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Abstract

We propose a model for unbalanced longitudinal data, where the univariate
margins can be selected arbitrarily and the dependence structure is described
with the help of a D-vine copula. We show that our approach is an extremely
flexible extension of the widely used linear mixed model if the correlation is ho-
mogeneous over the considered individuals. As an alternative to joint maximum-
likelihood a sequential estimation approach for the D-vine copula is provided and
validated in a simulation study. The model can handle missing values without
being forced to discard data. Since conditional distributions are known analyti-
cally, we easily make predictions for future events. For model selection we adjust
the Bayesian information criterion to our situation. In an application to heart
surgery data our model performs clearly better than competing linear mixed
models.

Keywords: Vine copulas, linear mixed models, repeated measurements, longitudi-
nal data, unbalanced setting.

1 Introduction

Repeated measurements that are obtained in a longitudinal study are common in many
areas. Very early applications in astronomy (Airy, 1861) were followed by a vast number
of studies in fields such as industry (e.g. Newbold, 1927), ecology (e.g. Potvin et al.,
1990), biology (e.g. Yeung et al., 2003), psychology (e.g. Lorch and Myers, 1990),
medicine (e.g. Ludbrook, 1994), education (e.g. Malin and Linnakylä, 2001) and many
more.

Over the years many concepts have been developed for the analysis of such re-
peated measurements. An extensive review on the origins of longitudinal data models
can be found in Chapter 1 of Fitzmaurice et al. (2008). Davis (2002) offers a thorough
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introduction to the topic, starting with basic aspects of repeated measurement data.
Besides foundations and different modeling aspects of repeated measurement data Lind-
sey (1999) addresses the question how to design a study. Diggle and Donnelly (1989)
give an extensive review on different approaches to the analysis of repeated measure-
ments. The most popular model class for this purpose are probably linear mixed models
(LMMs). They extend classical linear models by adding individual-specific random ef-
fects to the fixed effects. Extensive introductions to this topic can be found for example
in Diggle (2002) and Verbeke and Molenberghs (2009). Although the covariance struc-
ture of linear mixed models can be fitted rather flexibly, the dependence always remains
Gaussian by definition.

Within the last two decades dependence modeling has become more and more pop-
ular in all areas of applications. Especially copulas have gained large popularity since
they allow to model marginal distributions and the dependence structure separately
(Sklar, 1959). Consequently, copulas were also applied for modeling repeated mea-
surement data. This approach has first been used by Meester and MacKay (1994)
who developed a model for bivariate clustered categorical data. Lambert and Van-
denhende (2002) present a model for multivariate repeated measurement data, where
the dependence is described by copula (although only the Gaussian copula is used in
the application). Shen and Weissfeld (2006) model serial dependence for continuous
longitudinal data with a non-ignorable non-monotone missing-data process using a
Gaussian copula. Other examples are Lindsey and Lindsey (2006), who use the Gaus-
sian copula among other multivariate models with correlation matrices for non-linear
repeated measurements. Further, Sun et al. (2008) argue that elliptical copulas are
better suited than Archimedean copulas for modeling serial dependence in the context
of longitudinal data.

D-vine copulas are a special class of vine copulas (Bedford and Cooke, 2002; Aas
et al., 2009) that are particularly suited for modeling serial dependence. Smith et al.
(2010) used them to model longitudinal data in a Bayesian approach. Multivariate
time series are considered in Smith (2015) and Nai Ruscone and Osmetti (2017). In
Joe (2014, Chapter 7.5) discrete longitudinal count data are modeled using D-vines. Shi
and Yang (2016) use a mixed D-vine to model semi-continuous longitudinal claims. All
these references work in a balanced setting, i.e. each individual has the same number
of measurements. An unbalanced setting is considered by Shi et al. (2016) using a
Gaussian copula.

The novelty of the approach presented in this paper is that we develop a D-vine
copula based model with arbitrary margins for modeling unbalanced longitudinal data
with the aim of understanding the underlying relationship among the measurements
and enabling predictions for future events. For prediction we use conditional quantiles
that are analytically given. For model selection we derive an adjustment of the Bayesian
information criterion (BIC) for the proposed model. The model will furthermore be
shown to be an extension of a very wide class of linear mixed models for which the
correlation matrix of the measurements is homogeneous over the individuals.

Section 2 briefly introduces D-vine copulas and the proposed D-vine copula based
model for repeated measurement data. Linear mixed models and their connection with
the D-vine based model are developed in Section 3. Section 4 contains maximum-
likelihood based estimation methods for the D-vine based model. Further, as a tool
for model selection, an adjustment of the BIC for the proposed model is derived. The
performance of the estimation methods is investigated in a simulation study (Section 5).
In Section 6 we fit both linear mixed models and D-vine based models to a heart surgery
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data set and compare the results using likelihood based model selection criteria and
performing conditional quantile prediction. Section 7 contains our conclusions and an
outlook on future research.

2 D-vine based repeated measurement model

2.1 Setting and marginal modeling

Consider a repeated measurement (longitudinal) data set Y = {y1, . . . ,yn} that con-
tains n ∈ N observation blocks yi = (yi1, . . . , y

i
di

)> ∈ Rdi associated with individual
i having di ∈ {1, . . . , d} measurements. Here d ∈ N denotes the maximum number
of measurements per individual observed. For two different individuals the jth event
does not necessarily need to have occurred at the same time tj. We denote by nj the
number of observations of length j, j = 1, . . . , d, where nj is zero if Y contains no
observations of length j. We divide now the data set into subsets of groups of indi-
viduals with the same number of measurements. For j = 1, . . . , d, we summarize the
observations of group j as Yj = {yi | i ∈ Ij}, where the corresponding index set is
defined as Ij = {i | yi ∈ Rj}. Table 1 illustrates the above notation and data structure
for an exemplary data set of size n = 9, where the maximum number of measurements
per individual is d = 4 and we have n1 = 0 individuals with 1 measurement, n2 = 3
individuals with 2 measurements, n3 = 2 individuals with 3 measurements and n4 = 4
individuals with 4 measurements. Consequently, I1 = ∅, I2 = {1, 2, 3}, I3 = {4, 5} and
I4 = {6, 7, 8, 9}.

observations measurements
1 2 3 4

Y2 = {yi | i ∈ I2}


y1 ∗ ∗
y2 ∗ ∗
y3 ∗ ∗

Y3 = {yi | i ∈ I3}
{
y4 ∗ ∗ ∗
y5 ∗ ∗ ∗

Y4 = {yi | i ∈ I4}


y6 ∗ ∗ ∗ ∗
y7 ∗ ∗ ∗ ∗
y8 ∗ ∗ ∗ ∗
y9 ∗ ∗ ∗ ∗

Table 1: Grouping of an exemplary data set of size n = 9 with d = 4, n2 = 3, n3 = 2 and
n4 = 4. Stars indicate observed events.

Having Sklar’s Theorem (Sklar, 1959) in mind, we follow a two-stage approach,
also referred to as the Inference Functions for Margins (IFM) method (cf. Joe, 1997,
Section 10.1): First we use the probability integral transform and apply the univariate
marginal distributions F i

j to the measurements yij ∈ R in order to transform them to
measurements uij := F i

j (y
i
j) ∈ [0, 1] to the uniform scale, j = 1, . . . , di and i = 1, . . . , n.

Then we model the dependence structure of the resulting uniform scale data utilizing
a copula. In the following sections we will use a notation for the copula data that is
similar to the one for the original data. The copula data U = {u1, . . . ,un} consists
of the observations ui = (ui1, . . . , u

i
di

)> ∈ [0, 1]di , i = 1, . . . , n. Again, we form groups
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U j = {ui | i ∈ Ij} containing all observations of length j, j = 1, . . . , d. Since individuals
with only one measurement do not contribute to the dependence structure we will only
consider U2, . . . ,Ud. Thus we can assume that n1 = 0, i.e. U1 = ∅, without losing
generality. Of course, in practice the distribution functions F i

j are usually not known
and need to be estimated (see Section 4).

2.2 D-vine based dependence model

D-vine copulas
Since we will use D-vine copulas for modeling the dependence we first give a short
introduction to this model class. Vines have been introduced by Bedford and Cooke
(2002). They are graphical models that can be used to construct a multivariate copula
density as a product over bivariate building blocks, so-called pair-copulas. Since Aas
et al. (2009) presented statistical inference methods for vine copulas, their popularity
has increased drastically. D-vines are a subclass of vines representing a sequential
structure. They are frequently used (e.g. Ren et al., 2014; Kim et al., 2013; Czado
et al., 2011) because of their flexibility and interpretability.

