simple PID controller became a superior con-
troller, even when compared to state of the art model-based controllers. This type of
closed loop control approach does only require the same information that are provided to
the standard PID controller. Such a data driven control approach promises to address key
requirements in modern industry, such as disturbance rejection and adaption to chang-
ing system dynamics. It can be seen as a first step towards a machine learning based
approach to adaptive stochastic control.
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welding

As shown in the last chapter, extending existing control approaches can lead to superior
performance for the particular tasks. However, in industry there are several applications
where traditional control approaches cannot be applied in the first place. This might either
be due to a lack of sufficient mathematical models in traditional, model-based control the-
ory or due to a lack of a sufficient feedback signal for data-driven closed loop control.

For this kind of process, a completely new control approach is required. One prominent
example of such a process is laser welding and it will be used as an example of how to
conceptualize such a new control architecture.

4.1 The laser welding data set

Machine learning algorithms are mainly dependent on the provided data and its quality. As
the wrong choice of data might result in a biased learning result, it is essential to closely
inspect and evaluate the data set before any learning occurs. The laser welding data set
was created in an industrial laser welding environment to ensure real-world conditions.
The data is structured into different processes (P), each one containing numerous welds
(W). The processes are generated, using different experimental setup. For different pro-
cesses, the focal point or the setup of the camera might differ. Each individual welding
within a process contains between 1, 500 and 2, 500 images. For every weld there is a
stream of image data, recorded by a high-speed camera in QCIF resolution (176 × 144)
and the corresponding photo diode data available. Examples for the raw welding images
can be inspected in Figure 4.1.

For the experiments, the metal sheets were arranged in an overlap position, similar to real
car manufacturing processes. Similar to a car manufacturing, the welding pieces consisted
of zinc-coated steel. During the recording of the data, several typical problems were sim-
ulated, e.g. the laser power was changed during the welding, the speed of the laser was
altered, the metal sheets were polluted with grease or adhesive tape, etc. These are all
typical problems that might occur in industry due to inattentiveness or errors in the pro-
gramming of the laser. Every conducted weld was afterwards cut, treated with chemicals
and labeled in accordance to EN ISO 13919-1:1996 on a scale from 1 to 4. This ISO norm
labels welds depending on their specific properties and their possible use. While the label
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Beginning welding process Ongoing welding process Ending welding process

Figure 4.1: Raw images of the first weld of process 76.

4 indicates the ideal laser weld, denoted as B in the EN ISO 13919-1:1996, the label 1
implies a non-sufficient laser weld. The labels 2 and 3 mark the ISO classes D and C,
respectively.

For learning a representative problem, the data has to ideally be evenly distributed, other-
wise the result might be biased. Furthermore, the test set is supposed to be completely
independent from the training data to make sure the evaluation of the algorithms capability
for generalization is not compromised. For the available laser welding processes, the dis-
tribution of each class in the process can be seen in Table 4.1. As it can be seen, none of
the processes has a completely evenly distribution. Of the four processes, the four differ-
ent classes are best distributed in the process P77. In addition, this process contains the
most images, resulting not only in the most evenly distributed, but also the biggest data
set. Another issue arises from dependencies between the video data. When using video
stream data with a high sample rate, like the laser welding data, one has to be aware that
each image is not completely independent from the previous one, due to the short time
interval of only 0.001s between the images. This fact implies that a training/test split can
only occur in the weld level, as the interdependencies within one weld are to strong. There-
fore the cross-validation will be performed by dividing the data set into different welds and
assigning them to the training or test set respectively. While this split between training set
and test set is not ideal in comparison to standardized data sets like the MNIST one, given
this real data set the suggested split seems to be the most reasonable. A way to test the
explanatory power of the trained machine learning approaches would be to also test them
on a standard data set. As one of the challenges for the machine learning algorithms is
whether they are robust against variance within the data, in a final step certain degrees of
variance were re-introduces in a controlled way. Typical variance in laser welding consist
of rotational, translational and scaling variance. The natural variance between different
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processes was measured and different amounts of variance from 0% variance up to 200%
of the natural occurring variance was included in the data set.

Before feeding the images into the learning algorithm, they are further preprocessed. First,
a region of interest (ROI) of the size 105× 105 is applied. As the most information is con-
tained in the keyhole and the heat bed, while the surrounding metal, filling out the rest of
the image, is highly repetitive, this is a reasonable choice to decrease the amount of data
that has to be processed without losing information. In a second step, the remaining part
of the image is subsampled, resulting in a 32 × 32 images. It has been shown that this
representation still contains enough information [62].

Class 1 Class 2 Class 3 Class 4
Process 76 52,636 59,135 44,500 11,099
Process 77 83,493 36,085 49,772 22,421
Process 80 1,951 22,589 14,620 14,821
Process 81 6,343 33,827 10,859 11,608

Table 4.1: Label analysis of the complete data set in order to decide upon segmentation.

4.2 Intelligence-inspired control architecture

As explained in 2.1, a classical closed control loop is not always feasible for highly com-
plex and individual processes. Due to variance in the sensor data, introduced by (small)
changes in the sensor setup, e.g. translation, rotation or scaling of image data, a classic
closed loop control approach will most certainly fail due to the incompatibility of sensor
readings. Additional variance may be introduced due to changing environmental or ma-
terial conditions. Furthermore, for a variety of modern industrial processes, the output of
the system in terms of a reliable quality measure can not be provided. It is therefore not
possible to close the loop, which is a condition for automatically learning and controlling
such processes in a closed loop way.

To apply closed loop control to this kind of process, an intelligence-like architecture has
been created to imitate the way humans approach complex problems, which is depicted in
Figure 4.2. It is based on three principles, namely Representation, Prediction and Control.
In a first step the incoming sensor data stream is converted into (invariant) information, sim-
ilar to the information processing in the human visual cortex by using deep learning. These
invariant process information, called features, contain all necessary information about the
current process state and can then be used for further control steps. It further has been
shown that, once learned, a neural network can process the necessary amount of compu-
tation within the real-time requirements of the laser welding process [178].
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Figure 4.2: Intelligence inspired architecture [72].

In a second step, these features are then used to build up knowledge about the process
from previous learned samples. By using general value functions to learn predictions from
the extracted features, it is possible to make (temporal extended) predictions about the
true quality of the process and therefore create a systems output for the feedback loop of
a closed loop control approach.

When combined, the features and the predictions can later be used by a control approach,
e.g. a policy gradient reinforcement learning algorithm, to find the correct control signal in
order to apply the correct laser power to the system. These three building blocks together
now closed the control loop for a complex industrial process that could not be controlled
before.

They form a complete system that can represent its sensory inputs in an invariant way, build
up knowledge about the process to make predictions and then evaluate the current and
future performance in order to take the correct actions. This approach for an intelligence
inspired control architecture can be seen in Figure 4.2 [72]. Each individual step will be
further elaborated and evaluated in the following sections.

4.3 Feature extraction by deep learning

The ability to automatically extract the important information from data is a very impor-
tant step towards autonomous artificial intelligence [179]. There exist a wide variety of
established ideas for dimensionality reduction in order to transform raw sensor data into a
low-dimensional and transformation-invariant representation of the system’s state. Among
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all these techniques, deep learning [180] has demonstrated its capability to produce the
lowest classification error for various problems when used for feature extraction [98].

Deep learning was inspired by the way the visual cortex of mammals works [125]. In the
very first layer, the V1, simple edges and lines are detected, similar to Gabor filters [181].
These very basic features will be combined to geometric figures, like circles and rectangles
within the next hierarchical step, the V2. The higher within the visual cortex the informa-
tion is processed, the more abstract and complex the information will be represented -
until it finally will be represented in a very robust and compressed way by just a “simple”
word. This idea and structure was adapted in form of stacking neural network layers on
top of each other in order to learn features from features and therefore gain more abstract
representations[182]. Unfortunately while moving from a neural network with just one layer
to a stacked neural network, the performance decreases due to the optimization function
becoming non convex. In 2006, Geoffrey Hinton introduced the idea of Deep Learning to
overcome this problem [183]. The parameters will not simply be adapted by backpropaga-
tion through the whole network, but first in a layer-wise pretraining. By keeping the number
of hidden layers at the number of one during the training process, the training will more
likely result in a better performance. After the layer-wise training is eventually done, the
backpropagation algorithm is applied to the whole network again for a weight finetuning.

