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Abstract

As supercomputers become larger and more complex, application developers
face new challenges. Massively parallel systems not only allow scientists to en-
hance their codes and achieve unprecedented levels of performance – system faults
are no longer invisible to developers, which means they also have to protect their
applications from unexpected (and unwanted) behavior. The interplay between
maximizing performance while ensuring simulations run successfully on increas-
ingly unreliable hardware is the topic of much research in high-performance com-
puting, and the focus of this thesis.

In particular, we study a class of problems that have historically benefited
from advances in HPC and now therefore face the challenges brought about by
system faults. We want to solve partial differential equations (PDEs), which play
a central role in the simulation sciences. In particular, we look at PDEs defined
on higher-dimensional domains (more than three dimensions) which, in realistic
simulation scenarios, often require vast computing resources. We present a pro-
totypical example of such an application: gyrokinetic plasma simulations used by
physicists to better understand anomalous and turbulent plasma flow in fusion
reactors, the main limiting factor in the path to clean fusion energy.

We describe an algorithm that can exploit the computing resources of massively-
parallel systems to solve such PDEs: the sparse grid combination technique algo-
rithm. Thanks to the work of our partners at the IPVS Stuttgart, this algorithm
can be run efficiently on high-end computing systems. Our goal for this thesis is
to make sure that the algorithm runs successfully despite any hardware or soft-
ware errors, but without sacrificing the code’s performance. To do this, we make
use of both numerical mathematics and software engineering, and we argue that
understanding the mathematical properties of an algorithm is the key to develop
efficient resilient codes.

This work is a building block of the project EXAHD, which is part of the Ger-
man Priority Programme Software for Exascale Computing (SPPEXA). EXAHD
is a joint collaboration between the Technical University of Munich, the Univer-
sity of Stuttgart, the University of Bonn and the Max Planck Institute for Plasma
Physics.
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1
Introduction

A wide range of interesting physical phenomena can be modeled using partial dif-
ferential equations (PDEs). Since this class of problems will be the focus of our
thesis, it is worthwhile considering some of the challenges that PDEs present to
high-performance computing (HPC). As a motivating example, consider the prob-
lem of simulating hot plasma confined by a strong magnetic field. High-resolution
simulations of confined plasma are of great value to physicists and engineers build-
ing efficient fusion power plants, since plasma fusion is considered one of the most
promising alternatives to generate clean, safe and sustainable energy for future
generations [KGHW15]. But developing this technology is as challenging as it
is exciting. The principal obstacle standing on the way of efficient plasma power
plants is the anomalous transport phenomena that arise at such high temperatures
(typically reaching the order of magnitude of 100 million Kelvin) [GLB+11]. This
behavior is mainly caused by small-scale turbulence, which has been an elusive
problem in plasma physics for a long time.

The evolution of a plasma field in this state can be described by a PDE (ac-
tually, a system of PDEs), namely, the gyrokinetic Vlasov-Maxwell equations.
Although the system has a complicated form, it can has the following general
form [KPJH12]

∂u

∂t
= L(u) +N (u) . (1.1)

This system characterizes the time evolution of a (5+1)-dimensional plasma field
whose particles are described by a probability distribution u ≡ u(x, y, z, v‖, µ; t).
This distribution depends on the spatial coordinates x, y and z as well as on the
two velocity coordinates v‖ and µ. The differential operators L and N describe the
linear and nonlinear evolution of u in the five-dimensional domain, respectively.

Solving Eq. (1.1) is a challenging task. The system is not only nonlinear but
also coupled, and both L and N are integro-differential operators. One physics
code that attempts to solve this system numerically is GENE [J+00]. This code uses
a Runge-Kutta scheme in time and a combination of high-order finite differences
and Fourier discretization in space. The resulting five-dimensional Cartesian grid
Ωi has 2i1 × 2i3 × 2i3 × 2i4 × 2i5 discretization points. Additionally, the code
can simulate the interaction of various types of particles (called species), such as
electrons and ions, and each particle has its own 5D grid.

A report by the developers of GENE for the Jülich Supercomputer center de-
scribes some typical simulation scenarios and the respective memory costs [MF10]:
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CHAPTER 1. INTRODUCTION

• Multi-scale problems, which investigate the coupling of electrons and
ions, require grid sizes with typical sizes of 1024×512×24×48×16 for each
species (= 233 in total). The memory requirements for this type of problems
are of the order of 2.5 TB.

• Stellerator problems attempt to model the more complicated geometry
of stellerator fusion reactors. A typical simulation scenario with two species
has 128 × 64× 512× 64× 16 grid points per species (≈ 234 in total) and a
memory footprint of 2 TB.

• Global simulations extend the computational domain along the radial
dimension of the fusion reactor, which requires considerably more points this
direction. Many scenarios of interest in this simulation mode are currently
not feasible, but projected grids have 8192×64×32×128×64 grid points and
four species (= 239 grid points total). Such simulations will require roughly
100 TB of memory.

These huge computational requirements pose a big challenge for the plasma
physics community, slowing down the progress in plasma fusion research. Scien-
tists can either wait for supercomputers to offer the resources needed to run such
simulations, or apply novel techniques from the field of numerical mathematics to
optimize their codes now.

The memory requirements, as challenging as they might be, are actually only
one of many problems that computational scientists face in light of the approaching
exascale era. Scientists expect to have computing systems capable of performing at
least 1018 (a quintillion) floating point operations per second in the time frame of
2018–2020 [DBM+11]. Numerical computations at this scale will require unprece-
dented resources in terms of core-hours and the issues arising in current petascale
systems will be magnified in exascale computers. One such problem will be the
main topic of this thesis, namely, the frequent occurrence of errors which cause
computing systems to fail or return erroneous results.

Computing systems have always experienced different types of errors, and al-
though current architectures are extremely robust to anomalous behaviors, the
mere scale of the number of components that exascale computers will be built
of means that errors will be inescapable. Furthermore, they will occur often, as
we will see in Chapter 2.1 when we look at probabilistic estimates of errors in
exascale.

At this point we can state the main goal of this thesis, as motivated by our
discussion so far. Our aim is to apply and extend state-of-the-art numerical algo-
rithms that can reliably run on future exascale systems prone to errors of various
kinds in order to solve high-dimensional PDEs. This might sound like a daunting
task, and we do not claim to have a one-size-fits-solution to every high-dimensional
PDE solver. What we instead hope to achieve in this thesis is to show how we
moved from having existing, peta-scalable PDE solvers that are vulnerable to
system faults, to robust codes that can be reliably run on error-prone supercom-
puters. Our hope is that our ideas can inspire similar efforts with different types

10



of simulation codes – not just solvers for high-dimensional PDEs. In this spirit
we will share not only the ideas that worked best but also those that were not
as successful and the lessons learned. That being said, we can dive right into the
topic of fault-tolerant PDE solvers.

11



12



2
Fault Tolerance in High-Performance

Computing

Since petascale performance was achieved back in 2009, node and core count have
kept increasing in HPC systems. This has opened the doors to many new exciting
applications, but the increasing complexity of petascale computers has also given
rise to complex challenges at almost all system levels. With some scientists ex-
pecting the first exascale system to appear as early as 2020, it seems reasonable to
start addressing some of the problems that will most likely affect these systems.
Some of these problems are a result of extrapolating the behavior of existing petas-
cale machines, while others might be particular to this new computing scale. For
example, we know that the supercomputer Blue Waters had a mean time between
failures (MTBF) of 4.2 hours during 2013 [DM+14]. What can we conclude for
systems that will have one or two orders of magnitude more components? Or what
will be the energy requirements of a supercomputer with O(106) nodes, and how
will that be reflected on a code’s performance?

In this chapter we want to discuss some of the most pressing issues that ex-
ascale systems will face. More specifically, we will talk about the challenge of
fault tolerance, the role it plays in current systems and how it will most likely
become a ubiquitous part of algorithm design in the near future. We will cover
the different types of system faults and give an overview of the techniques used to
overcome them and discuss whether current techniques are likely to be applicable
in the future. We will finish by mentioning some further problems that might be
particular to exascale systems. This will give us a rationale for the motivation
behind our work.

2.1 Towards Exascale

HPC systems keep increasing in size at almost every level, from total node count to
node memory and IO bandwidth. Table 2.1 summarizes some orders of magnitude
of typical HPC systems since 2009, and what we can expect with the arrival of the
first exascale computer. Although the specification details of exascale machines
are still largely unknown (for example, whether they will be equipped with O(105)
nodes with O(104) cores each – the fat node scenario – or with O(106) nodes with
O(103) cores each – the slim node scenario [DHR15]), one can already predict

13



CHAPTER 2. FAULT TOLERANCE IN HPC

Systems 2009 2011 2015 2018 (??)

System peak 2 Peta 20 Peta 100-200 Peta 1 Exa
System memory 0.3 PB 1.6 PB 5 PB 10 PB
Node performance 125 Giga 200 Giga 200-400 Giga 1-10 TF
Node memory BW 25 GB/s 40 GB/s 100 GB/s 200-400 GB/s
Node concurrency 12 32 O(102) O(103)
Interconnect BW 1.5 GB/s 22 GB/s 25 GB/s 50 GB/s
# nodes 18,700 100, 000 500, 000 O(106)
Total concurrency 225,000 3,200,000 O(50, 000, 000) O(109)
Storage 15 PB 30 PB 150 PB 300 PB
IO 0.2 TB/s 2 TB/s 10 TB/s 20 TB/s
MTTI 4 days 19 h 4 min 3 h 52 min 1 h 56 min
Power 6 MW 10 MW 10 MW 20 MW

Table 2.1: Roadmap towards exascale computing (by C. Engelmann and S. Scott,
as presented in Y. Robert’s fault tolerance tutorial at Euro-Par 2016 [Rob16]). The
figure 2018 seems too optimistic. As of this writing, exascale computers will most
likely arrive in 2020 at the earliest.

some of the problems expected at such a scale.
The authors of the International Exascale Software Project [DB+11] identify

five parameters that will be critical when approaching exascale:

1. Concurrency : Considering Moore’s law and Dennard scaling, exascale ap-
plications may run on up to ten billion threads.

2. Power Consumption: The high power consumption of exascale machines
(possibly over 100 MW) will likely shift the focus from operations per second
to energy to solution metrics.

3. Resiliency : Future HPC systems will be made up of increasingly unreliable
components, and applications need to be aware of this.

4. Heterogeneity : Both at the hardware level (CPUs, GPUs, etc.) and at a
software level (multi-scale simulations).

5. I/O and memory : There will likely be new memory hierarchies, which will
affect current programming models.

We will focus on the third problem: what should we consider when running
applications on systems that are increasingly prone to faults?

In order to address this question, we first need to define a few concepts that
appear often when discussing resiliency. The concept of resiliency itself refers to
“the techniques for keeping applications running to a correct solution in a timely
and efficient manner despite underlying system faults” [C+14]. A closely related
term is fault tolerance, which is achieved by “detecting errors and notifying about
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2.1. TOWARDS EXASCALE

errors and by recovering, or compensating for errors” [C+14]. These two terms
are often used interchangeably, and we will also do so throughout this thesis.

There are also different things that can go wrong in an HPC system. It has
become customary to use the terms introduced by Avižienis et al. [ALRL04] when
talking about resilience. These terms have also been summarized in [SWA+14]
(Section 2, Taxonomy of terms). The terms we will encounter most often include

• Failure: Deviating from the correct service of a system function.

• Error : The part of the system state that may lead to a failure (such as a
bad value).

• Fault : The cause of an error (such as software bugs or alpha particles hitting
the dye).

Let us take a look at some of the main characteristics of failures, errors and faults:

• Failure

– Domain: What failed? (Incorrect state, wrong timing, . . . )

– Persistence: Does the system halt completely or does it exhibit erratic
behavior?

– Detectability: Did the failure produce a signal to the user? Is the signal
correct?

– Consistency: Do all users receive the same signal? (If not, the failure
is called byzantine.)

• Error

– Detected: It generated a signal.

– Latent/Silent: Not detected.

– Masked: Does not cause a failure.

• Fault

– Active: Causes an error.

– Dormant: Does not cause an error.

– Permanent: Fault persists over time.

– Transient: Fault appears temporarily.

– Hard: Cause can be systematically traced back and reproduced.

– Soft: Cause cannot be systematically traced back and reproduced.

The relative importance of the various types of faults and errors depends on dif-
ferent factors, including the size of the system, the stage at which the system is
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CHAPTER 2. FAULT TOLERANCE IN HPC

being operated1 and the voltage supply, among others [SWA+14]. But given that
nowadays at least 20% of computing resources in HPC systems is wasted as a cause
of failures [EBEG+08] it should be clear that this is an urgent problem to address.
Experts agree that faults in high-end HPC systems are the norm rather than the
exception [FME+12]. The Tsubame 2 supercomputer in Tokyo suffered 962 faults
in 18 months (mean time between failures, or MTBF, is thus 13 hours); the Blue
Waters system at the University of Illinois at Urbana-Champaign reported 2-3
node failures per day; and the petascale system Titan at the Oak Ridge National
Laboratory has also been reported to fail several times per day [Rob16]. Even
if an individual node has an MTBF of, say, 100 years, a system with 100k such
nodes is bound to fail every 9 hours on average [DHR15]. In exascale, where we
could have systems with several million processors, jobs could fail as frequently as
every 30 minutes [SWA+14].

These conclusions are the result of a simple theorem [Rob16]:

If the MTBF of one processor is µ, then the MTBF of p processors is µp = µ
p
.

This holds for any distribution of faults.
It should be noted that a large percentage of the errors occurring in HPC

systems are caused by the software (application bugs, OS malfunctioning, errors
in the file system, etc.), but hardware errors are much more expensive to cor-
rect. In one 2005 study, software errors accounted for 59% to 84% of all outages,
but they need 0.6 to 1.5 hours to repair, whereas hardware errors sometimes re-
quire up to 100 hours [CD05]. A more recent study of the Blue Waters petascale
machine, however, concluded that software failures2 represented only 20% of the
total failures over a lapse of 261 days, but contributed 53% of the total repair
time [DM+14]. Their study indicated that hardware is very resilient to faults,
with error correcting codes detecting and fixing 99.997% of all errors, which is
notable given that the system experienced system-wide outages every 159 hours
on average. Over the period studied, hardware was responsible for 51% of all
single and multiple node failures. Unfortunately, given that exascale systems are
expected to be composed of increasingly unreliable components, it is unlikely that
this high level of resiliency will be sustained.

System software errors as described above have to be handled by systems
experts. Given that our expertise is algorithm design and numerics, we are in
a position to address mainly two type of errors: detected errors caused by hard
faults and any unmasked silent errors. As we mentioned earlier, hard faults can
be traced back and reproduced – these are mainly caused by internal errors, such

1Supercomputers are more prone to failures at the early operation stage (infant mortality)
as well as near the end of their usable life. In between, failure rates remain largely constant.

2These exclude failures caused by the application software, and can be categorized into three
types: 1) pure software errors (unhandled exceptions, incorrect return values, concurrency errors,
overflows, etc.), 2) software not handling hardware errors (unhandled node failures or disk failures
resulting in file system failures) and 3) software causing errors in the hardware (for example, due
to incorrect firmware). Including application software failures would increase the percentage of
total software failures even further [DM+14].
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2.2. HARD FAULTS

as device degradation or low voltage operation [SWA+14]. Silent errors, on the
other hand, cannot be systematically reproduced, which is mainly due to the fact
that they are caused by external factors, such as alpha particles hitting the dyes.
Unmasked silent errors are usually referred to as Silent Data Corruption (SDC).
These two types of errors will play a central role in this thesis, so let us say a few
more words about them.

2.2 Hard Faults

Hard faults refer primarily to malfunctioning hardware, and as we already dis-
cussed, they may lead to system failures. In our work, we are interested in over-
coming fail-stop failures, which cause running applications to interrupt their nor-
mal execution. In the previous section we presented a few numbers regarding the
frequency of different types of faults in petascale systems. In order to come up with
strategies to deal with these faults, it is useful to try to model the frequency at
which they hit the system. Since the frequency is not deterministic, it is common
to use probability distributions to model fail-stop failures. One common simpli-
fying assumption is that the times between any two faults are independent and
identically distributed (i.i.d.) random variables3. In other words, if Xi denotes the
time elapsed between fault i and fault i+ 1, then every Xi is i.i.d. and its proba-
bility distribution can be approximated by an exponential distribution [DHR15],

f(t, λ) = λe−λt. (2.1)

This is convenient because exponential distributions are memory-less, which is
expressed as

P(T ≥ t+ s|T ≥ s) = P(T ≥ t), ∀t, s ≥ 0. (2.2)

We can also use this distribution to define the mean time between failures more
precisely as µ = E(X) = 1

λ
. The parameter λ is then the instantaneous failure

rate of the system.
However, it is more common to use the closely-related Weibull distribution for

more realistic models, since this distribution can account for the higher failure
rate at the early operation stage of a system (infant mortality). This distribution
is given by

f(t, λ, k) = kλ(tλ)k−1e−(λt)k , (2.3)

and the cumulative distribution function by

F (t, λ, k) = 1− e−(λt)k . (2.4)

Figure 2.1(left) shows the shape of F (t, λ, k) for λ = 0.1 and k = 0.5, 0.7, along
with the corresponding exponential distribution (k = 1). This is the probability of
failure of one processor. The parameter k is chosen such that the MTBF increases

3This is not true in general, since processors are more likely to fail if other processors nearby
failed earlier. However, this approximation is still quite good for practical purposes [Rob16].
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Figure 2.1: Exponential and Weibull cumulative distribution functions with
λ = 0.1 for a machine with p = 1 processor (left) and p = 106 processors (right).
The Weibull distribution models infant mortality better. The values k = 0.5
and k = 0.7 are common in the literature and model real system behavior quite
accurately.

with time (faults become less frequent), which is the case for any k < 1. In this
case, the MTBF is given by

µ = E(X) =
1

λ
Γ

(
1 +

1

k

)
.

As we saw in the previous section, one can substitute µ with µ/p to model the
behavior of a parallel system. The resulting CFD with p = 106 can be seen on the
figure on the right hand side.

By now, hard faults have been studied extensively and there is consensus within
the HPC community about the importance of overcoming this problem in existing
petascale and future exascale systems. There is a wide variety of approaches to
make applications tolerant to faults, and since this is the main topic of this thesis,
we will now take a look at the most common and briefly discuss their advantages
and disadvantages. An excellent reference on this topic is the monograph compiled
by Herault and Robert, on which the following discussion is based [DHR15].

2.2.1 Recovery Strategies

The most common and widely-used approach to deal with hard faults is check-
pointing. Since hard faults usually cause data to go lost, one could try to store
the state of an application to a memory level that is not affected by the faults.
This state, or checkpoint, can be the entire data necessary to run the applica-
tion at a given point, or only parts of it. If an application is affected by a fault,
the state can be restored from the last successfully stored checkpoint instead of
restarting the whole application. Checkpointing requires two steps: generating
the checkpoint and storing it to a safe memory space. Generating the checkpoint
can usually be overlapped with computation, and in some cases one can create
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duplicate processes for this stage, such that the duplicate generates the check-
point and the parent continues execution. Once the checkpoint file is created, it
is stored to memory, which can be physically close to the process or at a remote
level, depending on the architecture and the risk of memory corruption. The main
advantage of checkpointing techniques is that they can be general purpose: they
can be implemented at a level where the application does not notice it.

There are different protocols to perform checkpointing and to restart appli-
cations after faults. They mainly differ in the choice of which processes do the
checkpointing and at which points in time.

Process Checkpointing

In order to come up with sophisticated checkpointing protocols, it is important
to determine how each single process will store its state at a given point. Users
typically choose at what level they want to perform the checkpoint, which can
range from very low level operating system calls, to high level, application-specific
functions defined by the user at certain parts of the algorithms. Since a process
can consist of several threads, a blocking call is usually necessary, and the process
can create the checkpoint itself or create a duplicate that does it. It is then stored
to the memory hierarchy defined by the user.

Coordinated Checkpointing

Having defined a protocol for a single process checkpoint, one needs to deal with
distributed systems with many processes. The idea behind coordinated check-
pointing is for all processes in a system to have the same consistent view of the
total state of the application at a certain point. This is done by coupling pro-
cess checkpointing with message passing to transmit information among processes.
The main difficulty lies in determining what to do with messages sent among pro-
cesses that are performing checkpoints. A consistent protocol should be able to
keep track of the list of messages sent before and after every process executes a
checkpoint, so that the exact sequence of messages can be reproduced during the
recovery phase.

If a failure occurs, all processes restart from the last consistent state stored.
The main disadvantage is that simply informing all processes that recovery has to
be done becomes more expensive as the number of processes grow, so coordinated
checkpointing can quickly run into scalability issues.

Uncoordinated Checkpointing

Instead of forcing all processes to make checkpoints simultaneously, one alternative
would be for processes (or groups of processes) to make checkpoints independently
of each other in order to reduce the communication overhead. Then, if faults occur,
only the affected processes restart from their last checkpoint, but some additional
information from other processes is necessary. Ensuring consistency becomes very
problematic, since some operations might not be deterministic (such as the order
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in which MPI messages are received). This then requires message logging, which
adds a large overhead to the protocols.

Hierarchical Checkpointing

Coordinated checkpointing has the advantage of being able to offer consistent
views of the application’s state at the cost of having to synchronize all processes in
the system. Uncoordinated checkpointing avoids the synchronization overhead but
introduces complex message logging in order to ensure consistency. Hierarchical
checkpointing tries to find a balance between both by defining groups of processes
that perform coordinated checkpointing and relying on message logging for all
events involving different groups. This avoids global restarting.

In-Memory Checkpointing

Since one of the main costs of checkpointing is storing the data to stable memory,
there have been efforts to avoid these expensive memory accesses and instead
use the processes’ main memory to store the checkpoints, see e.g. [ZNK12]. Of
course, such an approach has the risk of failing under certain circumstances, but
if fatal scenarios can be prevented or their risk minimized, this can be a promising
and scalable alternative. One way to do this is to arrange processors into buddy
pairs that duplicate and exchange checkpoints. Each process then has its own
checkpoint as well as that of its buddy. Processes carry out this data exchange
when they are not sending or receiving messages. This protocol can be combined
with other protocols in order to avoid certain fatal scenarios.

∗ ∗ ∗

All of the above checkpointing protocols can be supplemented with other strate-
gies to make them more robust or scalable, such as trying to predict when faults
will occur, replicating processes or using the algorithm’s mathematical properties
or data structures.

Fault Prediction

The most important question to answer when implementing a checkpointing strat-
egy is how often to perform checkpoints. The checkpointing interval is usually
calculated using information about the MTBF of the system, which is usually ap-
proximated since it is in general not known. If one could predict when faults will
occur, one could take checkpoints at well-defined times and therefore less often
than the models suggest. There are several ways to try to predict when a fault will
occur. For example, some researchers have used Bayesian networks to learn from
previous system faults and use this information to predict future faults [SOR+03].
Others have used genetic algorithms to even try to predict which parts of the
system will be affected in order to avoid global checkpointing [ZLG+10]. It is im-
portant that prediction algorithms can predict as many faults as possible (called

20



2.2. HARD FAULTS

high recall), that the predictions made are correct (with high precision) and that
the prediction gives the application enough time to perform the checkpoint (suf-
ficient lead time).

As systems become larger and faults become more common, prediction algo-
rithms might also become more robust since they can use more information about
the state of the system when faults occur.

Replication

The idea if replication is straightforward: make replicas of every process so that
if a given process is affected by faults, the replica can still continue computations.
It might seem like many computational resources are wasted, since only half of
the processes effectively do work. But if the process count is high and the usual
checkpointing strategies require too many resources, replication can be profitable.

The idea is as follows. The probability of faults affecting two replicas simul-
taneously is quite low, but nonzero. One can compute the probability of this
happening and deduce a checkpointing interval based on this probability. In other
words, one performs checkpointing only if both replicas are likely to be affected.
Evidently, these intervals are much longer than those computed without replicas,
making replication a favorable approach when process count is high.

