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Preface

The German conference on Artificial Intelligence (abbreviated KI for “Künstliche
Intelligenz”) looks back on a long and fruitful history. The first official event took place
in 1975, at that time a workshop of the KI working group of the German “Gesellschaft
für Informatik” (association for computer science, GI). Before that, there were inofficial
meetings, such as the “Fachtagung Kognitive Verfahren und Systeme”, which was held
in Hamburg in April 1973. The meeting has now developed into an annual conference
for researchers in artificial intelligence, primarily from Germany and its neighboring
countries but open to international participation.

This volume contains the papers presented at the 40th event in this series, which was
held at the Technical University of Dortmund, September 25–29th, 2017. This year we
received 73 valid submissions, an increase of 50% over last year. We were able to
accept 20 papers as full research papers and 16 as short technical communications,
yielding an acceptance rate of 27% for full papers and 49% overall. Due to the limited
number of available slots in the conference schedule, we had to make difficult decisions
and several worthy submissions had to be rejected or downgraded from full to short
papers.

The Program Committee worked very hard to thoroughly review all the submitted
papers and to provide action points to improve the papers. Despite the increased
workload for the PC, almost all papers received three reviews, and only 10 papers had
to be selected or rejected on the basis of only 2 reviews. The program chairs managed
discussions amongst the reviewers, from which the final decisions emerged. As a result,
the contributions cover a range of topics from, e.g., agents, robotics, cognitive sciences,
machine learning, planning, knowledge representation, reasoning, and ontologies, with
numerous applications in areas like social media, psychology, and transportation sys-
tems, reflecting the richness and diversity of our field.

In addition to the regular sessions, our program also featured three invited talks by
Pierre Baldi (University of California, Irvine), Gerhard Brewka (University of Leipzig),
and Luc De Raedt (Katholieke Universiteit Leuven), as well as an industrial session
featuring a keynote by Wolfgang Wahlster (Saarland University), and a session com-
posed of presentations of selected papers by German authors that have been presented
at our international sister conferences AAAI and IJCAI in 2017.

In order to celebrate the 40th anniversary of the German Conference on Artificial
Intelligence, the program also contained a historical session with a panel discussion.
The session was hosted by Ulrich Furbach, and contained contributions from the
panelists Katharina Morik, Hans-Helmut Nagel, Bernd Neumann, and Jörg Siekmann.
After a short review of the history of computer science and artificial intelligence in
Germany by the host, the panelists commented on their early AI-related activities and
the relationship of these activities with the computer science community at that time.
Finally, the development of the field in recent years and its future was reflected in an
open forum.



For the first two days of the conference, our workshop and tutorial chair, Christoph
Beierle (University of Hagen), organized a program of two workshops:

– ZooOperation Competition (Vanessa Volz, Christian Eichhorn)
– Formal and Cognitive Reasoning (Christoph Beierle, Gabriele Kern-Isberner,

Marco Ragni, Frieder Stolzenburg)

During the workshops, many additional papers were presented, ideas discussed, and
experiences exchanged. Moreover, the program also featured two tutorials:

– Defeasible Reasoning for Description Logics (Ivan Varzinczak)
– Knowledge Representation and Reasoning with Nilsson-Style Probabilistic Logics

(Nico Potyka)

Organizing such a traditional conference is a very challenging but no less rewarding
experience, which would not have been possible without the help of the many indi-
viduals who contributed to the success of this event. First and foremost, we would like
to thank the authors and the reviewers for their excellent work, which forms the core of
any such meeting. We also thank our workshop and tutorial chair, the invited speakers,
the workshop chairs and tutorial presenters, and the participants of the historical ses-
sion, all of which have already been listed above. Last but not least, special thanks go
to the local organization team from the Technical University of Dortmund,
Christian Eichhorn, Steffen Schieweck, and Marco Wilhelm without whom this con-
ference would not have been possible.

July 2017 Gabriele Kern-Isberner
Johannes Fürnkranz

Matthias Thimm
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Deep Learning: Theory, Algorithms,
and Applications in the Natural Sciences

Pierre Baldi

University of California, Irvine (UCI)
pfbaldi@ics.uci.edu

Abstract. The process of learning is essential for building natural or artificial
intelligent systems. Thus, not surprisingly, machine learning is at the center of
artificial intelligence today. And deep learning—essentially learning in complex
systems comprised of multiple processing stages—is at the forefront of machine
learning. In the last few years, deep learning has led to major performance
advances in a variety of engineering disciplines from computer vision, to speech
recognition, to natural language processing, and to robotics.

In this talk we will first address some fundamental theoretical issues about
deep learning through the theory of local learning and deep learning channels.
We will then describe inner and outer algorithms for designing deep recursive
neural architectures to process structured, variable-size, data such as biological
or natural language sequences, phylogenetic or parse trees, and small or large
molecules in biochemistry. Finally we will present various applications of deep
learning to problems in the natural sciences, such as the detection of exotic
particles in high-energy physics, the prediction of molecular properties and
reactions in chemistry, and the prediction of protein structures in biology.



Computational Models of Argument:
A Fresh View on Old AI Problems

Gerhard Brewka

Department of Computer Science, Leipzig University, Germany
brewka@informatik.uni-leipzig.de

Abstract. In the last two decades symbolic AI has seen a steady rise of interest
in the notion of argument, an old topic of study in philosophy. This interest was
fueled by a certain dissatisfaction with existing approaches in knowledge rep-
resentation, especially default reasoning and inconsistency handling, and by the
demands of applications in legal reasoning and related fields. The ultimate goal
of computational argumentation is to enable the development of computer-based
systems capable to support and to participate in argumentative activities. To this
end one has to come up with formal models of the way we usually come to
conclusions and make decisions, namely by

1. constructing arguments for and against various options,
2. establishing relationships among the arguments, most notably the attack

relation, and
3. identifying interesting subsets of the arguments which represent coherent

positions based on these relations.

In the talk we will highlight some of the main ideas and key techniques that
have been developed in the field and show how they provide new ways of
representing knowledge, handling inconsistencies, and reasoning by default. In
particular, we will demonstrate how directed graphs with arbitrary edge labels,
which are widely used to visualize argumentation and reasoning scenarios, can
be turned into full-fledged knowledge representation formalisms with a whole
range of precisely defined semantics.



Probabilistic Programming
and its Applications

Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven, Belgium
luc.deraedt@cs.kuleuven.be

Abstract. Probabilistic programs combine the power of programming languages
with that of probabilistic graphical models. There has been a lot of progress in
this paradigm over the past twenty years. This talk will introduce probabilistic
logic programming languages [1], which are based on Sato's distribution
semantics and which extend probabilistic databases. The key idea is that facts or
tuples can be annotated with probabilities that indicate their degree of belief.
Together with the rules that encode domain knowledge they induce a set of
possible worlds. After an introduction to probabilistic programs, which will
cover semantics, inference, and learning, the talk will sketch some emerging
applications in knowledge based systems, in cognitive robotics and in answering
probability questions. The first is concerned with learning rules in knowledge
based systems such as CMU's Never Ending Language Learning [2], the second
with learning probabilistic action definitions and using these for planning to
grasp certain objects [3], the final one with the answering of challenging
mathematical exercises about probability that are formulated in natural
language [4].

References

1. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn. 100(1),
5–47 (2015)

2. De Raedt, L., Dries, A., Thon, I., Van den Broeck, G., Verbeke, M.: Inducing probabilistic
relational rules from probabilistic examples. In: Proceedings of the 25th International Joint
Conference on Artificial Intelligence, IJCAI-15, pp. 1835–1843 (2015)

3. Nitti, D., Ravkic, I., Davis, J., De Raedt, L.: Learning the structure of dynamic hybrid
relational models. In: Proceedings of the 22nd European Conference on Artificial Intelligence,
ECAI-16, pp. 1283–1290 (2016)

4. Dries, A., Kimmig, A., Davis, J., Belle, V., De Raedt, L.: Solving probability problems in
natural language. In: Proceedings of the 26th International Joint Conference on Artficial
Intelligence, IJCAI-17, pp. 3981–3987 (2017)



Artificial Intelligence for Industrie 4.0

Wolfgang Wahlster

DFKI and Saarland University
www.dfki.de/*wahlster

Abstract. The transformative power of Artificial Intelligence (AI) for the fourth
industrial revolution based on cyber-physical production systems is now rec-
ognized globally by highly industrialized nations. When we coined the term
Industrie 4.0 in 2010, it was already clear to me that machine learning, semantic
technologies, real-time action planning as well as plan recognition, collaborative
robotics, and intelligent user interfaces are the scientific foundation for smart
factories, smart products and smart services. AI is a key enabler for the next
generation of smart manufacturing in Industrie 4.0, since it leads to a disruption
in traditional workflows, supply chains, value creation, and business models in
manufacturing and works towards empowering and expanding workforce
expertise. The use of AI in manufacturing is paving the way to the synergistic
collaboration between humans and robots in urban smart factories for mass
customization [2]. In particular, we present recent results from our Industrie 4.0
projects at DFKI, including hybrid teams of human workers and collaborative
robots, deep learning for predictive maintenance of networked production
machines and for understanding human behaviors of shop floor workers,
semantic technologies for worldwide interoperability of machine-to-machine
communication in smart factories and logistics, human-aware and real-time
production planning and scheduling for multiagent systems, intelligent industrial
assistance systems for human workers, and proactive and situation-aware
on-line help and training on the shop floor. The concept of active semantic
product memories [3] that serve as digital twins invert the traditional production
logic, since in Industrie 4.0 the emerging product is controlling its own pro-
duction process in a service-oriented multiagent architecture. We discuss use
cases from legacy factories which we have upgraded to Industrie 4.0 and show
the comparative gains [1] in productivity, stock reduction, resource efficiency,
retooling or changeover times, and job satisfaction.

References

1. Schuh, G., Anderl, R., Gausemeier J., ten Hompel, M., Wahlster, W. (eds.) Industrie 4.0
Maturity Index. Managing the Digital Transformation of Companies. Munich: Herbert Utz.

2. Wahlster, W.: Semantic technologies for mass customization. In: Wahlster, W., Grallert, HJ.,
Wess, S., Friedrich, H., Widenka, T. (eds.) Towards the Internet of Services, pp. 3–14.
Springer, Heidelberg (2014)

3. Wahlster, W.: The semantic product memory: an interactive black box for smart objects. In:
Wahlster (ed.) SemProM: Foundations of Semantic Product Memories for the Internet of
Things, pp. 3–21. Springer, Heidelberg (2013)
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Employing a Restricted Set of Qualitative
Relations in Recognizing Plain Sketches
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Abstract. In this paper, we employ aspects of machine learning, com-
puter vision, and qualitative representations to build a classifier of plain
sketches. The paper proposes a hybrid technique for accurately recog-
nizing hand-drawn sketches, by relying on a set of qualitative relations
between the strokes that compose such sketches, and by taking advan-
tage of two major perspectives for processing images. Our implemen-
tation shows promising results for recognizing sketches that have been
hand-drawn by human participants.

Keywords: HOG feature learning · Qualitative representation · Sketch
recognition

1 Introduction

An important challenge for artificial intelligence is the need to automatically
recognize doodles that outline simple objects, which are sketched by normal
people (i.e., humans with non-artistic capabilities). The importance stems form
the spread and extensive availability of touch-enabled devices. Nowadays, these
are everyone’s most-preferred, multi-purpose, extensively-used tools. The auto-
matic recognition, however, needs a glimpse of understanding that should be
based on human experience (cf. [1]).