Ideally the approach used for the invariant perception has to be an unsupervised algo-
rithm. This way it can consistently learn and improve its performance without human
assistance. While neural networks are widely applied as classifiers in computer vision
[91, 92], they can also be used in an unsupervised manner to extract features by using the
autoencoder architecture [108]. Autoencoders have furthermore successfully competed
with most state-of-the art feature extraction techniques (e.g., principal component anal-
ysis, linear discriminant analysis) [183] or improved [184] or directly learned [185, 145]
complex (nonlinear) mappings for high-dimensional image data in combination with rein-
forcement learning. Autoencoders have demonstrated a remarkable capability of achieving
more general representations, which can lead to to more robustness against varying data
and overfitting [108]. Even better results are achieved by combining autoencoders with
deep learning.

The idea of an autoencoder with one hidden layer has already been introduced in sub-
section 2.4.1. It will now be extended by stacking several layers on top of each other and
generating a stacked autoencoder, as suggested by deep learning. The deep learning
training procedure for a stacked autoencoder can be seen in Figure 4.3. For the first step
of the training (a), an autoencoder with only one hidden layer is trained to generate the
original input from a corrupted input, denoted by the neurons with an “x”. Once the training
is complete (b) and the weights between the first and the second layer are fixed to a MLP.
A second training step (c), including a new hidden layer which is stacked on top of the first
one is performed. The inputs are corrupted with noise again and the neural network is
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Figure 4.3: Deep learning approach for a stacked denoising autoencoder.

supposed to learn to recreate the uncorrupted. When the training procedure is complete
(d), the learned weights for the new layer are fixed, creating a MLP with two hidden layers.
The training procedure is continued until all layers have been trained in a layer-wise pre-
training, followed by a backpropagation training for the whole architecture.

In this work, the performance of a stacked denoising autoencoder (SDAU) and a stacked
convolutional autoencoder (SCAU) will be compared. The stacked denoising autoencoder
and the stacked convolutional autoencoder follow the most common approaches of fully
connected and convolutional neural networks and are therefore a reasonable choice for
extracting invariant features in an unsupervised manner. To ensure comparability, both
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autoencoding approaches had the same constraints, regarding the time to find the final
architecture, the parameters and the computational power.

4.3.1 Stacked denoising autoencoder

Stacked denoising autoencoders combine the already introduced principles of fully con-
nected autoencoders and deep learning. They can be divided into two major groups. The
first are so called triangular autoencoders and the second group are rectangular shaped.
In a triangular autoencoder the layers decrease subsequently in size (number of neurons)
until the bottleneck and the increase again afterwards [183]. For a rectangular SDAE the
size of the hidden layers between the input layer and the bottleneck layer is kept constant
[186]. For the specific application of laser welding images, the experiments yielded a bet-
ter performance for rectangular shaped autoencoders. Different numbers of hidden layers
within the range of 2, 3, 4, 5, 6, 7 layers with an individual number of 1024, 2048, 4096 neu-
rons per layer were tested, resulting in a total of 28 different autoencoder configurations. In
accordance with the suggestions in [108] the first hidden layer increases in size, compared
to the input layer to allow a more general representation of the data. As sensor readings
and camera images in special are usually corrupted with noise, during the training Gaus-
sian white noise was applied, which is a common training method for stacked autoencoder
[187]. The noise was adapted in each layer following the equation

xcorrupted = x +N (0, [c ∗ σ(x)]2), (4.1)

where x is the input signal for each layer, σ(x) is the standard deviation of the input signal,
c is a scaling factor andN is a gaussian distribution. The factor c is set to 0.3 to avoid un-
reasonable high activation due to the corruption. The corruption rate was 100%, as noise
from sensor readings would also afflict the whole image. The final architecture consisted
of six fully connected layers in the encoder and the decoder respectively. In the bottleneck
the information was compressed to 16 features as this yielded the best results [67, 72].
The final architecture is depicted in Figure 4.4. The first layer (and also the following lay-
ers) increase in size to achieve a more general representation. There are 6 hidden layers
in the encoder until the data is fed into the bottleneck. The decoder mirrors the encoders
structure. Each hidden layer has 4096 neurons.

Parameter Value
Batch size 128 images
Activation function Rectified linear unit (ReLU) [118]
Linear decaying learning Rate 0.1 - 0.0001
Linear increasing momentum 0.9 - 0.999

Table 4.2: Common parameters for both autoencoder approaches.
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Figure 4.4: The final stacked denoising autoencoder architecture.

4.3.2 Stacked convolutional autoencoder

Stacked convolutional autoencoders employ both techniques from convolutional neural
networks and autoencoders. So far, stacked convolutional autoencoders have not been
widely applied to real-world problems. However, there exist a broad range of convolu-
tional neural networks for image classification and recommendations on how to structure
those networks, e.g. the “AlexNet” architecture [98]. For this thesis, several different com-
binations of convolutional and max pooling layers have been evaluated. An overview of
the tested specific architectures can be found in Table 4.3. Additional to the architectural
choices there are few parameters to decide upon in stacked convolutional autoencoders.
For the convolutional layers, the number and size of filters have to be decided. As the input
data has only a dimension of 32× 32 pixel, the size of the filters were decided to be 3× 3
with a stride of 1 and a padding of 1. While larger filters would consider to big amounts of
the input image at a time, smaller ones would be to fine to extract edges. For the number of
filters in a convolutional layer research indicates that it should increased by 150%− 250%
for the first layers and after that be kept constant [98, 181, 188]. For the max pooling layers,
three different pooling sizes—2 × 2, 3 × 3 and 4 × 4—were tested. Given the dimension
of the initial data it was to be expected that the bigger the max pooling size, the more
important information were to be lost. This was confirmed by the results and therefore
only a single max pooling layer of the size 2 × 2 was applied in the final architecture. As
suggested in [98], between the max pooling layer and the bottleneck layer, two fully con-
nected layers of the size 4096 were added. Out of the tested fully connected layer sizes,
i.e. {1024, 2048, 4096}, these yielded the best results. The final architecture is shown in
Figure 4.5. The decoder is not depicted, but resembles the mirrored encoder. The com-
plete final encoder consists of 5 convolutional layers with respectively 4, 8, 16, 16, 16 filters,
resulting in 60 filter of the size 3 × 3 in total. The convolutional layers are followed by a

80



4.3 Feature extraction by deep learning

Figure 4.5: The final stacked convolutional autoencoder architecture from the input till the bottle-
neck.

1 Pooling Layer 2 Pooling Layer 3 Pooling Layer
1 Convolutional Layer CP - -
2 Convolutional Layer CCP CPCP -
3 Convolutional Layer CCCP CCPCP CPCPCP
4 Convolutional Layer CCCCP CCPCCP -
5 Convolutional Layer CCCCCP CCCPCCP -
6 Convolutional Layer CCCCCCP CCCPCCCP CCPCCPCCP
7 Convolutional Layer CCCCCCCP - -

Table 4.3: Different evaluated SCAE architectures.

max pooling layer of the size 2 × 2. Immediately before the bottleneck there are 2 fully
connected layers with 4096 neurons each.

To give insights into the stacked convolutional autoencoder, the way the laser welding im-
age is processed during its course through the stacked convolutional autoencoder is shown
in Figure 4.6. The original image on the left is subsequently processed by the convolutional
layers and then the max pooling layer. The fully connected layers and the bottleneck are
left out in this visualization, as they can not be interpreted in a spatial structure, similar to
the rest. While the images are fed forward through the network, the dissimilarities between
the activation maps consistently increase. This can be interpreted as an increasing level
of specialization, as the images proceed within the layers. The distinction between the
representations is the highest in the layer, immediately before the bottleneck layer. This
hints to these layers having a focus on certain distinct but different aspects of the image.
Another interesting behaviour that can be seen on close observation regards the impact
of the max pooling layer. As the max pooling has a size of 2× 2, 75% of the input data is
lost. The previous convolutional layers find a way to preserve the important information by
shifting the activation maps by one pixel. The maps are therefore not aligned any more.
That way, all information is stored in different activation maps and can be passed through
the max pooling layer. A third interesting observation does regard the general activation
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Figure 4.6: Visualization of a welding image, processed by the convolutional stacked autoencoder.

of the convolutional filters. While most of them resemble the input image with focus on
different areas, some other seem to be mostly black on visual inspection. Further inspec-
tion of the corresponding weights and biases reveal that these maps are not inactive at all,
despite appearing to be so. The weights indicate that these filters are highly activated by
only a small amount of the input image. One could speculate that this behaviour leads to
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a focus on very distinct features of the input image, while most of the rest seems trivial to
this particular filter.

