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Abstract

Vine copulas are a flexible class of dependence models consisting of bivariate building blocks
and have proven to be particularly useful in high dimensions. Classical model distance measures
require multivariate integration and thus suffer from the curse of dimensionality. In this paper we
provide numerically tractable methods to measure the distance between two vine copulas even in
high dimensions. For this purpose, we consecutively develop three new distance measures based
on the Kullback-Leibler distance, using the result that it can be expressed as the sum over expec-
tations of KL distances between univariate conditional densities, which can be easily obtained for
vine copulas. To reduce numerical calculations we approximate these expectations on adequately
designed grids, outperforming Monte Carlo-integration with respect to computational time. In
numerous examples and applications we illustrate the strengths and weaknesses of the developed
distance measures.

Keywords: Vine copulas; model distances; Kullback-Leibler; Monte Carlo-integration.

1 Introduction

In the course of growing data sets and increasing computing power statistical data analysis has con-
siderably developed within the last decade. The necessity of proper dependence modeling has become
evident at least since the financial crisis of 2007. Using vine copulas is a popular option to approach
this task. Bedford and Cooke (2002) described how multivariate distributions can be sequentially
decomposed into bivariate building blocks via conditioning. Since the seminal paper of Aas et al.
(2009), which developed statistical inference for this method, many aspects of vines have been stud-
ied: Dißmann et al. (2013) provide a sequential estimation algorithm for vines, Panagiotelis et al.
(2012) treat vine copulas for discrete data and Nagler and Czado (2015) examine non-parametric vine
copulas. Further, there have been various applications to data from many fields such as finance (Maya
et al., 2015; Kraus and Czado, 2015), sociology (Cooke et al., 2015) or hydrology (Killiches and Czado,
2015). The advantage of these models is that they are flexible and numerically tractable even in high
dimensions.

Since it is interesting in many cases to determine how much two models differ, some authors like
Stöber et al. (2013) and Schepsmeier (2015) use the Kullback-Leibler distance (Kullback and Leibler,
1951) as a model distance between vines. However, all popular distance measures require multivariate
integration, which is why they can only deal with up to three- or four-dimensional models in a
reasonable amount of time.

In this paper we will address the question of how to measure the distance between two vine copulas
even for high dimensions. For this purpose, we develop methods based on the Kullback-Leibler (KL)
distance, where we use the fact that it can be expressed as the sum over expectations of KL distances
between univariate conditional densities. By cleverly approximating these expectations in different
ways, we introduce three new distance measures with varying focuses. The approximate Kullback-
Leibler distance (aKL) aims to approximate the true Kullback-Leibler distance via structured Monte
Carlo integration and is a computationally tractable distance measure in up to five dimensions. The
diagonal Kullback-Leibler distance (dKL) focuses on the distance between two vine copulas on specific
conditioning vectors, namely those lying on certain diagonals in the space. We show that even though
the resulting distance measure does not approximate the KL distance in a classical sense, it still
reproduces its qualitative behavior quite well. While this way of measuring distances between vines
is fast in up to ten dimensions, we still have to reduce the number of evaluation points in order
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to get a numerically tractable distance measure for dimensions 30 and higher. By concentrating
on only one specific diagonal we achieve this, defining the single diagonal Kullback-Leibler distance
(sdKL). In numerous examples and applications we illustrate that the proposed methods are valid
distance measures and outperform benchmark approaches like Monte Carlo integration regarding
computational time.

The paper is organized as follows: Section 2 introduces vine copulas and basic properties. In
Section 3 we develop the above mentioned model distances for vines and compare their performances
in various settings. Section 4 concludes with a summary and an outlook to ongoing research.

2 Vine Copulas

A copula C : [0, 1]d → [0, 1] is a d-dimensional distribution function on [0, 1]d with uniformly dis-
tributed margins. Since the publication of Sklar (1959), copulas have gained more and more interest
and have been a frequent subject in many areas of probabilistic and statistical research. Sklar’s Theo-
rem states that for every joint distribution function F : Rd → [0, 1] of a d-dimensional random variable
(X1, . . . , Xd)

′ with univariate marginal distribution functions Fj , j = 1, . . . , d, there exists a copula
C such that

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) . (2.1)

This copula C is unique if all Xj are continuous random variables. Further, if the so-called copula
density

c(u1, . . . , ud) :=
∂d

∂u1 · · · ∂ud
C(u1, . . . , ud)

exists, one has
f(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd)) f1(x1) · · · fd(xd),

where fj are the marginal densities. In the following we will always assume absolute continuity
of C and the existence of c. Equation (2.1) can also be used to define a multivariate distribution
by combining a copula C and marginal distribution functions Fj . Thus, marginals and dependence
structure can be modeled separately, as we can specify the copula C independently of the marginal
distributions. A thorough overview over copulas can be found in Joe (1997) and Nelsen (2006).

There are several multivariate parametric copula families, for example Gaussian, t, Gumbel, Clay-
ton and Joe copulas. Being specified by a small number of parameters (usually 1 or 2), these models
are rather inflexible in high dimensions. Therefore, Bedford and Cooke (2002) suggested a method
for constructing copula densities based on the combination of bivariate building blocks: vines. The
concept of vine copulas, also referred to as pair-copula constructions (PCCs), was used by Aas et al.
(2009) to develop statistical inference methods.

As an example, a three-dimensional copula density c of a random vector (U1, U2, U3)′ with Uj ∼
uniform(0, 1) can be decomposed by conditioning on U2 = u2 and using cj(uj) = 1:

c(u1, u2, u3) = c13|2(u1, u3|u2) c2(u2)

Sklar
= c13;2

(
C1|2(u1|u2), C3|2(u3|u2);u2

)
c1|2(u1|u2) c2|3(u2|u3)

= c13;2

(
C1|2(u1|u2), C3|2(u3|u2);u2

)
c12(u1, u2) c23(u2, u3),

(2.2)

where c13|2( · , · |u2) denotes the density of the conditional distribution of (U1, U3)|U2 = u2, while
c13;2( · , · ;u2) is the associated copula density. The distribution function of the conditional distribution
of Uj given U2 = u2 is denoted by Cj|2( · |u2), j = 1, 3. Hence, we have expressed the three-dimensional
copula density as the product over three bivariate pair-copulas.

Of course, there are alternative decompositions since the choice of U2 as conditioning variable was
arbitrary. For example, we also could have conditioned on U1 or U3 such that

c(u1, u2, u3) = c23;1

(
C2|1(u2|u1), C3|1(u3|u1);u1

)
c12(u1, u2) c13(u1, u3),

c(u1, u2, u3) = c12;3

(
C1|3(u1|u3), C2|3(u2|u3);u3

)
c13(u1, u3) c23(u2, u3).

This way of decomposing copula densities into bivariate building blocks can be extended to arbitrary

dimensions. Morales-Nápoles (2011) show that in d dimensions there are d!
2 · 2

(d−2
2 ) possible vine

decompositions. This flexibility and variety of choice can be of great advantage when it comes to
modeling.

Dißmann et al. (2013) and Stöber and Czado (2012) provide a method of how to store the structure

of a vine copula decomposition in a lower triangular matrix M = (mi,j)
d
i,j=1 with mi,j = 0 for i < j,

a so-called vine structure matrix.
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Definition 2.1 (Vine structure matrix). A lower-triangular matrix M = (mi,j)
d
i,j=1 is called a vine

structure matrix if it has the following three properties:

1. The entries of a selected column appear in every column to the left of that column, i.e. for
1 ≤ i < j ≤ d it holds {mj,j , . . . ,md,j} ⊆ {mi,i, . . . ,md,i}.

2. The diagonal entry of a column does not appear in any column further to the right, i.e. mi,i /∈
{mi+1,i+1, . . . ,md,i+1} for i = 1, . . . , d− 1.

3. For i = 1, . . . , d− 2 and k = i+ 1, . . . , d there exists a j > i such that

{mk,i, {mk+1,i, . . . ,md,i}} = {mj,j , {mk+1,j ,mk+2,j , . . . ,md,j}} or

{mk,i, {mk+1,i, . . . ,md,i}} = {mk+1,j , {mj,j ,mk+2,j , . . . ,md,j}} .

The structure of the vine is encoded in the matrix as subsequently described: A pair-copula is
determined by the two conditioned variables and a (possibly empty) set of conditioning variables
(e.g. c1,3;2 has conditioned variables U1 and U3 and conditioning variable U2). For each entry in the
structure matrix, the entry mi,j itself and the diagonal entry mj,j in the corresponding column form
the indices of the two conditioned variables, while the indices of the conditioning variables are given
by the entries mi+1,j , . . . ,md,j in the corresponding column below the considered entry. The bivariate
pair-copulas are evaluated at the conditional distribution functions of the distributions of each of the
conditioned variables given the conditioning variables.

