Noname manuscript No.
(will be inserted by the editor)

Heavy tailed spatial autocorrelation models

A. Kreuzer - T. Erhardt - T. Nagler - C. Czado

Received: date / Accepted: date

Abstract Appropriate models for spatially autocorrelated data account for the fact that
observations are not independent. A popular model in this context is the simultaneous
autoregressive (SAR) model that allows to model the spatial dependency structure
of a response variable and the influence of covariates on this variable. This spatial
regression model assumes that the error follows a normal distribution. Since this
assumption cannot always be met, it is necessary to extend this model to other error
distributions. We propose the extension to the 7-distribution, the tSAR model, which
can be used if we observe heavy tails in the fitted residuals of the SAR model. In
addition, we provide a variance estimate that considers the spatial structure of a
variable which helps us to specify inputs for our models. An extended simulation
study shows that the proposed estimators of the tSAR model are performing well and
in an application to fire danger we see that the tSAR model is a notable improvement
compared to the SAR model.

Keywords Simultaneous autoregressive model - Spatial dependence - Fire danger -
Heavy tails

1 Introduction

“Coincidence of value similarity with locational similarity" is how Anselin and Bera
(1998) loosely describe spatial autocorrelation. For illustration we show the Burning
Index, a measure for fire danger, for different locations in the US (Figure 1). We observe
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Fig. 1 Spatial distribution of the Burning Index visualized on the map. We have one observation for every
location. The cutpoints of the symbol key are the 20%, 40%, 60% and 80% quantile of the variable.

that similar values cluster together, indicating (positive) spatial autocorrelation. Spatial
autocorrelation occurs in many different types of data, for example in climate (fire
danger, droughts) or economics (unemployment) data. This is why statistical methods
that can deal with spatial autocorrelation are of high interest. A first contribution to this
field was made by Whittle (1954) who provided a framework for stochastic processes
on the plane. Whittle introduced autoregressive models in two dimensions. Following
this idea, Ord (1975) proposed the simultaneous autoregressive (SAR) model. This
model not only allows us to capture the spatial dependency structure of a response
variable but also the influence of covariates on this variable. This property of the
SAR model makes it very attractive and led to extensions. Pace and Barry (1997)
studied how sparse spatial weight matrices can speed up the estimation procedure and
De Oliveira and Song (2008) provide a Bayesian framework for the SAR model.

This work was motivated by an attempt to investigate the influence of weather
conditions on fire danger in the continental US while accounting for spatial depen-
dency. Data are obtained from the Wildland Fire Assessment System (WFAS). WFAS
generates maps for observed and forecasted weather, fuel moisture and fire danger in
the US. The SAR model is based on the assumption that the error follows a normal
distribution, an assumption that cannot always be met. In our fitted model we observed
residuals having heavier tails than the normal distribution. This is why we propose an
extension of the SAR model to allow for a ¢-distributed error. We call this the tSAR
model (Section 3.1). We show how parameters of the tSAR model can be estimated
and how the fitted model can be used for prediction (Sections 3.2 and 3.3). Further-
more, we provide a spatially varying variance estimate which serves as input to our
models (Section 3.4). In a simulation study (Section 4), we show that our proposed
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estimators for the tSAR model are reasonable and the application (Section 5) shows
that the model fit can improve on the standard SAR model.

2 The SAR model

We recall some basic concepts related to the SAR model. First, we need to be able
to determine how certain locations are related to each other, i.e., if there is a link
between them and, if so, how strong the connection is. This is usually encoded in
a proximity matrix (cf.,Waller and Gotway (2004) p.224 ff.). For n spatial locations
I, ..., I, the proximity matrix is a n X n matrix where entry (i, j) indicates if and how
strong location /; is connected to location /;. A value of zero means that there is no
connection from /; to ;. The diagonal of the proximity matrix is set to zero such that
a location is not connected to itself. Since this matrix does not need to be symmetric,
we need to distinguish between a connection from /; to /; and a connection from /; to
l;.

For a given proximity matrix W with entries w;;, we can introduce the neighbors of
location /; which are all locations /; such that w;; # 0. We denote the set of neighbors
of location i by N, i.e.,

N;={je {1,...1’!}|W[j # 0}.

We now provide two possible choices of proximity matrices. In both cases we
measure the strength of a connection by the inverse distance between the two corre-
sponding locations. We will use the great circle distance (cf.,Banerjee (2005)) since
our locations are specified as longitude/latitude pairs. For the first example we con-
sider NV;(k) the set of the k nearest neighbors of [;, i.e., the k locations (excluding ;)
which have the smallest distance to /;. Let d;; denote the distance between /; and /;.
For given k, entry (i, j) of the non-standardized nearest neighbors based proximity
matrix W is then given by

bl

— 7 if ; € Ni(k)
J 0, else

and entry (i, j) of the row-standardized nearest neighbors based proximity matrix W
is defined by

_ Wi
Wij .= —,
Wi,
where w; = 27:1 W;j is the sum of the i-th row of the non-standardized nearest

neighbors based proximity matrix W. By defining the proximity matrix in this way,
we ensure that each location has the same number of neighbors. This is no longer the
case if we use a radius to determine the set of neighbors.
For a given radius r, entry (i, j) of the non-standardized radius based proximity
matrix W is given by
~ L, ifi# jandd; <r
Wij = L .
0, else
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As above, entry (i, j) of the row-standardized radius based proximity matrix W is then
defined by
W,‘j = _—

Wi,
where w; = Z;’zl W;j. A property of radius based proximity matrices is that they
are symmetric which is not necessarily the case for nearest neighbors based proxim-
ity matrices. In the following, we will always consider row-standardized proximity
matrices and refer to them as nearest neighbors matrices and radius matrices. This
standardization allows us to consider a sum of values weighted with the corresponding
entry of the proximity matrix as a weighted average, as we will see in the SAR model.