∗ ∗ ∗

All the techniques we have described so far rely on what is usually referred to
as backward recovery, which simply means that we try to trace back and reproduce
the application’s state at an earlier time and restart from there4. This involves
repeating some operations but such approaches can often be used for general-
purpose applications. However, it is not clear whether checkpointing alone will be
enough in exascale, especially considering that the time required to write check-
points could be of the same order of magnitude as the system’s mean time to
failure [C+14].

Some of these drawbacks can often be overcome by understanding the details
of a given application and trying to come up with fault tolerance mechanisms that
are specific to each application. For example, if parts of the numerical data are
not crucial for the algorithm’s recovery, it would make little sense to store them
to safe memory. Maybe the data can be reconstructed from other data, or maybe
some loss in accuracy can be tolerated. One could then perform forward recovery
and try to continue with the computations without rolling back to an earlier state.
Algorithm-Based Fault Tolerance (ABFT) is a broad class of techniques that rely
on forward recovery by analyzing and exploiting the numerical properties of the
application, and they represent a promising approach to fault tolerance for high-
end HPC systems.

4Replication alone does not involve backward recovery – only used together with a check-
pointing strategy.
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Algorithm-Based Fault Tolerance

The term ABFT was first coined in Huang and Abraham’s 1987 paper Algorithm-
based fault tolerance for matrix operations [HA84]. They were interested in carry-
ing out matrix operations such as addition, multiplication, and LU decomposition
reliably on a system with faults. Their method made use of the fact that certain
matrix quantities are invariable to various operations, so any missing or wrong
data could be deduced by adding some redundancy, usually checksums – sums
over rows, columns or matrix blocks. Although the term ABFT is sometimes
used synonymously with this kind of linear algebra algorithms (and Huang and
Abraham’s ideas are still being extended [BDDL09]), we will use it to refer to any
approach that exploits the numerical properties of any algorithm in order to make
it fault tolerant5. It turns out that many classes of algorithms have properties that
make them resilient to faults, such as different iterative schemes [BFHH12,Che11].
Some researchers are even devising machine learning techniques to identify and
design resilient algorithms based on their numerical stability [CSM14].

Addressing fault tolerance at the algorithmic level has several advantages, in-
cluding [Rob16]:

• Smaller checkpoint sizes (or none at all)

• Portability (since usually hardware-independent)

• Higher flexibility in the choice of parameters

Evidently, ABFT can be combined with any of the backward recovery tech-
niques described previously, the reasoning being: let the application recover to the
extent allowed by its mathematical properties, and for all other cases use check-
pointing (or any variation thereof). An example of such a hybrid approach for
generic linear algebra routines is described in [BBH+14].

The general sentiment of the fault tolerance community is summarized well in
the famous report Toward exascale resilience, where the authors argue that “im-
provements of current methods will not be sufficient to meet the failure challenges
present in exascale systems. [...] Having the applications and their algorithms
indifferent to fault-errors-failure would be an ultimate goal of the resilience com-
munity.” [C+09]. Investigating new approaches to fault tolerance (beyond check-
pointing) is the main goal of this thesis.

2.3 Silent Errors

The second most important category of errors – at least if we use the amount of
research invested as a proxy for importance – are silent errors. When unmasked
(i.e., when they cause a failure in the application), silent errors usually manifest
themselves as arithmetic computation errors, control flow errors, or as data not
properly transferred through the network [SWA+14]. Unmasked silent errors –

5The term Application-Specific Fault Tolerance is also sometimes used.
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also known as silent data corruption, or SDC – are still poorly understood. Some
call them the “monster in the closet” [Gei11] since there is little data available
about their frequency. But some argue that silent errors are also subject to the
theorem µp = µ/p, so we should expect their frequency to increase with processor
count. Furthermore, other have remarked that one single occurrence of SDC can
have fatal consequences in a simulation [CPHM08,EHM14a].

2.3.1 Detection and Recovery Strategies

Compared to errors caused by hard faults, silent errors add one degree of com-
plexity, which is that failures manifest themselves only some time after the actual
error occurred. So if the failure is detected, one might be tempted to roll back
to the latest checkpoint, but one cannot be sure that the error occurred before
the checkpoint was created, which means the checkpoint might be tainted. This
means that checkpoint intervals would have to take the mean time between (silent)
errors into account. Additionally, the user has to spend resources detecting the
errors, and in many cases it might not be clear how to tell if certain data is cor-
rupted. But for applications where this is possible, it can be useful to combine
checkpointing with some verification mechanisms, as explained in [DHR15].

As with hard faults, replication has been used to detect and recover from silent
errors, for example in [FME+12], where the authors make use of redundancy at
the MPI level.

Application-specific detection and correction algorithms are also becoming in-
creasingly popular for the same reasons as in the case of hard faults. Some recent
examples where the numerical properties of the algorithms have been exploited to
tolerate silent errors include:

• Using data analysis and time series to predict ranges of acceptable values in
future time iterations [BBGD+15];

• Identifying invariants in linear solvers and using these to check for SDC
(solvers include GMRES [EHM14a], CG, BiCG and Lanczos [Che13]);

• Using error bounds to detect errors in numerical integration solvers (for
ordinary differential equations) [GZP+16];

• Computing a cheap, low order solution of a PDE with which to compare the
high order (possibly corrupted) solution [BSS15].

• Using bounds of inner products appearing in optimization algorithms in com-
putational chemistry (in particular, the Hartree-Fock method) [vDVDJ13].

It is however somewhat odd that a poorly understood problem is being studied
in such detail. Often times, scientists make assumptions about the nature of silent
errors that are not supported by data, such as assuming that silent errors will be
predominantly caused by bit flips. In this thesis we want to study silent errors, so
some words of caution are necessary.
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2.3.2 A Methodology to Study Silent Errors

We follow the recommendations of Elliott et al. when thinking about how to study
silent errors [EHM14b]. They identify some common mistakes made by authors
in the field and propose some best practices.

Common Mistakes

There are now many papers out there where bit flips are injected into an
algorithm to see how it reacts. As we already mentioned, the problem with this
approach is that it is not clear that bit flips will be the main cause of the errors.
Future hardware could behave in ways that give rise to other types of errors which
we are currently unaware of.

Let us assume for a moment that bit flips will be the main cause of silent
errors. What is the right way to simulate them? It is common practice in the
research literature to inject bit flips randomly. Although this seems reasonable
from a statistical point of view, injecting bit flips randomly only allows one to
study the average behavior of an algorithm instead of the worst case scenarios,
which algorithm designers should be most concerned with (by definition).

But even if we managed to understand all possible causes of silent errors (not
only bit flips), we should not try to come up with different fault tolerance tech-
niques for each type of fault. Not only would this be impractical, but it would be
unnecessary. For a numerical algorithm it is not important to know what caused
the error, but how the error is manifested. Since algorithms are designed in terms
of error bounds, resilient algorithms should treat silent errors as numerical per-
turbations in the data, no matter the exact cause. As long as the error bounds
are satisfied, the algorithm can be said to be resilient to silent errors.

One last thing to keep in mind is the effect of silent errors in the metadata.
What if silent errors affect not only the floating-point data, but also pointers,
counters or instructions? Well, corrupted metadata could manifest itself in three
possible ways:

1. As an error in the floating-point data, for example, if a pointer points to a
wrong address, retrieving a wrong value;

2. As a process fault, for example, if an index is out of bounds, causing a
segmentation fault;

3. Keeping the process in operation but in an undefined state.

The first point takes us back to errors in the data. The second one would be
equivalent to a hard fault, and we know how to deal with those. The third one
seems to be extremely unlikely. This speaks in favor of focusing primarily on the
floating-point data.
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Best Practices

Classical ABFT approaches relying on checksums aim to guarantee the cor-
rectness of certain linear algebra computations. In light of our discussion above,
it makes more sense to ensure that the numerical errors remain within the bounds
admissible by the theory. In other words, one could admit corrupted data as long
as the error is bounded. Elliott et al. call this Skeptical Programming.

Additionally, it is a good idea to identify which parts of the numerical algo-
rithm must run reliably and in which parts can we allow errors to occur. The
authors in [BFHH12] illustrate this concept (which they call Selective Reliability)
with a fault tolerant GMRES solver, which performs an outer iteration of the
Flexible GMRES algorithm coupled with an inner call to the classical GMRES.
They then allow the inner GMRES solver to be unreliable, making sure that any
errors are detected in the outer loop, which has to be reliable. This can save a lot
of implementation effort, since not all parts of an algorithm have to be made fault
tolerant.

Finally, in order to avoid missing the worst case scenarios by injecting bit flips
randomly, one should focus on figuring out how the worst case scenarios might
arise, which often translates into injecting silent faults of all possible orders of
magnitude. Only then can one say that an algorithm is truly robust.

∗ ∗ ∗

With these thoughts in mind, we are ready to take a look at the central al-
gorithms for this thesis, namely the sparse grid combination technique and its
variants, and see how the ideas discussed so far apply to them.
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3
Sparse Grids

High-dimensional problems are commonplace in everyday life. Every shoe store
owner knows the situation all too well: she would like to offer shoes for both men
and women as well as different models. For each model she would like to have
different colors and, for each color, different sizes. The warehouse quickly fills up
as the number of possible pairs of shoes grows, draining the owner of all her initial
capital.

This is an old problem in mathematics: adding a new dimension – model,
color, size, etc. – to one’s space of variables results in an exponential increase in
the total number of degrees of freedom. This problem is commonly referred to as
the curse of dimensionality and it is the subject of very active research.

High-dimensional problems appear in a wide range of fields. Shan and Wang
[SW10] offer a good overview of the different strategies to tackle this class of
problems and classify them into five major areas, summarized in Table 3.1.

In this thesis we will look at one of the most successful hierarchical decom-
position methods, namely sparse grids [BG04]. Sparse grids aim to alleviate the
curse of dimensionality by reducing the number of degrees of freedom hierarchi-
cally. The idea is to try to determine which degrees of freedom will a priori have

Strategy Examples

Decomposition Matrix formats, hierarchical and non-
hierarchical schemes

Screening Sensitivity analysis, ANOVA, PCA, opti-
mization

Mapping Artificial Neural Networks, fuzzy clustering,
space-mapping

Space
reduction

Adaptive response surface method, interval
method, move-limit optimization, trust re-
gion algorithms

Visualization Graph morphing, parallel coordinates,
stacked displays

Table 3.1: A taxonomy of strategies for high-dimensional problems.
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a small contribution to our solution space and eliminating them from our space of
unknowns. This method (and its many variants) has been applied to a wide range
of problems, from data mining [GGT01] to quantum mechanics [GH07]. Some ini-
tial concepts behind sparse grids were introduced in the sixties through the work
of Smolyak [Smo63a], and later Zenger extended the ideas into what we currently
understand as sparse grids [Zen91].

We now give a brief overview of sparse grids and one of its most useful variants:
the sparse grid combination technique.

3.1 Basic Concepts

Let us first introduce the notation that we will use throughout this thesis. We first
start by discretizing the unit interval [0, 1] using a one-dimensional grid, which we
denote by Ωl, where l ∈ N+. This grid has 2l − 1 inner points and may or may
not have an additional grid point on each boundary. Since most of the examples
we will encounter have boundary points, we will focus on this case. The grid Ωl

then has a total of 2l + 1 points and mesh size hl := 2−l. We denote each of the
grid points in Ωl as

xl,j := j · hl, 0 ≤ j ≤ 2l.

In this notation we call the number l the level of the grid and j is simply an index
that runs through the level.

When moving to d dimensions we use boldface letters to denote multi-indices,
l =(l1,. . .,ld) ∈ Nd. We discretize the d-unit cube using a d-dimensional full grid

Ωl := Ωl1 × · · · × Ωld .

The mesh sizes in each dimension can be written as

hl := (hl1 , . . . , hld) := 2−l

and the grid points in grid Ωl can be written as

xl,j := (xl1,j1 , . . . , xld,jd) = (j1 · hl1 , . . . , jd · hld) := j · hl for 0 ≤ j ≤ 2l.

Since we will be using multi-indices often, we should point out some common
operations between them. Comparison operators are done component-wise. For
example, two multi-indices i and j satisfy i ≤ j iff ik ≤ jk for all k ∈ {1, . . . , d}.
This entails that the strict inequality i < j holds iff i ≤ j and i 6= j.

We will also apply discrete lp-norms | · |p to multi-indices, particularly

|l|1 := |l1|+ · · ·+ |ld|

|l|2 :=
√
l21 + · · ·+ l2d

|l|∞ := max
i
|li|
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1- 1-

Figure 3.1: Nodal (left) and hierarchical (right) representations of a one-
dimensional function of level l = 3. In the nodal basis we store the values of
ui,j, which correspond to the height of the nodal hat functions. In the hierarchical

basis we store the surpluses α
(i)
l,j , which represent the increments with respect to

the previous level l − 1.

The wedge operator ∧ will also be useful. i ∧ j denotes the component-wise
minimum of i and j,

i ∧ j := (min{i1, j1}, . . . ,min{id, jd}).
We will also denote sets of multi-indices with capital calligraphic letters, for ex-
ample I, such that l ∈ I. A useful set of multi-indices is the downset I↓ of a set
I, defined as

I↓ := {l ∈ Nd : ∃k ∈ I s.t. l ≤ k}.
In other words, the downset I↓ contains all multi-indices smaller or equal to the
multi-indices in I.

Consider a function u(~x) ∈ V ⊂ L2([0, 1]d). We are interested in approximating
this function in a discrete space, say ui(~x) ∈ Vi ⊂ V , where Vi =

⊗d
k=1 Vik is the

space of piece-wise d-linear functions defined on the grid Ωi [Gar13],

Vi := span{φi,j : 0 ≤ j ≤ 2i}. (3.1)

Here, φi,j are d-dimensional hat functions, which are obtained as the tensor product
of one-dimensional hat functions,

φi,j(~x) :=
d∏

k=1

φik,jk(xk), (3.2)

with
φi,j(x) := max(1− |2ix− j|, 0). (3.3)

These hat functions allow us to interpolate ui(~x) on grid Ωi as follows:

ui(~x) =
∑

0≤j≤2i

ui,jφi,j(~x). (3.4)
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Figure 3.2: A full grid of level 4 in both dimensions (left) and the hierarchical
subspaces that compose it (right).

We call Eq. (3.4) the nodal representation of ui(~x), and ui,j ∈ R are the nodal
coefficients. Figure 3.1 (left) illustrates an interpolated function in the nodal
representation, where the nodal coefficients correspond to the height of the hat
functions φi,j. Note that we have added the basis functions φ0,0 and φ0,1 to account
for the boundary points. A more detailed discussion of the different types of
boundaries can be found in [Pfl10].

Now consider the hierarchical spaces Wl defined as

Wl := span {φl,j(~x) : j ∈ Il} , (3.5)

where the index set Il is given by

Il :=
{
j : 1 ≤ jk ≤ 2lk − 1, jk odd, 1 ≤ k ≤ d

}
. (3.6)

A hierarchical space Wl contains all functions ui ∈ Vi such that ui vanishes on all
grid points in the set

⋃
l<i Ωl [H+15]. With the use of hierarchical spaces we can

decompose a space Vi as follows:

Vi =
⊕

l≤i
Wl. (3.7)

We illustrate this decomposition in two dimensions for l = (4, 4) in Fig. 3.2.
Using the hierarchical spaces we can decompose a function ui ∈ Vi as follows:

ui(~x) =
∑

l≤i
hl(~x), hl(~x) ∈ Wl (3.8)

=
∑

l≤i

∑

j∈Il
α

(i)
l,jφl,j(~x). (3.9)
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V
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Figure 3.3: A classical sparse grid of level 4 (left) and the hierarchical subspaces
that compose it (light gray, right).

We will call Eq. (3.9) the hierarchical representation of ui(~x). The coefficients

α
(i)
l,j ∈ R are called the hierarchical coefficients or hierarchical surpluses. If we have

a list of function values in the nodal basis we can easily compute the hierarchical
coefficients at the corresponding grid points. In one dimension they are obtained
via the formula

α
(i)
l,j = ui(xl,j)−

1

2
(ui(xl,j−1) + ui(xl,j+1))

=
[
−1

2
1 − 1

2

]
l,j
ui(xl,j).

(3.10)

In the second row of the equation we use the stencil notation for simplicity. The
operation of going from the nodal to the hierarchical basis is called hierarchiza-
tion. For a d-dimensional function we simply perform the hierarchization in each
dimension:

α
(i)
l,j =

(
d∏

k=1

[
−1

2
1 − 1

2

]
lk,jk

)
ui(xl,j). (3.11)

One can analogously compute the nodal coefficients if the hierarchical coefficients
are known. This operation is commonly referred to as dehierarchization.

With these mathematical tools we can now address the curse of dimensionality.
As we mentioned earlier, the problem is that a uniform d-dimensional grid Ωn has
an exponentially large number of grid points (|Vn| = h−dn = 2nd). The classical

sparse grid space V
(1)
n ⊂ Vn is defined as

V (1)
n :=

⊕

|l|1≤n+d−1

Wl. (3.12)

Compare the index boundary in the sum above with that of Eq. (3.7). This sum
leaves out all spaces for which n + d − 1 < |l|1 ≤ |n|1. We have illustrated the
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resulting sparse grid space V
(1)
n in Fig. 3.3 for d = 2 and n = 4. It ca nbe shown

that this space has |V s
n | = O(h−1

n (log h−1
n )d−1) points [BG04], which is a dramatic

reduction from the |Vn| = O(h−dn ) discretization points required by a full grid of
the same level.

The rationale behind getting rid of all spaces Wl for which n+d−1 < |l|1 ≤ |n|1
is as follows. Assume we want to interpolate a function u with bounded mixed
second derivatives and homogeneous boundary conditions. Then one can show
that the following estimates for the hierarchical components hl ∈ Wl hold:

‖hl‖2 ≤ 3−d · 2−2·|l|1 · |h|2,2
‖hl‖∞ ≤ 2−d · 2−2·|l|1 · |h|2,∞

(And similarly for other norms. The details can be found in [BG04].) For our
purposes it shall suffice to point out that the hierarchical components decay expo-
nentially with increasing level l. The question then becomes which subspaces one
can get rid of without sacrificing much in accuracy, and an optimization analysis
reveals that the splitting Eq. (3.12) is L∞- and L2-optimal (in some well-defined
sense) [BG04]. Under these assumptions, the interpolation error on a sparse grid
is [BG04]

‖u− u(1)
n ‖2 = O(h2

n · (log h−1
n )d−1). (3.13)

The error is thus only slightly larger than on a full grid, which is in O(h2
n).

Some preliminary ideas behind sparse grids were first presented by Smolyak
in the sixties [Smo63b] and then introduced formally by Zenger in the nineties in
the context of partial differential equations [Zen91]. Since then, sparse grids have
remained a topic of active research. We recommend the paper by Bungartz and
Griebel as a general reference [BG04].

Despite the advantages that sparse grids offer in terms of computational re-
quirements, it is not trivial to discretize and solve a PDE on a sparse grid. Fur-
thermore, if one already has a robust solver that has been developed over many
years and which is based on full grids, it might be infeasible to re-implement the
solver to capture the sparse grid structure. In fact, we will see an example of such
a code in Chapter 4. However, there is a way to profit from some of the properties
of sparse grids without the need to discretize a domain directly on a sparse grid.
This is the motivation behind the combination technique.

3.2 The Combination Technique

The combination technique was introduced by Griebel in the nineties to speed up
the solution of PDEs on full grids [GSZ92, Gri92]. We illustrate the procedure
with a simple time-dependent PDE, namely the two-dimensional linear advection
equation:

∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= 0. (3.14)

Suppose we are interested in solving this PDE in the unit square (x, y) ∈ [0, 1]2

with initial condition u(x, y, t = 0) = sin(2πx)sin(2πy) and periodic boundary
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Full grid space V(4,4)

≈

Sparse grid space V
(1)

4

≈

Combination technique:
u

(c)
4 = u(1,4) + u(2,3) + u(3,2) + u(4,1)

− u(1,3) − u(2,2) − u(3,1)

Figure 3.4: Illustration of the classical combination technique (Eq. (3.16)) for
the linear advection equation in 2D with n = 4.

conditions. Here, cx and cy are real positive constants defining the advection
velocity. The solution of Eq. (3.14) is simply the initial condition translated by
the advection velocity,

u(x, y, t) = sin(2π(x− cxt)) sin(2π(y − cyt)).

Let us now suppose we are given a black box solver for Eq. (3.14) which receives
as input at least the number of discretization points in the x and y directions. In
our case we have an implementation of a Lax-Wendroff scheme [Win11]. In Fig. 3.4
(left) we have plotted the solution of Eq. (3.14) at time t = 0.5 with velocities
cx = cy = 0.5 on a full grid Ωn of level n = (4, 4) (meaning it has (24 +1)×(24 +1)
grid points). Now imagine that this level of resolution is too expensive and cannot
be afforded. Re-discretizing the domain on a sparse grid is not an option in this
case since we assume that the black box solver cannot be altered or that it would
take too much effort. What one can do instead is to try to approximate the full
grid solution by solving the PDE on several coarser, anisotropic grids instead, and
then combining the results together. This has been illustrated in Fig. 3.4 (right).
Here, instead of solving the advection equation on grid Ω(4,4) we solve it on seven
different grids, namely, Ω(1,4), Ω(1,3), Ω(2,3), Ω(2,2), Ω(3,2), Ω(3,1) and Ω(4,1). Notice
that these grids have considerably fewer points than Ω(4,4) (either one eighth of
one sixteenth of the points). The idea of the combination technique is to combine
these solutions with the weights as indicated in the figure in the hope that the
result is close to that of the full grid.

The connection to sparse grids can be seen by noticing that the combined
solution lives on the the sparse grid space V

(1)
4 . The choice of the combination

coefficients (in this case +1 and −1) is what ensures that the combination approx-
imates the solution in the sparse grid space. One can incrementally approximate
the solution in the space V

(1)
4 by starting with, say, u(1,4) ∈ V(1,4) =

⊕
l≤(1,4)Wl.
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This approximation can be then improved by adding the function u(2,3), which adds
the contributions from all spaces Wl with l ≤ (2, 3). But the result of u(1,4) +u(2,3)

has twice the contributions from subspaces Wl with l ≤ (1, 4) ∧ (2, 3) = (1, 3).
The solution is then to subtract the function that contains exactly those spaces,
namely u(1,3). This can be thought of as applying an inclusion-exclusion princi-
ple. The combination technique simply continues this procedure until only the
hierarchical spaces corresponding to the sparse grid are left.

Let us now write down the combination technique in its most general form.
We approximate the sparse grid solution u

(1)
n (and thus the full grid solution un)

full grid solution by a combination solution u
(c)
n given by

un ≈ u(1)
n ≈ u(c)

n =
∑

i∈I
ciui. (3.15)

The weights ci ∈ R are called combination coefficients. The solutions ui are
typically called component solutions and the grids Ωi component grids. We will
often refer to the sparse grid that results from the combination technique as the
combination grid Ω

(c)
n . I is a set of multi-indices.

How well the combination technique approximates the full grid solution de-
pends on how the coefficients ci and the set I are chosen, since not all choices will
give reasonable results. In our example we introduced the classical combination
technique which is given by

u(c)
n =

d−1∑

q=0

(−1)q
(
d− 1
q

)

︸ ︷︷ ︸
=ci

∑

i∈Id,nq

ui. (3.16)

The index set is defined as

Id,nq = {i : |i|1 = n+ (d− 1)− q}. (3.17)

The combination coefficients ci are simply the binomial coefficients with alter-
nating sign, which ensures that the combination satisfies the inclusion-exclusion
principle.

Our example was generated with the choice d = 2 and n = 4, yielding the sets

I2,4
0 = {(1, 4), (2, 3), (3, 2), (4, 1)},

I2,4
1 = {(1, 3), (2, 2), (3, 1)}.