Expressed in formulas this means: In d dimensions the entry mi,j (i > j) together with mj,j and
mi+1, . . . ,md,j stands for the copula density of the (conditional) distribution of Umi,j

and Umj,j
given(

Umi+1,j , . . . , Umd,j

)′
=
(
umi+1,j , . . . , umd,j

)′
evaluated at Cmi,j |mi+1,j ,...,md,j

(
umi,j |umi+1,j , . . . , umd,j

)
and Cmj,j |mi+1,j ,...,md,j

(
umj,j |umi+1,j , . . . , umd,j

)
, i.e.

cmi,j ,mj,j ;mi+1,j ,...,md,j

(
Cmi,j |mi+1,j ,...,md,j

(
umi,j

|umi+1,j
, . . . , umd,j

)
,

Cmj,j |mi+1,j ,...,md,j

(
umj,j

|umi+1,j
, . . . , umd,j

)
;umi+1,j

, . . . , umd,j

)
.

Taking the product over all d(d − 1)/2 pair-copula expressions implied by the vine structure matrix
yields the copula density c (see Dißmann et al., 2013):

c(u1, . . . , ud) =

d−1∏
j=1

d∏
k=j+1

cmk,j ,mj,j ;mk+1,j ,...,md,j

(
Cmk,j |mk+1,j ,...,md,j

(
umk,j

|umk+1,j
, . . . , umd,j

)
,

Cmj,j |mk+1,j ,...,md,j

(
umj,j

|umk+1,j
, . . . , umd,j

)
;umk+1,j

, . . . , umd,j

)
.

(2.3)

In our three-dimensional example (Equation (2.2)) the structure matrix looks as follows:

M =

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

 =

1 0 0
3 2 0
2 3 3

 .

The entries m3,1 = 2 (together with m1,1 = 1) and m3,2 = 3 (together with m2,2 = 2) in the
last row represent c1,2(u1, u2) and c2,3(u2, u3), respectively. In both cases, the conditioning set is
empty because the considered entries are the last ones in their columns. The entry m2,1 (together
with m1,1 and m3,1) encodes the expression c1,3;2

(
C1|2(u1|u2), C3|2(u3|u2);u2

)
since the indices of the

conditioned variables are given by m2,1 = 3 and m1,1 = 1 and the conditioning variable is m3,1 = 2.
Multiplying these three factors leads to the expression from Equation (2.2). Note that there is not a
unique way of encoding a given vine decomposition into a structure matrix. For instance, exchanging
m2,2 and m3,2 in the above example yields the same vine decomposition.

Property 2 from Definition 2.1 implies that the diagonal of any vine structure matrix is a permu-
tation of 1 :d, where we use the notation r :s to describe the vector (r, r + 1, . . . , s)

′
for r ≤ s. In order

to simplify notation, for the remainder of the paper we assume that the diagonal of a d-dimensional
structure matrix is 1 :d. This assumption comes without any loss of generality since relabeling of the
variables suffices to obtain the desired property.

The following Proposition 2.2 states that for a vine copula with structure matrix M the (univariate)
conditional density cj|(j+1):d of Uj | (Uj+1, . . . , Ud)

′
= (uj+1, . . . , ud)

′
can be calculated by taking the

product over all pair-copula expressions corresponding to the entries in the jth column of M . A proof
can be found in Appendix A.
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Proposition 2.2. Let U = (U1, . . . , Ud)
′ be a random vector with vine copula density c and corre-

sponding structure matrix M = (mi,j)
d
i,j=1. Then, for j < d

cj|(j+1):d(uj |uj+1, . . . , ud) =

d∏
k=j+1

cmk,j ,mj,j ;mk+1,j ,...,md,j

(
Cmk,j |mk+1,j ,...,md,j

(
umk,j

|umk+1,j
, . . . , umd,j

)
,

Cmj,j |mk+1,j ,...,md,j

(
umj,j

|umk+1,j
, . . . , umd,j

)
;umk+1,j

, . . . , umd,j

)
.

(2.4)

This proposition will prove itself to be crucial for the development of the distance measures from
Section 3. For simulation and Monte Carlo integration it is important that we can sample from
vine copula distributions. Stöber and Czado (2012) and Joe (2014) provide sampling algorithms for
arbitrary vine copulas. They are based on the inverse Rosenblatt transformation (Rosenblatt, 1952):
First, sample wj ∼ uniform(0, 1) for j = 1, . . . , d. Then, apply an inverse Rosenblatt transform Tc
to the uniform sample, i.e. u = (u1, . . . , ud)

′ = Tc(w), where w = (w1, . . . , wd)
′ is mapped from the

(uniform) w-scale to the (warped) u-scale in the following way:

• ud := wd,

• ud−1 := C−1
d−1|d(wd−1|ud),

...

• u1 := C−1
1|2:d(w1|u2, . . . , ud).

Note that the appearing inverse conditional distribution functions can be obtained easily for vine cop-
ulas. When it comes to modeling, for tractability reasons most authors assume that for pair-copulas
with a non-empty conditioning set the copula itself does not depend on the conditioning variables
(e.g. c13;2( · , · ;u2) = c13;2( · , · ) for any u2 ∈ [0, 1]). This assumption is referred to as the simplifying
assumption. Among others, Haff et al. (2010), Acar et al. (2012) and Stöber et al. (2013) discuss
when this assumption is justified. Since simplified vines, i.e. vine copulas satisfying the simplifying
assumption, are in practice the most relevant class of vine copulas for high dimensions, all examples
in this paper consider simplified vines. Nevertheless, the presented concepts are also applicable to
non-simplified vines (see Section 4).

We typically work in a (simplified) parametric framework, where we specify each pair-copula of
the vine decomposition as a parametric bivariate copula with up to two parameters. For the sake of
notation, we borrow the concept of the vine structure matrix to introduce a lower-triangular family

matrix B = (bi,j)
d
i,j=1 and two lower-triangular parameter matrices P (k) = (p

(k)
i,j )di,j=1, k = 1, 2,

containing the pair-copula families and associated parameters of cmi,j ,mj,j |mi+1,j ,...,md,j
, respectively.

Since we only use one- and two-parametric copula families, two parameter matrices are sufficient. The

entries of the family and parameter matrices, bi,j , p
(1)
i,j and p

(2)
i,j , specify the pair-copula corresponding

to the entry mi,j . For one-parametric families we set the corresponding entry in the second parameter
matrix to zero. For the family matrix, we use the following copula families (with corresponding
abbreviations): Gaussian (N ), Student t (t), Clayton (C), Gumbel (G), Frank (F) and Joe (J ).
In order to compare the strengths of dependence of different copula families, we also compute the

Kendall’s τ values ki,j corresponding to pair-copulas with family bi,j and parameters p
(1)
i,j and p

(2)
i,j

and store them in a lower-triangular matrix K = (ki,j)
d
i,j=1. A (simplified) vine copula can then be

written as the quadruple R =
(
M,B,P (1), P (2)

)
.

Dißmann et al. (2013) developed a sequential estimation method that fits a simplified vine, i.e. the
structure matrix as well the corresponding family and parameter matrices, to a given data set. This
algorithm is also implemented in R (R Core Team, 2015) as the function RVineStructureSelect in
the package VineCopula (Schepsmeier et al., 2015), which we use frequently throughout this paper.

Finally, for a simplified vine we define the associated nearest Gaussian vine, i.e. the vine with the
same structure matrix and Kendall’s τ values but only Gaussian pair-copulas.

Definition 2.3 (Nearest Gaussian vine). For a simplified vine copula R = (M,B,P (1), P (2)) let

K = (ki,j)
d
i,j=1 denote the lower-triangular matrix containing the corresponding Kendall’s τ values.

Then, the nearest Gaussian vine of R is given by R̃ = (M, B̃, P̃ (1), P̃ (2)), where B̃ is a family matrix

where all entries are Gaussian, P̃ (1) = (p̃
(1)
i,j )di,j=1 with p̃

(1)
i,j = sin

(
π
2 ki,j

)
and P̃ (2) is a zero-matrix.
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3 Model distances for vines

There are many motivations to measure the model distance between different vines. For example,
Stöber et al. (2013) try to find the simplified vine with the smallest distance to a given non-simplified
vine. Further, it might be of interest to measure the distance between a vine copula and a Gaussian
copula, both fitted to the same data set, in order to assess the need for the more complicated model.
A common method to measure the distance between vines is the Kullback-Leibler distance.

3.1 Kullback-Leibler distance

Kullback and Leibler (1951) introduced a measure that indicates the distance between two d-dimensional
statistical models with densities f, g : Rd → [0,∞). The so-called Kullback-Leibler (KL) distance be-
tween f and g is defined as

KL(f, g) :=

∫
x∈Rd

ln

(
f(x)

g(x)

)
f(x) dx. (3.5)

The KL distance between f and g can also be expressed as an expectation with respect to f :

KL(f, g) = Ef
[
ln

(
f(X)

g(X)

)]
, (3.6)

where X ∼ f . Note that the KL distance is non-negative and equal to zero if and only if f = g. It is
not symmetric, i.e. in general KL(f, g) 6= KL(g, f) for arbitrary densities f and g.

