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Abstract

Vine copulas are a highly flexible class of dependence models, which are
based on the decomposition of the density into bivariate building blocks. For
applications one usually makes the simplifying assumption that copulas of
conditional distributions are independent of the variables on which they are
conditioned. However this assumption has been criticised for being too restric-
tive. We examine both simplified and non-simplified vine copulas in three
dimensions and investigate conceptual differences. We show and compare
contour surfaces of three-dimensional vine copula models, which prove to be
much more informative than the contour lines of the bivariate marginals. Our
investigation shows that non-simplified vine copulas can exhibit arbitrarily
irregular shapes, whereas simplified vine copulas appear to be smooth extrap-
olations of their bivariate margins to three dimensions. In addition to a variety
of constructed examples, we also investigate a three-dimensional subset of the
well-known uranium data set and visually detect that a non-simplified vine
copula is necessary to capture its complex dependence structure.

Keywords: contour surfaces; pair-copula constructions; simplifying assump-
tion; visualisation.

1 Introduction

Dependence modeling has become a growing research area of high interest in the
last decades. In finance, regulatory requirements like Basel III (Basel Committee
on Banking Supervision, 2009) and Solvency II (European Parliament and Euro-
pean Council, 2009) have increased the need for sophisticated risk assessment, thus
making a proper understanding of the interdependencies between different quanti-
ties inevitable. For hydrological applications the dependence between rainfall, wind
speed and other parameters is crucial for setting up appropriate models. Basically,
dependence plays a role whenever there is more than one source of randomness.

*Zentrum Mathematik, Technische Universitdt Miinchen, Boltzmannstrafle 3, 85748 Garching,
Germany.
fCorresponding author: daniel.kraus@tum.de.



Among dependence models, copulas have taken a prominent role since they allow
for separate modelling of marginal distributions and dependence structure (Sklar,
1959). A popular choice for modelling copulas are so-called vine copulas, also known
as pair-copula constructions, which are based on a decomposition of the joint copula
density into bivariate building blocks. Since the publication of the seminal papers
by Bedford and Cooke (2002) and Aas et al. (2009), these copulas have gained more
and more popularity due to their flexibility and numerical applicability. When work-
ing with vine copulas one often makes the simplifying assumption that pair-copulas
of conditional distributions are independent of the values of the variables on which
they are conditioned. Although enabling estimation and inference even in high di-
mensions, this assumption has also been criticised (e.g. Acar et al., 2012; Spanhel
and Kurz, 2015). Our goal is to shed some light on the implications of this simplify-
ing assumption by visualising the densities of simplified and non-simplified models.
For this purpose, we concentrate on the three-dimensional case. This has the ad-
vantage that the corresponding pair-copula construction contains only one copula
describing the dependence between conditional variables, making the interpretation
of the results easier. Further it is possible to visualise three-dimensional densities
by plotting their contour surfaces. We will see that these plots contain much more
information than the bivariate contour lines of the three two-dimensional margins.
The paper is organised as follows: In Section 2 we provide an introduction to vine
copulas and a formal definition of the simplifying assumption. We show visual-
isations of simplified vine copulas in Section 3, while Section 4 contains three-
dimensional plots of non-simplified vine copulas and their simplified vine copula
approximations. We present applications to simulated and real data in Section 5.
The paper concludes with Section 6. In addition to the paper, we provide a
web-application (implemented using the shiny package by Chang et al., 2015) for
visualising three-dimensional vine copulas (https://vinecopula.shinyapps.io/
Vine3DPlot).

2 Vine copulas and the simplifying assumption

Since the seminal work of Sklar has been published (Sklar. 1959) the concept of
copulas has become more and more popular in statistical modelling. Copulas are
d-dimensional distribution functions on the hypercube [0,1]¢ with uniformly dis-
tributed margins. The following relationship proven in Sklar’s Theorem makes cop-
ulas extremely useful for statistical applications: Let F': RY — [0,1] be the joint

distribution function of a d-dimensional random variable (Xi,...,X,;)" with uni-
variate marginal distribution functions Fj, 7 = 1,...,d. Then there exists a copula
C':[0,1]% — [0, 1] such that

Flan,. .. 28) = C (Fi(2), ... Fa(za). (2.1)

This copula C' is unique if all X; are continuous. If additionally the so-called copula

densit
ensity »
clur, ... uq) = mc(ulw--,ud)

exists, we have

flxy, ... xq) = c(Fi(xq), ..., Fy(zq)) fi(z) - - fa(za), (2.2)


https://vinecopula.shinyapps.io/Vine3DPlot
https://vinecopula.shinyapps.io/Vine3DPlot

where f; are the marginal densities. Conversely, one can define a multivariate distri-
bution by specifying a d-dimensional copula and d univariate marginal distributions
with the help of (2.1). This means that the marginals and the dependence structure
can be modelled separately. Nelsen (2006) and Joe (1997) provide extensive treat-
ments of theoretical and practical aspects of copulas.

