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Abstract— Reliability and safety are extremely important for
autonomous driving in real traffic scenarios. However, due to
imperfect control and sensing, the actual state of the vehicle
cannot be flawlessly predicted or measured, but estimated with
uncertainty. Therefor, it is important to consider the execution
risk advance in motion planning for a solution with a high
success rate. The Space Exploration Guided Heuristic Search
(SEHS) method is extended to deal with perception and control
uncertainty in its two planning stages. First, the localization
uncertainty is evaluated with a simple probabilistic robot
model by the Space Exploration to find a path corridor with
sufficient localization quality for the desired motion accuracy.
Then, a trajectory controller is modeled with nonholonomic
kinematics for the belief propagation of a robot state with
primitive motions. The dynamic model and the control feedback
are approximated in a close neighborhood of the reference
trajectory. In this case, the Heuristic Search can propagate the
state uncertainty as a normal distribution in the search tree
to guarantee a high probability of safety and to achieve the
required final accuracy.

The belief-based SEHS is evaluated in several simulated
scenarios. Compared to the basic SEHS method that assumes
perfection, motions with higher execution successful rate are
produced, especially the human-like behaviors for driving
through narrow passages and precise parking. This confirms the
major contribution of this work in exploiting the uncertainties
for motion planning in autonomous driving.

I. INTRODUCTION

The primary setup of motion planning requires a model
of the robot kinematic and the knowledge about the environ-
ment. The former one defines the system state and dynamics,
as well as the control inputs. The latter one determines the
external constraints of the motion, for example to avoid
collisions with obstacles. However, in the real world, these
models are usually approximations with simplifications based
on certain assumptions of the real systems. The control inputs
are limited to a certain precision. The perception also suffers
from random noise. Especially in autonomous driving, the
sensing of the vehicle state depends on the ego location
and motion, e.g., the distance and orientation relative to
landmarks or the driving velocity and yaw-rate; the detection
of the obstacles relies upon the physical nature of the objects,
such as shape, material, and the environmental situation,
e.g., temperature or lighting condition. As a result, a motion
planned with ideal assumptions may fail in real life due to
these uncertainties.

Fig. 1 shows an example of a vehicle driving into a narrow
passage. In this case, the simple safety margin approach faces
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Fig. 1. Space exploration guided heuristic search regarding perception and
control uncertainties. A search tree (node in red, edge in blue) is constructed
following the path corridor (cyan circles) from the start (red vehicle) to the
goal (green vehicle). The red ellipses show the uncertainty at each node.

the contradiction that the vehicle may collide with obstacles
during execution when considering a small safety margin in
planning or that no solution can be found if the collision
margin is too conservative. The belief-based SEHS planner
on the other hand calculates the uncertainty at each node
of the search tree so that a more reliable solution is found.
The trajectory is safe with respect to imperfect sensing and
execution.

With imperfect control and sensing, the system takes input
ut to go from state xt−1 to xt with a certain probability. The
actual state xt cannot be detected perfectly, but observed as
a measurement yt with a certain confidence. This procedure
is modeled as the state transition function f and the mea-
surement function g in (1). The uncertainties are captured
with random noise �t and �t.

xt = f (xt−1, ut) + �t
yt = g(xt) + �t

(1)

The general idea to deal with this probabilistic model is
to update the knowledge about the conditional distribution
of the state p̂(xt) = p(xt|y1∶t, u1∶t), called belief [1], it-
eratively with the control and measurement inputs. As the
functions f and g are known, the state transition probability
p(xt|xt−1, ut) and the measurement probability p(yt|xt) are
available. In this case, the belief state can be calculated
with (2).

p̄(xt) = ∫ p(xt|xt−1, ut) p̂(xt−1) dxt−1

p̂(xt) = � p(yt|xt) p̄(xt)
(2)



The first equation, as motion update, gives the prior
estimation of the state distribution p̄(xt) = p(xt|y1∶t−1, u1∶t)
based on the control input ut and the previous belief p̂(xt−1).
The second equation, as measurement update, fuses the
measurement yt with the prediction using Bayes rules for the
posterior belief p̂(xt). � is a normalizing factor. Thus, starting
from the initial knowledge p̂(x0), the following belief state
can be calculated recursively.