Under the assumption that f and g have identical marginals, i.e. fj = gj , j = 1, . . . , d, we can
show that the KL distance between f and g is equal to the KL distance between their corresponding
copula densities. For this, let cf and cg be the copula densities corresponding to f and g and assume
that f and g, respectively, have the same marginal densities. Then, using Sklar’s Theorem, we obtain

KL(f, g) =

∫
x∈Rd

ln

(
f(x)

g(x)

)
f(x) dx

=

∫
x∈Rd

ln

(
cf (F1(x1), . . . , Fd(xd))

cg(F1(x1), . . . , Fd(xd))

)
cf (F1(x1), . . . , Fd(xd))

d∏
j=1

fj(xj) dx1 · · · dxd

=

∫
u∈[0,1]d

ln

(
cf (u1, . . . , ud)

cg(u1, . . . , ud)

)
cf (u1, . . . , ud) du1 · · · dud

= KL
(
cf , cg

)
,

(3.7)

where we applied the substitution uj := Fj(xj), duj = fj(xj) dxj for the third equality.
In this paper we are mainly interested in comparing different models that are obtained by fitting

a data set. Since we usually first estimate the margins and afterwards the dependence structure, the
assumption of identical margins is always fulfilled. Hence, we will in the following concentrate on
calculating the Kullback-Leibler distance between copula densities.

Having a closer look at the definition of the KL distance, we see that for its calculation a d-
dimensional integral has to be evaluated. In general, this cannot be done analytically and, further,
is numerically infeasible in high dimensions. For example, Schepsmeier (2015) stresses the difficulty
of numerical integration in dimensions 8 and higher. In this section, we propose modifications of the
Kullback-Leibler distance designed to be computationally tractable and still measure model distances
adequately. These modifications are all based on the following proposition that shows that the KL dis-
tance between d-dimensional copula densities cf and cg can be expressed as the sum over expectations
of KL distances between univariate conditional densities (see Appendix B for a proof).

Proposition 3.1. For two copula densities cf and cg it holds:

KL
(
cf , cg

)
=

d∑
j=1

Ecf
(j+1):d

[
KL
(
cfj|(j+1):d

(
· |U(j+1):d

)
, cgj|(j+1):d

(
· |U(j+1):d

) )]
, (3.8)

where U(j+1):d ∼ cf(j+1):d and (d+ 1):d := ∅.
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This proposition is especially useful if cf and cg are vine copula densities, since the appearing
conditional densities can easily be obtained (see Proposition 2.2). As an example, for four-dimensional
copula densities cf and cg, we can write:

KL
(
cf , cg

)
= Ecf2:4

[
KL
(
cf1|2:4( · |U2:4), cg1|2:4( · |U2:4)

)]
+ Ecf3,4

[
KL
(
cf2|3,4( · |U3,4), cg2|3,4( · |U3,4)

)]
+ Ecf4

[
KL
(
cf3|4( · |U4), cg3|4( · |U4)

)]
+ 0,

(3.9)

where for instance

cf1|2:4(u1|u2, u3, u4) = cf12(u1, u2) cf13;2

(
Cf1|2(u1|u2), Cf3|2(u3|u2);u2

)
× cf14;23

(
Cf1|23(u1|u2, u3), Cf4|23(u4|u2, u3);u2, u3

)
.

The zero in the last line of Equation (3.9) results from the fact that cf4 (u4) = cg4(u4) = 1 for all
u4 ∈ [0, 1]. This is generally the case for the dth summand in Equation (3.8), which will therefore be
omitted in the following.

Note that the evaluation of the KL distance with this formula still implicitly requires the calculation
of a d-dimensional integral since the expectation in the first summand of Equation (3.8) demands a
(d−1)-dimensional integral of the KL distance between univariate densities. A commonly used meth-
od to approximate expectations is Monte Carlo (MC) integration (see for example Caflisch (1998)):
For a random vector X ∈ Rd with density f : Rd → [0,∞) and a scalar-valued function h : Rd → R,
the expectation Ef [h(X)] =

∫
Rd h(x)f(x) dx can be approximated by

Ef [h(X)] ≈ 1

NMC

NMC∑
i=1

h(xi), (3.10)

where {xi}NMC

i=1 is an i.i.d. sample of size NMC distributed according to the density f . However, the
slow convergence rate of this method has been subject to criticism. Moreover, Do (2003) argues that
when approximating the KL distance via Monte Carlo integration the random nature of the method
is an unwanted property. Additionally, MC integration might produce negative approximations of KL
distances even though it can be shown theoretically that the KL distance is non-negative.

As an alternative to Monte Carlo integration, in the next sections we propose several ways to ap-
proximate the expectation in Equation (3.8) by replacing it with the average over a (d−j)-dimensional
non-random grid Uj , such that

KL
(
cf , cg

)
≈
d−1∑
j=1

1

| Uj |
∑

u(j+1):d∈Uj

KL
(
cfj|(j+1):d( · |u(j+1):d), c

g
j|(j+1):d( · |u(j+1):d)

)
. (3.11)

Note that, being a sum over univariate KL distances, this approximation produces non-negative results,
regardless of the grids Uj , j = 1, . . . , d. Now, the question remains how to choose the grids Uj , such
that the approximation is on the one hand fast to calculate and on the other hand still maintains the
main properties of the KL distance. We will provide three possible answers to this question yielding
different distance measures and investigate their performances.

Throughout the subsequent sections we assume the following setting: Let Rf and Rg be two d-
dimensional vines with copula densities cf and cg, respectively. We assume that their vine structure
matrices have the same entries on the diagonals, i.e. diag(Mf ) = diag(Mg). Note that, although

this assumption is a restriction, there are still 2(d−2
2 )+d−2 different vine decompositions with equal

diagonals of the structure matrix (cf. Proposition C.1).1 As before, without loss of generality we set
the diagonals equal to 1:d.

3.2 Approximate Kullback-Leibler distance

We illustrate the idea of the approximate Kullback-Leibler distance at the example of two three-
dimensional vines Rf and Rg. For the first summand (j = 1) of Equation (3.11), the KL distance

1This includes, for example, C- and D-vines (Aas et al., 2009) having the same diagonal.
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between cf1|2,3( · |u2, u3) and cg1|2,3( · |u2, u3) is calculated for all pairs (u2, u3)′ contained in the grid

U1. In this example we assume that the pair-copula cf2,3 is a Gumbel copula with parameter θ = 6
(implying a Kendall’s τ value of 0.83). Regarding the choice of the grid, if we used the Monte Carlo

method, U1 would contain a random sample of cf2,3. Recall from Section 2 that such a sample can be

generated by simulating from a uniform distribution on [0, 1]2 and applying the inverse Rosenblatt
transformation Tcf2,3

. Figure 1 displays a sample of size 900 on the (uniform) w-scale and its transfor-

mation via Tcf2,3
to the (warped) u-scale.
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Figure 1: Sample of size 900 from the uniform distribution (left) and corresponding warped sample under
transformation T

c
f
2,3

, which is a sample from a Gumbel copula with θ = 6 (right).

As mentioned before we do not want our distance measure to be random. This motivates us to
introduce the concept of structured Monte Carlo integration: Instead of sampling from the uniform
distribution on the w-scale, we use a structured grid W, which is an equidistant lattice on the two-
dimensional unit cube2, and transform it to the warped u-scale by applying the inverse Rosenblatt
transformation Tcf2,3

. Figure 2 shows an exemplary structured grid with 30 grid points per margin.
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Figure 2: Structured grid with 30 grid points per margin (left) and corresponding warped grid under transfor-
mation T

c
f
2,3

(right).

Applying this procedure for all grids Uj , j = 1, . . . , d − 1, yields the approximate Kullback-Leibler
distance.

Definition 3.2 (Approximate Kullback-Leibler distance). Let Rf and Rg be as described above.
Further, let n ∈ N be the number of grid points per margin and ε > 0. Then, the approximate

2Since most copulas have an infinite value at the boundary of the unit cube, we usually restrict ourselves to [ε, 1−ε]d

for a small ε > 0.
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Kullback-Leibler distance (aKL) between Rf and Rg is defined as

aKL
(
Rf ,Rg

)
:=

d−1∑
j=1

1

|Gj |
∑

u(j+1):d∈Gj

KL
(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

) )
,

where the warped grid Gj ⊆ [0, 1]d−j is constructed as follows:

1. Define the structured grid Wj := {ε, ε+ ∆, . . . , 1− ε}d−j to be an equidistant discretization of
[0, 1]d−j with n grid points per margin, where ∆ := 1−2ε

n−1 .

2. The warped grid Gj := Tcf
(j+1):d

(Wj) is defined as the image of Wj under the inverse Rosenblatt

transform Tcf
(j+1):d

associated with the copula density cf(j+1):d.

Note that by construction |Gj | = nd−j .

Proposition 3.3 shows that the approximate KL distance in fact approximates the true KL distance
in the sense that the aKL converges to the KL for ε → 0 and n → ∞. A proof can be found in
Appendix D.