For a general combination of the form (3.15), the combination coefficients can be
calculated as

ci =
∑

i≤j≤i+1

(−1)|j−i|χI(j), (3.18)

where χI is the indicator function of set I [Har15].
The component solutions are combined either by interpolating them to the

full grid space or by using hierarchization. When switching to the hierarchical
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basis one can directly add the corresponding surpluses α
(i)
l,j in the sparse grid

space [HP16a,Hup13]. We will say a few more words about the combination step
in Chapter 4, but before going any further, we discuss the convergence properties
of the combination techniques and the costs involved.

3.2.1 Convergence and Costs of the Combination Tech-
nique

The theory of the classical combination technique as presented by Griebel estab-
lishes that the combination technique converges if each of the component solutions
ui satisfies the error splitting assumption (ESA) [GSZ92]. In arbitrary dimensions
the ESA is given by [Har15]

u− ui =
d∑

k=1

∑

{e1,...,ek}
⊂{1,...,d}

Ce1,...,ek(~x, hie1 , . . . , hiek )hpie1 · · ·h
p
iek
, (3.19)

where p ∈ N is the order of the discretization scheme; the Ce1,...,ek(~x, hie1 , . . . , hiek )
are functions depending on the spatial coordinates ~x and on the different mesh
sizes hi, and they should bounded:

|Ce1,...,ek(~x, hie1 , . . . , hiek )| ≤ κe1,...,ek(~x), ∀{e1, . . . , ek} ⊂ {1, . . . , d}.

At the same time, the functions κe1,...,ek should also be bounded by

κe1,...,ek(~x) ≤ κ(~x).

It is important to note that Eq. (3.19) holds point-wise, which means that it must
hold for all points ~x independently. This can be seen by the explicit dependence
of each function Ce1,...,ek on ~x.

In one dimension the ESA reduces to

u− ui = C1(x1, hi)h
p
i , |C1(x1, hi)| ≤ κ1(x1). (3.20)

In two dimensions one has

u− ui = C1(x1, x2, hi1)h
p
i1

+ C2(x1, x2, hi2)h
p
i2

+ C1,2(x1, x2, hi1 , hi2)h
p
i1
hpi2 . (3.21)

In other words, the error expansion is the sum of the univariate contributions
corresponding to the mesh sizes hi and a multivariate cross term. Griebel showed
for the two- and three-dimensional cases that if such a point-wise expansion holds,
then the error of the combination technique is asymptotically equal to that of the
corresponding sparse grid solution,

‖u− u(c)
n ‖2 = O(h2

n · (log h−1
n )d−1). (3.22)

This holds for arbitrary dimensions, as was shown by Reisinger [Rei12].
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The price to pay for having the accuracy of a sparse grid and the convenience
of dealing only with full anisotropic grids is that we have many such component
grids. The number of component grids in the classical combination technique
is [Pfl10] ∣∣∣∣∣

d−1⋃

q=0

Id,nq

∣∣∣∣∣ = O(d(log h−1
n )d−1). (3.23)

Each of the component grids has in turn

|Ωi| = O(h−1
n )

grid points, bringing the total cost of the combination technique to

O(d(log h−1
n )d−1h−1

n ).

But this is where we can make use of parallel systems to our great advantage,
turning the extra effort of the combination technique into an opportunity for
parallelization beyond domain decomposition. In many cases, the PDE can be
solved on each of the component grids independently of each other, and then
combining the results by communicating among the processing elements. We will
go into further detail about the parallelization in Chapter 4.

We now introduce a useful variant of the classical combination technique.

3.2.2 The Truncated Combination Technique

Often the error of the combination technique is dominated by the most anisotropic
component grids. For this reason it helps to introduce a truncation parameter to
exclude these highly anisotropic grids. The truncated combination technique is
given by [Har16b]

u(c)
n,τ =

d−1∑

q=0

(−1)q
(
d− 1
q

) ∑

i∈Id,nq,τ

ui, (3.24)

with the index set

Id,nq,τ = {i : |i|1 = n+ (d− 1) + |τ |1 − q, i > τ}. (3.25)

The truncation parameter τ allows us to define a shift in the set of indices. If
τ = 0 we have the classical combination technique, but for any τ ≥ 0 we force a
minimum level of resolution in every dimension. For example, setting τ = (1, 1)
in our example we obtain the following index sets:

I2,4
0,1 = {(2, 5), (3, 4), (4, 3), (5, 2)},

I2,4
1,1 = {(2, 4), (3, 3), (4, 2)}.

Notice that we now approximate the full grid solution un′ with n′ = n + τ . To
approximate the original solution u(4,4) using truncation (say, τ = (1, 1)) one
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= n = 3, τ = (0, 1)

= n = 2, τ = (2, 1)

Figure 3.5: Two examples of the truncated combination technique with different
resolutions in each dimension, Eq. (3.24).

should set n = 3 (which, shifted by τ gives the desired full grid level (4, 4)). This
would result in the following index sets:

I2,3
0,1 = {(2, 4), (3, 3), (4, 2)},

I2,3
1,1 = {(2, 3), (3, 2)}.

In this case we have fewer component grids but each of them is twice as expensive
as the original grids.

For convenience we will denote as Id,nτ the index set with all combination
indices,

Id,nτ :=
d−1⋃

q=0

Id,nq,τ (3.26)

This will be the most common formulation of the combination technique through-
out this thesis, so to give a better idea of how it looks we illustrate two examples
in Fig. 3.5. Below, in Table 3.2, we see how the error behaves depending on the
choice of the truncation parameter τ . The higher the truncation for a constant
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τ n # grids e =
‖u(c)n,τ−uexact‖2
‖uexact‖2

(0,0) 5 9 2.07× 10−2

(1,1) 4 7 1.19× 10−2

(2,2) 3 5 5.24× 10−3

(3,3) 2 3 3.12× 10−3

Full grid, n = (5, 5) 3.24× 10−3

Table 3.2: Error of different truncated combination techniques for the linear
advection equation.

full grid level n′, the better the approximation (but each solution in the resulting
combination is more expensive).

Algorithm 1 describes the basic steps to solve a time-dependent PDE using
the truncated combination technique. One first sets the initial conditions (line 3),
after which the PDE solver is called for each index (line 6). The solver then evolves
the initial condition for a certain number of time steps Nt, and once this is done,
the component solution is transformed to the hierarchical basis (line 7). This is
necessary for the combination step (line 8). The combined solution can then be
transformed back to the nodal basis (line 9) so that each component solution can
be updated to the value of the combined solution. This process can be repeated
until a certain convergence criterion is reached or after a certain number of total
time steps have been performed.

The combination technique has been used to address a wide variety of prob-
lems, ranging from option pricing [RW07] and machine learning [Gar07], all the
way to plasma physics [KH13] and quantum mechanics [GG00].Additionally, other
variants of the combination technique have been developed to solve a wider range
of problems. They differ in how the combination coefficients ci or the index
set I are chosen, and the resulting combinations vary in approximation quality.
Three notable examples are dimension-adaptive sparse grids [Heg03], combina-
tions based on multivariate extrapolation [Har15] and the optimized combination
technique [HGC07a], which we briefly describe now, since it has also been used in
the context of fault tolerance.

3.3 The Fault Tolerant Combination Technique

In Chapter 2 we looked at the different types of faults that can affect an HPC
system, and in this chapter we introduced a numerical method to solve high-
dimensional PDEs and argued that this algorithm can be run in parallel. At this
point it is possible to introduce a variant of the combination technique that can
be used in case both hard and soft faults occur without saying anything about the
parallelization strategy. We need only assume that subsets of component solutions
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Algorithm 1: Truncated combination technique to solve time-dependent
PDEs

input : A function solver; sparse grid resolution n; parameter τ ; time
steps per combination Nt

output: Combined solution u
(c)
n,τ

1 Generate index set Id,nτ =
⋃d−1
q=0 Id,nq,τ and compute coefficients ci;

2 for i ∈ Id,nτ do
3 ui ← u(~x, t = 0) ; // Set initial conditions

4 while not converged do
5 for i ∈ Id,nτ do
6 ui ← solver(ui,Nt) ; // Solve the PDE on grid Ωi (Nt time steps)

7 ui ← hierarchize(ui) ; // Transform to hier. basis, Eq. (3.9)

8 u
(c)
n,τ ← combine(ciui) ; // Combined solution (in the hier. basis)

9 u
(c)
n,τ ← dehierarchize(u

(c)
n,τ) ; // Transform back to nodal basis

10 for i ∈ Id,nτ do

11 ui ← sample(u
(c)
n,τ) ; // Sample each ui from new u

(c)
n,τ

are computed independently of each other, so that a system failure will affect only
a subset of all solutions.

Consider the example shown in Fig. 3.6 where we try to solve once again the
advection equation on seven different component grids. As we will see in Chapter
5, the vast majority of the computation time in a parallel implementation of the
combination technique is spent solving the PDE on the component grids. This is
true even when one chooses to combine the results not only once at the end of the
computation but maybe every certain number of time steps (or even after every
time step). This means that if the parallel system is affected by faults, they will
most likely occur during the computation phase. Figure 3.6 (left) shows how a
system fault could affect a subset of the component solutions, in this case u(2,2)

and u(2,3). We will denote by J the set of the multi-indices corresponding to the
affected solutions.

As we discussed in Chapter 2, one strategy to deal with faults is to perform
checkpoints and restart the solution from the last checkpoint. One possible way
to do this with the combination technique would be to checkpoint the combined
(sparse grid) solution and restart the failed component solutions from the last
checkpoint. But this approach is hardly feasible in a parallel environment, as
argued by Harding, who gives the following example. If the system has 100 pro-
cessing elements (say, nodes) available and one of them fails and tries to recompute
a component solution from the last checkpoint, then the other 99 nodes will be
idle during this time, bringing the parallel efficiency to at most 1% during that
time [Har16b]. Of course, one could try to overlap the recomputation time with
the actual computation time to bring down the overhead, but the worst case sce-
nario just presented could still happen in the general case. Additionally, as fault
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rates increase in larger systems, it becomes unclear whether such an approach can
scale.

To overcome this difficulty, Harding et al. developed the fault tolerant com-
bination technique [H+15]. The basic idea is to find an alternative combination
of component solutions such that one does not use the data that was lost due to
faults. This idea is illustrated once again with a simple advection equation in Fig.
3.6. On the left we see a classical combination technique with seven component
solutions. The two solutions marked with red crosses are assumed to have failed
either partly or entirely at some point during the computation, so the correspond-
ing data goes lost. On the right we show an alternative combination of partial
solutions, this time with only five component grids. Notice that this combination
excludes the two failed component solutions u2,3 and u2,2 but adds a new com-
ponent solution that was not originally in the combination, namely u1,2. We will
later talk about this in more detail.

We now try to address some of the most immediate questions that arise at this
point, namely,

• How do we choose a new combination of solutions that guarantees that failed
solutions will be excluded?

• How much effort does it take to find such an alternative combination?

• What are the costs and approximation errors involved?

To answer these questions we follow the ideas from [H+15].
We are looking for general combinations of the form (3.15) whose coefficients

cl

1. satisfy the inclusion-exclusion principle, which is necessary to have consistent
combinations, and

2. minimize a given sparse grid interpolation error.

The inclusion-exclusion principle can be fulfilled if, for each coefficient in the
combination, we have

∑

k∈I,k≥i
ck ∈ {0, 1} for {ci}i∈I . (3.27)

For the second point we need to assume that the real solution u lives in the Sobolev

space H2
mix equipped with the semi-norm ‖u‖H2

mix
:=
∥∥∥ ∂2d

∂x21···∂x2d
u
∥∥∥

2

2
, which means it

has bounded mixed derivatives, i.e., u has bounded mixed derivatives up to second
order. If we examine the interpolation error of the combination technique solution
u

(c)
n with respect to u, we see that the error is bounded by

‖u− u(c)
n ‖2 ≤ 3−d‖u‖H2

mix

∑

i∈Nd

(
4−‖i‖1

∣∣∣∣∣1−
∑

k∈I,k≥i
ck

∣∣∣∣∣

)
, (3.28)
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u(c)
n = u(1,4) +���XXXu(2,3) + u(3,2) + u(4,1)

− u(1,3) −���XXXu(2,2) − u(3,1)

u(c)
n = u(1,4) + u(3,2) + u(4,1)

− u(1,2) − u(3,1)

Figure 3.6: Left: System fault affects two component solutions either entirely or
partially. Right: New combination coefficients that exclude failed solution. The
resulting sparse grid has fewer points than the original, which means that the
approximation quality of the combination is slightly worse.

We can then define the quantity

Q({ci}i∈I) :=
∑

i∈I↓
4−‖i‖1

∑

k∈I,k≥i
ck, (3.29)

and observe that Eq. (3.28) is minimized when Q is maximized with constraints∑
k∈I,k≥i ck = {0, 1}. At this point it is useful to define the hierarchical coefficient

as the quantity

wi :=
∑

k∈I,k≥i
ck ∈ {0, 1}, i ∈ I↓. (3.30)

The equation above gives rise to a linear system of equations which can be com-
pactly written as

~w = M~c. (3.31)

The vectors ~w and ~c contain all coefficients wi and ci (in any given ordering), and
M is the system matrix of size |I↓| × |I↓|. This notation allows us to write the
maximization problem as

max
w

Q′(w), s.t. wi ∈ {0, 1} ∀i ∈ I↓,
ci = (M−1 ~w)i = 0 ∀i ∈ I↓\I,

(3.32)
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Figure 3.7: Depending on which component solutions fail, there can be different
possible combinations that exclude them. Here we show two combinations that
satisfy both constraints in Eq. (3.32), but the bottom right combination maximizes
Q′.

where
Q′(~w) :=

∑

i∈I↓
4−‖i‖1wi. (3.33)

This maximization problem is called the generalized coefficient problem (GCP).
Notice that the difference between the quantities Q and Q′ is simply that for Q′

we consider all coefficients cl in the downset I↓ instead of only in I, which is why
the second condition cl = 0 has to be added for the coefficients that do not belong
to I.

The steps to find new combination coefficients when faults occur would look
as follows:

1. Identify indices of failed component solutions ui, i ∈ J and remove them
from the index set I.

2. Generate list of ~w vectors for which the constraint (M−1 ~w)i = 0 holds true.

3. For each vector ~w, calculate Q′(~w) and choose the one that maximizes Q′.

4. Calculate new combination coefficients ~c = M−1 ~w.

Figure 3.7 illustrates one more combination scheme with two faults {(2, 4), (4, 3)}
and two possible alternative combinations for which the conditions c(2,4) = c(4,3) =
0 are satisfied. The lower right combination, however, results in a larger value
of Q′ and should therefore be preferred to the one on lower left one. Something
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else worth noticing is that in both cases we need new component solutions that
were not part of the original combination technique. In the left case these would
be u1,3 and u3,2. These should be available during the combination step, which
means that they should be computed in advance along with the rest of the com-
ponent solutions. For example, in a two-dimensional combination technique we
would need two additional index sets Id,nq,τ with q = d and q = d + 1, since in the
worst case scenario, all combination solutions would fail, which would result in an
alternative combination technique two levels smaller.

As we go to higher dimensions things become more complicated, since the
steps we described to compute the alternative combination coefficients cannot be
carried out straightforwardly. This is because the maximization problem (3.32)
is NP-hard, which in practical terms means that for an arbitrary set of faults in
any dimension, there can be exponentially many possible solutions to the GCP
and they cannot be all be investigated. But an important observation is that the
time required to solve the GCP strongly depends on which component solutions
are affected. More specifically, if the failed component solutions belong to a set
Id,nq,τ with a higher value of q, the GCP takes longer to solve. Equivalently, if the
failed component solutions belong to a set with q = 0 or q = 1 the GCP can be
solved quickly.

Since we cannot afford to spend too much computing time finding new combi-
nation coefficients, Harding et al. propose the following compromise:

• Independently of the dimension, always add two sets of component solutions
corresponding to the index sets Id,nq,τ with q = d and q = d+ 1.

• If faults affect component solutions for which q = 0 or q = 1, solve the GCP
to find a new combination.

• All other failed component solutions (q = 2, . . . , d−1) should be recomputed.

This approach strikes a balance between the complexity of finding new combi-
nation coefficients and the cost of recomputing some component solutions. Since
the component solutions with q = 2, . . . , d − 1 are considerably less expensive
than those with q = 0, 1 we can afford to recompute them if they fail. The au-
thors in [H+15] have shown (using results from [HH13]) that the overhead of the
FTCT, as measured by the additional grid points needed for the extra index sets
is given by the following

Proposition: 3.3.1 Let |Ωi| denote the number of grid points in Ωi, and let Nn

and Ln be the total number of grid points in the collection of grids with indices in
Ld,n =

⋃d−1
q=0 Id,nq,0 and N d,n =

⋃d+1
q=0 Id,nq,0 respectively, that is,

Ln :=
∑

i∈Ld,n
|Ωi| ,

Nn :=
∑

i∈N d,n

|Ωi| .
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Then the fraction χn of additional grid points required by the two extra index sets
of the FTCT is given by

χn := lim
n→∞

Nn − Ln
Ln

=
3

4(2d − 1)
.

We want to emphasize that the FTCT yields good results for the same reason
sparse grids can cope well with the curse of dimensionality in a large spectrum
of problems: once we identify different levels of hierarchy, we only sacrifice the
information on the highest hierarchical level, whose contribution is a priori the
smallest. Classical sparse grids are optimal in the sense that they get rid of just
enough hierarchical subspaces as to retain an acceptable quality. Removing further
subspaces would result in a loss of quality that is larger than the benefit of having
fewer subspaces. The FTCT incurs this suboptimal trade-off, but we agree to pay
this price in order to be fault tolerant.

One final optimization hint. One can speed up the computation of the new
combination coefficients if the set of fault indices J can be divided into smaller
disjoint subsets, i.e., if faults occur “far away” from each other in the 1-norm.
That is, if two fault indices i, j ∈ J are sufficiently far from each other, one can
solve two independent GCPs, one for i only and one for j only, both of which are
easier to solve than a single GCP with both faults. The criterion to decide if two
faults are sufficiently far away from each other is if the set of all indices in I larger
than i does not overlap with the set of all indices in I larger than j, i.e., if

k /∈ I, kl = max
l
{il, jl}, l = 1, . . . , d.

In Chapter 5 we will show that experiments confirm this tradeoff when we
put the fault tolerant combination technique to test with five-dimensional plasma
simulations.

Fault Tolerance with the Optimized Combination Technique (OptiCom)

Before moving on, we want to briefly describe an alternative way to use the com-
bination technique to be tolerant to faults. It is based on the so-called optimized
combination technique, or OptiCom [HGC07b], which attempts to find combi-
nation coefficients c a posteriori – that is, once the PDE has been solved on all
component grids – in the hope that the resulting coefficients could approximate the
full grid solution better than the classical combination. The following discussion
is based on Kowitz’s notation [KH14].

We illustrate the idea for an eigenvalue problem of the form

Lu = λu, (3.34)

where L is a linear differential operator (for example, the linear term in the gy-
rokinetic Vlasov equations), which can be discretized with a resolution level i. We
can then solve the eigenvalue problem on each of the component grids Ωi, i ∈ I.
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As a next step, consider the functional

J(~c, λ) =
∥∥Ln~u

(c) − λu(c)
n

∥∥
2

with u(c)
n =

∑

i∈I
ciui, (3.35)

where Ln is the discrete full grid operator. One can then try to minimize J with
respect to the eigenvalues λ and the coefficients ~c, prolongating the component
solutions ui to the full grid Ωn with, for example, a multi-linear interpolation
operator Pn

i . One can then show that minimizing (3.35) in a least squares sense
is equivalent to solving the overdetermined eigenvalue problem

(L− λU)~c ≈ 0, (3.36)

where the matrices L and U are defined as

L = [LnP
n
i1
ui1 . . . LnP

n
iN
uiN ], (3.37)

U = [Pn
i1
ui1 . . . P

n
i1
uiN ]. (3.38)

Here, N is the number of component solutions, N = |I|.
In the presence of faults, the OptiCom can simply exclude the failed solutions

ui, i ∈ J and find the optimal combination coefficients in the reduced index
set. This was done in [PHKH+15], but only with “offline” sequential tests (i.e.,
computing all component solutions without faults and then looking at the error
of the combination solution assuming some of the solutions were missing).

∗ ∗ ∗

We now turn our attention to our parallel implementation of the FTCT and
the applications we tested it on. We have not yet implemented a parallel version
of the OptiCom, but this would be an interesting topic for future research.
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4
A Framework for the Combination
Technique and Application Codes

In this chapter we want to introduce the software tools used throughout this
thesis to carry out experiments with the combination technique. There are two
components to consider. First, we need a framework to perform all steps specific to
the combination technique: generating the index sets, setting up data structures
for all component grids, hierarchizing and dehierarchizing the component grids
and carrying out the combination step. The second component is the actual
application being solved, which in our case should be a code to simulate a high-
dimensional, time-dependent PDE (although of course we could also solve low-
dimensional or stationary PDEs). Although the combination technique has been
tested for over twenty years, only recently have there been efforts to develop a
framework that implements the algorithm on a massively-parallel scale. This is
one of the main objectives of our project EXAHD, and our partners at the IPVS
Stuttgart have made significant contributions to reach this goal. The effort is
motivated by the observation that the combination technique offers an additional
level of parallelism on top of the application to be solved. This results from the
fact that the component solutions ui can be solved independently of each other,
except for when combination is needed. It is nevertheless not obvious how to
exploit this second level of parallelism optimally.

In this chapter we will describe the general parallelization strategy to solve the
combination technique, and in the following chapters we will discuss how we have
extended this framework to deal with both hard and soft faults. Additionally, this
chapter will describe two application codes that have driven our experiments with
the combination technique: the programming environment DUNE, and the plasma
microturbulence code GENE. Both are highly optimized codes that are excellent
benchmarks for the performance of the combination technique, but they are very
different types of software. While GENE is a simulation code that solves a specific
type of PDE, DUNE is a framework that simply provides data structures, methods
and algorithms to solve PDEs more generally. By coupling the combination tech-
nique to both codes, we hope to show how flexible this approach is and encourage
others to test the combination technique with other solvers out there, especially
those with the potential to offer new physical insights. GENE, for instance, is of
particular interest because plasma physicists need to reach higher levels of com-
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putational resolution in order to gain further insights into the behavior of plasma
microturbulence. The combination technique offers a way to increase the resolu-
tion further without the need of faster supercomputers. This might prove crucial
in the development of plasma fusion research.

4.1 Parallel Implementation of the Combination
Technique

In the previous chapter we outlined the steps required by the combination tech-
nique. Now we are interested in determining which steps can be parallelized and
how to parallelize them best. In Algorithm 2 we have sketched out what a par-
allel implementation of the combination technique could look like. Although it is
relatively easy to come up with a simple parallel implementation of the combina-
tion technique, it is quite difficult to make sure the implementation scales on a
massively parallel system. The major questions to answer are:

1. What is the best way to distribute the computational effort of solving the
underlying PDE on a set of multiple component grids Ωi, i ∈ I? And should
the chosen strategy depend on the number of grids, the dimension of the
problem, or the number of unknowns in each grid?

2. What type of distributed data structures should we use for each component
solution ui and for the combined solution u

(c)
n ?

3. What is the optimal communication strategy to combine the component
solutions together?

Answering these questions has been the goal of our project partners at IPVS
Stuttgart, and we refer to the PhD thesis of Mario Heene for detailed results.1

For our purposes, it is enough to understand the overall parallelization strategy
and discuss some of the main challenges faced and the ways to overcome them. In
subsequent chapters we discuss how we extended this software framework to deal
with both hard and soft faults.