In the following we recall the classical SAR model. By Z ~ N, (i, S) we denote
that the random vector Z follows a n-dimensional normal distribution with mean
vector p and covariance matrix S.

Definition 1 (The simultaneous autoregressive (SAR) model) LetY = (Y3, ..., Y,)T
be a n-dimensional random vector and x;i, ..., x;p for i = 1,...,n associated (fixed)
covariates. Let X € R™”*D be a matrix whose i-th row is given by x!,x =
(1, xi1y eues x,-p)T. Then the simultaneous autoregressive (SAR) model is given by

Y =XB+AW(Y - XB) +¢, (1)

where A € R is the spatial dependence parameter, W € R is the proximity matrix
and B € RP*! the unknown regression coefficient. For the error vector we assume
€ ~ N,(0,0%X,) with a positive scalar o and a diagonal matrix £, € R™" with
positive diagonal entries.

So the components of € are independent. In our application we need to allow for

different error variances per location, i.e., the diagonal elements of X are different.

Furthermore we require the matrix (I, —AW) to be a full rank matrix in order to ensure

that the model is well defined. Here I,, denotes the n-dimensional identity matrix.
Writing Equation (1) component wise yields

Y, = BTxi +4 Z W,‘j(Y}' —,Bij) +¢fori=1,..,n )

JEN;

where N; = {j|w;; # 0} is the set of neighbors of the i-th location as introduced
above. As we consider row-standardized proximity matrices, the spatial component
A% jen, wij (Y — BT x;) can be seen as a weighted average of the deviations of the
linear component X B from the response in the corresponding neighborhood. In the
following, we always assume the proximity matrix W and X to be known.

2.1 Parameter estimation

We briefly sketch how parameters of the SAR model are estimated since we want
to approach parameter estimation for the tSAR model in similar way. We follow
Waller and Gotway (2004) (p. 365 ff.) who estimate the parameters by maximizing
the likelihood. This requires to derive the likelihood function.



Heavy tailed spatial autocorrelation models 5

Since (I, —AW) has full rank, we can express Equation (1) as
Y =, -AW) e + XB, 3)

and we see that Y (as a full rank linear transformation of a normal random variable)
is normally distributed with mean vector

E(Y) = XB,

and covariance matrix
Var(Y) = o2Zy(Q), 4

where Zy (1) := (I, =AW) '@, —AWT)~1.
Knowing the distribution of ¥, the likelihood function for (8, o, 1) for given data
y is given by
LB, o, D) :=(21)"% det[o* Ly (D)]"2-
1 1 _
exp | =50 = XB) —Ey (70 - XB)|

Instead of maximizing the likelihood function, we minimize the negative log-likelihood
given by

f(y |ﬂ’ g, A) = IOg [L(y |ﬂ’ g, /l)]

1
:g log(27) + glog(az) + 5 log {detlZy ()]} + 5)

N %(y — X Iy Ny - XB).
g

Estimation of B

First we take the derivative of £(y|B, o, 1) with respect to B and set it to zero. Solving
for B yields the (on A dependent) estimate

B = [XTEy () X] 7 XTEy (1), ©6)

which is independent of . For fixed 4, this is the generalized least squares estimator
for B (cf.,Kariya and Kurata (2004) p. 35).

Estimation of o
We proceed in the same way for o> and obtain the (on 8 and A dependent) estimate

FBA) = (v - XBY Zr () 3 - XB). )

The estimate for o is given by its positive square root, i.e.,

5B, 1) = \/%(y - XB)TZy() Iy - XB).
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Estimation of A

There is no closed form solution for 1. So we focus on the negative profile log-
likelihood given by

gmgmo+gmg&$@l@ﬂ+%bgmamﬂ@n+

Lb- XBW)]" =r () [y - XBW)]
26(B(2), 1)

which is obtained by replacing 8 by B(1) and o by 5-(B(1), A) in the negative log-
likelihood function (5). This one dimensional nonlinear minimization problem can
be solved by appropriate optimization algorithms and yields A, the estimate of A. The
estimation procedure is implemented in the R package spdep (see Bivand and Piras
(2015)). For optimization, the R function optimize which is a combination of golden
section search and successive parabolic interpolation (see Brent (1973)) is used. The
final estimate of B is then given by B = B(1) and the final estimate of o is given by
=5 A).

