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Abstract

Quantile regression, that is the prediction of conditional quantiles, has steadily gained
importance in statistical modeling and financial applications. The authors introduce a new
semiparametric quantile regression method based on sequentially fitting a likelihood optimal D-
vine copula to given data resulting in highly flexible models with easily extractable conditional
quantiles. As a subclass of regular vine copulas, D-vines enable the modeling of multivariate
copulas in terms of bivariate building blocks, a so-called pair-copula construction (PCC). The
proposed algorithm works fast and accurate even in high dimensions and incorporates an au-
tomatic variable selection by maximizing the conditional log-likelihood. Further, typical issues
of quantile regression such as quantile crossing or transformations, interactions and collinear-
ity of variables are automatically taken care of. In a simulation study the improved accuracy
and saved computational time of the approach in comparison with established quantile regres-
sion methods is highlighted. An extensive financial application to international credit default
swap (CDS) data including stress testing and Value-at-Risk (VaR) prediction demonstrates
the usefulness of the proposed method.

Keywords: quantile regression, conditional distribution, vine copula, conditional copula quantile,
stress testing

1 Introduction

Predicting quantiles (e.g. median or quartiles) of a random variable conditioned on other vari-
ables taking on fixed values, has continually attracted interest and found applications in various
fields, especially in finance. It has become a standard tool for risk managers working on portfolio
optimization, asset pricing and the evaluation of systemic risk. For example, Adrian and Brunner-
meier (2016) introduce the CoVaR, a measure for systemic risk calculating conditional quantiles
of a financial institution’s loss distribution conditional on other institutions being in distress, and
use it to evaluate the institution’s contribution to systemic risk. A similar approach to measure
systemic risk is found in Brownlees and Engle (2012). Further applications of quantile regression
in the financial sector include measuring dependence in the FX markets (Bouyé and Salmon,
2009), developing pricing models for real estates (Li et al., 2013) and predicting volatilities in the
stock market (Noh et al., 2015).
The literature is quite rich in methods to predict conditional quantiles. The most famous and
therefore frequently used method is linear quantile regression (Koenker and Bassett, 1978) which
can be seen as the expansion of the well known ordinary least squares estimation used to predict
conditional means. These simple linear models have been refined to account for nonparametric
effects via additive models (Koenker, 2011; Fenske et al., 2012). Further methods include lo-
cal quantile regression (Spokoiny et al., 2013), single-index quantile regression (Wu et al., 2010),
semiparametric quantile regression (Noh et al., 2015), nonparametric quantile regression (Li et al.,
2013) and quantile regression for time series (e.g. Chen et al., 2009; Xiao and Koenker, 2009). In

∗Corresponding author, Zentrum Mathematik, Technische Universität München, Boltzmanstraße 3, 85748 Garch-
ing (email: daniel.kraus@tum.de)
†Zentrum Mathematik, Technische Universität München, Boltzmanstraße 3, 85748 Garching

1

ar
X

iv
:1

51
0.

04
16

1v
4 

 [
st

at
.M

E
] 

 1
6 

N
ov

 2
01

6

mailto:daniel.kraus@tum.de


the machine learning context, Hwang and Shim (2005) use support vector machines for conditional
quantile estimation while random forests are utilized in Meinshausen (2006). Moreover, Bouyé
and Salmon (2009) propose a general approach to nonlinear quantile regression with one predictor
based on a copula function.
The linear quantile regression method by Koenker and Bassett (1978) has been criticized by
Bernard and Czado (2015) for imposing too restrictive assumptions on the shape of the regression
quantiles. They show that for normally distributed marginals the model is misspecified as soon as
the underlying dependence structure between response and covariates deviates from a Gaussian
copula. Further, the method suffers from issues like quantile crossing and from the typical pitfalls
of linear models such as multicollinearity, selection and significance of covariates and the inclusion
of interactions or transformed variables.
In contrast, the methodology proposed in this paper makes no precise assumptions about the
shape of the conditional quantiles. The dependence relationship between response and covariates
is modeled flexibly using a parametric D-vine copula, a subclass of regular vine copulas which
have enhanced statistical modeling since the publication of the seminal paper of Aas et al. (2009).
Then, as we will show, the model’s conditional quantiles can be extracted analytically without
approximations or excessive computational effort. As is usual when working with copulas, we
further gain from the added flexibility of separating marginal and dependence modeling.
One of the main contributions of this work is a new algorithm that sequentially fits such a regres-
sion D-vine copula to given copula data, exhibiting many desirable features. On the one hand,
step by step, the algorithm adds covariates to the regression model with the objective of maximiz-
ing a conditional likelihood, i.e. the likelihood of the predictive model of the response given the
covariates. On the other hand, an automatic variable selection is incorporated, meaning that the
algorithm will stop adding covariates to the model as soon as none of the remaining covariates is
able to significantly increase the model’s conditional likelihood. This results in parsimonious and
at the same time flexible models whose conditional quantiles may strongly deviate from linear-
ity. Due to the model construction, quantile crossings do not occur. Thus, the resulting D-vine
quantile regression is able to overcome all the shortcomings of classical linear quantile regression
mentioned above and therefore adds a new (and as we will see competitive) approach to the
existing research on quantile regression.
The remainder of the paper is organized as follows. Section 2 introduces the concept of D-vines
while Section 3 describes how they can be used for the prediction of conditional quantiles. Further,
we demonstrate the usefulness of the approach in a simulation study. The prediction performance
of D-vine quantile regression and its competitor methods, which are discussed in Section 4, is
presented in Section 5. For the demonstration of the usefulness of our method we include a real
data example in Section 6 that contains financial applications of the D-vine quantile regression
featuring stress testing and Value-at-Risk prediction. Section 7 gives conclusions and areas of
future research.

2 D-vine copulas

A d-dimensional copula C is a d-variate distribution function on the unit hypercube [0, 1]d with
uniform marginal distribution functions. Sklar’s Theorem (Sklar, 1959) provides a link between
multivariate distributions and their associated copulas. It states that for every multivariate ran-
dom vector X = (X1, . . . , Xd)

′ ∼ F with marginal distribution functions F1, . . . , Fd, there exists
a copula C associated with X, such that F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). This decomposi-
tion of the multivariate distribution into its margins and its associated copula is unique when X
is absolutely continuous (which we will assume for the remainder of this paper). In that case, the
density of X can be decomposed similarly: f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1)·. . .·fd(xd),
where c(u1, . . . , ud) := ∂d

∂1···∂dC(u1, . . . , ud) is the copula density and f1, . . . , fd are the marginal
densities.
If we are interested solely in the dependence structure of X, we considered it on the so-called
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u-scale (or copula scale) by applying the probability integral transform (PIT) to its marginals:
Uj := Fj(Xj), j = 1, . . . , d. The Uj are then uniformly distributed and their joint distribution
function is the copula C associated with X. Refer to Joe (1997) and Nelsen (2007) for a de-
tailed examination of copulas including many examples of parametric copulas, especially bivariate
pair-copulas. Those are of special interest to us since they are the building blocks used for the
pair-copula construction of D-vines.
For a random vector X, a set D ⊂ {1, . . . , d} and i, j ∈ {1, . . . , d} \D we use the following
notations:

(a) CXi,Xj ;XD
(·, ·; xD) denotes the copula associated with the conditional distribution of (Xi, Xj)

′

given XD = xD. We abbreviate this by Cij;D(·, ·; xD). Further, cij;D(·, ·; xD) is the copula
density corresponding to Cij;D(·, ·; xD).

(b) FXi|XD
(·, ·|xD) denotes the conditional distribution of the random variable Xi given XD =

xD. We use Fi|D(·, ·|xD) as an abbreviation.

(c) CUi|UD
(·, ·|uD) denotes the conditional distribution of the PIT random variable Ui given

UD = uD. We abbreviate this by Ci|D(·, ·|uD).

Following Czado (2010), the joint density f of the continuously distributed random vector X can
be written in terms of (conditional) bivariate copula densities and its marginal densities as

f(x1, . . . , xd) =

d∏
k=1

fk(xk)

d−1∏
i=1

d∏
j=i+1

cij;i+1,...,j−1
(
Fi|i+1,...,j−1 (xi|xi+1, . . . , xj−1) ,

Fj|i+1,...,j−1 (xj |xi+1, . . . , xj−1) ;xi+1, . . . , xj−1
)
. (2.1)

We call this pair-copula construction (PCC) a D-vine density with order X1–X2–. . .–Xd. If all
margins are uniform, we speak of a D-vine copula. As introduced by Bedford and Cooke (2002) we
present a graph theoretic representation of the D-vine, where each edge of the graph corresponds
to a pair-copula.