A Manager-Worker Model for the Combination Technique

The starting point of a parallel implementation of the combination technique is
to decide how to allocate the work of solving the PDE on |I| grids with a given
pool of parallel processing elements. The parallelization strategy should be able
to exploit the second level of parallelism of the combination technique, that is,
the fact that component solutions can be computed independently of each other
between combination steps. One way to achieve this is to divide all available
processing elements into groups that perform work in parallel to each other. Say
we have P available processes. We can divide them into G groups of equal size,

1To appear.
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Algorithm 2: The Truncated Fault Tolerant Combination Technique in Par-
allel

input : Parameter file settings.ini

output: Combined solution u
(c)
n,τ

1 Read in settings.ini ; // MP

2 Generate index set Id,nτ =
⋃d+1
q=0 Id,nq,τ and compute coefficients ci ; // MP

3 Create MPI groups and communicators ; // MP

4 Distribute tasks among G groups with index sets Ig, g = 0, . . . , G− 1 ; // MP

5 for g ∈ 0, . . . , G− 1 do in parallel
6 for i ∈ Ig do
7 ui ← u(~x, t = 0) ; // Set initial conditions

8 while not converged do
9 for g ∈ 0, . . . , G− 1 do in parallel

10 for i ∈ Ig do
11 ui ← solve(ui,Nt) ; // Using domain decomposition

12 for i ∈ Ig do
13 ui ← hierarchize(ui);

14 if faults detected then
15 recover() ; // Recover from faults: use the FTCT

16 for g = 0, . . . , G− 1 do in parallel

17 u
(g)
n,τ ←

∑
i∈Ig ciui ; // Local combination

18 u
(c)
n,τ ←

∑G−1
g=0 u

(g)
n,τ ; // Global combination

19 for g ∈ 0, . . . , G− 1 do in parallel
20 for i ∈ Ig do

21 ui ← sample(u
(c)
n,τ ) ; // Extract ui from combination solution

22 ui ← dehierarchize(u
(c)
n,τ) ; // Transform back to nodal basis

each thus having P/G processes. Each group can then be assigned a subset of
all the of component grids Ωi on which the PDE has to be solved. Recall that
there are |I| = O(d(log h−1

n )d−1) = O(dnd−1) such component grids, so each group
receives a subset Ig ⊂ I, g = 0, . . . , G − 1, of the total index set, thus being
assigned |Ig| = O(dnd−1/G) component grids.

Additionally, we define one extra process that will coordinate the different
steps of the combination technique. We call this the manager process. Its tasks
include generating the set of combination indices I (line 2), define the MPI groups
and communicators (line 3), distributing the workload among the process groups
(line 4) and coordinating the combination steps (lines 17-18). Finally, each process
group defines a master process that communicates with the manager process. This
means there are G+1 MPI communicators: one for each of the G groups for intra-
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Figure 4.1: Manager-worker model for the combination technique. In this ex-
ample, 14 tasks are distributed among G = 4 process groups, each composed of
two nodes, with four processes per node.

group communication, and an additional global commmunicator involving all G
master processes and the manager process for inter-group communication.

The four parallel for-loops in Algorithm 2 exploit the second level of parallelism,
since the groups work independently of each other. But even though tasks are
processed sequentially within a group, each step is parallelized at the first level.
This includes the solve, hierarchize, combine, sample and dehierarchize

steps. They are all performed in parallel. The details of how this is done can be
found in [HP16b].

This parallelization scheme could look something like the diagram depicted
in Fig. 4.1. We depict a two-dimensional fault-tolerant combination technique
that results in a set of 14 component grids on which the PDE has to be solved.
We use the term task to refer to each of the individual problems that result
from the combination technique. A task is therefore an object that contains all
relevant information about a component solution: its level vector i, its combination
coefficient ci, the dimension of the problem, the boundary conditions, the PDE to
be solved, the number of time steps to perform, the time step width, etc.

In this sample architecture we assume we have eight computing nodes, each
with four processes. Here we chose to define a process group to be composed
of eight processes, so each group encompasses two nodes. The four groups de-
fine a master process (denoted with an M) which communicate via MPI with the
manager process. Once the tasks are distributed evenly among the groups, the
manager process triggers the start of the computation step, and each group pro-
ceeds to solve the set of tasks assigned to it, one task after another. Notice that
each task is distributed among the processes in the group. This represents the
domain decomposition of each task, so in this example, each task is divided into
eight partitions, and each process solves its part of the domain.

It is not straightforward to define the number of groups to be used. This
decision requires finding a balance between the two levels of parallelism. On the
first level, we want each individual task to be solved fast, which would mean

50



4.1. PARALLEL COMBINATION TECHNIQUE

using many processes per task (a fine-grained domain decomposition). But this
would result in fewer groups, which reduces the parallelism on the second level. In
practice, we usually first determine a reasonable domain decomposition per task
(say, eight processes per task). This automatically defines the number of groups
we can use.

The algorithm reads in a parameters file (settings.ini) that contains the
basic information about the simulation and it uses the basic parser language struc-
ture. For the example depicted in Fig. 4.1, it would contain at least the following
information:

[ c t ]
lmin = 1 1
lmax = 5 5
p = 4 2
ncombi = 10
[ a p p l i c a t i o n ]
dt = 1e−3
nsteps = 100
[ manager ]
ngroup = 4
nprocs = 8

The parameters correspond to the following quantities:

• lmin is related to the truncation parameter τ through the relation lmin =
1 + τ .

• lmax is the full grid resolution n′ we’re trying to approximate, lmax = n′ =
n + τ .

• p corresponds to the parallelization vector for the domain decomposition.
In this example, p = 4 2 means “parallelize the domain using a partition of
4 sub-domains in x and 2 sub-domains in y”.

• ncombi is the number of times we combine the component solutions through-
out the simulation.

• dt is the simulation time step.

• nsteps is the number of time steps to perform between each combination
step.

• ngroup and nprocs are the number of process groups and the number of
processes per group, respectively. We should have

∏d−1
i=0 pi = nprocs.

In order for this parallelization strategy to scale, the individual components
should scale, and an appropriate load balancing scheme has to be used. The
steps that should be made to scale are hierarchize/dehierarchize, combine

and sample, since they require local (within groups) and global (across groups)
communication.
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Figure 4.2: Load balancing, combination and scattering steps using the manager-
worker model.

Communication

Hupp has extensively studied efficient algorithms to hierarchize and dehierarchize
component solutions [Hup13,Hup14,HJ]. Based on his results, Heene implemented
a highly efficient scheme to perform these steps on a distributed system, optimizing
it to fit the manager-worker strategy [HP16a]. The resulting implementation scales
perfectly in experiments involving as many as 32k cores.

Further effort has been invested into making sure that the combination step
scales. Hupp et al. have developed highly efficient, parallel algorithms that exploit
the hierarchical structure of sparse grids in order to minimize the communication
cost of combining a set of component solutions into a sparse grid [HHJP16]. These
investigations served as the basis to develop a highly scalable combination algo-
rithm for distributed systems by Heene and Pflüger [HP16b]. Their implementa-
tion scaled well in experiments with up to 180k cores.

Load Balancing

One last problem involves determining how to distribute the tasks among the
process groups such that the workload is balanced. Heene et al. observed that the
time to solve N time steps on a given component grid Ωi depends not only on the
number of grid points, but also on the grid’s degree of anisotropy [HKP13]. Based
on this observation, they developed a model to estimate the time needed to solve
each component solution ui, which gives a way to distribute the workload evenly
among the process groups.

Figure 4.2 illustrates a typical workflow for the solve, combine and sample

steps (the hierarchization and dehierarchization steps have been left out
for simplicity). We see ten tasks distributed among four groups, and each group
solves its set of tasks sequentially. Since the workload is balanced, the four groups
should take similar times to perform the solve step on all grids. The results are
then combined into the sparse grid, and the combined solution is used as starting
point for the next set of time steps.
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Related Work

Although the combination technique has been applied to a wide range of appli-
cations, most of the experiments so far have been carried out sequentially (i.e.,
not exploiting the parallelism across component solutions). One early study of
the combination technique in parallel can be found in [Gri92] and [GHZ96]. One
more recent effort to parallelize the combination technique has been described by
Strazdins, Ali and Harding [SAH15]. Their approach differs from ours in that it
does not divide the component grids among process groups, which affects the way
solutions are combined. They showed that their implementation scales to at least
1,500 cores and up to 3,000 cores for 2D and 3D experiments. It is not clear,
however, whether their approach can scale on massively parallel systems or how
well it performs for higher dimensions.

4.2 Application Codes

Having a general framework for the combination technique in place, we can couple
it with different application codes to be called during the solve step. The only
requirements are 1) that we can access the underlying solution field ui, 2) that the
code is discretized on a full Cartesian grid Ωi for which i can be specified by the
user and 3) that the time step size can also be varied. In this section we introduce
two codes that we have used to test the combination technique: GENE, a plasma
simulation code, and DUNE, a framework to solve a wide range range of PDEs.

4.2.1 Plasma Simulations with GENE

One of the main motivations behind this thesis is the prospect of investigating
physical scenarios that are of real interest to the scientific community. As we
mentioned in the introduction of this thesis, one such scenario is the fusion process
that takes place in highly magnetized hot plasma, which is exactly what happens
in the sun’s core. Physicists are interested in approximating these conditions in
reactor devices by fusing tritium and deuterium atoms. In order to achieve this,
the plasma has to be confined and heated up to a temperature of roughly 100
million degrees Kelvin. In the sun, the plasma is confined purely by the star’s
gravitational pull. Since this cannot be replicated in the laboratory, the plasma is
instead confined using a strong magnetic field, which can be optimized by using
special reactor geometries [Mer09]. In Fig. 4.3 we show the two most common
geometries used for magnetic plasma confinement. Tokamak devices are torus
shaped and are currently the most common type of confinement devices. The
reactor that is being built by the international joint experiment ITER, which
aims to show the feasibility of plasma fusion as a sustainable source of energy, is
based on the tokamak geometry [ite].

The development of such complex devices is necessarily accompanied by large
scale numerical simulations. It is crucial to try to understand the anomalous
transport and microturbulent phenomena that characterize the plasma flow, since
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Figure 4.3: The two most common plasma device geometries: the tokamak (left)
and the stellerator (right). Source: IPP

it leads to a deterioration of the process of plasma fusion [Mer09]. The equations
that govern the evolution of a magnetically confined plasma field are challenging to
solve, since the distribution function of the field is, in the so-called gyrokinetic ap-
proximation, a five-dimensional function us given by the following set of nonlinear
partial integro-differential equations [Kow16]:

∂us
∂t

+

(
v‖

~B0

| ~B0|
+
B0

B∗0‖
~vdrift

)
·
(
∇us +

1

msv‖

(
q ~̄E1 − µ∇(B0 + B̄1‖)

) ∂us
∂v‖

)
= 0.

(4.1)
Here, ~vdrift includes the different drift velocities of the charged particles. Both

magnetic and electric fields ~B and ~E are separated into a background Maxwellian
distribution and a perturbation term, ~B = ~B0 + ~B1 and ~E = ~E0 + ~E1. The
subscript ‖ refers to the direction parallel to the magnetic field, and the fields
denoted with bars are the gyro-averaged fields2.

For numerical purposes, the coordinate system has to be aligned to the mag-
netic field, since the interesting microturbulence phenomena are highly anisotropic.
After such a transformation, the solution us depends on five quantities: x, y, z,
v‖ and µ. x and y are also called radial and binormal directions. z is called the
parallel direction, and it follows the magnetic field line. v‖ is the velocity in this
same direction, and µ is the magnetic moment. The subscript s in us refers to
the species under consideration, which are usually either ions or electrons. It is
typical to simulate 1 – 4 species. If we put together the different species into one
vector u ≡ u(x, y, z, v‖, µ, s), the set of equations (4.1) have the general form

∂u

∂t
= L(u) +N (u) , (4.2)

where L and N represent the linear and nonlinear parts of the integro-differential
operator.

2The charged particles rotate with high velocity around the magnetic field lines, and the
gyrokinetic model as presented here is the result of averaging out this velocity component. For
more details, see [Mer09].
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The code GENE [J+00] solves system (4.2) for different scenarios. It is common
to investigate only the linear operator, either by solving the time-dependent system
or by computing the eigenvalues of L, which allows one to study the mechanisms
that drive the microinstabilities and to predict certain properties of the nonlinear
regime. GENE uses full Cartesian grids Ωi to discretize the five-dimensional domain,
with 2ij grid points in each dimension j = 1, . . . , d.

Given the large grid sizes, it is common to simulate only certain sections of
the plasma field, in what is called the local approximation. In this mode, only
flux-tubes with a small radial extent are simulated, under the assumption that the
scale of the turbulent effects is much smaller than the characteristic gradient scales
in the radial direction [NTJ+16]. This approximation allows one to use periodic
boundary conditions in the x and y directions, so one can substitute them by their
Fourier transforms kx and ky, which reduces the computational effort considerably.
The z and v‖ directions are discretized with an Arakawa scheme of order two. To
integrate in the µ direction, GENE implements Gauss and trapezoidal rules. For
the time integration, GENE uses a fourth order Runge-Kutta scheme. The code is
written in Fortran and parallelized with both MPI and OpenMP.

Although local simulations provide valuable insights into the behavior of the
plasma, there are various phenomena that can only be well understood with global
simulations, where one simulates plasma surfaces over an extended radius. These
simulations are much more expensive. In idealized conditions, local and global
simulations agree, but for more realistic scenarios, global simulations are needed.
They seem to be necessary to understand specific phenomena that arise in real
confinement devices, such as ASDEX Upgrade and JET [AGJT15]. Currently,
the largest simulations have to be run on parallel systems with tens and up to
hundreds of thousands of cores. Two noteworthy parallel experiments include a
global simulation requiring up to 64,000 cores [GLB+11] and a local simulation
using 262,000 cores [MF10]. Scientists hope that future generation supercomputers
will allow more detailed scenarios to be investigated, and new numerical techniques
could facilitate this process.

4.2.2 The DUNE Framework

One of the most attractive characteristics of the combination technique is that
one can solve a wide range of problems by changing the underlying PDE solver.
GENE is one example, but the combination technique has been used for prob-
lems ranging from the Schrödinger equation [GG00] to turbulent flow problems
using the Navier-Stokes equations [GHZ96]. Each code defines a discretization
scheme (finite differences, finite elements, finite volumes, etc.), and this scheme
defines the type of grid used. This makes most codes hard to extend, since they
focus on one specific data structure. This is the motivation behind DUNE (or Dis-
tributed and Unified Numerics Environment), a framework developed by several
research groups (mostly based in Germany) whose main goal is to offer abstract
data structures with which a very general class of grid-based solvers can be im-
plemented [BBD+08].
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DUNE is written using C++ templates, static polymorphism, traits, and other
modern programming techniques in order to optimize the runtime performance of
the code. Its design is based on three core principles: flexibility (users can add
new components), efficiency (maximize computational performance) and legacy
code (it should be possible for users to include existing applications into their
new libraries). Additionally, DUNE is based on the idea that data structures and
algorithms should be separated, which makes codes easier to maintain and extend.

The code is organized into modules, each of which implements specialized tasks.
As of version 2.4, the core modules are [BBD+16]

• dune-grid: defines the generic interface for a grid and contain several spe-
cific implementations of grids (e.g. simplicial grids, hexahedral and tetra-
hedral grids, etc.). It implements a very general definition of grids, defined
in [B+08] (nonconforming, hierarchically nested, multi-element-type, parallel
grids in arbitrary dimensions).

• dune-geometry: implements different types of reference elements, their map-
pings and quadratures.

• dune-grid-howto: tutorial with basic functionalities.

• dune-localfunctions: a library of functions on the reference elements.

• dune-common: includes all common functionalities across the modules.

• dune-istl – Iterative Solver Template Library : defines classes for sparse
vectors and matrices, including data structures and solvers.

DUNE has been highly optimized and offers many parallel capabilities. This
makes it an attractive application code for the combination technique.

In this thesis we worked with the additional module dune-pdelab, which al-
lows one to implement prototypes for a wide range of solvers quickly, including
many elliptic, parabolic and hyperbolic PDEs, discontinuous Galerkin FEM, in-
compressible NS equations, Maxwell’s equations, among others [BHM10].

∗ ∗ ∗

In the rest of the thesis we will see how to extend the software framework
introduced in this chapter to make it tolerant to both hard and soft faults. We
will also discuss how one can couple both GENE and DUNE to the framework and
how the combination technique performs with these two application codes.
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Dealing with Hard Faults with the

Combination Technique

At this point we have all the necessary ingredients to test the combination tech-
nique in the presence of hard faults. In Chapter 2 we discussed what hard faults are
and how they affect HPC systems. In Chapter 3 we introduced the fault tolerant
combination technique (FTCT), a PDE solver that can recover when part of the
data is missing, independently of what caused the data to go missing. Finally, in
Chapter 4 we described one possible way to parallelize the combination technique
in order for it to run efficiently on large parallel systems. Now we want to an-
swer several questions regarding the performance of the fault tolerant combination
technique, in particular:

• How good is the combination solution after it has been affected by faults?

• How much does it cost to ensure fault tolerance compared to checkpoint/restart?

• How well does the FTCT scale?

We will show two sets of experiments to address these questions. We will
first look at some preliminary tests in serial to get a feel for the approximation
quality of the FTCT when simulated faults occur. We do this using the code
GENE, injecting multiple hard faults and observing the quality of the combined
solution as well as the overhead involved in recovering compared to recomputing
the solutions straightforwardly. Afterwards we will move on to large scale parallel
experiments using DUNE and confirm the results obtained in the serial experiments.1

These experiments will also help us investigate the parallel overhead of the FTCT
and its performance on a large parallel system. The results of this second set of
experiments are meant to prove that our implementation of the FTCT could be
suitable for future exascale systems.

1The reason we chose DUNE instead of GENE for our first parallel experiments is that GENE re-
quires additional, non-trivial adjustments in order for it to run properly with the combination
technique. These adjustments were not implemented by the time the parallel framework was
ready to run, whereas DUNE was already available for testing.
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5.1 Preliminary Studies with GENE

Before implementing the FTCT efficiently and in parallel we set off to test its
performance with a series of experiments in serial. To do this we chose the code
GENE , since we had access to an implementation of the combination technique
developed by Kowitz [KPJH12]. The code is a Python interface that communicates
with GENE and offers the following core functionalities (as Python classes):

• CombinationSchemeArbitrary: Generates the set Id,nτ of combination levels
for a given n and τ , along with the corresponding combination coefficients
ci, i ∈ Id,nτ .

• geneEnvironment: Defines the system path where GENE is located, the path
with the parameter file and the path where the GENE solutions should be
stored after the simulations complete.

• DataProviderGene: Runs the GENE simulations in a given geneEnvironment,
acting as a communicator between the Fortran code and the Python classes.

• geneCombinationGridIV: Provides the multidimensional data structures to
store the GENE solution fields that result from the initial value simulations.

• combineGrids: Encapsulates the algorithms to combine the grids defined by
the CombinationSchemeArbitrary and to compute the combined solution.

In order to include the fault tolerant combination technique, we imple-
mented the class CombinationSchemeFaultTolerant, which inherits from the
CombinationSchemeArbitrary class. This class has two main additional func-
tionalities, namely:

1. It generates the extended index set
⋃d+1
q=0 Id,nq,τ , and

2. It solves the GCP (Eq. 3.32) to find new combination levels and coefficients
to exclude the missing combination solutions ui, i ∈ J .

Our implementation for the serial experiments is summarized in Algorithm 3.
We first compute a reference solution of level n which is used to calculate the er-
ror of the consequent combinations. Then GENE is called on every component grid
(line 8) and the fault-free combination is performed (line 12). We then choose
M random component solutions to fail and solve the GCP to find alternative
combination coefficients that exclude the failed solutions. Notice that this fault
simulation is done “offline”: we remove component solutions after the the simu-
lation finishes instead of injecting faults in real time, since we do not have any
fault detection mechanisms in place at this stage, but this is not necessary for the
types of measurements we are interested in. Finally, for each of the combination
solutions (without faults, with faults and recovered) we compute the error with
respect to the reference solution. Although it is not specified in the algorithm, we
also measure the computation time needed at each call of runGene.
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Algorithm 3: Serial Fault Tolerant Combination Technique with GENE

input : Paths to GENE binaries; sparse grid resolution n; truncation
parameter τ ; total time steps Nt; number of faults to simulate
M

output: Combined solution u
(c)
n,τ

1 scheme = CombinationSchemeFaultTolerant(n, τ ) ; // Generate extended

index set and ci

2 gene env = geneEnvironment(genePaths) ; // Define a geneEnvironment

// GENE reference solution

3 provider ref = DataProviderGene(gene env,n)
provider ref.runGene(Nt);

4 grid ref = geneCombinationGridIV(provider ref);
5 un = grid ref.data;

// Combination technique

6 combi grid = combineGrids(scheme);

7 for i ∈ ⋃d+1
q=0 Id,nq,τ do

8 provider = DataProviderGene(gene env, i) ; // Providers for GENE

9 provider.runGene(Nt) ; // Run Nt steps of GENE on current level

10 grid = geneCombinationGridIV(provider);
11 combi grid.addGrid(grid)

12 u
(c)
n,τ = combi grid.getCombination() ; // Combination solution without faults

13 eCT = L2Error(u
(c)
n,τ , un) ; // Error of combination technique

// Simulate faults

14 J = scheme.generateRandomFaults(M);
15 uFaults = combi grid.getCombination() ; // Combination with faults

16 eFaults = L2Error(uFaults, un) ; // Error of combination with faults

17 scheme.recover(J ) ; // Solve GCP to find new combination technique

18 ũ
(c)
n,τ = combi grid.getCombination() ; // Combine with new coefficients

19 eFTCT = L2Error(ũ
(c)
n,τ , un) ; // Error with new combination coefficients

5.1.1 Simulation Scenario

To test our implementation we used a standard test case in GENE that simulates a
trapped electron mode (TEM) and a mode driven by the ion temperature gradient
(ITG). In this scenario we simulate two species – electrons and deuterium ions –
using a realistic mass ratio, which causes the space and time scales to decouple
strongly. In this scenario there are two exponentially growing modes (meaning
the linear operator has two eigenvalues with positive real part) [Kow16]. We
use a standard tokamak geometry for the fusion device. This is a common test
case in gyrokinetics that is nevertheless realistic. The GENE parameter file for
this experiment (referred to as kinetic small) can be found at the end of this
chapter.

We perform two sets of experiments. The first one is meant to demonstrate
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that the fault tolerant combination technique approximates the full grid solution
well after faults occur. We choose a reference solution of moderate size in or-
der to be able to compute the error. For this set of experiments we perform a
three-dimensional combination in the (µ, v‖, z) dimensions. The other two dimen-
sions (kx and ky) are kept fixed. In the second set of experiments we perform a
four-dimensional combination in (µ, v‖, z, kx). We also choose a higher reference
level n but do not compute the reference solution. The aim of this set of experi-
ments is to measure the overhead involved in recovering from faults, including the
computation of the additional component grids to ensure fault tolerance.

Although we perform the combination technique in serial, each instance of
GENE can still be computed in parallel. This level of parallelism is part of GENE and
therefore does not require any additional changes in our implementation. We per-
formed our experiments on four nodes of the MAC cluster Cloaca2, each of which
has 8 cores. Each node is equipped with two Intel Xeon E5-2670 (SandyBridge-
EQ), 128 GB RAM and a QDR infiniband connection.

5.1.2 Results

Convergence

We chose a reference solution of level n = (5, 7, 6) in dimensions (µ, v‖, z). For
the spatial dimensions kx and ky we use five and one discretization points respec-
tively. The truncation parameter τ for these experiments was set to τ = (1, 3, 2).
The truncated combination technique that results from this choice of parameters
has 19 component grids. The extended index set to ensure fault tolerance

⋃d+1
q=0 Id,nq,τ

adds only one more component grid for a total of 20. Grouped by their resolution
level we have 10, 6, 3 and 1 component grids for q = 0, 1, 2, 3 respectively.

