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Abstract— A hybrid planning approach is developed for
intersection assistance systems up to fully automated driving
through intersections. Route planning, task planning and mo-
tion planning methods are integrated in a hierarchical planning
framework to deal with the various information and constraints
in different layers. The navigation agent provides a global
driving direction at an intersection according to the selected
route. The task planner decides a sequence of actions to
accomplish the driving mission taking into consideration traffic
rules and semantic conditions. The motion planner generates
detailed trajectories to execute the tasks. Meanwhile, the task
sequence and the motion trajectory are verified periodically
against the actual traffic situation, and re-planning is triggered
when necessary in the motion planning or task planning level.

The hierarchical planning framework is evaluated in several
intersection scenarios. The result shows that it can handle the
complex planning problems with dynamic objects and provide
a modular solution for automated driving that can be easily
extended for different traffic rules and applications.

I. INTRODUCTION

Intersections and road junctions are the most vulnerable
locations for traffic accidents. According to the data from
the Federal Statistical Office of Germany [1], about 47.5%
of the traffic accidents in Germany in 2013 occurred at
intersections or junctions. The statistics from the US [2] show
that 40% of the traffic accidents in the United States in 2008
occurred at intersections of which 84.9% caused by incorrect
judgement or decision-making of the driver. Therefore, an
advanced driver assistance system, which helps the driver
to process traffic information and make the right decision
at intersections, or drives the vehicle autonomously through
them, could greatly improve traffic safety and efficiency.

A typical intersection scenario is illustrated in Fig. 1.
The ego vehicle is going to turn left at the intersection
with traffic lights, oncoming traffic and pedestrians. In order
to make the right decision, different types of information
should be evaluated. The information can be obtained with
the latest sensor technology. For example, the vehicle loca-
tion is available from the navigation system to activate the
assistance function when an intersection is approaching. The
traffic signal recognition, vehicle and pedestrian detection
and blind spot surveillance provide a live environment model
at the intersection. The information can also come from
communication. The infrastructure can maintain a global
view of the intersection traffic through external sensors,
and inform the relevant vehicles via car-to-infrastructure
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Fig. 1. An sample intersection scenario: an intersection (light yellow)
with two adjacent lanes (light grey) in each direction. The ego vehicle is
going to turn left from the start position (red vehicle) to the goal position
(green vehicle). Two pedestrians (yellow circles) and another vehicle (yellow
rectangle) are crossing the intersection at the same time. The lines of small
cones indicate their direction. Traffic light signals control the traffic.

communication. Vehicles can talk to each other through
short-range networks to share information or settle conflicts.
These powerful subsystems provide the essential inputs to
realize an intersection assistance system.

The information and knowledge gained from the subsys-
tems is heterogeneous. While some is discrete and symbolic,
such as the topology of the roads, traffic lights and signs,
some is continuous and concrete, such as the position and
speed of objects, geometric shape of traffic lanes and junc-
tions. This paper proposes a hierarchical planning architec-
ture that processes the inputs in three levels: a route planning
layer decides the driving direction at an intersection in
regards to the road network; a task planning layer refines the
driving maneuver to a sequence of tasks concerning traffic
signals and rules; and a motion planning layer produces
trajectories for each task considering the vehicle kinematics
and the obstacle constraints. These three types of planning
agents are integrated in a Motion Planning Engine, which
enables real-time planning, verification and re-planning to
guarantee adaptability and safety of the driving behavior.

II. RELATED WORK

In addition to guiding navigation, the database of a road
network [3], [4], [5] can contain information such as traffic
signs, traffic lights, and attributes of the traffic lanes. In this
case, an autonomous driving agent can reason about not only
the topology, but also the priorities of the lane connections
in an intersection. A smart intersection can be equipped with



different types of well-positioned sensors to extend the range
of the vehicle on-board sensors [6], [7], [8]. The detected
vehicles and pedestrians can be mapped to the lanes and
connections as a dynamic environment model.

Several approaches have been developed to improve the
traffic at intersections using this traffic information. A dis-
tributed solution is introduced in [9], which realizes col-
lision avoidance at intersections using a semaphore-based
algorithm. Autonomous Intersection Management (AIM) is
a multi-agent approach presented in [10], which models and
solves the intersection traffic as a grid reservation problem. In
this case, an intersection for fully automated vehicles is de-
signed without any traffic lights or stop signs. The Advanced
Traffic Management Systems (ATMS) from [11] relies on
the communication between vehicles and infrastructure for a
coordinated driving behavior at the intersection. The Spatio-
Temporal Intersection Protocols (STIP) [12] suggested that
several vehicles can negotiate through the vehicle-to-vehicle
communication to avoid collisions at intersections. Such a
system requires all traffic partners to be sufficient smart with
a reliable short range communication.