If a continuous random vector U1:d = (U1, . . . , Ud)
> with uniform marginal distri-

butions follows a D-vine copula density with order 1–2–. . . –d, then, using the notation
of Czado (2010), the density can be written as

c1:d(u1, . . . , ud) =
d−1∏
`=1

d−∏̀
k=1

ck,k+`;(k+1):(k+`−1)

(
Ck|(k+1):(k+`−1)(uk|uk+1, . . . , uk+`−1),

Ck+`|(k+1):(k+`−1)(uk+`|uk+1, . . . , uk+`−1);uk+1, . . . , uk+`−1

)
.

(2.1)

Here ck,k+`;(k+1):(k+`−1)( · , · ;uk+1, . . . , uk+`−1) is the bivariate copula density associated
with the distribution of (Uk, Uk+`)

> given (Uk+1, . . . , Uk+`−1)> = (uk+1, . . . , uk+`−1)>

and Ck|(k+1):(k+`−1)( · |uk+1, . . . , uk+`−1) is the distribution function of the conditional
distribution of Uk given (Uk+1, . . . , Uk+`−1)> = (uk+1, . . . , uk+`−1)>, ` = 1, . . . , d−1 and
k = 1, . . . , d− `. The corresponding graphical interpretation is the tree representation,
where the pair-copulas occurring in tree j have a conditioning set of size j − 1, j =
1, . . . , d− 1. For d = 4 this concept is illustrated in Figure 1.

Many authors make the so-called simplifying assumption that the pair-copulas
ck,k+`;(k+1):(k+`−1)( · , · ;uk+1, . . . , uk+`−1) do not depend on values of the conditioning
variables uk+1, . . . , uk+`−1. More detailed investigations of this assumption can for ex-
ample be found in Hobæk Haff et al. (2010), Acar et al. (2012), Stöber et al. (2013),
Spanhel and Kurz (2015) and Killiches et al. (2017). We also make this assumption in
order to ease inference later on although we could set up our model without it as well.

In the following we will assume a parametric model such that a D-vine copula can
be identified by the set of pair-copula families C = (ck,k+`;(k+1):(k+`−1) | k = 1, . . . , d −
` and ` = 1, . . . , d − 1) and the set of associated parameters θ = (θk,k+`;(k+1):(k+`−1) |
k = 1, . . . , d − ` and ` = 1, . . . , d − 1). In general, non-parametric pair-copulas could
also be used (see Nagler and Czado, 2016).

A convenient property is that D-vine models are nested in the sense that the pair-
copulas needed to describe the dependence of variables 1 to j are contained in the
model describing the dependence of variables 1 to j + 1, j < d. This is illustrated in
Figure 1.
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Model
Since the data has been obtained from repeated measurements there exists a clear
sequential or temporal ordering. This immediately suggests the use of D-vine copulas
with order 1–2–. . . –d (Smith et al., 2010; Smith, 2015; Nai Ruscone and Osmetti, 2017).
Therefore, as a general approach, we assume parametric simplified D-vine models (cf.
Equation (2.1)) for the copula densities of all groups j = 2, . . . , d. Of course, we only
consider groups for which we have observations. The copula density cj1:j of group j
then can be described with the help of the set of the j(j − 1)/2) pair-copula families

Cj = (cjk,k+`;(k+1):(k+`−1) | k = 1, . . . , j − ` and ` = 1, . . . , j − 1)

and the set of corresponding parameters

θj = (θjk,k+`;(k+1):(k+`−1) | k = 1, . . . , j − ` and ` = 1, . . . , j − 1)

for j = 2, . . . , d with a non-empty U j. For the estimation of Cj and θj we set up the
likelihood, which is based on the subset of U containing the observations of length j.
The resulting likelihood and log-likelihood can be written as

Lj(Cj,θj | U j) =
∏
i∈Ij

cj1:j(u
i
1, . . . , u

i
j | Cj,θj)

and
logLj(Cj,θj | U j) =

∑
i∈Ij

log cj1:j(u
i
1, . . . , u

i
j | Cj,θj),

respectively. Consequently, the log-likelihood of the general model is given by

logL(C2, . . . , Cd,θ2, . . . ,θd | U) =
d∑
j=2

logLj(Cj,θj | U j). (2.2)

For future reference we call this Model A. It is obvious by construction that the models
for different groups can be estimated independently from each other since there are
no intersections between the groups, neither regarding data nor pair-copula families or
parameters. From a practical point of view this would correspond to the assumption
that the dependence structure of two groups can be completely different such that an
individual for whom we have observed j events have nothing in common with those
who have had j + 1 events. However, one can argue that an individual from group j is
basically a member of group j + 1 for whom the (j + 1)st measurement has not been
observed yet. The underlying random mechanism (i.e. the copula), however, should
be the same or at least share some properties. Therefore, it makes sense to impose
more restrictions on the set of pair-copula families and the associated parameters. For
example, one could assume that all groups share the same pair-copula families and
only the parameters can differ between the groups. The most sensible and interesting
case—which we will pursue in the following—is the one that all groups have the same
pair-copula families and parameters, i.e. for all j = 2, . . . , d we have

cjk,k+j;(k+1):(k+j−1) = ck,k+j;(k+1):(k+j−1),

θjk,k+j;(k+1):(k+j−1) = θk,k+j;(k+1):(k+j−1)

(2.3)

for k = 1, . . . , j− ` and ` = 1, . . . , j− 1. We will refer to this model as Model B. Using
the same families and parameters for all groups implies that the D-vine describing
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the dependence pattern of group j is a sub-vine of the vine of groups j + 1, . . . , d.
In particular, the vine copula density of group j is simply the multivariate marginal
density c1:j of the density c1:d of the largest group d. Consequently, c1:d describes
the full model, from which the models of all smaller groups can be explicitly derived.
Thus, the corresponding log-likelihood only depends on one set of d(d − 1)/2 pair-
copula families C = (ck,k+`;(k+1):(k+`−1) | k = 1, . . . , d − ` and ` = 1, . . . , d − 1) and
the set of corresponding parameters θ = (θk,k+`;(k+1):(k+`−1) | k = 1, . . . , d− ` and ` =
1, . . . , d− 1).

Example
In order to illustrate the above concept we will now look at the example with at
most d = 4 repeated measurements. Assume we have (up to) four-dimensional re-
peated measurement data U = {u1, . . . ,un} of size n = n2 + n3 + n4 ordered as
described in Section 2.1, which can be partitioned into groups 2, 3 and 4 by defin-
ing U j = {ui | i ∈ Ij}, j = 2, 3, 4, where I2 = {i | ui ∈ R2}, I3 = {i | ui ∈ R3} and
I4 = {i | ui ∈ R4}. The model and hence the log-likelihood depends on the set of the
six pair-copulas C = (c1,2, c2,3, c3,4, c1,3;2, c2,4;3, c1,4;2,3) and the associated parameters
θ = (θ1,2,θ2,3,θ3,4,θ1,3;2,θ2,4;3,θ1,4;2,3). Figure 1 shows a schematic representation of
the full model c1:4 with its pair-copulas and parameters. The nodes represent the mea-
surements. Above and below each edge the associated pair-copula and the observations
that can be used for estimation are denoted, respectively. The sub-vines for c1:2 and
c1:3 are highlighted by different color intensities of the nodes and line types of the edges.
The resulting log-likelihood is given by

logL(C,θ | U) =
∑
i∈I2

log c1:2(ui1, u
i
2 | c1,2,θ1,2)

+
∑
i∈I3

log c1:3(ui1, u
i
2, u

i
3 | c1,2, c2,3, c1,3;2,θ1,2,θ2,3,θ1,3;2)

+
∑
i∈I4

log c1:4(ui1, u
i
2, u

i
3, u

i
4 | c1,2, c2,3, c3,4, c1,3;2, c2,4;,3, c1,4;2,3,

θ1,2,θ2,3,θ3,4,θ1,3;2,θ2,4;,3,θ1,4;2,3)

(2.4)

Using the vine decomposition from Equation (2.1) for c1:2, c1:3 and c1:4, the log-
likelihood associated with data U (Equation (2.4)) can be re-written as

logL(C,θ | U) =∑
i∈I2∪I3∪I4

log c1,2(ui1, u
i
2;θ1,2)

+
∑

i∈I3∪I4

[
log c2,3(ui2, u

i
3;θ2,3) + log c1,3;2(C1|2(ui1|ui2;θ12), C3|2(ui3|ui2;θ23);θ1,3;2)

]
+
∑
i∈I4

[
log c3,4(ui3, u

i
4;θ3,4) + log c2,4;3(C2|3(ui2|ui3;θ2,3), C4|3(ui4|ui3;θ4,3);θ2,4;3)

+ log c1,4;2,3(C1|3;2(C1|2(ui1|ui2;θ1,2) |C3|2(ui3|ui2;θ2,3);θ1,3;2),

C4|2;3(C2|3(ui2|ui3;θ2,3) |C4|3(ui4|ui3;θ4,3);θ2,4;3);θ1,4;2,3)
]

(2.5)
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1 2 3 4

1,2 2,3 3,4

1,3|2 2,4|3

U2, U3, U4

c1,2 ( · , · ;θ1,2)

U3, U4

c2,3 ( · , · ;θ2,3)

U4

c3,4 ( · , · ;θ3,4)

U3, U4

c1,3;2 ( · , · ;θ1,3;2)

U4

c2,4;3 ( · , · ;θ2,4;3)

U4

c1,4;2,3 ( · , · ;θ1,4;2,3)

Tree 1

Tree 2

Tree 3

Figure 1: Illustration of the four-dimensional D-vine describing the components of the de-
pendence structure of the full model c1:4 (dark, medium and light). The sub-vines for c1:2

(dark) and c1:3 (dark and medium) are highlighted by different color intensities of the nodes
and line types of the edges. Above and below each edge the associated pair-copula and the
observations that can be used for estimation are denoted, respectively.