Example 2.1. Figure 1 shows an exemplary 5-dimensional D-vine corresponding with

f(x1, x2, x3, x4, x5) =f1(x1)f2(x2)f3(x3)f4(x4)f5(x5)

· c12 · c23 · c34 · c45 (T1)

· c13;2 · c24;3 · c35;4 (T2)

· c14;23 · c25;34 (T3)

· c15;234, (T4)

where for brevity we omitted the arguments of the pair-copulas.
We see that all pair-copulas used in the decomposition appear as edges in the corresponding nested
set of trees displayed in Figure 1.

In order to fit a D-vine copula with a fixed order to given data, all pair-copulas appearing in
Equation (2.1) are estimated as parametric bivariate copulas. A common assumption when work-
ing with D-vines is to assume that the copulas associated with conditional distributions ci,j;D do
not depend on the specific values of the conditioning vector xD, i.e. ci,j;D(·, ·; xD) ≡ ci,j;D(·, ·). A
more detailed examination of this so-called simplifying assumption can for example be found in
Stöber et al. (2013), Hobæk Haff et al. (2010), Killiches et al. (2016a) and Killiches et al. (2016c).
The conditional distributions Fi|D (xi|xD) appearing in the PCC can be evaluated using only the
pair-copulas specified for the D-vine from lower trees by applying the following recursion, which
was first stated by Joe (1997): Let l ∈ D and D−l := D\ {l}. Then,

Fi|D (xi|xD) = hi|l;D−l
(
Fi|D−l

(
xi|xD−l

)
|Fl|D−l

(
xl|xD−l

))
, (2.2)
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T1 : 1 2 3 4 5

12 23 34 45

T2 : 12 23 34 45

13|2 24|3 35|4

T3 : 13|2 24|3 35|4
14|23 25|34

T4 : 14|23 25|34
15|234

Figure 1: Graph theoretic representation of a D-vine with order X1–X2–X3–X4–X5. The nodes
of the trees are plotted in black circles and the corresponding pair-copulas in gray squares.

where for i, j /∈ D, i < j, hi|j;D(u|v) = ∂Cij;D(u, v)/∂v = Ci|j;D(u|v) and analogously hj|i;D(u|v) =
∂Cij;D(u, v)/∂u = Cj|i;D(u|v) are the h-functions associated with the pair-copula Cij;D.
In Example 2.1 the first argument of c14;23 from Tree 3, namely F1|23(x1|x2, x3), can be evaluated
using the h-functions associated with C13;2, C12 and C23 from the first two trees:

F1|23(x1|x2, x3) = h1|3;2(F1|2(x1|x2)|F3|2(x3|x2)) = h1|3;2(h1|2(F1(x1)|F2(x2))|h3|2(F3(x3)|F2(x2))).

3 D-vine based quantile regression model

3.1 Conditional quantile function

The main purpose of D-vine copula based quantile regression is to predict the quantile of a response
variable Y given the outcome of some predictor variables X1, . . . , Xd, d ≥ 1, where Y ∼ FY and
Xj ∼ Fj , j = 1, . . . , d. Hence, the focus of interest lies on the joint modeling of Y and X and in
particular on the conditional quantile function for α ∈ (0, 1):

qα(x1, . . . , xd) := F−1Y |X1,...,Xd
(α|x1, . . . , xd). (3.3)

Using the probability integral transforms V := FY (Y ) and Uj := Fj(Xj) with corresponding PIT
values v := FY (y) and uj := Fj(xj), it follows that

FY |X1,...,Xd(y|x1, . . . , xd) = P (Y ≤ y|X1 = x1, . . . , Xd = xd)

= P (FY (Y ) ≤ v|F1(X1) = u1, . . . , Fd(Xd) = ud)

= CV |U1,...,Ud(v|u1, . . . , ud).

Therefore, inversion yields

F−1Y |X1,...,Xd
(α|x1, . . . , xd) = F−1Y

(
C−1V |U1,...,Ud

(α|u1, . . . , ud)
)
. (3.4)

Hence, the conditional quantile function can be expressed in terms of the inverse marginal distribu-
tion function F−1Y of the response Y and the conditional copula quantile function C−1V |U1,...,Ud

con-
ditioned on the PIT values of x. Note that this result was already stated for the one-dimensional
predictor case in Equation (2) of Bernard and Czado (2015).
Now, we can obtain an estimate of the conditional quantile function by estimating the marginals
FY and Fj , j = 1, . . . , d, as well as the copula CV,U1,...,Ud and plugging them into Equation (3.4):

q̂α(x1, . . . , xd) := F̂−1Y

(
Ĉ−1V |U1,...,Ud

(α|û1, . . . , ûd)
)
, (3.5)

where ûj := F̂j(xj) is the estimated PIT of xj , j = 1, . . . , d.
While regarding the F̂j there is a vast literature about the estimation of a univariate CDF, the
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question arises how to estimate the multivariate copula CV,U1,...,Ud , such that on the one hand it
facilitates a flexible model that is able to capture asymmetric dependencies, heavy tails and tail
dependencies between the variables, and on the other hand the estimated conditional quantile
function Ĉ−1V |U1,...,Ud

(α|û1, . . . , ûd) is easily calculable. The answer we suggest is to fit a D-vine

copula to (V,U1, . . . , Ud)
′, such that V is the first node in the first tree (i.e. a D-vine with order

V –Ul1–. . .–Uld , where (l1, . . . , ld)
′ is allowed to be an arbitrary permutation of (1, . . . , d)′). This

results in a flexible class of copulas since each bivariate copula of the pair-copula construction can
be modeled separately and the order of the Uj is a parameter that can be chosen such that the
conditional likelihood is maximized as will be explained in detail in the next section. Finally, the
recursion given in Equation (2.2) allows us to express CV |U1,...,Ud(v|u1, . . . , ud) in terms of nested

h-functions and consequently, C−1V |U1,...,Ud
(α|u1, . . . , ud) in terms of inverse h-functions. We will

now demonstrate this in a 4-dimensional example.

Example 3.1. For a D-vine with order V –U1–U2–U3, using Equation (2.2) the conditional dis-
tribution of V given (U1, U2, U3)

′ can recursively be expressed as

CV |U1,U2,U3
(v|u1, u2, u3) = hV |U3;U1,U2

(CV |U1,U2
(v|u1, u2)|CU3|U1,U2

(u3|u1, u2))
= hV |U3;U1,U2

(hV |U2;U1
(CV |U1

(v|u1)|CU2|U1
(u2|u1))|

hU3|U1;U2
(CU3|U2

(u3|u2)|CU1|U2
(u1|u2)))

= hV |U3;U1,U2
(hV |U2;U1

(hV |U1
(v|u1)|hU2|U1

(u2|u1))|
hU3|U1;U2

(hU3|U2
(u3|u2)|hU1|U2

(u1|u2))).

Inversion yields the conditional quantile function:

C−1V |U1,U2,U3
(α|u1, u2, u3) =

h−1V |U1

[
h−1V |U2;U1

{
h−1V |U3;U1,U2

(
α
∣∣hU3|U1;U2

(
hU3|U2

(u3|u2)
∣∣hU1|U2

(u1|u2)
))∣∣∣hU2|U1

(u2|u1)
} ∣∣∣u1] .

Note that C−1V |U1,...,Ud
(α|u1, . . . , ud) is monotonically increasing in α. Therefore, a crossing of

quantile functions corresponding to different quantile levels is not possible. This issue of quantile
crossing often arises in linear and non-linear quantile regression (e.g. see the application section of
Fenske et al., 2012). Bernard and Czado (2015) show that in linear regression quantile functions
may cross if non-Gaussian data is modeled. In addition, in (non-)linear quantile regression a sub-
stantial amount of effort has to be put into dealing with issues such as transforming response and
covariates, including interactions among covariates and avoiding collinearity between covariates.
Our approach solves these issues automatically since the distribution class given by the D-vines
is much more flexible and makes less restrictive model assumptions how the covariates influence
the response. This is also noted for regular vine regression by Cooke et al. (2015).

3.2 Estimation process

This section explains how the estimate of qα(x) is obtained using a two step estimation procedure.
All numerical calculations are done using the programming language R (R Core Team, 2016) using
the package VineCopula (Schepsmeier et al., 2016).