2.2 Prediction and residuals

From Equation (2) it follows that the conditional expectation of Y at spatial location
i, given the values of all other spatial locations, is

EY;|Y-; = y-;) = EX|Y; = yj,j € Ni)
=B x; + 2 Z wij(v; — BT x;),

JEN;

where z_; = {z1,...2z,} \ {2} for a n—dimensional vector z. So we define the i-th
local prediction of Y, where the neighbors’ values are observed, by

i, =B xi+ A Z wij(vj = BT x)),
JeN;
and the corresponding vector of local predictions is defined by
Jiv = XB+ AW (y - XP).
Based on the prediction we can define the i-th local residual as
€ = yi — i|N;-

Since the local residual is the only type of residual we consider, we also refer to it just
as the i-th residual. The i-th standardized residual is given by

&

€= ——,
V&2 (Ze)ii
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since Var(e;) = 0*(Z¢);;. From a good fit we expect the standardized residuals to be
approximately identically and independent standard normally distributed.
Furthermore, an estimate for the standard error of B; is provided by

se(fi) = a—\/ ([XTZy(i)‘lX]_l)

i
since
Var(B(1)) = Var ([XTZY(A)-lx]*‘ XTEY(/I)"Y)
= [XTZy () X |7 XTZp (1) Var(Y).
: {[XTZY(A)‘IX] T xTey ) }T
=0 [XTZy () x|
This can be used to test the significance of 5;. For fixed 4, ,é is normally distributed
(as a linear transformation of the normally distributed vector ¥'). We use the following

test for the significance of §; with significance level @, null hypothesis Hy : 8; = 0
and alternative H; : 8; # 0. We reject Hy if

Bi
se(B;)

where ®~1(1 — ) denotes the 1 — & quantile of the N(0, 1) distribution. But we
need to use this test with caution because the standard error was estimated with the
assumption that 4 was known. Thus the standard error is too small since we do not
account for the variation in A.

[07
>o7l(1-=
-2

3 The tSAR model

The tSAR model is a way of extending the SAR model to allow for a Student ¢ error
distribution. We replace the assumption that the error vector is normally distributed
by the assumption that the components of the error vector are univariate ¢-distributed.
This allows for heavier tailed errors in our model.

3.1 Model definition

We say that the one dimensional random variable X follows a ¢-distribution with mean
u (1 € R), scale parameter s> (s € R,s > 0) and v (v € N) degrees of freedom if X
has the density

_vxl
5 v+1 (v)—l 1 (x—p?] 2
t LS v) =N — | T (= 1+ ,
(il 57) ( 2 ) 2 Vyns? vs?
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where ['(x) := /000 t*~1e7! dt is the gamma function. We write X ~ #(u, s2, v). Further-
more, we denote by Sc(X) the scale parameter of X. According to Kotz and Nadarajah
(2004) (p. 10 ft.) it holds that

E(X) = u, ©))

and

Var(X) = ——s2, (10)
y—-2
for v > 2.

Definition 2 (tSAR model) In the tSAR model we assume that
Y=XB+AW(Y - XB) + €,

with € ~ #(0, 0>(Z¢)i;, v) with a positive scalar o and a diagonal matrix £, € R™"
with positive diagonal entries and v > 2 degrees of freedom. Furthermore, we assume
that the components of the vector € are independent. X, A, W and B are defined as in
Definition 1.

3.2 Parameter estimation

As in the SAR model, we estimate parameters by maximizing the likelihood while
assuming W, X, and the degrees of freedom v to be known. We start with deriving
the likelihood function. Since

e =, -AW)Y - XB),
the components of the vector

Z = E;%(In —AW)(Y - XB),

_1 _1
where X * is a diagonal matrix with i-th diagonal entry (Z¢),,;*, are identically and
independent #(0, o2, v) distributed. So the density fz of Z is the product of its marginal
densities. Furthermore, we have that

Y = (L —AW)"'V=Z + XB.

We obtain the density of Y by density transformation.

Jr(y) = |det

=1, —AW)}

B ((2;50” —AW)(y - X,B)) 0,07, v),
i=1 i

where fz is the density of Z. Hence the negative log-likelihood of data y given the
model parameters (B8, o, ) is

ty|B,A,0) :=— log{

det [zj(ln —/IW)] '}

n ] (11)

- Z log [r (():;2(1,1 —AW)(y - X,B)) 0, o2, v)] :
i=1 i

L
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Unfortunately we can not proceed as before (i.e., take the derivatives with respect to
B and o, set them to zero and solve analytically for the parameters) due to the more
complex form of the likelihood function. For illustration of this problem we write
down the derivative with respect to .

d 1 < 1 2m;
LB A ) = c+ LT mi(B)

1
)N —/lW)X) ,
ap 2 4 [1+mfr(2€)2] o2y ( .

4

_1

where c is a constant independent of 8, m;(8) = (ZE (I, —AW)(y — Xﬂ)) and
i
_1 _1

(ZE 2(I, —AW)X | is the i-th row of X% (I,, —AW)X. If we set this equation to zero,
we can not solve it ;malytically for B. Numerical optimization for all parameters would
be computationally very complex since B is often high dimensional. Therefore we
suggest to estimate f and o as explained in the following.

Estimation of B

A simple analytic estimator for B is the on A dependent generalized least squares
estimator, i.e.,

B = [XTE, () X] 7 XTEy ()Y,

as in the SAR model. For fixed A, this is the best linear unbiased estimator according
to the Gaull Markov Theorem (cf., Kariya and Kurata (2004) p. 34).