Proposition 3.3. Let Rf and Rg be as described above. Then,

lim
ε→0

lim
n→∞

aKL
(
Rf ,Rg

)
= KL

(
cf , cg

)
.

In the following applications we use the function integrate for the calculation of the one-dimensional
KL. Further, we choose ε such that the convex hull of the structured grid contains volume β ∈ (0, 1),

so ε := 1
2

(
1− β

1
d−j
)
. Unless otherwise specified we set β to be 95%.

Example 3.4 (Four-dimensional aKL-example). We consider a data set from the Euro Stoxx 50,
already used in Brechmann and Czado (2013). It covers a 4-year period (May 22, 2006 to April 29,
2010) containing 985 daily observations. The Euro Stoxx 50 is a major index consisting of the stocks
of 50 large European companies. In this example we consider the following four national indices: the
Dutch AEX (U1), the Italian FTSE MIB (U2), the German DAX (U3) and the Spanish IBEX 35 (U4).
Fitting a simplified vine to the data yields:

M =


1 0 0 0
4 2 0 0
2 4 3 0
3 3 4 4

 , B =


0 0 0 0
F 0 0 0
t t 0 0
t t t 0

 ,

P (1) =


0 0 0 0

1.01 0 0 0
0.36 0.36 0 0
0.91 0.89 0.88 0

 , P (2) =


0 0 0 0
0 0 0 0

6.34 10.77 0 0
6.23 4.96 6.80 0

 .

As usual for financial data, most of the pair-copulas selected by the fitting algorithm are t copulas with
rather high dependence; only c14;23 is modeled as a Frank copula. Now we compute the approximate
KL distance between this vine and its nearest Gaussian vine (see Definition 2.3) and compare it to
the numerically integrated KL distance. The latter limits our example to low dimensions because
numerical integration becomes very slow in higher dimensions. Even in four dimensions we have to
set the tolerance level of the integration routine adaptIntegrate of the package cubature from its
default level of 10−5 to 10−4 to obtain results within less than 10 days. Throughout the paper we
will also consider examples for d ≥ 5, where numerical integration becomes (almost) infeasible. As a
substitute benchmark for the numerically integrated KL distance, we compare our approximated KL
values to the corresponding Monte Carlo Kullback Leibler (MCKL) values, where the expectation in
Equation (3.6) is approximated by Monte Carlo integration, i.e.

MCKL
(
cf , cg

)
:=

1

NMC

NMC∑
i=1

ln

(
cf (ui)

cg(ui)

)
, (3.12)

where u1, . . . ,uNMC are sampled from cf . We choose the sample size NMC to be very large in order
to get acceptable low-variance results (cf. Do, 2003).

8



aKL Numeric MCKL
β n = 10 n = 20 n = 50 tol=10−4 NMC = 105 NMC = 106

95%
value 0.135 0.095 0.076 0.077 0.076 0.079
time [h] 0.004 0.030 0.582 20.3 0.005 0.061

99%
value 0.311 0.170 0.107 0.082 0.085 0.081
time [h] 0.006 0.034 0.609 33.4 0.006 0.063

100%
value 0.084 0.084 0.084
time [h] 99.4 0.005 0.058

Table 1: Approximate, numerically integrated and Monte Carlo integrated KL distances for different parameter
settings with corresponding computational times (in hours).

Table 1 displays the approximate Kullback-Leibler distance between the fitted vine and its nearest
Gaussian vine for different values of β and n together with the corresponding computational time (in
hours). We further present the numerically and Monte Carlo integrated KL distances. In order to
facilitate comparability, for each value of β we compute the integrals on the corresponding domain of
integration with volume β.

We see that for an increasing number of marginal grid points n the value of the approximate
KL distance gets closer to the value obtained by numerical integration. We further observe that in
this example the value of the numerically integrated KL distance does not change considerably when
the integral is computed on the constrained domain of integration with volume β. We expect the
computational time of the aKL to increase cubically since the number of univariate KL evaluations is∑3
j=1 |Gj | = n3 +n2 +n. This is empirically validated by the observed computational times. Further,

we see that even for larger values of n the aKL is still considerably faster than classical numerical
integration. Concerning the Monte Carlo integrated KL distances in this example, we observe that
the values still vary notably between NMC = 105 and NMC = 106. Thus, for the remainder of the
paper we will use NMC = 106 in order to get rather reliable results.

We can conclude that the approximate KL distance is a valid tool to estimate the Kullback-Leibler
distance. However, similar to numerical integration it suffers from the curse of dimensionality, causing
computational times to increase sharply when a certain precision is required or dimension increases.
The number of evaluation points |Gj | increases exponentially in d, making calculations infeasible for
higher dimensions. This motivates us to thin out the grids Gj in a way that considerably reduces
the number of grid points, while still producing sound results. We have found that the restriction to
diagonals in the unit cube fulfills these requirements reasonably well. Of course, with this modification
we cannot hope for the resulting distance measure to still approximate the KL distance but we will
see that in applications it reproduces the behavior of the original KL distance remarkably well.

3.3 Diagonal Kullback-Leibler distance

In order to illustrate the idea behind the diagonal Kullback-Leibler distance we continue our example
from Section 3.2. Figure 3 shows the structured and warped grids used for the aKL (gray circles).
Additionally, the diagonal grid points are highlighted by filled diamonds.

The idea is now to reduce the evaluation grids Uj to the diagonal grids in order to define a distance
measure related to the original KL distance with the advantage of reduced computational costs. For
this, we formally define the sets of diagonals and warped discretized diagonals.

Definition 3.5 (Diagonals and warped discretized diagonals). For j = 1, . . . , d− 1, we define the set
of diagonals in [0, 1]d−j :

Dj :=
{
{r + tv(r) | t ∈ [0, 1]}

∣∣∣ r ∈ {0, 1}d−j} ,
where v(r) = (v1(r), . . . , vd−j(r))

′
with

vi(r) :=

{
1 if ri = 0

−1 if ri = 1
, i = 1, . . . , d− j,

is the direction vector corresponding to the corner point r. Note that the set of diagonals Dj only
contains 2d−j−1 elements since every diagonal is implied by two corner points (e.g. the diagonals
{(0, . . . , 0)′ + t(1, . . . , 1)′ | t ∈ [0, 1]} and {(1, . . . , 1)′ + t(−1, . . . ,−1)′ | t ∈ [0, 1]} coincide). Further,
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Figure 3: Structured grid with highlighted diagonals consisting of 30 evaluation points (left) and corresponding
warped grid under transformation T

c
f
2,3

(right).

let Dj,1, . . . , Dj,2d−j−1 be an arbitrary ordering of the 2d−j−1 diagonals. We define the kth discretized
diagonal on the w-scale as Dwj,k := Dj,k ∩Wj , where Wj is the structured grid in [0, 1]d−j defined in
Definition 3.2, such that it contains n grid points (cf. left panel of Figure 3). Finally, the kth warped
discretized diagonal on the u-scale is defined as Duj,k := Tcf

(j+1):d

(
Dwj,k

)
, where Tcf

(j+1):d
is defined as in

Definition 3.2 (cf. right panel of Figure 3).

Now, we can define the diagonal Kullback-Leibler distance by using the set of warped discretized
diagonals

Duj :=

2d−j−1⋃
k=1

Duj,k

as evaluation grid Uj .
Definition 3.6 (Diagonal Kullback-Leibler distance). Let Rf , Rg and Duj be as described above.

Then, the diagonal Kullback-Leibler distance dKL between Rf and Rg is defined as

dKL
(
Rf ,Rg

)
:=

d−1∑
j=1

1∣∣Duj ∣∣
∑

u(j+1):d∈Du
j

KL
(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

) )
,

where
∣∣Duj ∣∣ = n · 2d−j−1.

Remark 3.7. Similar to Proposition 3.3 one can show (see Appendix E.1) that for each of the 2d−j−1

diagonals Duj,k it holds

lim
ε→0

lim
n→∞

1

n

∑
u(j+1):d∈Du

j,k

KL
(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

))
=

1√
d− j

∫
u(j+1):d∈Du

j,k

KL
(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

))
cf(j+1):d

(
u(j+1):d

)
du(j+1):d,

where Du
j,k := Tcf

(j+1):d
(Dj,k). Hence, the diagonal Kullback-Leibler distance can be interpreted as a

sum of scaled approximated line integrals over weighted univariate KL distances between conditional
densities, which is exactly the integrand appearing in Proposition 3.1. Having the infeasibility of the
aKL in higher dimensions in mind, the reduction to points on lines seems to be a good choice in
order to reduce the approximation of multivariate integrals to one-dimensional ones. We choose the
warped diagonals as these lines since they on the one hand contain points with high density values
due to the warping and on the other hand each let all components of the conditioning vector take
values on the whole range from 0 to 1. Since in practice vine models tend to differ most in the tails of
the distributions, we increase the concentration of evaluation points in the tails by transforming the
discretized diagonal with the method described at the end of Appendix E.2.