At the planning time, the vehicle model is known. There-
fore, the uncertainty in the motion update can be modeled.
The prior knowledge about the environment provides infor-
mation about localization uncertainty regarding landmarks
or environment conditions. Apart from that, most of the
sensing uncertainty is available during the execution in
a limited sensing range, which can be considered by an
online adaptation or by replanning. The Space Exploration
Guided Heuristic Search (SEHS) approach [2], [3] provides
a general framework for motion planning in real-time. It is
able to handle realistic traffic scenarios [4], [5] and dynamic
environments [6]. The contribution of this paper is to extend
both the exploration and the search phases with belief state
updates to achieve robuster solutions for real-life autonomous
driving applications.

The chapters after the introduction are organized as fol-
lows: First, a short review about the related work is provided
in Section II along with the basic Kalman Filter techniques;
then Section III and IV elaborate the details about the belief
state calculation during Space Exploration and Heuristic
Search in the SEHS approach; after that, two examples are
presented to demonstrate the benefits of the belief-based
SEHS in Section V; finally, Section VI is the conclusion
of the research with future aspects.

II. RELATED WORK

The robotic perception and control uncertainties are well
introduced in [1] as probabilistic robotics. The sensing uncer-
tainty is also addressed in [7] and [8]. If the state transition
function and the measurement function are linear (3) and the
initial state and the noises are normal distributed, the belief
propagation can be solved with the Kalman Filter [9]. If the
system is non-linear, the Extended Kalman Filter (EKF) [10]
can be applied when the system dynamic can be locally
linearized.

xt = Atxt−1 + Btut + �t
yt = Ctxt + �t

(3)

The Kalman filter models the belief state with normal dis-
tributions and updates the mean and covariance recursively.
First, a prediction step (4) calculates the covariance of the
prior belief state �̄ regarding the control noise �t ∼ N(0,Rt).

�̄t = At�k−1 + Btut
�̄t = At�t−1A⊤t +Rt

(4)

Then, an update step (5) produces the covariance of the
posterior belief state � with the measurement noise �t ∼

N(0,Qt). K is the Kalman gain.

Kt = �̄tC⊤t (Ct�̄tC
⊤
t +Qt)−1

�t = �̄t +Kt(yt − Ct�̄t)
�t = �̄t −KtCt�̄t

(5)

However, as the measurement yt is not available during
the planning time, it is not possible to update the mean
�t. Instead, the distribution �t ∼ N(0,�t) is evaluated. A
linear feedback controller is employed for the control input
ut in (6) with (x̂t − x̃t) as the error. By substituting (6)
into (4) and (5), the measurement covariance �t can be
calculated with (7). The detailed derivation can be found
in [11] and [12]. Therefore, the combined covariance of the
belief state is �t +�t.

ut = −Dt(x̂t − x̃t) (6)

�t = (At − BtDt)�t−1(At − BtDt)⊤ +KtCt�̄t (7)

In [13], Lazanas and Latombe simplified the perception
and execution uncertainty with landmark regions where the
robot can perform perfect motion. A path can be produced
with back-projections [14].

In [8], the concept of information space (I-Space) was
introduced to model sensing problems, as the actual state is
usually unknown in practical motion planning, but observed
with sensing and prior-knowledge. In this case, planning is
done in I-Space with Partially Observable Markov Decision
Process (POMDP) by treating the information space as a
new kind of state space. However, due to state explosion,
only problems with a few state dimensions can be solved in
I-Space. A further idea is to simplify the original I-Space
to a derived I-Space and to exploit the problem-specific
knowledge to aid the planning. In [15], a technique called
Guided Cluster Sampling is introduced, which divides the
belief space into small sub-spaces, so that POMDP is more
efficient in these sub-spaces.

In [16], a utility roadmap planner is developed to find a
path that minimizes uncertainty and explores the workspace
when necessary. Van der Berg et al. [17] evaluated the
multiple results from a RRT planner with the LQG method
so that the most robust one could be selected. However, if the
uncertainty is considered during the planning, it is possible
to prune the unlikely branches to accelerate planning. Platt
et al. [12] assumed the maximum likelihood observation
to achieve deterministic belief-system dynamics. Thus, a
LQR method generated motion policies that punishes the
action which increases covariance or runs away from the
expectation.