Estimation of o
For o we suggest the following estimate dependent on 8 and A4,

V-

2L - XBE W - XB)

(B, A) =

since &%(8, 1) can be written as

oA v=21 . o .
B = —= (- XB) Ty - XP)

y-21 A A _ A N
= =~ = XB) M, —AWD)E X, —AW)(y - XB)
_r=2laryo,

v n
22

B v—le": &
v n(Zeii’
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where we used the definition of the prediction vector y |y = X B+ AW(y - Xp) and
the residual € := y — J | to express € as

E=y-Jn
=y-XB-AWy+ IWXp
= (L, —AW)(y - X ).

~2
The quantity %2?:1 (Zéi)__ is an estimate of the variance of ¢ /+/(Z¢);; and so

&2(B, Q) is an estimate of the scale parameter.

Estimation of A

For the estimation of A we proceed as in the SAR model, i.e., we obtain the negative
profile log-likelihood by replacing 8 by B(1) and o by &-(B(2), 1) in the negative
log-likelihood function (11). Then A is defined as the minimum of the negative
profile log-likelihood which is found numerically. As before we set 8 = B(1) and
o =6(BA).

3.3 Prediction and residuals

The vector of local predictions y |y and the residual vector € are defined as for the
SAR model, i.e.,
Iin = XB+AW(y - XP),
and
€ = yi — Ji|N;-
Since Sc(€;) = 072(Z¢)ii, we define the i-th standardized residual by
€

&= ————.
V&2 (Ze)ii

As in (3), we can write Y as

Y = (I, -AW) e + XB,
and obtain similarly to Equation (4),

Var(Y) = ——a2Zy(2),

v—-2
where Ly () := (I, —AW) ' E.(I,, —AWT)~!. Therefore we get similar to (8)
Var(B(1) = — (X 2y ()XY,
y—

and thus we estimate the standard error of B; by

se(B;) = \/v z 25'2((XTEY(/AU_1X)_1)U-
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3.4 Specifying the matrix X

To estimate a SAR or tSAR model we need to specify the matrix X, which is pro-
portional to the covariance matrix of the error vector. One possibility would be to
choose this equal to the identity matrix which leads to all locations having the same
variance. But we also want to account for different error variances. Therefore we
provide a variance estimate which uses the restriction to a neighborhood. We define
the local empirical variance of the spatial variable Z at location i, Z;, with respect to
the proximity matrix W as follows

1
A2 E = 2
g Z;) = —— ] i) 12
W l) |Nl| -1 ]'EN-(Z] ZNL) (12)

where the z; are observations of Z, N; = {j|w;; # 0} is the neighborhood of location
i induced by W, |N;]| is the cardinality of the set N; and zZy, = ﬁ 2jen; 2j- The
corresponding local empirical variance matrix is a diagonal matrix with i-th diag-
onal entry equal to &%,(Zi). For a SAR or tSAR model with response Y, covariates
X1, ..., Xp and proximity matrix W, we propose to specify X, in the following way.

1. Wefitalinear regression model withresponse variable Y and covariates xi, . . ., X,
i.e., we assume

Vi = (X1is - o, Xpi)Bim + €myi

with €, ~ N(0,02), Bim € RP, 0 € R,. We obtain ﬁlm, the estimate of B, by
least squares estimation. The i-th residual r; is given by

ri = Yi — (Xtis - -+ Xpi) Bim.

2. Then we set X, equal to the local empirical variance matrix of the residual
vector r with respect to W. So X, is a diagonal matrix with i—th diagonal entry
Zo)ii = &év(ri), where 6"%,(-) is generally defined in (12). We call this the local
regression variance matrix of Y with respect to W.

4 Simulation study

In this section we study if the proposed estimators of the tSAR model behave in a
reasonable way and how they compare to the estimators of the already existing SAR
model.

We simulate from a tSAR model in the following way.

1. (number of locations n) We specify the number of locations n as 250 or 1500.

2. (proximity matrix W) We randomly select n different longitude/latitude values
of the WFAS data set introduced in Section 5.1 to determine locations and cor-
responding neighborhoods. We set the proximity matrix W equal to a nearest
neighbors matrix with k£ = 30 neighbors.
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Fig. 2 Locations of the weather stations of the WFAS data and the 6 regions used in the simulation study
visualized on the map.

3.

(covariates x1, ..., x7) We obtain the covariates xi, ..., x7 by sampling n times
independently from the following distributions:

X1,...,Xs : standard normal
X6 : bernoulli with p = 0.3 (13)
X7 : bernoulli with p = 0.7

. (degrees of freedom v) We specify the degrees of freedom v as 4 or 20.
. (simulation of €) To account for a varying variance, we define 6 regions (see

Figure 2) with corresponding s; = 4,5, = 0.6,53 = 5,54 = 0.3, 55 = 4,5¢ = 6 and
simulate independently for i = 1, ..., n: If location i belongs to region j simulate
€ from (0, sjz., V).

. (coefficients ) We set

Bo=3,p1=10, po=4, B3=5, Ba =2, Bs =8, Bg=1, B7 =3.