For the general case of Model A (Equation (2.2)) we saw that the pair-copulas and
parameters corresponding to group j can be estimated independently from those of
the remaining groups and only depend on the data contained in U j. Looking at Equa-
tion (2.5) (corresponding to Model B) it immediately becomes clear that assuming the
pair-copulas and parameters are the same for all groups has changed this phenomenon.
The D-vines describing the densities c1:2 and c1:3 are nested sub-vines of the full model
c1:4, which can easily be understood from Figure 1: The dark nodes (and solid edges)
correspond to c1:2; adding the medium colored nodes (and dashed edges) results in
the model of c1:3; incorporating also the light nodes (and dotted edges) yields the full
model for c1:4. Therefore, when it comes to estimation we see for example that not only
the observations belonging to U2 but also those from U3 and U4 (i.e. the entire sample
U) have an influence on the estimate c1,2 and θ1,2. Thus this increases the accuracy of
the estimation compared to the approach from Model A.

The assumption of common pair-copula families and parameters for all groups come
with the advantages of better interpretability, less parameters and higher estimation
accuracy.

Missing values
In practice, unfortunately, data do not always look exactly the way we described it in
Section 2.1. Sometimes there are missing values in the data. For example, there might
be individuals for whom the first, third, fourth and fifth measurement are available but
the second one is missing. Such situation can occur for various reasons, e.g. a patient
skips a measurement date due to illness, measuring instruments have problems causing
a loss of the result or data is simply not reported due to human failure. Moreover, there
might be (non-informative) dropouts, i.e. individuals with measurements only up to a
certain time, e.g. caused by relocation of a patient to another city. For many model
classes such observations cannot be used at all and have to be removed from the data
set for model estimation. This way the sample size is decreased and information is lost.
For Model B, however, observations with missing values can still be used (assuming
they are missing at random). The information gained from our exemplary individual
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with measurements 1, 3, 4, 5 still contributes to the estimation of c3,4, c4,5 and c3,5;4

(and of course to the estimation of the marginal distributions 1, 3, 4, 5). Since the
missing second measurement is needed for the estimation of the remaining pair-copulas,
this individual cannot be used in order to estimate them. Nevertheless, we prevent the
loss of the individual’s entire information. In order to include observations with missing
value into our model we simply have to modify the log-likelihood such that the sums of
the log-likelihood of each pair-copula includes all observations for whom the necessary
measurements are available. For the sake of notation we will stick to the formulation
of Model B as above, keeping in mind that missing values can also be handled by our
approach.

Conditional prediction
Further, we can use our repeated measurement data model for prediction. In many
applications it can be interesting to have a prediction for the size of an upcoming mea-
surement. For instance, having proper estimates for future claims can be a competitive
advantage for the risk management department of an insurance company.

For a d-dimensional model, consider an individual i that has had di < d measure-
ments so far, i.e. yi = (yi1, . . . , y

i
di

)>. We are now interested in the distribution of the
next measurement di + 1. Since di + 1 ≤ d, the sub-vine describing the dependence
of events 1 to di + 1 can be extracted from the full model. We consider the condi-
tional distribution function F i

di+1|1:di
( · |yi1, . . . , yidi). Joe (1997) was the first to show

that there exists a recursive representation for such conditional distribution functions.
This way one obtains a closed-form expression of the conditional distribution function
solely based on the pair-copulas specified in the D-vine (and the univariate marginals,
of course) if the variable to be predicted is a leaf in the first tree. In our case, di + 1
is in fact a leaf in the first tree of the D-vine on nodes 1 to di + 1. Thus, we know
F i
di+1|1:di

( · |yi1, . . . , yidi) analytically and can further simulate from it. For example, we

can express F i
4|1,2,3 in the following way:

F i
4|1,2,3(yi4|yi1, yi2, yi3) = C4|1;23

(
C4|2;3

(
C4|3(F i

4(yi4)|F i
3(yi3))

∣∣C2|3(F i
2(yi2)|F i

3(yi3))
) ∣∣

C1|3;2

(
C1|2(F i

1(yi1)|F i
2(yi2))

∣∣C3|2(F i
3(yi3)|F i

2(yi2))
))
.

Further, the conditional quantile function can be expressed in general as

qα(yi1, . . . , y
i
di

) = (F i
di+1|1:di

)−1(α|yi1, . . . , yidi)

= (F i
di+1)−1

(
C−1
di+1|1:di

(α|F i
1(yi1), . . . , F i

di
(yidi))

) (2.6)

and is of great interest in order to determine upper and lower bounds of a confidence
interval. Kraus and Czado (2017a) show that inversion also yields a closed-form ex-
pression for the conditional quantile function solely based on the specified pair-copulas
and marginals. Thus, we can determine arbitrary conditional quantiles for the size of
measurement di + 1. For example, for financial applications it might be interesting to
obtain a conditional 99%-value at risk, i.e. the conditional 99%-quantile, for the size
of individual i’s next measurement.

In order to be able to perform statistical inference of any kind with our D-vine model
we first have to estimate the pair-copula families and associated parameters. Section 4
will present two estimation approaches. First, however, we will introduce linear mixed
model and illustrate how they are connected to our proposed D-vine based model in
Section 3.
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3 Connection between the D-vine based model and lin-
ear mixed models

Probably the most popular models for longitudinal data are linear mixed models. In
this section we will give a short introduction to this model class and show how they
are connected to our approach from Section 2.

3.1 Linear mixed models for repeated measurements

Linear mixed models have been discussed in detail by many authors, e.g. in Diggle
(2002), Verbeke and Molenberghs (2009) and Fahrmeir et al. (2013). Describing the
outcome of repeated measurements j, j = 1, . . . , di, for individuals i, i = 1, . . . , n as
responses Y i

j , they extend linear models by including random effects γi ∈ Rq to the
fixed (i.e. non-random) effects β ∈ Rp, p, q ∈ N. These random effects, unlike the fixed
effects, are different for each individual. The covariate vectors xi,j ∈ Rp and zi,j ∈ Rq

are associated to the fixed and random effects, respectively.
For i = 1, . . . , n and j = 1, . . . , di, the jth measurement for individual i is assumed

to decompose to
Y i
j = x>i,jβ + z>i,jγi + εi,j, (3.7)

where the vector of random effects γi ∼ Nq(0, D) is normally distributed with zero
expectation covariance matrix D ∈ Rq×q and the error vector εi = (εi,1, . . . , εi,di)

> ∼
Ndi(0,Σi) also follows a centered normal distribution with covariance matrix Σi ∈
Rdi×di . Further, γ1, . . . ,γn, ε1, . . . , εn are assumed to be independent. Hence,

Y i
j ∼ N (x>i,jβ, φ

2
i,j) (3.8)

with standard deviation φi,j :=
(
z>i,jDzi,j + σ2

i,j

)1/2
, where σ2

i,j := Var(εi,j). Using the
notation

Xi :=

x>i,1
...

x>i,di

 ∈ Rdi×p, Zi :=

z>i,1
...

z>i,di

 ∈ Rdi×q, Yi :=

Y
i

1
...
Y i
di

 ∈ Rdi

we can represent the vector of all measurements belonging to individual i as follows:

Yi = Xiβ + Ziγi + εi. (3.9)

We see that due to the independence assumptions of γi and εi, i = 1, . . . , n, there exists
a correlation between measurements of one individual but measurements of different
individuals are independent. Further, the joint distribution of Yi can be determined
to be

Yi ∼ Ndi(Xiβ, ZiDZ
>
i + Σi) (3.10)

and Y1, . . . ,Yn are independent. The fixed effects β and random effects γi as well as
the parameters of the covariance matrices D and Σi, i = 1, . . . , n, can be estimated
using maximum likelihood estimation as described for example in Diggle (2002) and
Fahrmeir et al. (2013).