For modelling purposes many copula classes have been developed, e.g. elliptical,
Archimedean and extreme-value copulas. Usually the copula families in these classes
are determined by a small number of parameters such that they are rather inflexible
in high dimensions. This lack of flexibility has been overcome by wvine copulas.
The concept of constructing copula densities using a combination of only bivariate
building blocks was introduced in Bedford and Cooke (2002). Based on this work,
Aas et al. (2009) developed statistical inference methods using these vine copulas or
pair-copula constructions (PCCs). This class of copulas has been a frequent subject
of recent research. Diflimann et al. (2013) presented a sequential estimation method
for vine copulas. Vine models were used for quantile regression in Noh et al. (2015),
De Backer et al. (2016) and Kraus and Czado (2016) and the dependence of finite
block maxima of vine copulas was investigated in Killiches and Czado (2015). To
extend the approach to non-continuous models Panagiotelis et al. (2012) as well
as Stober et al. (2015) studied the application of vine copulas to discrete data.
Additionally several nonparametric methods for the estimation of the pair-copulas in
a vine model have been developed, e.g. kernel density based estimation (N aglcr and
Czado, 2015), estimation using splines ([<auermann and Schellhase, 2 14' Schellhase
and Spanhel, 2016) and the empirical copula (Hobak Haff and Segers, 2015). Further
there is a multitude of real data applications especially in the context of finance
(e.g. Brechmann et al., 2014; Maya et al., ; Brechmann and Czado, 2013).
Extended models for describing geo-spatial dependence were introduced in Erhardt
et al. (2015a) and Erhardt et al. (2015b). Vine copulas are particularly interesting
for researchers and practitioners from all fields due to the R package VineCopula
(Schepsmeier et al., 2016), where algorithms for estimation, simulation and model
diagnostics are implemented.

Since we will only consider three-dimensional examples in this paper, we intro-
duce the concept of vine copulas in d = 3 dimensions. For a general introduetion
to vine copulas we refer to Aas et al. (2009) and Stober and Czado (2012). Using
Sklar’s Theorem (2.2) for the conditional density c;3,—as has already been done by
(Patton, 2006, p. 533)—and the fact that the one-dimensional marginals of a copula
are uniformly distributed, i.e. ¢;(u;) = 1 for any u; € [0, 1], we can decompose the
copula density ¢ of a random vector U = (U, Uy, Us) " with uniformly distributed
margins U; as follows:

C(Uh U2, U3) = 013|2(U17 U3|U2) 02(U2)
= ci32 (Chpp(ulus), Cspa(us|uz); us) crpp(us us) cajz(ua|us) (2.3)
= C13;2 (01|2(U1|U2), 03\2(U3|U2); Uz) c12(u1, uz) ca3(uz, usz),
where ci32( -, - |u2) is the density of the conditional distribution of (Uy, Us)|Us = us
and c¢3.2( -, ;ug) is the copula density associated with the conditional distribution
of (Uy,Us3)|Uy = wuy. The distribution function of the conditional distribution of

U; given Uy = uy is denoted by Cjp(-|uz), j = 1,3. It can be obtained by par-
tial differentiation (Joc, 1997): Cyp(urfug) = 0/0us Cra(ur, ug) and Cya(uslug) =



0/0uy Coz(ug,u3). Hence we can describe the entire copula density ¢ by specifying
only three bivariate copulas.

It would also have been possible to choose U; or U; as conditioning variable.
Then we would have ended up with

c(ur, uz, ug) = oz (Cop (uzlu), Capr (uslur); ur) cra(ur, ug) crs(ur, us)

or
C(Uh U2, U3) = C12;3 (Cl|3(u1‘u3)a Cg|3(u2]u3); U3) 013(u17 U3) C23(U2, US):

respectively. However for our purpose all three structures are equivalent since they
can be obtained by relabelling Therefore, throughout the paper, we will always use
the decomposition from (2.3). Here the bivariate marginals ¢ and co3 are explicitly
specified. The third bivariate marginal c;3 is implicitly defined and can be obtained
via one-dimensional integration:

1
C13(U1,U3):/ c(uy,v,uz) dv. (2.4)
0

In general the bivariate copula density function cig.o( -, ;us) depends on the
value of uy. Yet when it comes to modelling, one often makes the so-called simplifying
assumption that c;3.2 does not depend on uy, i.e.

C13;2(U1, Uus; Uz) = C13;2 (Uh Us)

for all uy, us, ug € [0, 1]. To enable fast and robust inference this assumption is made
in a multitude of cases. Nevertheless there has also been research on non-simplified
vine copulas and the question when the simplifying assumption is justified. Stober
et al. (2013) investigated which multivariate copula models can be decomposed into
a simplified vine copula. While Hobak Haff et al. (2010) came to the conclusion
that simplified vine copulas are “a rather good solution, even when the simplifying
assumption is far from being fulfilled by the actual model”, Acar et al. (2012) crit-
icised this statement as being too optimistic and show cases where non-simplified
vine copulas are needed. In particular, they looked at a three-dimensional subset of
the uranium data set from the R package copula (Hofert et al., 2015) and decided
that it could not be modelled by a simplified vine copula. Killiches et al. (2016)
developed a test for the simplifying assumption and applied it to the same data set
obtaining similar results. In the test they used the R package gamCopula (Vatter,
2015), which provides an algorithm for the estimation of non-simplified vine copula
models with the help of generalised additive models. A critical examination of the
simplifying assumption was presented in Spanhel and Kurz (2015), where the focus
was on possible misspecifications of simplified vine copulas when the underlying true
model is non-simplified. This paper contributes to this discussion by focusing on
the visual implications of the simplifying assumption.