A hand-drawn sketch is broadly defined as a rapidly executed freehand draw-
ing that is not usually intended as a finished work. There is still a challenging defi-
ciency and broadness in formally defining sketches and their underlying terms.
This is one major source of trouble for human-made machines (a.k.a. computers)
to mechanically deal with human-made sketches (e.g., automatically generating
or recognizing hand-drawn sketches of objects). For one, this kind of broadness
neglects the inability of humans and machines to interact naturally, as they talk
different languages and have very different representational forms of conceptual
knowledge. This also omits a stream of aspects on sketching that need to be
taken into consideration when intelligent computation is involved.

Techniques that traditionally recognize hand-drawn sketches follow one of
two major perspectives for processing common sketches: raster and vector. The
former considers a sketch as an image, from which a feature vector is built from

c⃝ Springer International Publishing AG 2017
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a histogram of oriented gradient (HOG) of pixels. Then, it uses a machine learn-
ing technique to build a classifier model. On the other hand, vector processing
deals with a sketch as a set of points, from which qualitative representations are
extracted to build a knowledge base of features, on which analogical processing
models can be applied for the recognition process.

This paper presents the results of an implementation of a hybrid technique for
such an initial recognition. The ideas are supported by the results of experiments,
conducted to test the roles of qualitative representations (QR) in recognizing
hand-drawn sketches [1,2]. The technique presented here goes somewhat down
into lower-level representations of sketches, where a sketch is treated as being
consisting of geometric shapes (i.e., sketch constituents) that have simple QR
features, such as relative sizes of geometric shapes, positional relations of any
successive pairs of geometric shapes, and similarity group of any number of
successive geometric shapes that have the same relative sizes.

1.1 The Constituents: An Abstraction

We define a stroke s := ⟨pi⟩n(s)i=1 as a sequence of n(s) ∈ N tuples (points) that
are sequentially recorded between a pen-down and a pen-up events. Each tuple
pi may simply be thought of as corresponding to the xi− and yi− coordinates
of the pixels composing s, including also a temporal parameter, ti, to reflect
the time of drawing pixel pi, for 1 ≤ i ≤ n(s). We also define a sketch as a
sequence of strokes, S =

〈
s1, s2, . . . , sm(S)

〉
, where i is the stroke number for

each 1 ≤ i ≤ m(S). Two strokes si and si+1 are called successive. Figure 1a
gives an example of a sketch, Sw1 = ⟨s1, s2, s3, s4, s5, s6, s7⟩ that contains seven
strokes (i.e., m(Sw1) = 7) corresponding to two successive “ellipses” (circles)
followed by five consecutive “line segments”.

(a) The sketch Sw1 (b) The sketch Sb1

Fig. 1. Two hand-drawn sketches of two different objects: (a) a wheel object (which
is referred to in the text as Sw1 , with some illustrative labels and a dashed line), and
(b) a bus object (referred to as Sb1).

To assist the learner presented later in Sect. 2, we base the structuring on
a feature space that contains guiding information about all sketches of the
set of objects to be learnt (cf. Fig. 2). From all the sketched objects, we gather
and record a specific number of qualitative representational (QR) criteria (which
are limited in this paper to the following three kinds): relative size, positional
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relation, and similarity group. Relative sizes measure the drawn strokes’ met-
ric lengths compared to that of the whole sketch they compose. The size of
the (whole) sketch is measured by calculating the perimeter of the canvas that
contains it. Based on this size, values ranging from zero to the perimeter’s are
discretized into intervals, each of which is assigned to one of seven relative sizes
(cf. Sect. 2.2). A positional relation is a binary relation between (the centroids
of) the two geometric shapes corresponding to successive strokes in a sketch. For
a sketch S =

〈
s1, s2, . . . , sm(S)

〉
, positional relations si Rsi+1 on S × S deter-

mine the location of a stroke si+1, relative to that of the stroke immediately
sketched before it, si, for 1 ≤ i < m(S). The positional relation R is one of the
following nine:1 equal (≡), up (↑), right (→), left (←), up-left (↖), up-right (↗),
down (↓), down-left (↙), and down-right (↘). A similarity group is a collec-
tion of two or more successive geometric shapes of the same relative sizes. For
instance, two successive ellipses can be combined in one group if they have the
same relative size. We record, for each sketch S =

〈
s1, s2, . . . , sm(S)

〉
, a constant

number M of selected features that reflect the qualitative representation of a
sketch QR(S). A QR feature vector, fS , is used for recording numerical values
⟨fi⟩Mi=1 as representatives of the stored feature values. The features we use here
have the fixed ordering f1, f2, . . . , fM (cf. Sect. 2). If no stroke satisfies a given
feature i, then fi := 0. The feature vectors of all the N sketches (the learning
sample) are collected in the feature space F . If fi ̸= 0, then the selected feature
number i is satisfied by exactly fi strokes (of each of the N sketches). The value
fi ̸= 0 means that either (i) fi represents the number of geometric shapes (for
the corresponding relative size features), (ii) fi represents the number of pairs
of geometric shapes (for positional relation features), or (iii) fi represents the
number of n geometric shapes (for similarity group n ≥ 2). Thus, the QR fea-
ture space F is a matrix of N × (M +1) integers, in which the N rows represent
the N sketches (of the objects under consideration), while F ’s first M columns
represent the M QR feature vectors of the sketches, and the (M + 1)st column
is a class value (e.g., the sketched object’s label; cf. the “class value” column in
the right part of Fig. 2).

1.2 The Constituents: An Example

The wheel in Fig. 1a has been sketched in the following order: outer circle/ellipse,
inner ellipse, four lines started at down right and move clockwise. For this object,
our technique extracts several features, such that the relative size of the outer
ellipse is medium, the smaller ellipse is tiny, and the four lines are tiny. The
positional relations between the outer circle and the inner circle is that the inner
is equal to the outer (w.r.t. centroid positions), but the first line is down right
of the inner ellipse, the second line is down left the first one, etc. The four lines
are grouped together and create one group (cf. Sect. 1.1).

Let Sw1 = ⟨si⟩7i=1 represent the wheel sketch in Fig. 1a. Let s1 and s2 be the
outer and inner “circles”, respectively, and assume that their centroids have the

1 Think of the 9 relations filling a 3 × 3 tic-tac-toe-like board:
↖ ↑ ↗
← ≡ →
↙ ↓ ↘

.
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Fig. 2. Constructing the features space F from the N sketches.

same location. Let s3 and s4 be the right and left strokes, respectively, below
the dashed line in the same figure (that is, s4 is the line stroke immediately
below the inner circle s2, and s3 is the stroke to its right in the figure2). Instead
of the notation, ≡ (s2, s1), of the positional relation “equal”, we use the infix
notation s2 ≡ s1 to indicate that s2 is located at the same location of s1. Since
s3 is a successor to s2, and spatially located to the latter’s “down-right”, we
write s2 ↘ s3. Similarly, s4 ↙ s3 indicates that the semi-vertical line segment,
s4, comes “down-left” of (and successor to) the leaned line segment, s3. The five
consecutive line strokes ⟨si⟩7i=3 of the wheel Sw1 of Fig. 1a are successive and have
the same relative size (which is “tiny” in this case). Therefore, these strokes are
combined, forming a group labelled “group of two or more lines”. The feature
vector for Sw1 contains values that reflect the following features of the wheel in
Fig. 1a: five tiny lines, one tiny circle, and one small circle. This means that the
value of feature “tiny-line” is 4, of “tiny-circle” is 1, and of “small-circle” is 1.
The similarity group labelled “group of two circles” has the value 1.

2 Methodology

We present a Qualitative Representation used for Sketch Recognition Technique,
or QuRSeR-Tech for short, which builds its classification model by learning
a restricted set of common qualitative representations between the primitive
building blocks described in Sect. 1.1. QuRSeR-Tech is used for recognizing newly
drawn sketches based on a previously given set of learning sketches (decomposed
into the aforementioned primitives). It consists of two learning systems and,
consequently, two kinds of datasets used for the learning purposes.

The first classifier utilizes HOG-based extracted features [3] for recognizing
drawn strokes within geometric shapes. The geometric shapes are considered
2 Note that the labeling of the strokes is intended to reflect the successiveness of the
strokes; e.g., s4 is sketched after s3. This is vital, especially because the presented
positional relations are not commutative (except ≡, of course).



Employing QR in Recognizing Plain Sketches 7

the low-level representation constituents of a sketch. The proposed geometric
shapes in this paper are the following seven primitives: “line”, “arc”, “ellipse”,
“poly-line”, “triangle”, “rectangle”, or “polygon”. For each geometric shape, we
collect a set of hand-drawn sketches describing it. These shapes are used as a
training dataset in order to learn and build a classifier model that, in turn,
is able to classify a given stroke as one of the geometric shapes. To that aim,
we extract the features that discriminate each kind of image. The first dataset
contains hand-drawn strokes (the learning samples), each of which is classified
into one of the geometric shapes. The second classifier uses QR-based extracted
features for recognizing a hand-drawn sketch to an object name. The second
dataset contains hand-drawn sketches, each of which is classified into one of the
object names, which are: “airplane”, “bicycle”, “bus”, or “house”, in this
paper.

2.1 StoG Classifier: The 1st Learner

The first learning system in QuRSeR-Tech is called StrokeToGeometric-classifier
(StoG), which builds its classifier model to recognize a hand-drawn stroke. After
that, all recognized geometric shapes and their qualitative representations are
stored together, to build a new dataset that will be set as input for the second
learning system (cf. Sect. 2.3).

The reader is reminded that Histogram of Gradient Orientation (HOG) is a
method that is based on evaluating well-normalized local histograms of image
gradient orientations in a dense grid. HOG’s basic idea is that local object
appearance and shape can often be characterized rather well by the distribution
of local intensity gradients or edge directions, even without precise knowledge of
the corresponding gradient or edge positions [3]. In order to extract HOG features
of an image, one starts with describing the structure of the image from which
the HOG features are extracted. Each gray image is represented by a matrix
IMGw×h of integer numbers, w and h, varying between 0 and 255, with IMG(i, j)
representing the intensity of the image at pixels 1 ≤ i ≤ w and 1 ≤ j ≤ h.
The image IMG is resized to IMG′

128×128. A function, such as the extractHOGFea-
tures3, can be applied to extract the HOG features of the resized image IMG′,
which gives the ability to set the values of its parameters depending on the needs.
The output of this function is the extracted HOG features from a gray image
IMG′

128×128, which returns a 1-by-250 feature vector. These features encode local
shape information from regions within an image. Therefore, for each image, we
extract 250 features stored as an instance in the dataset. As a result, if we have
k images, then we extract a feature space as a matrix called HogFk×250, with one
extra column attached that represents the class value (geometric shape) of each
image. So the output is HogFk×251.