The following examples are supposed to illustrate that the dKL is a reasonable distance measure
between vine copulas.
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Applications of the dKL

Example 3.8 (Example 3.4 continued). We continue Example 3.4 and apply the dKL to measure
the distance between the fitted four-dimensional vine and its nearest Gaussian vine using different
numbers of grid points n per diagonal and β = 95% as usual. The results and computational times
(in seconds) are displayed in Table 2.

n 10 20 50 100 1,000 10,000
value 0.123 0.117 0.115 0.114 0.113 0.113
time [s] 0.9 1.7 3.9 7.7 89 964

Table 2: dKL values and corresponding computational times (in seconds) for the four-dimensional Euro Stoxx
50 example.

We observe that the dKL values seem to converge quite fast and are already quite close to their
limit for small n. Of course, we cannot expect them to converge to the original KL distance, but we
see that the order of magnitude is the same as the values in Example 3.4 that were calculated by
numerical integration. Concerning computational times, the dKL merely needs a couple of seconds
to produce reasonable results which is a vast improvement to the computational times of the aKL
and MCKL which were in the order of hours. As expected, the computational times of the dKL grow
linearly in n.

In order to assess the aptitude of the dKL for measuring the distance between vine copulas,
we conduct several plausibility checks in the following examples. Since numerical integration is not
practicable for these examples (d ≥ 5), we compare our dKL values to the corresponding MCKL
values.

Example 3.9 (Plausibility checks). For the first plausibility check, we consider five-dimensional t
copulas with ν degrees of freedom (ranging from 3 to 30). Those can be specified as vine copulas
with structure matrices M = D5, family matrices B containing only t copulas, Kendall’s τ matrices
K = K5(0.5) and degrees of freedom matrix P (2) = V5(ν), where

Dd :=



1
d 2

d− 1 d
. . .

... d− 1
. . .

. . .

4
...

. . .
. . . d− 2

3 4
. . . d d− 1

2 3 4 · · · d− 1 d d


, (3.13)

Kd(τ) = (ki,j(τ))
d
i,j=1 , (3.14)

Vd(ν) = (vi,j(ν))
d
i,j=1 .

Here, ki,j(τ) :=
(

1
2

)d−i · τ · 1{i>j} and vi,j(ν) := (ν + d− i) · 1{i>j}, where 1{·} denotes the indicator
function. Note that the structure encoded in Dd is also known as a D-vine structure (see Aas et al.,
2009) and the parameter matrix P (1) is uniquely determined by the Kendall’s τ matrix since all
pairs are bivariate t copulas. Table 3 (left table) displays the diagonal (n = 10) and Monte Carlo
(NMC = 106) KL distances between these t copulas and their nearest Gaussian vines.

We see that the diagonal KL distance decreases as the degrees of freedom increase. This is very
plausible since the t copula converges to the Gaussian copula as ν → ∞. Further, while their values
are not on the same scale, we observe that the dKL and MCKL values behave similarly. This can
be seen by the fact that in this example the ratio between both values ranges only between 2.20 and
2.32, where some of the fluctuation can be explained by the randomness of the MCKL. Further, the
fact that the scale of the dKL differs from the one of the KL is no real drawback since the scale of
the KL distance itself is not particularly meaningful. Regarding computational times we note that in
this five-dimensional example the average time for computing a MCKL value was 125 seconds, while
the average computation of the dKL only took 3 seconds.

In the second plausibility check we also deal with five-dimensional t copulas decomposed as above.
However, in this scenario the degrees of freedom are fixed to be equal to 3 and the value for τ in K5(τ)

11



ν dKL MCKL ratio
3 0.857 0.374 2.29
5 0.376 0.162 2.32
7 0.209 0.091 2.30

10 0.109 0.047 2.31
15 0.051 0.023 2.26
20 0.029 0.013 2.20
25 0.019 0.008 2.25
30 0.013 0.006 2.23

τ dKL MCKL ratio
−0.7 4.702 3.226 1.46
−0.5 2.106 1.431 1.47
−0.3 0.740 0.473 1.56
−0.1 0.077 0.050 1.54

0.1 0.067 0.048 1.41
0.3 0.561 0.423 1.33
0.5 1.740 1.262 1.38
0.7 4.590 2.982 1.54

family dKL MCKL ratio
N 0.369 0.205 1.80
C 2.987 1.780 1.68
sC 0.322 0.158 2.04
J 0.483 0.249 1.94

Table 3: Left table: dKL (n = 10) and MCKL (NMC = 106) values between five-dimensional t copulas with
K = K5(0.5) and P (2) = V5(ν) and their nearest Gaussian vines. Middle table: dKL and MCKL values between
five-dimensional t copulas with K = K5(τ) and P (2) = V5(3) and their nearest Gaussian vines. Right table:
dKL and MCKL values between a five-dimensional Gumbel D-vine and D-vines with the same Kendall’s τ matrix
constructed using one copula family only. The third column contains the ratio between dKL and MCKL.

is ranging between −0.7 and 0.7. As a reference vine we use a t copula with Kendall’s τ matrix K5(0)
and degrees of freedom ν = 3. The dKL and MCKL distances between the resulting eight t copulas
and the reference vine is shown in Table 3 (middle table).

Both dKL and MCKL values grow with increasing absolute value of τ as we would expect from
the true KL distance. As before, the rank correlation between dKL and MCKL values is equal to 1,
the ratio is nearly constant and the dKL is computed 40 times faster than the MCKL.

In the third plausibility check we consider five-dimensional Gumbel vines (i.e. every pair-copula
is a bivariate Gumbel copula having upper tail dependence) with the same structure matrix Dd and
Kendall’s τ matrix K5(0.5). In Table 3 (right table) we compare this vine to its nearest Gaussian vine
and other vines constructed similarly using one copula family only but retaining the same dependence
in terms of the Kendall’s τ matrix. As other copula families we choose the Clayton copula (C)
exhibiting lower tail dependence, the survival Clayton copula (sC) with upper tail dependence and
the Joe copula (J ) having lower tail dependence. As the difference between upper and lower tail
dependent pair-copulas is large, we expect the highest distance value for the Clayton vine. Conversely,
the distance to the survival Clayton vine should be the lowest. The diagonal KL distance also passes
this plausibility check assigning the largest distance to the Clayton vine, a small distance to the
survival Clayton vine and medium distances to the Joe and Gaussian vines. Again, the ratio between
dKL and MCKL values varies only little and the dKL is still roughly 40 times faster than the MCKL
regarding computational time.

The previous plausibility checks have shown that the diagonal Kullback-Leibler distance is a reason-
able and fast distance measure for five-dimensional vines. Since the main motivation of the reduction
to diagonals was reduced computational complexity, we now turn to higher dimensional examples.

Example 3.10 (Performance in different dimensions). In order to assess the performance of the
diagonal KL distance regarding computational time in different dimensions, we again make use of the
Euro Stoxx 50 data. We take the 12 German stocks (with ticker symbols ALV, BAS, BAYN, DAI,
DB1, DBK, DTE, EOAN, MUV2, RWE, SIE, SAP, corresponding to U1, . . . , U12) and fit vines to the
first d variables (d = 3, . . . , 12). We display the dKL distance (n = 10) between these vines and their
nearest Gaussian vines with corresponding computational times (in seconds) in Table 4. Again, we
also present the approximated KL values using Monte Carlo integration (NMC = 106) and the ratio
between dKL and MCKL values.

While we observe that the dKL is exceptionally fast in low dimensions we note that computational
times more than double when moving up one dimension. This is reasonable since the total number of
diagonals in all evaluation grids is equal to

d−1∑
j=1

|Duj | =
d−1∑
j=1

2d−j−1 = 2d−1 − 1 (3.15)

and thus grows exponentially in d. Further, the evaluations of the conditional copula densities become
more costly in higher dimensions, which can also be seen by the fact that the computational times
for the MCKL increase even though the number of evaluations NMC stays constant. Comparing the
computational times of the dKL and MCKL one notices that the dKL is considerably faster than the
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d 3 4 5 6 7 8 9 10 11 12
dKL 0.076 0.109 0.178 0.249 0.297 0.459 0.529 0.657 0.670 0.839
time [s] 0.4 1 3 8 22 61 145 342 788 1846
MCKL 0.048 0.075 0.098 0.140 0.172 0.211 0.240 0.287 0.322 0.354
time [s] 25 43 87 129 158 174 235 279 408 448
ratio 1.57 1.45 1.81 1.78 1.73 2.17 2.2 2.29 2.08 2.37

Table 4: dKL values (n = 10) and MCKL values (NMC = 106) with corresponding computational times (in
seconds) for vines with different dimensions based on the stock exchange data. The fifth row contains the ratio
between dKL and MCKL.

MCKL in lower dimensions. Only in dimensions 10 and higher it looses this competitive advantage.
Considering the ratio between dKL and MCKL values it seems that the dKL values increase slightly
faster with the dimension d than the MCKL values.