4.3.3 Results

For the invariant perception, two different autoencoding procedures are tested and evalu-
ated as well as an algorithm based on the raw image to provide a ground truth. The first
autoencoder is the fully connected stacked denoising autoencoder (SDAE) [108] and the
second is the stacked convolutional autoencoder (SCAE). To evaluate the performance of
the autoencoder two different measures will be considered. The first measure will be the
root mean squared error between the input image and the output image, which is also the
optimization target, according to the equation 2.5. However, as not reconstruction, but us-
ing the extracted features for classification is the final goal, the reconstruction error might
not yield the best error measure. Therefore the extracted features are further used to clas-
sify the image according to the introduced quality labels from EN ISO 13919-1:1996. This
will result in a F-score that will provide a measure for the amount of captured information.
The F-score will also be evaluated for artificial introduced variance to test the extracted
features for robustness.

The most natural way to evaluate the performance of an autoencoder is to evaluate its re-
construction error. A perfectly functioning autoencoder that is capable of compressing all
information within its bottleneck layer would have a zero reconstruction error. However, this
is not to be expected in a real-world application. The eventually achieved reconstruction
errors for both autoencoder approaches can be found in Table 4.4, while Figure 4.7 shows
its development over the training. For both feature extraction methods, the reconstruction
error shows a steady decline over the training time. It is noticeable, that reconstruction
error for both approaches is very small. However, the stacked convolutional autoencoder
performs slightly better in terms of reconstruction. This was to be expected, as convolu-
tional neural networks so far outperform fully connected neural networks in almost every
challenge.

Although very intuitive and easy to understand, the reconstruction error might not yield the
best measure in order to evaluate both approaches, given the amount of information within
the bottleneck layer to be the important feature. Therefore, the trained architecture were
used to extract their individual representation of the input image. These 16 features were
fed into a support vector machine and then used to classify the input image as one of the
true quality labels, given by EN ISO 13919-1:1996. Additionally, the uncompressed image
with a resolution of 32 × 32 is fed into a SVM classifier to be compared. The results can
be seen in Table 4.4.

A finding that might surprise at first is the fact that the pure image fed SVM demonstrates
the highest F-score, questioning the whole approach of using autoencoders at all. There
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are several reasons for this behaviour. As the most information about the laser welding
process can be found within the keyhole and the surrounding heat bed, the evaluation and
classification might not be as hard a problem as it was thought initially. Furthermore, all the
data in this process was recorded with a fixed, very precisely arranged set-up - minimizing
or even eliminating any variance. And lastly, as there are interdependencies between the
individual images, due to the high camera frame rate, the classification for these processes
might become easier for a given classifier. For the two autoencoders the results are as ex-
pected. The F-score for the SVM, using the stacked convolutional autoencoder features
is significantly higher than for the SVM, using stacked denoising autoencoder features.
The features from the SCAE fed SVM do not only start at a higher F -score, while training
proceeds, but also faster approach their maximum, resulting in a shorter training period,
as it can be seen in Figure 4.7. Using features from the stacked denoising autoencoder,
the F-score has its maximum after a very short training time to decline in performance
afterwards. As the F-score never reaches this exceptional performance again, it can be
seen as an outlier during the training period. The F-score for the SVM, using the stacked
convolutional autoencoder features on the other hand demonstrate a steady improvement
over the course of the training. This stable behaviour makes the training easier, as for this
type of behaviour the training can be performed without human supervision and just be
terminated after a certain time with the quasi-guarantee of achieving an adequate perfor-
mance.

Data format Best reconstruction error SVM F-score
raw images - 0.5895
SDAE features 0.0012367 0.4471
SCAE features 0.000886926 0.5677

Table 4.4: Reconstruction and classification performance for both autoencoding approaches.

While the experiments so far used a data set, in which the variance due to translation,
rotation and scaling effects has been eliminated, the invariance towards this variance is
of great importance. In a real-world laser welding application, certain degrees of variance
will be introduced, due to the manual setup process. Therefore, artificial variance with
specific amounts have been introduced to evaluate the approaches robustness against
those. To decide the amount of variance, the natural variance between the four available
processes has been investigated. This amount of variance was the chosen to be 100%.
The artificially introduced variance was scaled from 0% up to 200%. Each type of variance
has been tested individually and all three have been added together in a fourth test. Figure
4.8 shows the development of the F-score, dependent on the introduced variance. The F-
score for the raw image fed SVM started with the highest score, as already explained, but
drops very steep as soon as variance is introduced. Especially scaling and translational
variance have an enormous impact on the raw image fed SVM. As these types of variance

84



4.3 Feature extraction by deep learning

(a) SDAE training on P77 data set

(b) SCAE training on P77 data set

Figure 4.7: Reconstruction and Classification performance for the final autoencoder architectures
over the course of training.

do have a stronger impact on the keyhole, namely moving it or changing its size, the
assumption that this part is mainly responsible for the classification performance of the
raw image fed SVM is supported. Between the SDAE and the SCAE the initial advantage
of the SCAE over the SDAE is getting lost as the gap between both approaches narrow.
However, there is a clear hierarchy and the SCAE outperforms the SDAE in all test. For all
approaches, translational variance seems to be the biggest problem, as the performance
deteriorates the most.

85



4 Closing the loop for industrial laser welding

In addition it is interesting to note that the classification performance drops below 25%
when all three variance types are combined at a level of 200% of the natural occurring
variance. At this point, the classification is as bad as random guessing. Further inspection
reveals that this happens especially for the class 4, showing a recall value of only 0.07
(see Table 4.5). The same behaviour can be observed for the SVMs, using the raw input
image and the stacked denoising autoencoder features. A possible explanation would be
that the information to identify a class 4 laser weld is located in a very narrow region, e.g.
the keyhole. Due to the combination of exceptionally high levels of scaling and transla-
tional variance, this information is shifted out of the algorithms focus, rendering the correct
identification impossible.

To further evaluate the final autoencoder structures, they were also tested on a well known

class precision recall f-score support
1 0.24 0.52 0.33 3200
2 0.23 0.14 0.17 3200
3 0.26 0.30 0.28 3200
4 0.29 0.04 0.07 3200
avg / total 0.26 0.25 0.21 12800

Table 4.5: Class report of the SVM, using stacked convolutional autoencoder features at a variance
of 200%.

and carefully composed data set, namely the MNIST. This is a standard data set that is en-
sured to have independent samples and is therefore widely used for testing autoencoding
and classification algorithms. The tests were conducted to ensure the final results were
not achieved due to the dependencies between the samples in the laser welding data set.
The results can be found in Appendix B.

4.4 Creating a feedback signal via general value functions

The next step within the suggested architecture towards a closed loop control is the gath-
ering and usage of knowledge. As there is no quality signal available in a laser welding
process, this cannot be done by using a sensor, but has to be provided by an algorithmic
approach. Similar to the knowledge of human beings, first knowledge has to be learned
before it can be applied in form of intuition and predictions. This ability of making predic-
tions is considered to be one of the most important aspects of intelligence by researchers
and psychologists [189]. Humans do not only make conscious long time predictions about
their future on which they base important decisions like education, but also numerous un-
conscious short-time predictions about their environment. A term for the latter is nexting
[190]. The term defines a short time prediction about the environment. Humans use those
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(a) Rotational Variation

(c) Translational Variation

(b) Scale Variation

(d) All three types of Variation

Figure 4.8: Classification performance, dependent on variance within the welding images.

for example to anticipate the movement of surrounding objects, the course of a conversa-
tion or to anticipate the behaviour of other humans or animals.