A machine learning algorithm, particularly support vector machines (SVM),
takes the extracted feature space HogF of all images as an input, and produces a
classifier model called StrokeToGeometric-classifier (StoG) that is able to classify

3 This is one of the predefined functions within the Matlab computer vision toolbox.
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a drawn stroke to one of the geometric shapes mentioned earlier. In order to
use StoG for testing an unknown classified image UIMw×M , the following steps
are followed: (i) resize the image into UIM′

128×128, (ii) extract its HOG features
UIMHOG (which is a 1 × 250 vector), and (iii) apply StoG to UIMHOG, where the
output will be the class value (geometric name) of the image. Figure 3 gives
an example of a real case of a hand-drawn sketch (bus), in which there are 15
strokes that have been drawn. StoG’s application to each of the drawn strokes
classifies them into: polygon, ellipse, ellipse, ellipse, line, line, line, ellipse, line,
line, line, rectangle, rectangle, rectangle, and rectangle.

Fig. 3. QR feature vector of a sketched bus (fSb1
of Fig. 1b).

2.2 QR Identification

One of the main goals is to study the role of qualitative representations in build-
ing a classifier model that recognizes hand-drawn sketches. We use three quali-
tative representations here.

Relative Sizes of Strokes (cf. Fig. 4a): The absolute size of a stroke s := ⟨pi⟩n(s)i=1 ,
called size(s), is the accumulated distances between every two successive points
pi and pi+1 belonging to s (for i < n(s)). This can be formulated as size(s) =∑n(s)−1

i=1

√
(xi − xi+1)2 + (yi − yi+1)2. The relative size is also calculated for

each stroke w.r.t. the sketch it belongs to. In our case, we use only relative
sizes based on the discretization of the absolute size into one of the following
seven discrete values: tiny, small, medium, semi medium, large, very large, huge.
We conducted experiments with human subjects, in which the participants draw
wheels of busses in different sizes, but almost always approximate a relative size
(say “medium”) w.r.t. the whole bus sketch. Furthermore, also based on our
experiments, rectangles appear (as windows) in the sketches of a house object in
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large or very large relative sizes, whereas rectangles (as windows) in the sketches
of bus objects appear in medium relative sizes (w.r.t. the whole bus sketch).
Figure 3 shows that the relative sizes of the drawn strokes: polygon, ellipse,
ellipse, ellipse, line, line, line, ellipse, line, line, line, rectangle, rectangle, rectan-
gle, and rectangle are very large, small, small, tiny, tiny, tiny, tiny, tiny, tiny,
tiny, tiny, small, small, small, and small, respectively. We extracted 49 relative
size features: for each one of the seven geometric shapes, we use seven relative
size features. The relative size features, thus, are: tiny lines, . . . , huge lines; tiny
arcs, . . . , huge arcs; . . . ; and tiny polygons, . . . , huge polygons. In Fig. 3, the
relative feature “very large polygon” is 1, which means that there is only one
very large drawn polygon, and the relative size feature “tiny lines” is 6, which
means that there are 6 drawn tiny lines.

Positional Relations (cf. Fig. 4b): A positional relation is calculated based on
geometric properties of every two successive strokes, si and si+1, where the
relation is calculated for si+1 with respect to si (cf. Sect. 1.1). Thus, we make
use of 441 features: si Rsi+1, where R ∈ {≡,→,←, ↑,↖,↗, ↓,↙,↘} (i.e., 7 ×
9× 7 = 441). An example is shown in Fig. 3, where the positional relation called
“rectangle ← rectangle” is set to 3, because there are three pairs of successive
strokes having the same positional relation feature.

Similarity Groups (cf. Fig. 4c): A similarity group is inspired by the human vision
system, and aims to create groups of similar successive strokes. A participant
may, for instance, draw some lines —of similar relative sizes— inside a wheel,
which are combined to form one group of (two or more) geometric shapes. Each of
the 7 geometric shapes will have 2 kinds of similarity groups (namely, a group of
two geometric shapes, or a group of two or more geometric shapes). Therefore,
existing similarity groups are: group of two lines, group of two or more lines;
group of two arcs, group of two or more arcs; . . . ; group of two polygons, group
of two or more polygons (cf. Fig. 3). Hence, we extracted 14 features.

2.3 StOb Classifier: The 2nd Learner

The StOb classifier is a backbone of QuRSeR-Tech, and is used for classifying
a hand-drawn sketch. This classifier is used to recognize a hand-drawn sketch,
where it predicts the object name after each drawn stroke. The three kinds of
extracted features for each sketch are stored together, forming a matrix called
QR feature space F (cf. Sect. 1), with 504 features (i.e., 49 relative sizes, plus 441
positional relations, and 14 similarity groups). In order to build a classifier, we
extract the same number of features for each sketch. This is achieved by building
a feature space of all the possible 504 QR features, initialized to zero. Each time
the system extracts a QR feature, it just adds +1 to the corresponding feature.
Figure 5 summarizes the learning processes. While the subject is sketching an
object, every stroke is classified into a geometric shape using the StoG-classifier.
Then, using QR, a feature vector is built of three kinds of important features
relative size, positional relation, and similarity.
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(a) (b)

(c)

Fig. 4. The chosen kinds of QR: (a) Relative size examples. (b) Positional relation
examples. (c) Similarity groups examples.

3 Experimental Results

We aim at building a classifier model that identifies hand-drawn sketches by
recognizing their composing strokes and some qualitative interrelationships
between those strokes. To that aim, we first try to define an abstract sketch
in terms of the composing strokes, then employ the gathered interrelationships
to learn specific sketches. The following two datasets have been collected through
two experiments, conducted on human participants (see below), in order to pro-
vide the classification processes with as many realistic training datasets, from
which the system can learn to build its model.

Hand-Drawn Geometric Shapes Dataset: In the first dataset, we collect hand-
drawn strokes that represent the constituents of hand-drawn sketches, and then
extract their HOG features to build the aforementioned HOG feature space.
The strokes are classified into one of the seven geometric shapes suggested in
this paper (cf. Sect. 2). A GUI interface has been implemented (in Matlab) for
sketching and collecting hand-drawn geometric shapes. Using this interface, the
experiment was conducted on human subjects, where each subject sketched all
the geometric shapes with different scales, orientations, and positions. After col-
lecting the hand-drawn geometric shapes, we converted them into HOG feature
space.

The core point is to apply one of the machine learning algorithms, particularly
support vector machines SVM on the HOG feature space, to get a classifier
(StoG) that is used for recognizing a newly sketched stroke and classifying it
into one of the geometric shapes: line, arc, ellipse, poly-line, or polygon. The
StoG classifier records an accuracy of 88.4% for recognizing a newly sketched
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Fig. 5. The learning phase in QuRSeR-Tech.

hand-drawn geometric shape. Further analyses are made to classify the polygon
into: triangle, rectangle, or polygon. This is done by extracting its HOG features,
and comparing the latter with the features of the collected dataset using SVM.
Figure 7a shows the StrokeToGeometric-Classifier’s confusion matrix, in which
the arc and ellipses can be recognized with accuracy greater than 90%, while
the other shapes can be recognized with accuracy greater than 83%. Note that
10% of the poly-lines are recognized as polygons, so we use further processes to
make sure that the shape is open or closed by calculating the (metric) distance
between the start and last point of a drawn stroke.

Hand-Drawn Sketches Dataset: In this dataset, we collect hand-drawn sketches
for four specific objects: airplane, bicycle, bus, and house. Using the imple-
mented GUI interface, another experiment has been conducted on 12 subjects,
where each subject drew 20 sketches—five for each one of the four objects. The
qualitative representation QR of all those sketches are extracted and stored in the
QR feature space, F . By applying SVM to the feature space F , a sketchToObject-
classifier is used for recognizing hand-drawn objects and classifying them into one
of the 4 objects just mentioned. The sketchToObject-classifier have an accuracy
of 80%. Figure 7b shows the StrokeToGeometric-Classifier’s confusion matrix,
in which all objects are classified correctly with percentage greater than 80%.
In order to show the effect of each QR feature (namely: relative size, similar-
ity group, and positional relation), we build and measure the accuracy of the
following 7 models: relative size, similarity group, positional relation, relative
size and similarity group, relative size and positional relation, similarity group
and positional relation, and all QR. Figure 6 shows that for each of the 7 cases,
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4 classifier models are tested (namely: linear SVM without using PCA for fea-
ture selection, linear SVM using PCA, Quadratic SVM without PCA, Quadratic
SVM with PCA). The results show that the three combined QR feature plays an
important role to achieve the best accuracy. One of the interesting observations
is that, without using positional relations, we still have a somewhat accurate
classifier. This implies that these particular features need more modifications.

Fig. 6. SketchToObject classifiers accuracy

(a) (b)

Fig. 7. The confusion matrices of: (a) the StoG classifier, and (b) the StOb classifier,
which result from implementing the proposed technique.

4 Conclusive Remarks

Understanding what plain sketches represent, in a way similar to what humans
do, is a challenging problem for artificial intelligence. The representation of plain
sketches using qualitative features seems to play a key role in mechanizing this
understanding, because these features are usually stable across many transfor-
mations, and provide a natural approach compared to human perception and
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comparison. Qualitative models that can be used to represent sketches are tra-
ditionally based on two aspects. The first aspect is the way of segmenting an
object’s contour into meaningful edges. The second aspect is the level of detail
for describing an object. The way of handling these aspects can distinguish one
model from another.

Here, we proposed a hybrid distinguishing technique, called QuRSeR-Tech,
which has been implemented to recognize hand-drawn sketches based on dealing
with its constituents, the composing strokes, in an abstract way. The technique
consists of two main stages that work on the abstracted, primitive constituents:
the StoG classifier (that extracts HOG features of each stroke), and quadratic
SVM (that is based on the HOG features for classifying the stroke into a geomet-
ric shape). To get a classifier with an acceptable accuracy, we set the parameters:
cell size, block size, block overlap, number of bins, and the signed orientation to
[4 4], [2 2], [50% 50%], 8, and false, respectively. The StoG classifier recorded
88.4% accuracy for recognizing the strokes to geometric shapes. The StOb clas-
sifier builds a new representation for the hand-drawn sketches by recording three
kinds of qualitative representation: relative size, positional relation, and group
of similarity. Based on this new representation and quadratic SVM, the StOb
classifier is able to recognize plain sketches with accuracy 80%. Some compara-
tive studies have been conducted to see the effect of each one of the three kinds
of QR, in which we showed that the StOb classifier’s accuracy will decrease if
any of the mentioned representations is missing. In both of the two classifiers, we
apply PCA to reduce the features to only the features that are highly correlated
to the class value.

The results of the proposed technique seem promising to extend the tech-
nique’s functionality to recognizing other sketches using the suggested set of
qualitative relations (or an extended set thereof). The technique can, in the
future, be used to gather more sketches and their composing strokes, learning
also their QR interrelationships. The technique still needs to handle the cases
when single strokes are disconnected, for some reason, resulting in more than
one sub-stroke for one or more of the composing strokes. The conducted experi-
ments, on which the results in this paper are built, are enhanced versions of those
presented in [1,2], re-implemented to serve this paper’s purpose, and tested on
two workstations with Windows 10, Matlab 2016a with computer vision toolbox,
and the classification learner application. All sketches have been collected via
WACOM pens on WACOM touch screens. Some sketches from the dataset in [4]
are used as guiding images to the participants.