In comparison to the collaboration solutions, the intersec-
tion assistant from [13] employs only the on-board sensors to
acquire live information, i.e., omnidirectional cameras for a
panoramic view and active cameras for inspection of smaller
areas. The prior knowledge of traffic signals and intersection
geometry is obtained via a digital map and GPS. In the
DARPA Urban Challenge, intelligent vehicles must handle
the intersections by themselves. For example, the BOSS [14]
has a behavior-based planning architecture to assess the
precedence at intersections and plan a yield maneuver when
necessary. Such approaches are preferable in the near future
as they can function at normal intersections with common
traffic members in the absence of C2X communication or
smart infrastructure support.

The Space Exploration Guided Heuristic Search [15] is
a search-based motion planning method for nonholonomic
vehicles. It can be combined with driving task planning [16]
in a hybrid planning architecture that deals with symbolic
planning problems and motion planning problems at different
levels. The contribution of this paper is the integration
of a hierarchical planning system in a Motion Planning
Engine [17] to achieve real-time planning for an intersection
assistance system.

III. SYSTEM ARCHITECTURE

The hybrid planning system is illustrated in Fig. 2. The
planning is conducted at three layers in such a way that
each level extracts knowledge from the according inputs
to guide the planning in the next level. A lower level can
feedback to a higher level in order to adapt the plan for
local changes. The route planning is a general navigation
function which determines the waypoints in a road network
for a driving destination. The waypoints are passed over to
task planning as the milestones. The task planner forward
propagates the vehicle states with defined tasks to reach the
next milestone. The result of task planning is a sequence of

driving tasks, each of which serves as a problem definition
for the motion planner, which selects a suitable algorithm to
plan the motion for each task. Thus, the system can produce
complex automated driving behaviors with a decision process
similar to a human driver: The route planning is the long-
term strategy related to the route to be taken. The task
planning is the short-term decision such as overtaking or
lane switching. The motion planning produces the real-time
control commands to perform the driving maneuver.
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Fig. 2. Hybrid planning system architecture: The modules (rectangles) in
the middle are the intelligent agents that do the planning at different levels.
The components (ellipses) on the left are the perception inputs that provide
real-time information for the planning. The domain specific knowledge
(circle) is encapsulated as the driving tasks definition on the right.

The planners in different layers work in different time
frames as they solve problems in different scopes. The route
planner reacts in seconds; the task planner updates tasks
every second; the motion planner produces the trajectory in
100ms cycles. Motion Planning Engine runs each planning
procedure in two modes: planning and verifying as in Fig. 3.
If the initial planning is successful, the engine starts verifying
the result repeatedly until the goal is reached. If the result
is invalid due to changes in the environment, re-planning is
activated to update the solution. A fallback solution is always
available so that the vehicle can be brought to a safe state
when no solution is found.
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Fig. 3. Motion Planning Engine state diagram

In the prototype implementation, the navigation is sim-
ulated with a dummy module. The driving task planning
is introduced in [16]. The motion planning is the Space-
Time Exploration Guided Heuristic Search method in [18].
Both approaches are extended for the intersection assistance
system with details provided in the following sections.



IV. TASK PLANNING

According to the domain definition in [16], the world
of driving tasks is modelled with places and objects. The
places are Lane and Junction. An intersection is defined as a
junction with the adjacent lanes. The objects are Vehicle and
Traffic Signal. A traffic light is defined as a traffic signal with
two states: green and red. The planning agent is assumed
to know the state and timing of the light. A traffic light is
located at the end of the inbound lanes and mapped to the
corresponding connections in the junctions. A new object
type Pedestrian is introduced to model the people crossing
the road. A pedestrian is placed at the beginning or end of the
lanes with a time window to cross the road. Thus, the task
planner can reason about whether a lane is free of pedestrians
in a certain time slot.