Let y :=
(
y(i)
)
i=1,...,n

, X :=
(
x
(i)
j

)
j=1,...,d, i=1,...,n

be n independent and identically distributed

observations of the random vector (Y,X1, X2, . . . , Xd)
′. The representation of q̂α(x) in Equa-

tion (3.5) allows us to divide the estimation process into two steps. In the first step we estimate
the marginal distribution functions FY and Fj of Y and Xj , j = 1, . . . , d, respectively, and in the
second step the D-vine that specifies the pair copulas needed to evaluate Ĉ−1V |U1,...,Ud

(α|û1, . . . , ûd)
is estimated.
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First step: estimation of the marginals
In general, we have two choices of how to fit the marginal distributions, either parametrically
or nonparametrically. Since we will fit the copula in the second step parametrically, this choice
will either result in a fully parametric or semiparametric estimate of qα(x). Noh et al. (2013)
point out that modeling the marginals as well as the copula parametrically might cause the
resulting fully parametric estimator to be biased and inconsistent if one of the parametric models
is misspecified. Therefore we prefer the semiparametric approach and estimate the marginals
nonparametrically. Since we later need the inverse of the estimated marginals for the quantile
prediction (c.f. Equation (3.5)) we do not want to use the discrete valued ECDF for the estimation.
Thus we choose the continuous kernel smoothing estimator (Parzen, 1962), which is, given a sample(
x(i)
)
i=1,...,n

, defined as

F̂ (x) =
1

n

n∑
i=1

K

(
x− x(i)

h

)
, x ∈ R, (3.6)

where K(x) :=
∫ x
−∞ k(t)dt with k(·) being a symmetric probability density function and h >

0 a bandwidth parameter. Usually, we choose k = ϕ, i.e. a Gaussian kernel, and the plug-
in bandwidth developed in Duong (2016), Equation (4), which minimizes the asymptotic mean
integrated squared error (implemented in the function kcde of the package ks (Duong, 2015)).
Hence, we obtain F̂Y and F̂j as estimates for the marginal distribution functions. We use these

to transform the observed data to pseudo copula data v̂(i) := F̂Y
(
y(i)
)

and û
(i)
j := F̂j

(
x
(i)
j

)
,

j = 1, . . . , d, i = 1, . . . , n. The pseudo copula data v̂ =
(
v̂(i)
)
i=1,...,n

, Û =
(
û
(i)
j

)
j=1,...,d, i=1,...,n

is

then an approximately i.i.d. sample from the PIT random vector (V,U1, . . . , Ud)
′ and will be used

to estimate the D-vine copula in the second step.

Second step: estimation of the D-vine
As motivated by Equation (3.5), we fit a D-vine with order V –Ul1–. . .–Uld to the pseudo copula
data, since then the evaluation of Ĉ−1V |U1,...,Ud

(α|û1, . . . , ûd) which is needed to calculate the con-

ditional quantile is easily feasible. For this to work the ordering l = (l1, . . . , ld)
′ can generally be

chosen arbitrarily. However, since the explanatory power of the resulting model does depend on
the particular ordering, we want to choose it such that the resulting model for the prediction of the
conditional quantile has the highest explanatory power. Since it would be infeasible to compare
all d! possible orderings, we propose a new algorithm that automatically constructs the D-vine
sequentially choosing the most influential covariates. Similar to the step function for sequential
estimation of linear models (cf. Venables and Ripley, 2002), starting with zero covariates, in each
step we add the covariate to the model that improves the model’s fit the most. As a measure for
the model’s fit, we define the conditional log-likelihood (cll) of an estimated D-vine copula with
ordering l, estimated parametric pair-copula families F̂ and corresponding copula parameters θ̂
given pseudo copula data (v̂, Û) as

cll
(
l, F̂ , θ̂; v̂, Û

)
:=

n∑
i=1

ln cV |U

(
v̂(i)|û(i); l, F̂ , θ̂

)
. (3.7)

The conditional copula density cV |U can be expressed as the product over all pair-copulas of the
D-vine that contain V (see Killiches et al., 2016b):

cV |U

(
v̂(i)|û(i); l, F̂ , θ̂

)
= cV Ul1 (v̂(i), û

(i)
l1

; F̂V Ul1 , θ̂V Ul1 )×
d∏
j=2

cV Ulj ;Ul1 ,...,Ulj−1

(
ĈV |Ul1 ,...,Ulj−1

(
v̂(i)|û(i)l1 , . . . , û

(i)
lj−1

)
, ĈUlj |Ul1 ,...,Ulj−1

(
û
(i)
lj
|û(i)l1 , . . . , û

(i)
lj−1

)
;

F̂V Ulj ;Ul1 ,...,Ulj−1
, θ̂V Ulj ;Ul1 ,...,Ulj−1

)
,
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where F̂I and θ̂I denote the estimated family and parameter(s) of pair-copula cI .
We now describe the D-vine regression algorithm which sequentially constructs a D-vine while
maximizing the model’s conditional log-likelihood in each step (for a detailed code see Ap-
pendix A). Assume that at the beginning of the kth step of the algorithm the current optimal
D-vine contains k − 1 predictors (for illustration, see the black D-vine in Figure 2). For each of
the remaining variables Uj that have not been chosen yet, we fit the pair-copulas that are needed
to extend the current model to a D-vine with order V –Ul1–. . .–Ulk−1

–Uj (see the gray circles) and
compute the resulting model’s conditional log-likelihood. Then, the current model is updated by
adding the variable corresponding to the highest cll, concluding step k. That way, step by step
the covariates are ordered regarding their power to predict the response.

V Ul1
. . . Ulk−1 Uj

V Ul1
. . . Ulk−2

Ulk−1
Ulk−1

Uj

...
...

V Ulk−1
|Ul1 , . . . , Ulk−2

Ul1Uj |Ul2 , . . . , Ulk−1

V Uj |Ul1 , . . . , Ulk−1

Figure 2: Extending the current D-vine (black) by adding Uj in the k-th step of the algorithm.
For this purpose, the gray pair-copulas have to be estimated.

In the case that in the kth step none of the remaining covariates is able to increase the model’s
cll, the algorithm stops and returns the model only containing the k − 1 chosen covariates so far.
Therefore, an automatic forward covariate selection is accomplished resulting in parsimonious
models. In order to get even more parsimonious models, we also consider two variants of the cll
penalizing the number of parameters |θ̂| used for the construction of the D-vine: the AIC-corrected
conditional log-likelihood cllAIC, defined as

cllAIC
(
l, F̂ , θ̂; v̂, Û

)
:= −2 cll

(
l, F̂ , θ̂; v̂, Û

)
+ 2|θ̂|

and the BIC-corrected conditional log-likelihood cllBIC, defined as

cllBIC
(
l, F̂ , θ̂; v̂, Û

)
:= −2 cll

(
l, F̂ , θ̂; v̂, Û

)
+ log(n)|θ̂|.

Depending on how parsimonious the resulting model is desired to be, one can decide which version
of the conditional log-likelihood to use. In our applications in the later sections we always use
the AIC-corrected cllAIC since in the simulation study it has shown to select the most reasonable
models in the sense that unimportant variables are disregarded and influential ones are kept in
most of the instances.

Example 3.2. We illustrate how the algorithm works for a four-dimensional data set (y(i), x
(i)
1 , x

(i)
2 , x

(i)
3 )′,

i = 1, . . . , n = 500, sampled from (Y,X1, X2, X3)
′ ∼ N4(0,Σ) with

Σ =


1 0.4 0.8 0

0.4 1 0.32 0
0.8 0.32 1 0
0 0 0 1

 .
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First, the data is transformed to pseudo copula data (v̂(i), û
(i)
1 , û

(i)
2 , û

(i)
3 )′, i = 1, . . . , n, using the

kernel smoothing estimators introduced in Equation (3.6).
In the first step of the algorithm, for each of the pairs (V,Uj)

′, j = 1, 2, 3, the AIC-optimal
pair-copula is chosen using the function BiCopSelect of the R package VineCopula with an
independence test at level 0.05 (as described in Genest and Favre, 2007). Further, the conditional
log-likelihood is calculated for each of the pairs (we omit the AIC- and BIC-corrected cll-values
here, since the fitted models have the same number of parameters and therefore these statistics
would imply the same conclusions). The results are shown in the Table 1. Implying the largest
cll, U2 is chosen as the first variable to construct the D-vine.

Pair-copula ĈV,U1 ĈV,U2 ĈV,U3

Family Gauss Gauss Indep
Parameter 0.34 0.79 0

cll 33.0 249.4 0

Table 1: Candidate models with corresponding cll after the algorithm’s first step.

In the second step, we investigate whether the addition of either of the remaining variables U1

or U3 to the current D-vine can improve the conditional log-likelihood of the model. Adding U1

would update the D-vine to order V –U2–U1 with newly estimated pair-copulas ĈV,U1;U2 (Gaus-

sian with ρ = 0.27) and ĈU1,U2 (Gaussian with ρ = 0.23). The log-likelihood of the resulting
conditional copula ĉV |U2,U1

is 269.8. The addition of U3 would result in both new pair-copulas
to be estimated as independence copulas. Consequently, the conditional log-likelihood would not
improve compared to the model without U3. Since 269.8 > 249.4, we update the vine to order
V –U2–U1.
In the third step, we check whether the addition of the remaining variable U3 to the D-vine
improves the conditional log-likelihood of the model. Not surprisingly, as in the second step
the new pair copulas ĈV,U3;U2,U1 , ĈU2,U3;U1 and ĈU1,U3 are all estimated to be the independence
copula. Hence, the conditional log-likelihood of the full model with order V –U2–U1–U3 is equal
to the one with order V –U2–U1. Consequently, the algorithm stops and returns the D-vine with
order V –U2–U1.