We randomly simulated 1 to 5 faults, which means that 1 to 5 out of the 20
component solutions fail. Additionally we carried out three subsets of simulations,
combining once after either 100, 1,000 or 10,000 time steps. In all cases we used
time step size of 2×10−4 s. At the end of each simulation we computed the relative
l2 error given by

e =
‖u(c)

n,τ − un‖2

‖un‖2

(5.1)

with respect to the full grid solution.
For each of the 15 sets of experiments we performed 50 simulations in order to

obtain more reliable statistics, choosing at each run new random solutions to fail.
Figure 5.1 summarizes our error measurements, showing the average over the 50
simulations. There are several interesting observations. First, we see that, for this
example, combining after a small number of time steps (100) results in a smaller
error than after a larger number of time steps (10,000). We also notice that the
error of the combination technique after recovering from faults is very close to that
of the combination without faults. This error becomes larger as the number of

2http://www.mac.tum.de/wiki/index.php/MAC_Cluster
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Figure 5.1: Approximation error of the combination technique applied to
GENE without faults (dashed), with faults (circles), and after recovery (squares).
On the x axis we show the number of component solutions that failed, and the
error was measured after 100, 1000 and 10000 time steps.

faults increases but even for a high percentage of faults the error remains very close
to that of the fault-free combination. Notice that the highest number of faults in
our experiments corresponds to a failure rate of 25% (5/20), which we believe is a
remarkable result. We also plot the error of the combination technique with faults,
obtained by combining the component solutions that did not fail with their usual
combination coefficients. This results in a loss of one to two orders of magnitude in
the approximation quality as measured by this error norm. For additional visual
proof we plot two different slices of the five-dimensional distribution function of
the plasma in Fig. 5.4. This answers our first question at the beginning of the
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Figure 5.2: (a) Computation times required by the different component solutions
in GENE grouped according to their resolution level q. We show the mean and
standard deviation of the 50 runs with 1,000 time steps. The number in each bar
indicates the number of grids for each level q. (b) Total accumulated computation
times of the component grids.

chapter: the approximation quality of the combination solution after recovering
from faults is very good.

At this point we would like to address a valid question that arises in discussions
around the convergence of the FTCT: if the error is almost as good as without
faults, why don’t we use fewer component grids from the beginning? As we argued
in Chapter 3, the original combination technique without faults (which results in
the usual sparse grids as we know them) is already an optimal trade-off between
precision and computational cost (at least a priori), so any further benefit in cost
(i.e., having fewer grids) results in an increase of the error that does not make the
trade-off worth it. We are willing to incur this cost to be fault tolerant, but our
target solution should be the original sparse grid. Furthermore, if we start with a
smaller combination technique with fewer grids and then allow faults to occur, the
error of the recovered combination would be even larger, which is not something
we want.

Costs

To answer the second question (how much it costs to ensure fault tolerance
using the GCP as opposed to checkpointing) we measured two things: 1) The
additional effort required to compute extra component solutions (namely, those
in
⋃d+1
q=d Id,nq,τ ) and 2) the time it takes to recompute any failed solutions that are

needed for the alternative combination technique (those with q ≥ 2 that fail and
have a nonzero coefficient after the GCP is solved). To address these points we
use a much larger combination technique in four dimensions (µ, v‖, z, x) (still using
only one point in the ky dimension) with τ = (1, 3, 2, 1) and n = (6, 8, 7, 6). This
choice results in 70 component solutions partitioned as follows:
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Figure 5.3: The accumulated time to recompute all lost component solutions
from its initial state grows roughly linearly with the number of faults. The fault
tolerant combination technique, on the contrary, requires recomputation only in
some cases and for very coarse component solutions (q ≥ 2).

|I4,15
0,τ | = 35, |I4,15

1,τ | = 20, |I4,15
2,τ | = 10, |I4,15

3,τ | = 4, |I4,15
4,τ | = 1. (5.2)

Once again, only one additional component solution is needed in this case to
ensure fault tolerance. Figure 5.2a shows the average time that a component
solution of resolution q needs to perform 1,000 time steps. We label each bar
with the number of component solutions corresponding to a given level q. The
time decreases as the grid resolution decreases (higher q) although not linearly as
we would expect. Figure 5.2b shows the accumulated time for the corresponding
component grids. It becomes clear that the computational effort required by the
additional grids (red bar) is very small – in this experiment it represents only 0.6%
of the total computation time. The result from Proposition 3.3.1 establishes that
for this case we should expect costs from the FTCT of at most 2.4% in terms
of additional grid points, so the orders of magnitude seem to agree. The time it
takes to solve the GCP itself is negligible and has therefore not been included in
the total costs.

Finally, we are interested in the computational effort required to recompute
some of the coarse component solutions when applying the fault tolerant com-
bination technique as opposed to recomputing all failed solutions from the last
checkpoint. Figure 5.3 shows these measurements, where we have plotted the av-
erage accumulated time needed to recompute the failed solutions (again for 1,000
time steps) in both cases. Whereas the time grows linearly when recomputing all
failed solutions,the cost fault tolerant combination technique remains small even
for a large number of faults. In many cases, no recomputation is needed at all.
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Figure 5.4: Two different zx − v‖ slices of the GENE distribution function after
10,000 time steps. CT refers to the usual combination technique without faults
and After GCP refers to the combined solution after finding new combination
coefficients by solving the GCP.
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Appendix: GENE parameter file

&box
kymin = 0 .3
lv = 3.00
lw = 9.00
lx = 4.16667
adapt lx = T
mu grid type =

’ c l en shaw cur t i s ’
/
&gene ra l
non l in ea r = F
arakawa zv = T
arakawa zv order = 2
c a l c d t = F
dt max = 7.39E−4
courant = 1 .0
beta = 0 .1E−02
debye2 = 0 .0
c o l l i s i o n o p = ’ none ’
i n i t c o n d = ’ fb ’
hyp z = 2.000
hyp v = 0.5000
/

&geometry
magn geometry = ’ c i r c u l a r ’
q0 = 1 .4
shat = 0 .8
t rpeps = 0.18
major R = 1.0
major R = 1.0
n o r m f l u x p r o j e c t i o n = F
/
&s p e c i e s
name = ’ ions ’
omn = 2 .0
omt = 4 .5
mass = 1 .0
temp = 1 .0
dens = 1 .0
charge = 1
/
&s p e c i e s
name = ’ e l e c t r o n s ’
omn = 2 .0
omt = 3 .5
mass = 0 .27E−03
temp = 1 .5
dens = 1 .0
charge = −1
/

5.2 Large-Scale Experiments in Parallel

Motivated by the results of our serial experiments, we decided to extend our paral-
lel C++ framework from Chapter 4 to be able to recover from hard faults. Several
research groups have tried to address similar problems from different perspectives
and as we will see we can benefit from some of their insights. Most noticeably, the
Fault Tolerance Working Group, an independent group of researchers in the MPI
community, has developed the User Level Failure Mitigation Specification [B+12],
an MPI implementation that allows the user to manage failures in an application.
Their work addresses the kind of problems that we are interested in, so it is worth
briefly describing some of its main functionalities.
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5.2.1 The User Level Failure Mitigation Specification (ULFM)

As any regular user of MPI can attest, the way it deals with faults is to abort the
whole MPI network, returning the error handler MPI ERRORS ARE FATAL. Some-
times it is possible to use the alternative error handler MPI ERRORS RETURN), after
which the network will not shut down but the state of the application will be un-
defined [Wal16]. ULFM is an effort to define a precise behavior that MPI should
exhibit in the presence of faults, since the MPI standard does not offer this. Its
design has the following four goals in mind [BBH+13]:

1. Maximize flexibility, so that the user can define how to respond to faults
depending on the application at hand. MPI should therefore not try to
repair the application itself.

2. Ensure that no MPI operations stall when failures occur.

3. Ability to be implemented within legacy codes.

4. Keep the overhead as low as possible outside recovery periods.

Figure 5.5 outlines the basic workflow to recover from system faults using
ULFM. We start with a fault affecting at least one MPI process. This fault is
detected by any other living process with which the failed process has ongoing
communication. This can happen for example during a collective operation like
MPI Reduce. The operation then raises an error of type MPI ERR PROC FAILED

(or MPI ERR PROC FAILED PENDING for non-blocking operations), which tells the
application that subsequent function calls will not work unless treated separately.
Afterwards, the processes aware of the failure revoke the communicator, indi-
cating that it can no longer be used. As a next step, the failed processes can
be excluded from the communicator by shrinking it. Optionally, the user can
obtain certain information about the failed processes (like their ranks) via the
MPI Comm failure ack and MPI Failure get acked functions. Finally, the sur-
viving processes can synchronize the information about which processes have failed
in the communicator.

The main advantage of ULFM is the ability to continue operation after faults
occur by ensuring a consistent view of the affected communicators by all processes
involved. This is a key functionality for ABFT, and one which we will exploit.
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Figure 5.5: Basic workflow of ULFM during faults (as described in [BBH+13]).

The current ULFM specification, which is only roughly 20 pages long, is based
on MPI 3.1 and is being evaluated by the MPI standardization body3. Until it
is officially accepted into the MPI standard, ULFM cannot be found on native
MPI installations of supercomputer centers. It can be installed locally but the
user would have to choose between the native MPI implementation or the ULFM
branch, and we believe the latter to be disadvantageous in terms of performance.
For this reason we chose a compromise: we use the native MPI implementation of
the HPC system at our disposal (which is not fault tolerant) and put an additional
layer on top of it that emulates the functionalities of ULFM. This layer therefore
implements the ULFM interface but it is not capable of dealing with real system
faults. The main motivation is to have a code that can reproduce the behavior
of ULFM with simulated faults, for example, by forcing certain ranks to go into
infinite loops. This already allows us to perform many useful parallel tests with
the only disadvantage of not being able to measure the overhead of the ULFM-
specific functions (from Fig. 5.5). As we will see in our parallel experiments, we
believe this overhead to be negligible with respect to other steps of the FTCT.

3http://fault-tolerance.org/ulfm/ulfm-specification/
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Algorithm 4: Fault recovery in parallel

1 faultIDs = manager.getFaultIDs() ; // Get IDs of failed tasks

2 recomputeIDs, redistributeIDs = manager.solveGCP(faultIDs) ;
// Solve GCP to find new combination technique

3 manager.recoverCommunicators() ; // Rebuild using MPI Comm shrink

4 manager.updateCombiParameters() ; // Inform groups of new coefficients

5 manager.recompute(recomputeIDs) ; // If necessary, recompute some tasks

6 manager.redistribute(redistributeIDs) ; // Redistribute failed tasks to

living groups

7 manager.combine() ; // Combine solution with new coefficients

8 manager.restoreCombinationTechnique() ; // Use original combination

coefficients

Now we describe in more detail how we implemented the FTCT in the C++ parallel
framework.

5.2.2 Parallel Implementation of the FTCT

We can now integrate the ideas behind ULFM with the theory of the FTCT to
extend the parallel C++ framework described in Chapter 4 and make it tolerant
to faults. We need two basic ingredients:

1. The parallel algorithms to compute new combination coefficients and com-
bine according to the FTCT, and

2. The mechanisms to simulate, detect and recover from faults at the MPI level.

In the experiments of Section 5.1.1 we described how to perform the first step in
serial. Now we want to see how this translates into a parallel implementation.
The second step requires a ULFM-like interface to react to simulated faults.

Algorithms

Recall that our parallel framework from Chapter 4 is based on a manager-worker
model using process groups as working agents. After the manager distributes
the tasks to the groups, each group computes a certain number of time steps for
all its tasks and waits for a signal to combine, first within the group and then
across groups. We now assume that faults affect a subset of processes, which
may be found in different process groups. Given that the vast amount of the
simulation time is spent solving the PDE for a number of time steps (several
orders of magnitude, as we will show in our experiments) we assume that hard
faults occur at this stage with high probability.

Figure 5.6 illustrates this situation, and the steps to be followed in order to
recover are summarized in Algorithm 4. These steps are to be carried out after the
process groups have finished (or attempted to finish) computing their set of tasks,
and a group returns the flag PROCESS GROUP FAIL, indicating that something went
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wrong. If a worker process fails, the master process will detect it during a call to
MPI Barrier within the group and it will inform the manager of this failure. If
a master process fails, the manager will notice it after a call to MPI Wait in the
global communicator.

In Figure 5.6 we show a scenario where a fault has affected node 5 used by
process group 2. (We could also assume that only one or several processes in the
node have failed, or that several nodes have failed. The recovery procedure will
look the same.) When this happens, the manager performs the following steps:

• Obtain the IDs of the tasks assigned to the failed groups (line 1)

• Solve the Generalized Coefficient Problem to find new combination coeffi-
cients (line 2). We used the library GLPK [glp] to solve the GCP using the
optimization functions it offers, in particular the simplex algorithm to solve
the minimization problem (3.32). Once the new coefficients are computed,
the manager knows which tasks have to be recomputed(if any) by assigning
them to living groups and which ones have to be only redistributed to living
groups without recomputing.

• The manager then removes the whole process group where faults occurred
from the global communicator (line 3). In theory one could remove only the
affected processes in the group and use the remaining living processes for
other purposes 4. (Removing the whole group when, say, only one process
fails, may sound like a waste of resources, but as we will see we can easily
afford to do this and it doesn’t represent a meaningful cost.)

• In the next step the manager informs the living process groups of the new
combination coefficients (line 4).

• The manager then orders the living groups to recompute whichever tasks
need to be recomputed, assigning them to any living groups (line 5).

• The rest of the failed tasks are redistributed to living groups without being
recomputed (line 6). Any initialization routines needed for the tasks are also
performed at this point.

• The combination step can take place with the alternative combination coef-
ficients (line 7).

• For the next set of time steps the original combination technique can be
used, so we restore the coefficients to the way they were originally defined
(line 8).

After carrying out these steps, the combination technique can continue as
originally, only with one process group less. This process can be repeated if more
faults occur and it will keep working as long as there is at least one living process
group.

4This is currently being tested in [OPHH+].
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Figure 5.6: Communicators and process groups before and after recovering from
a node failure (which here affects node 5).

One could interpret this implementation as a hybrid between algorithm-based
fault tolerance and checkpointing. It is algorithm-based because it relies on the
FTCT, which in theory does not require rolling backwards to a checkpoint. But the
combination solution u

(c)
n could be interpreted as a checkpoint for all component

solutions ui, and in the cases where we need to recompute some ui, these are
effectively rolling back to the last stored solution u

(c)
n .

ULFM Interface

So far we have left out the details of our MPI implementation and focused on the
algorithms. As we mentioned earlier, ULFM is currently not available natively
in most HPC systems. Based on the assumption that installing ULFM manually
would lead to performance losses, we decided to settle for a compromise and
implemented an interface that behaves exactly like ULFM but calls regular MPI
functions in the background. This means that the code can’t recover from real
faults but it can replicate the behavior of ULFM. Once ULFM becomes available
in HPC systems, our interface can be switched with the real implementation. A
detailed description of the interface can be found in [Wal16].

A process failure is simulated by calling a special Kill me function at any point
of the program, and the corresponding process stops participating in the applica-
tion. For our initial tests we specify the number of faults that will occur during
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the simulation, the iterations at which the faults will occur, and the MPI ranks
that will be affected. We do this by extending the settings file by an additional
faults section that looks as follows:

[ f a u l t s ]
num faults = 2
i t e r a t i o n f a u l t s = 10 20
g l o b a l r a n k f a u l t s = 3 8

This would simulate two faults at iterations 10 and 20, affecting ranks 3 and 8
respectively.

The most important blocking and non-blocking MPI functions are redefined
in the interface in a way that they can react to dead processes. Additionally, the
interface defines all ULFM functions listed in diagram 5.5. Although the layer is
not optimized for performance, it has a low overhead compared to a native MPI
implementation. But most importantly, we will see that the main overhead of the
FTCT comes from functions other than MPI functions (by a considerable factor).

5.2.3 Simulation Scenario

To test our parallel implementation of the FTCT we opted for a d-dimensional
advection-diffusion equation implemented in DUNE-pdelab. The PDE is given by

∂tu−∆u+ a · ∇u = f in Ω× [0, T ) (5.3)

u(·, t) = 0 in ∂Ω

with Ω = [0, 1]d, a = (1, 1, ..., 1)T and u(·, 0) = e−100
∑d

i=1(xi−0.5)2 . The space is
discretized with the finite volume element method on rectangular d-dimensional
grids. This method uses node-centered control volumes, as opposed to the classical
finite volume method where the degrees of freedom are positioned at the cell
corners. Our integration scheme in time is a simple explicit Euler method.

We carry out two sets of experiments, analogously to our serial tests with
GENE . First we investigate the approximation quality of the combination solution
after recovering from faults. Given the positive results with GENE , we can expect
the solution of this simpler model to be accurate as well. As with GENE , we use
a reference solution of high level to compare the combination technique solution
with and without faults. In all our experiments we vary the number of process
groups and we randomly choose one of them to fail. It makes little difference
which process group fails since the tasks are evenly distributed among the groups.
We investigate the quality of the solution for both d = 2 and d = 5. In the
2D case we use a truncation level of τ = (2, 2) and increase the maximum level
from n = (6, 6) up to n = (10, 10). For each level of resolution we compare the
combination technique with a full grid solution of level n = (11, 11). We use a
time step of ∆t = 10−4 and run 1,000 time steps (until t = 0.10), combining after
every time step. In five dimensions we use ∆t = 10−3 and perform 100 time steps,
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Figure 5.7: Convergence results for the advection-diffusion equation imple-
mented in DUNE in 2D (left) and 5D (right)5.

using a truncation parameter of τ = (2, 2, 2, 2, 2) and increasing the resolution
from n = (4, 4, 4, 4, 4) to n = (6, 6, 6, 6, 6). The full grid reference solution has
level n = (6, 6, 6, 6, 6) as well. In both 2D and 5D cases we calculate the relative
l2-error (5.1) at the end of the simulation.

In the second set of tests we are interested in whether the FTCT scales well,
particularly the steps that are specific to the FTCT: redistributing the lost tasks
and recomputing some tasks whenever necessary. We do this for a five-dimensional
example with n = (8, 8, 7, 7, 7) and τ = (4, 4, 3, 3, 3), which results in 126 compo-
nent grids. It is worth noting that it would not be possible to compute the full
grid solution of level n = (8, 8, 7, 7, 7) even on the full supercomputer. We use
8192, 16384, 32768 and 65536 processes distributed among 8, 16 and 32 process
groups, each with 512, 1024, 2048 or 4096 processes.

Process failures are simulated by calling the Kill me function introduced ear-
lier, which causes the calling process to stop reacting in any MPI calls. All tests
were performed on the supercomputer Hazel Hen at HLRS Stuttgart. This system
counts with 7,712 Intel Xeon CPU E5-2680 v3 compute nodes, each of which has
two sockets with 12 cores each (185,088 cores in total) and 128 GB of memory.
To the best of our knowledge, these are the first massively parallel experiments in
more than three dimensions with the combination technique.

5.2.4 Results

Convergence

Figure 5.7 shows our convergence results in two (left) and five (right) dimensions.
In all cases we insert a process fault at the second time iteration, since we noticed
virtually no difference on the quality of the solution as a function of the iteration
where the fault occurs. We also show the results for single runs instead of averaging
over many runs, for two reasons: 1) many of the simulation scenarios are quite
expensive to calculate (especially in 5D), and 2) since the tasks are distributed

5Figure as published in [HPHBP16].
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Figure 5.8: 5D scaling experiments in DUNE. The numbers 8, 16 and 32 indicate
the number of process groups used6.

uniformly across groups, the tasks that end up being assigned to a given group
are practically random, so this already introduces some variance.

As we can see from the plots, the combination technique with faults is only
slightly worse than when no faults occur. The difference is in the order of 1%–
3%, even when half the tasks fail. Remember that in each case we remove all
tasks belonging to the group with the failed process. These results confirm our
observations with GENE: the FTCT follows the classical combination technique
closely in terms of the error, even for a considerable percentage of failed tasks.

These result raise an obvious question: if the combination technique after
faults occur is so close to that without faults, why not use a combination of
lower resolution from the beginning? It is important to keep in mind that sparse
grids are obtained by finding the optimal compromise between lowering the total
number of degrees of freedom and keeping the error low. Moving away from this
optimum by decreasing (or increasing) the number of degrees of freedom results
in a higher cost in terms of the approximation error than what is gained by the
fewer degrees of freedom. Additionally, the alternative combination coefficients
used after faults usually still include some of the high-resolution grids (those for
which |l|1 is highest), but this would not be the case anymore if we decreased the
reference level n uniformly to n′ = n− 1 · c.

6Figure as published in [HPHBP16].
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Scalability

Figure 5.8 shows three different steps of the algorithm that were timed, namely

• solve, the time it takes the DUNE solver to perform one time step of the
PDE,

• redistribute, the time needed to redistribute failed tasks to living groups,
including any initialization routines, and

• recompute, the time it takes the algorithm to recompute any failed tasks, if
necessary.

We also measured the time to combine the solutions and the to calculate the
alternative combination coefficients, but in all cases these contributions were neg-
ligible.

As with the convergence experiments, we only show the results for one run,
instead of the average over several runs. Once again this is due to the high cost
of running each simulation (requiring several hours in the most expensive exper-
iments). In this case, the results look more erratic, but the orders of magnitude
are still informative. What we see is that redistributing and recomputing are up
to one order of magnitude less expensive than performing one single time step of
DUNE. This is a good result, especially considering that we expect the user to
combine only every few time steps and not after every time step. It is also worth
mentioning that most of the time measured under recomputing is due to the ini-
tialization routines that have to be called for every task, which happen to be quite
slow in DUNE. Also, the initialization doesn’t seem to scale, which explains the
increase in the green dashed curve.

We are enthusiastic about these results, since they indicate that the conver-
gence of the FTCT is good and the overhead is very much affordable.

5.3 Outlook: Parallel Simulations with GENE

The next natural step in our research is to test our parallel framework with a
real-life application, such as GENE. As of this writing, GENE has been successfully
coupled to the parallel framework for the combination technique [Hee17]. This
is not a straightforward task, since it requires adapting the boundary conditions
as required by the combination technique. Additionally, it is not clear how often
one should combine the component solutions. Whether one should combine very
often (say, at every time step) or rarely (for example, only once at the end of the
simulation) seems to depend strongly on the physical scenario and the choice of
n and τ . But once a suitable combination interval is chosen (along with a high
enough τ ), the combination technique seems to converge quite well.

With a working parallel version of the combination technique coupled to GENE ,
we were able to apply the FTCT and run similar tests to those of Section 5.2
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Figure 5.9: Error of the combination technique with GENE as a function of the
total number of faults affecting the simulation. Different fault frequencies λ are
used for the Weibull distribution8.

[OPHH+]. Two main new features were introduced7: 1) faults can be injected
according to any probability distribution function, and 2) if only a few processes
in a group are affected by faults, they can be replaced by spare processors (if there
are any available) instead of getting rid of the whole group. The first features
allows us to emulate different type of fault scenarios and obtain more robust error
statistics. And by replacing dead processors with spare ones, we can tolerate more
faults, since it is less likely that all process groups are removed due to failures,
which would cause the simulation to crash.

Figure 5.9 shows some parallel results using a Weibull distribution function

f(t, λ, k) =
k

λ

(
t

λ

)k−1

e−(t/λ)k , (5.4)

with k = 0.7 and different values of the mean time between failures λ. The
reference error for this scenario (a linear simulation as in Section 5.1.1) is 0.009, so
we can see that the combination solution with faults is quite close to the reference.
It takes a really large number of faults to start noticing a larger deviation from
the reference, but even for simulations where a very large number of hard faults
hit the system, the error is quite close to the reference solution. All simulations
were performed using four process groups and 512 cores in total.