The basic driving tasks are defined in [16], such as
FollowLane, which requires the lane segment to be free in
a certain time duration. Now, the free condition should also
contain the predicate that no pedestrian is crossing the road
during that period. The ChangeLane task is the simplest one
to drive through an intersection when the given connection
is clear and the lanes are free. If a traffic light exists, a
green signal is required to perform this task. Furthermore,
no traffic from a prioritized connection can occupy the
intersection. However, in some cases, the ego vehicle needs
to proceed half way to the middle of an intersection and
wait for the coming traffic to pass. If there are pedestrians
crossing the road, the vehicle should also wait until the
target lane is free. Otherwise it may be stopped in the
middle of the oncoming traffic and block the intersection.
Therefore, two additional tasks: PrepareChangeLane and
ProceedChangeLane are defined in order to divide a change
lane maneuver into two parts. Furthermore, a Wait task is
defined to pause the vehicle for a given time duration when
it stops. Details of the three new tasks are as follows.

1) PrepareChangeLane(V,L1, L2, J): Vehicle V pre-
pares changing from lane L1 to lane L2 at junction J .
Preconditions: Vehicle V should be close to the end
of lane L1 within a range dchange. Lane L1 and L2 are
connected in junction J . The end of lane L1 should be
free during the task duration tchange. l1 is the length
of lane L1. t0 is the start time. The final time is
tc = t0 + tchange.

In(V,L1, l1 − dchange, l1) ∧ Clear(L1, L2, J)

∧ Free(L1, l1 − dchange, l1, t0, tc)

Effects: Vehicle V stops at the middle of connection
C1,2 from lane L1 to lane L2 at time tc.
Cost: The task duration tchange.

2) ProceedChangeLane(V,L1, L2, J): Vehicle V pro-
ceeds changing from lane L1 to lane L2 at junction J .
Preconditions: Vehicle V is at the middle of the
connection C1,2 from lane L1 to lane L2. The begin of
lane L2 should be free during the task duration tchange.

t0 is the start time. The final time is tc = t0 + tchange.

At(V,C1,2) ∧ Clear(L1, L2, J)

∧ Free(L2, 0, dchange, t0, tc)

Effects: Vehicle V is on lane L2 with distance dchange
at time tc.
Cost: The task duration tchange.

3) Wait(V, P, twait): Vehicle V waits at position P for a
time duration twait.
Preconditions: Vehicle V stops at position P . The
position P should be free during the task duration
twait. t0 is the start time. The final time is tw =
t0 + twait.

At(V, P ) ∧ Free(P, t0, tw)

Effects: Vehicle V stops at position P at time tw.
Cost: The task duration twait.

When traffic lights exist, the clear to drive condition in
PrepareChangeLane only considers the light signal while
the one in ProceedChangeLane also counts the oncoming
traffic from the conflicting lanes. A direct ChangeLane task
is always preferred as it requires less time for the same
maneuver.

The task planning follows a graph search approach. It
constructs a graph with nodes as the world states and edges
as the tasks changing the states. The time cost of the tasks is
used to calculate the actual cost to reach a node, while the
heuristic cost reaching the goal state from a node is estimated
based on the route in the street network. The planner repeats
selecting the node with the least total cost to extend the graph
until the goal condition is reached with a smaller actual cost
than the total cost of every leaf node. Details of the search
algorithm are presented in [16].

V. MOTION PLANNING

The motion planning is performed in the Space Explo-
ration Guided Heuristic Search (SEHS) framework. The
SEHS approaches a motion planning problem in two steps.
First, it explores the free space with circles to extract the
space topology and dimension knowledge. Then, it takes the
circle path corridor as heuristics and forward propagates the
vehicle states towards the goal. Details can be found in [15],
[18]. Experiments show that this approach outperforms the
sampling based methods and the grid-based A* search algo-
rithms because its step and resolution adaptation balances the
search efficiency and completeness. However, in a practical
automated driving scenario, the vehicle motion has additional
space and time constraints. The motion is not necessarily
permitted in all the physically available space. Neither is
all the kinematic possible motion suitable for a driving
maneuver. Furthermore, the motion planning and adaptation
should happen in real-time. The time requirement is closely
related to the constraints. If the scope of the problem and the
choice of motion primitives are appropriately selected, the
planning algorithm can return a result much faster, especially
in negative situations.



The domain knowledge from task planning can help to
decide the context of the motion planning problem of each
driving task. First, the start state is decided regarding the
current trajectory or the goal state of the previous task. The
goal state is selected based on the task, e.g., a ChangeLane
task ends at the beginning of the target lane, while a
PrepareChangeLane task suggests a pose in the middle of the
intersection. Second, the motion is bounded in a region where
the driving maneuver is allowed. For instance, a ChangeLane
task should be inside the intersection. The planning region
can be further shrunk to the exact part of the intersection.
Finally, a certain subset of the primitive motions are chosen
for the specific task. For example, in a FollowLane task,
the vehicle should not completely steer away from the lane
direction whereas during parking, complex maneuvering is
allowed. A ChangeLane task provides clues for the steering
direction, which is useful to adapt the vehicle motion [17].