Linear mixed models are very popular in practice since they are easy to handle and
interpret. Further, observations with missing data can also be used for ML estimation
as long as the values are missing at random (see e.g. McCulloch et al., 2011; Ibrahim
and Molenberghs, 2009).
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3.2 Aligning linear mixed models and the D-vine based approach

Equation (3.10) implies that all univariate marginal distributions are normal distribu-
tions. Further, the dependence structure is Gaussian and can vary from individual to
individual since the correlation matrix Ri of Yi is given by

Ri := Cor(Yi) = diag(φ−1
i,1 , . . . , φ

−1
i,di

)
(
ZiDZ

>
i + Σi

)
diag(φ−1

i,1 , . . . , φ
−1
i,di

),

where φi,j is the standard deviation of Y i
j , j = 1, . . . , di, i = 1, . . . , n. In practice,

however, this would make estimation infeasible since the number of parameters would
be too large; in many cases one would even have more parameters than observations.
Therefore, structural assumptions are made, especially for Σi ∈ Rdi×di , in order reduce
the number of parameters to be estimated.

In Section 2.2 we assumed that the dependence structure is basically the same for
all individuals and only differs due to the number of measurements di that individual
i has had so far. In order to obtain the same for linear mixed models, we simply have
to require the following homogeneity condition:

Homogeneity condition: We call correlation matrices Ri homogeneous if they are the
same for all individuals i = 1, . . . , n except for the dimension, i.e. Ri = (rk,`)

di
k,`=1 ∈

Rdi×di is a (di × di)-submatrix of a correlation matrix R = Rd = (rk,`)
d
k,`=1 ∈ Rd×d.

This condition is in particular fulfilled if the covariance matrices of the errors Σi ∈
Rdi×di and the design matrices of the random effects Zi ∈ Rdi×q are constant in i
except for the dimension. Despite being a restriction, linear mixed models meeting this
requirement still comprise a wide range of models used in practice. The assumption
on the covariance matrices Σi is for example fulfilled if errors

• are assumed to be i.i.d., i.e. the (k, `)th entry of Σi is given by σ21{k = `}, where
1{·} denotes the indicator function;

• exhibit a compound symmetry structure, i.e. the (k, `)th entry of Σi is σ2ρ1{k 6=`}

for some ρ ∈ (−1, 1);

• follow an autoregressive structure of order 1 (AR(1)), i.e. the (k, `)th entry of Σi

is given by σ2ρ|k−`| for some ρ ∈ (−1, 1);

• have an exponential decay structure, i.e. the (k, `)th entry of Σi is given by
σ2 exp {− |k − `| /r}, where r > 0 is the constant “range” parameter.

These are typical simplifications that are made anyway for modeling longitudinal data
in most applications if the number of individuals is large with respect to the number
of measurements. The assumption on the design matrices Zi is also often satisfied, e.g.
for the popular class of so-called random intercept models, where Zi = (1, . . . , 1)> ∈
Rdi×1 for j = 1, . . . , di and i = 1, . . . , n. Further, the assumption includes any model
where the covariates associated with the random effect only depend on the (common)
measurement times tj, j = 1, . . . , d, i.e. for example Zi = (t1, . . . , tdi)

> ∈ Rdi×1 or
more generally Zi = (h(t1), . . . , h(tdi))

> ∈ Rdi×1 for some function h : R → R. Thus,
assuming that Zi only depends on the number of measurements di for individual i
is also not uncommon such that there is in fact a wide class of linear mixed models
sharing the property that the correlation matrix Ri of Yi only depends on the number
of measurements.
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If Ri is homogeneous in i, we have that all individuals i share the same Gaussian
dependence structure, i.e. correlation matrix. This scenario is a special case of the
D-vine based model since we can represent any Gaussian correlation matrix using
a D-vine with Gaussian pair-copulas and the corresponding (partial) correlations as
parameters (see for example Stöber et al., 2013, Theorem 4.1). The univariate margins
F i
j can be chosen arbitrarily for the copula approach such that we can simply use
N (x>i,jβ, φ

2
i,j)-margins (cf. Equation (3.8)) to end up with a model describing the same

joint distribution of Yi as the corresponding linear mixed model (Equation (3.10)).
Since we can use arbitrary distributions for the margins and/or any D-vine copula for
the dependence structure, our approach can be seen as an extension of linear mixed
models with common correlation structure for all individuals. Figure 2 illustrates the
link between our D-vine based model and linear mixed models.

Linear mixed model

LMM with common
correlation structure
for all individuals

Gaussian copula
with Gaussian

regression margins

Gaussian copula with
arbitrary margins

D-vine copula
with Gaussian

regression margins

D-vine copula with
arbitrary margins

Figure 2: Flow chart illustrating how the D-vine based model is linked to linear mixed models.

For the application in Section 6 we will compare how well both model classes per-
form fitting real life data.

4 Estimation methods for the D-vine based model

4.1 Marginal modeling

Although our focus is on dependence modeling, we will briefly discuss how the univari-
ate marginal models for Y i

j , i.e. F i
j , can be estimated. In general the choice of marginal

models is completely arbitrary. They can be parametric or non-parametric. The most
common situation for repeated measurements is that in addition to the measurement
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data Y itself further covariates are known for each individual and measurement. There-
fore, regression models such as linear (LMs) or generalized linear models (GLMs) can
be applied. In this case, F i

j ( · ) = Fj( · |xi,j) depends on the individual’s associated
covariates xi,j ∈ Rp, where p ∈ N is the number of covariates used in the model. In
our application (Section 6) we will fit linear models to the margins. In order to avoid
overfitting we determine which covariates to include into the models by BIC-based for-
ward selection, i.e. covariates are added to the model until BIC (Bayesian information
criterion, see Schwarz, 1978) cannot be improved anymore. Our focus, however, is
rather to develop a flexible model describing the dependence structure that is present
in the data Y such that we will not further elaborate on how to estimate the univariate
marginal distributions.

4.2 Dependence modeling

Assume we have estimated the marginal distributions and obtained (pseudo-)copula
data by applying the estimated distribution functions F̂ i

j to the measurements, i.e.

ûij := F̂ i
j (y

i
j). We now use the transformed data as a copula sample to estimate the

underlying dependence structure. Section 2 has shown that D-vine copulas are suited
for modeling the dependence structure being present in repeated measurement data.
Model B (Equation (2.3)) was preferable since it is easier to interpret and estimate.
Further predictions for not yet observed measurements can be made. The aim of the
methods presented in Section 4 is to find estimates for the set of pair-copula families
C = (ck,k+`;(k+1):(k+`−1) | k = 1, . . . , d−` and ` = 1, . . . , d−1) and the set of parameters
θ = (θk,k+`;(k+1):(k+`−1) | k = 1, . . . , d− ` and ` = 1, . . . , d− 1) corresponding to Model
B from Section 2, where d is the maximal number of observed events per observation.
We will present two approaches: a standard joint maximum-likelihood estimator and a
sequential method. Since we want to choose both parameters and families for each pair-
copula we will select from a set of m bivariate candidate family types Γ = {γ1, . . . , γm},
where each member γ ∈ Γ has its own space of admissible parameters Ω(γ).

Joint maximum-likelihood approach
The canonical approach in order to find optimal pair-copula families and parameters
would be to use maximum-likelihood estimation. In Section 2 we have already deter-
mined the log-likelihood. Since the families specify which parameters are admissible,
finding the optimal families and parameters is divided into two steps: For each combina-
tion of families we have to determine the maximum-likelihood estimate of parameters;
then we select the one combination with the overall highest likelihood. This way we
find the best D-vine model with regards to likelihood optimization. However, since
there are |Γ| = m candidates for each of the d(d − 1)/2 pair-copula families, we have
to perform md(d−1)/2 times an at least (d(d − 1)/2)-dimensional optimization (some
families like the t-copula may have more than one parameter). It is obvious that this
can very quickly become computationally infeasible if the number of candidate families
m is high and—especially—if the dimension d gets large.

Of course, the possibly large number of parameters to be estimated is a general
problem in the statistical analysis of vine copulas. Therefore, Aas et al. (2009) (for D-
vines) and later Dißmann et al. (2013) (for general vine copulas) developed a sequential
tree-by-tree selection algorithm facilitating vine copula model estimation up to very
high dimensions. Dißmann’s algorithm is commonly used to fit the vine’s model struc-
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ture, pair-copula families and parameters but it can also only be used for the selection
of families and parameters only if we have a fixed tree structure (e.g. a D-vine). The
difference to the classical situation which we face when we want to estimate a vine
copula is that our observations have different lengths.

Sequential approach
Inspired by Dißmann’s algorithm we want to fit the pair-copula families and the asso-
ciated parameters of the D-vine to a repeated measurement data set using a sequential
approach. Given classical data, Dißmann’s algorithm starts with the estimation of
the first tree and estimates the unconditional pair-copulas (and their parameters) via
maximum-likelihood estimation. Then the observations are transformed into pseudo-
observations needed for the estimation of the second tree using the estimated pair-
copulas of tree 1. Continuing this way the vine is built up tree-by-tree.