A way to make use of this concept is to utilize reinforcement learning and specifically gen-
eral value functions [191]. It has been shown that this can be done for a short time horizon
and on multiple timescales in order to make predictions about the relation between sensor
values and specific signals of interest [192]. Following this approach process knowledge
can be built up, using a general value function to represent the quality of the laser weld-
ing process, based on the invariant features from the invariant representation, according
to Figure 4.2. As this approach is using function approximation in combination with gen-
eral value functions, it is computationally cheap and can be utilized to make multiple short
timescale predictions on different time scales. Predicting the quality of the laser welding
process at the very moment can be interpreted as adding a new sensor.
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This newly created signal can then be used in a closed loop way to adapt a control sig-
nal. However, the ability of predicting the future, i.e., mapping from current states to future
quality, can take closed loop control even further. If the quality of the process can be
successfully predicted, control signals that prevent changes in quality can be applied, in-
stead of just compensating them afterwards. The process quality works as a cumulant
signal [147] and will first be learned, in a way analogous to incremental supervised learn-
ing using least-mean squared updates during a training phase and later be predicted. As
ground truth in the training phase serves the expert evaluated and labeled laser welding
data set. The ground truth is the true quality and serves as a comparison measure in
order to evaluate the algorithms performance. The quality labels, ranging from 1 to 4,
in accordance to EN ISO 13919-1:1996 serve as cumulant signal, while the state will be
provided by the autoencoder extracted features. To the 16 features the 3 photo diode
values are added, resulting in a 19 dimensional state vector. The reinforcement learning
algorithm will then use the tile coded representation of the state to calculate its predicted
value, using the weight vector w . Together with the real value, provided by the cumulant,
the predicted value w>χ(s) and the discounted prediction for the following state γw>χ(s′),
the temporal-difference error δ is calculated, following line 4 in the Algorithm 3 in Table 4.6.
In the next step, the actual learning occurs by adapting the weights w in order to reduce
the td-error and move the prediction towards the td-fixpoint: r + γw>χ(s′) = w>χ(s). Dur-
ing the learning process, these steps are performed for the whole training set, resulting in
a weight vector w that becomes a compressed summary of the relationship between the
sensory input χ(s) and the quality process (cumulant signal, r). Once the learning process
has converged, i.e. all learnable information has been stored in the weight vector, it can be
used for online prediction of the cumulant [193], which is the process quality. This creates
a control signal for closed loop control.

4.4.1 Experimental details

Most sophisticated machine learning algorithms contain a number of meta-parameters
that have to be decided upon. The nexting approach at hand has been evaluated, us-
ing cross-validation in order to find the most appropriate parameters among the tested
one. The learning rate (step size) was chosen to be α = 0.1

m out of the tested learn-
ing rates α ∈ {0.1

m ; 0.2
m ; 0.4

m ; 0.8
m ; 1

m}, where m is the number of active tiles in the tile-
coded features representation χ(s). The trace decay parameter was set to λ = 0.6
with λ ∈ {0.6; 0.8; 0.9; 0.95; 0.995}. Another parameter that is closely related to the
tile coding itself is the memory size. It has to be chosen big enough in order to
contain all the information, but small enough to make generalization possible. This
is the classical problem between overfitting and generalization. Four different mem-
ory size were tested and it was eventually chosen to be n = 1, 000, 001, with n ∈
{1, 000, 001; 750, 001; 500, 001; 250, 001; 100, 001}, with n being the dimension of the
weight vector.
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Figure 4.9: Nexting quality prediction, using stacked denoising autoencoder features.

Algorithm 3 Nexting with Temporal-Difference Learning
1: initialize: w , ew , s
2: repeat:
3: observe r , s′

4: δ ← r + γw>χ(s′)− w>χ(s) // calculate the td-error, based on the current weights
5: ew ← γλew + χ(s) // update eligibility trace ew , based on decay and visited state
6: w ← w + αδew // update weight vector w , based on td-error
7: s ← s′ // make successor state the current state
w ∈ Rn: value function weight vector ew ∈ Rn: eligibility trace vector
s ∈ S ⊆ Rk : current state vector s′ ∈ S ⊆ Rk : successor state vector
r ∈ R: reward γ ∈ [0, 1]: discount factor
χ(s) ∈ Bn: tile coded state vector α ∈ (0, 2): learning rate
λ ∈ [0, 1]: eligibility trace decay factor

Table 4.6: Nexting algorithm for use in laser welding process quality prediction.

In the experiments, predictions on two time scales—the first one being the immediate qual-
ity and the second one being the quality five time steps in advance—were conducted and
evaluated. The predictions of the current quality corresponds to γ = 0. This results in a
slightly different equation for the td-fixpoint: r = w>χ(s), which is the mathematical expres-
sion for the prediction being the immediate quality signal. For evaluating the performance
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of this approach, two error measures are introduced. The first is the mean absolute error,
or distance error. It provides a measure for how far the algorithms prediction is off in terms
of the absolute difference between the prediction and the true quality. A second error for
the case of γ = 0 is the classification error in terms of the F score. It is calculated by
rounding the prediction to the next integer in order to match it to the quality classes, intro-
duced by the EN ISO 13919-1:1996. It has to be noted that the classification error only
makes sense for the prediction of the immediate quality as this classification task does
not apply for a temporal extended prediction, i.e. γ > 0. The performance of the nexting
approach for γ = 0 can be seen in Figure 4.9 for using stacked denoising autoencoder
features and in Figure 4.10, using the stacked convolutional autoencoder features, respec-
tively. The chosen example was a weld with a changing quality during the process, as this
turns out to be the most challenging prediction task, compared to a constant quality pre-
diction. The experiment was an overlap weld with a constant welding velocity of 3.5m/min
and a constant laser power of 2000W. The welding seam was intentionally contaminated
with grease, as it might happen due to negligence in a production environment. As the
laser hits the grease at frame 550, the grease starts to burn, resulting in a drop of quality
and an insufficient weld. The weld stays insufficient for the rest of the weld.

4.4.2 Results

The first subplot demonstrates the algorithms capability to learn the problem. The corre-
sponding weld was the only member of the training set and test set. While this experiment
does not offer any information about the generalisation ability of the nexting approach it is
an indicator whether the features contain enough information about the problem to learn
the dependency between the sensor data and the true quality at all. This is the first require-
ment in order to later learn from the whole data set and correctly predict unknown welds.
The features of the stacked denoising autoencoder do not provide sufficient information,
as the predicted quality by the nexting algorithm is not able to follow the true quality. The
stacked convolutional autoencoder features on the other hand result in a perfect tracking
of the true quality, when used as inputs.

The second subplot in both figures shows the testing performance after just one itera-
tion of leave one out cross validation, in which weld 99 was left out of the training set.
The algorithm has learned from just one iteration the very basic dependency between the
provided features and the quality of the laser weld. The distance error for the test, using
stacked denoising autoencoder features is 0.303, while the distance error for using stacked
convolutional autoencoder features is 0.299. It can be seen that the stacked convolutional
autoencoder features provide a better representation as the generalisation from the al-
ready seen welds to this unknown weld is better in terms of the error.

The third subplot shows the performance of a LOOCV for weld 99 after the learning has
converged. In Figure 4.10 the nexting algorithm fails to detect the acceptable welding
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quality from frame 1 to 550, where the grease is located, based on the stacked denoising
autoencoder features. This performance results in a distance error of 0.303 and a F score
of 0.7. The generalization, provided by these features seems to be limited for the weld 99,
although the general LOOCV distance error of the whole cross validation is comparably
low, being 0.019 and a F score of 0.924, as can be seen in Table 4.7. The prediction,
based on the stacked convolutional autoencoder on the other hand are performing better
in general, achieving a LOOCV distance error of 0.015 and F score of 0.928, in special on
weld 99 with a distance error of 0.015 and an F score of 1.