In this case, task planning resolves a complex motion plan-
ning scenario in a “divide and conquer” manner. It is much
more efficient to solve the sub-problem for each task than
dealing with the whole motion planning problem. Especially
when semantic information is involved, such as traffic rules,
it is difficult to handle the logical conditions directly with
motion planning. With task planning, however, the domain
logic can be tackled at a higher level. Fig. 4 compares
the results from the single motion planning and the hybrid
approach with task planning. Given all the information about
the obstacles, a STEHS algorithm plans a direct motion
in Fig. 4(a), which ignores the light signal and the lane
borders, and cuts through the intersection for the shortest
path. In contrast, the hybrid planning method produces more
human-like behaviors waiting for the vehicle and pedestrian
to pass, and stays in the lanes. The details of the scenario
are explained in Section VI.

As an extended version of SEHS, Space-Time Exploration
Guided Heuristic Search is applied to solve the motion
planning problem. Because it considers dynamic obstacles
and plans in time domain, STEHS is suitable for driving
maneuvers with moving vehicles and pedestrians. The Mo-
tion Planning Engine in [17] continuously verifies the current
motion with the real-time sensing inputs and adapts the
trajectory when necessary. Thus, if there is an abrupt change
in the environment that cannot be processed by the task
planner in time, the motion planning layer can still react
in a much shorter time.

VI. EXPERIMENTS

The hierarchical planning architecture with Motion Plan-
ning Engine for the intersection assistance system is eval-
uated in two scenarios with increasing complexity. The
ego vehicle knows the roadmap at the intersection from
the navigation module. The traffic signs and traffic lights
are detected or communicated to it. It is firstly supposed
that the ego vehicle is also aware of the traffic around
the intersection, including vehicles and pedestrians. All the
algorithms are implemented in C++ and tested on a Linux
machine with a 2.9GHz CPU and 8GB RAM.

(a) Direct motion planning with STEHS

(b) Combining task planning and motion planning

Fig. 4. Comparing direct motion planning and hybrid planning with task
planning. The cyan circles are the path corridor from space exploration,
while the green line is the final trajectory from heuristic search.

A. Straight cross with priority to the right

Fig. 5 shows a simple example of driving through an
intersection without any traffic lights, signs, or crosswalks
for pedestrians. The ego vehicle is driving straight across
the intersection while another vehicle is coming from the
street to its right. Instead of planning a collision avoidance
maneuver as in [18], the ego vehicle should behave ade-
quately regarding the priority to the right rule. According to
German driving laws [19], traffic coming from the right has
the right-of-way in this situation. Therefore, the ego vehicle
should give way at the intersection. Three kinds of tasks are
relevant to plan the driving-through-intersection maneuver:
FollowLane, ChangeLane, and Wait.

As demonstrated in Fig. 5, four tasks are planned and
executed sequentially. First, the vehicle approaches the junc-
tion before the stop line with a FollowLane task in Fig. 5(a).
Then, it stops and waits for the other vehicle to pass through
the junction with a Wait task in Fig. 5(b). Then, the junction
is clear and a motion is planned within the junction area
to reach a position at the beginning of the target lane for a
ChangeLane task in Fig. 5(c). Finally, the vehicle proceeds
to the goal position with a FollowLane task. The whole
process is rather straightforward for the task planning. The



(a) Approach the intersection (b) Wait at the intersection (c) Cross the intersection

Fig. 5. Yielding and driving through an intersection: The light yellow area is the intersection. The light grey stripes are the adjacent lanes. The dark grey
is the non-drivable area. The yellow rectangle is a vehicle coming from the right. The red vehicle shows the start position, while the green one the goal
position. The internal task goals are in blue. The cyan circles are the space exploration result. The green lines are the motion planning result from the
heuristic search.

sub-problems are trivial for the motion planner to solve.
However, the plan above is generated with the assumption

that the ego vehicle knows the traffic situation at the inter-
section in advance. If the planning agent is not aware of the
coming vehicle, but perceives the environment in a limited
sensing range, the problem is a little more interesting. In
this case, the task planner should be aware that anything
can happen beyond the sensing range. The vehicle should be
able to stop or avoid the collision just in case. Therefore,
a better strategy is to adapt the speed of the FollowLane
task so that the vehicle has enough time to react to the
oncoming traffic. In this case, the task planner initially
plans a three-step maneuver to cross the intersection without
waiting. Later, after the other vehicle is detected, the task
planner recognizes that the precondition of the ChangeLane
task is violated. The tasks are re-planned with a Wait task
before the ChangeLane. The speed of the first FollowLane
task should be decided depending on the sensing ability and
the information availability at the intersection. As a result,
the vehicle behaves similar to a human driver who would
proceed carefully when the traffic situation is unclear at the
intersection.