Figure 5.10 shows some preliminary scaling results for the most expensive
steps of the FTCT. To generate these results, we used a combination technique
with n = 10 and τ = (3, 3, 3) in dimensions (z, µ, v‖), keeping the number of
discretization points in x and y constant (to 513 and 1, respectively). The classical
combination technique (not fault tolerant) would have in this case 136 component
grids. The fault tolerant combination technique requires 49 component grids more
(for a total of 185). This causes the time to solve to increase (blue line vs. green

7Implemented by Michael Obersteiner
8Figure as submitted in [OPHH+] with data by Michael Obersteiner.
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Figure 5.10: Scaling of the different steps of the parallel fault tolerant combi-
nation technique with GENE. The time to recover from faults is several orders of
magnitude smaller than the time it takes to compute a single time step of the
application9.

line), but only slightly. The time to recover from faults is roughly two orders of
magnitude smaller than the time to solve one time step, and it seems to scale well
at least up to 16k cores. Afterwards there is a small increase, but this was observed
to be rather due to high variations in runtime from simulation to simulation – in
some cases, the time was much smaller. At this scale, however, it is difficult to
perform many runs in order to get more robust statistics.

The final step in our research would involve simulating more complex physical
scenarios (in global mode with nonlinear effects) in order to gain new insights into
the turbulence phenomena. It is still unclear how well the combination technique
will be able to deal with nonlinear simulations, which might also have consequences
for the fault tolerance algorithms we have studies so far. However, our experiments
have consistently confirmed that whenever the combination technique works well,
the FTCT also converges.

9Figure as submitted in [OPHH+] with data by Michael Obersteiner.
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6
Dealing with Silent Errors with the

Combination Technique

In this chapter we want to address the problem of silent errors (and, in particular,
silent data corruption, or SDC) described in Chapter 2.3. In particular, we want
to answer the following questions:

• How can silent errors affect the combination technique?

• How can we model silent errors – and in particular, SDC – realistically?

• Is it possible to detect and correct SDC that has affected the combination
technique?

• Can we recover from SDC in a way that is cheap and possibly scalable?

Our aim for this chapter is to show that the fault tolerant combination technique
can also be used to recover from SDC, with some additional work. The approach
we will follow is purely algorithmic, and we will try to show that this is a very
promising ansatz for silent error resilience.

6.1 SDC and the Combination Technique

How can silent errors affect the combination technique? The answer is: we don’t
really know. As we mentioned in Chapter 2, silent errors, and in particular SDC,
are still poorly understood. For this reason, we will not try to make any overly
specific assumptions regarding the nature of SDC, and will use a very general
model of SDC with which we hope to cover as many fault scenarios as possible.
This means, for instance, not assuming that SDC will occur exclusively as bit flips,
since there could be other ways in which the floating-point data could be corrupted.
Also, injecting random bit flips into an application code (a common approach in
the community) might not be representative of the application’s behavior, since
random bit flips would tend to affect the mantissa and not the exponent or the
sign. In the end, what we should be concerned with are numerical errors in the
data, independently of what causes them. If we formulate the problem in terms of
numerical errors, we can use classical approaches in numerical mathematics and
talk in terms of norms and bounds.
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Let us now discuss ways to model SDC in a way that we avoid making un-
necessary assumptions. We follow the methodology described in Chapter 2, as
proposed in [EHM14a], which consists in selectively manipulating the data in the
most critical steps of the algorithm and altering the data in a way that covers
all possible orders of magnitude. As opposed to injecting random bit flips, this
approach can tell us how the application might behave in the worst case scenarios,
which is what we should aim for. Implementing this involves identifying the parts
of the algorithm where we cannot afford SDC to propagate, meaning we should by
all means be able to detect and correct any anomalous data at those critical steps.
There could be other parts of the algorithm where it might not be necessary to
detect SDC, so no computational resources should be spent there. This approach
is called selective reliability [BFHH12].

With this in mind we can once again analyze the various steps combination
technique, given in algorithm 5. As we have argued, most of the computation
time is spend solving the PDE (line 6). Likewise, the vast majority of the mem-
ory requirements are used to store the component solutions ui. The only strong
assumption we will make is that, if SDC occurs, it will be reflected in the data cor-
responding to the component solutions. Especially as we increase the dimension
of the PDE, each solution might take up several gigabytes of data. We think it is
reasonable to focus on SDC affecting floating-point data as opposed to including
metadata as well – pointers, indices, counters or instructions – for the reasons we
discussed in Chapter 2.

If we focus on errors on the floating-point data, we can ask which parts of
the algorithm should be performed reliably. Keep in mind that each component
solution is computed, hierarchized and dehierarchized independently of each other.
This means that if SDC affects a component solution at any of these steps, it will
not propagate to the other solutions, so we can arguably perform these steps
without checking for correctness. The only crucial step is the combination step
(line 6), since the results from all component solutions are added to the sparse
grid solution, which is then used as initial condition for the next set of time steps.
We argue that this step should be performed reliably, that is, any SDC should be
identified and excluded before combining. Allowing SDC to propagate to other
component solutions could ruin the whole combination, and we will see in our
tests that this is indeed the case. Additionally, the combination step is a linear
operation, so the error introduced by a wrong component solution will have the
same order of magnitude in the sparse grid solution. We will tolerate errors in all
other stages.

In line 8 of the algorithm we can add a function to check for any errors in
the component solutions. This function should ideally tell us which component
solutions (if any) might have been affected by SDC. Jsdc denotes the set of indices
corresponding to the affected solutions. If we manage to identify them, we can
exclude them from the combination, following the same steps as when dealing with
hard faults. The function SanityCheck should 1) be inexpensive, 2) reliably find
SDC and 3) be based on error bounds specific to the combination technique, not
to the actual simulation code being used as solver. This chapter aims to describe
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Algorithm 5: Truncated combination technique with sanity check for SDC

input : A function solver; sparse grid resolution n; parameter τ ; time
steps per combination Nt

output: Combined solution u
(c)
n,τ

1 Generate index set Id,nτ =
⋃d−1
q=0 Id,nq,τ and compute coefficients ci;

2 for i ∈ Id,nτ do
3 ui ← u(~x, t = 0) ; // Set initial conditions

4 while not converged do
5 for i ∈ Id,nτ do
6 ui ← solver(ui,Nt) ; // Solve the PDE on grid Ωi (Nt time steps)

7 ui ← hierarchize(ui) ; // Transform to hier. basis, Eq. (3.9)

8 Jsdc ← SanityCheck({ui }) ; // Check for SDC in all ui

9 if Jsdc not empty then // Did SDC affect any ui?

10 {ci} ← computeNewCoeffs(Jsdc) ; // Update combination coeffs.

11 u
(c)
n,τ ← combine(ciui) ; // Combined solution (in the hier. basis)

12 u
(c)
n,τ ← dehierarchize(u

(c)
n,τ) ; // Transform back to nodal basis

13 for i ∈ Id,nτ do

14 ui ← sample(u
(c)
n,τ) ; // Sample each ui from new u

(c)
n,τ

some possible sanity checks and test them both in serial and in parallel.

6.2 Preliminary Studies

Let us start once again with the linear 2D advection equation introduced in Chap-
ter 3.2,

∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= 0 (6.1)

in the unit square (x, y) ∈ [0, 1]2 with initial condition u(x, y, t = 0) = sin(2πx)sin(2πy)
and periodic boundary conditions. We could then try solve this PDE using Al-
gorithm 5, but now we allow SDC to affect one or more component solutions at
any step of the algorithm. In order to determine if any of the solutions is wrong,
we need to define what magnitude of error we are willing to tolerate and how we
are to determine if an error falls outside that threshold. To see this more clearly,
imagine we randomly choose one of the component solutions and alter one of its
values by one of the following factors:

1. ũi(xl,j) = ui(xl,j)× 10−300 (very small)

2. ũi(xl,j) = ui(xl,j)× 10−0.5 (slightly smaller)

3. ũi(xl,j) = ui(xl,j)× 10+150 (very large)
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This could happen, for example, during the call to the solve function, but not
exclusively. Any other step apart from combine (for example, hierarchization)
could also be subject to faults. How can we determine whether a component solu-
tion has been affected? Evidently, we don’t what the exact solution will look like,
but we do have a set of solutions of the same PDE with different discretizations,
so whatever the actual solution looks like, we should expect all component solu-
tions to look somewhat similar. If one of them happens to be very different from
the rest, we could use this as an indication that it might be wrong. To achieve
this, we propose using the theory of the combination technique and translate this
heuristic into error bounds. We now describe two possible implementations of the
SanityCheck function.

6.2.1 Sanity Check 1: Comparing Combination Solutions
Pairwise via the Maximum Norm

Recall the error splitting assumption (ESA) in two dimensions introduced in Chap-
ter 3.2, which states that every component solution should satisfy the relation

u− ui = C1(~x, hi1)h
p
i1

+ C2(~x, hi2)h
p
i2

+ C1,2(~x, hi1 , hi2)h
p
i1
hpi2 . (6.2)

where p ∈ N and the functions C1, C2 and C1,2 are bounded, |C1| ≤ κ1(~x),
|C2| ≤ κ2(~x) and |C1,2| ≤ κ1,2(~x).

Let us now see what happens in the hierarchical basis. From the definition of
the hierarchical surpluses (3.10) it is clear that they also satisfy the ESA:

αl,j − α(i)
l,j = D1(xl,j, hi1)h

p
i1

+D2(xl,j, hi2)h
p
i2

+D1,2(xl,j, hi1 , hi2)h
p
i1
hpi2 , (6.3)

where αl,j is the exact surplus at grid point xl,j. The functions appearing at each
term are also bounded, |D1| ≤ 4κ1(xl,j), |D2| ≤ 4κ2(xl,j), and |D1,2| ≤ 4κ1,2(xl,j).
This follows from the definition of the two-dimensional hierarchization operator:

αl,j =

(
2∏

k=1

[
−1

2
1 − 1

2

]
lk,jk

)
u(xl1,j1 , xl2,j2)

=
([
−1

2
1 − 1

2

]
l2,j2

)(
u(xl1,j1 , xl2,j2)−

u(xl1,j1−1, xl2,j2) + u(xl1,j1+1, xl2,j2)

2

)

= u(xl1,j1 , xl2,j2)

− u(xl1,j1 , xl2,j2−1) + u(xl1,j1 , xl2,j2+1) + u(xl1,j1−1, xl2,j2) + u(xl1,j1+1, xl2,j2)

2

+
u(xl1,j1−1, xl2,j2−1) + u(xl1,j1−1, xl2,j2+1) + u(xl1,j1+1, xl2,j2−1) + u(xl1,j1+1, xl2,j2+1)

4
.

For α
(i)
l,j , we would have the same expression but with ui instead of u. Taking the

difference of both and using (3.21), we obtain (6.3).
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Figure 6.1: Five component solutions of the 2D advection equation with their
respective representation in the hierarchical basis.

As a next step we take two arbitrary component solutions in two dimension,
say us and ut, s, t ∈ I. Since each satisfies Eq. (6.3), their difference satisfies

α
(t)
l,j − α

(s)
l,j = D1(xl,j, ht1)h

p
t1 +D2(xl,j, ht2)h

p
t2 +D1,2(xl,j, ht1 , ht2)h

p
t1h

p
t2

−D1(xl,j, hs1)h
p
s1
−D2(xl,j, hs2)h

p
s2
−D1,2(xl,j, hs1 , hs2)h

p
s1
hps2 .

(6.4)

Since solutions us and ut are defined on grids with different resolutions, their dif-
ference can only be computed on the common grid Ωs∧t composed of the subspaces
Wl with (1, 1) ≤ l ≤ s ∧ t. What Eq. (6.4) tells us is that the difference between
the surpluses of two component solutions depends mostly on the individual grid
resolutions hi (dominated by the four univariate terms) and how similar their
resolutions are, meaning that the smaller the distance |t − s|1, the smaller the
difference will be. This can be seen more easily if we rewrite (6.4) as

α
(t)
l,j − α

(s)
l,j =(hpt1 − hps1)D1(xl,j, hs1 − ht1) + (hpt2 − hps2)D2(xl,j, hs2 − ht2)+
O(hp+1

s1
+ hp+1

t1 + hp+1
s1

+ hp+1
s2

),
(6.5)

so the more similar hs and ht are, the smaller the difference in their hierarchical
coefficients. (Eq. (6.4) can be recovered by taking the Taylor expansion of each
function Di(hsi − hti).) It is straightforward to show that Eq. (6.4) is point-wise
bounded by

β
(s,t)
l,j := |α(t)

l,j −α
(s)
l,j | ≤ 4 ·κ(xl,j) · (hpt1 +hps1 +hpt2 +hps2 +hpt1h

p
t2 +hps1h

p
s2

), l ≤ s∧t.
(6.6)

This could provide a starting point to detect SDC. We could imagine measuring
the quantity β

(s,t)
l,j for many pairs of component solutions, and if for some pairs

the difference exceeds the bound, this could be an indication that one of the com-
ponent solutions is wrong. Unfortunately, we cannot apply bound (6.6) directly:
it depends on the function κ, which is not known. It could be approximated if
all component solutions have been computed correctly (to see how to do this,
cf. [Har16a]), which is not the case if SDC affects one or more ui.

81



CHAPTER 6. DEALING WITH SILENT ERRORS

1 2 3 4 5 6 7 8 9
l1

1

2

3

4

5

6

7

8

9

l2

s

t

max
j
β

(s,t)
l,j , χ = 0.0

0.00

0.02

0.04

0.06

0.08

0.10

1 2 3 4 5 6 7 8 9
l1

1

2

3

4

5

6

7

8

9

l2

s

t

max
j
β

(s,t)
l,j , χ = 0.01

0.00

0.02

0.04

0.06

0.08

0.10

1 2 3 4 5 6 7 8 9
l1

1

2

3

4

5

6

7

8

9

l2

s

t

max
j
β

(s,t)
l,j , χ = 0.1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 3 4 5 6 7 8 9
l1

1

2

3

4

5

6

7

8

9

l2

s

t

max
j
β̂

(s,t)
l,j , χ = 0.0

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9
l1

1

2

3

4

5

6

7

8

9

l2

s

t

max
j
β̂

(s,t)
l,j , χ = 0.01

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9
l1

1

2

3

4

5

6

7

8

9

l2

s

t

max
j
β̂

(s,t)
l,j , χ = 0.1

0

50

100

150

200

250

300

350

Figure 6.2: Upper row: Maximum difference of the hierarchical surpluses of two
grids for each common subspace when noise of different magnitudes is present.
Lower row: same scenarios, but normalizing the difference.

But the quantity β
(s,t)
l,j might still be useful to detect SDC. Suppose we intro-

duce some random noise in one of the combination grids, say us,

ũs = us + γεs, (6.7)

where γ is a positive constant and εs is a matrix of the same size as us with random
entries uniformly distributed between 0 and 1. We can choose γ to vary how large
the noise is, for example, by considering

χ :=
‖ũs − us‖2

‖us‖2

. (6.8)

χ tells us how much the noisy solution ũs differs from the computed solution us.
For example, χ = .05 means ũs differs by 5% relative to us. γ is then computed
as γ ≡ 2χ‖us‖2/

√∏
k(2

hk + 1). We can observe what happens to β
(s,t)
l,j when we

compare solutions us and ut with s = (7, 4), t = (6, 5), and noise is added to us,
with χ = 0.001, 0.01 (.1% and 1% resp.). These were calculated at time t = 0.25
with velocity a = (0.5, 0.5). The top row of figure 6.2 shows the largest value of

β
(s,t)
l,j on each hierarchical subspace Wl, (1, 1) ≤ l ≤ (6, 4). The values start to look

increasingly random as χ increases, but the largest orders of magnitude are kept
the same (as can be seen from the values of the color bar). But if we normalize
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β
(s,t)
l,j as follows

β̂
(s,t)
l,j :=

|α(t)
l,j − α

(s)
l,j |

min
{
|α(t)

l,j |, |α
(s)
l,j |
} for all l ≤ s ∧ t, 0 ≤ j ≤ 2l, (6.9)

we can easily identify on the highest subspaces that something has gone wrong.
This can be seen in the lower row of figure 6.2, where the value of β̂(s,t) increases
by 1-2 orders of magnitude on the highest subspaces. This is due to the fact that,
for interpolation problems, the surpluses decay exponentially [BG04]

|αl,j| ≤ 2−d ·
(

2

3

)d/2
· 2−(3/2)·|l|1 ·

∥∥D2(u|supp φl,j)
∥∥
L2
, (6.10)

with D2(u) := ∂4u
∂x21∂x

2
2
. This is the motivation behind working in the hierarchical

basis.
The reason we choose to divide by the smallest coefficient is that, if no SDC

occurs, |α(s)
l,j | and |α(t)

l,j | should have roughly the same value, but if SDC does occur,
then one of the two values will be much larger than the other, so dividing by the
smaller one will amplify the value of β

(s,t)
l,j . As a final step we take the largest β̂

(s,t)
l,j

over all grid points xl,j,

β̂(s,t) := max
l≤s∧t

max
j∈Il

β̂
(s,t)
l,j . (6.11)

In Algorithm 6 we summarize this implementation of the function SanityCheck.
To show how the algorithm could work, we solved the 2D advection equation
(6.1) using a combination technique with n = (9, 9) and = (6,6). This gives six
combination grids. We simulated 129 time steps, until t = 0.25, with cx = cy = 0.5.
The FTCT parameters used where n = (9, 9) and τ = 2. At the very last step
we altered the function value at one of the grid points of a randomly chosen
component solutions by a factor of 10−0.5 (as we described at the beginning of the
section). Table 6.3 shows a list of all possible pairs (s, t) that can be generated
from this combination technique, and for each pair we measured β̂(s,t). The pairs
marked in boldface have an unusually large value, and inspecting this list should
allow us to identify the corrupted solution. In this case, it is u(7,8), since it appears
in all pairs marked as corrupted.

At this point there is still one question we haven’t addressed: how do we tell
if a given value of β̂(s,t) is “too large” (line 4 of Algorithm 6)? Is 102 too large?
Or 1010? This obviously depends on the problem under study, but we mentioned
we were looking fo an algorithm that is not problem-dependent. One possible way
to do this is to consider the value of β̂(s,t) for a given pair relative to the other
pairs. In table 6.3 we see that the values of β̂(s,t) that were not affected by SDC
are of the order of 10−2. Relative to this value, 104 does seem disproportionately
large. Our task is then not to tell if a value is larger than a given bound, but
to determine if it is an outlier compared to the rest. For our preliminary tests in
serial we forgo this discussion and leave the task of detecting outliers to existing
Python libraries.

We now discuss a second possible way of implementing the function SanityCheck.
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Algorithm 6: Sanity Check 1: Comparing Combination Solutions Pairwise
via the Maximum Norm

input : The set of all combination solutions {ui} (in the hierarchical basis)
output: The set of indices corresponding to the solutions affected by SDC,

Jsdc

1 Function SanityCheck({ui})
2 for all pairs (us, ut) with s, t ∈ Id,nτ do

3 Compute β̂(s,t) ; // Eq. (6.11)

4 if β̂(s,t) too large then
5 Mark pair (s, t) as corrupted;

6 From list of corrupted pairs (s, t), determine corrupted solutions;
7 return Jsdc

Pair β̂(s,t)

(7, 9) (7, 8) 8.71e+04
(7, 8) (9, 7) 4.95e+04
(8, 7) (7, 7) 2.50e-02
(7, 9) (8, 8) 3.67e-02
(7, 7) (8, 8) 4.91e-02
(8, 7) (8, 8) 2.50e-02
(7, 9) (8, 7) 6.03e-02
(7, 9) (7, 7) 3.76e-02
(9, 7) (7, 7) 3.76e-02
(9, 7) (8, 8) 3.67e-02

(7, 8) (7, 7) 5.01e+04
(8, 7) (7, 8) 4.97e+04
(8, 7) (9, 7) 1.24e-02
(7, 9) (9, 7) 7.24e-02

(7, 8) (8, 8) 8.68e+04

Figure 6.3: Measured values of β̂(s,t) for a 2D advection equation after SDC has
been injected.

6.2.2 Sanity Check 2: Comparing Combination Solutions
via their Function Values Directly

The idea of using outlier detection with the combination technique gives rise to
an alternative way to detect if a solution has been affected by SDC. Consider the
grid on which we combine all component solutions, Ω

(c)
n , which is a sparse grid.

The function value u
(c)
n (xl,j) at an arbitrary point xl,j on this grid is obtained

from the combination of all component solutions ui that include grid point xl,j.
For every grid point xl,j there is always at least one component solution ui that
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includes it (if the grid point belongs to any of the highest hierarchical subspaces,
Wl, |l|1 = n + d · (τ + 1) − 1) and at most |I| (if the grid point belongs to the
lowest hierarchical subspace W1). We will denote Nl = 1, . . . , |I| the number of
component solutions ui that contain the grid points xl,j corresponding to level
l. Naturally, we expect the values ui(xl,j) to be similar across the component
solutions ui that contain it, with some variation. The variance across the different
ui is given by

Var[u(c)
n (xl,j)] =

1

Nl

∑

l′≥l

(
ul′(xl,j)− E[u(c)

n (xl,j)]
)2
, l, l′ ∈ I. (6.12)

Note that a grid point xl,j is contained in all component solutions ul′ with l′ ≥ l.

For the mean value of u
(c)
n (xl,j) over the solutions we have

E[u(c)
n (xl,j)] =

1

Nl

∑

l′≥l
ul′(xl,j). (6.13)

Equivalently, in the hierarchical basis we have

Var[α(c)
n (xl,j)] =

1

Nl

∑

l′≥l

(
α

(l′)
l,j − E[α(c)

n (xl,j)]
)2

. (6.14)

It is straightforward to show using Eq. (6.6) that this variance is bounded by

Var[α(c)
n (xl,j)] =

1

2N2
l

∑

s≥l

∑

t≥l

(
α

(s)
l,j − α

(t)
l,j

)2

≤ 8 · κ2(xl,j)

N2
l

∑

s≥l

∑

t≥l
t6=s

g2(hps, h
p
t). (6.15)

g(hps, h
p
t) :=

d∑

k=1

∑

{e1,...,ek}
⊂{1,...,d}

(
hpse1 · · ·h

p
sek

+ hpte1 · · ·h
p
tek

)
(6.16)

In 2D, this expression reduces to g(hps, h
p
t) = hpt1 +hps1 +hpt2 +hps2 +hpt1h

p
t2 +hps1h

p
s2

.
Once again, we cannot use this bound for the variance to determine if a given

value α
(l′)
l,j falls within a reasonable deviation, since it depends on the function κ.

But once again we can test if there are any outliers compared to the rest of the
values. The procedure is explained in Algorithm 7. The idea is to traverse each
point in the sparse grid Ω

(c)
n (line 2), and for each of them, gather all contributions

from the different component solutions that contain the point (line 3). We then
perform a simple outlier test on that grid point, and if any of the values does not
pass the test, we mark the corresponding component solution as corrupted and
add its index to Jsdc.

There are two main concerns with this approach. First, as we mentioned, many
of the points on the sparse grid come from a single component solution ui, namely
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Algorithm 7: Sanity Check 2: Comparing Combination Solutions via their
Function Values Directly

input : The set of all combination solutions {ui} (in the hierarchical basis)
output: The set of indices corresponding to the solutions affected by SDC,

Jsdc

1 Function SanityCheck({ui })
2 for all grid points xl,j in Ω

(c)
n do

3 α[l′]←gather(α
(l′)
l,j ) for all l′ ≥ l;

4 if any outlier test(α[l′]) then
5 Add outlier l′ to set of corrupted indices Jsdc;

6 return Jsdc

those for which |i|1 = n + d · (τ + 1) − 1. Since it is not possible to perform an
outlier test on a single value, this algorithm cannot be used for those grid points.
The same applies if we have only a few values for a grid point. For example, if
|i|1 = n + d · (τ + 1) − 2, we have at most d + 1 values to compare, which is not
much for small d. Evidently, the more samples, the more robust the statistics.
The minimum sample size depends on the algorithm used to detect outliers, and
as we will see in the results, we usually need at least five samples.