A RRT in belief space was developed in [11], which
associated each vertex with beliefs, so that the optimal path
could be found regarding the probability of reaching the goal
without collision. [18] approached path planning in belief
space considering the motion uncertainty in state propagation
with sensing uncertainty for a success rate of the path.
However, the Monte-Carlo-based collision checks are very
time consuming.



The Space Exploration Guided Heuristic Search algorithm
solves the nonholonomic vehicle motion planning problem
in two steps. First, vehicle geometry and kinematics are sim-
plified to a holonomic point robot. Therefore, the workspace
can be efficiently evaluated with reachable sets for a path
corridor. Then, heuristic search is conducted with adapted
motion primitives following the path corridor. Compared
to the other search-based methods, the space exploration
provides knowledge about free space dimension and topology
for heuristics and space decomposition that boost the search
performance. In order to plan with uncertainties, the simple
space exploration can evaluate the localization in the early
phase of the planning. The heuristic search with motion prim-
itives enables belief updates by providing a simple trajectory
control model that can be linearized around the reference
path. Details are presented in the following sections.

III. SPACE EXPLORATION WITH PERCEPTION
UNCERTAINTIES

Most of the sensing uncertainty is only available after
performing the sensing action in a certain range. However,
some prior knowledge about perception is useful to estimate
the uncertainty during planning time, e.g., the position of
landmarks or the availability of external localization. Such
information can provide a rough idea about the localization
precision.

By applying the holonomic kinematic model with a point
robot, the motion uncertainty is modeled with a normal
distribution whose covariance is proportional to the moving
distance. After a motion update, a position measurement
is taken with a certain confidence of a normal distribution
around the real position. If the control and measurement
noise are independent and identically distributed in x and y
coordinates, the state uncertainty can be represented with a
single standard deviation value, i.e., the states are distributed
in a circle around the mean position. In this case, the
Kalman filter equations (4) (5) and (7) degenerate to a single
dimension version. Assuming in step t the motion noise
variance is �2u and the measurement noise variance is �2m,
the prediction is now (8) and the update is (9).

�̂2t = �2t−1 + �
2
u (8)

�2t =
�̂2t �

2
m

�̂2t + �2m
(9)

If the robot takes a feedback factor d for the position
control, regarding (7) the control uncertainty �2t can be
updated with (10). The total uncertainty is the sum of �2t
and �2t .

�2t = (1 − d)2�2t−1 +
�̂4t

�̂2t + �2m
(10)

The motion uncertainty remains constant with the same
step size, but the localization uncertainty is position de-
pendent. In this case, the robot achieves different state
uncertainties through different paths. Space exploration can
evaluate the path corridors to find an optimal one that safely
passes obstacles and confidently reaches the goal.

Algorithm 1: SpaceExploration(cstart , cgoal)

1 Sclosed ← ∅;
2 Sopen ← {cstart};
3 while Sopen ≠ ∅ do
4 ccurrent ← PopTop(Sopen);
5 if f [cgoal] < f [ccurrent] then
6 return success;

7 else if ! Exist(ccurrent , Sclosed) then
8 Sopen ← Expand(ccurrent) ∪ Sopen;
9 if Overlap(ccurrent , cgoal) then

10 if �current + �current ≤ �goal then
11 if f [ccurrent] < g[cgoal] then
12 g[cgoal] = f [ccurrent];
13 parent[cgoal] = ccurrent ;

14 Sclosed ← {ccurrent} ∪ Sclosed;

15 return failure;

Algorithm 1 shows the pseudo-code for the belief-based
space exploration. Circles are expanded in a best-first order
regarding a Euclidean distance heuristic that explores the free
workspace between start and goal in an efficient flood-like
manner. An open set Sopen and a closed set Sclosed are em-
ployed to manage the new circles and the already evaluated
ones. Details of the subroutines are explained in [3]. The
belief-based version holds the heuristic search costs (g, ℎ, f )
and the state variance (�, �) for each circle. In the function
Expand(ccurrent), the child circle uncertainty (�, �) is calcu-
lated with (8), (9) and (10). It is used as the safety margin
to calculate the circle radius. Function Exist(ccurrent , Sclosed)
identifies a redundant circle when its total uncertainty is
larger than a circle in the closed set that holds its center
point. Thus, a place could be explored several times as a
larger confidence can be achieved with a longer traveling
distance through another path. The goal is reached when the
total uncertainty is less than the desired value.