In the following sections we will use the parametric bivariate copula families
implemented in VineCopula as building blocks. This group of copulas includes
Gaussian (N), Clayton (C), Gumbel (G), Frank (F), Joe (J), Clayton-Gumbel
(BB1), Joe-Frank (BBS), Tawn type 1 (7(1)) and Tawn type 2 (7(2)) copulas as well
as their survival versions and rotations by 90 degrees and 270 degrees (indicated



by the superscripts 180, 90 or 270, respectively). The densities of the survival and
rotated versions of a bivariate copula density ¢ are given by ¢ (u1, us) = ¢(1—usg, uy),
0wy, up) = e(1—uy, 1—uy) and *(uy, uz) = c(ug, 1—u;). When we specify a pair-
copula, we state both the family and the corresponding parameters. For example,
a Gaussian copula with correlation p = 0.5 is denoted by N(0.5) and 73°(~3,0.6)
stands for a Tawn type 2 copula rotated by 270 degrees with first parameter —3 and
second parameter 0.6.

The space of admissible parameters depends on the copula family. For example,
whereas the parameter space of a Tawn type 1 copulais (1, 00)x (0, 1), that of a Frank
copula is given by R\ {0}. Since we still want to compare different copula families we
transform the parameters to the same scale using Kendall’s 7 as a measure for the
strength of dependence. See for example (Nelsen, 2006, Ch. 5.1.1) for a discussion
of Kendall’s 7 in the context of copulas.

3 \Visualisation of simplified vine copulas

The contour of a density f: R? — [0, 00) corresponding to a level y € (0,00) is the
set {z eERY| f(z) = y} of all points in R? that are assigned the same density value
y. For bivariate densities, plots of contour lines are well-known; in three dimensions
this concept can be extended to contour surfaces. In this section we present contour
plots of various simplified three-dimensional vine copula densities, ranging from very
simple models such as a Gaussian copula, to more complex scenarios. The main
goal is to get a feeling for what simplified vine copulas look like in order to properly
compare them to non-simplified vine copulas. As well as the three-dimensional
contour surfaces plotted from three different angles we present the contour lines
of the two-dimensional marginals cio, co3 and c¢13. While ¢15 and co3 are explicitly
specified in the vine copula construction, the margin c¢y3 has to be calculated by
integrating c1o3 with respect to us, either analytically (when possible) or numerically
as noted in equation (2.1).

For all two- and three-dimensional contour plots we take the univariate marginals
to have a standard normal distribution, i.e. we consider the random vector Z =
(Z1, Za, Z3) ", where Z; = ®~1(U;), j = 1,2, 3, with ® denoting the standard normal
distribution function. This is done because on the uniform scale copula densities
would be difficult to interpret and hardly comparable with each other. Further,
in this way a Gaussian copula corresponds to a Gaussian distribution so that all
examples can be seen in comparison to this well-known case.

For interested readers we refer to our web-application (https://vinecopula.
shinyapps.io/Vine3DPlot), where three-dimensional vine copula objects can be
generated and rotated at one’s convenience. This might be interesting if you wish
to examine contour plots of our scenarios from other angles or if you are interested
in visualising your own examples.

In Section 3 we will consider the simplified vine copula specifications from Table 1
(Scenarios 1 to 4). Later, in Section 4, we will also examine non-simplified vine
copulas specifications and their simplified vine copula approximations. These are
described in Scenarios 5 to 8 in Table 1. For each scenario the three pair-copulas
are specified by their families and parameter(s). Further we state the corresponding
Kendall’s 7 value in order to facilitate comparability.
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Table 1: Vine copula specifications considered in Section 3 (simplified, Scenarios 1
to 4) and Section 4 (non-simplified, Scenarios 5 to 8). In Scenario 7, AMH stands for

the Ali-Mikhail-Haq copula. For a definition we refer to Kumar (2010).
copula cqo copula cog

scenario page | family 9%) Gg) 712 | family 0%) 9%) To3
1 7 N 0.6 — 0.41 N 0.7 - 0.49
2 7 C 2 - 0.50 C 2 — 0.50
3 8 F 7 - 0.56 g 2 — 0.50
4 9 T 3 03 025 | J¥0 —2 - —0.36
5 10 N 0 - 0 N 0 - 0
6 12 C -2 - =050 C 2 — 0.50
7 14 F 8 - 0.60 F 8 - 0.60
8 4 | BB8 6 095 069 | ¢*° -35 - —071

copula c13;2

scenario page | family 9%);2 (ug) Qg)z (u2)  Ti32(u2)
1 7 N 0.5 — 0.33
2 7 C 0.67 — 0.25
3 8 N —0.7 — —0.49
4 9 BB1 2 1.5 0.67
5 10 N 0.9sin(27musg) 71(232(U2)
6 12 c 9(—(uz — 0.5)2 + 0.25) Tioh (us)
7 14 AMH 1 — exp(—8uz) 7'1(;)2 (u2)
8 14 722)/78()) sgn(uz — 0.5)(4 — 3cos(8muz)) 0.1+ 0.8uq Tl(gzz(w)



3.1 Gaussian copula

The first scenario we consider concerns a Gaussian copula. Among others, Stober
et al. (2013) showed that every Gaussian copula can be represented as a simplified
Gaussian vine copula (i.e. all pair-copulas are Gaussian) and vice versa. We specify
the pair-copulas of the vine as follows: c¢15 is a bivariate Gaussian copula with
parameter p;p = 0.6 (i.e. 72 = 0.41), o3 is a Gaussian copula with py3 = 0.7
(723 = 0.49) and ¢35, is a Gaussian copula with pi30 = 0.5 (7332 = 0.33). This
specification, which can be found in Table 1 (Scenario 1), directly implies that c¢;3
is a Gaussian copula with p;3 = 0.71 (13 = 0.50), see for example Kurowicka
and Cooke (2006), p. 69. The resulting elliptical-shaped contours displayed from
three viewpoints in the top row of Figure 1 are the natural extension of the well-
known ellipsoid-shaped contour plots of bivariate normal distributions. We chose the
contour levels for the plots such that the four contour surfaces are representative of
the entire density. For the remainder of this paper these levels are fixed with values
0.015, 0.035, 0.075 and 0.11 (from outer to inner surface). The contour plots of the
two-dimensional margins in the bottom row of Figure 1 are those of bivariate normal
distributions. We see that the contour plots of the bivariate margins already give a
good impression of what the three-dimensional object looks like. It turns out that
this property can be observed for all simplified vine copulas we will consider.