. (spatial parameter 1) We specify A as 0.4 or 0.8.
. (response y) According to the assumptions of the tSAR model we set

y =@, -aW) e + XB,

where B = (Bo, B1, - - .,,87)T and X = (17, xlT, .. .,x7T).
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Table 1 Different models estimated in the simulation study.

model Xe

1 SAR I,

2 tSAR I,

3 SAR local regression variance matrix
4 tSAR  local regression variance matrix
5 SAR true

6 tSAR  true

Choosing between SAR and tSAR and the different choices for X, leads to 6
different models (see Table 1) that are estimated from the simulated data.

In the tSAR model we have one additional parameter v, the degrees of freedom,
which was assumed to be known in Section 3. Instead of specifying this parameter
we use numerical optimization to obtain an estimate for it. We use the R function
optimize with high tolerance (tolerance = 1) to speed up computation. Here we
allow v to be a real parameter between 3 and 20.

Note that in the SAR model o is the standard deviation of €;/+/(Z¢);;, Whereas
in the tSAR model o is the square root of the scale parameter of €;/+/(Z¢);; and the
standard deviation is given by \/EO'. For easier comparison we introduce s, the

standard deviation of €; /\/(Z¢);i, and define its estimate §, depending on the model,
by

=0 if the SAR model is used,

>N

(14)

v
i

d 5 o if the tSAR model is used.
v —

The results of the simulation study are shown in Table 2. To evaluate the estimates
we use the root mean squared error which is given by

"
P

14 r
RMSE(8) = lz ] Z(ej -85, 15)
i=1

where r is the number of replications (in our case » = 500), 6; is the j-th component
of the p-dimensional vector 6 and 8 ;i its estimate in the i-th replication.

First we analyze the results with respect to the number of locations n. We compare
models that only differ in the choice of this parameter. One usually expects that the
root mean squared error decreases as the number of stations increases. We observe this
behavior for all parameters in cases where X is the true value or the local regression
variance matrix. If X is the identity matrix this does not hold for the parameter s. The
parameter s scales X and if X is specified incorrectly we cannot expect a reasonable
estimate for s. Furthermore, the results show that the choice of X, has an influence on
the estimates for . Comparing models that only differ in the choice of X, the best
estimates are obtained when X is the true value, the second best when X is the local
regression variance matrix and the worst when X, = I,. There is a notable difference
between RMSE(ﬁ) in cases where X, = I,, compared to cases where X, is equal to
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Table 2 Results of the simulation study. The first two columns specify the number of locations and the
model. Other columns show the root mean squared error, the average log-likelihood (/1), the true parameter

and the average of estimated parameters. For 8 we average over its components.

RMSE
n model B A K v I B B 1 bl § s v v
250 1 0.428 0.086 2.961 722 449 45 031 04 438 141
250 2 0.425 0040 2965 041 -660 449 45 036 04 438 141 359 4
250 3 0.106 0.062  0.390 567 450 45 034 04 102 141
250 4 0.107 0.047 0389 041 -521 450 45 035 04 103 141 359 4
250 5 0.069 0.032 0.032 474 450 45 037 04 138 141
250 6 0.069 0035 0029 217 -457 450 45 036 04 139 141 498 4
250 1 0.651 0054 2972 728 451 45 075 08 439 141
250 2 0.652 0035 2970 041  -665 451 45 077 08 438 141 359 4
250 3 0.165 0.049 0474 576 450 45 075 08 094 141
250 4 0.164 0034 0478 041 -529 450 45 077 08 094 141 359 4
250 5 0.113 0022 0.035 480 450 45 078 08 138 141
250 6 0.120 0.020 0.025 234 -464 450 45 078 08 139 141 505 4
250 1 0323 0067 2220 652 449 45 033 04 327 1.05
250 2 0321 0037 2223 1641 -607 449 45 036 04 328 105 359 20
250 3 0.073  0.048  0.101 485 450 45 035 04 095 1.05
250 4 0.074 0043 0.098 16.14 -465 450 45 036 04 096 105 3.87 20
250 5 0.052 0032 0.022 4402 450 45 037 04 103 1.05
250 6 0.053 0036 0020 567 -402 450 45 036 04 103 105 1641 20
250 1 0462 0047 2219 657 450 45 075 08 327 1.05
250 2 0460 0031 2218 1641 -613 450 45 077 08 327 105 359 20
250 3 0.111 0.045 0.170 499 450 45 076 08 0.88 1.05
250 4 0.113 0036 0.169 1625 -476 450 45 076 08 088 105 376 20
250 5 0.080 0.021 0.022 408 450 45 078 08 1.03 1.05
250 6 0.084 0022 0015 514 -409 450 45 078 08 104 105 1682 20
1500 1 0.175 0.009 3213 44430 450 45 039 04 463 141
1500 2 0.175 0005 3214 041  -4028 450 45 039 04 463 141 359 4
1500 3 0.034 0012 0385 3162 450 45 039 04 103 141
1500 4 0.034 0009 038 039 -2986 450 45 039 04 103 141 364 4
1500 5 0.029 0.004 0.009 2981 450 45 040 04 140 141
1500 6 0.029 0.008 0.008 051 -2865 450 45 039 04 141 141 418 4
1500 1 0274 0012 3237 4464 450 45 079 08 465 141
1500 2 0.274 0009 3239 041  -4060 450 45 079 08 465 141 359 4
1500 3 0.051 0010 0.446 3205 450 45 079 08 097 141
1500 4 0.052 0008 0445 040 -3027 450 45 079 08 097 141 363 4
1500 5 0.043  0.005  0.001 3021 450 45 080 08 142 141
1500 6 0.044 0006 0006 050 -2902 450 45 079 08 142 141 415 4
1500 1 0.134 0012 2407 3997 450 45 039 04 346 1.05
1500 2 0.134 0005 2407 1641 -3722 450 45 039 04 346 105 359 20
1500 3 0.024 0015 0.081 2694 450 45 038 04 097 1.05
1500 4 0.024 0014 0082 1197 -2669 450 45 039 04 097 105 818 20
1500 5 0.022  0.005 0.003 2547 450 45 040 04 105 1.05
1500 6 0.022 0009 0.002 367 -2545 450 45 039 04 105 105 1756 20
1500 1 0.205 0.005 2.406 44028 451 45 079 08 346 1.05
1500 2 0204 0003 2408 1641 -3753 451 45 080 0.8 346 105 359 20
1500 3 0.036  0.009 0.136 2737 450 45 079 08 092 1.05
1500 4 0.036 0.008 0.135 1242 2713 450 45 079 08 092 105 7.69 20
1500 5 0.032  0.003  0.003 2578 450 45 080 08 105 1.05
1500 6 0.032 0004 0001 370 -2580 450 45 080 08 105 105 1758 20
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the local regression variance matrix. This shows that introducing the local regression
variance matrix brings a notable improvement for estimating 8 compared to the trivial
choice X = I,. For 4, reasonable estimates are provided in all cases whereas the best
estimates are usually obtained when X, is the true value. We see that the choice of
Y also has influence on the estimates for s, where the influence is similar as for 8,
i.e., the best estimates are obtained when X, is the true value, the second best when
X is equal to the local regression variance matrix and the worst when X, = I,. The
differences in RMSE(S) are rather big since it is difficult to estimate s, which scales
X, if X is not specified correctly. Analysing the estimation of v we observe that big
values of RMSE(?) are obtained in cases where v = 20 and X, is not equal to the
true value. In these cases v was estimated too low. Specifying X, incorrectly causes
that the variance of the residuals is estimated too low or too high for some of them
which then causes that a ¢-distribution with lower degrees of freedom provides a better
fit. Evaluating the overall fit with the log-likelihood and comparing models that only
differ in the choice of one parameter we see that the choice between SAR and tSAR
and the choice of X, has influence. The tSAR model leads to higher likelihood values
when v = 4 or mostly similar values when v = 20. For X, the highest likelihood
values are obtained when X is the true value, the second highest when X is equal to
the local regression variance matrix and the lowest when £, = I,,.