For such a simple intersection scenario, it is also possible
to model driving behavior with a state machine. However,
in order to deal with various intersection types, the state
machine must have the complexity to handle all possible
combinations. Furthermore, if a decision should be made
not only based on the current system state but also on the
possible evolution of the environment, the state transition
becomes much more sophisticated. The advantage of task
planning is that the states and conditions are modeled implic-
itly in the domain definition. With a simple search method,
the planner can evaluate all the task combinations for an
optimal solution. Moreover, it is easy to extend and modify
a subset of tasks for new rules and scenarios without touching
the planner. The following experiment is a complicated
intersection scenario, which can be solved by extending the
task definition used in the current simple example.

B. Left turn with traffic

The example in Fig. 1 is a complex intersection scenario.
The ego vehicle is going to turn left at an intersection with

traffic lights. Another vehicle is coming from the opposite
direction across the junction. Meanwhile, two pedestrians are
crossing the road into which the vehicle is planning to turn.
The proper driving behavior is turning left when the light
is green. In addition, the vehicle should wait half-way into
the intersection until the oncoming vehicle and the pedestri-
ans have passed. In this case, the PrepareChangeLane and
ProceedChangeLane tasks come into play.

The result is demonstrated in Fig. 6. The ego vehicle first
approaches the intersection and stops for the red light in
Fig. 6(a) and Fig. 6(b). When the light turns green, the
vehicle still cannot directly turn left because the connection
is occupied by the oncoming vehicle who has priority. The
vehicle can either wait or move to a middle position to
prepare for turning. In Fig. 6(c), the vehicle chooses the
second option because it saves time by performing the first
half of the turning maneuver. After the other vehicle passes
by, the ego vehicle remains waiting until the two pedestrians
finish crossing the road in Fig. 6(d) and proceeds to turn left
in Fig. 6(e). Finally, the vehicle finishes the turning maneuver
and goes on driving to the goal in Fig. 6(f).

In this example, the task planner remains unchanged. The
domain definition is extended with two tasks. The traffic
light and pedestrians are added to the preconditions of the
tasks. The task planner then automatically generates a more
complicated behavior than in the previous example. Without
explicitly coding the situations in a state machine, the planner
can decide to perform a left turn in two steps or with a single
maneuver. The modified domain definition is backwards
compatible, which also works with the previous example.
Thus, a knowledge base can be built up in an incremental
way for automated driving.

It is important for the task planning that the intentions
of other traffic participants can be predicted. The more
certain about the environment, the more reliable results
can be obtained. However, the task planning can also deal
with uncertainties and perception limitations by checking the
possible situations or even generating a complete solution.

VII. CONCLUSION AND FUTURE WORK

An intersection assistance system is proposed in this work.
By combining task planning and motion planning in a hierar-



(a) Approach and stop before the intersection (b) Wait for the green traffic light (c) Prepare for lane changing by moving into the
middle of the intersection

(d) Wait for the pedestrian to pass (e) Proceed turning left (f) Continue driving to the goal

Fig. 6. Turning left at an intersection with traffic lights, oncoming traffic and pedestrians: The light yellow area is the intersection. The light grey stripes
are the adjacent lanes. The dark grey is the non-drivable area. The red and green dots show the traffic light state. The yellow rectangle is an oncoming
vehicle. The yellow circles are two pedestrians crossing the road. The red vehicle shows the start position, while the green one the goal position. The
internal task goals are in blue. The cyan circles are the space exploration result. The green lines are the motion planning result from the heuristic search.

chical planning architecture, the system can handle semantic
information and motion planning problems in different lay-
ers. Thus, a complex intersection scenario can be divided
into sequential tasks, each of which derives a moderate
motion planning problem that can be efficiently solved by the
STEHS algorithm. As future work, this framework is going
to be tested in more intersection scenarios with randomly
generated traffic or real datasets. Further studies are planned
with imperfect prior knowledge or perception errors in order
to achieve robustness and safety in all circumstances.
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