T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
2z 2 Z

Figure 1: Top: Contours of the three-dimensional vine copula density specified by
c12: N(0.6), co3: N(0.7), c13.2: N(0.5). Bottom: Contours of the corresponding
bivariate marginal densities.

3.2 Clayton copula

A well-known representative of the class of Archimedean copulas is the Clayton
copula. It is a one-parametric family with lower tail dependence. The Clayton



copula is the copula underlying the multivariate Pareto distribution and is the only
Archimedean copula that can be represented as a simplified vine copula as proved
in Stober et al. (2013), Theorem. 3.1. It is easy to see that the bivariate margins of
a three-dimensional Clayton copula with parameter 6 are bivariate Clayton copulas
with parameter 6, see for example Kraus and Czado (2016), Appendix B. There it
was also shown that the copula of the conditioned variables (in our decomposition
C13.2) again is a Clayton copula, in this case with parameter §/(6+1). Hence, in order
to obtain a three-dimensional Clayton copula with parameter § = 2 we specify a vine
copula as described in Scenario 2 of Table 1. The top row of Figure 2 displays the
contours of the resulting copula, the strong lower tail dependence is clearly visible.
As already stated, the (unconditional) bivariate margin ¢3 is also a Clayton copula
with parameter 2 and therefore all contour plots of the margins in the bottom row
of Figure 2 are identical. Again we observe that the shape of the contours of the
three-dimensional density is anticipated quite well already by the two-dimensional
marginal plots.
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Figure 2: Top: Contours of the three-dimensional vine copula density specified by
c12: C(2), ca23: C(2), c132: C(0.67). Bottom: Contours of the corresponding bivariate
marginal densities.

3.3 Mixed simplified vine copula 1

Up to now we have only considered vine copulas where all pair-copulas belong to
the same family of parametric copulas. Of course, one of the main advantages of
vine copulas is that one can specify each pair to be from a different copula family
with its own parameter(s). The resulting model class is very flexible and able to
describe many different kinds of dependencies. As an example for this, we present
Scenario 3 (Table 1): ¢15 is a bivariate Frank copula with parameter 015 = 7 (i.e.
T12 = 0.56), co3 is a Gumbel copula with 63 = 2 (723 = 0.5) and ¢35, is a Gaussian



copula with pi3.0 = —0.7 (7132 = —0.49). In the resulting contour plots of Figure 3
(top row) one can clearly see the shapes of the Frank and the Gumbel copula in the
left and the middle plot, respectively. Although the dependency of each pair-copula
is fairly strong, we observe rather weak dependence for ¢;3. The negative conditional
dependence seems to cancel out with the positive dependencies implied by c1o and
o3 (compare Figure 3, bottom row).

T T T
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Figure 3: Top: Contours of the three-dimensional vine copula density specified by
c12: F(7), ca3: G(2), c13,2: N(—0.7). Bottom: Contours of the corresponding bivariate
marginal densities.

3.4 Mixed simplified vine copula 2

We consider a second example of a mixed vine copula (Scenario 4 from Table 1)
with the following specifications: cj2 is a Tawn Type 1 copula with parameters
01> = (3,0.3)" (implying 715 = 0.25), c93 is a Joe copula rotated by 270 degrees with
623 =—-2 (T23 = —036) and C13;2 isa BB1 copula with 013;2 = (2, 15)T (T13;2 = 067)
The shape of the resulting contours in the top row of Figure 4 appears to be very
non-standard. Especially the dependence between the first and third marginals is
quite contorted. The dependence structure of the copula of the conditioned variables
(BB1) cannot be detected at all. Further the non-exchangeable nature of the Tawn
copula is noticeable both in the three- and the two-dimensional contour plots (cf.
Figure 4, bottom row).

Note that even for the rather bent examples in this section the shape of the
bivariate marginal contour plots resembles what we see in the three-dimensional
plots. Thus all considered simplified vine copulas share the property that knowledge
of just the three bivariate margins already provides a fairly good idea of the shape
of the contours of the three-dimensional copula density.
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Figure 4: Top: Contours of the three-dimensional vine copula density specified by
c12: T1)(3,0.3), cos: J¥0(-2), c13.2: BB1(2,1.5). Bottom: Contours of the corre-
sponding bivariate marginal densities.

4 Visualisation of non-simplified vine copulas

Having seen several examples of visualised simplified vine copulas we also aim to
visually explore the meaning of the simplifying assumption. For this purpose we now
present a series of contour plots of non-simplified vine copula densities and compare
them to the ones of the corresponding simplified vine copula approximations. Similar
to Hoback Hafl et al. (2010) and Stober et al. (2013) we determine the simplified
vine copula approximation of a non-simplified vine copula with pair-copulas ¢},
x5 and cfs, by setting the unconditional pair-copulas ¢, and ¢35 to the true ones
(e} and 5, respectively) and finding the pair-copula c§3;2 (independent of uy) that
minimises the Kullback-Leibler distance to the true conditional copula 011\138;2. Since in
most scenarios considered in this chapter this minimisation is analytically infeasible,
we estimate c§3;2 by generating a sample (ugi), ug), ugi’);  Of size IV from the non-
simplified model and fitting the likelihood maximising p’.z;fametric bivariate copula
c§’3;2 to the copula data (ugz‘)z, ué?z);l s Where uy'; = Cjj2 (u§z)|u8)), 7 =1,3. Even
though we found that the estimated i)arameters had converged up to the second
digit for N = 10,000 we used N = 100,000 due to low computational effort.