In the presence of repeated measurement data, however, we can pursue a very sim-
ilar strategy. The only difference is that we estimate each pair-copula (and its param-
eter(s)) only based on the available full observation. All pair-copulas to be estimated
are of the form ck,`;(k+1):(`−1) with parameter θk,`;(k+1):(`−1). When all observations are
of the form (u1, . . . , uj)

>, i.e. there are no “gaps” between two observed events, we can
use the information of observations with a minimum length of `, i.e. all observations
in
⋃d
j=` U j, for the estimation of ck,`;(k+1):(`−1) and θk,`;(k+1):(`−1). Thus, we can main-

tain the basic scheme known from Dißmann’s algorithm. With a slight modification
of the data we are even able to use the function RVineCopSelect from the R library
VineCopula (Schepsmeier et al., 2017) for our purpose, making our approach also very
appealing from a practitioner’s point of view.

Of course, this sequential approach can also be applied for data with missing values
(Section 2.2, page 7). Then, for the estimation of each pair-copula ck,`;(k+1):(`−1) with
associated parameter θk,`;(k+1):(`−1) is performed using all observations for whom the
necessary measurements uk, uk+1, . . . , ul are available. The function RVineCopSelect

can still be used in the presence of missing values.
The biggest advantage of being able to use sequential estimation approach is that

we can estimate models at reasonable computational costs, even in high dimensions. Of
course, the approach also works when using non-parametric pair-copulas or even non-
simplified vine copulas. For details for estimating non-parametric and non-simplified
vines we refer the reader to Nagler and Czado (2016) and Vatter and Nagler (2016),
respectively. Yet, as already mentioned at the beginning, we focus on parametric
simplified vine copulas here.

4.3 Model selection

In model selection one often wants to compare different fitted models. For this pur-
pose the log-likelihood and log-likelihood based measures such as AIC (Akaike, 1998)
and BIC (Schwarz, 1978), which penalize large numbers of parameters, are frequently
applied. Whereas the penalty of the AIC only depends on the number of parameters
in the model, that of BIC also depends on the sample size. In our case, however,
it is not completely obvious what sample size to use. Therefore, we derive how the
BIC for the D-vine based model including margins can be calculated in our situation.
Proposition 4.1 shows that each parameter is to be weighted with the (logarithm of)
the number of observations that directly contribute to its estimation. A proof can be
found in Appendix A.
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Proposition 4.1. Let pj ∈ N be the number of parameters of the D-vine based model
including margins restricted to the measurements 1 to j, j = 1, . . . , d, and define
∆pj := pj − pj−1 for j = 2, . . . , d and ∆p1 := p1. Further denote by Nj =

∑d
k=j nk

the number of individuals with at least j measurements. The BIC of the D-vine based
model including margins is given by

BIC = −2 logL(θ̂ | Y) +
d∑
j=1

∆pj log(Nj).

Here, logL(θ̂ | Y) = logL(θ̂M | Y)+logL(θ̂C | U) is the log-likelihood of the fitted model
including margins, i.e. the sum of the log-likelihood of the margins logL(θ̂M | Y) and
the one of the copula logL(θ̂C | U) (which is the one of Model B from Section 2.2).
Further, θ̂ = (θ̂M , θ̂C) is the maximum-likelihood estimate for the set of all model
parameters (associated with both the margins θ̂M and the D-vine copula θ̂C).

Remark 4.2. Although this BIC adjustment was developed for the D-vine based model,
it can also be used for certain types of linear mixed models due to the connection
described in Section 3. For LMMs fulfilling the homogeneity condition the BIC can
be determined with the formula from Proposition 4.1 if only individuals with j or
more measurements contribute to the estimation of the parameters of the sub-model
restricted to the first j measurements which were not already contained in the sub-
model restricted to the first j − 1 measurements. This is for example the case if on
the one hand no structural assumptions (besides homogeneity) are imposed on the
covariance matrices of the random effects and the errors D and Σi and on the other
hand the design matrices Xi have a form that allows for different marginal regression
models for different measurements. For guaranteeing the latter each covariate is only
allowed to be incorporated in one of the marginal regressions, i.e. the values of this
covariate are zero for all other measurements; if a covariate still is to be included in
more than one model, one simply splits up the covariate into several measurements-
specific covariates that are non-zero only for one particular measurement. This way
an own coefficient for one covariate can be estimated for different marginal models (if
necessary).

5 Simulation study

In order to check that the sequential estimation approach from Section 4 works rea-
sonably well, we perform a simulation study that is inspired by the data analyzed in
Section 6.

Simulation setting
For a maximum number of measurements d ∈ {5, 10}, we generate d-dimensional data
sets and prune them randomly to obtain an unbalanced setting. In this context pruning
means that for each d-dimensional observation i we independently draw di from a dis-
crete distribution on {2, . . . , d} and restrict this observation to its first di components.
This way we mimic the nature of unbalanced repeated measurement data. In order
to assess the implications of having only incomplete data we sequentially fit a D-vine
copula to both the full and the pruned data set and compare the estimates.

To obtain data sets we consider randomly generate D-vine copulas with structure
1–2–. . . –d. For this purpose, we rely on the method proposed in Joe (2006) to sample
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Gaussian correlation matrices that are uniformly distributed over the space of valid cor-
relation matrices. Conveniently, this method is already based on a vine decomposition:
For each tree i, i = 1, . . . , d−1, we generate the corresponding d− i parameters associ-
ated to the Gaussian pair-copulas by drawing from a Beta((d− i+ 1)/2, (d− i+ 1)/2)
distribution and transforming the outcome linearly to [−1, 1], resulting in a mean and
mode of 0 and a variance of 1/(d− i+ 2). However, since we do not only want to con-
sider Gaussian D-vines, we transform the Gaussian parameters to Kendall’s τ values
using the relationship τ = 2

π
arcsin(ρ). Then, we randomly draw a pair-copula family

for each pair-copula to be specified1 and convert the Kendall’s τ values to parameters
of the respective families. For one-parametric families τ can directly be transformed
to the parameter space. For two-parametric families there are infinitely many combi-
nations of parameters resulting in the same Kendall’s τ value. Therefore, we adopt the
approach used in Kraus and Czado (2017b): draw the second parameter randomly2

and determine the first parameter implicitly such that the two parameters imply the
required Kendall’s τ .

With the above procedure we generate R = 1000 D-vine copulas and simulate data
sets of size n ∈ {200, 2000}. Then for each observation i we randomly determine its
length di ∈ {2, . . . , d}. For d = 5, the underlying distribution mimics the observed
measurement rates of the data considered in Section 6. The exact proportions of
individuals with a least j measurements would have been 100.0%, 78.5%, 58.5%, 43.9%
for j = 2, 3, 4, 5, respectively. For d = 10, we extended the scenario of d = 5 accordingly.
The distributions are given in Table 2.

j 2 3 4 5
probability of di = j 20% 20% 15% 45%
probability of di ≥ j 100% 80% 60% 45%

j 2 3 4 5 6 7 8 9 10
probability of di = j 10% 10% 10% 10% 10% 5% 5% 5% 35%
probability of di ≥ j 100% 90% 80% 70% 60% 50% 45% 40% 35%

Table 2: Probability mass function and proportions of individuals with at least j measurements
for the “pruning distribution” (top table: d = 5; bottom table: d = 10).

For both the full and the pruned data set we use the sequential algorithm im-
plemented in RVineCopSelect (from the VineCopula library) to fit D-vine copu-
las. In order to assess how badly the loss of information affects the estimation we
compare the resulting D-vines by considering each pair-copula separately. For this
purpose, we consider the mean absolute difference between the Kendall’s τ values
(∆τ := 1

R

∑R
r=1 |τ̂pruned(r)− τ̂full(r)|), the lower and the upper tail dependence coeffi-

cients (∆λs := 1
R

∑R
r=1 |λ̂spruned(r)− λ̂sfull(r)| for s ∈ {`, u}) of the two models. Compar-

ing general strength of dependence and tail behavior enables us to assess how similar
the fitted pair-copulas are.3

1The families are drawn uniformly from the ones available in the library VineCopula: Gaussian, t,
Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, BB8 and Tawn as well their rotations (see Schepsmeier
et al., 2017, for details).