The preceding examples suggest that with the dKL distance we have found a valid distance measure
between vines with reasonable computational times for up to ten dimensions. However, we are still
interested in finding a distance measure computable in dimensions of order 30 to 50. To achieve this,
the number of grid points should not depend on the dimension of the evaluation grid, implying a
constant number of grid points. Hence, we choose only one of the 2d−j−1 warped discrete diagonals
in Duj to be the evaluation grid. While this may seem like a very severe restriction (with the curse of
dimensionality in mind), two heuristic observations justify this approach. On the one hand we observe
that most of the 2d−j−1 diagonals contain many grid points with density values close to zero while
there is always one diagonal whose points have very large density values. On the other hand we will
see that the properties of the distance measure using only this single diagonal for the evaluation grid
still pass the plausibility checks with values behaving closely to those of the dKL and the MCKL.

3.4 Single diagonal Kullback-Leibler distance

In order to find the one diagonal whose grid points have the highest density values we introduce a
weighting measure that assigns a positive real number to a diagonal depending on how the density
behaves on it. The higher the density values are the more weight the corresponding diagonal obtains.

Definition 3.11 (Diagonal weighting measure). Assume we can parametrize a diagonal D ⊆ [0, 1]d

(on the u-scale) by the mapping γ : [0, 1]→ [0, 1]d. Let c : [0, 1]d → [0,∞) be a copula density. Then,
we define

λc(D) :=

∫
ξ∈D

c(ξ) dξ =

∫
t∈[0,1]

c(γ(t)) ‖γ̇(t)‖ dt (3.16)

to be the weight of D under c, where γ̇ is the vector of componentwise derivatives of γ.

We now define the single diagonal Kullback-Leibler distance, which is a version of the diagonal
Kullback-Leibler distance that only evaluates the diagonal with the highest weight.

Definition 3.12 (Single diagonal Kullback-Leibler distance). Let Rf , Rg be as before and Duj,k∗j with

|Duj,k∗j | = n and k∗j := arg maxk λcf
(j+1):d

(
Du
j,k

)
be a discretization of the corresponding diagonal with

the highest weight according to λcf
(j+1):d

, j = 1, . . . , d− 1. Then, the single diagonal Kullback-Leibler

distance (sdKL) between Rf and Rg is defined as

sdKL
(
Rf ,Rg

)
:=

d−1∑
j=1

1∣∣Duj,k∗j ∣∣
∑

u(j+1):d∈Du
j,k∗

j

KL
(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

))
.

Remark 3.13. From Remark 3.7 we know that the single diagonal Kullback-Leibler distance ap-
proximates a scaled line integral over weighted univariate KL distances between conditional densities
along the diagonal with the highest weight.

To find this diagonal we actually would have to calculate the integral of cf(j+1):d over each of the

2d−j−1 diagonals. In practice, this may be infeasible for high dimensions. Therefore, we propose a
more sophisticated method to find a candidate for the diagonal with the highest weight. Similar to the
hill-climbing algorithm used to find optimal graph structures in Bayesian networks (see Tsamardinos
et al., 2006), we choose a starting value in form of a certain diagonal implied by the vine’s unconditional
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dependencies and look in the “neighborhood” of this diagonal for another diagonal with higher weight.
This procedure is repeated until a (local) maximum is found. The two procedures of finding a suitable
starting diagonal and locally searching for better candidates are described in Appendix F.

In the following we continue the plausibility checks from Example 3.9 to demonstrate that the
restriction to a single diagonal is still enough for the resulting distance measure to generate reasonable
results.

Example 3.14 (Plausibility checks (Example 3.9 continued)). Table 5 repeats the three plausibility
checks of Example 3.9. The resulting sdKL values obviously also pass these tests resembling the
behavior of the MCKL values quite closely with relatively steady sdKL/MCKL-ratios. Evaluating at
only one diagonal in each grid reduces computational times even more such that the sdKL is roughly
180 times faster than the MCKL.

ν sdKL MCKL ratio
3 0.754 0.374 2.02
5 0.330 0.162 2.04
7 0.184 0.091 2.03

10 0.097 0.047 2.06
15 0.046 0.023 2.04
20 0.026 0.013 1.98
25 0.017 0.008 2.04
30 0.012 0.006 2.03

τ sdKL MCKL ratio
−0.7 7.534 3.226 2.34
−0.5 3.100 1.431 2.17
−0.3 0.773 0.473 1.63
−0.1 0.053 0.050 1.05

0.1 0.157 0.048 3.30
0.3 1.322 0.423 3.12
0.5 3.226 1.262 2.56
0.7 6.193 2.982 2.08

family sdKL MCKL ratio
N 0.394 0.205 1.92
C 3.557 1.780 2.00
sC 0.421 0.158 2.66
J 0.576 0.249 2.32

Table 5: Left table: sdKL (n = 10) and MCKL (NMC = 106) values between five-dimensional t copulas with
P (2) = V5(ν) and their nearest Gaussian vines. Middle table: sdKL and MCKL values between five-dimensional
t copulas with K = K5(τ) and their nearest Gaussian vines. Right table: sdKL and MCKL values between a
five-dimensional Gumbel vine and vines constructed using one copula family only. The third column contains
the ratio between sdKL and MCKL.

These five-dimensional plausibility checks empirically show that the reduction from all to one
diagonal still yields viable results for our modified version of the KL distance. As a final application
we want to compare all distance measures introduced in this paper.

3.5 Comparison of all introduced distance measures

In the following example, we will investigate the behavior of the KL, aKL, dKL, sdKL and MCKL
in dimensions d = 3, 4, 5, 7, 10, 15, 20, 30. We make use of the fact that the Kullback-Leibler distance
between Gaussian copulas can be expressed analytically (Hershey and Olsen (2007)). For two Gaussian
copulas cf and cg with correlation matrices Σf and Σg, respectively, one has

KL
(
cf , cg

)
=

1

2

{
ln

(
det (Σg)

det (Σf )

)
+ tr

(
(Σg)−1Σf

)
− d
}
,

where det( · ) denotes the determinant and tr( · ) the trace of a matrix. For each dimension d we use
a reference Gaussian vine R0 (which is also a Gaussian copula) with the (D-vine) structure matrix
M = Dd and Kendall’s τ matrix K = Kd(0.5) (cf. Equation (3.13) and Equation (3.14), respectively).
We generate another m = 50 Gaussian vines Rr, r = 1, . . . ,m, with the same structure matrix
M = Dd and a parameter matrix P (1), where the d(d − 1)/2 partial correlations are simulated such
that the corresponding correlation matrix is uniform over the space of valid correlation matrices.

For this purpose, we follow Joe (2006): For i = 2, . . . , d and j = 1, . . . , i − 1 we draw p
(1)
i,j from a

Beta(i/2, i/2) distribution and transform it linearly to [−1, 1].
We compare R0 to each Rr using the model distances KL, MCKL, aKL, dKL and sdKL. Since the
Kullback-Leibler distance is exact in these cases, we can assess the performance of the remaining
distance measures by comparing their m = 50 distance values to the ones of the true KL. As the scale
of the KL and related distance measures cannot be interpreted in a sensible way, we are only interested
in how well the ordering suggested by the KL is reproduced by aKL (n = 20), dKL (n = 10), sdKL
(n = 10) and MCKL (NMC = 106), respectively. Hence, we consider the respective rank correlations
to the KL values in order to assess their performances. The results and average computation times
are displayed in Table 6 and Table 7, respectively.
With a rank correlation of more than 98% the approximate KL performs extremely well for d =
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d 3 4 5 7 10 15 20 30
aKL 98.4 98.5 98.4 – – – – –
dKL 96.7 97.4 98.7 98.7 97.2 – – –
sdKL 93.3 90.2 91.5 89.7 82.9 84.8 84.5 80.4
MCKL 99.8 99.5 99.5 99.7 98.5 97.2 92.3 91.7

Table 6: Rank correlations (in percent) between the true Kullback-Leibler distance and the results of aKL,
dKL, sdKL and MCKL, respectively, for dimensions d = 3, 4, 5, 7, 10, 15, 20, 30.

d 3 4 5 7 10 15 20 30
aKL 3.46 117.67 4357.91 – – – – –
dKL 0.23 0.82 2.49 19.63 338.32 – – –
sdKL 0.18 0.38 0.69 1.80 4.86 16.04 36.91 114.12
MCKL 7.35 14.50 24.12 46.05 97.54 239.17 473.41 961.12

Table 7: Average computational times (in seconds) of aKL, dKL, sdKL and MCKL for dimensions d =
3, 4, 5, 7, 10, 15, 20, 30.