In Section 4 we will consider the non-simplified vine copula specifications from

Table 1 (Scenarios 5 to 8).

4.1 Gaussian vine copula with sinusoidal conditional dependence
function

In our first non-simplified example (Scenario 5 from Table 1) we set the two un-
conditional copulas c¢1o and cy3 to the independence copula in order to isolate the

10
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Figure 5: Top row: Contours of the three-dimensional non-simplified vine cop-
ula density specified by c12: N(0), ca3: N(0), ci3.2: N(pig2(uz)) with pigo(uz) =
0.9sin(2muz).

Second row: T13;2 depending on us and contours of the bivariate margins correspond-
ing to the specification of the top row.

Third row: Contours of the three-dimensional simplified vine copula approximation
speciﬁed by C12: N(O), C23: N(O), 613;21 t(0.0l, 2.15).

Bottom row: Contours of the bivariate margins corresponding to the specification of
the third row.
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effect of the dependence of the conditional copula cj3.2 on us. We choose ci3.2 to
be Gaussian with parameter function pyz.o(u2) = 0.9sin(27us), i.e. one full period
of a sine curve with amplitude 0.9. Hence for values of uy ranging between 0 and
0.5 the dependence is positive with Kendall’s 7 between 0 and 0.71 and negative for
0.5 < uy < 1 (see also the left panel of the second row of Figure 5). The shift from
positive to negative dependence is clearly visible in the contour plots shown in the
top row of Figure 5. We also observe that the resulting contour surfaces for higher
levels are no longer connected and the density is bimodal. Further, from the numer-
ically integrated contour plot of ¢;3 in the right panel of the second row of Figure 5
we conclude that marginally the strong positive and negative dependencies cancel
each other out resulting in a bivariate marginal copula with almost no dependence,
resembling a t copula with association of zero and low degrees of freedom.

In opposition to the simplified examples from Section 3, now the bivariate contour
plots do no longer anticipate the three-dimensional object in a reasonable way. The
sinusoidal structure of this copula cannot be guessed from the two-dimensional plots
in the second row of Figure 5. In fact, had we used pis.2(us) = —0.9sin(27us), the
copula density would have changed drastically (90 degree rotation along the zs-axis)
while the bivariate margins would have stayed exactly the same.

In contrast the corresponding simplified vine copula approximation, whose con-
tours are displayed in the third row of Figure 5, resembles the smooth extension of
the bivariate margins (bottom row of Figure 5) to three dimensions. This unimodal
simplified vine copula, whose conditional copula ¢;3.2 is indeed a t copula with al-
most no dependence (p13.20 = 0.01) and low degrees of freedom (#13.0 = 2.15), is not
able to reproduce the twisted shape of the non-simplified vine copula at all. Also
the implied bivariate margin of the first and third variable in the right panel of the
bottom row of Figure 5 is almost identical to the one of the non-simplified copula
in the second row.

4.2 Clayton vine copula with quadratic conditional dependence
function

Next we consider a non-simplified Clayton vine copula, i.e. all pair-copulas are bi-
variate Clayton copulas where the parameters of the unconditional copulas may
differ in contrast to the three-dimensional Clayton copula (cf. Scenario 2) for which
the parameters of c¢1o and co3 have to coincide. In this Scenario 6 we set the de-
pendencies of the unconditional pair-copulas as 615 = —2 (112 = —0.5) and fs3 = 2
(193 = 0.5) and specify the parameter function as a downwardly open parabola tak-
ing only non-negative values: 613.0(us) = 9(—(uz — 0.5)? + 0.25). The corresponding
T13,2 values range between 0 and 0.53 and take their maximum for us = 0.5 (see the
left panel of the second row in Figure ). The contours of the resulting density shown
in the top row of Figure 6 bear some resemblance to those of the Clayton copula
(cf. Figure 2) but are much more distorted. Especially the relationship between the
first and third variables seems to change from positive to negative dependence for
different values of the second variable. This implies that also the conditional copula
of Uy and Us given U, = usy exhibits a change from positive to negative dependence,
which is an obvious indicator that the vine copula is non-simplified. The contours
of the bivariate margin cy3 in the right panel of the second row of Figure 6 also
have a bent shape which is far from any of the standard parametric copulas. The
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Figure 6: Top row: Contours of the three-dimensional non-simplified vine copula
density specified by cis: Cgo(—Q), C93: 6(2), C13;2: C(913;2(u2)) with 913;2(U2) =
9(—(ug — 0.5)% +0.25).

Second row: 73,2 depending on us and contours of the bivariate margins correspond-
ing to the specification of the top row.

Third row: Contours of the three-dimensional simplified vine copula approximation
specified by c1a: C%°(—2), cog: C(2), ¢13.2: BB6'80(1.75,1.16).

Bottom row: Contours of the bivariate margins corresponding to the specification of
the third row.
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bivariate contour plots of ¢jo and cg3 suggest a smooth shape of the contours of the
three-dimensional density such that one would not expect them to look as distorted
as they do in the left and middle plots of the top row of Figure 6.