In the last subplot, the prediction for γ = 0.8 can be seen. This corresponds to a prediction
5 timesteps into the future. It is interesting to notice that while this task can be considered
more challenging than predicting the immediate reward, the prediction performance, using
stacked denoising autoencoder features, actually improves to a distance error of 0.026.
For the LOOCV the error is the same as for predicting the immediate quality. The perfor-
mance on weld 99 with the stacked convolutional autoencoder features decreases slightly
to 0.021, but stays better than for the competing approach. The LOOCV error increases
slightly to 0.018.

Summarizing the experiments, the nexting algorithm is capable of predicting the correct
quality with a very high precision for the immediate reward (γ = 0) and for the future
(γ = 0.8). The features, provided by the stacked convolutional autoencoder demonstrate
to be slightly more informative than the ones, extracted by the stacked denoising autoen-
coder.

Experiment SDAE features SCAE features
LOOCV distance error with γ = 0 0.019 0.015
LOOCV F score with γ = 0 0.924 0.928
LOOCV distance error with γ = 0.8 0.019 0.018

Table 4.7: Error measures for Nexting, using different features.

4.5 Control approach using reinforcement learning

The last step to enable a closed loop control approach is to include a decision taking algo-
rithm in order to create the actual control signal. Given the correct feedback signal there
exist a wide range of control approaches. However, most of them have the drawback of
requiring extensive human setup, mathematical models or are prone to unexpected dis-
turbances. As the suggested architecture is supposed to provide a high-quality welding
seam on its own, the controller has the be able to learn from experience and improve its
own performance. A machine learning algorithm that has shown promising results for this
type of tasks is actor-critic reinforcement learning (ACRL) algorithm [194], which will be
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Figure 4.10: Nexting quality prediction, using stacked convolutional autoencoder features.

used to generate the control signal within the architecture. An ACRL consists of two parts,
which are the actor and the critic. While the actor takes actions according to a learned
policy, the critic consistently evaluates these actions. Several characteristics make it es-
pecially useful for the control problem at hand. Actor-critic reinforcement learning algo-
rithms are parameter based, so experience the algorithm has already learned from does
not need to be stored, which indicates a constant memory requirement over time [195].
They can be updated within milliseconds and the computation can be done in a linear
incremental way. If combined with function approximation, actor-critic reinforcement learn-
ing algorithms scale very well to real-world problems, as it has been shown for different
applications [196, 197, 198, 143].

4.5.1 Control simulation details

The experiments with the controller were not possible to be conducted, using the real
laser welding station, due to time and cost issues. Therefore, a laser welding simulation,
based on [199] was programmed. It provides the welding seam depth based on the weld-
ing seam width, with a welding depth ranging from 10mm to 20mm and a welding seam
width of 1.2mm to 4.4mm. The possible applied laser power ranged from 1.5kW to 5kW.
Although being nonlinear, this preliminary welding simulator is far from being as complex
and challenging as a real laser welding process. Following the suggestions of industrial
laser welding experts, several changes and limitations were introduced into the simulation
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to design it more closely to a real laser welding process: To simulate noisy sensor read-
ings, white Gaussian noise with the standard deviation σ = 0.05 was applied to the welding
seam width, corresponding to the systems state.

Similar to real laser welding systems, the power cannot be changed by an arbitrary amount
within a short time horizon. The simulation was therefore restricted to adjusting the power
by 200W per control iteration, regardless of what laser power the control algorithm re-
quested. In a real laser welding process, a certain amount of the input energy is absorbed
by the surrounding metal, while welding. This will result in a slower physical response to
changes in the laser power. It was therefore reasonable to restrict the welding simulator
in a way that the welding width can only change by 0.3mm per iteration. This corresponds
to 10% of the complete welding seam width range. Together, these limitations and restric-
tions form a more accurate and challenging simulation for a laser welding process in order
to evaluate the capability of an actor-critic reinforcement learning algorithm to apply the
correct control signals.

The detailed code for the complete algorithms, including the decision making in the actor,
the evaluation step in the critic and the updates for all variables, can be found in Table 4.8.
The notation is the same as in the nexting algorithm in Table 4.6.

The control algorithm has only access to the laser welding systems laser power. As the
power is a continuous action space, a continuous-action actor–critic reinforcement learning
(ACRL), with a one dimensional action space is chosen, as outlined in [195, 143]. While
the system only allows laser powers within the range of [1.5, 5], the actor-critic does not
know about this constraint. The actions were mapped and clipped to the systems power
range to ensure only allowed laser power adjustments outside the actor-critic and without
feedback to the algorithm. It samples its actions from a Gaussian distribution N (µ,σ2)
with mean µ and standard deviation σ which results in a stochastic control policy π(a|s).
While the idea of using a stochastic policy for a control problem might be counter-intuitive
at first, it turns out to be a reliable approach, as the mean µ and standard deviation σ are
linear combinations of learned and adapted weight vector and the feature vector as shown
in Table 4.8, lines 3 and 4. Therefore the critic can adapt both parameters to adjust mean
and standard deviation to result in appropriate control signals. The standard deviation can
be interpreted as a measure for curiosity of the algorithm or in other words its likelihood
to explore. A large standard deviation will result in a very broad Gaussian distribution and
therefore a large number of possible chosen actions. Exploratory steps usually result in
more knowledge about the problem and are therefore necessary to find the appropriate
actions. On the other hand they will usually result in a poor long term performance, when
still chosen although the best action is already known. A good balance between explo-
ration and exploitation is to explore in the beginning and then consequently decrease the
exploration in favor of exploiting the gained knowledge. This is achieved by the critic eval-
uating the performance and adjusting the standard deviation to decrease, as soon as the
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4 Closing the loop for industrial laser welding

Algorithm 4 Continuous-Action Actor-Critic Reinforcement Learn-
ing [195]

1: initialize: wµ, wσ, v , eµ, eσ, ev , s
2: repeat:
3: µ← w>µ χ(s) // compute the current mean for the Gaussian distribu-

tion
4: σ ← exp[w>σ χ(s) + log(σc)] // compute the current std for the Gaussian distribution
5: a← N (µ,σ2) // randomly choose action from Gaussian distribution
6: take action a, observe r , s′

7: δ ← r + γv>χ(s′)− v>χ(s) // calculate the error, based on the current weights
8: ev ← λcev + χ(s) // update the eligibility trace ev , based on decay and

visited state
9: v ← v + αvδev // update the value function v , based on learning rate

and error
10: eµ ← λaeµ + (a− µ)χ(s) // update the eligibility trace eµ, based on decay and

visited state
11: wµ ← wµ + αwδeµ // update the weight vector wµ based on the td-error
12: eσ ← λaeσ + [(a − µ)2/σ2 −
1]χ(s)

// update the eligibility trace eσ, based on decay and
visited state

13: wσ ← wσ + αwδeσ // update the weight vector wσ based on the td-error
14: s ← s′ // make successor state the current state
µ ∈ R: Gaussian distribution mean σ ∈ R: Gaussian distribution std
σc ∈ R: starting value for σ a ∈ R: chosen action
wµ, wσ, v ∈ Rn: weight vector eµ, eσ, ev ∈ Rn: eligibility trace vectors
s ∈ S ⊆ Rk : current state vector s′ ∈ S ⊆ Rk : successor state vector
r ∈ R: reward γ ∈ [0, 1]: discount factor
χ(s) ∈ Bn: tile coded state vector αv ,αw ∈ (0, 2): learning rates
λa,λc ∈ [0, 1]: eligibility trace decay factors

Table 4.8: Actor-critic algorithm with continuous-valued output actions for controlling laser welding
power.

mean shifts towards the correct action. The result will be a narrow Gaussian distribution
(at some point only a single action will be chosen, as sigma approaches zero) and a very
steady performance. The performance is provided by a reward signal. This signal would
be provided by the nexting algorithm in the fully integrated system as shown in Figure 4.2.

In the following experiments, the reward signal is based on the absolute difference between
the requested welding depth and the actual welding depth. The reward signal has to be
bounded as the standard deviation is calculated, using an exponential function, see 4.8
line 4. An unbounded reward would result in large td-errors, which can potentially lead to
divergence. The reward is therefore calculated as r = −0.5 + 1/[1 + exp(|d∗ − d |)], where
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4.5 Control approach using reinforcement learning

d is the actual welding depth and d∗ is the desired welding depth. This function results in
a reward r ∈ [−0.5, 0], in which the reward of 0 is only given, when the desired welding
depth is achieved.