This example demonstrates the main advantages of the proposed algorithm: It automatically
selects the influential covariates, ranks them by their strength of predicting the response, disregards
any superfluous variables and finally flexibly models the dependence between the response and
the chosen covariates. Thus, the typical issues of regression such as collinearity, transformation
and inclusion/exclusion of covariates are solved without any additional effort.
In the following simulation study, we compare the performance of D-vine based quantile regression
to conventional and established quantile regression methods in settings where the true quantile is
known.

4 Established quantile regression methods

Linear quantile regression (LQR) Koenker and Bassett (1978) were one of the first researchers
in the field of quantile regression. For their linear quantile regression model, they assume the
predicted conditional quantiles to be linear in the predictors, i.e.

q̂α

(
x
(i)
1 , . . . , x

(i)
d

)
:= β0 +

d∑
j=1

βjx
(i)
j , (4.8)

where the regression coefficients β ∈ Rd+1 are chosen to solve the minimization problem

min
β∈Rd+1

α
n∑
i=1

y(i) − β0 − d∑
j=1

βjx
(i)
j

+

+ (1− α)
n∑
i=1

β0 +
d∑
j=1

βjx
(i)
j − y(i)

+ . (4.9)
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Linear quantile regression has drawn criticism for its strong assumption of linear conditional
quantiles. Bernard and Czado (2015) highlight its pitfalls showing that the linearity assumption
is almost never fulfilled. For example, assuming normal margins the only copula resulting in
linear conditional quantiles is the Gaussian copula, which is very restrictive. Another major flaw
of linear quantile regression Bernard and Czado (2015) point out is that regression lines of different
quantile levels may cross, since they may have differing slopes. These drawbacks are also seen in
the results of the simulation. Regarding implementation, we use the R-function rq of the package
quantreg (Koenker, 2013).

Boosting additive quantile regression (BAQR) In order to relax the linearity assumption of
the above method Koenker (2005) proposes to use additive models for quantile regression, i.e.

q̂α

(
x
(i)
1 , . . . , x

(i)
d , z

(i)
1 , . . . , z

(i)
J

)
:= β0 +

d∑
j=1

βjx
(i)
j +

J∑
j=1

gj

(
z
(i)
j

)
, (4.10)

where gj denotes a smooth function of the continuous variable z
(i)
j , j = 1, . . . , J . Commonly, these

functions are estimated by means of B-spline basis functions with a rather small number of knots
at fixed points, solving a minimization similar to Equation (4.9) with additional penalization of
the total variation of the derivatives of the smooth functions (see Koenker, 2011). In contrast,
Fenske et al. (2012) use boosting techniques for the estimation of additive quantile regression and
show in simulation studies the superiority over the total variation regularization approach. In
short, boosting minimizes a given loss function (analogue to Equation (4.9)) by stepwise updating
the estimator along the steepest gradient descent of the loss function. The optimal number of
boosting iterations is determined as in Fenske et al. (2012) using a test data set. The algorithm
is implemented in the function gamboost of the package mboost (Hothorn et al., 2015), for which
we choose the parameter settings exactly as in the electronic supplement of Fenske et al. (2012).

Nonparametric quantile regression (NPQR) A fully nonparametric estimation of a conditional
quantile is proposed by Li et al. (2013). After estimating the conditional distribution function
F̂ (y|x1, . . . , xd) nonparametrically by applying a kernel estimator with an automatic data-driven
bandwidth selector, the authors estimate the conditional quantile function qα(x1, . . . , xd) by nu-
merically inverting the estimated conditional distribution function, solving

q̂α(x1, . . . , xd) := argmin
q

∣∣∣α− F̂ (q|x1, . . . , xd)
∣∣∣ . (4.11)

In R, we use the function npqreg of package np (Hayfield et al., 2008), where the bandwidths are
selected automatically by the function npcdistbw (with default settings).

Semiparametric quantile regression (SPQR) The semiparametric method of Noh et al. (2015)
uses a copula density weighted quantile regression approach. Similar to our procedure, Noh
et al. (2015) propose a copula-based multivariate model for which they estimate the marginal
distributions nonparametrically and the copula as a regular vine ĉ (see Aas et al., 2009), which is
a generalization of D-vines. Since in this case the conditional copula quantile function C−1V |U1,...,Ud
in Equation (3.5) can in general not be calculated as elegantly as in the case of a fitted D-vine, the
authors suggest to estimate the conditional quantile via minimizing a weighted check function:

q̂α(x1, . . . , xd) = argmin
a

n∑
i=1

ρα(y(i) − a)ĉ
(
F̂Y (y(i)), F̂1(x

(i)
1 ), . . . , Fd(x

(i)
d )
)
, (4.12)

where ρα(y) = y(α − 1(y < 0)) denotes the check function. Since this method is currently not
implemented in R, we use the function RVineStructureSelect of the package VineCopula for the
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estimation of the regular vine and solve for the conditional quantile minimizing Equation (4.12)
using the optimize function.
While this approach might appear quite similar to our proposed one, the main difference between
D-vine and semiparametric quantile regression is that our approach is able to analytically solve for
the conditional quantiles while the semiparametric method computes the quantile by numerical
minimization. This works especially badly when the sample size is small (and takes a very long
time if it is large). Further, our approach estimates the model by selecting covariates with the
objective of explaining the response (by maximizing the cll), while the method of Noh et al. (2015)
estimates an R-vine that fits the overall distribution to all variables with no particular focus on
the response.

5 Results of the simulation study

We consider the following three scenarios for the random vector (Y,X1, . . . , Xd)
′:

• C3: (Y,X1, X2)
′ follows a three-dimensional Clayton copula with parameter δ1 or δ2 and

margin set M1 or M2 (see Table 2, row 1).

• t5: (Y,X1, . . . , X4)
′ follows a five-dimensional t copula with 3 degrees of freedom, association

matrix R1 or R2 and margin set M1 or M2 (see Table 2, row 2).

• M5: X ∼ N4(0,Σ), with Σij = 0.5|i−j|.
Y :=

√
|2x1 − x2 + 0.5|+ (−0.5x3 + 1)(0.1x34) + σε with ε ∼ N(0, 1), σ ∈ {0.1, 1}.

Scen. Copula parameter Marginals

C3
δ1 = 0.86
δ2 = 4.67

Y X1 X2

M1 N (0, 1) t4(0, 1) N (1, 4)

M2 st4(0, 1, 2) sN (−2, 0.5, 3) st3(1, 2, 5)

t5

R1 =


1 0.6 0.5 0.5 0.4

0.6 1 0.5 0.5 0.5
0.5 0.5 1 0.5 0.5
0.5 0.5 0.5 1 0.5
0.4 0.5 0.5 0.5 1



R2 =


1 0.27 0.74 0.72 0.41

0.27 1 0.28 0.29 0.27
0.74 0.28 1 0.74 0.42
0.72 0.29 0.74 1 0.40
0.41 0.27 0.42 0.40 1



Y X1 X2

M1 N (0, 1) t4(0, 1) N (1, 4)

M2 st4(0, 1, 2) sN (−2, 0.5, 3) st3(1, 2, 5)

X3 X4

M1 t4(0, 1) N (1, 4)

M2 sN (−2, 0.5, 3) st3(1, 2, 5)

Table 2: Parameter and marginal settings for Scenarios C3 and t5 of the simulation study.
sN (µ, σ2, ξ) and stν(µ, σ2, ξ) denote the skewed normal and skewed t distribution with ν degrees
of freedom, respectively. ξ is the skewness parameter as described in Azzalini (2014). Higher
values of ξ correspond to more skewed distributions.