3, 4, 5. However, computational times increase drastically with the dimension such that it cannot be
computed in higher dimensions in a reasonable amount of time. As the plausibility checks from the
previous sections suggested the diagonal KL also produces very good results. In lower dimensions the
dKL is competitive regarding computational times. Only for dimensions 10 and higher it becomes
slower due to the exponentially increasing number of diagonals. Therefore, calculations have not been
performed for d = 15, 20, 30. As expected, restricting to only one diagonal reduces computational times
considerably such that even in very high dimensions they are kept to a minimum. Of course, this
restriction comes along with slight loss of performance, still achieving a rank correlation of over 80%
in 30 dimensions. Being a consistent estimator of the KL distance (for NMC →∞), the Monte-Carlo
KL has the best performance of the considered model distances. However, the performance decreases
for high dimensions due to the curse of dimensionality (NMC = 106 for all d). Further, the price of
the slightly better performance (compared to sdKL) is a considerably higher computational time, e.g.
in 10 and 30 dimensions the sdKL is roughly 20 and 9 times faster than the MCKL, respectively.

Altogether we can say that in order to have good performance and low computational times one
should use the dKL in lower dimensions and then switch to the sdKL in higher dimensions in order
to obtain a usable proxy for the KL distance at (relatively) low computational costs.

4 Conclusion

In this paper we have developed new methods for measuring model distances between vine copulas.
Since vines are frequently used for high dimensional dependence modeling, the focus was to propose
concepts that can in particular be applied to higher dimensional models. With the approximate
Kullback-Leibler distance we introduced a measure which converges to the original Kullback-Leibler
distance and therefore produces good approximations. Although being considerably faster than the
calculation of the KL by numerical integration, the aKL suffers from the curse of dimensionality and
therefore is not computationally tractable in dimensions d ≥ 6. Being a more crude approximation
the diagonal Kullback-Leibler distance, which highlights the difference between vines conditioned on
points on the diagonals, has proven itself to be a reliable and computationally parsimonious model
distance measure for comparing vines up to 10 dimensions. In higher dimensions the number of
diagonals becomes intractable, which is why we suggested to reduce calculations to only one diagonal
with large density values, introducing the single diagonal Kullback-Leibler distance. With the sdKL,
we have found a possibility to overcome the shortfalls of alternative methods like Monte Carlo (low
speed and randomness) and at the same time maintain the desired properties of the Kullback-Leibler
distance relatively well.
In ongoing research we address ourselves to applying our distance measures in many possible fields:
applications to real data sets, comparing C- and D-vines, determining appropriate truncation levels
for vines and comparing non-simplified vines with simplified ones in order to develop a test to decide
whether the simplifying assumption is satisfied for given data.
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Appendix

A Proof of Proposition 2.2

From Equation (2.3) we know that the vine copula density can be written as a product over the pair-
copula expressions corresponding to the matrix entries. In Property 2.8 (ii), Dißmann et al. (2013)
state that deleting the first row and column from a d-dimensional structure matrix yields a (d − 1)-
dimensional trimmed structure matrix. Due to Property 2 from Definition 2.1 the entry m1,1 = 1
does not appear in the remaining matrix. Hence, we obtain the density c2:d by taking the product
over all pair-copula expressions corresponding to the entries in the trimmed matrix. Iterating this
argument yields that the entries of matrix Mk := (mi,j)

d
i,j=k+1 resulting from cutting the first k rows

and columns from M represent the density c(k+1):d. In general, we have

cj|(j+1):d (uj |uj+1, . . . , ud) =
cj:d (uj , . . . , ud)

c(j+1):d (uj+1, . . . , ud)
.

The numerator and denominator can be obtained as the product over all pair-copula expressions cor-
responding to the entries of Mj−1 and Mj . Thus, cj|(j+1):d is simply the product over the expressions
corresponding to the entries from the first column of Mj−1. This proves Equation (2.4). �

B Proof of Proposition 3.1

Recall that using recursive conditioning we can obtain

ci (u1, . . . , ud) =

d∏
j=1

cij|(j+1):d

(
uj |u(j+1):d

)
, i ∈ {f, g} .

Thus, the Kullback-Leibler distance between cf and cg can be written in the following way:

KL
(
cf , cg

)
=

∫
u∈[0,1]d

ln

(
cf (u)

cg(u)

)
cf (u) du

=

∫
u∈[0,1]d

d∑
j=1

ln

(
cfj|(j+1):d

(
uj |u(j+1):d

)
cgj|(j+1):d

(
uj |u(j+1):d

)) cf (u) du

=

d∑
j=1

∫
ud∈[0,1]

· · ·
∫

u1∈[0,1]

ln

(
cfj|(j+1):d

(
uj |u(j+1):d

)
cgj|(j+1):d

(
uj |u(j+1):d

)) cf (u1, . . . , ud) du1 · · · dud

=

d∑
j=1

∫
ud∈[0,1]

· · ·
∫

uj∈[0,1]

ln

(
cfj|(j+1):d

(
uj |u(j+1):d

)
cgj|(j+1):d

(
uj |u(j+1):d

))

×


∫

uj−1∈[0,1]

· · ·
∫

u1∈[0,1]

cf (u1, . . . , ud) du1 · · · duj−1

duj · · · dud

=

d∑
j=1

∫
ud∈[0,1]

· · ·
∫

uj∈[0,1]

ln

(
cfj|(j+1):d

(
uj |u(j+1):d

)
cgj|(j+1):d

(
uj |u(j+1):d

)) cfj,...,d(uj , . . . , ud) duj · · · dud

=

d∑
j=1

∫
ud∈[0,1]

· · ·
∫

uj+1∈[0,1]


∫

uj∈[0,1]

ln

(
cfj|(j+1):d

(
uj |u(j+1):d

)
cgj|(j+1):d

(
uj |u(j+1):d

)) cfj|(j+1):d(uj |u(j+1):d) duj


× cf(j+1):d(u(j+1):d) duj+1 · · · dud

=

d∑
j=1

Ecf
(j+1):d

[
KL
(
cfj|(j+1):d( · |U(j+1):d), c

g
j|(j+1):d( · |U(j+1):d)

)]
.

�
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C Number of vines with the same diagonal

Proposition C.1. Let σ = (σ1, . . . , σd)
′

be a permutation of 1 :d. Then, there exist 2(d−2
2 )+d−2

different vine decompositions whose structure matrix has the diagonal σ.

Proof. The number of vine decompositions whose structure matrix has the same diagonal σ can be
calculated as the the quotient of the number of valid structure matrices and the number of possible

diagonals. Morales-Nápoles (2011) show that there are d!
2 · 2

(d−2
d ) different vine decompositions. In

each of the d− 1 steps of the algorithm for encoding a vine decomposition in a structure matrix (see
Stöber and Czado, 2012) we have two possible choices such that there are 2d−1 structure matrices

representing the same vine decomposition. Hence, there are in total d!
2 · 2

(d−2
d ) · 2d−1 valid structure

matrices. Further, there are d! different diagonals. Thus, for a fixed diagonal σ there exist

d!
2 · 2

(d−2
d ) · 2d−1

d!
= 2(d−2

2 )+d−2

different vine decompositions.

D Proof of Proposition 3.3

Let ε > 0 and n ∈ N. To simplify notation, for j = 1, . . . , d− 1 we define

κj
(
u(j+1):d

)
:= KL

(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

))
.

Then, by definition

aKL
(
Rf ,Rg

)
=

d−1∑
j=1

1

nd−j

∑
u(j+1):d∈Gj

κj
(
u(j+1):d

)
=

d−1∑
j=1

1

nd−j

∑
w(j+1):d∈Wj

κj
(
Tcf

(j+1):d
(w(j+1):d)

)
.

Since Wj is a discretization of [ε, 1− ε]d−j with mesh going to zero for n→∞, we have

1

nd−j

∑
w(j+1):d∈Wj

κj
(
Tcf

(j+1):d
(w(j+1):d)

) n→∞−→ ∫
[ε,1−ε]d−j

κj
(
Tcf

(j+1):d
(w(j+1):d)

)
dw(j+1):d.

Substituting w(j+1):d = T−1

cf
(j+1):d

(
u(j+1):d

)
yields∫

[ε,1−ε]d−j

κj
(
Tcf

(j+1):d
(w(j+1):d)

)
dw(j+1):d =

∫
T f
c(j+1):d

([ε,1−ε]d−j)

κj
(
u(j+1):d

)
cf(j+1):d

(
u(j+1):d

)
du(j+1):d

since
T−1

cf
(j+1):d

(
u(j+1):d

)
=
(
Cfj+1|(j+2):d(uj+1|u(j+2):d), . . . , C

f
d−1|d(ud−1|ud), ud

)′
with (upper triangular) Jacobian matrix

J = JT−1

c
f
(j+1):d

(
u(j+1):d

)
=


cfj+1|(j+2):d(uj+1|u(j+2):d)

. . . *
0 cfd−1|d(ud−1|ud)

1


such that dw(j+1):d = det(J) du(j+1):d = cf(j+1):d

(
u(j+1):d

)
du(j+1):d. Since we are only interested

in the determinant of J , whose lower triangular matrix contains only zeros, the values in the upper
triangular matrix (denoted by ∗) are irrelevant here. Finally, using the fact that

lim
ε→0

Tcf
(j+1):d

(
[ε, 1− ε]d−j

)
= Tcf

(j+1):d

(
[0, 1]d−j

)
= [0, 1]d−j ,

we obtain

lim
ε→0

lim
n→∞

aKL
(
Rf ,Rg

)
=

d−1∑
j=1

∫
[0,1]d−j

κj
(
u(j+1):d

)
cf(j+1):d

(
u(j+1):d

)
du(j+1):d

Prop. 3.1
= KL

(
cf , cg

)
.