Again the simplified vine copula approximation, which uses a survival BB6 copula
with parameter 913;2 = (1.75,1.16) as an approximation of the conditional copula
132 (implying a Kendall’s 7 of 0.39), exhibits exactly this smooth behavior implied
by the bivariate margins (see the third row of Figure 6). We further observe in
the right plots of the last two rows of Figure 6 that the simplified vine copula
approximation is not able to reproduce the altering dependence pattern between U,
and Us due to its constant conditional dependence parameter.

4.3 Three-dimensional Frank copula

In contrast to the Clayton copula, which can be expressed as a simplified vine copula
(cf. Section 3.2), we now turn our attention to an Archimedean copula without this
property, the three-dimensional Frank copula. Its non-simplified vine decomposition
can be found as Scenario 7 in Table | (with dependence parameter § = 8): The
bivariate margins are again Frank copulas with the same dependence parameter 6
(with corresponding Kendall’s 7 values equal to 0.6). The copula of the conditioned
variables ¢35 is also Archimedean, belonging to the Ali-Mikhail-Haq (AMH) family
with functional dependence parameter yi3.2(u2) = 1 —exp(—60uz) (see Kumar, 2010;
Spanhel and Kurz, 2015). The corresponding 7 values displayed in the left panel
of the second row of Figure 7 show that the simplifying assumption is not severely
violated. The strength of dependence is almost constant with the exception of small
7 values for us < 0.2. The contours depicted in the top row of Figure 7 exhibit
the typical bone shape known from the two-dimensional contour plots of bivariate
Frank copulas such as those shown in the second row of Figure 7. In order to assess
how severe of a restriction the simplifying assumption would impose for modelling
data generated by a Frank copula, we also present in the last two rows of Figure 7
the three- and two-dimensional contours of the simplified vine copula approximation
of the Frank copula, respectively. For the trivariate Frank copula it is possible to
analytically calculate the bivariate copula ¢j3.9(-,-) that minimises the Kullback-
Leibler divergence to the conditional copula ci3.0( -, -;us), for details see Spanhel
and Kurz (2015). The visual difference between the Frank copula and its simplified
vine copula approximation seems almost negligible. Only from the angle where the
dependence between the first and third variable is visible the two contour plots can
be distinguished (see the right plots of the first and third row of Figure 2). In the
lower tail, where values of zy are small, the contours of the simplified vine copula
approximation exhibit a higher dependence than the ones of the Frank copula, whose
contours are less drawn into the corner implying less dependence. This is in line with
what we would expect since the dependence function of ¢35 of the non-simplified
vine copula is decreasing for u, going to 0, while the dependence of ¢j32 of the
simplified vine copula approximation is constant at 73,0 = 0.28.

4.4 Mixed non-simplified vine copula

The last example we consider is Scenario 8 (see Table 1). It is more extreme featuring
pair-copulas with high dependence and more involved functions for the parameters
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Figure 7: Top row: Contours of the three-dimensional non-simplified vine copula
density specified by cqo: ]:(8), C93: .F(8), C13:2: AMH(’713;2(U,2)) with ’)/13;2(1@) =
1 — exp(—8uz).

Second row: T13,2 depending on us and contours of the bivariate margins corresponding
to the specification of the top row.

Third row: Contours of the three-dimensional simplified vine copula approximation
specified by ci2: F(8), ca3: F(8), c13:2: see Spanhel and Kurz (2015).

Bottom row: Contours of the bivariate margins corresponding to the specification of
the third row.
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of ¢13.0. We specify ¢15 as a BB8 copula with parameters 65 = (6, 0.95)T (implying
712 = 0.69), co3 as a Gumbel copula rotated by 270 degrees with 63 = —3.5 (193 =
—0.71) and c¢132 as a Tawn Type 2 copula with both parameters depending on
up via the functions sgn(us — 0.5)(4 — 3 cos(8muy)) and 9%);2(1@) = 0.1 4+ 0.8us.
The corresponding 7 values ranging between —0.39 and 0.71 are shown in the left
panel of the second row of Figure 8. For the values of us < 0.5 that imply negative
dependence we use the 90 degree rotated version of the Tawn type 2 copula. Figure 8
(top row) displays the contour plots of the resulting density. This is by far the most
contorted density. The four peaks of the 73,5 function are clearly visible as bumps
in the three-dimensional contour plots. Of course, one can argue about how realistic
it is to assume that real data follows such a distribution but it illustrates the variety
of densities which can be modelled using non-simplified parametric vine copulas.

For this scenario we can state that again the bivariate marginal contours do not
really anticipate the complex shape of the corresponding three-dimensional object.
The contour plots of ¢15 and co3 in the second row of Figure 8 look perfectly smooth
and regular and do not at all suggest the extremely twisted and contorted structure
which can be seen in the top row of Figure 8. For the conditional copula of the
corresponding simplified vine copula approximation a t copula with p;3.2 = 0.18 and
13,0 = 2.6 is fitted, which corresponds to a Kendall’s 7 of 0.11. Comparing the
resulting bivariate margins in the second and last row of Figure 8 we see that apart
from a little bump of ¢35 of the non-simplified vine copula their general shapes are
fairly similar. However the three-dimensional contour plot reveals that the simplified
vine copula approximation (third row of Figure &) is completely smooth with no
twists and dents at all, such that it is not able to capture all aspects of the actual
interdependencies.

5 Application to simulated and real data

In this section we want to investigate how the contour plots can help to decide
whether a simplified or a non-simplified specification for given data is needed. For
this purpose we at first consider simulated data, where we know the true underlying
distribution, and afterwards apply the method to real data.