In these scenarios the true quantile functions are known. See Appendix B for an analytical
derivation of the conditional quantiles of the multivariate t copula as well as the three-dimensional
Clayton copula.
To assess the performance of each of the estimation methods we consider the estimated out-of-
sample mean integrated square error ( ˆMISEm) of method m, defined as

ˆMISEm :=
1

R

R∑
r=1

[
1

neval

neval∑
i=1

{
q̂(r)m,α

(
xevalr,i

)
− qα

(
xevalr,i

)}2
]
, (5.13)
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where, for each replication r = 1, . . . , R = 100, we simulate a training data set
(
ytrainr,i ,xtrainr,i

)
,

i = 1, . . . , ntrain, from the distribution of (Y,X)′, and further simulate an evaluation data set(
xevalr,i

)
, i = 1, . . . , neval, of the distribution of X. In this study we choose neval = 1

2ntrain. For

each replication r we estimate q̂
(r)
m,α(·), the quantile estimator of method m based on the training

data set. Then, we use the evaluation data set to estimate the integrated square error between
the resulting estimates and the true quantiles. Finally, the mean over all replications is taken to
yield the estimated mean integrated square error.
In order to better compare the performance of the competitor methods relative to D-vine regression
we also consider the relative estimated mean integrated square error of method m, defined as

ˆRMISEm :=
ˆMISEm

ˆMISEDVQR
, (5.14)

where ˆMISEDVQR is the estimated MISE of D-vine quantile regression. Values greater than one
imply a worse relative performance compared to D-vine quantile regression.
For each of the scenarios we present a table containing its results. The first two columns of
each table specify the parameter settings for the margins and dependence structure. The third
column gives information about the sample size of the training data set used to fit the models,
while the fourth column determines which quantile is estimated. The fifth column contains the
estimated MISE values obtained using D-vine quantile regression. The relative performances of
the competitor methods can be found in columns six to nine in terms of the estimated RMISE as
defined above.

Results for Scenario C3 At first we will consider the results of Scenario C3 in Table 3. A plot
of the true quantile functions for this scenario is displayed in Figure 5 of Appendix B.

margins δ ntrain α ˆMISEDVQR

ˆRMISEm

LQR BAQR NPQR SPQR

M1

δ1

300
0.5 0.0118 4.08 2.87 4.39 0.97
0.95 0.0252 3.94 3.13 4.23 1.09

1000
0.5 0.0036 12.91 5.26 7.56 1.07
0.95 0.0083 7.02 4.20 7.28 1.09

δ2

300
0.5 0.0029 10.60 5.72 9.24 1.63
0.95 0.0171 7.21 4.21 6.80 1.22

1000
0.5 0.0011 30.90 11.86 16.80 1.46
0.95 0.0054 20.06 7.09 12.90 1.19

M2

δ1

300
0.5 0.0078 6.13 3.71 6.74 1.12
0.95 0.0776 3.40 2.43 6.74 1.06

1000
0.5 0.0022 20.53 6.02 14.55 1.19
0.95 0.0209 7.54 4.05 13.45 1.09

δ2

300
0.5 0.0036 10.55 6.59 19.24 1.98
0.95 0.0664 3.29 2.43 8.76 1.17

1000
0.5 0.0012 31.28 11.90 35.62 2.37
0.95 0.0183 8.28 4.73 18.72 1.22

Table 3: ˆMISE of D-vine quantile regression and the relative performances of the other estimation
methods based on data generated by Scenario C3 with different parameter settings as specified
in Table 2.

With regard to the estimated mean integrated square error of D-vine quantile regression (column
5) we see that the model fits very well with errors ranging in the order of magnitude 10−3 to 10−2

(we do not show plots of the fitted quantiles since they are almost identical to those displayed
in Figure 5). We generally observe that the 50%-quantile has a better fit than the 95%-quantile
which is not surprising since the univariate estimator of the 50%-quantile is more robust. Further,
it is clear that the prediction errors are reduced when the training sample size increases. It is also
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plausible that the size of errors drops when changing from the setting of low dependence (δ1) to
high dependence (δ2). Concerning the marginal distributions it is reasonable that the performance
of the 95%-quantile prediction worsens when the response distribution is skewed and heavy-tailed,
since its marginal estimation is more imprecise, especially in the tails.
Comparing the estimated MISE values of D-vine quantile regression with the other methods
described in Section 4 using the estimated relative mean integrated square error, we see that it
outperforms its competitors by a great margin. The plots of the true conditional quantiles in
Figure 5 imply that the linearity assumption of linear quantile regression is clearly violated in this
scenario which results in severe prediction errors up to 30 times higher than our method. Using
boosting additive models that allow for a nonlinear relationship manage to improve these results,
however still lagging behind D-Vine quantile regression by a factor of 2.4 to 11.9. Further, in this
example nonparametric quantile regression also seems too imprecise to be a serious competitor
to D-vine quantile regression. Being conceptually closest to our method, it is not surprising that
the semiparametric approach performs similarly well. However, except for one parameter setting
it is still outperformed by the D-vine quantile regression considerably. Especially in the case of
high dependence (δ2) and skewed margins (M2) its predictions generate notably higher errors.
Possible explanations for this are given in the last paragraph about SPQR in Section 4.
At this point we shortly focus on the computational times of the different quantile regression
methods. Since they do not depend on the margins or copula parameter, we present in Table 4
the computational times for the exemplary setting δ1 and M1 for different sizes of the training
data set. The times are given in seconds needed for the R=100 repetitions of estimating the 0.5-
and 0.95-quantiles.

ntrain DVQR LQR BAQR NPQR SPQR

300 446 0.79 44 3065 4125
1000 1364 1.23 84 22768 24144

Table 4: Computational times in seconds for the different quantile regression methods in the
exemplary setting δ1 and M1.

Due to the simplicity of linear quantile regression its computation times are unbeatable. Also,
boosting additive models are considerably faster than the remaining methods. However, we ob-
serve that D-vine quantile regression is much faster than its nonparametric and semiparametric
competitors. Further, the computational time of D-vine quantile regression grows linearly in ntrain
while for the other two methods it seems to increase at a much higher rate. Moreover, we note that
for the prediction of quantiles at different α-levels D-vine quantile regression has the advantage
of having to fit the model only once and then being able to easily extract different conditional
quantiles by evaluating the inverse h-functions. For the other methods a separate optimization
has to be performed for each quantile level.

Results for Scenario t5 The competitive advantage of D-vine quantile regression over the com-
petitor methods is also supported by the results of Scenario t5 displayed in Table 5.
However, with the t-distribution being a little bit closer to the Gaussian model, the linearity
assumption of the linear quantile regression method is not violated as severely resulting in smaller
relative errors. In fact, in the setting of a small training sample size ntrain = 300, the prediction of
the median is a bit more accurate than the prediction using any of the other methods. Nevertheless,
in the tails of the distribution (α = 0.95), where the t- and the Gaussian distribution differ the
most, it looses this property. Again, the results of the boosting additive and nonparametric method
are well behind the others with especially bad relative performance in predicting the median when
the sample size is large. Concerning the prediction of median values D-vine quantile regression
also outperforms the semiparametric approach whose relative errors lie between 1.23 and 2.18. In
the tail they perform quite similar with relative errors ranging between 0.75 and 1.17. All in all,
D-vine quantile regression is still the preferred method, especially for larger sample sizes.
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margins δ ntrain α ˆMISEDVQR

ˆRMISEm

LQR BAQR NPQR SPQR

M1

R1

300
0.5 0.0357 0.62 1.28 2.68 1.46
0.95 0.0774 1.98 1.65 2.26 1.17

1000
0.5 0.0063 1.90 2.81 9.05 1.63
0.95 0.0303 4.18 2.73 5.03 0.75

R2

300
0.5 0.0214 0.59 1.27 2.45 1.23
0.95 0.0738 1.46 1.36 1.87 0.97

1000
0.5 0.0052 1.34 2.33 6.56 2.18
0.95 0.0278 3.44 2.58 3.80 0.98

M2

R1

300
0.5 0.0319 0.91 1.92 3.81 1.60
0.95 0.2912 1.37 1.08 1.64 1.04

1000
0.5 0.0103 2.61 3.54 10.92 1.44
0.95 0.1702 2.10 1.47 2.63 0.97

R2

300
0.5 0.0250 0.81 1.61 4.08 1.53
0.95 0.1842 1.17 1.02 1.71 1.06

1000
0.5 0.0078 1.90 2.64 12.74 2.13
0.95 0.0948 2.05 1.45 3.27 1.17

Table 5: ˆMISE of D-vine quantile regression and the relative performances of the other estimation
methods based on data generated by Scenario t5 with different parameter settings.

Results for Scenario M5 Finally, Table 6 displays the results corresponding to Scenario M5.

σ ntrain α ˆMISEDVQR

ˆRMISEm

LQR BAQR NPQR SPQR

0.1
300

0.5 0.209 1.39 0.67 0.41 0.95
0.95 0.514 1.37 0.68 0.30 1.04

1000
0.5 0.228 1.42 0.61 0.34 0.95
0.95 0.551 1.36 0.67 0.23 1.09

1
300

0.5 0.249 1.16 0.85 0.76 0.95
0.95 0.312 1.19 0.90 1.02 0.92

1000
0.5 0.215 1.40 0.75 0.61 0.95
0.95 0.289 1.27 0.84 0.76 0.95

Table 6: ˆMISE of D-vine quantile regression and the relative performances of the other estimation
methods based on data generated by Scenario M5 with different parameter settings.