It is worth mentioning that the ideas presented in this paper are in connec-
tion with others in the literature (such as [5–8], to mention a few). For exam-
ple, [8] give a method based on fuzzy hybrid-based features to classify strokes
into geometric primitives. A human computer interactive system is developed
to determine the ambiguous results and revising the “missrecognitions”. Their
system is developed to classify eight specific primitive shapes. PaleoSketch is
also a primitive shape recognizer that classifies single strokes into certain prim-
itive geometric shapes (cf. [7]). Of the primitive geometric shapes that can be
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recognized are line, polyline, circle, ellipse, curve, arc, helix, and spiral (cf. [7]).
A higher-level of qualitative representation based on edge-cycles is described in
[6]. Edge-cycles are sequences of edges connected end-to-end, whose last edge
connects back to the first. The results of the edge-cycle representation outper-
forms that of the edge-level representation —produced by CogSketch in [5]—
in learning to classify hand-drawn sketches of everyday objects. Although the
remarkable performance of edge-cycles representation, it has its own set of prob-
lems that can lead to misclassification of sketched concepts (cf. [6]).
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Abstract. Many real-world problems can be expressed in terms of states
and actions that modify the world to reach a certain goal. Such prob-
lems can be solved by automated planning. Numeric planning supports
numeric quantities such as resources or physical properties in addition to
the propositional variables from classical planning. We approach numeric
planning with heuristic search and introduce adaptations of the relax-
ation heuristics hmax, hadd and hFF to interval based relaxation frame-
works. In contrast to previous approaches, the heuristics presented in
this paper are not limited to fragments of numeric planning with instan-
taneous actions (such as linear or acyclic numeric planning tasks) and
support action costs.

1 Introduction

Whereas domain-independent planning has proven successful, numeric quanti-
ties such as physical properties (e.g. velocity) and resources (e.g. fuel level)
cannot be modeled in classical planning. As many real world problems feature
numeric quantities, we aim to advance domain-independent planning by includ-
ing numeric quantities, leading to numeric planning.

The performance of applying informed search algorithms such as hill-climbing
or best-first search to planning depends on the quality of the underlying heuristic.
One challenge is to design good heuristic estimators for numeric planning. We
are interested in adapting the forward chaining delete relaxation heuristics hmax,
hadd and hFF to numeric planning. The delete relaxation from classical planning
ignores negative interactions between actions by neglecting delete effects: effects
that falsify propositional variables. As such the set of achieved propositions grows
monotonically, and heuristics can be computed in polynomial time. For numeric
planning, intervals offer a way to compactly represent an over-approximation of
arbitrarily many values that can be achieved by a variable.

Another challenge is that numeric actions are non-idempotent operations:
applying the same numeric effect to a state more than once can yield a new
distinct successor every time. This makes heuristics based on a basic interval
relaxation only polynomial in the length of a shortest relaxed plan [13]. Recently,
Aldinger et al. [2] proposed a more sophisticated interval-based relaxation frame-
work for numeric planning that captures arbitrarily many repetitions of applying
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a numeric action in one step. The plan existence problem in this repetition relax-
ation is polynomial in the input for tasks with acyclic dependencies.

Previous work on numeric relaxation heuristics is either restricted to a frag-
ment of numeric planning, e.g. Metric FF [13] is restricted to linear tasks whereas
MIPS [9], Colin [8] and ENHSP [18] only deal with uniform action costs. The
hmax and hadd variants of Scala et al. [17] correspond roughly to the planning
graph approach with a repetition relaxation in this paper. We are interested in
adaptations which offer heuristic guidance for all numeric planning tasks with
instantaneous actions including actions with non-linear effects and non-uniform
action cost. Notably, we are also interested in computing a hFF-like heuristic,
i.e., a heuristic basing its estimate on the extraction of valid relaxed plans.

In this paper, we explore the design space of numeric relaxation heuristics
with regard to two relaxation methods (interval or repetition relaxation), two
methods of aggregating heuristic costs (max and sum), and two search tech-
niques for relaxed reachability (a planning graph method and priority queues).
We identify tractable combinations and derive heuristics which also take action
costs into account. We propose a new method to handle tasks with cyclic depen-
dencies in the numeric effects which differs from Scala et al. [18]. Finally we
present a generalization to the marking method of relevant operators used by
hFF, which explicates target values in the intervals to extract relaxed plans.

2 Interval Relaxation

A delete relaxation is a simplification of a planning instance where facts which are
achieved once remain achieved. Thus, the set of achieved values grows monoton-
ically. In relaxed classical planning, actions are idempotent and therefore, this
growth is bounded by the number of actions in the planning task. In numeric
planning, actions are non-idempotent operations and the number of values a
variable can attain is unbounded even by executing a single action repeatedly.
Aiming towards a tractable relaxation for numeric planning, intervals are an
obvious choice to represent the achieved values of a variable, as they offer a
compact representation. Furthermore, the number of action applications can
be restricted as well. We discuss two relaxation frameworks that approach this
challenge differently.

The depth of a relaxed planning graph is restricted to the length of a short-
est relaxed plan, which allows us to compute an interval relaxed planning graph
very much like in classical planning. However, desired heuristic properties (such
as admissibility for hmax) can not be guaranteed in this framework. The repeti-
tion relaxation uses a semi-symbolic representation of intervals to simulate the
behavior of arbitrary many action repetitions at once. This makes relaxed actions
idempotent, and the plan existence problem can be decided in polynomial time.
In this section, we give a condensed overview of these relaxation frameworks,
borrowing notation from Aldinger et al. [2].

Interval arithmetic [19] uses an upper and a lower bound to enclose the actual
value of a number. Intervals [x, x] contain all rational numbers from x to x. We
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refer to the lower bound of an interval x by x and to the upper bound by x.
Intervals can be closed or open and we denote closed interval bounds by brackets
[·, ·] and open interval bounds by parentheses (·, ·).

A numeric planning task Π = ⟨VP ,VN ,A, I,G, γ⟩ is a 6-tuple, where VP is a
set of propositional variables with domain {true, false}, VN is a set of numeric
variables with domain Q∞ := Q ∪ {−∞,∞}, A is a set of actions, I the initial
state, G a goal condition and γ : A → Q+ is a function assigning a strictly
positive rational cost to each action. A state is a (full) mapping from variables
V := VP ∪VN to values from their respective domain. A numeric expression (ξ1◦
ξ2) is an arithmetic expression with operators ◦ ∈ {+,−,×,÷} and expressions
ξ1 and ξ2 recursively defined over variables VN and constants from Q. A numeric
constraint (ξ ! 0) compares numeric expressions ξ to 0 with ! ∈ {≥, >,=}
and a (goal or action) condition is a conjunction of propositions and numeric
constraints. Numeric effects are assignments (v ◦= ξ) where v is a variable from
VN , ◦= ∈ {:=,+=,−=,×=,÷=} and ξ is a numeric expression. Actions in A
have the form ⟨pre, eff⟩ and consist of a condition pre and a set of effects eff
containing at most one truth assignment for each propositional variable and at
most one numeric effect for each numeric variable.

The semantic of a numeric planning task is straightforward: conditions are
satisfied in a state if all propositions evaluate to true and all numeric constraints
are satisfied, where numeric expressions are evaluated recursively. The evaluation
of expression ξ in state s is denoted by s(ξ). Actions are applicable in a state,
iff the precondition is satisfied and none of its effects causes a division by zero.
The successor state s′ obtained by applying an action in state s is s, expect for
variables that appear in an effect. Propositional variables are assigned the new
truth value and the values s′(vn) of each numeric variable vn are evaluations of
the expression on the right hand side of the effect in s applied to s(vn) according
to the assignment operator. A plan π is a sequence of consecutively applicable
actions that leads from I to a state satisfying G.

We consider two relaxation frameworks: the interval relaxation and the rep-
etition relaxation. Syntactically, they differ only slightly from the unrelaxed
task. The domains of numeric variables VN are now intervals. The interpre-
tation of constants and the values of variables in the initial state are degenerate
(one element) intervals. The semantics of both relaxations are based on interval
arithmetic. Numeric expressions evaluate to intervals, and numeric constraints
are satisfied, if numbers exist within these intervals that satisfy the constraint.
Propositional effects that would set a variable to false are ignored.

Numeric effects ensure monotonicity by use of the convex union r = x + y
where r = min(x, y) and r = max(x, y). The successor state s′ obtained by apply-
ing an action in s is again s, except for variables v that appear on the left hand
side of numeric effects. These variables are mapped to s′(v) = s(v) + eval(v),
where eval(v) is a relaxation dependent evaluation of the numeric effect. For the
interval relaxation, eval(v) is the evaluation of the effect right-hand side, using
interval arithmetic on the intervals from s. For the repetition relaxation eval(v)
is the result of simulating arbitrary many repetitions of the effect in isolation.
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The idea behind the repetition relaxation is that relaxed actions become
idempotent if arbitrary many repetitions are handled at once. The evaluation of
arbitrary many action applications does not have to be computed with an actual
simulation. More efficiently, it is sufficient to consider the behavior of numeric
effects. If an additive effect (+= and −=) extends an interval bound of a variable
in a state once, it can extend that bound to any value by applying the action mul-
tiple times. The repetition result of an additive effect only depends on whether
the evaluated effect interval contains negative or positive numbers, but it does
not depend on the amount. For multiplicative effects, the assignment can con-
tract or expand depending on whether the effects intervals contains numbers with
absolute value greater or less than 1 and switch signs if it contains negative ele-
ments. This observation allows us to decompose the evaluation of numeric effects
into behavior classes B = {(−∞,−1), {−1}, (−1, 0), {0}, (0, 1), {1}, (1,∞)} and
then unite these partial effects to obtain the interpretation of eval(v) in the
repetition relaxation. Detailed semantics are found in the original paper [2]. We
remark that the decomposition into behavior classes bases the evaluation eval(v)
on the values of s(v) before the application. As such, s′(v) can hit new behavior
classes. As the number of behavior classes is restricted, the repetition relaxed
actions are “pseudo-idempotent”: they can change up to three times (v has a
different behavior if it is negative, zero or positive). Another source of non-
idempotence comes from the interaction between actions which becomes espe-
cially problematic if these dependencies are cyclic. As such, the authors of the
repetition relaxation deem it only feasible for tasks with acyclic dependencies.

2.1 Cyclic Dependencies

The interval which is reached by applying a numeric effect vn ◦= ξ depends
on the values of all variables in ξ. This dependency relation induces a depen-
dency graph. If the dependency graph is acyclic, sequences of actions are pseudo-
idempotent as the values of the variables stabilize in topological order.

Cyclic dependencies can make sequences of actions non-idempotent. It is an
open research question, whether the interval that is reached after repeatedly
applying a sequence of actions causing a cycle can be determined in polynomial
time. In order to enforce a topology nevertheless, we can break cycles by intro-
ducing auxiliary variables. The check for cycles can be done in polynomial time
by algorithms checking for connected components in the dependency graph. In
the heuristic, we include special cycle breaker actions which can reinsert the val-
ues of the auxiliary variables to the higher level original variable in a controlled
manner. The implementation of these cycle breaker actions opens design space.
Tractable heuristics have to bound the number of reinsertions.