5 Application

We use the two models, SAR and tSAR, to fit data to assess the risk of fire danger in
the US.

5.1 Data description

The data is obtained from the Wildland Fire Assessment System (WFAS) and contains
the following variables observed at 1542 stations on the 23rd of June 2015.

— Elev = Elevation in feet divided by 100

— Lat = Latitude

— Long = Longitude

— Tmp = Temperature in Fahrenheit

— RH = Relative humidity in percent

— Wind = Wind speed (10 min avg wind) in mi/h

— PPT = 24h precipitation in inches

— BI = Burning Index calculated according to the National Fire Danger Rating
System (cf., National Wildfire Coordinating Group (2002)) (number related to the
contribution of fire behavior to the effort of containing a fire. It is expressed as a
numeric value closely related to the flame length in feet multiplied by 10.)
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Fig. 3 qq-plots for a SAR and a tSAR model. We plot the quantiles of the standard normal distribution
against the quantiles of the standardized residuals of the SAR model and the quantiles of the z-distribution
with mean zero, scale parameter 1 and 6 degrees of freedom against the quantiles of the standardized
residuals of the tSAR model with v = 6.

5.2 Model fitting

We consider the Burning Index BI as response variable and the other variables as
covariates. These covariates can be measured using simple weather station technology.
For our approach, there is no expert knowledge required compared to the calculation
of the Burning Index according to the National Fire Danger Rating System.

Fitting several SAR and tSAR models, we observed misbehavior in the residuals.
The residuals did not follow the desired normal or 7-distribution. Figure 3 illustrates
this problem for one case where we fit one SAR and one tSAR model with v = 6
degrees of freedom. We use BI as response and all other variables as covariates. As
proximity matrix W we choose a nearest neighbors matrix with k = 30 neighbors and
for X we use the local regression variance matrix of ¥ with respect to W. To deal with
this problem and to further improve our fit, we now consider Box-Cox transformations
of the response variable (cf., Box and Cox (1964)) for SAR models.