Motivated by Dette et al. (2014) who argue that a non-monotonic relationship between the re-
sponse and the predictors cannot be modeled by a parametric copula, we consider Scenario M5
as a case where no parametric D-vine (or R-vine) is able to perfectly capture the model’s depen-
dence structure, such that the model is misspecified. This becomes noticeable when looking at the
estimated mean squared error of D-vine quantile regression which is clearly larger than in the pre-
vious examples. Also, we observe that the order of magnitude of the errors does not change when
moving from a small to a large sample size implying a model bias. This model bias also seems
to be visible when linear and semiparametric quantile regressions are used. All three models are
quite close in performance with the linear model falling a bit behind. However, we observe that
in this scenario nonparametric and boosting additive quantile regression methods excel. Imposing
no restrictions on the model assumptions, NPQR generates relative errors ranging between 0.23
and 1.02. This motivates further research to facilitate the inclusion of nonparametric pair-copulas
(Nagler and Czado, 2016) in the construction of the D-vine used for quantile regression to ac-
commodate non-monotonicities. The need for this is also underlined in the setting σ = 0.1 and
ntrain = 300 by an exemplary scatterplot between Y and X1 (which is the first variable chosen by
the D-vine regression algorithm), displayed in the left panel of Figure 3 (together with a locally
weighted scatterplot smoothing line).
We clearly see a non-monotonic relationship between X1 and Y . Currently, no pair-copula im-
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Figure 3: Left: Exemplary scatterplot between Y and X1 in the setting σ = 0.1 and ntrain = 300
of Scenario M5, together with a locally weighted scatterplot smoothing line. Right: Empirical
nonparametric contour plot of the copula between X1 and Y with standard normal margins (solid)
and the corresponding contour plot of the fitted copula (dashed).

plemented in the VineCopula package is able to model such a dependence. The solid lines of
the right panel of Figure 3 display the empirical nonparametric contour plot of the corresponding
copula with standard normal margins generated by the function kdecop of the package kdecopula
(Nagler, 2016). In dashed lines the corresponding contour plot of the fitted parametric copula
is shown (Joe copula with τ ≈ 0.25). The unsatisfying model fit is obvious and explains the
rather high estimated MISE values. With this in mind, it is also understandable that a larger
training sample size does not help to improve the model fit and prediction accuracy of D-vine
quantile regression for this example. However, we observe that the nonparametrically estimated
copula manages to model the non-monotonic dependence of the data quite well (for visualization
purposes we added the data points transformed to have standard normal margins as well). Hence,
by using a nonparametric copula to model the dependence of the pair (Y,X1), a model misspeci-
fication as described in Dette et al. (2014) would be avoided. Further, as discussed in Nagler and
Czado (2016) in detail, by modeling only bivariate copulas nonparametrically the dreaded curse
of dimensionality is evaded.

6 Application to the CDS data set

As an application of D-vine quantile regression to real data we want to exploit interdependencies
in the financial market in order to set up models that are able to forecast performances of single
institutions as well as construct global stress tests. For these purposes we consider a data set
containing 1371 daily observations (01/04/2006 – 10/25/2011) of log-returns of credit default swap
(CDS) spreads with 5 year maturity of 38 European, US American and Asian-Pacific financial
institutions in the banking and insurance sectors. This data set has already been analyzed by
Brechmann et al. (2013), who argue that CDS spreads are a viable and accurate measure of
a company’s creditworthiness. After applying an appropriate GARCH model to each of the
univariate time series in order to get approximately i.i.d. residuals, Brechmann et al. (2013)
perform stress tests. By sampling from a conditional C-vine the authors stress one company at a
time (i.e. setting it to its 90%/95%/99% quantile) and examine the impact on the other institutions
conditioned on this stress event. With our method we can go even further and consider scenarios
where more than one company is in distress. This allows us to investigate the spillover effects of
a financial crisis in a certain region or branch to other regions and branches. Additional to the
stress tests we use D-vine quantile regression models later in this chapter in order to predict an
institution’s CDS spread log-returns given its past values and the log-returns of peer companies.
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In an out-of-sample test we demonstrate the competitiveness of our approach once again.

6.1 Stress testing

The financial institutions considered in the stress test are 18 banks and 20 (re-)insurers from the
regions USA, Europe and Asia-Pacific:

• Banks: USA (Goldman Sachs (GS), JP Morgan Chase (JPM), Citigroup), Europe (Banco
Bilbao Vizcaya Argentaria (BBVA), Banco Santander (BS), Barclays, BNP Paribas, Deutsche
Bank (DB), Intesa Sanpaolo, Royal Bank of Scotland (RBS), Société Générale (SG), Stan-
dard Chartered (StanCha), UBS, Unicredit), Asia-Pacific (Bank of China (BoC), Kookmin
Bank, Sumitomo Mitsui, Westpac Banking)

• (Re-)Insurers: USA (ACE, Allstate, American International Group (AIG), Chubb, Hart-
ford Financial Services, XL Group), Europe (Aegon, Allianz, Assicurazioni Generali, Aviva,
AXA, Hannover Rück (HR), Legal & General (LG), Munich Re (MR), Prudential, SCOR,
Swiss Re (SR), Zurich Insurance), Asia-Pacific (Tokio Marine (TM),QBE Insurance)

We consider three stress scenarios, corresponding to crises originating in different sectors, and
investigate the resulting spillover effects. For this, we proceed as in Brechmann et al. (2013) and
remove serial dependencies from each of the 38 univariate time series by fitting adequate GARCH
models. The resulting residuals rj , j = 1, . . . , 38, which are approximately independent and dis-
tributed according to their model’s estimated innovations distribution F̂j , carry the information
about the dependence structure between the institutions. We consider company j to be stressed
at level κ ∈ (0, 1), if its residual rj takes on the 100κ%-quantile of its innovation distribution F̂j ,
i.e. rj = F̂−1j (κ). This is equivalent to the PIT transformed variable uj := F̂j(rj) taking on value
κ. Likewise, we are interested in the resulting predicted quantile levels of the non-stressed com-
panies. This allows us to directly work on the u-scale and consider the PIT transformed variables
uj := F̂j(rj), j = 1, . . . , 38, and their dependencies.
In Scenario 1, we analyze the effect of stressing the European systemic banks as specified by In-
ternational Monetary Fund (2009) at different stress levels. Therefore, we stress the banks Banco
Santander, Barclays, BNP Paribas, Deutsche Bank, Royal Bank of Scotland, Société Générale,
UBS and Unicredit at level κ ∈ {0.9, 0.95, 0.99} (corresponding to moderate, severe and extreme
stress scenarios) and use D-vine quantile regression to estimate the conditional medians of the
remaining institutions conditioned on this stress event. This way, we can assess the spillover effect
to other sectors and regions. The left panel of Figure 4 shows the results of the stress test of
Scenario 1. For each institution the predicted median values for the three stress levels are coded
by circles (moderate stress with κ = 0.9), diamonds (severe stress with κ = 0.95) and triangles
(extreme stress with κ = 0.99). For visualization, the currently stressed institutions’ names are
printed in bold and italic. Further, solid lines separate the geographical regions (Europe in the
upper, USA in the middle and Asia-Pacific in the lower panel), while dashed lines separate banks
(upper) from insurance companies (lower).
We observe that the spillover effect is strongest for European insurances with predicted median

values of up to 0.98 (Allianz and Aviva) for the extreme stress scenario. The comparably small
values of the British bank Standard Chartered are explained by the fact that according to their
annual report of 2014 (https://www.sc.com/annual-report/2014/documents/SCB_ARA_2014_
full_report.pdf) 90% of the bank’s income and profits are earned in Asia, Africa and the Middle
East. Similar arguments holds for the British insurance company L&G with operations in Asia and
the United States (http://www.legalandgeneralgroup.com/all-our-sites/). Another group
that is affected quite strongly by this stress scenario are the US banks with predicted median
values exceeding 0.9 in the extreme stress case. However, we observe that the geographic spillover
effect is stronger than the institutional one, because the effect on European insurance companies
is stronger than the effect on US banks. US insurance companies as well as the Asian-Pacific
market are also affected by the stress scenario, but not as severe as the other groups.
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Figure 4: Stress tests stressing European systemic banks (left), major European banks (middle)
and US banks (right). For each institution the predicted median values for the three stress levels
are represented by circles (moderate stress with κ = 0.9), diamonds (severe stress with κ = 0.95)
and triangles (extreme stress with κ = 0.99).