2The specific sampling distributions can be found in Appendix B of Kraus and Czado (2017b).
3Considering the percentage of cases where the same copula family is fitted would not be sensible

since the number of candidate families is large and many of them, e.g. a Clayton and a survival Joe
copula, can hardly be distinguished.
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Results for d = 5
For d = 5, the absolute differences of Kendall’s τ , lower and upper tail dependence
coefficient (averaged over the R = 1000 data sets) are displayed for each of the 10
pair-copulas in Table 3, where the sample sizes are n = 200 and n = 2000, respectively.
For n = 200, the 10 average absolute estimated Kendall’s τ values for the full data
set ( 1

R

∑R
r=1 |τ̂full(r)|) lie between 0.345 and 0.394; the 10 average estimated upper

and lower tail dependence coefficients for the 10 pair-copulas are between 0.075 and
0.108 ( 1

R

∑R
r=1 λ̂

`
full(r)) and 0.080 and 0.107 ( 1

R

∑R
r=1 λ̂

u
full(r)), respectively. For n =

2000, the three ranges are fairly similar: [0.338, 0.422], [0.081, 0.992] and [0.083, 0.107],
respectively.

c1,2 c2,3 c3,4 c4,5 c1,3;2 c2,4;3 c3,5;4 c1,4;2,3 c2,5;3,4 c1,5;2,3,4

n
=

20
0 ∆τ 0.000 0.016 0.026 0.035 0.017 0.027 0.036 0.032 0.043 0.058

∆λ` 0.000 0.018 0.035 0.050 0.024 0.039 0.053 0.044 0.066 0.065

∆λu 0.000 0.022 0.030 0.041 0.024 0.037 0.058 0.048 0.067 0.065

n
=

20
00 ∆τ 0.000 0.005 0.007 0.010 0.005 0.008 0.010 0.008 0.011 0.015

∆λ` 0.000 0.004 0.008 0.012 0.009 0.011 0.016 0.008 0.021 0.015

∆λu 0.000 0.004 0.010 0.011 0.006 0.008 0.013 0.011 0.021 0.024

Table 3: Absolute differences of Kendall’s τ , lower and upper tail dependence coefficient
for each of the 10 pair-copulas, averaged over the R = 1000 data sets of size n = 200 and
n = 2000, respectively.

We can see that even for a sample size of only n = 200 (see upper part of Table 3)
the differences between the two estimates are relatively small. The largest absolute de-
viations are 0.058, 0.066 and 0.067 for τ , λ` and λu, respectively. The average absolute
deviations 0.029 (τ), 0.039 (λ`) and 0.039 (λu), respectively. Of course, c1,2 is always
estimated equally in both cases since all pruned observations have minimum length
of 2. We can observe what one would expect given that the number of observations
with at least j measurements descends in j: Pair-copulas for whose estimation later
measurements are needed exhibit larger deviations.

The results in the lower part of Table 3 (corresponding to n = 2000) show a similar
qualitative behavior. However, the overall level of average absolute deviations is even
smaller: Maximum/average values are 0.015/0.008, 0.024/0.011 and 0.021/0.010 for τ ,
λ` and λu, respectively.

Results for d = 10
We performed the same studies as above for d = 10. Since it does not make sense
to display the results for all 45 pair-copulas separately, we only report some sum-
mary statistics4. For a sample size of n = 200 the maximum/average deviations were
0.091/0.0483 (τ), 0.069/0.044 (λ`) and 0.068/0.043 (λu); for n = 2000 we observed
0.059/0.018 (τ), 0.037/0.017 (λ`) and 0.037/0.017 (λu). In comparison to the results
for d = 5 we detect an increase in deviation, which seems plausible since the dimension
of the model increases but the sample sizes are kept constant.

All in all, we see that the sequential fitting of D-vine models to repeated measure-
ment data performs well such that we do not have to hesitate to use it for the real data
application in Section 6.

4The detailed results are of course available on request from the authors.
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6 Application

In Section 5 we have seen that our proposed estimation method performs satisfactory.
Now we will apply it to real life data. For this purpose, we consider the aortic valve
replacement surgery data set heart.valve that is taken from the R library joineR

(Philipson et al., 2017) and has been analyzed in Lim et al. (2008). For this longitudinal
study the regression of the left ventricular mass index (LVMI) of n = 256 individuals
was examined in several follow-up appointments after the surgery, where a new heart
valve had been implanted. The total number of examinations is 988 such that the
average number of measurements per patient is 3.86, where 10 is the maximum. Ta-
ble 4 summarizes the sizes of the groups of individuals with exactly j and j or more
measurements, respectively, j = 1, . . . , 10.

j 1 2 3 4 5 6 7 8 9 10
patients with j measurements 51 44 41 30 27 15 21 15 6 6

patients with ≥ j measurements 256 205 161 120 90 63 48 27 12 6

Table 4: Sizes of the groups of individuals with exactly j and j or more measurements,
respectively, j = 1, . . . , 10.

Besides the examination results, for every patient and measurement there are
also covariates available. We denote them the way they are stored in the data set
heart.valve. The following list contains the covariates that we used in our final mod-
els as well as a short description, which is basically taken from the documentation of
the joineR library (Philipson et al., 2017):

• size: size of the heart valve in millimeters;

• sex: gender of the patient

• bsa: body surface area (preoperative)

• time: date of measurement (with surgery date as time origin)

The quantity we model is the logarithm of the LMVI. We estimate two different
models: a linear mixed model and a D-vine copula based model. We focus on the first
five measurements since there are rather few observations for the later measurements.
This way we use 832 of the 988 available measurements (84.2%).

Linear mixed model approach
In order to fit a linear mixed model (cf. Section 3.1) to the data we use the function lme

from the R library nlme (Pinheiro et al., 2017). Assuming a homogeneous covariance
structure for all individuals i, i = 1, . . . , 256, different correlation structures such as
i.i.d. errors, compound symmetry or AR(1) can be selected (cf. Section 3, page 10).
We fit a random intercept model, i.e. Zi = (1, . . . , 1)> ∈ Rdi×1, and compare different
(homogeneous) correlation structures for the error terms, namely i.i.d., compound sym-
metry, AR(1), exponential decay and general (i.e. unrestricted) structure. Note that
we perform classical maximum-likelihood estimation (instead of restricted maximum-
likelihood estimation, which is often used for linear mixed models) since we need be
able to compare the quality of the fit to our D-vine based approach later. The pa-
rameter estimates, however, are almost the same for. The best model with respect to
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log-likelihood and AIC is the one with the general structure; it contains the covariates
size, sex and bsa as well as an intercept as fixed effects. The AR(1) error structure,
where the (k, `)th entry of Σi is given by σ2ρ|k−`|, is more parsimonious than the gen-
eral structure and exhibits a better BIC although log-likelihood and AIC are worse; it
contains the covariates size, sex, bsa and time as well as an intercept. Note that
the use of BIC for linear mixed models is controversial (Hedeker and Gibbons, 2006); it
is frequently debated which sample size to use for the calculation of BIC (Jones, 2011;
Müller et al., 2013; Delattre et al., 2014). In the penalty of the standard BIC all model
parameters are weighted with the logarithm of the total number of observations. Here,
we used the adjusted BIC for linear mixed models that was developed by Delattre
et al. (2014) and that is better comparable to the one we derived for our approach in
Proposition 4.1, where each parameter is weighted with the logarithm of the number
of observations that directly contribute to its estimation. In the adjusted penalty term
of Delattre et al. (2014) the parameters associated with the fixed effects are weighted
with the logarithm of the number of measurements and the parameters associated with
the random effects are weighted with the logarithm of the number of individuals.

The log-likelihood, AIC and BIC values of the models with the general and the
AR(1) structure can be found in Table 5. The remaining structures are not listed there
as they performed uniformly worse than the two models.

D-vine copula based approach
As an alternative we will also fit our D-vine based model. As described in Section 2.1
we first deal with the univariate marginal distributions and afterwards estimate the
dependence structure. For the marginals we use the univariate marginal regression
model that was already estimated for the linear mixed model with AR(1) error correla-
tion structure. Hence, the margins depend on the covariates size, sex, bsa and time.
In order to transform the measurements to the uniform scale, we apply the estimated
normal distribution functions resulting from the regression model (cf. Equation (3.8)).
Then a D-vine copula with order 1–2–3–4–5 is fitted to the transformed observations
according to the sequential approach from Section 4.2 (using RVineCopSelect). In
order to avoid unnecessary parameters we apply a Kendall’s τ based independence test
(significance level α = 5%), which is also implemented in RVineCopSelect, to decide
for each pair-copula if it is significantly different from an independence copula (for a
detailed description see Hollander et al., 2014; Genest and Favre, 2007). The criterion
for the selection of the pair-copula families is standard BIC. We fit both a Gaussian
D-vine copula, where all pairs are assumed to be bivariate Gaussian, and a general,
unrestricted D-vine copula. The result is in both cases a first-order Markov structure,
also known as a 1-truncated vine copula, i.e. all pair-copulas in the second, third and
fourth tree are the independence. For the Gaussian vine the Kendall’s τ values of the
Gaussian pairs in the first tree are estimated to be τ̂1,2 = 0.43, τ̂2,3 = 0.54, τ̂3,4 = 0.56
and τ̂4,5 = 0.61. For the general D-vine copula the pair-copulas in the first tree are
estimated to be the following: ĉ1,2 = Frank (τ̂1,2 = 0.49); ĉ2,3 = Survival Gumbel
(τ̂2,3 = 0.53); ĉ3,4 = Survival Gumbel (τ̂3,4 = 0.56); ĉ4,5 = Frank (τ̂4,5 = 0.65). Figure 3
displays pairwise plots of the copula data (transformed to standard normal margins
for reasons of comparability) including the contour lines of the corresponding fitted
pair-copulas.