Similar to the nexting algorithm and the standard approach in reinforcement learning, each
learning iteration consists of a quadruple (s, a, r , s′) to be evaluated. The algorithm starts
in a state s, provided by the features, extracted from the sensor data or the welding seam
width in the simulator, chooses an action a from the set of actions, receives a reward r
for the transition into the successor state s′. The td-error is calculated and the weights
and traces are updated, resulting in an updated value function v and new parameters µ
and σ for the Gaussian distribution. In the experiments, the following learning parame-
ters were used: learning rate αv = 0.1

m , αw = 0.1
m , discount rate γ = 0.99, trace decay

parameters λa = 0.3, λc = 0.3 and sigma start σc = 1, where m is the number of active
tiles. The parameters were chosen by applying a grid search over the parameter space.
For the learning rates, a fully factorial experimental design with the possible choices of
αv ,αw ∈ {0.0.05

m ; 0.1
m ; 0.2

m ; 0.4
m ; 0.8

m }. The trace decay parameters were chosen from the fol-
lowing set: λa,λc ∈ {0; 0.2; 0.4; 0.6; 0.7; 0.8; 0.9; 0.925; 0.95; 0.975; 0.99}. σc = 1 was
chosen to be 1 to encourage the algorithm to explore in the first step, but does bias the
standard deviation in further steps, due to log(σc) = 0. The trace and actor weight param-
eters w were initialized to zero, as no prior knowledge was available or was wanted to be
included beforehand. This also results in a optimistic initialization, as the weight vector for
the value function v was initialized at the ideal value. An optimistic initialization will cause
the td-error around the correct welding depth to be small, which will result in only small
updates and therefore a faster convergence time. As an optimistic initialization does not
require knowledge about the process, this was a reasonable decision.

4.5.2 Results

The experiments were conducted for 30 independent runs to make sure the results are
reliable and do not depend on specific initialization. The results were averaged and il-
lustrated in Figure 4.11. The two topmost plots (a), (b) show the learned parameters for
the Gaussian distribution, with its output actions shown in plot (c). Plot (d) shows how
the algorithm performed over time in terms of reward. The plots (e) and (f) visualize the
achieved welding depth and distance to the desired welding depth. All of the trials con-
verged towards the true solution despite the introduced challenges, which indicates a very
robust approach. In the first line of Figure 4.11 the mean and the standard deviation for the
Gaussian distribution can be seen. Both values behave as expected for a learning system,
i.e. the mean shifts towards the correct value, while the standard deviation consequently
drops to narrow the Gaussian distribution in order to sample around the correct action. The
second line shows the applied laser power and the gained reward. The laser power in the
beginning exhibits the expected distribution. As soon as the learning starts, the range of
the applied power narrows down, until the algorithm eventually samples within a very close
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Figure 4.11: Average learning performance for the continuous actor-critic algorithm over 30 inde-
pendent runs [72].

range around the correct solution. The gained reward constantly improves over the time,
indicating the improving performance. The last line depicts the achieved welding depth
and the error the algorithm makes. While the welding depth stabilizes at the desired depth
of 18mm, the error converges towards zero. Eventually, the precision of the algorithm is
only dependent on the amount of noise. Although the learner had to cope with a noisy
and nontrivial system it reliably found the correct solution for the control problem and con-
verged towards it in all trials.

From a computational point of view the algorithm performed fast enough for real-time re-
quirements, which corresponded to 1ms. Each control and learning iteration for the actor-
critic reinforcement learning algorithm took 0.34 ms. The computer for the experiment
used an Intel Core i5-2400 with a 3.1GHz clock rate, 6MB of shared L3 cache, 4GB DDR3
RAM, and ran 64-bit Windows 7. The implementation was done in MATLAB, indicating
additional potential for faster computation, using an appropriate compiler language, e.g.
C++. The first publication of this experiment can be found in [72].
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4.6 Conclusions and contributions of this chapter

4.6 Conclusions and contributions of this chapter

In this chapter we introduced a new approach for industrial laser welding, based on a
unique combination of machine learning algorithms. For this purpose we created a new
laser welding data set. In this data set, the most common problems in industry were in-
cluded, such as different pollution of the welding seam and changing laser speed. This
data set can be used for further research in the field of applied machine learning for pro-
duction engineering processes.

For the open loop laser welding system, we introduced a new combination that resembled
important aspects of intelligence to provide an invariant perception, knowledge based pre-
dictions as a feedback signal and reinforcement learning based decision making for control
signals.

The proposed combination of deep learning and general value functions is the first com-
bination of these approaches. Due to the generic capability of these algorithms, they can
easily be transferred to any open loop process, promising the create a reliable feedback
signal to transform them into closed loop processes. The complete architecture is further-
more able to learn independently from human supervision. This ability is a step towards
autonomously learning industrial processes and yields great potential for production engi-
neering processes.
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5 Discussion

In this work, two different data-driven approaches to improve or enable closed loop control
have been shown. The first approach was to extend simple PID controllers by machine
learning, general dynamic neural networks in particular. This approach is suitable for con-
trol tasks that follow the typical closed loop setup, i.e. a set point and system feedback are
available. The approach can be seen as a stochastic adaptive control approach, yielding a
completely automated adaptive control algorithm that does not rely on models which need
to be provided by humans. It is therefore well suited not only for systems where distur-
bances can occur but also for systems that have changing system dynamics over time.
The second part introduces an intelligence-like architecture that employs and combines
several machine learning algorithms, including a combination of general value functions
and deep learning. This approach is suited to complex control systems that cannot be
sufficiently modeled and that may not have system feedback for closed loop control avail-
able. Both approaches and the experimental results evaluating those approaches will be
individually discussed in the remainder of this section.

Machine learning extended PID control: This chapter introduced a way of using general
dynamic neural networks to overcome the inherent limitations of PID controllers. As PID
controllers only have three parameters, which are usually fixed before handing the control
over, they do not perform well, except for in a very distinct working range. To enhance their
performance on complex and nonlinear systems, the general dynamic neural network was
allowed access to the PID parameters in order to adapt them during the running process.
The approach allows PID control to be applied successfully to a wide range of control prob-
lems, suggesting a significantly more precise and robust performance.

The suggested adaptive PID controller was implemented and tested on four different sys-
tems that present the most common and challenging problems in control theory, including
unstable and chaotic systems. Additionally, for each system, a standard PID controller and
an additional traditional model-based control approach were implemented as benchmarks.
All tests were run in four different configurations, including noise and disturbances to evalu-
ate robustness against noisy measurements and unforeseen influences on the processes.
The noise was Gaussian noise with a signal to noise ratio of SNR = 20. The disturbances
were gradually increased in strength, until all but one controller failed to compensate. This
resulted in a total of sixteen different experimental set ups that were controlled by three
controllers each.
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5 Discussion

For all the conducted experiments, the adaptive PID controller demonstrated superior per-
formance in comparison to the standard PID controller. Given the nature of the control
problems and the limited capabilities of a standard PID controller this result was to be ex-
pected. While the standard PID controller was able to control all presented problems, its
performance in terms of the root mean square error (RMSE) was worse than the perfor-
mance of the adaptive PID controller. Especially, when presented with the disturbances,
the standard PID controller had significant problems with each control task, completely fail-
ing to stabilize the inverted pendulum on a cart and the chaotic fluid system. Although the
adaptive PID controller changed the PID parameters only slightly to adapt to the changing
situations, is demonstrated a remarkable increase in performance. Additionally the con-
troller output was lower in comparison, sparing the actuators and consuming less energy.
The adaptive PID controller can be considered to be the superior control approach in terms
of performance, when directly compared to the standard PID controller.