The most coarse cycle breaker action sets changing variables to (−∞,∞):
an interval which can not be extended thus ensuring idempotence. A little more
accurate is to only set an interval bound to infinity if the interval changed into the
respective direction. This relates very much to the additive effects transformation
[18], which compiles assignments x := ξ into increase effects x += ξ − x. Both
approaches relax cyclic effects even further by assuming that a shifted bound can
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be extended arbitrary often by the same margin. An advantage of our method
is the restriction of cycle handling to the cycle breaker actions, which does not
affect the preconditions of all other actions.

3 Numeric Planning Graph Heuristics

We want to solve a delete relaxed simplification of a planning problem in order
to guide search in the original one. For classical planning, the relaxed plan exis-
tence problem is easy: starting from the initial state, we can iteratively apply all
applicable actions to the relaxed state in parallel. The procedure terminates when
a fix-point is reached. The relaxed parallel planning graph [14] is a graph represen-
tation of this planning procedure. It consists of alternating state layers of reach-
able propositions and action layers of actions which are applicable in that propo-
sitional state. The forward propagation heuristics hadd [5,6] and its admissible
counterpart hmax [4] estimate the cost γ(vp) to achieve the propositions vp for
each achieving action a by γ(vp) := mina(γ(vp), γ(a) + γ(pre(a))). Propositions
that hold in the initial state are initialized to cost γ(vp) = 0 and to γ(vp) = ∞
otherwise. The action precondition cost γ(pre(a)) is an estimate of the cost of a
set of propositions. The heuristics differ in how the cost of this set is estimated.
For hmax, the most expensive proposition cost γ(pre(a)) := maxvp∈pre(a) γ(vp) is
used, while hadd uses the sum of all preconditions γ(pre(a)) :=

∑
vp∈pre(a) γ(vp)

instead. The hFF heuristic [14] improves on hadd by marking actions that are
required to compute the hadd estimate regressively, and as such it computes a
relaxed plan, using its cost as hFF estimate.

3.1 Heuristic Estimators for Numeric Planning

We discuss tractable extensions of the heuristics hmax, hadd and hFF in the
two interval based relaxation frameworks introduced in the previous section:
the interval relaxation and the repetition relaxation. In a purely propositional
setting, facts can be seen as variable-value pairs, where the value of propositional
variables are subsets of {true, false}. Similarly, a “fact” for numeric planning
is a variable-value pair where the values of numeric variables are intervals. In
contrast to classical planning, there are infinitely many such variable-value pairs.
Tractable heuristics have to restrict the number of considered numeric facts.

Numeric facts occur as implicit preconditions of the actions of the planning
task. A numeric effect v ◦= ξ can reach a certain interval s′(v) by certain
combinations of the intervals s(v) and s(ξ) before the application of the action.
In general, there are infinitely many possible combinations of s(v) and s(ξ) to
reach s′(v) and thus, the pairs ⟨v, s(v)⟩ and all pairs of variables ⟨ve, s(ve)⟩ where
ve appears in the expression ξ are implicit preconditions. Similarly, numeric
constraints ξ ! 0 can be satisfied by infinitely many target values qe ∈ s(ξ)
satisfying qe ! 0. These target values qe can be reached by combinations of
values of the variables in ξ, making them implicit preconditions, too.
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A numeric relaxation heuristic has to ensure that first, values in the precon-
dition enable the required values in the effect and second, that the number of
considered numeric facts is bounded. We discuss a planning graph based and a
priority queue based approach to restrict this number, both of which are moti-
vated by the method of computing the cost formulas in classical planning.

The first approach is based on the parallel planning graph representation for
relaxed planning. The considered facts are restricted to one variable-value pair
for each variable in the state layers of the planning graph. For interval based
planning, several parallel actions can alter the same variable, in which case the
convex union of the individual results is used. The cost of a variable-value pair is
again the cost of the cheapest achiever, and the cost of a set of such numeric facts
is the sum or the maximum of each variable-value pair. Implicit preconditions
from constraints and effects are included in the “fact set cost”.

A different approach to restrict the considered numeric facts is to use a
generalized Dijkstra algorithm for estimating the fact or fact set costs. Facts
are processed according to a priority queue storing the cost to achieve them. As
other actions can alter a variable while a new value is still in the priority queue,
the considered numeric facts are convex unions of the effects values reachable at
enqueue time and the variable’s value at dequeue time.

Both approaches, the planning graph and the priority queue based app-
roach restrict the number of considered variable-value pairs. Note that other
approaches are conceivable, e.g. Scala et al. [17] discriminate facts by condition
type. We will now discuss combinations of both approaches with interval or
repetition relaxation which guarantee polynomial time bounds on the heuristic
computation.

3.2 Heuristics Based on Planning Graphs

In the relaxed planning graph, the length of a shortest relaxed plan restricts
the maximal number of layers required until the goal formula is satisfied for the
first time. Therefore, heuristic cost estimations are polynomial in the output
size |A| × |V| × |π⋆| where π⋆ is a shortest (but not necessarily cheapest) plan.
Variations of this approach are often used for numeric planning [7,9,13,18].

A weakness of this approach is that, for the interval relaxation, hmax does not
compute admissible estimates in tasks with action costs, and the cost estimates
for hadd can be higher than the estimates that would be computed by the formu-
las for classical planning. The reason is that a fact can be achieved at a better
cost in a deeper layer in the planning graph. This is a problem for numeric plan-
ning, because no a priori bound can be given on how deep the better value could
be found. Opposed to relaxed classical planning, where heuristic computation
terminates when a fix-point is reached and no new facts are added or reached at
a cheaper cost from one layer to the next, interval relaxed “facts” will usually
not reach a fix-point. Instead, graph generation terminates as soon as the goal
formula is satisfied for the first time. Admissibility of hmax can be enforced by
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setting the cost of all actions to the cheapest cost among action costs applicable
in the current layer, which kind of obviates the use of action costs1.

A combination of the repetition relaxation with the planning graph based
variable-value pair selection strategy is not as promising as other combinations.
The repetition relaxation is coarser than the interval relaxation as it aggregates
arbitrary many repetitions. The planning graph approach is less accurate than
the priority queue based approach when several actions of different cost alter
the same variable: the result is the convex union of all individual results but the
cost is the cost of the best achiever. The approach combines the downsides of
the components without really making up for that.

3.3 Heuristics Based on Priority Queues

Priority queue based heuristics in the interval relaxation framework lack
tractability as unboundedly many cheap actions can be processed before rel-
evant ones.

The number of variable-value pairs which are inserted into the priority queue
has to be bounded. Unfortunately, even repetition relaxed actions, or sequences
thereof can be non-idempotent. Effects in the repetition relaxation are applied on
the intervals fixed to the preceding state. Interactions of an action with itself are
not considered when computing the behavior of the action. Similarly, a sequence
of actions can be non-idempotent, even if every single action is idempotent. There
are three sources of non-idempotence: variables hitting new behavior classes,
interacting variables and, finally, cyclic dependencies between variables.

First, applying a numeric effect can cause a variable to hit a new behavior
class. This type of non-idempotence does not impair tractability, as the behavior
of a variable can change at most three times (v > 0, v = 0, v < 0).

Second, the result of a numeric effect depends on the variables in the assigned
expression. As such, actions are reenqueued whenever an implicit precondition
achieves a new value. For many planning tasks, the dependency relation between
variables is acyclic. While the plan existence problem in the repetition relaxation
is polynomial for acyclic tasks [2] this does not restrict the number of queue
insertions polynomially. The problem occurs if cheap actions depend on many
other more expensive actions which reside in topologically higher layers of the
dependency graph. Theorem1 of the Addendum to this paper [3] shows an exam-
ple requiring exponentially many enqueue operations. The heuristic becomes
tractable if actions which have an implicit precondition on a variable are only
enqueued after all topologically higher variables have been processed. However,
this means that variables in the lower layers have to wait for variables in a higher
layer regardless of their cost. As the values achieved by the topologically higher
variables might not be required, admissibility of hmax is impaired with this app-
roach. For hadd, overestimating the heuristic value is acceptable, allowing us to

1 Scala et al. [17] run into a similar problem using “asynchronous subgoaling” and
have to set the cost of hard conditions to 0 to ensure admissibility of hmax.
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block enqueuing of topologically lower variables until topologically higher vari-
ables are processed. A workaround for hmax is to compute hmax in two phases.
In the first phase, maximally reachable intervals for all variables are determined,
and tractability is ensured by delaying topologically lower variables. Then, in a
second phase, the maximally reachable values from the first phase are used for
the assign effects. Topological dependencies do not have to be respected with
maximally reachable intervals, as now action sequences are idempotent.

The third source of idempotence are cycles in the dependency graph, which
can be broken by introducing auxiliary variables as presented in Sect. 2.1.

Bounding non-idempotence ensures that priority queue based algorithms can
compute repetition relaxed estimates for hmax and hadd in polynomial time.

3.4 hFF-Based Heuristics

The hFF heuristic computes a relaxed plan, and uses the cost of this plan as
heuristic estimate. As in classical planning, this plan is computed regressively
by greedily marking required facts and actions based on the hadd estimates. The
marking procedure captures beneficial interactions such as an action enabling
precondition facts of several others. Numeric planning offers even more room for
improving hFF over hadd by not having to fully enable implicit preconditions, as
numeric facts do not necessarily have to enable the whole reachable interval. A
major contribution of this paper is a generalization of the marking procedure
to numeric planning, which selects explicit target values in the precondition fact
intervals in order to determine the necessary part of numeric preconditions.

Example 1. Let s0(v1) = [0, 0] and s0(v2) = [1, 1] and actions a1 = ⟨P, v1 += v2⟩
and a2 = ⟨∅, v2 := 5⟩ with cost γ(a1) = 1 and γ(a2) = 10 having to satisfy a
condition C : v1−1 ≥ 0. Applying a1 is sufficient to satisfy C. However, as a1 has
a precondition P , a2 could be applicable before a1 making s(v2) = [1, 5] with
γ = 10. Explicating target values allows us to set q2 = 1 for v2, making hFF

chose s0(v2) = [1, 1] with γ = 0 instead, thus marking a1 but not a2.

For the repetition relaxed approach, explicating target values also allows to deter-
mine the actual number of repetitions required for each action, and thus, the
repetition relaxed hFF heuristic can compute an interval relaxed plan which is
more accurate than accounting for relaxed actions only once.

The progression step generates a sequence of relaxed states with the property
that the intervals for each variable are monotonically increasing and the last state
satisfies the goal condition. Starting from the goal conditions, we explicate target
values in these intervals regressively, while marking actions enabling them. The
hFF estimate is then the cost of marked actions.

3.5 Explication of Target Values

Given a sequence of relaxed states determined by a progressive reachability
analysis and the actions achieving the respective reachable intervals, we want
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to explicate target values in these intervals so that the resulting plan has mini-
mal cost. The explication procedure has to respect local target value constraints
for each action, which ensure that all implicit and explicit preconditions of the
action are satisfied and that the action achieves the desired values. These local
target value constraints generate a set of feasible sub-intervals, where each choice
of an explicit target value can lead to some relaxed plan.

The global target value optimization problem is then an optimization prob-
lem that selects target values in the feasible sub-intervals which minimize the
cost of the resulting relaxed plan. Each target value choice influences the local
target value constraints of all preceding states. The global target value opti-
mization problem is NP-complete (see Theorem2 of the Addendum [3]) and we
will therefore propose approximate target value selection strategies for the local
constraints and drop the requirement that the extracted plan has to be optimal.