We show how Box-Cox transformations that were developed for linear regression
models can be used for SAR and tSAR models. We are given y = (y1,...,y,)!, an

observation of the random vector ¥ = (Y;,...,Y,)’. For I € R and m € R such that
Y, > —mforalli =1,...,n, the Box-Cox transformed variable Yl.'"’l is given by
m,l _ 7 . ifl 0 ) (16)

L7 ] log(Y; + m), else

We consider [ and m fixed and assume that ¥/ is distributed according to a SAR or
tSAR model with parameters 8-/ = (B!, o™, A"™!). We denote its log-likelihood
by £s(y"™!|6"™!) where the observation yl.m’l of Yl.m’l is obtained by applying the same
transformation (16) on the observation y;. The density of ¥ can be obtained using the
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density transformation rule. The log-likelihood of @/ with respect to the observations
Y1, ..., yn is then given by

1™ = > (1 = 1)log(y: +m) + ts(y™'|6™").

i=1

The log-likelihood is a sum of two components where the first component is inde-
pendent of 6"/, and therefore not needed for the maximization with regard to 6.
So we need to maximize the second component which we know how to do since
it is the log-likelihood of a SAR or tSAR model. Knowing the log-likelihood, the
corresponding BIC is

BIC(y, 0™") = =2£(y|0™") + dim(0™™") log(n),

which can be used for selection among different models corresponding to different m
and [ values.

For fitting SAR models we use a step wise procedure where we adjust the Box-Cox
transformation parameter and eliminate a non-significant covariate in each step. The
procedure (Algorithm 1) for a given variable R, parameter m and proximity matrix
W is shown in the following. The available covariates are denoted by xi, ..., xp.
Algorithm 1 is applied to the response variable BI with m = 10 and different choices
of the proximity matrix W. Instead of iterating over different values for m we choose
one value, 10, to reduce computational time. For the proximity matrix we use nearest
neighbors matrices with k& = 10, 20, 30,40, 50 neighbors and radius matrices with
radius r = 350,500. So we obtain 7 different models corresponding to different
proximity matrices.

Algorithm 1 Step wise procedure for SAR models

It X {xp,....xp}

2: maxp « 1

3:¢c—{}

4: while maxp > 0.05 do

5 X=X\{c}

6 for/ =-2,-1,-1/2,-1/3,0,1/3,1/2, 1,2 do

1
7 Y « %’ if1+0 componentwise
log(R + m), else
8: mod; « fitted SAR model with response variable Y, covariates X, proximity matrix W and
X is the local regression variance matrix of ¥ with respect to W.

9: end for

10: mod « model with lowest BIC among {mod;|l = -2, -1,-1/2,-1/3,0,1/3,1/2,1,2}

11: maxp < maximum of the p-values of the tests for significance of the coefficients in model mod
12: ¢ « covariate corresponding to maxp

13: end while

After fitting SAR models using the procedure just described, we fit tSAR models.
We proceed in the following way. For a certain proximity matrix W we take the same
covariates and transformation as in the corresponding just fitted SAR model and fit a
tSAR model where we optimize the degrees of freedom parameter v numerically. For
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Table 3 BIC for different models for transformed BI and the value of the transformation parameter /.
“nnx" means that a nearest neighbors matrix with x neighbors was used and “rx" means that a radius matrix
with radius x was used.

model type ‘ nnl0 nn20 nn30 nn40 nn50 ‘ 1350 r500
SAR 12624.72  12488.34  12480.19  12499.37 1253993 | 12617.03  12737.47
tSAR 1242478  12400.30  12418.51  12438.61  12470.69 | 12561.87  12684.05
l 173 173 1/3 173 173 1/3 173

Table 4 Parameter estimates, estimated standard errors and their quotient for the model with the best BIC
of the Box-Cox transformed Burning Index (m = 10,/ = %).

estimate  se estimate/se

Intercept  7.72 1.14  6.76

Elev 0.01 0.00 2.85

Lat -0.07 0.03 -2.44

Long -0.03 0.01  -2.56

RH -0.04 0.00 -12.39

Wind 0.16 0.01  20.97

PPT -0.80 0.13 -6.34

A 0.85

o 0.84

v 6.34

SAR tSAR
o ° [ o
3

8 8
O o A O o+
) k)

£ 5
& &

9 s 9
T T T T T T
-5 0 5 -5 0 5
Theoretical Quantiles Theoretical Quantiles

Fig. 4 qqg-plots for the SAR and tSAR model with the best BIC value.

the matrix X we use as before the local regression variance matrix of the transformed
response variable with respect to W. Table 3 shows the BIC values of the models.
If we consider only nearest neighbors matrices, we see that the BIC of the worst
tSAR model is still lower than the BIC of the best SAR model. The best model is a
tSAR model where the proximity matrix is a nearest neighbors matrix with k = 20
neighbors. Estimates for this model are given in Table 4.
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In Figure 4 we check if the residuals of the best tSAR model have the distribution
as expected. As the data points do not deviate far from the x = y line, our fitted model
seems to be appropriate. For comparison we also show this plot for the SAR model
with the lowest BIC. We see that the tSAR model is not only preferred in terms of
BIC.