5.1 Simulation study

For the simulated data example we specify the true non-simplified vine copula model
as follows: We choose ¢15 to be a Gumbel copula with parameter 615 = 1.5 (712 =
0.33), co3 as a t copula with pss = 0 and 2.5 degrees of freedom (793 = 0) and
132 as a Frank copula with parameter function 6y3.5(u2) = 3arctan(10(us — 0.5)),
implying negative dependence for us < 0.5 and positive dependence for us > 0.5
with absolute 7 values smaller than 0.4 (compare Figure 10, top left panel). The
rather low pairwise dependencies of this copula are clearly visible from the density’s
contour plots in the top row of Figure 9. However the surfaces look quite crumpled
with lots of irregular bumps and deformations. Moreover it is eye-catching that in
this example we only observe three contour surfaces. The inner surface is missing
since the density only take values between 0 and 0.101 but the level of the inner
surface is 0.11. Further due to the low dependence we cannot detect any corner with
extraordinarily high probability mass.
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Figure 8: Top row: Contours of the three-dimensional non-simplified vine copula den-
sity specified by c12: BB8(6,0.95), ca3: G70(—3.5), c13:2: 722)/7'(3())(9%32(@), O%)Z(ug))

with 9%32(1;2) = sgn(uz — 0.5)(4 — 3 cos(8muz)) and 9%);2(112) = 0.1 + 0.8us.
Second row: 3.2 depending on uy and contours of the bivariate margins correspond-

ing to the specification of the top row.

Third row: Contours of the three-dimensional simplified vine copula approximation

specified by c19: BB8(6,0.95), caz: G270(—3.5), é13.9: t(0.18,2.6).

Bottom row: Contours of the bivariate margins corresponding to the specification of
the third row.
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We generated a sample of size N = 3,000 from this model and transformed
the margins to be standard normal in order to make results comparable. For this
transformed data sample, we performed a standard kernel density estimation with
the function kde from the R package ks (Duong, 2016) using Gaussian kernels. Note
that using this method we only get approximately standard normal margins. The
contours of the resulting estimated densities, which are shown in the second row of
Figure 9, are very close to those of the true underlying density in the top row. Only
the innermost contour surface is smaller because the peaks of the density tend to
get averaged out by kernel density estimation. The second row of Figure 10 displays
the contours of the corresponding kernel density estimated bivariate margins, which
are again close to the true ones in the first row of Figure 10.

The idea is now to compare these contour plots to those of estimated simplified
and non-simplified vine copula densities. We use RVineStructureSelect (from
VineCopula) to fit a simplified vine copula and gamVineStructureSelect (from
gamCopula) to fit a non-simplified vine copula. Both algorithms estimate the same
unconditional copulas: c;5 is fitted as a Gumbel copula with parameter 015 = 1.49
and co3 as a t copula with po3 = 0.04 and 53 = 2.36 degrees of freedom. In the
simplified setting c;3.5 is estimated to be a t copula with peg = —0.01 and o3 = 3.42.
The corresponding contours are shown in the third row of Figure 9. They seem to
be an over-smoothed version of the kernel estimated density contours. While the
general strengths of dependence are represented fairly well, the simplified vine copula
approximation does not feature the bumps and dents of the kernel density estimated
surfaces. A look at the contours of the bivariate margins in the third row of Figure 10
reveals that the densities of the explicitly modelled margins ¢ and co3 are fitted
very well. The true copula families are chosen and the estimated parameters are
close to the true values. However the contours of the implicitly defined margin c;3
are far from the ones of the kernel density estimate. This is another indicator for
an insufficient fit resulting from the underlying simplifying assumption, which is in
this case too restrictive.

We now investigate whether these deficiencies can be remedied by fitting a non-
simplified vine copula to the simulated data. The algorithm gamVineStructureSelect
estimates the copula c¢3. to be Gaussian with parameter function py3.9(u2) depend-
ing on us via the functional form displayed in the bottom left panel of Figure 10
(in terms of 7y3.2), together with its bootstrapped 95%-confidence intervals (grey)
and the true 73, curve (dashed line). The 7-values range between —0.36 and 0.38
with negative values for uy < 0.5 such that the estimated function is quite close to
the true underlying 7-function. Even though the wrong copula family is chosen for
c132 (Gaussian instead of Frank) the contours of the resulting non-simplified vine
copula in Figure 9 (bottom row) are very similar to the kernel estimated ones and
fit their shape considerably better than the estimated simplified vine copula. Also
the contours of the bivariate margin c¢;3 in the bottom right panel of Figure 10 now
provide a much better fit. Hence we can conclude that in this example we are able to
visually detect the violation of the simplifying assumption of the true distribution.

5.2 Real data application

In the following section we want to apply this method to a real data example. We
investigate the well-known uranium data set, which can be found in the R package
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Figure 9: Top row: Contours of the true three-dimensional non-simplified vine copula
density speciﬁed by C12: 9(1.5), C93: t(0,2.5), C13;2: f(@m;z('lﬁz)) with 913;2(112) =
3arctan(10(ug — 0.5)).

Second row: Contours of the density estimated via three-dimensional kernel density
estimation.

Third row: Contours of the fitted simplified vine copula density specified by éia:
G(1.49), éo3: £(0.04,2.36), ¢13.2: t(0,9.14).