We see that there is a positive medium strength of dependence for all pairs in
both models (τ -values from 0.43 to 0.61 and 0.49 to 0.65, respectively). The shape of
the contours, however, differs considerably between the two models. All four bivari-
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Figure 3: Pairwise plots of the copula data (transformed to standard normal margins) including
the contours lines of the fitted pair-copulas of the Gaussian D-vine copula (upper panel) and
the general D-vine copula (lower panel), respectively.

ate copulas in the general D-vine model are from different families and non-Gaussian.
Whereas ĉ1,2 and ĉ4,5 show no tail dependence, the survival Gumbel copula modeling
the dependence between the second and the third and the third and the fourth variable
exhibits moderate lower tail dependence: λ̂`2,3 = 0.62 and λ̂`3,4 = 0.64. The fact that the
dependence between two consecutive measurements is not constant and non-Gaussian
is an indicator that the general D-vine approach might be a better choice than a simple
Gaussian dependence model.

Model comparison
In order to see if this is the case we compare the fit of the two D-vine based models
(including margins) and the two linear mixed models to the data using the log-likelihood
(of the full model including margins), AIC and BIC. Table 5 displays all three model
selection criteria. Note that the BIC values of the linear mixed models are calculated
as proposed by Delattre et al. (2014) and the ones of the D-vine based models are
calculated according to Proposition 4.1.

model log-likelihood AIC BIC # parameters
general LMM −99.4 230.9 305.3 16
LMM AR(1) −108.9 233.8 270.4 8

Gaussian D-vine −102.7 225.3 265.3 10
general D-vine −85.0 190.1 230.1 10

Table 5: Log-likelihood, AIC and BIC values for the fitted linear mixed models with general and
AR(1) structure and the Gaussian and the general D-vine based models (including margins).
Bold values indicate the best model fit according to the respective model selection criteria.

One can see that the unrestricted D-vine model performs uniformly better than
the Gaussian one. This is a clear indicator that the normality assumption for the
dependence is not really suited. Nevertheless, due to their flexibility, both D-vine
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based models yield a considerably better fit than the two linear mixed model with
respect to log-likelihood, AIC and BIC; only the log-likelihood of the Gaussian D-vine
is slightly worse than the one of the general LMM. We see that the D-vine based
approaches are able to capture the structure of the data better since the flexibility of
the D-vine helps to fit the dependence structure more appropriately. This is especially
important if the deviation from Gaussianity is strong.

Quantile prediction
As a final application we illustrate how conditional quantiles for the (j + 1)st mea-
surement of an individual with j measurements can be determined using the general
D-vine copula based approach and the linear mixed model with AR(1) error structure.
For this purpose, we select three representative individuals with di = 4 measurements
from the data set such that they have had rather low (y1 = (4.63, 4.62, 4.66, 4.91)>),
medium (y2 = (5.26, 5.13, 5.00, 5.19)>) and high (y3 = (5.90, 5.80, 5.67, 5.31)>) mea-
surement values so far, respectively. We will use the corresponding observed covari-
ate values of xi = (xi,1, xi,2, xi,3, xi,4)> = (sizei, sexi, bsai, timei)

> that are given by
x1 = (29, 0, 1.93, 3.15)>, x2 = (25, 0, 1.65, 5.48)> and x3 = (25, 0, 1.71, 3.19)>, respec-
tively.

We pretend that the three selected individuals have only had three measurements
so far. Then we predict the median, i.e. the 50% quantile, and a 90% confidence
interval, i.e. the 5% and the 95% quantile, of the fourth measurement based on the
three measurements yi1, y

i
2, y

i
3 for both models and compare the results to the true value

of the fourth measurement.
For the linear mixed model we know that the joint distribution of the measurements

of one individual is a multivariate normal distribution with mean and variance as
in Equation (3.10). Having estimated the corresponding parameters we can easily
determine the conditional distribution of the fourth measurement given the first three
measurements, which is given by a univariate normal distribution (see for example
Joe, 2014, Section 2.6). The quantiles of univariate normal distributions are known
such that we can easily compute the desired quantities. The estimated median for
individual 1 is 4.78, the estimated 90% confidence interval is given by (4.37, 5.18). For
individuals 2 and 3 the medians are 5.21 and 5.73 and the confidence intervals are
(4.81, 5.61) and (5.32, 6.13), respectively. We see that the observed value of the fourth
measurement of individuals 1 and 2 are inside the confidence bounds; for the third
individual the confidence interval does not contain the observed measurement value:
5.31 /∈ (5.32, 6.13). Note that due to the normality of the conditional distribution the
confidence bounds are symmetric around the mean (which is also the median).

For comparison we determine the conditional quantiles using the general D-vine
based model. Since we want to apply Equation (2.6), which uses the inverse conditional
distribution function on the copula level C−1

4|1:3( · |F i
1(yi1), F i

2(yi2), F i
3(yi3)) and the inverse

of the marginal distribution function of the fourth measurement (F i
4( · ))−1, we first of

all transform the measurements 1, 2 and 3 to the copula scale by ûij := F̂ i
j (y

i
j), where F̂ i

j

are the marginal linear regression estimates obtained from the linear mixed model. For
each individual i = 1, 2, 3 and α ∈ {0.05, 0.50, 0.95} we use the estimated general D-
vine copula to calculate q̂iu(α) := Ĉ−1

4|1:3(α|ui1, . . . , ui3). Since F̂ i
4( · ) is again a univariate

normal distribution we can easily determine its inverse and apply (F̂ i
4(α))−1 to q̂iu(α)

to obtain the conditional quantiles q̂iy(α) = (F̂ i
4(α))−1(q̂iu(α)). The estimated median

for individual 1 is 4.65, the estimated 90% confidence interval is given by (4.42, 5.02).
For individuals 2 and 3 the medians are 5.18 and 5.60 and the confidence intervals are
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(4.82, 5.59) and (5.13, 6.03), respectively. Thus all three confidence intervals contain
the corresponding observed measurement values. Note that the 5% and 95% quantiles
are in general not symmetric around the 50% quantile in this case.

In practice it might be interesting to investigate the influence of covariates on the
estimated conditional quantiles. As an example we illustrate how the quantiles depend
on the variable bsa. In Figure 4 we show the resulting estimates for the median (solid
lines) and the confidence intervals (dashed lines) of individuals 1 (left), 2 (middle)
and 3 (right) depending on the size of the heart valve for the linear mixed model
(gray lines) and the D-vine based model (black lines). The estimated quantiles for
the actual covariate specifications of our three selected individuals are given by the
intersections dotted vertical lines (indicating the true bsa values) and the quantiles
lines; for example the median is marked at the intersection point of the confidence
interval and the corresponding median line. The actual observed measurement value
yi4 is also added as a circle.
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Figure 4: Estimated median (solid lines) and confidence intervals (dashed lines) of the fourth
measurement for individuals 1 (left column), 2 (middle column) and 3 (right column) depending
on the size of the heart valve for the LMM (gray) and the D-vine based model (black). Vertical
lines indicate the true bsa values. Actual observed values are marked as circles.

First of all, we see that the quantiles estimated from the linear mixed model depend
linearly on bsa. This is clear since the covariates only influence the estimated mean of
the distribution of the fourth measurement given the first three. This influence is the
same for all quantiles, i.e. the slope of the all gray lines is the same. Since the standard
deviation does not depend on the covariate values all confidence intervals have the same
width (even for different individuals). Normality implies that the confidence bounds
lie symmetric around the mean (median).

The quantiles estimated on the basis of the D-vine based model, however, inherit
the flexibility of the D-vine model and do not depend linearly on the bsa value. The
width of the confidence intervals varies among the three individuals and even for one
individual depending on the covariate values. The slope for different quantiles can even
be positive and negative for one individual. These phenomena can be seen very clearly
in left plot in Figure 4) corresponding to the first individual.