The sequence of relaxed states starts in a state s0 consisting of degenerate
point intervals, the state for which the hFF estimate has to be computed. The
generated relaxed state sequence depends on the progression method: with the
planning graph approach, relaxed states are the “fact layers” of the planning
graph, whereas with a priority queue based approach the states are given by
all intervals reachable with cost equal to the priority at enqueue time. The last
state of the reachability sequence satisfies the goal condition.

The local target value constraints ensure that for each numeric effect of a
given action a, all implicit and explicit preconditions are satisfied in the relaxed
state before the application of the action, and that the execution of its numeric
effects enables the target values desired from the global optimization component.

Three basic target value conditions ensure satisfaction of a local target value
constraint of an action: Its explicit preconditions have to be satisfied (1). This
requires numeric expressions evaluate to a desired target value (2). Finally, the
numeric effects have to reach the desired target value (3). These basic target
value conditions then restrict the intervals of the preceding state by sub-intervals
containing feasible selection choices for the global target value optimization.

The first basic target value condition has to ensure that a constraint ξ ! 0
is satisfied in the state s(ξ) preceding the action. We know that the action is
applicable in the progression s " s(ξ) ! 0. Therefore, the feasible sub-intervals
s(ξ)∩ [0,∞) for “≥”, s(ξ)∩ (0,∞) for “>” or s(ξ)∩ [0, 0] for “=” are non-empty.

Example 2. Let ξ evaluate to s(ξ) = [−2, 3]. The constraint ξ ≥ 0 can be satisfied
by any value in the feasible sub-interval [0, 3], the result of [−2, 3] ∩ [0,∞).

The second basic target value condition has to ensure that a numeric expres-
sion ξ1◦ξ2 evaluates to the target value q. Feasible sub-intervals can be obtained
by first determining potential partners which make the expression evaluate to
q by solving the equations I1 ◦ s(ξ2) = s(q) and s(ξ1) ◦ I2 = s(q) for I1 or
I2 respectively, where I1 and I2 are intervals containing all numbers that have
a partner in s(ξ2) or s(ξ1) respectively so that the expression evaluates to q.
The feasible sub-intervals for the optimization component are then s(ξ1) ∩ I1
and s(ξ2) ∩ I2. Special care has to been taken if the inversely reachable partner
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“intervals” come from a division by an interval containing 0, an interval opera-
tion which can cause gaps in the resulting interval. We cannot relax the partner
property, and therefore, the respective partner interval I1 or I2 is split.

Example 3. Let s(ξ1) = [−1, 1
2 ] and s(ξ2) = [−3, 2] for ξ1×ξ2 enabling q = 2. The

partner interval I1 = [2, 2]÷ [−3, 2] is split into I11 = [2, 2]÷ [−3, 0) = (−∞,− 2
3 ]

and I21 = [2, 2] ÷ (0, 2] = [1,∞). The partner interval I2 = [2, 2] ÷ [−1, 1
2 ] is

split into I12 = [2, 2]÷ [−1, 0) = (−∞,−2] and I22 = [2, 2]÷ (0, 1
2 ] = [4,∞). The

feasible sub-intervals are then s(ξ1)∩ I11 = [−1,− 2
3 ] and s(ξ2)∩ I12 = [−3,−2] as

the disjunctions s(ξ1) ∩ I21 and s(ξ2) ∩ I22 are empty.

Finally, the third basic target value condition ensures that a numeric effect
v ◦= ξ reaches the desired target value q, where reaching a target value has to
be considered in a relaxed sense respecting the underlying relaxation semantics
(repetition or interval relaxation). For the interval relaxation, this third basic
type can be reduced to the second basic target value condition by interpreting
the assignment v ◦= ξ as an assignment of the expression v := v ◦ ξ with the
appropriate assignment operator. This expression v ◦ ξ (or only ξ in the case of
:=) has then to reach the required target value q. Care has to be taken here if
the target value q was only reached because of the convex union of the relaxation
semantics. When searching for partner intervals I1 and I2 we can use intervals
(−∞, q] or [q,∞) instead of the degenerate interval [q, q], where the diverging
bound depends on whether the addition of q extends the upper or the lower
bound of the value of v in the previous state q > s(v) or q < s(v). These values
are larger (smaller) than needed and contain q because of the convex union.

Example 4. Let s(v) = [0, 0] be assigned an expression s(ξ) = [1, 2] by a numeric
effect v += ξ and let the required target value q = 1

2 . The corresponding expres-
sion [0, 0] + [1, 2] evaluates to [1, 2] which does not contain q = 1

2 . The partner
intervals I1 and I2 use [ 12 ,∞) for q and we obtain I1 = [12 ,∞)− [1, 2] = [− 3

2 ,∞)
and I2 = [12 ,∞) − [0, 0] = [12 ,∞) So the target values can be chosen in
[0, 0] ∩ [− 3

2 ,∞) = [0, 0] for s(v) and [1, 2] ∩ [12 ,∞) = [1, 2] for s(ξ).

For the repetition relaxation, the feasible sub-intervals are intersections of the
behavior classes involved to establish the desired target value with the value in
the preceding state. The number of required repetitions is determined analo-
gously to the repetitions from Theorem6 of Aldinger et al. [2].

With these three basic target value conditions we can ensure that the propa-
gation of values satisfying the local target value constraints leads to the desired
target value. The explication process can propagate a list of feasible sub-intervals
for the implicit and explicit preconditions to the previous layer.

The global target value optimization problem is now the problem to find a
cost minimal set of target values for each feasible sub-interval of the local target
value constraints. The cost of a target value is the cost of the achieving action
(multiplied by the number of required repetitions for the repetition relaxation)
plus the constraint cost of all of its (implicit and explicit) preconditions.

Determining target values in the feasible sub-intervals optimally is
intractable. Therefore, our explication process selects locally promising target
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values. The values of all variables have to reach the point intervals from s0 at
the end of the regression procedure, making proximity to the starting values
s0(v) an indicator for good target values. An exception to this rule are open
intervals in the repetition relaxation. As open intervals are only generated by
contracting effects, values close to open interval bounds can only be reached by
applying the contraction repeatedly and it is advisable to keep a safety margin to
open interval bounds.

4 Implementation and Experiments

The Fast Downward planning system [12] is a modular planning system that is
widely used in classical planning. We extend Fast Downward to support numeric
planning from PDDL 2.1, layer 2 [10] as well as selected features from PDDL 3
such as global constraints. The original Fast Downward does not support floating
point numbers and thus, major modifications had to be performed.

While classical planning tasks are restricted to actions with integer valued
action costs, numeric planning tasks come with more sophisticated metric expres-
sions instrumenting over several variables. Numeric Fast Downward (NFD) sup-
ports linear state-independent instrumentation effects [7], which are evaluated in
the initial state and compiled into a rational valued action cost. Instrumentation
variables are detected automatically and stored separately which allows search
algorithms to prune states that only differ in these variables.

We implemented the heuristics hmax, hadd and hFF in the two most promising
combinations of relaxation and “fact” selection scheme identified in the previous
section: the planning graph approach in an interval relaxation (identified by
the superscript hgi) and the priority queue based approach in the repetition
relaxation (identified by the superscript hqr).

4.1 Experiments

We performed experiments on various numeric domains [1,11,16] comparing
NFD to Metric FF [13] and two configurations of ENHSP: subgoaling with redun-
dant constraints ĥradd

hbd+ [17] and hAIBR [18]. We used greedy best first search for all
NFD heuristics. Experiments were run on a cluster with a timeout of 30min for
each instance. Table 1 shows the number of solved instances on various domains.
A star indicates errors in ENHSPs preprocessing component.

Our heuristics perform slightly worse than Metric FF for the planning
domains that both planners can solve. In principle, the heuristic estimates from
hgi
FF should resemble Metric FF most. Differences can probably be attributed to

different search algorihms. Metric FF is restricted to linear tasks and cannot find
solutions for nonlinear problems such as geo-rovers or jumpbot. ENHSP excels
at block-grouping and performs roughly as good as most NFD configurations on
the domains both planners can solve. ENHSP ignores action costs and uses unit
cost actions instead. There was no domain in the benchmarks which exploits
this weakness. The priority queue based repetition relaxed hqr

FF heuristic does
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Table 1. Solved instances on various numeric domains

Domain Metric FF ENHSP NFD

ĥradd
hbd+ hAIBR hgi

add hqr
add hgi

FF hqr
FF

Block-grouping (192) 22 122 62 15 18 14 28

Counters (78) 36 14 34 21 11 21 31

Depots (22) 20 ⋆ ⋆ 7 10 10 11

Driverlog (40) 34 ⋆ ⋆ 29 31 30 30

Farmland (50) 9 0 50 17 10 19 23

Geo-rovers (21) 0 ⋆ ⋆ 1 0 1 2

Jumpbot (20) 0 3 15 17 0 15 13

Plant-watering (51) 22 12 22 0 15 0 15

Rovers (20) 12 ⋆ ⋆ 0 3 1 4

Satellite (40) 26 21 22 12 23 19 29

Settlers (20) 9 ⋆ ⋆ 0 0 0 2

Sokoban (325) 0 37 0 70 70 69 70

Zenotravel (20) 20 ⋆ ⋆ 7 7 8 9

Sum (899) 210 209 205 196 198 207 267

not only solve most instances, but it also solves several instances in each of the
domains, indicating that our heuristics offer guidance for all domains.

The jumpbot domain [1] is particularly interesting as it models physical prop-
erties in a dynamic world. It features cyclic, non-linear effects for turning, accel-
erating or deccelerating the robot, as well as classical preconditions. Therefore,
it can neither be solved by control engineering [15] nor by planners requiring
linear tasks such as Metric FF.

5 Conclusion

We discussed different approaches to tractable heuristics for interval relaxed
numeric planning and considered different relaxation frameworks: the interval
relaxation and the repetition relaxation with different restriction schemes for
the variable-value pairs considered during heuristic exploration: one motivated
from the planning graph, another from a priority queue. We highlighted critical
combinations that impair tractability of the heuristic or restrict algorithms to
a subset of numeric planning tasks. Furthermore, we generalized the marking
procedure of hFF.

We implemented the well known planning graph heuristics hmax, hadd and
hFF from classical planning in these frameworks and established heuristics which
are suitable for all numeric planning tasks expressible in PDDL 2.1, layer 2. We
showed experimentally that the general heuristics can find plans even for plan-
ning tasks with cycles, non-linear effects and action costs, providing a baseline
for future approaches.
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Abstract. Two simple and attractive mechanisms for the fair division of
indivisible goods in an online setting are Like and Balanced Like. We
study some fundamental computational problems concerning the out-
comes of these mechanisms. In particular, we consider what expected
outcomes are possible, what outcomes are necessary and how to com-
pute their exact outcomes. In general, we show that such questions are
more tractable to compute for Like than for Balanced Like. As Like
is strategy proof but Balanced Like is not, we also consider the com-
putational problem of how, with Balanced Like, an agent can compute
a strategic bid to improve their outcome. We prove that this problem is
intractable in general.

1 Introduction

Fair division is a fundamental problem in allocating resources among competing
agents. Many practical fair division problems are online. We present two such
settings. For example, in a food bank, we must start allocating food as it is
donated. It is too late to wait until the end of the day before we start distributing
the food to charities. As a second example, in allocating deceased organs to
patients we must match newly donated organs swiftly. We cannot wait till more
organs arrive before deciding on the precise match.