So what can we do if we have fewer than, say, five samples? Unfortunately,
not much. In some cases, if the function u we want to approximate is sufficiently
smooth (such that the hierarchical surpluses always decay exponentially) we could
check if the surpluses indeed decay as expected. In Fig. 6.4 we show the hierar-
chical surpluses corresponding to two similar-looking functions. On the left, all
surpluses decay with increasing level l. If the function is assumed to behave that
way, one could check whether the surpluses on the hierarchically highest subspace
are smaller than those on a lower subspace (for example, m levels lower):

|α(l)
l,j | < |α

(l)
l−m·ek,j|, (6.17)

where the direction ek should preferably be chosen to be the one for which lk is
largest. But this might not always hold. On the right subfigure we show a function

Figure 6.4: Left: Function with decaying surpluses. Right: Function where
one surplus does not decay.
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where not all surpluses decay as l increases. If this is the case, the test could give
a false positive. As we will see in the results section, where we applied criterion
(6.17), we did not have any false positives, but this is mostly due to the fact that
the underlying problem is very well-behaved (a linear 2D advection equation). To
visualize this, we solved the linear advection equation on grid Ω(8,7) and measured
the average of the absolute value of the surpluses over j for a fixed level |l|1,

1

N

∑

j∈Il,|l|1=c

∣∣∣α(8,7)
l,j

∣∣∣ .

The values are plotted in Fig. 6.5 as a function of |l|1. We can see an almost
perfect exponential decay.

6.2.3 Simulation Scenario: 2D Advection Equation

To test Algorithm 5 with our two sanity checks we chose to solve the advection
equation (6.1) with cx = cy = 1 in Python. For the solver function we imple-
mented a Lax-Wendroff scheme, which is of order two in space and time, so we
set p = 2 for the error expansion. For the combination technique we used the
parameters n = (9, 9) and τ = (5, 5). The resulting combination scheme has ten
grids in total (seven from the classical combination technique and three more to
ensure fault tolerance). For the time discretization we simulated 512 time steps
in the range t ∈ [0, 0.5]. The time step is the same for all combination solutions,
and we combine the component solutions twice: after 256 time steps and at the
end. We performed all simulations in serial – there is no parallelization involved
at this point.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
|l|1

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Mean value over j of α

(8,7)
l,j

Figure 6.5: Decay of the hierarchical surpluses for the 2D linear advection equa-
tion.
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Figure 6.6: Error of the combination technique when SDC of various magnitudes
is injected into the middle of the domain of one component solution1.

We injected faults in the way described at the beginning of the chapter. We
chose one of the seven component solutions randomly, but restricted our choice to
the solutions with the highest discretization resolution, since these contain some
of the hierarchical subspaces where SDC should be the hardest to detect (namely,
those with the largest level l). We then carried out 512 different simulations,
injecting SDC once at iteration i for simulation i by altering the value either by
a large factor (10+150), a small factor (10−0.5) or a factor close to zero (10−300).
Finally, the SDC was injected either at the middle of the 2D spatial domain
(at coordinate ~x = (0.5, 0.5), corresponding to the hierarchically lowest subspace
W(0,0)), or near the middle of the domain (at coordinate ~x = (0.5− h1, 0.5− h2),
corresponding to the hierarchically highest subspace Wl with |l|1 = 15). This gives
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a total of 512× 3× 3 = 3, 072 simulations.
For detecting outliers we used the Python library statsmodels [SP10]. In par-

ticular, we used the function outlier test found in the module linear model

which, in version 0.7.0, implements seven different outlier detection algorithms,
all of which we observed to perform quite similarly for our experiments. We chose
the option method=’fdr by’ which implements the false discovery rate (FDR)
method described in [BY01].

6.2.4 Results

Sanity Check 1: Comparing Solutions Pairwise via the Maximum Norm

After testing our implementation of this sanity check extensively, we were not
able to obtain satisfactory results. As we will see in the next section, a robust
algorithm to detect outliers requires some information about where the data came
from and what can be reasonably expected. As it turns out, the values of β̂(s,t)

behave quite erratically and it is therefore not straightforward to detect outliers
in the measurements. We will see how to solve this problem in the next section,
so we postpone this discussion until then.

Sanity Check 2: Comparing Function Values Directly

Our second sanity check does not face the same problem described above:
we run the outlier detection algorithm on constant values, which is the simplest
scenario one can have.

Our results are summarized in Figs. 6.6 and 6.7. Figure 6.6 shows the error
of the combination technique when SDC is injected on the middle of the domain.
The three subfigures correspond to the three different orders of magnitude of SDC
described earlier2 On the x-axis we see the iteration number at which SDC was
injected, and on the y-axis the relative L2 error of the combination technique
measured at the end of the 512 time steps compared to the exact solution of the
PDE. What we observe is that SDC was detected in all but one case3, since the
light blue crosses (CT after recovery) and the red circles (CT with SDC) do not
overlap. Recovery means that the SDC was detected and alternative combination
coefficients were used to exclude the wrong component solution. As with hard
faults, we see that the error of the fault tolerant combination technique is very
close to that of the combination technique without faults.

Another interesting observation that can be read off the second and third sets
of results is that the outlier detection algorithm seems to be very sensitive to any
variations. If we observe what happens when SDC is injected during the first few

1Figure as published in [PHHHB16].
2The largest magnitude, 10+150, was substituted by 105 simply to visualize the plots better.
3SDC was not detected when it was injected at the last iteration with magnitude 10−0.5,

possibly because at this iteration, the value of the solution is very close to zero.
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Figure 6.7: Error of the combination technique when SDC of various magnitudes
is injected near the middle of the domain of one component solution.

or the last few iterations, we notice that the error of the combination technique
with SDC is smaller than after recovery. In other words, in those cases it would
have been preferable not to detect the SDC, but the difference is so small that we
can afford this extra sensitivity.

Figure 6.7 shows the same sets of simulations but with SDC injected near the
middle of the domain (at the grid point ~x = (0.5− h1, 0.5− h2), corresponding to
the hierarchically highest subspace). Here we were also able to detect SDC in all
cases, but also due to our additional check (6.17). As we discussed earlier, this
might not always work, or it might return false positives. We will talk about this
in the next section in more detail.

Finally, Fig. 6.8 shows the same sets of simulations as Fig. 6.6 but here we

90



6.2. PRELIMINARY STUDIES

0 100 200 300 400 500
10−5
10−4
10−3
10−2
10−1

100
101
102
103
104
105
106

ũi(xl1,j1, xl2,j2) = ui(xl1,j1, xl2,j2)× 105

Full Grid CT, no SDC CT, with SDC CT, recovered

0 100 200 300 400 500

Iteration number where fault occurs, lowest hierarchical subspace

10−5

10−4

10−3

10−2

10−1

100

101
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Figure 6.8: Same sets of simulations as Fig. 6.6 but adding a constant term to
the solution of the PDE.

added a constant term π to the exact solution of the PDE,

u(x, y, t) = sin(2π(x− cxt)) sin(2π(y − cyt)) + π.

We do this so that the function values are never close to zero and we can exclude
those cases from our tests. The outlier detection works just as well as in the
previous sets of simulations, but as expected, the error with SDC is larger.

In sets of simulations with smaller truncation parameters τ , the outlier detec-
tion didn’t work as well. There were both false positives and false negatives. But
this was not a problem of the detection algorithm, but of the combination tech-
nique itself. If the truncation parameter is too small and we thus have strongly
anisotropic grids, the overall quality of the combination technique is noticeably
damaged. We observed that, as long as τ is chosen large enough to result in a
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good classical combination, the outlier detection algorithms will work fine.
These preliminary results motivated us to investigate two more questions.

First, we believe that the first sanity check could still be useful for cases where
SDC affects the hierarchically highest subspaces, but we need to reformulate it.
And second, our algorithms should be able to perform well in parallel, but at this
point we haven’t made any attempts to make our algorithms efficient and scalable.
The answers to these two questions are the topic of the next section.

6.3 Large-Scale Experiments in Parallel

We are still several steps away from a robust and efficient implementation of a
silent error detection algorithm. As we saw in the previous section, it is not
enough to hope that an outlier detection algorithm can reliably tell us which
observations of β̂(s,t) are wrong without specifying more information about the
underlying numerics. This is the basic requirement to make the first sanity check
work. Additionally, it is not clear whether our second sanity check would scale
in a parallel setting, since we run the outlier detection algorithm once for each of
the sparse grid points. Our aim for this section is to solve these problems and put
them to test on a massively parallel scenario.

6.3.1 Detecting Outliers via Robust Regression

Since both sanity checks described rely on the detection of outliers, and given that
one detection algorithm failed after a naive implementation, we turn our attention
to the actual problem of detecting outliers, an old problem in statistics. Many
methods have been developed over the years, and for our type of problem we
believe robust regression offers just the right framework. Many books have been
written on the topic of robust regression, and the following discussion is based on
the excellent book by Rousseeuw and Leroy [RL05].

Consider the set of measurements shown in Fig. 6.9a. If asked whether there
are any outliers among the measurements, we could be tempted to answer “yes”
– the eleventh data point doesn’t seem to follow the same trend as the rest (a
roughly linear increase). But now assume we take more measurements and obtain
Fig. 6.9b. It is not clear anymore that there are outlier measurements. In fact,
the dataset was generated in a way such that it follows the function shown in
Fig. 6.9c with some random noise, but no outliers. Indeed, if we calculate the
residuals yi−y(xi) we see that they are all in the same order of magnitude, as can
be seen in Fig. 6.9d.

This is the main idea of using regression to find outliers. The measurements
themselves are not enough to tell whether there are outliers: if we know the
underlying mathematical model behind the measurements, we should look at the
residuals after fitting the model to the measurements. If one or more residuals are
too large, then they can act as indicators for outliers.

In our example, imagine we know that the underlying model has the general
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Figure 6.9: (a) 20 measurements of an experiment; (b) Same experiment as
(a) but with 20 more measurements; (c) Underlying function for the previous
measurements; (d) Residuals yi − y(xi).

form

y(x) = c0x+ c1e
− (x−c2)

2

c3 . (6.18)

In this case, our task would be to find the constants c0, c1, c2 and c3 that fit our
model best, which can be easily done with simple least squares regression. But
things get complicated if there are outliers in the data. Simply applying least
squares to the data is not enough, since the minimization problem would try to
fit the outliers as well, returning wrong results. Going back to our example, this
means that the constants c0 to c3 should have roughly the same values in the
absence and in the presence of outliers, such that the residuals are meaningful.
This is where we enter the domain of robust regression – fitting models to data in
the presence of outliers.

The simplest example where simple regression fails is when fitting a constant
data that we expect to be roughly constant, for example

3.35, 3.42, 3.45, 21.20, 3.64, 3.54, 3.56, 3.39

The least squares problem

cmin ← min
c

1

2

8∑

i=1

(yi − c)2 (6.19)
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is solved by choosing c to be the mean value over the measurements,

cmin =
1

8

8∑

i=1

yi. (6.20)

For our measurements, we obtain cmin = 5.69, which is clearly far off from the
real answer 3.5 due to the presence of the outlier y4 = 21.20. In short, the least
squares estimator (6.19) is not robust to outliers. One could instead take the l1
estimator given by

cmin ← min
c

8∑

i=1

|yi − c|, (6.21)

whose solution is the median of the measurements, in our case 3.49. The downside
is that solving problem (6.21) is harder than solving the simple least squares
problem, since the absolute value function is not everywhere differentiable [sci].

One way to overcome this complication is by substituting the l1 estimator by
a smoother function, usually a sublinear function ρ (meaning that it grows slower
than linearly) [sci],

cmin ← min
c

N∑

i=1

ρ (yi − y(c, xi)) . (6.22)

ρ is our new loss function, and it should fulfill the following requirements [GDT+15]:

ρ(e) ≥ 0

ρ(0) = 0

ρ(−e) = ρ(e)

ρ(e1) ≥ ρ(e2) for |e1| > |e2|

(6.23)

Choosing ρ(e) = e2 is equivalent to the ordinary least squares problem. Some
common choices in robust regression include

• Huber’s function:

ρ(e) =

{
e2, e ≤ 1

e− 1, e > 1

• Cauchy’s function:
ρ(e) = ln(1 + e2)

• arctan function:
ρ(e) = arctan(e2).

By now there are many well-known algorithms to solve the robust minimization
problem (6.22), most noticeably the Trust Region Reflective algorithm [BCL95]
or the Iteratively Reweighted Least Squares (IRLS) method [HW77].

With these ideas in mind, we can revisit our two sanity checks and see how
this theoretical framework applies to them.
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6.3.2 Sanity Check 1 Revisited

The original idea consisted in measuring the largest normalized difference of pairs
of component solutions,

β̂(s,t) := max
l≤s∧t

max
j∈Il

|α(t)
l,j − α

(s)
l,j |

min
{
|α(t)

l,j |, |α
(s)
l,j |
} for all l ≤ s ∧ t, 0 ≤ j ≤ 2l (6.24)

If we now search for outliers in these measurements, we should have an idea of
what the underlying mathematical model for β̂(s,t) is. In fact, we do have a model
for the numerator, namely the error splitting assumption,

α
(t)
l,j − α

(s)
l,j =

d∑

k=1

∑

{e1,...,ek}
⊂{1,...,d}

(
De1,...,ek(~x, hte1 , . . . , htek )hpte1 · · ·h

p
tek

−De1,...,ek(~x, hse1 , . . . , hsek )hpse1 · · ·h
p
sek

)
.

(6.25)

But unfortunately we do not have a model for the normalized absolute value, so
it seems that Eq. (6.24) is not a good candidate to apply robust regression to.

The good news is that maybe we do not need to take the absolute value and
normalize it. Recall that the original motivation behind the normalization was to
compensate for the exponential decay across the levels l. But if our model already
accounts for this (through the functions Di) then it might not be necessary to
normalize.

Let us describe the procedure in two dimensions. Suppose we have many
measurements of α

(t)
l,j - α

(s)
l,j for a list of pairs (s, t). We would then try to fit these

measurements to the model

α
(t)
l,j − α

(s)
l,j = D1(xl,j, ht1)h

p
t1 +D2(xl,j, ht2)h

p
t2 +D1,2(xl,j, ht1 , ht2)h

p
t1h

p
t2

−D1(xl,j, hs1)h
p
s1
−D2(xl,j, hs2)h

p
s2
−D1,2(xl,j, hs1 , hs2)h

p
s1
hps2 ,

(6.26)

which would mean finding the values of the three functions Di at the grid points
xl,j and mesh sizes hi. These are many unknowns to fit and therefore makes the
regression problem unfeasible, but the problem can be greatly simplified if we focus
only on one grid point – the same grid point over all pairs. We will be interested
only on the sparse grid point x∗l,j for which the absolute value of β(s,t) is largest,
since this point should be our first suspect in the search for SDC:

(s, t)∗ = arg max
(s,t)∈V

∣∣β(s,t)
∣∣ (6.27)

x∗l,j = arg max
xl,j

∣∣∣β(s,t)∗

l,j

∣∣∣ (6.28)

where V is the set of all pairs of multi-indices (s, t) we are considering. In other
words, we first search for the pair of component solutions for which β(s,t) is largest
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and then, for that pair, we store the grid point x∗l,j that maximizes β
(s,t)
l,j . By look-

ing at only this sparse grid point in all pairs, we get rid off the spatial dependence
of the functions Di. If the sparse grid point x∗l,j does not exist on a component

grid ui, we assign a value of zero to the hierarchical coefficient, α
(i)
l,j = 0.

As a final simplification we can get rid of the higher order hpi terms in the
expansion (6.24),

β(s,t) := α(t)(x∗l,j)− α(s)(x∗l,j)

≈
d∑

k=1

(
Dek(x∗l,j, htek )hptek −Dek(x∗l,j, hsek )hpsek

)
=: β̃(s,t).

(6.29)

Here, β(s,t) is the actual measurement of the surpluses and β̃(s,t) is the theoretical
model we’ll use for the robust fit. In 2D this would mean finding the values of the
functions C1 and C2 evaluated at the mesh sizes hi appearing in the combination
technique, hi = {hτ+1, hτ+2, . . . , hn}4. Instead of making this measurement for all
possible pairs of component solutions, we propose to do it only for pairs (s, t) ∈ V
that are nearest neighbors (in the sense that |s − t|1 is smallest). Of course, the
more grid points two solutions ut and us have in common, the better. If a pair
of solutions has only a few grid points in common, we might miss any SDC that
affects the grid points that they don’t have in common. This means that in d
dimensions we should compare each solution with its d nearest neighbors.

Here’s a 2D example with n = 4 and τ = (τ, τ) = (3, 3), resulting in the
following 10 multi-indices for the combination technique:

3⋃

q=0

I2,4
q,(3,3) = {(7, 4), (6, 5), (5, 6), (4, 7), (6, 4), (5, 5), (4, 6), (5, 4), (4, 5), (4, 4)}

(6.30)
Choosing to compare only the two nearest neighbors for each solution results in
a set V with 11 pairs, listed in Table 6.1 along with measurements of β(s,t) for
a simple example advection-diffusion equation (which will be described in more
details in Sec. 6.3.5). SDC was injected into solution u(4,6), and as we can see
from the table, the values corresponding to {(4, 7), (4, 6)} and {(5, 6), (4, 6)} are
somewhat higher than the rest. Notice that the difference in orders of magnitude
is not as large as with the normalized β̂(s,t), but this is not a problem. The
underlying model for the error expansion β̃(s,t) should be able to identify these
outliers.

The minimization problem that results from this model is

~cmin ← min
~c

∑

(s,t)∈V
ρ
(
β(s,t) − β̃(s,t)(~c)

)
, (6.31)

where ~c denotes the vector of unknown functions Di,

~c := (D1(hτ+1), . . . , D1(hn), . . . , Dd(hτ+1), . . . , Dd(hn)) .

4To keep the notation simple, we will only consider constant truncation parameters τ ≡ τ ·1.
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Pair (s, t) β(s,t)

(4, 5) (4, 4) 0.0275
(4, 7) (4, 6) 0.2180
(4, 7) (5, 6) -0.0029
(5, 4) (4, 4) 0.0152
(5, 4) (5, 6) -0.0498
(5, 5) (4, 5) 0.0158

(5, 6) (4, 6) 0.2210
(6, 5) (5, 5) 0.0111
(6, 5) (6, 4) 0.0283
(7, 4) (6, 4) 0.0061
(7, 4) (6, 5) -0.0222

Table 6.1: Measurements of β(s,t) with one solution affected by SDC, namely,
u(4,6).

This is a vector of d · (n− τ) unknowns. Notice also that our model β̃(s,t) is linear
in the unknowns Di, so it can be written as a matrix-vector product

β̃(s,t)(~c) := X · ~c,

where the matrix X ∈ R|V|×d·(n−τ) stores the coefficients hpi .
We can now solve the optimization problem (6.31) using any algorithm for

robust linear regression. We opted for the implementation of the Iteratively
Reweighted Least Squares (IRLS) algorithm found in the GSL library [GDT+15].

Iteratively Reweighted Least Squares

The algorithm works as follows. In order to solve

min
~c

∑

i

ρ(ei(~c))

we take the derivative of ρ with respect to e and set the expression to zero,

∑

i

ψ(ei)Xi = 0,

where ψ = ρ′ and Xi is the i-th row of X ∈ RM×N . We then introduce a weight
function w(e) = ψ(e)/e, which gives

∑

i

wieiXi = 0,

where wi = w(ei). For example, the weight function w corresponding to the
Cauchy loss function would be

w =
1

1 + e2
.
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This is similar to minimizing a weighted least squares problem, but the weights wi
depend on the residuals ei, which in turn depend on the minimization coefficients
~c, which themselves depend on the weights. This means that the problem has to be
solved iteratively, and the idea is to assign smaller weights to outlier measurements
on each iteration. The IRLS does this as follows:

1. Obtain an initial guess ~c (0) for the coefficients ~c using ordinary least squares.

2. At iteration k compute the residuals

e
(k)
i =

(yi −Xi · ~c (k−1))

t · σ̄(k)
√

1− hi,i
,

where σ̄ is an approximation of the standard deviation of the residuals, de-
fined as σ̄ = MAD/0.675, with MAD being the Median-Absolute-Deviation
of the M − N largest residuals of iteration k − 1. The elements hi,i are
called statistical leverages and they are the diagonal elements of the projec-
tion matrix H = X · (XTX)−1XT . The parameter t is a tuning constant
that depends on the weight function w.

3. Update weights as w
(k)
i = ψ(e

(j)
i )/e

(k)
i .

4. Solve the weighted least squares problem with the new weights to find the
new coefficients ~c (k).

5. Iterate steps 2 through 4 until a given convergence criterion for the coefficient
vector is met.

It is also possible to scale the weight function w in order to penalize outliers more
strongly. This can be done by introducing a constant C such that

ŵ(e2) = C2w

(( e
C

)2
)
.

If C < 1, outliers are penalized more strongly, meaning they are assigned smaller
weights at every iteration.

Figure 6.10 illustrates what the algorithm does. On the top figure we observe
some measurements of β(s,t) without outliers (blue circles). In this case, also a
simple (non-robust) regression algorithm will fit the model to the measurements
well (green line). In the middle figure we added some outliers, and we see that
the model cannot be fitted well if we use the same regression algorithm as without
outliers. The fit is ruined by the presence of outliers. On the bottom figure we
used the IRLS algorithm, and the outliers are properly excluded from the fit. One
can easily see that the residuals

~r = β(s,t) −X · ~cmin (6.32)

(difference between the blue circles and the green line) are large for these two
measurements.
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Figure 6.10: Top: β(s,t) measurements without outliers (blue circles) and the
resulting least squares fit (green line); Middle: β(s,t) measurements with two out-
liers. A simple least squares fit is ruined by the presence of the outliers. Bottom:
Robust least squares fit obtained with ILRS. Outliers are properly excluded.

99



CHAPTER 6. DEALING WITH SILENT ERRORS

Once the algorithm converges, we have the vector of robust coefficients ~cmin

and the corresponding residuals ~r. The only thing left to define is a threshold for
the residuals beyond which a measurement is marked as outlier, and this threshold
should be scale-independent. One possible way to do this is described in [RL05].
First, one can calculate a preliminary scale estimate σ0 defined as

σ0 = 1.4826

(
1 +

5

|V| − d · (n− τ)

)√
med ~r · ~r. (6.33)

Here, |V| is the number of pairs (s, t), which is also the total number of β(s,t)

measurements we have; d · (n − τ) is the number of unknown Di functions. For
each residual, one then calculates a weight wi given by

wi =

{
1, if |ri/σ0| ≤ 2.5

0, otherwise

After computing these weights one calculates a more robust scale estimate σ∗,
which is given by

σ∗ =

√√√√√√√√√√

|V|∑

i=1

wir
2
i

|V|∑

i=1

wi − d · (n− τ)

.

Having this more robust scale estimate, one can compute the standardized residuals
defined as

~̂r =
~r

σ∗
. (6.34)

It is common practice is to mark the i-th measurement as outlier if |r̂i| > 2.5.

Costs

The algorithm requires two main steps: 1) searching for the sparse grid point
x∗l,j for which β(s,t) is largest over all pairs of component solutions and 2) solving
the robust least squares problem (6.31).

In order to find x∗l,j, we should calculate β(s,t) for all pairs of solutions. There
are

|Id,nτ | =
d−1∑

q=0

(n+ (d− 2)− q − τ)!

(n− q − τ − 1)!(d− 1)!
(6.35)

component solutions in the truncated combination technique, as can be verified
using, for example, the stars and bars method. For large n we have

lim
n→∞

|Id,nτ | = O(d · nd−1).