�
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E Regarding Remark 3.7

E.1 Limit of the dKL

Let ε > 0 and n ∈ N. Again, for j = 1, . . . , d− 1 we define

κj
(
u(j+1):d

)
:= KL

(
cfj|(j+1):d

(
· |u(j+1):d

)
, cgj|(j+1):d

(
· |u(j+1):d

))
.

The contribution of Duj,k, j = 1, . . . , d− 1, k = 1, . . . , 2d−j−1, to the dKL is given by

1

n

∑
u(j+1):d∈Du

j,k

κj
(
u(j+1):d

)
=

1

n

∑
w(j+1):d∈Dw

j,k

κj
(
Tcf

(j+1):d
(w(j+1):d)

)
=

1

n

n∑
i=1

κj
(
Tcf

(j+1):d
(ω(ti))

)
,

where ω(t) = r + tv(r) with r ∈ {0, 1}d−j being a corner point of Dw
j,k and ti = ε + (i − 1) 1−2ε

n−1 for
i = 1, . . . , n. Letting n→∞ yields

1

n

n∑
i=1

κj
(
Tcf

(j+1):d
(ω(ti))

) n→∞−→ ∫
t∈[ε,1−ε]

κj
(
Tcf

(j+1):d
(ω(t))

)
dt. (E.17)

Now, we further let ε→ 0 and use the fact that ‖ω̇(t)‖ =
√
d− j to obtain∫

t∈[0,1]

κj
(
Tcf

(j+1):d
(ω(t))

)
dt =

1√
d− j

∫
t∈[0,1]

κj
(
Tcf

(j+1):d
(ω(t))

)
‖ω̇(t)‖ dt

=
1√
d− j

∫
w(j+1):d∈Dw

j,k

κj
(
Tcf

(j+1):d
(w(j+1):d)

)
dw(j+1):d

=
1√
d− j

∫
u(j+1):d∈Du

j,k

κj
(
u(j+1):d

)
c(j+1):d

(
u(j+1):d

)
du(j+1):d,

where we used the substitution u(j+1):d := T−1

cf
(j+1):d

(w(j+1):d), dw(j+1):d = cf(j+1):d(u(j+1):d) du(j+1):d

(cf. Appendix D) in the last line. �

E.2 Tail transformation

In our empirical applications of the dKL, we have noticed that different vines tend to differ most
in the tails of the distribution. Therefore, we increase the concentration of evaluation points in the
tails of the diagonal by transforming the points ti, i = 1, . . . , n, via a suited function Ψ. Hence, by
substituting t = Ψ(s) in Equation (E.17) we obtain∫

s∈Ψ−1([ε,1−ε])
κj

(
Tcf

(j+1):d

(
η
(
Ψ(s)

)))
Ψ′(s) ds.

We use its discrete pendant

1

n

n∑
i=1

κj

(
Tcf

(j+1):d

(
η
(
Ψ(si)

)))
Ψ′(si),

where si = Ψ−1(ε) + (i− 1)Ψ−1(1−ε)−Ψ−1(ε)
n−1 for i = 1, . . . , n. Regarding the choice of Ψ, all results in

this paper are obtained using

Ψa : [0, 1]→ [0, 1], Ψa(t) :=
Φ(2a(t− 0.5))− Φ(−a)

2Φ(a)− 1

with shape parameter a > 0, where Φ is the standard normal distribution function. Figure 4 shows
the graph of Ψa for different values of a. We see that larger values of a imply more points being
transformed into the tails. Having tested different values for a, we found that a = 4 yields the best
overall results. Therefore, we consistently use a = 4.
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Figure 4: Plot of Ψa for a = 0, 4, 7.

F Finding the diagonal with the highest weight

F.1 Procedure 1: Finding a starting value

The idea behind the following heuristic is that a diagonal has a higher weight if its points have high
probability implied by the copula density. Hence, the diagonal should reflect the dependence structure
of the variables. The unconditional dependence in a vine captures most of the total dependence and is
easy to interpret. For example, if Ui and Uj are positively dependent (i.e. τi,j > 0) and Uj and Uk are
negatively dependent (i.e. τj,k < 0), then it seems plausible that Ui and Uk are negatively dependent.
This concept can be extended to arbitrary dimensions.

1. Take each variable to be a node in an empty graph.

2. Consider the last row of the structure matrix, encoding the unconditional pair-copulas. Connect
two nodes by an edge if the dependence of the corresponding variables is described by one of
those copulas.

3. Assign a “+” to node 1.

4. As long as not all nodes have been assigned a sign, repeat:

(a) For each node that has been assigned a sign in the previous step, consider its neighborhood.

(b) If the root node has a “+”, then assign to the neighbor node the sign of the Kendall’s τ of
the pair-copula connecting the root and neighbor node, else the opposite sign.

5. The resulting direction vector v ∈ {−1, 1}d has entries vi which are 1 or −1 if node i is has been
assigned a “+” or a “−”, respectively.

Note that if we had assigned a “−” to node 1 in step 3, we would have ended up with −v instead of
v, implying the same diagonal.

To illustrate the procedure from above we consider a nine-dimensional example: Let R be a vine
copula with density c, where the following (unconditional) pair-copulas are specified:

pair-copula c1,2 c1,3 c3,4 c3,5 c2,6 c6,7 c7,8 c7,9
Kendall’s τ −0.3 0.5 0.2 −0.4 0.5 0.5 −0.4 0.6

Table 8: Specification of the pair-copulas with empty conditioning set.

Now, we take an empty graph with node 1 to 9 and add edges (i, j) if ci,j is specified in Table 8.
The result is a tree on the nodes 1 to 9 (see Figure 5). We assign a “+” to node 1 and consider its
neighborhood {2, 3} as there are still nodes without a sign. Since τ1,2 < 0 and the root node 1 has
been assigned a “+”, node 2 gets a “−”. Node 3 is assigned a “+”. Next, we repeat this procedure
for the neighborhoods of nodes 2 and 3. Iterating in this way until all nodes have been assigned
a “+” or a “−” we obtain what is shown in Figure 5. The resulting direction vector is given by
v = (1,−1, 1, 1,−1,−1,−1, 1,−1)′.
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Figure 5: Example for finding the candidate vector.

F.2 Procedure 2: Local search for better candidates

Having found a diagonal through Procedure 1 (Appendix F.1), we additionally perform the following
steps in order to look if there is a diagonal with even higher weight in the “neighborhood” of v.

1. Consider a candidate diagonal vector v ∈ {1,−1}d with corresponding weight λ
(0)
c .

2. For j = 1, . . . , d, calculate the weight λ
(j)
c corresponding to vj ∈ {1,−1}d, where vj is equal to

v with the sign of the jth entry being reversed.

3. If maxi λ
(i)
c > λ

(0)
c , take v := vk with k = arg maxi λ

(i)
c to be the new candidate for the (local)

maximum.

4. Repeat the steps 1–3 until a (local) maximum is found, i.e. maxi λ
(i)
c ≤ λ(0)

c .

Although there is no guarantee that we really find the global maximum of the diagonal weights, this
procedure in any case finds a local maximum. Starting with a very plausible choice of v it is highly
likely that we end up with the “right” diagonal.
In step 2 the weight of numerous diagonals has to be calculated. For a fast determination of these
weights it is reasonable to approximate the integral in Equation (3.16) by

λc(D) ≈ 1

n

n∑
i=1

c(γ(ti)) ‖γ̇(ti)‖ ,

where 0 < t1 < t2 < . . . < tn < 1 is an equidistant discretization of [0, 1].
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Morales-Nápoles, O. (2011). Counting vines. In D. Kurowicka and H. Joe (Eds.), Dependence Modeling:
Vine Copula Handbook. World Scientific Publishing Co.

Nagler, T. and Czado, C. (2015). Evading the curse of dimensionality in multivariate kernel density
estimation with simplified vines. arXiv preprint http://arxiv.org/abs/1503.03305.

Nelsen, R. (2006). An introduction to copulas, 2nd. New York: SpringerScience Business Media.

Panagiotelis, A., Czado, C., and Joe, H. (2012). Pair copula constructions for multivariate discrete
data. Journal of the American Statistical Association, 107(499):1063–1072.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

Rosenblatt, M. (1952). Remarks on a Multivariate Transformation. Ann. Math. Statist., 23(3):470–
472.

Schepsmeier, U. (2015). Efficient information based goodness-of-fit tests for vine copula models with
fixed margins. Journal of Multivariate Analysis 138, 34-52.
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