It is interesting to see that in Scenario 2, where we only stress the three major European banks
Barclays, BNP Paribas and Deutsche Bank, the results of the stress test are very similar to those
of Scenario 1. We can conclude, that for a crisis to evolve it suffices that only few but important
banks default. In the last scenario, we analyze the spillover effect of a default of the US American
banking system (see third panel of Figure 4). Therefore, we stress the banks Citigroup, Goldman
Sachs and JP Morgan Chase at level κ ∈ {0.9, 0.95, 0.99} and estimate the conditional medians
of the remaining institutions conditioned on this stress event. Again, we see the quite strong
interconnectedness between US banks and insurance companies, as well as between US banks and
the European market, and observe rather weak spillover effects on the Asian-Pacific sector.
Finally, in the right panel of Figure 4, we compare the stress testing results of D-vine quantile
regression to those of linear quantile regression for Scenario 3. Additional to the filled symbols
indicating the results of DVQR, we also added the predicted medians of LQR with empty sym-
bols, where circles again denote moderate stress (κ = 0.9), diamonds severe stress (κ = 0.95)
and triangles extreme stress (κ = 0.99). We see that for almost all companies linear regression
overestimates the moderate stress results and underestimates the extreme ones. This reflects the
fact that Gaussian dependence structure implied by linear quantile regression fails to imitate the
tail dependence that is typically exhibited by financial data such as these CDS log returns. An-
other flaw of linear quantile regression observable from the plot is that due to the linearity of the
model the median predictions for the three different stress levels seem to always have a similar
distance to each other. The predictions of the D-vine based quantile regression appear as much
more flexible with some narrower, wider and skewed sets of predictions for the three stress levels.
The linear quantile regression results of Scenarios 1 and 2 allow for similar conclusions and are
therefore omitted here.
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6.2 Out-of-sample quantile prediction

In order to assess the prediction performance of D-vine quantile regression we conduct an out-of-
sample test. For this, we consider the raw CDS log-return data (i.e. no time series models were
fitted). The goal is to predict the companies’ conditional Value-at-Risk at several time points, i.e.
the quantiles of Yt (the CDS log-returns of company Y at time t) given its past values Yt−1, . . . , Yt−l
(for some lag l ≥ 1) and the past and current values of its peer companies Xt, . . . ,Xt−l. In the
out-of-sample test, we split the data set at a certain time point into a training data set, based on
which we will fit the different quantile regression models, and an evaluation data set used assess
the performance of the methods. As a split point we choose the date November 8th, 2010, such
that the training data set contains ntrain = 1121 observations and the evaluation data set contains
neval = 250 observations. Note that this sample is not i.i.d. However, since we can assume that
it fulfills the strong mixing condition due to low autocorrelations for lags higher than 3 (Hansen,
2008), the approach of estimating the marginals nonparametrically is justified.
One by one, we consider the CDS log-returns of each of the 38 financial institutions as responses.
For a fixed response it is not possible to use all of the remaining 37 institutions as predictors since
the computational times for the nonparametric and semiparametric quantile regression methods
would be too high. Therefore, we reduce the number of predictors by running the D-vine regression
algorithm on all of the remaining institutions with lag value l equal to 2 and choosing only the
meaningful institutions as potential covariates. This D-vine based screening of the covariates
results in a total of 5-10 variables selected, depending on the response institution. No lags higher
than l = 1 were chosen.
Using the selected covariates, for each of the 38 institutions we fit the five previously introduced
quantile regression methods on the training data and afterwards apply them to the out-of-sample
data set to estimate conditional quantiles at levels α ∈ {0.5, 0.01, 0.99, 0.995}. Note that for
α = 0.995 the predicted quantile corresponds to the conditional Value-at-Risk at the 99.5%-level.
In this out-of-sample test the true regression quantiles are unknown, we just observe a realization
for each day. A possible way of evaluating the predicted α-quantiles for some α ∈ (0, 1) is given
by the averaged tick-loss Ljα,m (see e.g. Komunjer, 2013), which, for company j, evaluation sample

size neval, observations y(i) and quantiles q
(i)
α,m predicted by using method m, i = 1, . . . , neval, is

defined by

Ljα,m =
1

neval

neval∑
i=1

ρα(y(i) − q̂(i)α,m),

where again ρα(y) = y(α− 1(y < 0)) denotes the check or tick function.
Table 7 displays the tick-loss Lα,m of predicted quantiles at levels α ∈ {0.5, 0.01, 0.99, 0.995} for
the prediction methods m ∈ {DVQR,LQR,BAQR,NPQR, SPQR}, averaged over the 38 financial
institutions, i.e. Lα,m = 1/38

∑38
j=1 L

j
α,m.

quantile DVQR LQR BAQR NPQR SPQR

0.5 6.14 6.12 6.15 7.68 6.14
0.01 0.63 0.99 0.69 0.75 0.61
0.99 0.72 1.11 0.82 0.87 0.71
0.995 0.43 0.73 0.50 0.55 0.43

Table 7: Results of the out-of-sample test predicting the CDS log-returns: tick-loss Lα,m of
predicted quantiles at levels α ∈ {0.5, 0.01, 0.99, 0.995} for different prediction methods averaged
over the 38 financial institutions.

A vast majority of the pair-copulas selected by the algorithm for the estimation of the D-vines
were t copulas (which is not surprising for a financial data set). As we have seen in Table 5,
linear quantile regression works quite well for predicting the median of such models. This might
explain why it manages to slightly outperform all other methods in the conditional 0.5-quantile
prediction. Moving away from the median to the more extreme quantiles its lack to describe the
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fat tails of the t copula become apparent, leaving linear quantile regression far behind all the
other methods. Further we can observe, that for this data set the D-vine and semiparametric
quantile regression method perform very similar and yield better results than their competitors
for the prediction of extreme quantiles. The minimal advantage of SPQR might be explained
by the fact that the objective of SPQR is exactly to minimize the above loss function. Boosted
additive quantile regression succeeds in improving the linear approach for the quantiles in the
tails yielding the third-best results. With as many predictors as 5-10, the nonparametric method
already seems to run into the curse of dimensionality and thus produces the worst result for the
median prediction and the second worst for the prediction of the quantiles in the tails.
All in all, this real data application has supported the findings of the simulation study of Section 5,
that D-vine quantile regression is a reasonable tool for estimating conditional quantiles.

7 Conclusions and further research

A new method to predict conditional quantiles is proposed. We have seen that the usage of the
flexible D-vine class facilitates fast and accurate estimation. Analyzing the log returns of the
CDS spreads of international banks and insurances we extend the analysis of Brechmann et al.
(2013). While they analyze the spillover effects stressing only one institution by simulating from a
conditioned C-vine, with our new method we are able to perform stress tests that are conditioned
on multiple banks and insurances being in distress. In our analysis we found out that the spillover
effect is mainly driven by geography, so that European banks have a greater influence on European
insurances than on US American banks. Further, the claim of Brechmann et al. (2013) that US
banks have a stronger influence on the international financial market than European banks is not
supported by our analysis. Stressing the major European banks had a greater overall impact on
the financial system than stressing the US American banks.
Moreover, we have seen that there is still room for future research. With the bivariate pair-copulas
implemented in the package VineCopula there is currently no possibility to model non-monotonic
dependencies between a response and its predictors as is already pointed out in Dette et al. (2014).
A remedy for the resulting issue of possible misspecification is the inclusion of nonparametric pair-
copulas in the construction of the D-vine used for quantile regression. A further topic of ongoing
research is the implementation of D-vines with mixed discrete and continuous margins as discussed
in Stöber et al. (2013) in order to yield quantile regression models allowing for discrete as well as
continuous responses and predictors.