5.3 Out of sample prediction

Now we perform out of sample predictions. This allows us to predict the Burning
Index at locations where only the covariates are available. To do so, we need to relate
a random variable at a location which was not part of the sample to Y, the vector of
random variables in the sample. For an out of sample random variable ¥,, at location
1, we assume that

Y, = ﬂTxo +4 Z Woj(Y}' _Bij) + €,

jEN()

where w,; relates location [, to [; for j = 1...n such that 27:1 Wwo; = 1 to stay
consistent with the row-standardized proximity matrix. We will choose w,; similar
to how we chose the entries of the proximity matrix. If W is a k nearest neighbors
matrix, w,; is the inverse distance between location [, and [; times a standardization
constant, if location /; is among the k nearest neighbors of /, and zero else. N, is
the neighborhood of location [, defined as in Section 2. For the error we assume
€ ~ N(0,02%,) in the case of a SAR model or €, ~ #(0,0%Z,, v) in the case of
a tSAR model. Similar to the SAR and tSAR model, ¥, is assumed to be known.
We specify X, similar to how we specified X.. If X is the local regression variance
matrix of Y, the diagonal entries of X, were calculated with linear regression residuals
T1,..."n. X0 is then the empirical variance of {r;|j € N,}.
With this assumption the expectation of ¥, given Y is given by

E(Y,|Y) =EX,|Y; = y;,j € N,) = Bl xp + 2 Z woj(y; — BT x)),
J€No

where B, o and v are the parameters of the SAR or tSAR model for Y. So we define
the local prediction of Y,,, where the neighbors’ values are observed, by

PN . AT 5 AT
Yo|N, =B x,+4 Z Woj(yj_ﬂ xj)’
JEN,

where 8 and A are the estimates of the model for Y. In addition to the prediction we
provide confidence intervals. The 1 — @ confidence interval is given by

Join, £ '(1 - 4,0,62%,) for SAR
Join, £171(1 - £,0,62%,,v) for tSAR

)

CI(l—a):{

where @ 1(1 — £,0,5%%,) and t~1(1 — £,0,52%,, v) are the 1 — S quantiles of the
N(0,65%%,) and the #(0, 52X, v) distribution.



20 A. Kreuzer et al.
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Fig. 5 True vs predicted Burning Index (BI). A smoothed curve for the predicted Burning Index was added
in red. For better visualization the Burning Index was ordered.

To perform out of sample prediction, we divide our data set in 10 distinct batches.
We use 9 batches for fitting the model and apply the same procedure as before. Our
fitted model is the one with the lowest BIC. For the remaining batch data we perform
out of sample prediction. Doing this 10 times gives us an out of sample prediction
for every location. In every case the fitted model was a tSAR model. For comparison
we also take the best SAR model for every case and perform out of sample prediction
with this model. The predictions are shown in Figure 5 where we see that there is not
a big difference between the SAR and the tSAR model. The prediction is influenced
by the estimation of A and 8 where the SAR and the tSAR model provide similar
estimates. The two models differ in the specification of the error distribution which
influences confidence intervals. Figure 6 shows the confidence intervals and Table 5
the proportion of data points inside the corresponding confidence interval. We see
that, in all three cases of confidence levels, this proportion is closer to the theoretical
confidence level for tSAR based confidence intervals. To support this statement we
conduct a likelihood ratio test (see Wilks (1938)) for binomial data. We consider a
theoretical confidence level of 1 — . Then we test the null hypothesis that the number
of points lying outside the confidence interval is binomial distributed with success
probability @ against the alternative that it is binomial distributed with a success
probability different than @. The results of this test are shown in Table 6. We see that
higher p-values are obtained when the tSAR model is used. For the 99% confidence
interval the SAR model leads to a very small p-value and the null hypothesis is rejected
at the 0.1% level. This can be explained by the fact that the normal distribution is not
a good choice to model heavy tailed data.
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Fig. 6 Burning Index (BI) and its 90% confidence intervals. For better visualization the Burning Index
was ordered.

Table 5 Comparison of different confidence intervals. The first column gives the level of the confidence
interval. The other two columns show the proportion of data points inside the confidence interval.

SAR tSAR

90%  91.05%  90.21%
95%  94.36%  94.55%
99%  97.93%  98.96%

Table 6 Comparison of different confidence intervals. The first column gives the level of the confidence
interval. The other two columns show the p-value of the likelihood ratio test.

SAR tSAR

90%  0.1622  0.7853
95%  0.2566  0.4265
99%  0.0002  0.8827

6 Outlook

We proposed the tSAR model, an extension of the SAR model for 7-distributed
errors, which lead to notable improvements in the model fit in our application. The
tSAR model showed improvement in the BIC value, its residuals behaved well and
it provided more accurate confidence intervals. A natural question which arises is if
we can extend the SAR model to other distributions than the ¢-distribution. Having a
closer look at how we approached the tSAR model we can proceed in a similar way
for other distributions. We consider the model

Y=XB+AW({ - XB) +e¢,

where everything except € is defined as in the SAR model (see Definition 1). We
make the more general assumption for the error € that it has expectation zero, a
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diagonal variance matrix o>X and that €; /(o-+/(Z¢ );; ) are identically and independent
distributed with density ¢(-|@), where ¢(-|@) is the density of a distribution with zero
mean, unit variance and parameter vector 6. So one could allow for errors that follow
for example a skew-t distribution. Note that 6 is empty for location-scale distributions
(e.g. the normal distribution). We obtain the density of Y as in Section 3.2 using the
density transformation rule as

) = | ders2 @ -aw)I [ ((z; (L, -AW)( - X.B))' 0.1, a) .
i=1 i

The regression parameters 8 could be estimated by the generalized least squares
estimator and o as in the SAR model. Then we can form the profile log-likelihood
and estimate A and 6 by numerical optimization. Alternatively one could think about
finding estimators of 6 depending on A such that the dimensionality of the profile
log-likelihood can be reduced. It would be interesting to investigate this in more detail
for various distributions.
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