An example is shown in Fig. 2. The robot can localize
itself with �m = 0.5m in the whole area. There are some
additional landmarks in the yellow region, where the robot
can achieve a better localization with �m = 0.1m. The robot
motion has uncertainty �u = 0.2m. The feedback factor is
d = 0.5. The space exploration results show that when the
goal condition requires a greater confidence �goal = 0.27m,
the robot will take a longer path to go through the landmark
region where it can achieve better localization that reduces
the overall uncertainty as in Fig. 2(b). Otherwise, a shorter
path is taken as in Fig. 2(a).

IV. HEURISTIC SEARCH WITH CONTROL UNCERTAINTIES

In heuristic search, the sensing uncertainty is modeled
similar to space exploration with an additional orientation
measurement. The measurement noise is zero mean normal
distributed with location dependent covariance. The control



(a) Small goal confidence with �goal = 0.30m

(b) Large goal confidence with �goal = 0.27m

Fig. 2. Space Exploration with localization uncertainty. The exploration
result is a path corridor with cyan circles from start (red vehicle) to the
goal (green vehicle). Obstacles are gray. Localization is more accurate in
the yellow area.

uncertainty is modeled with more complex vehicle kinemat-
ics and feedback functions.

A. Motion Model with Uncertainty

A nonholonomic vehicle model (11) is applied to the
system dynamic. (x, y, �) are the position and orientation of
the vehicle. k is the curvature of the motion. The control
input is (v, !) for velocity and steering (curvature derivative).
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ẏ
�̇
k̇

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

cos � 0
sin � 0
k 0
0 1

⎞

⎟

⎟

⎟

⎠

(

v
!

)

(11)

This nonholonomic vehicle dynamic violates the Kalman
Filter conditions, i.e., although starting from a normal dis-
tributed belief state, the next state is not a normal dis-
tribution. Fig. 3 shows the propagation of state samples
with motion uncertainty following a curve trajectory. The
Gaussian noise of steering input results in a distribution in a
quasi-polar coordinate system as in Fig. 3(a). In this case, the
particle filter would be a better method to estimate the motion
uncertainty, but more time consuming and not applicable for

(a) Turning motion with feed-forward control

(b) Turning motion with feedback control

Fig. 3. Vehicle kinematics take control inputs with additive white Gaussian
noise (AWGN). The green line is the desired trajectory. The red dots are
200 samples following the trajectory. The orange ellipse is the estimated
covariance of the feedback controller.

online motion adaptation. By applying a feedback controller,
the samples are distributed closely around the reference
trajectory in Fig. 3(b). The orange ellipses are the estimated
covariance of normal distribution, which hold most of the
samples. The details about the uncertainty estimation are
introduced in the next subsection.

B. Trajectory Control based on Motion Primitives

As the state propagation is performed with primitive
motions, the control command of each step is known. In
this case, a controller can take the primitive motion as feed-
forward input with the feedback input from the errors as (12).
The first term on the right is the desired control input ut. The
second term is the feedback from the belief state x̂t with a
factor Dt. The last term �t is the additive control noise. The
control input is normal distributed if x̂t and �t are normal
random variables.

ût = ut −Dt(x̂t − xt) + �t (12)

Without loss of generality, the vehicle state is mapped to
a reference trajectory coordinate. A controller is designed
with feedback functions that determine the velocity input
based on the longitudinal error and steering input according
to the lateral error and orientation difference. If the controller
works well, the vehicle will follow the trajectory with a very
small deviation. In this case, the vehicle dynamic can be
approximated in a close range around the reference trajectory
in a small time step t (13). st is the moving distance and ut is



the curvature change in this time step. These control inputs
are generated by the controller.
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The motion in longitudinal direction can be approximated
with xt+1 = xt+ st when � is very small. The actual input ŝt
is calculated with (14). �s,t is assumed to be additive white
Gaussian noise (AWGN), which consists of base-level noise
and a part proportional to the control input. In this case,
the actual longitudinal state xt+1 is normal distributed if the
previous one is normal distributed.

ŝt = st − �(x̂t − xt) + �s,t (14)

The lateral motion is more complicated. The curvature
cannot affect the lateral position or orientation alone, but
with the longitudinal input as (15) when �t is very small.
Here, st is a known desired value and kt is a variable with
uncertainty.