This application illustrated how easily such investigations can be performed with
both the linear mixed model and the D-vine based model. Analyzing the results,
however, has made clear that the flexibility of the D-vine based model is a non-ignorable
advantage over the linear mixed model. For both models it is eye-catching that the
differences between the three individuals are considerable. This shows how important
it can be to use the information available when making predictions for the future.
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7 Conclusion and outlook

This article presented an intuitive and easily interpretable D-vine copula based model
with arbitrary margins for (possibly) unbalanced longitudinal data. The model was
compared to linear mixed models and proved to be a generalization of this model
class under the assumption that the correlation structure was homogeneous over the
individuals. Further, we developed a BIC adjustment for our model. Being based on D-
vine copulas our proposed model benefited from the possibility to model the underlying
dependence structure very flexibly. Since we did not impose any restrictions on the
univariate marginal distributions, this adds even more flexibility to the model. As
joint estimation of the D-vine copula would become rather slow in high dimensions,
we proposed a fast sequential alternative, where even missing data values could be
handled without causing problems. Due to the nested nature of D-vine models our
approach further easily allowed for predicting future events. In the application to the
heart surgery data set the proposed model was able to fit the data considerably better
than the linear mixed models. If data exhibited an even more complicated dependence
structure than the considered data set (possibly including stronger tail dependence,
asymmetries etc.), the Gaussian assumption of linear mixed models would certainly be
so strongly violated that changing to a more flexible model would be inevitable.

In an ongoing research project the D-vine based modeling approach is extended to
time-to-event data with right-censoring (Barthel et al., 2017).
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Appendix

A Proof of Proposition 4.1

We will prove the statement of Proposition 4.1 for d = 2 in order to present the basic
idea. The extension to higher dimensions works similarly but involves more tedious
calculations. In our proof we adapt the derivation from Neath and Cavanaugh (2012).
Since our proof is very similar up to the last step, we refer the reader to their paper
for a more detailed argumentation.

BIC is used for model selection when different parametric candidate modelsM1, . . . ,MK

are available to describe a data set Y = {y1, . . . ,yn}. Further, let L(θk|Y) be the like-
lihood corresponding to model Mk, depending on the parameters θk ∈ Ωk, where
Ωk ⊆ Rpk is the space of admissible parameters. Let π(k) be the prior probability
corresponding to model Mk and g(θk|k) denote a prior on θk given the model Mk.
Using Bayes’ Theorem we obtain the joint posterior of Mk and θk:

h(k,θk|Y) =
π(k)g(θk|k)L(θk|Y)

m(Y)
,
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where m(Y) denotes the marginal distribution of Y. We are interested in finding the
highest posterior probability of Mk given Y , which can be expressed as

P (k|Y) =
π(k)

m(Y)

∫
Ωk

L(θk|Y)g(θk|k)dθk.

Since maximizing P (k|Y) is equivalent to minimizing −2 logP (k|Y) with respect to k
and m(Y) does not depend on k, we will from now on consider

S(k|Y) := −2 log π(k)− 2 log

∫
Ωk

L(θk|Y)g(θk|k)dθk. (A.11)

In order to be able to approximate the integrand from Equation (A.11) we perform
a second-order Taylor series expansion of the log-likelihood logL(θk|Y) around the
maximum-likelihood parameter estimate θ̂k = arg maxθk∈Ωk

L(θk|Y):

logL(θk|Y) ≈ logL(θ̂k|Y) + (θk − θ̂k)>
∂ logL(θk|Y)

∂θk

∣∣∣∣
θk=θ̂k

+
1

2
(θk − θ̂k)>

[
∂2 logL(θk|Y)

∂θk∂θ
>
k

∣∣∣∣
θk=θ̂k

]
(θk − θ̂k)

Since θ̂k maximizes L(θk|Y), and hence also logL(θk|Y), we obtain

L(θk|Y) ≈ L(θ̂k|Y) exp

{
−1

2
(θk − θ̂k)>H(θ̂k|Y)(θk − θ̂k)

}
where we denote the negative Hessian matrix of the log-likelihood by

H(θk|Y) := −∂
2 logL(θk|Y)

∂θk∂θ
>
k

.

Neath and Cavanaugh (2012) and Cavanaugh and Neath (1999) argue that the above
approximations hold for large samples Y and further justify the use of a non-informative
prior g(θk|k) = 1 for any θk ∈ Ωk. Thus,

L(θk|Y) ≈ L(θ̂k|Y)(2π)pk/2
∣∣∣H(θ̂k|Y)

∣∣∣−1/2

. (A.12)

Plugging Equation (A.12) into Equation (A.11) yields

S(k|Y) ≈ −2 log π(k)− 2 logL(θ̂k|Y)− pk log π + log
∣∣∣H(θ̂k|Y)

∣∣∣ . (A.13)

In order to compute the determinant of H(θ̂k|Y) we consider the (`,m)th entry H`,m

of H(θk|Y). Since d = 2 the parameter vector θk = (θ1
k,θ

2
k,θ

3
k)
> can be split up

such that θjk ∈ Rqj parametrize the marginal distributions Fj of the jth measurement,
j = 1, 2 and θ3

k ∈ Rq3 is the parameter vector of the copula c1,2 with pk = q1 + q2 + q3.
For the sake of notation we assume that Y is ordered such that Y2 = {y1, . . . ,yn2} and
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Y1 = {yn2+1, . . . ,yn} and further recall that N1 = n1 + n2 = n and N2 = n2. We have

H`,m = − ∂2

∂θ`∂θm

n∑
i=1

logL(θk|yi)

= −
N1∑
i=1

∂2

∂θ`∂θm
log f1(yi1|θ1

k)−
N2∑
i=1

∂2

∂θ`∂θm
log f2(yi2|θ2

k)

−
N2∑
i=1

∂2

∂θ`∂θm
log c1,2(F1(yi1|θ1

k), F2(yi2|θ2
k)|θ3

k)

= N1

[
− 1

N1

N1∑
i=1

∂2

∂θ`∂θm
log f1(yi1|θ1

k)

]
+N2

[
− 1

N2

N2∑
i=1

∂2

∂θ`∂θm
log f2(yi2|θ2

k)

]

+N2

[
− 1

N2

N2∑
i=1

∂2

∂θ`∂θm
log c1,2(F1(yi1|θ1

k), F2(yi2|θ2
k)|θ3

k)

]
Assuming that the data set is large, i.e. N1 and N2 are large, the expressions in the
brackets (approximately) represent entries of the Fisher information matrices

I1 = I1(θ1
k|Y) = −E

[
∂2

∂θ1
k∂(θ1

k)
>

log f1(Y1|θ1
k)

]
∈ Rq1×q1 ,

I2 = I2(θ2
k|Y2) = −E

[
∂2

∂θ2
k∂(θ2

k)
>

log f2(Y2|θ2
k)

]
∈ Rq2×q2

and

I3 =

I1,1
3 I1,2

3 I1,3
3

I2,1
3 I2,2

3 I2,3
3

I3,1
3 I3,2

3 I3,3
3

 = I3((θ1
k,θ

2
k,θ

3
k)|Y2) ∈ R(q1+q2+q3)×(q1+q2+q3),

where

I`,m3 = −E
[

∂2

∂θ`k∂(θmk )>
log c1,2(F1(Y1|θ1

k), F2(Y2|θ2
k)|θ3

k)

]
∈ Rq`×qm .

Thus, H(θ̂k|Y) can be written as

H(θ̂k|Y) =

N1I1 +N2I
1,1
3 N2I

1,2
3 N2I

1,3
3

N2I
2,1
3 N2I2 +N2I

2,2
3 N2I

2,3
3

N2I
3,1
3 N2I

3,2
3 N2I

3,3
3

 .

Using the formula for the determinant of block-matrices (Silvester, 2000) we obtain∣∣∣H(θ̂k|Y)
∣∣∣ =N q1

1 N
q2+q3
2

∣∣∣∣I1 +
N2

N1

I1,2
3 − I

1,3
3 (I3,3

3 )−1I3,1
3 +

N2

N1

[
I1,2

3 − I
1,3
3 (I3,3

3 )−1I3,2
3

]
×
[
I2 + I2,2

3 − I
2,3
3 (I3,3

3 )−1I3,2
3

]−1 [
I2,1

3 − I
2,3
3 (I3,3

3 )−1I3,1
3

] ∣∣∣∣
×
∣∣∣I2 + I2,2

3 − I
2,3
3 (I3,3

3 )−1I3,2
3

∣∣∣∣∣∣I3,3
3

∣∣∣
=: N q1

1 N
q2+q3
2 a(N1, N2).

Note that sinceN2/N1 is bounded between 0 and 1, a(N1, N2) is also bounded. Plugging

the expression for
∣∣∣H(θ̂k|Y)

∣∣∣ into Equation (A.13) we obtain

S(k|Y) ≈ −2 log π(k)−2 logL(θ̂k|Y)−pk log π+q1 logN1+(q2+q3) logN2+log a(N1, N2).
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Discarding the terms that are bounded as the sample size goes to infinity yields

S(k|Y) ≈ −2 logL(θ̂k|Y) + ∆p1 logN1 + ∆p2 logN2

since ∆p1 = q1 and ∆p2 = q2 + q3. This proves the statement for d = 2. The proof of
Proposition 4.1 in higher dimensions only differs from the above in that the calculations
necessary to compute the determinant of H(θ̂k|Y) are much more involved since one
has to compute the determinant of a (d(d+ 1)/2)× (d(d+ 1)/2) block matrix.
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