Appendix

A D-vine regression algorithm

Input: pseudo copula data v = (v(i))i=1,...,n, U = (u
(i)
j )j=1,...,d, i=1,...,n

Initialize global variables:
1: I0 ← {1, . . . , d}
2: global.max.cll← −∞

Step 1:
3: for j ∈ I0 do
4: Use BiCopSelect to estimate CV,Uj , the AIC-optimal pair-copula for (V,Uj)

′ based on the
data (v,uj)

5: cllj ← cll(ĉV,Uj ; v,uj)
6: end for
7: l1 ← argmaxj∈I0 cllj

Update global variables:
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8: global.max.cll← maxj∈I0 cllj
9: I1 ← I0\l1

Step k: (the first tree of the current D-vine with k−1 covariates has the order V –Ul1–. . .–Ulk−1

(see the black graph in Figure 2). Ik−1 contains the indices of the covariates that have not
yet been chosen for the model and global.max.cll is equal to the conditional log-likelihood
of the current model)

10: for j ∈ Ik−1 do
11: Estimate CV,Uj |Ul1 ,...,Ulk−1

and CUli ,Uj |Uli+1,...,Ulk−1
, i = 1, . . . , k − 1, i.e. the pair-copulas

needed to extend the current D-vine to a D-vine with order V –Ul1–. . .–Ulk−1
–Uj (compare

Figure 2)
12: cllj ← cll(ĉV,Ul1 ,...,Ulk−1

,Uj ; v,ul1 , . . . ,ulk−1
,uj)

13: end for
14: if maxj∈Ik−1

cllj < global.max.cll then
15: return D-vine with order V –Ul1–. . .–Ulk−1

16: end if
17: global.max.cll← maxj∈I0 cllj
18: lk ← argmaxj∈Ik−1

cllj
19: Ik ← Ik−1\lk

20: After step d has been exercised, return D-vine with order V –Ul1–. . .–Uld
In lines 5 and 12 of the algorithm, the AIC- and BIC-corrected conditional log-likelihoods may
be used instead of the regular cll. In this case all maximum functions have to be replaced by
minimum functions.
Regarding the possible pair-copula families to be selected in line 4 of the code, the families cur-
rently implemented in the VineCopula package are Gaussian, t*, Clayton, Gumbel, Frank, Joe,
BB1*, BB6*, BB7*, BB8* and Tawn* with respective rotations. Families marked with a star are
two-parametric, while the others are one-parametric.

B Analytically derived conditional copula quantiles

B.1 Conditional copula quantile function based on the Gaussian copula

It is a well known fact that the conditional distribution of a multivariate normal distributed
random vector again is normally distributed with shifted mean and covariance matrix (Brachinger
et al., 1996). Therefore, assuming

(Y,X1, . . . , Xd) ∼ N
(

(µY , µX)′,

(
σ2Y ΣY,X

Σ′Y,X ΣX,X

))
, (B.15)

the conditional quantile of Y at level α ∈ (0, 1) given X = x can be calculated as

F−1Y |X(α|x) = Φ−1(α;µc(x), σ2c ),

where Φ(·;µ, σ2) denotes the distribution function of a N(µ, σ2)-distributed random variable and
the conditional parameters µc(x) and σ2c are given as

µc(x) := µY + ΣY,XΣ−1X,X(x− µX),

and
Σc := σ2Y − ΣY,XΣ−1X,XΣ′Y,X.

Hence, by inverting Equation (3.4) the conditional quantile of the Gaussian copula is given as

C−1V |U1,...,Ud
(α|u1, . . . , ud) = Φ(Φ−1(α;µc(x), σ2c );µY , σ

2
Y ),

where x =
(
Φ−1(u1;µ1, σ

2
1), . . . ,Φ−1(ud;µd, σ

2
d)
)′

.
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B.2 Conditional copula quantile function based on the Student’s t copula

Similarly, following Kotz and Nadarajah (2004), we know that the conditional distribution of a
multivariate t distributed random vector with ν degrees of freedom again is t distributed with
shifted mean, covariance matrix and degrees of freedom. Therefore, with the same partitions of
the mean and covariance matrix as in Equation (B.15), the conditional quantile of Y at level
α ∈ (0, 1) given X = x can be calculated as

F−1Y |X(α|x) = t−1(α; νc, µc(x), σ2c (x)),

where t(·; ν, µ, σ2) denotes the distribution function of a t(ν, µ, σ2)-distributed random variable
and the conditional parameters νc, µc(x) and σ2c (x) are given as

νc := ν + d,

µc(x) := µY + ΣY,XΣ−1X,X(x− µX),

and

σc(x) :=
ν + (x− µX)′Σ−1X,X(x− µX)

ν + d
(σ2Y − ΣY,XΣ−1X,XΣ′Y,X).

Consequently, the conditional quantile of the t copula is given as

C−1V |U1,...,Ud
(α|u1, . . . , ud) = t(t−1(α; νc, µc(x), σ2c (x)); ν, µY , σ

2
Y ),

where x =
(
t−1(u1; ν, µ1, σ

2
1), . . . , t−1(ud; ν, µd, σ

2
d)
)′

.

B.3 Conditional copula quantile function based on the two- and three-dimensional
Clayton copula

For the bivariate Clayton copula with parameter δ > 0 (CU,V (u, v) = (u−δ + v−δ − 1)
−1
δ ) the

conditional quantile can easily be derived by inverting the h-function, yielding

C−1V |U (α|u) =
{(
α
−δ
1+δ − 1

)
u−δ + 1

}−1
δ
.

The conditional quantile function of a three-dimensional Clayton copula with parameter δ > 0
(CU,V,W (u, v, w) = (u−δ + v−δ + w−δ − 2)−

1
δ ) is given by

C−1U |V,W (α|v, w) =
{

(α−
δ

1+2δ − 1)(v−δ + w−δ − 1) + 1
}− 1

δ
.

To derive this, let (U, V,W ) follow a three-dimensional Clayton copula with parameter δ > 0.
Then,

CU,V,W (u, v, w) = (u−δ + v−δ + w−δ − 2)−
1
δ .

In order to derive the conditional distribution of U given V = v and W = w we use a version of
Equation (2.2):

CU |V,W (u|v, w) =
∂

∂ξ
CU,V ;W (CU |W (u|w), ξ;w)

∣∣∣
ξ=CV |W (v|w)

. (B.16)

For the derivation of CU |W (u|w) we use the fact that CU,W (u,w) = CU,V,W (u, 1, w) = (u−δ +

w−δ − 1)−
1
δ . Hence,

CU |W (u|w) =
∂

∂w
CU,W (u,w) =

∂

∂w
(u−δ + w−δ − 1)−

1
δ

= (u−δ + w−δ − 1)−
1
δ
−1w−δ−1,

20



and similarly,

CV |W (v|w) = (v−δ + w−δ − 1)−
1
δ
−1w−δ−1.

The corresponding inverse functions are given by

C−1U |W (u|w) =
{
w−δ

(
u−

δ
1+δ − 1

)
+ 1
}− 1

δ

and

C−1V |W (v|w) =
{
w−δ

(
v−

δ
1+δ − 1

)
+ 1
}− 1

δ
.

Further,

CU,V |W (u, v|w) =
∂

∂w
CU,V,W (u, v, w) = (u−δ + v−δ + w−δ − 2)−

1
δ
−1w−δ−1,

and therefore,

CU,V ;W (u, v;w) = CU,V |W

(
C−1U |W (u|w), C−1V |W (v|w)|w

)
=
{
w−δ

(
u−

δ
1+δ − 1

)
+ 1 + w−δ

(
v−

δ
1+δ − 1

)
+ 1 + w−δ − 2

}− 1
δ
−1
w−δ−1

=
{
w−δ

(
u−

δ
1+δ + v−

δ
1+δ − 1

)}− 1+δ
δ
w−δ−1 =

(
u−

δ
1+δ + v−

δ
1+δ − 1

)− 1+δ
δ
,

which is independent of w and is the distribution function of a bivariate Clayton copula with
parameter δ

1+δ .
Now it remains to calculate the differential in Equation (B.16) and plug in the conditional distri-
butions:

∂

∂ξ2
CU,V ;W (ξ1, ξ2;w) =

(
ξ
− δ

1+δ

1 + ξ
− δ

1+δ

2 − 1

)− 1+δ
δ
−1
ξ
− δ

1+δ
−1

2 .

Finally,

CU |V,W (u|v, w) =
{(
v−δ + w−δ − 1

)
wδ +

(
u−δ + w−δ − 1

)
wδ − 1

}− 1+2δ
δ

·
(
v−δ + w−δ − 1

) 1+δ
δ
· 1+2δ
1+δ

w(−δ−1)·−1−2δ
1+δ

= w−(1+2δ)
(
v−δ + w−δ − 1 + u−δ + w−δ − 1− w−δ

)− 1+2δ
δ

·
(
v−δ + w−δ − 1

) 1+2δ
δ
w1+2δ

= (u−δ + v−δ + w−δ − 2)−
1+2δ
δ · (v−δ + w−δ − 1)

1+2δ
δ .

Inversion with respect to u gives us the sought after conditional quantile function of a three-
dimensional Clayton copula:

C−1U |V,W (α|v, w) =
{

(α−
δ

1+2δ − 1)(v−δ + w−δ − 1) + 1
}− 1

δ
.

A visualization of the conditional median and 95% quantile function of a three-dimensional dis-
tribution with underlying Clayton copula with parameter and marginals as specified in Table 2 is
given in Figure 5.
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Figure 5: Conditional median and 95% quantile function of a three-dimensional distribution with
underlying Clayton copula with parameter δ1 (left panels), δ2 (right panels), and marginals M1

(upper panels), M2 (lower panels) as specified in Table 2.
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