Bottom row: Contours of the fitted non-simplified vine copula density specified by
C12: 9(1.49), C23: t(0.04,2.36), 613;2: N(ﬁlg;g(l@)).
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Figure 10: 732 depending on wug (first column) and contour plots of the bivariate
margins ci2 (second column), cog (third column) and ¢13 (fourth column). Top row:
true vine copula. Second row: kernel density estimation. Third row: fitted simplified
vine copula. Bottom row: fitted non-simplified vine copula.

copula. This data set consists of 655 chemical analyses from water samples from
a river near Grand Junction, Colorado (USA). It contains the log-concentration of
seven chemicals, where we will focus on the three elements cobalt (X;), titanium
(X3) and scandium (X3) that have already been examined regarding the simplifying
assumption in Acar et al. (2012) and Killiches et al. (2016). In order to obtain copula
data we first apply the probability integral transform to the data using the empirical
marginal distribution functions, i.e. the observations xj, 7 = 1,2,3, ¢ = 1,..., N,
are transformed via the rank transformation

1 N
= — 1

where 14, is the indicator function. Then we transform the data to have standard
normal margins in accordance to the previous examples.
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We now want to take a look at the “true” model and perform a kernel density
estimation. In the top rows of Figure 11 and Figure 12 the results of the three- and
two-dimensional kernel density estimations are displayed, respectively. The three
variables seem to be positively dependent. A few bumps and dents are noticeable.

Next we explore how well estimated simplified and non-simplified vine copulas fit
the data.

21‘ 17’

N/ ————

Figure 11: Top row: Contours of the density estimated via three-dimensional kernel
density estimation.

Middle row: Contours of the simplified vine copula specified by ¢19: £(0.53,8.03), ¢a3:
£(0.43,5.93), ¢13;2: £(0.08,5.65).

Bottom row: Contours of the non-simplified vine copula specified by ¢19: £(0.53,8.03),
623: t(0.43,5.93), 613;2: t(ﬁlg;Q(Ug),G.Gg).
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Figure 12: 713,52 depending on us (bottom left) and contour plots of the bivariate
margins ci2 (second column), cog (third column) and ¢i3 (fourth column). Top row:
kernel density estimation. Middle row: estimated simplified vine copula. Bottom row:
estimated non-simplified vine copula.

Using RVineStructureSelect we obtain the following simplified vine copula:
12 is a t copula with p12 = 0.74 and 15 = 8.03 (712 = 0.53), c93 is a t copula with
P23 = 0.63 and 3 = 5.93 (To3 = 0.43) and c132 is a t copula with pi30 = 0.08
and D130 = 5.65 (7132 = 0.05). This t vine copula and its bivariate margins are
depicted in Figure 11 (middle row) and Figure 12 (middle row), respectively. Since
all three degrees of freedom are of medium size we observe modest lower and upper
tail dependence. Again these contours resemble a smoothed version of the slightly
bumpy kernel density estimated contour surfaces resulting in a rather unsatisfying
fit of the data.

For the non-simplified vine copula, the estimates of c¢15 and co3 are the same as
for the simplified one. The third pair-copula cy3. is still a t copula but now with
13,0 = 6.69 degrees of freedom and an association parameter depending on uy. We
show the relationship between uy and 7y32 in the bottom left panel of Figure 12
(again with its bootstrapped 95%-confidence intervals). One can see that we have
small positive values of Kendall’s 7 for us < 0.8 and negative dependence for the
remaining values of us. Although only the parameters of the copula ¢35 are different
compared to the simplified vine copula, the shapes of the contour surfaces display
some interesting changes: Especially in the bottom left and right panel of Figure 11,
we see that the smooth diamond-shaped contours from Figure 11 (middle row) have
developed several dents. While the contour plots of c;5 and co3 are the same as
before, the one of ¢y3 exhibits some differences since it is no longer diamond-shaped.
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Comparing these contours to the ones from the top rows of Figure 11 and Fig-
ure 12 we see that the non-simplified vine copula is able to capture the behaviour of
the data quite well. The most noticeable bumps and dents are reproduced and the
bivariate contours resemble the kernel density estimated ones. Thus we come to the
same conclusions as Acar et al. (2012) and Killiches et al. (2016), namely that the
vine copula decomposition of this three-dimensional data set is of the non-simplified
form.

6 Conclusion

In this paper we looked at the contour surfaces of several three-dimensional sim-
plified and non-simplified vine copulas. The flexibility of simplified vine copulas
in comparison to standard elliptical and Archimedean copulas was demonstrated.
Using the 12 different one- and two-parametric bivariate pair-copula families cur-
rently implemented in VineCopula for the construction of a simplified vine cop-
ula, the shape of the resulting contour surfaces may deviate considerably from the
well-known ellipsoid-shaped contours of a Gaussian distribution. Considering non-
simplified vine copulas facilitates the modelling of even more irregular contour shapes
exhibiting twists, bumps and altering dependence patterns. In our examples we have
observed that contemplating three-dimensional contour surfaces gives more insight
into the trivariate dependence structure than only looking at the two-dimensional
marginal contour lines. While the consideration of the three bivariate marginal con-
tour plots already gives a good impression of the shape of the three-dimensional
object for simplified vine copulas, one might be surprised how twisted and con-
torted some non-simplified three-dimensional densities appear if one had only seen
the smooth bivariate contour plots. In simulated and real data applications we have
seen that non-simplified vine copulas are able to fit data with complex dependencies
very well. However, we have observed that the estimated simplified vine copulas
still capture the main features of the data providing a more smooth fit. Thus, for
practical applications, especially in higher dimensions (when the number as well as
the dimension of the parameter functions increase, causing numerical intractability)
it might be preferable to use simplified vine copulas. Thereby overfitting might be
avoided while the main properties of the data such as correlations and tail behaviour
are still well represented.
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