Compared to standard, model-based adaptive control approaches, the adaptive PID con-
troller demonstrated superior behaviour in 13 out of 16 test scenarios. The smith predictor
achieved a better RMSE for the LTI system with a non-neglectable time delay in both
disturbed cases. This outcome can be expected, as the smith prediction has additional
knowledge about the exact time delay, dramatically reducing the complexity of the con-
trol task. For a real system the time delay can mostly not be assumed to be known. In
the experiments utilizing the thermal convection loop, the backstepping performs slightly
(8.9 ∗ 10−1 to 9.0 ∗ 10−1) better than the adaptive PID controller for the experiment with
noise but without disturbance. If the disturbance is applied, the backstepping fails to control
the system, entering a meta-stable state. Similarly, the LQ regulator for the inverted pen-
dulum on a cart fails to compensate for the disturbance, while the adaptive PID controller
manages to stabilize the system. Although the model-based approaches have access to
the complete knowledge of the test scenarios, in terms of the differential equations, the
data-driven adaptive PID controller manages to outperform them apart from the already
mentioned three cases. It achieves more stable and better qualitative results.

In an additional experiment, the influence of the arbitrary connections is evaluated, com-
paring the control performance with one simple feed-forward neural network and on neural
network with an external dynamic on the inverted pendulum on a cart. Not only does the
adaptive PID controller have a significant higher convergence rate (≈ 5.8 times) than the
neural network with an external dynamic, the converged solution also provides a superior
control performance (≈ 1.8 times). The distance in terms of convergence and perfor-
mance to the simple feed-forward neural network is even higher. It can be concluded that
the temporal information that is encoded in the recurrent connections yields a significant
improvement for closed loop process control.

One drawback of the suggested approach is still the implementation effort for the neural
networks and the missing guarantee for convergence. Although the neural network learns
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to minimize the error between the set point and the actual systems output, it can so far not
be guaranteed to converge to a stable and steady performance. However, for simple feed-
forward networks, such a guarantee was already formulated [200] so a similar analysis
will most certainly be provided for more complex neural networks in the near future. Fur-
thermore, finding the ideal network structure for the general dynamic neural network and
implementing it still requires efforts. One way to automatize this step would be to apply
genetic or evolutionary algorithms that search for an ideal network structure autonomously
[201, 202]. Unfortunately, it can not be verified that the neural net structure, eventually
chosen, is the best one for the problem at hand, but the conducted experiments indicate
only small performance fluctuations between the tested neural network structures. This
can be seen as an inherent flaw to the usage of neural networks. However, the better
control performance should outweigh the additional time and work.

As the neural networks only consist of a small number of neurons, the computation is not
expensive. Calculating a pass through such a network does only require one matrix-vector
multiplication for each layer i.e. three for the networks, used in this thesis. For the learn-
ing, the computations would double due to the backwards pass through the network. This
computation can easily be done within a short time, using a low cost small single-board
computer, like a Raspberry Pi.

New control architecture for production engineering: In this part, a new and unique
combination of deep learning and reinforcement learning has been shown to enable closed
loop control for processes without a feedback signal. The goal was to establish a closed
loop control for industrial laser welding in particular. This process can so far not be mod-
eled adequately by a mathematical model and in addition, the process quality can so far
not be measured by a sensor. Given the nature of the process and the various number of
changing environmental and material conditions, even a thorough in advance setup cannot
guarantee a steady performance. Therefore each laser weld has to be inspected manually
after the process, which is time and labour consuming. The suggested approach takes
care of these issues by establishing an intelligence-like architecture that is inspired by the
cognitive process of human beings. As described in Section 4.2 it consists of three parts:
representation via deep neural networks, prediction via general value functions and con-
trol via an actor-critic reinforcement learning algorithm. Such an integrated architecture is
well suited for a challenging and process with inherent changing conditions. While in this
study only the application of laser welding was considered, the framework itself is flexible
enough to be applied to other similar industrial processes as well.

Representation: For the extraction of invariant features, two autoencoder approaches, a
stacked denoising autoencoder and a stacked convolutional autoencoder, were tested and
evaluated. While both autoencoder converged to a reasonable reconstruction error, the
stacked convolutional autoencoder performed better. A more important performance mea-
sure however, is the amount of information within the extracted features and their mean-
ingfulness in terms of classification. To test this, the extracted features were fed into a
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support vector machine and used for classification. To establish a ground truth, the classi-
fication experiment was also conducted, using the raw images as input for a support vector
machine. While the classification with the pure image turned out to perform best on the
original data in terms of the F-score, this only holds for data without any variance. In a
real process environment however, this will not be the case. In the following experiments
variance, scaling from 0% up to 200% was introduced to evaluate the robustness against
translational, rotational and scaling variance of both autoencoders. The stacked convolu-
tional autoencoder performed significantly better than the stacked denoising autoencoder
and the raw images. However, all approaches are not immune to variance. The classifi-
cation performance in terms of the F-score decreased with increasing variance. When the
variance crosses a certain threshold of significantly more variance than naturally occurs
due to the setup process, the classification performance is no longer better than random
guessing. It is interesting to note that rotational variance has a smaller influence than
scaling or translation. The approach of using deep learning in order to extract robust fea-
tures does work for a level of variance that naturally occurs during laser welding. The
performance of the stacked autoencoders are as expected, the convolutional approach
outperforming the fully connected one. More sophisticated architectures might prove even
more robust to variance.

While training the autoencoder is a computational and time expensive procedure, it does
not have to be computed locally. The autoencoder can be trained offline, using graphics
card cluster and after learning convergence the weights can be copied to be used in a
local data processing machine. This has several advantages: Expensive hardware does
not have to be purchased, as computational time can be bought. In addition, using a
central learning unit yields the possibility of collecting data from numerous different laser
welding stations and therefore make use of all available data. Same goes for the learning
of the predictions. Therefore only a few computations that are not expensive have to be
performed locally. As a result, no expensive hardware has to be purchased to apply the
suggested approach.

Knowledge and Prediction: To enable a closed loop control approach, a signal, contain-
ing the current performance, is essential. To provide this quality measure a general value
temporal-difference approach, called nexting, was employed. The algorithm used the fea-
tures, extracted by neural networks, and predicted the immediate quality as well as the
quality within a short time horizon. The learned information is encoded in a 1000001 di-
mensional vector, only taking up a very small amount of memory but at the same time
being transferable to different laser welding processes. This vector is originally initialized
with all weights equal to 0. Therefore an unknown problem would be classified with a
quality label of 0 as well, numerically indicating a non correct classification and even more
important ensuring that no unknown low quality weld can accidentally be classified with a
high quality. The evaluation results indicated that the features from a stacked convolutional
autoencoder allowed a superior performance than the features from a stacked denoising
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autoencoder. Using the information within these features the algorithm was capable of not
only correctly predicting the quality of the laser welding process, but also to detect errors
during the process. An example was given for a grease contaminated welding seam. First,
the learnability was demonstrated, learning and testing in the same weld. In a second step
the algorithm was evaluated for making predictions about the immediate quality, using a
leave one out cross validation. The experiments were completed by using the algorithm to
predict the quality in the near future in a last experiment. This novel approach does not
only allow closed loop control for laser welding for the first time, but is also transferable to
different production processes, as general value functions can learn any learnable signal
and are therefore not limited to specific applications. As the predictions can be made on
different time scales and also into the future, corrective actions based on this signal could
be learned and taken before the quality actually decreases. This would result not in a tra-
ditional closed loop control but in am preemptive control loop.

For both autoencoder approaches, the correct prediction of process 100 failed. The
stacked denoising autoencoder additionally failed to correctly predict process 99. An in-
spection of the data set revealed that both processes were metal plates that have been
contaminated with grease. A visual inspection of the provided features at the contami-
nated spots did not reveal a significant change of those features although the stacked con-
volutional autoencoding features clearly contain these information for process 99, as the
nexting algorithm correctly predicts the change of quality for this process. The lack of gen-
eralization within the neural network provided features can most certainly come from a lack
of sufficient training information for this problem. If more similar contaminated workpieces
would be included in the training of the stacked autoencoders and the nexting algorithm as
well, the problem would most certainly be identified more reliably.