Motivated by such problems, Walsh has proposed a simple online model for
the fair division of indivisible items in which the items arrive over time [19].
Aleksandrov et al. analysed two simple and attractive randomized mechanisms
for such fair division problems: Like and Balanced Like [1]. The Like mech-
anism allocates an arriving item uniformly at random between the agents that
“like” it. It satisfies equal treatment of equals, and it is both strategy proof and
envy free ex ante [1]. Indeed, any mechanism that is envy free ex ante assigns
items to agents with the same probabilities as Like does. However, the Like
mechanism is not very fair ex post as it can possibly allocate all items to one
agent. The Balanced Like mechanism is fairer. It allocates an arriving item
uniformly at random between the agents that “like” it who have the fewest items
currently. Balanced Like bounds the envy one agent has for another’s alloca-
tion ex post. However, this comes at the price of no longer being strategy proof
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 29–43, 2017.
DOI: 10.1007/978-3-319-67190-1 3
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in general [1]. When restricted to 2 agents and 0/1 utilities, Balanced Like is
strategy proof. These mechanisms are simple and satisfy many desirable axioms.
For these reasons, we now turn attention to their computational properties.

In practice, it may be difficult to query the agents each time an item arrives.
The chair will often collect the preferences of the agents in advance, and allocate
items to agents as they arrive. There are several settings where it is reasonable
to suppose that the chair does that. For instance, in the food bank problem, a
good proxy for the utility of an item to a charity that likes it might simply be its
retail price. This is public information. As a second example, in deceased organ
matching, the utility of allocating an organ to a patient might be computed from
a simple formula that takes account of the age of the organ, the age of the patient
and a number of other medical factors. This is again public information. The
chair might then be interested in what outcomes are possible, necessary or exact
based on these declared preferences. For example, the chair might be concerned
that agents receive enough utility or particular essential items. Alternatively, the
chair might want to be sure that a favored agent gets a particular item. Also,
they might even want to give similar utility to each agent or bias the future
allocation in case some agents receive only a few items and are promised to
receive more in expectation.

There are two sources of uncertainty in deciding these outcomes. First, both
mechanisms are randomized. Therefore each mechanism returns a probability
distribution over actual outcomes. Second, as the problem is online, the arrival
order of items is typically unknown. We consider here the problem of the chair
computing what outcomes are possible, necessary or exact depending on both
sources of uncertainty. In particular, we focus on computing whether an agent
can possibly or necessarily receive a given expected utility. These results easily
translate into whether an agent can possibly or necessarily receive a given item.
We simply give most of the agent’s utility to that item. Also, as all our results
hold in the case of binary utilities, they can also be viewed as computing whether
an agent can possibly or necessarily receive a given expected number of items.
Whilst some of our results consider general utilities, such utilities are mainly
used to compare outcomes and do not need to be elicited explicitly. General
utilities are not used when bidding or allocating items. Such “like” and “not
like” reporting has advantages. It is simple, does not require costly eliciting of
utilities of agents for items and it also leads to mechanisms with nice axioms.

Our contributions: We consider three settings: the chair knows the arrival
ordering of items, the arrival ordering is drawn from some probability distrib-
ution, and the allocation of past items is known. In all settings, we study the
problem of the chair computing possible, necessary and exact outcomes of Li-
ke and Balanced Like. For both mechanisms, these problems are intractable
even with 2 agents and when the ordering of items is not fixed. In contrast,
with any number of agents, computing each of these outcomes is tractable for
Like and intractable for Balanced Like when the ordering of items is fixed.
Interestingly, computing outcomes with Balanced Like becomes tractable in
this setting only when restricted to 2 agents. Further, computing outcomes is
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tractable for both mechanisms at a certain moment of time when a new item
arrives supposing the allocation of past items is known. In addition, we study a
closely related problem of whether an agent can manipulate these mechanisms
by strategically misreporting their preferences. Our computational results have a
number of interesting consequences. For example, recall that the Balanced Li-
kemechanism is fairer but not strategy proof. However, we show that computing
a manipulation of this mechanism is intractable in general.

2 Preliminaries

We next provide basic definitions of online instances, the Like and Balanced
Like mechanisms and their outcomes.

Allocation instance: An instance I = (A,O,U,∆) of an online fair division
problem has (1) a set A of agents a1, . . . , an, (2) a set O of indivisible items
o1, . . . , om, (3) a matrix U = (uik)m×n where uik is the cardinal utility of agent
ai for item ok and (4) a matrix ∆ = (δkj)m×m where δkj is a probability that
item ok arrives in moment j.

We consider binary utilities and general rational non-negative utilities. We
say that agent ai likes item ok if uik > 0. Further, we assume that one item
arrives in each moment j, i.e.

∑
k=1:m δkj = 1.

Online setting: Suppose items o1 to oj have arrived at moments 1 to j, respec-
tively. Given o = (o1, . . . , oj), let ∆(o) be its probability, π(j, o) the current
allocation of these items to agents, p(π(j, o)) its probability and ui(π(j, o)) the
additive utility of agent ai for the items they receive in π(j, o). Now, suppose
that item ok arrives at moment (j+1) with probability δk(j +1) when each agent
ai places a rational non-negative bid vik for this item and a mechanism then
decides its allocation to a feasible agent in an online manner, i.g. given π(j, o)
and no information about future items.

Mechanisms: We consider the randomized Like and Balanced Like mech-
anisms from [1]. With the Like mechanism, agent ai is feasible for item ok if
vik > 0. With the Balanced Like mechanism, agent ai is feasible for item ok
if vik > 0 and have so far received fewest items given π(j, o) among those agents
that bid positively for item ok. Let the number of feasible agents be fk. The
probability that a feasible agent ai is allocated item ok is equal to 1/fk.

Possible, necessary and exact outcomes:We consider expected probabilities
depending on what information is available to the chair. If the allocation π(j, o)
is the only available information, we use pi(j + 1,π(j, o)) for the probability of
agent ai for the item that arrives at moment (j + 1). If the order o is the only
available information, we use pi(j + 1, o) for the probability of agent ai for the
item that arrives at moment (j + 1). It is equal to

∑
π(j,o) p(π(j, o)) · pi(j +

1,π(j, o)). If there is no information about o or π(j, o), we use pi(j + 1) for the
probability of agent ai for the item that arrives at moment (j + 1). It is equal
to

∑
o ∆(o) · pi(j + 1, o). We next define expected utilities of agents for items in
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each of these settings. Given π(j, o), we use uij(π(j, o)) for the utility of agent
ai. It is equal to ui(π(j, o)) + pi(j + 1,π(j, o)). Given o, we use uij(o) for the
utility of agent ai. It is equal to

∑
π(j,o) p(π(j, o)) · ui(π(j, o)). Given ∆, we use

uij(∆) for the utility of agent ai. It is equal to
∑

o ∆(o) · uij(o).
The probability (or utility) of agent ai at moment j is possible if their proba-

bility (or utility) is positive. The outcome of agent ai at moment j is necessary
at least some rational number k if their probability (or utility) is at least k. We
also say that the outcome of agent ai at moment j is exact if we want to compute
the exact value of their probability (or utility).

We study the complexity of computing possible, necessary and exact out-
comes. For a mechanism that allocates all items to agents that like them, note
that possible and necessary outcomes are directly related. For this reason, we
only study necessary and exact outcomes. Our results for possible outcomes are
inherited. We next show this relation.

Suppose we ask if pi(j + 1) > 0 holds. This is true iff there is an ordering
o and allocation π(j, o) of the first j items such that pi(j + 1,π(j, o)) > 0.
We therefore conclude that pi(j + 1) > 0 iff pi(j + 1) ≥ ϵ where 0 < ϵ ≤
mino,π(j,o) ∆(o) · p(π(j, o)) · pi(j + 1,π(j, o)). Note that this minimum value is
positive and, consequently, such ϵ always exists. Such a relation is not true for
utilities. For the utility of agent ai, we have that uij(∆) > 0 holds iff agent ai
bids positively for at least one item and at least one item arrives. This problem
is easy to decide. However, deciding if uij(∆) ≥ k holds might not be so easy.

Recall that we consider three settings: when the past allocation of items to
agents is known, when the ordering of items is unknown and when the ordering
of items is known. We next observe that all outcomes are tractable in the setting
when the past allocation is known, fixed and no information about future items
is available.

Items arriving online: Let us suppose that the first j items have arrived and
their allocation be π(j, o). Suppose now that item ok arrives at moment (j +1).
For both Like and Balanced Like, the exact value of pi(j+1,π(j, o)) is equal
to

∑
k=1:m δk(j+1) · (1/fk) and the exact value of ui(π(j, o)) is equal to the sum

of the cardinal utilities of agent ai for the items they are allocated in π(j, o).
Both of these exact outcomes, the value of uij(π(j, o)) and therefore any possible
and necessary outcomes in this setting can be computed in O(m · n) time and
space.

We use popular reductions and computational problems from computational
complexity, graph theory and set theory in order to show our hardness results.

Computational complexity: We use complexity classes of decision and count-
ing problems such as P, NP, coNP and #P, and mappings such as Karp, Turing,
parsimonious and arithmetic reductions [7,16,17].

Graph theory: Let G be an undirected bipartite graph. A matching µ in G
is a set of vertex-disjoint edges. We say that µ matches a vertex if there is an
edge in it that is incident with the vertex. Matching µ is maximal if it is no
longer a matching once some other edge is added to it. Matching µ is perfect if
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it matches all vertices in G. Given a graph G and a number k, the minimum
size maximal matching problem is to decide if there is a matching µ in G with
|µ| ≤ k. It is NP-hard on various bipartite graphs [9,15]. Given a graph G, the
counting perfect matchings problem is to output the number of perfect matchings
in G. It is #P-hard on various bipartite graphs [14,18].

Set theory: Let S be a set of integers and b, c be integers. A (b, c)-subset of
S is a subset of S whose elements sum up to b and its cardinality is c. The
(b, c)-subset sum problem is to decide if there is a (b, c)-subset of S. Note that
there is a (b, c)-subset of S for at least one c ∈ [1, |S|] iff there is a subset of
S whose elements sum up to b. The latter problem is the NP-hard b-subset sum
problem [11].

This paper is structured as follows. In Sect. 3, the items are drawn from
some known probabilistic distribution ∆. For example, such distribution in the
food bank problem could be estimated based on historical data. In Sect. 4, we
suppose the ordering o in which the items will arrive is fixed, i.e. for each moment
j, we have that δkj = 1 holds for exactly one item ok. Again, in the food bank
problem, some charities donate certain items on a regular basis and only at
specific moments. In Sect. 5, we consider problems of computing manipulations
of these mechanisms.

3 Items Arriving from a Distribution

We suppose the agents act sincerely and begin with the case when the chair
knows the utilities but the items come from a distribution ∆ whose size is poly-
nomial in n and m.

StochasticExactUtility
Input: I = (A,O,U,∆), ai.
Output: uim(∆).

StochasticNecessaryUtility
Input: I = (A,O,U,∆), ai, k ∈ Q.
Question: uim(∆) ≥ k?