�t+1 = �t + stkt

yt+1 = yt + st�t +
s2t
2
kt

(15)

The steering input is calculated with (16). The desired
input ut is always zero in the reference trajectory coordinate
system. The actual curvature k̂t can be calculated with (17).

ût = ut − �(ŷt − yt) − (�̂t − �t) + �u,t (16)

k̂t = kt − �(ŷt − yt) − (�̂t − �t) + �u,t (17)

�u,t is assumed to be AWGN. According to (15) and (17),
the actual curvature kt+1, lateral state yt+1, and orientation
�t+1 are normal distributed if the previous ones are normal
distributed.

Therefore, if only (x, y, �) is considered as state variable
and (s, k) as the control inputs, the vehicle dynamics can
be linearized with the matrices (18) for the EKF approach.
The motion update and measurement update are calculated
with (4) and (5). The control uncertainty is updated with (7).
As this model is in the reference state frame, the covariance
matrix � and � should be rotated to the next reference state
frame for the next step. The measurement covariance should
be mapped to the reference frame.
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C. Heuristic Search Algorithm

Algorithm 2 is the pseudo code for the belief-based
heuristic search. Vehicle states are expanded with primitive
motions following the path corridor from the space explo-
ration, which build a search tree for a valid motion from

Algorithm 2: HeuristicSearch({ci}, q⃗start , q⃗goal)

1 Sclosed ← ∅;
2 Sopen ← {q⃗start};
3 while Sopen ≠ ∅ do
4 q⃗current ← PopTop(Sopen);
5 ccurrent ← MapNearest(q⃗current);
6 if f [q⃗goal] < f [q⃗current] then
7 if �current +�current ≤ �goal then
8 return success;

9 else if ! Exist(q⃗current , ccurrent , Sclosed) then
10 Sopen ← Expand(q⃗current , ccurrent) ∪ Sopen;
11 if ℎ[q⃗current] < Rgoal then
12 GoalExpand(q⃗current , q⃗goal);

13 Sclosed ← {q⃗current} ∪ Sclosed;

14 return failure;

start to goal. Each node holds the belief state (�,�). During
expansion, they are updated iteratively with (4) (5) and (7).
The total uncertainty � +� of the belief state is considered
as collision margin in the collision checks. The function
Exist(q⃗current , ccurrent , Sclosed) resolves the nodes not only by
the vehicle state, but also the uncertainty � + �. The goal
is reached when the final uncertainty is less than the desired
goal uncertainty.

Fig. 4 compares the planning results from a normal
heuristic search method and the belief-based heuristic search
in the same narrow passage scenario as in Fig. 1. The
normal heuristic search returns a shorter path with sharp
turns that may cause collision in Fig. 4(a). The planner
finds a trajectory that makes the s-turn at the very beginning
followed by a rather straight path segment to the goal in
Fig. 4(b). Therefore, the vehicle fits better into the narrow
passage even with execution and localization errors. The
search tree is visualized with the uncertainty ellipse for each
node in Fig. 1. Only nodes with small uncertainties can be
generated in the narrow passage.

V. EXPERIMENTS

The belief-based SEHS is evaluated in two further exper-
iments, and compared with the basic SEHS method. The
experiments are conducted on a computer with an Intel
Core i7 2.90GHz processor and 8GB RAM running Linux.

A. Precise Parking

In this scenario, the vehicle should park in a position
with high precision for a special purpose, e.g., inductive
charging. Fig. 5 shows the setup with a marker (yellow
circle) placed ahead of the goal position. The vehicle
has a 20◦ field of view (light yellow cone) in a 15m
range to detect the marker. If the marker is in sight,
the vehicle can localize itself with extra high precision
Q1 = diag(0.002 5m2, 0.002 5m2, 0.000 1 rad2). Otherwise,
the baseline localization has a large uncertainty Q0 =



(a) Normal heuristic search

(b) Belief-based heuristic search

Fig. 4. Heuristic search in a narrow passage scenario. The result trajectory
is demonstrated with rectangles including the safety margin for uncertainties.

diag(0.25m2, 0.25m2, 0.04 rad2). The control factor and mo-
tion noise factor is the same as in the previous experiment.