Comparing each component solution to its d nearest neighbors as we suggested
results in |V| = O(d2 · nd−1) total pairs, so we only have an additional d factor.
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Ωs, s = (2, 3) Ωt, t = (4, 2)

p0 p1

p2 p3

Figure 6.11: Two component grids can be superposed on (somewhat of) a sparse
grid space, where the search for β(s,t) can be parallelized.

Each component solution has O(2n) grid points, and computing β(s,t) for one
pair requires simply traversing both solutions and subtracting one from the other,
which is basically for free. Therefore, computing β(s,t) for all pairs should not
represent a high cost.

Solving minimization problem (6.31) is also quite inexpensive with IRLS. The
model matrix X has size |V| × d · (n − τ), which is very small even for large n
and d. The IRLS takes roughly 101 − 102 iterations to converge (as observed in
our experiments), so the cost of the minimization algorithm is negligible (which
we confirmed in our experiments).

Parallelization

The algorithm can be easily parallelized using our software framework for the
combination technique. As we know, the component solutions are distributed
among the process groups, and each solution is parallelized using domain decom-
position. This allows us to compute β(s,t) for each pair in a distributed manner,
as shown in Fig. 6.11. We perform the operation |α(t)

l,j − α
(s)
l,j | on the distributed

sparse grid, so each process computes its local value for β(s,t) and we then use
MPI Reduce to find the largest value. Once we have a list of β(s,t) values for all
pairs in one group (that is, s, t ∈ Ig), the process that contains the grid point
with the largest value computes β(s,t)(x∗l,j) for all pairs and performs the robust
regression. Each process group does this in parallel before the combination step.
It would also be possible to gather all values of β(s,t) across all groups in order to
have more measurements, but this would require global communication, and we do
not consider it necessary. As long as each group has enough component solutions
for there to be enough measurements, we can do everything at the group level.
As we will see in our experiments, this is almost always the case, especially if we
run large scale simulations, since they usually result in dozens of component grids
per group. The equations appearing in this section should simply be updated to
contain Ig and Vg instead of I and V .
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6.3.3 Sanity Check 2 Revisited

Recall the main idea of our second approach: observing each sparse grid point
individually, gathering all versions of the solution on that point and trying to
detect any outliers across all component solutions. As we discussed, this algorithm
had two main drawbacks. First, we performed outlier detection on all sparse grid
points, which is quite expensive, especially as the dimension increases. Second, we
didn’t have a very robust way to detect outliers for the sparse grid points on the
hierarchically highest subspaces, since we might only one (or very few) versions of
the PDE solution for those points. We now try to address these two issues.

In order to avoid performing the outlier detection on each sparse grid point, we
can repeat the first step of the algorithm corresponding to our first sanity check,
namely, finding the one grid point x∗l,j for which β

(s,t)
l,j is highest. Remember this

is our suspect point. We can then simply gather all versions of the solution on
that point, ul′(x

∗
l,j), with l′ ≥ l and l′, l ∈ Ig. We then try to fit these function

values to a constant ũ, since we know they should all be similar:

umin ← min
ũ

∑

l′≥l
l′,l∈Ig

ρ
(
ul′(x

∗
l,j)− ũ

)
. (6.36)

Finally, just as we did in the previous section, we can normalize the residuals

ri = ui(x
∗
l,j)− umin

according to Eq. (6.34), substituting |V| by the number of component solutions
that contain grid point x∗l,j). The number of unknowns is not d · (n− τ) anymore,
but 1 (the value of the constant ũ).

The last remaining question is what to do when we do not have enough values
of ui(x

∗
l,j) (at least five) to perform the robust fit. Our heuristic of checking for

the decay of the surpluses didn’t sound very robust. One possible solution – in
fact, the most satisfactory we have tested – is to switch to our first sanity check
in such cases. We will discuss how well this works in the results section.

Costs

This second algorithm has even lower costs than the first one. In both, we
need to search for x∗l,j, which we argued is cheap and can be done in parallel.
Then, within each group, we have to gather all the values of ui(x

∗
l,j), which are at

most |Ig| and does not require communication across groups. The minimization
problem (6.36) is as simple as it gets, fitting only a constant model. We therefore
argue that the added costs of this algorithm are very low, which we will confirm
in our experiments.

Parallelization
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The search for x∗l,j is performed in parallel just as with the first sanity check.
The process that contains that grid point then solves the optimization problem
(6.36).

6.3.4 Detection Rates

Some authors try to design SDC detection algorithms in such a way that a min-
imum detection rate can be guaranteed. For example, the authors in [GZP+16]
define a maximum error they are willing to let undetected, and based on that
they come up with a confidence interval for the error, assuming that it is normally
distributed. Their technique requires an additional preprocessing step to learn
how the error might behave. We have not yet investigated that possibility for our
case (although it would be an interesting research topic), so it is not possible to
estimate a detection rate of our algorithms a priori.

For the moment, we will instead inject SDC into our algorithms as extensively
as possible and experimentally report on the detection rate we achieve.

6.3.5 Simulation Scenario: nD Advection-Diffusion Equa-
tion

Our initial implementations were tested on a linear 2D advection equation. Now
that we have refined our algorithms and have described a way to parallelize them,
we investigate an n-dimensional advection equation with an additional diffusion
term. The PDE is given by

∂tu−∆u+ a · ∇u = f in Ω× [0, T ) (6.37)

u(·, t) = 0 in ∂Ω

with Ω = [0, 1]d, t = [0, 0.05], a = 1T and u(·, 0) = e−100
∑d

i=1(xi−0.5)2 . The PDE
was implemented using the framework DUNE-pdelab.Physically, Eq. (6.38) starts
with a Gaussian function in the middle of the domain at time t = 0. The Gaussian
then travels a constant velocity a in all d dimension. For the spatial discretization
we used the FVE method on rectangular grids. For the integration in time we
used an explicit Euler scheme.

We investigated the quality of our detection algorithms in 2, 3 and 5 dimen-
sions. The five-dimensional case was also used to test the computational cost
and scalability of our algorithms, since these are very expensive simulations. In
every simulation scenario we performed 50 time steps with a step of ∆t = 10−3.
The component solutions were combined every 10 time steps. The solution of the
robust regression problems (6.31) and (6.36) were implemented using the GNU
Scientific Library [GDT+15]. For the weight function w we used Cauchy function,
and we set the value of the scaling constant to C = 0.01.

We simulated SDC in the same way as in our preliminary experiments: on each
run, we randomly choose a component solution ui which will be affected by SDC.
Once again we restricted our attention to solutions with the highest resolution,
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|i|1 = n+ d · (τ + 1)− 1, since we have seen that it is in these solutions that SDC
can be hardest to detect, which happens when the hierarchically highest subspaces
are affected. We then choose a grid point xl,j in ui and alter its value in one of the
three ways described in Section 6.2. The grid point is chosen to be either in the
middle of the domain, xi = 0.5, i = 1, . . . , d (corresponding to the hierarchically
lowest subspace) or near the middle, at xi = 0.5−hi, i = 1, . . . , d (corresponding
to the hierarchically highest subspace).

For all these possible scenarios, we choose a time iteration where SDC occurs
and we do this only once during the whole simulation. We then investigate whether
SDC is detected before combining the component solutions and we look at the
approximation error of the combination solution at the end of the simulation,
comparing it with a reference solution without faults.

6.3.6 Results: Detection Rates and Error

2D Case

for the 2d case we chose the combination parameters n = 5 and τ = 2, resulting
in a combination technique with 14 component solutions. our results for the
approximation error can be found in fig. 6.12. the top three subfigures correspond
to the case where sdc is injected in the middle of the unit square and the bottom
three to sdc injected near the middle of the domain. the three subplots correspond
to the three different magnitudes of sdc (10−300, 10−0.5 and 10+150). the x-axis
represents the iteration at which sdc was injected, and on the y-axis we plot the l2

relative error e = ‖u(c)n −uref‖2
‖uref‖2 at the end of the 50 iterations compared to a reference

solution of level n′ = (7, 7).
four different measurements can be observed in each plot. the solid blue line is

the error of the combination technique compared to the full grid reference solution
where no sdc occurs. red crosses indicate the error of the combination technique
when sdc occurs and is not detected. green stars show the error of the combination
when using the first sanity check to detect sdc, and the empty circles correspond
to the second detection method being turned on.

let us start with the three top subfigures (sdc in the middle of the domain).
we can see that, when sdc occurs, the error is roughly twice as large for moderate
magnitudes of sdc (10−300 and 10−0.5). when sdc is large (10+150) the error is also
of that order of magnitude, so we did not plot it with the rest of the data. the
first method detected the sdc in 88%, 64% and 100% of the cases, corresponding
to the three magnitudes of sdc. method 2 had a detection rate of 98%, 84% and
100%. but more importantly, in the scenarios where sdc was not detected, the
approximation error is still quite close to the fault-free case.

the three bottom figures show the error when injecting sdc near the middle of
the domain. the detection rates were 22%, 10% and 100% for our first detection
algorithm and 0%, 0% and 100% for the second. the detection rates are therefore

4
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Figure 6.12: Approximation error of the combination technique in 2D (n = 5,
τ = 2) injecting SDC (a) in the middle and (b) near the middle of the square
domain. (With data as submitted in [PHBP].)
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quite lower, but once again it is important to notice that the error remains small,
and that large sdc (10+150) is always detected.

3d case

We increased the dimension to three and used the combination parameters
n = 3 and τ = 2, which gives 10 component solutions. Since these simulations
are already considerably more expensive than in two dimensions, we injected SDC
at only six iterations for every case (as opposed to doing it at every iteration),
namely, at iterations 0, 9, 19, 29, 39 and 49. We calculated the error of the solution
compared to a full grid solution of level n′ = (5, 5, 5) at the end of each simulation.
The results can be seen in Fig. 6.13, and similar conclusions can be drawn as with
the 2D case, but in 3D, our first method performs worse for moderate SDC (10−300

or 10−0.5). Luckily, our second sanity check still worked very well, detecting all
SDC that would have otherwise led to large errors.

5D Case

We finally increased the dimension to d = 5, keeping the combination parame-
ters n = 3 and τ = 2. This results in a combination with 21 component solutions.
The reference solution has level n′ = (5, 5, 5, 5, 5). We injected SDC as in the 3D
case, at iterations 0, 9, 19, 29, 39 and 49, but we only considered one scenario,
namely, injecting SDC in the middle of the domain and detecting using the sec-
ond method. This is due to the fact that each run can take up to several hours.
Figure. 6.14 shows our results. As in the previous cases, we were able to detect
SDC in every occasion. For the parallelization we used two process groups, each
one consisting of 1024 processes.

6.3.7 Results: Scaling

Earlier we argued that our detection algorithms should be cheap, at least com-
pared to the computational resources required by other steps of the combina-
tion technique (especially solving the PDE on the component grids). In order
to confirm this, we used a combination technique with high resolution (n = 5,
τ = (3, 3, 2, 2, 2)), which approximates a full grid solution of level n′ = (8, 8, 7, 7, 7)
and is made up of 126 component grids.

To test how well the different parts of the algorithm scale, we increased the
number of processes per group, using 256, 512, 1024, 2048 and 4096 processes in
every of the 8 groups used, so the total number of processes ranges from 2048 to
32768.

We are primarily interested in the cost of detecting and recovering from SDC
compared to the most expensive steps of the combination technique. In Fig. 6.14
we plot our time measurements for three different steps of the algorithm:

1. Solve tells us the time required by the DUNE framework to perform one
time step of Eq. (6.38).
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Figure 6.13: Approximation error of the combination technique in 3D (n = 3,
τ = 2) injecting SDC (a) in the middle and (b) near the middle of the square
domain. (With data as submitted in [PHBP].)
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Figure 6.14: Approximation error of the combination technique in 5D (n = 3,
τ = 2) injecting SDC in the middle. (With data as submitted in [PHBP].)
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Figure 6.15: Scaling experiments with SDC detection on. We used 8 process
groups and varied the number of processes per group, doubling from 256 until 4096.
The total computational time required to ensure silent error resilience (Search SDC
+ Recover) is still one order of magnitude smaller than one single time step of the
PDE solver (As submitted in [PHBP].)

2. Recover indicates the time to remove the solution with SDC, adapting the
combination coefficients, and restarting the task with the correct values for
the next combination step.

3. Search SDC is the time needed to carry out all steps of our second SDC
detection method (see Section 6.3.3).

The results for the Solve and Recover steps closely resemble those of Chapter
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6.3. LARGE-SCALE EXPERIMENTS IN PARALLEL

i ui(x
∗
l,j)

(3, 3, 3, 3, 3) 0.94203
(3, 3, 4, 3, 3) 0.94203
(4, 3, 3, 3, 3) 0.94203

(3, 3, 3, 3, 4) 0.94571
(3, 4, 3, 3, 4) 0.94203
(3, 3, 3, 4, 3) 0.94203

Table 6.2: Example of measurements that lead to false positives, here at point
x∗l,j = (0.5, 0.5, 0.5, 0.5, 0.5). Since the value corresponding to u(3,3,3,3,4) is different
from all others, it can be marked as an outlier, even though its value is not wrong.

5, where we recovered from hard faults in parallel. The total time needed to detect
and react to SDC is the sum of the Search SDC and Recover steps. The former is,
as we can observe from the difference of 3 to 4 orders of magnitude, negligible (and
decreases slightly with increasing processor count), whereas the latter is dominated
by the time required to reinitialize the task identified with SDC, as was also the
case with hard faults. One main difference with our algorithm to detect from hard
faults is that wrong component solutions do not have to be redistributed to a new
group, since all processes continue to work as usual.

We consider these results to be promising. It does require some additional effort
to come up with a detection strategy specific to the algorithm under consideration
(such as the combination technique), but we can see that it can pay off in terms
of the computational overhead required in the end. This seems to confirm the
position that algorithmic fault tolerance is arguably the most attractive alternative
to resilience in future exascale systems.

6.3.8 Dealing with False Positives

There is interesting behavior of the combination technique that we have left out of
the discussion until now, but which caused some problems for while detecting SDC
in higher dimensions. When we increased the dimension to d = 5, we encountered
a growing number of false positives while searching for SDC, that is, component
solutions that were wrongly marked as having been affected by SDC. We observed
this when the function value ui(x

∗
l,j) was almost identical across several component

solutions but slightly different in others. An example of such a measurement can
be found in Table 6.2.

Since we penalize outliers strongly (by choosing a small normalization constant
C ), even small variations such as this one are assigned a very large standardized
residual, which results in the measurement being marked as outlier. The values
cluster in this way probably because we combined after a small number of time
steps, which may cause each component solution to vary only slightly in some
regions from one combination step to the next.
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We managed to address this problem as follows. If we start with the six mea-
surements from Table 6.2 and we run the outlier detection algorithm, the fourth
measurement is marked as an outlier. At this point we perform two measure-
ments. First, we combine all the function values using their classical combination
coefficients,

uc =
∑

i

ciui(x
∗
l,j).

Then we use the Fault Tolerant Combination Technique to find alternative com-
bination coefficients to exclude the suspicious value and combine with the new
combination coefficients,

u′c =
∑

i

c′iui(x
∗
l,j).

We can now compare uc and u′c. If they are similar, it means that the suspicious
value is not really an outlier, whereas if they are very different, it might be. We
can therefore compute their relative error,

erel =
|uc − u′c|
|umin|

,

with umin being the solution of the regression problem (6.36). If this error is
small (for example, smaller than 5%), we can safely conclude that the value we’re
suspicious of is not in fact an outlier. Even if the difference was indeed caused by
SDC, as long as the relative error is small, it is fine to ignore it and combine as
usual, since we’re making sure that the error introduces is small. We applied this
check during all our simulation from the previous section, and it was particularly
useful for the 5D case.

6.4 SDC Detection via Quantities of Interest

Our starting point to detect SDC in the combination technique was to look at
the function values of the different component solutions, and trying to determine
whether large differences are within acceptable bounds. But there might be cases
where the function values themselves might not be of primary interest, but rather
a given Quantity of Interest (QoI) Q related to the numerical solution ui, or
Q(ui). The QoI could be many things, and it usually depends on the PDE being
solved. For example, as we mentioned in Chapter 4, plasma physicists working
with GENE are often interested in integrated quantities (or observables) such as the
mean parallel velocity or the radial particle flux, all of which are scalars obtained
by integrating the solution fields in different ways.

Two possible advantages of investigating QoIs instead of the solution fields
themselves are the fact that QoIs are scalars, and not high-dimensional fields like
ui, and that if SDC occurs but these quantities are correct, we could ignore it and
not spend any time trying to search and correct it. Additionally, we would not have
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i Qh(ui) r̂i
(7, 3) 3.14175 0.01204
(5, 4) 3.14268 1.32745
(4, 6) 3.14215 0.67156
(6, 4) 3.14215 0.67156
(4, 5) 3.14268 1.32745
(4, 3) 3.14245 0.23318
(4, 4) 3.14344 2.19886
(5, 5) 3.14222 0.79327
(6, 3) 3.13748 7.66325
(3, 6) 3.14189 0.00742
(3, 7) 3.14175 0.01204
(3, 5) 3.14215 0.01368
(3, 4) 3.14245 0.23318
(5, 3) 3.14215 0.01368

Table 6.3: Example of SDC detection using QoIs (in this case, integrating the
solution over the domain). The standardized residuals reveal u(6,3) to be wrong.

to worry anymore about where exactly SDC occurs in the solution field.5 However,
maybe there are ways in which a solution field could be critically wrong, but in
a way that is not reflected on the QoIs. The wrong data could then propagate
further after deciding to ignore it, which could ruin the combination. We think
such a scenario is unlikely, but it is important to keep it in mind.

The ideas of robust regression presented so far can be directly applied to the
quantities of interest. We simple need a model for the error expansion of the QoI,
Q(u) − Q(ui), or for the QoI itself (say, we expect it to be constant across all
component solutions).

A simple example could be QoI defined as the integral of the field over the
domain [Wak03]:

Q(u) =

∫

Ω

u(~x)d~x. (6.38)

We can then use the combination technique to approximate u (or Q(u)) and per-
form robust regression to search for outliers. Say we approximate (6.38) using a
trapezoidal rule Qh, for which we know that the error will be of order 2 in in the
mesh size h = 1/N , with N =

∏d
j=1(2ij + 1) being the total number of points, so

we have
Q(u)−Qh(ui) = C · h2 +O(h3). (6.39)

So for the robust minimization problem we could, for example, try to fit our
measurements of Qh(ui) to a polynomial model of powers of h,

Qh(ui) ≈ Q̃(~c, h) := Q(u) +

p∑

j=0

cjh
j. (6.40)

5In general, we think it would be interesting to investigate variants of the detection algorithms
we have described which do not depend on where in the solution the fault occurred.
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This would result in the following robust minimization problem:

min
~c

∑

i∈I
ρ
(
Qh(ui)− Q̃(~c, h)

)
. (6.41)

We implemented this detection algorithm for the 2D linear advection equation
described in Section 6.2, using a combination technique with n = 5 and τ = 2. In
one simulation scenario, we injected SDC of magnitude 10−0.5 into one component
solution and computed the QoI (6.38) using a two-dimensional trapezoidal rule.
The results of the numerical integral can be seen in Table 6.3. The initial condition
was chosen such that the exact integral Q(u) is equal to π. For the polynomial
model (6.40) we chose p = 2, so the model has three unknowns c0, c1 and c2. Solv-
ing the robust minimization problem and computing the standardized residuals as
before reveals the outlier measurement, which corresponds to component solution
u(6,3).

6.5 Evaluation and Comparison

In Section 2.3.1 we briefly discussed some techniques that have been used by others
to deal with silent faults. A standard approach consists of performing checkpoints
and adding a verification step to make the checkpoints are fault-free. This requires
estimating the meant time between errors for a given system, which does not seem
easy. In a sense, our approach is somewhat similar if we consider every combination
solution as a checkpoint, and the sanity checks are the verification mechanism. One
advantage of our approach is that we do not need to keep multiple checkpoints,
since we verify at every combination step that the combination solution is not
tainted.

Classical ABFT uses elaborate checksum protocols to make sure that all com-
putations are correct. (see [SWA+14], Section 5.4.2 for a comprehensive list of
examples.) We try to avoid such an approach because, as we argued in Sec-
tion 2.3.2, the better question to ask is whether numerical errors are bounded, not
whether every computation is performed exactly.

One final common approach is replication, which comes at a cost of sacrificing
computing resources for the replicas (see [vDVDJ13]). In this section we have
argued that the hierarchical structure of sparse grids (along with the error split-
ting assumption) can give us enough information regarding the correctness of the
component solutions, so adding replication does not seem necessary. In a way, the
fact that the FTCT adds some more component solutions to the combination tech-
nique is a way to ensure that we have enough information to combine properly in
case of faults. Although this is different from replication, some analogies could be
drawn. Some of the most promising approaches seem to be algorithm based, and
we believe this is a good approach for the combination technique (see [DHR15],
Section 6.2 for more examples).
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7
Conclusions

In this work we adapted the combination technique – an extrapolation algorithm
to solve high-dimensional problems – to allow it to tolerate different types of faults
in HPC systems. After arguing in favor of algorithm-based techniques to develop
resilient codes, we discussed the numerical properties of the combination technique
that can be exploited to make it tolerate hard faults.

Preliminary experiments with the plasma simulation code GENE showed that the
fault-tolerant combination technique had a low computational overhead and that
its approximation quality was very close to the solution without faults. We then
described how to adapt a massively-parallel implementation of the combination
technique to make it fault tolerant. In our parallel experiments with DUNE, we
confirmed the results from our preliminary experiments (low overhead and good
approximation quality), but we also showed that the algorithms as we implemented
them scale well. We are now at a point where large-scale simulations can be run
reliably using the parallel framework, and ongoing experiments with GENE aim to
verify this for realistic plasma simulations.

After discussing the problem of silent errors and some best practices to simulate
and overcome them, we dived into the numerics of the combination technique
and applied well-known techniques from robust regression to try to detect this
type of errors. Our preliminary experiments with a 2D linear advection equation
showed good detection rates but at a high computational cost. We then refined our
algorithms and parallelized them in order to be able to test them on the parallel
framework. Our results in up to 5D indicate that the detection rates remained
high and that the computational overhead low. Our algorithms are still to be
tested on more realistic simulation scenarios such as GENE. This is an interesting
avenue for future research.

It is important to keep in mind the large uncertainty surrounding the type
faulty behavior one can expect future exascale machines to exhibit. As mentioned
in Chapter 2, software errors account for a considerable percentage of failures in a
number of systems, and our experience working with the Hazel Hen supercomputer
throughout this thesis confirms this. It might still be the case that node failures
or silent data corruption become commonplace at exascale, but until then, it is
pertinent not to extrapolate current trends too far into the future.

Equally important is the fact that exascale machines will call for exascale ap-
plications. Even nowadays, not many applications can make use of all resources
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available in petascale systems, and even fewer can use those resources efficiently.
Some of the issues described in this thesis are expected to arise not simply from
increased node count and system complexity: we have assumed that future appli-
cations will actually use all those resources, and possibly for long times. Other-
wise, there would not be much difference between running simulations on exascale
machines or on existing petascale computers.

These words of caution notwithstanding, the consensus of the HPC community
regarding fault tolerance is a strong indicator that these problems should be taken
seriously. And even if some claims end up being proven false with the arrival of
exascale computers, fault tolerance has already opened new interesting avenues of
interdisciplinary research that can prove valuable in other areas of HPC.
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[BBH+14] George Bosilca, Aurélien Bouteiller, Thomas Herault, Yves Robert,
and Jack Dongarra. Assessing the impact of ABFT and checkpoint
composite strategies. In Parallel & Distributed Processing Sympo-
sium Workshops (IPDPSW), 2014 IEEE International, pages 679–
688. IEEE, 2014.

115



BIBLIOGRAPHY

[BCL95] Mary Ann Branch, Thomas F Coleman, and Yuying Li. A sub-
space, interior, and conjugate gradient method for large-scalebound-
constrained minimization problems. Technical report, Cornell Uni-
versity, 1995.
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