As the weights for the nexting prediction algorithm were initialized at a value of zero, with-
out learning the predicted quality would also correspond to zero. This initialization is vital
due to the descending order of quality labels. It ensures that no weld will be higher pre-
dicted than its actual quality, ensuring no low quality weld will be used for critical structures.
A weld that is represented by a completely unknown combination of features, provided by
the autoencoders would therefore also be predicted with a zero quality label, being a clear
indicator that human assistance is needed and additional training examples for this specific
example are required.

Control: The introduced and evaluated actor-critic reinforcement learning algorithm was
able to find the correct solution for the control problem within a short learning time. It fur-
thermore demonstrated a robust and reliable performance as all trials converged to the
same, correct solution. This is especially remarkable, as the algorithms choices were not
fed directly into the system, but limited due to the systems capabilities, without the rein-
forcement learning agent knowing. The actions were mapped and clipped without feed-
back about this restriction to the algorithm. Furthermore, restrictions about the change in
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the laser power and the systems behaviour were imposed, but not known to the control
algorithm. This particular result is a very strong indication that reinforcement learning is
capable of finding the correct policy, without the need of providing exact prior knowledge
about the process or the imposed restrictions. From a computational point of view the algo-
rithm performed fast enough for real-time requirements, which corresponded to 1ms. Each
control and learning iteration for the actor-critic reinforcement learning algorithm took 0.34
ms. The experiments so far were conducted using a simulated laser welding system, as no
control access to a real laser was available. Despite the efforts of improving this simulation
with the help of industrial laser welding experts, the algorithm could not demonstrate its
potential in an integrated laser welding architecture. This is a reasonable choice for a first
investigation into this problem. However, given correct information about the state, pro-
vided by a deep neural network and the correct information about the actual performance
by the nexting approach, the actor-critic reinforcement learning algorithm should be able
to perform as controller within the suggested architecture to establish closed loop control
for laser welding processes and other processes for which the architecture can be utilized.

Both approaches (the adaptive PID controller and the intelligent architecture) demonstrate
to outperform current control approaches or enable a closed loop control in the first place.
The experiments resemble real live conditions and test not only the ability to solve the
problem but also confront the control approaches with additional difficulties, e.g. unfore-
seen disturbances or extraordinary high variance in the setup. While the approaches are
not implemented in real environments and machines, they demonstrate promising results
for a variety of traditional and highly complex control problems.
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6 Conclusion

This experiments in this thesis were conducted to answer important questions in produc-
tion engineering. How can data driven machine learning approaches be used for adaptive
closed loop control and how well do they work? And furthermore: How can laser welding
as an open loop control system be closed with a machine learning based feedback signal?
The experiments demonstrated possible working solutions for the research questions and
evaluated their performance, either in simulation or on real-world data.

In summary, both approaches demonstrate the significant potential benefit that open and
closed loop control system’s can gain from applying machine learning. In the first part, a
general dynamic neural network approach has been utilized to learn a data-driven way of
adapting PID parameters for various control systems. Similar to a stochastic approach in
adaptive control, the adaptive PID tuner does not rely on additional information about the
system but only uses the same information as a regular PID controller does. This setting
renders expensive hardware changes unnecessary. The general dynamic neural network
does not only significantly improve the performance of the PID controller but also allows
the control algorithm to perform better than model-based adaptive control algorithms both
in terms of convergence and stability. This system has the capacity to deal with different
kinds of control challenges that represent typical control challenges. It is furthermore able
to deal with changing environmental conditions that might disturb the system. It there-
fore promises to address key requirements of modern control theory and modern industry.
It is furthermore an important step towards autonomous and self-learning processes. It
is the first combination of general dynamic neural networks and PID controller. As the
setup is very intuitive and analogous to the PID controller and furthermore all tested neural
networks demonstrated similar performance, no special expertise is necessary to include
general dynamic neural networks in the way described within this work. The usage of gen-
eral dynamic neural networks can therefore in fact be seen as a first step towards a unified
stochastic approach for adaptive control for PID control, as the approach significantly out-
performs the standard adaptive control algorithms in 13 out of 16 cases.

To the best of my knowledge, this work is the first usage of arbitrary general dynamic neural
networks for PID parameter tuning. It is furthermore unique in its comprehensive evalu-
ation and quantitative comparison, by using four completely different test systems that
represent typical and challenging control tasks, including several different nonlinearities,
instability, input delays or chaotic behavior.
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6 Conclusion

The second part of this thesis contains a machine learning based approach to allow closed
loop control for complex industrial systems, such as laser welding systems, that can so far
only be controlled in an open loop. By combining different algorithms from the field of deep
learning and reinforcement learning, an intelligent architecture is created that resembles
human capabilities to cope with this complex challenge. Deep autoencoders are used to
provide an invariant representation for the problem at hand in the form of low dimensional
features. Those features are used in a general value function algorithm to generate quality
predictions on different time scales. Such quality predictions can be used as a control
signal and therefore do not only allow closed loop control for the first time but also yield a
preemptive control due to their temporal extension. Together, the features and the predic-
tions allow closed loop control via a policy gradient reinforcement learning algorithm that
can learn to apply the correct power without human assistance.

The combination of those algorithms into one architecture is a novel approach that not only
is the first to use deep learning for laser welding but also to combine deep learning with
general value functions [72]. As all algorithms work in terms of goals instead of mech-
anism, the approach can easily be transferred and utilized to other open loop settings.
The data-driven learning and adapting empowers it to work in a self-learning and self-
optimizing way that can adapt to changing conditions. It therefore promises to address key
requirements of modern industry, in a way that our architecture combines fast learning with
the capability to work independently from human teaching. This makes the present thesis
an important contribution to not only industrial control engineering and adaptive control,
but also the study of intelligent systems and machine intelligence. It also demonstrates,
how industrial control approaches can benefit from the extension by machine learning al-
gorithms. Together, the introduced machine learning approaches yield great potential to
further automatize production engineering and dramatically reduce production costs.
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Appendix

A - Laser welding data sheets

As the machine learning algorithms in this thesis are mainly dependent on the provided
data, this section provides the data sheets for the laser welding process P77. All work-
pieces were manually inspected and for each one a cross section was performed to inves-
tigate its quality and assign it to a quality class after EN ISO 13919-1:1996. The results of
these investigations can be inspected in the following data sheets.
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Figure 6.3: P77 Datasheet III.
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Figure 6.4: P77 Datasheet IV.
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6 Appendix

Quality scale Data references

4 (perfect)

undercuts < 20% of the thickness from one metal sheet           

totaly emergent                                                                                  

no spleters                                                                                          

no holes and cuts                     

3 (good)

20% < undercuts < 30%                                                            

emergent > 50% from the total welding length                              

some spletters                                                                               

no holes and cuts                                          

2 (acceptable)

30% < undercuts < 50%                                                                       

emergent < 50% from the total welding length                                    

some spletters                                                                                           

holes and cuts < 20%                                                              

1 (unaceptable)

undercuts > 50%                                                                             

not emergent                                                                                  

lots of spletters                                                                                    

holes and cuts > 20%

Figure 6.5: P77 Datasheet V.
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B - Autoencoder results for MNIST data set

To ensure the autoencoder results to be not significantly influenced by the inherent de-
pendencies in the laser welding data set, the final stacked convolutional autoencoder has
also been applied to the MNIST data set. All hyper parameters were kept the same as
for the laser welding experiments, but only the data set was exchanged. In Figure 6.6
the filter reactions to a sample of the MNIST data set can be seen, as it passes through
the layers. The fully connected layers are not shown as their representation is not easily
interpretable in a spatial way. The convolutional filters behave similar to what has been
seen for the laser welding data, indicating that the performance is not mainly dependent
on the dependencies, inherent to the laser welding data. Figure 6.7 depicts the invariance

Figure 6.6: Visualization of a MNIST images, processed by the convolutional stacked autoencoder.
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6 Appendix

of the autoencoder extracted features from the MNIST data set for different kinds of vari-
ance. Similar to the laser welding data, the convolutional autoencoder performs best for
all different types of variance. As seen for the other data set, rotation seems to have the
least influence, while a combination of all three types of variance results in the worst clas-
sification performance. Nevertheless, these results proofs that the invariance, achieved by
the autoencoding approaches are not predominantly dependent on the data set.

Figure 6.7: Classification performance, dependent on variance within the mnist images.
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