The normal version of SEHS plans a direct path with
shortest distance. However, due to the narrow field of view,
the vehicle cannot see the marker during most of the parking
motion. The final accuracy is (0.041m, 0.102m) in (x, y) di-
rections. The belief-based SEHS uses larger steering motion
at the beginning, which greatly reduce the bearing angle to
the marker, so that the vehicle can detect it during the rest of
the motion to the final position. In Fig. 5(b), the point cloud
start to converge when the marker is in sight. As a result, it
achieves a better accuracy of (0.025m, 0.055m) for the final
position.

B. Multiple Passages

Fig. 6 shows a scenario where the vehicle should travel
through one of the passages to reach the goal position.
The passage above is wider than the other two. The pas-
sage below is in a precise localization region with Q1 =
diag(0.01m2, 0.01m2, 0.002 5 rad2). The localization else-
where is worse with Q0 = diag(0.25m2, 0.25m2, 0.01 rad2).
The control factor is (0.5, 0.2, 0.2) for (�, �, ). The motion
noise has a factor (0.1, 0.2) to the desired control input.

The normal SEHS method just selects the nearest passage
in the middle for the shortest path length in Fig. 6(a).
However, the passage is too narrow and may cause collisions
with respect to the localization and control uncertainties.
The belief-based SEHS finds a more robust solution in
the wider passage in Fig. 6(b). If a small final uncertainty

(a) Normal SEHS solution with low final accuracy

(b) Belief-based SEHS solution with high final accuracy

Fig. 5. Precise parking to the goal position with the help of a localization
marker (yellow circle). The detection range of the vehicle is illustrated as
the light yellow cone.

(0.062 5m2, 0.062 5m2, 0.002 7 rad2) is required, the belief-
based SEHS takes the longest path with better localization
to achieve the goal accuracy in Fig. 6(c).

Table I compares the planning performance between SEHS
and the belief-based version in this scenario. The space
exploration are all under 10ms. The normal SEHS is one
magnitude faster, however the result is riskier. The belief-
based SEHS can plan a safer motion in a 100ms time frame,
which could still be used to adapt the motion in real-time.

VI. CONCLUSION AND FUTURE WORK

In the real world, the sensing and control of a mobile robot
or autonomous vehicle are imperfect. The uncertainty will

TABLE I
RESULTS OF MULTIPLE PASSAGE SCENARIO

Fig. SE Time (ms) SE Nodes HS Time (ms) HS Nodes

6(a) 1 658 16 1822
6(b) 4 1531 129 8022
6(c) 6 1736 159 10424



(a) Normal SEHS planner selects the nearest pas-
sage

(b) Belief-based SEHS planner selects the widest
passage

(c) Belief-based SEHS planner selects the passage
with better localization for better goal confidence.

Fig. 6. Multiple passages are possible between the start (green vehicle) and the goal (red vehicle). The localization is precise in the yellow region.

affect the performance of robot motion, cause collision, or
fail to reach the desired goal state. Therefore, it is necessary
to consider the stochastic properties of the system and the
risk of the path in planning time. Instead of the problems with
rather simple dynamics, this paper studies the detailed vehi-
cle kinematics with a trajectory controller in reference path
coordinates. The system dynamics is locally approximated
to facilitate belief update with the EKF approach. Therefore,
the basic SEHS method is extended to evaluate localization
uncertainty in the space exploration phase and further on
with control uncertainty during the heuristic search proce-
dure. The belief-based SEHS can produce safer solutions
with an adaptive safety margin. Furthermore, it can provide
the guarantee that the goal can be reached with a certain
confidence or accuracy. The motion planning problem with
uncertainty can be solved in a rather short time frame with
SEHS, which is important for online motion adaptations.

There are still some open points for future study. First,
the measurement update is performed with the assumption
that the perceptions are independent. However, if two sensing
actions are done close together in space and time, they usu-
ally correlate. In this case, the second measurement does not
provide as much information as the first one. Second, when
the heuristic search algorithm takes the traveling distance as
cost in SEHS, the state uncertainty does not directly generate
reward until it reaches the goal or moves close to obstacles.
A better heuristic may also consider to evaluate the state with
less uncertainty first. Another important assumption for the
EKF in belief-based SEHS is that the vehicle should follow
the trajectory with very little deviations. Otherwise, the
precondition of EKF is violated and the belief propagation
must be done with a Monte-Carlo method, which is time
consuming.
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