The stochastic exact outcomes of Like and Balanced Like are #P-hard
with just two agents. Our reduction is motivated by the food bank problem. Let
m items be donated by m suppliers and not each of the suppliers can donate
each of the items. This relation could be viewed as an undirected bipartite graph.
The items are in one partition. The suppliers are in another partition. Let us
enumerate them from 1 to m. There is an edge between an item and a supplier
if the supplier donates the item. Each perfect matching in the graph then can
be viewed as an ordering w.r.t. the enumeration of the suppliers in which each
of the m different suppliers donates exactly one of the m different items. At the
beginning of the day, the chair does not know the actual order in which the
suppliers will donate items but they can estimate it by computing an estimate
δkj for each item ok and moment j. Based on past data whose size is polynomial
in m, one such estimate could be the number of days of past data in which each
of the m items is donated from a different supplier amongst the m suppliers
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divided by the total number of days of past data. We give a reduction from the
counting perfect matchings problem to StochasticExactUtility.

Reduction 1. Let G be a (3-regular) bipartite graph with M vertices in each
partition. The allocation instance IG has:

– Agents: agents a1 and a2 (i.e. 2 agents),
– Items: items o1 to oM (i.e. M items),
– Utilities: uij = 1 for each ai and oj , and
– Distribution: δkj = 1/M for each ok and j.

Theorem 1. With n = 2 agents, 0/1 utilities and the Like or Balanced Like
mechanism, problem StochasticExactUtility is #P-hard under arithmetic
reductions.

Proof. WLOG, the set of orderings of items is equal to the set of perfect match-
ings in G united with the set of oϵ that reveals no items. Each ordering oM that
reveals M items corresponds to a perfect matching in G w.r.t. the enumeration
of the suppliers in G. We suppose the items arrive independently of each other
and across the different time moments. Consequently, ordering oM occurs with
probability 1/MM and the expected utility uiM (oM ) is M/2 with both mecha-
nisms as both agents have the same utilities for items. The ordering oϵ reveals 0
items. It occurs with probability 1 minus (1/MM ) multiplied by the number of
perfect matchings in G and ui0(oϵ) is 0 with both mechanisms as no items are
revealed. We quickly obtain that uiM (∆) is equal to (1/MM ) · (M/2) multiplied
by the number of perfect matchings in G. The result follows. ⊓%

We further showed that stochastic necessary outcomes of these mechanisms
are NP-hard with just two agents. We omit the complete proof for reasons of space
but we give the main reduction which is from the (b, c)-subset sum problem. Given
set of integers S = {n1, . . . , nM} and integers b and c, we construct instance
IS,b,c: (1) agents a1 and a2, (2) item ok for each nk ∈ S, (3) agent ai values item
ok with nk, and (4) δkj = 1/M for each item ok and moment j. The instance of
StochasticNecessaryUtility has IS,b,c, agent ai and constant k = (1/M c) ·
(b/2). Let us order each subset of S w.r.t. the enumeration (1, . . . ,M). The set
of orderings is now equal to the set of ordered (b, c)-subsets of S united with the
set of oϵ that reveals no items. Similarly to the proof of Theorem1, it should be
easy now for the reader to show that there is a (b, c)-subset of S iff uiM (∆) ≥ k.

4 Items Arriving from a Fixed Ordering

We again suppose the agents act sincerely and next consider the case that the
chair knows the utilities and the arrival ordering of future items. This corre-
sponds to the case when exactly one item arrives with probability of one at each
moment in time.
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ExactUtility
Input: I = (A,O,U, o), ai.
Output: uim(o).

NecessaryUtility
Input: I = (A,O,U, o), ai, k ∈ Q.
Question: uim(o) ≥ k?

4.1 The Case of n > 2 Agents

Let there be n > 2 agents. Interestingly, the outcomes of the Like mechanism
become tractable whereas the ones of the Balanced Like mechanism remain
intractable even when the ordering is fixed.

Exact Outcomes. Let us start with the Likemechanism. This mechanism does
not keep track of the allocation of past items. As a result, any agent is feasible
for each next item supposing they like this item. Indeed, all exact outcomes are
tractable with this mechanism for this reason.

Observation 1. With general utilities and the Like mechanism, problem
ExactUtility is in P.

Proof. The probability pi(j, o) of agent ai for item oj is 1/nj where nj is
the number of agents that like the item. Their utility uim(o) can be given as∑m

j=1(1/nj) · uij . ⊓%

We continue with exact allocations for the Balanced Like mechanism and
give a parsimonious reduction from counting perfect matchings problem to Exac-
tUtility. The counting problem remains in #P-hard even on 3-regular undi-
rected bipartite graphs in [8]. Our reduction is very insightful because it provides
a very tight bound on the complexity of ExactUtility (i.e. 0/1 utilities, each
agent likes at most 4 items, each item except one is liked by at most 3 agents,
each pair of agents like at most 3 items in common, the ordering is fixed, etc.).

Reduction 2. Let G be a 3-regular bipartite graph, u1, . . . , uN be the vertices
from one of its partitions and v1, . . . , vN the vertices from the other one of its
partitions. For each vertex ui, let vi1, vi2, vi3 denote the vertices connected to
it and e3·(i−1)+1 = (ui, vi1), e3·(i−1)+2 = (ui, vi2), e3·(i−1)+ 3 = (ui, vi3) the
edges incident with it. Each edge ek can be represented as (ui, vj) for some
ui ∈ {u1, . . . , uN} and vj ∈ {vi1, vi2, vi3}. We use the graph and next construct
the online allocation instance EG as follows:

– Agents: 1 agent ak per edge ek and 3 special agents a3·N +1, a3·N +2 and
a3·N +3 (i.e. 3 ·N + 1 agents),

– Items: 1 item per vertex vj , 2 items ui1, ui2 per vertex ui and 3 special items
w and x (i.e. 3 ·N + 2 items),

– Non-zero utilities: for i ∈ [1, N ], j ∈ {1, 2, 3}, agent a3·(i−1)+ j has utility
1 for items vij , ui1, ui2, x; agent a3·N+1 has utility 1 for items w, x, and

– Ordering: o = (v1 . . . vNu11u12 . . . uN1uN2wx).
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We highlight the main idea behind the proof of the next Lemma1. Basically,
we showed that computing the number of allocations of the first 3 ·N + 1 items
in o in which each agent receives exactly one item is in #P-complete.

Lemma 1. With the Balanced Like mechanism, the number of allocations in
EG in which agent a3·N+1 is feasible for item x is equal to 2N times the number of
perfect matchings in G. Computing it is in #P-hard under arithmetic reductions.

Proof. By construction, each item vj is liked by three different agents and, hence,
each allocation of v1, . . . , vN gives these items to N different agents among
a1, . . . , a3·N . Consider then an allocation of v1, . . . , vN such that, for each ver-
tex ui, either agent a3·(i−1)+1 gets item vi1 or agent a3·(i−1)+2 gets item vi2
or agent a3·(i−1)+3 gets item vi3. We say that such an allocation of v1, . . . , vN
has perfect matches for vertices u1, . . . , uN because exactly one agent per triplet
a3·(i−1)+ 1, a3·(i−1)+ 2, a3·(i−1)+ 3 gets an item among v1, . . . , vN . In fact, there is
a perfect matching in G over v1, . . . , vN and u1, . . . , uN iff there is an allocation
in EG of v1, . . . , vN that has perfect matches for u1, . . . , uN . Furthermore, this is
a 1-to-1 parsimonious correspondence. Each allocation π in EG of the first 3·N+1
items in o in which each agent among a1, . . . , a3·N , a3·N+1 receives exactly one
item occurs with positive probability. We call π perfect allocation over the first
3 ·N +1 items in o. We show that there is an allocation in EG of v1, . . . , vN that
has perfect matches for u1, . . . , uN iff there are 2N perfect allocations such as
π in EG. Moreover, this is a 1-to-2N arithmetic correspondence. In other words,
we show that the number of perfect allocations such as π in EG is equal to 2N
times the number of perfect matchings in G.

First, let us consider one discrete allocation π1 in EG of v1, . . . , vN that has
perfect matches for u1, . . . , uN . The allocation π1 occurs with positive probabil-
ity because v1, . . . , vN are liked by disjoint sets of three agents. WLOG, suppose
that π1 is such that, for each ui, agent a3·(i−1)+ 1 receives their corresponding
item vi1. The allocation π1 can be extended by the mechanism to two discrete
allocations w.r.t. each ui: (1) agent a3·(i−1)+ 2 gets item ui1 and agent a3·(i−1)+ 3

gets item ui2 or (2) agent a3·(i−1)+ 2 gets item ui2 and agent a3·(i−1)+ 3 gets item
ui1. By the preference structure, π1 can then be extended by the mechanism to
2N perfect allocations in EG. Note that each of these perfect allocations necessar-
ily gives item w to agent a3·N+1 because only they like it. Second, consider one
perfect allocation in EG. It must be the case that it extends some discrete alloca-
tion of v1, . . . , vN that has perfect matches for u1, . . . , uN . To show this, consider
a discrete allocation π2 of v1, . . . , vN that has not perfect matches for u1, . . . , uN .
Hence, π2 is such that at least two of the agents a3·(i−1)+ 1, a3·(i−1)+2, a3·(i−1)+ 3

for some vertex ui receive their corresponding items vi1, vi2, vi3 of v1, . . . , vN .
Therefore, each allocation of all items that extends π2 by using the mechanism
gives item ui1 or item ui2 to one of the agents a3·(i−1)+ 1, a3·(i−1)+ 2, a3·(i−1)+ 3

as their second item. As a consequence, in each such allocation, there is another
agent with zero items after round 3 ·N+1. We conclude that each such extension
of π2 is not a perfect allocation in EG. ⊓%
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Theorem 2. With n > 2 agents, 0/1 utilities and the Balanced Like mech-
anism, problem ExactUtility is in #P-hard under arithmetic reductions.

Proof. Let us consider allocation π = π(3 ·N +1, o) of the first 3 ·N +1 items in
o in which each agent among a1, . . . , a3·N , a3·N+1 receives exactly one item. Note
that agent a3·N+1 gets item x with positive conditional probability only given
such allocations because all agents like item x. By the preference structure, we
conclude that π occurs with probability p(π) = (1/3N ) · (1/2N ). The conditional
probability pi(x|π) of agent a3·N+1 for item x given π is equal to 1/(3 ·N + 1)
because all agents a1, . . . , a3·N , a3·N+1 like item x. The conditional probability of
agent a3·N+1 for item x is 0 given any other allocation. Therefore, p3·N+1(x, o) is
equal to (1/3N ) · (1/2N ) · (1/(3 ·N +1)) multiplied by the number of allocations
such as π in which agent a3·N+1 is feasible for item x. Finally, the expected utility
u(3·N+1)(3·N+3)(o) = p3·N+1(w, o)+ p3·N+1(x, o). We have that p3·N+1(w, o) = 1
because only agent a3·N+1 likes item w and the mechanism allocates each item
to an agent. The result follows by Lemma1. ⊓%

Necessary Outcomes. The tractability of the exact allocations of the Like
mechanism entails the tractability of its necessary allocations. By Observation 1,
we conclude the next immediate result.

Observation 2. With general utilities and the Like mechanism, problem Nec-
essaryUtility is in P.

We next focus on the necessary outcomes of the Balanced Likemechanism.
We give a Karp reduction from minimum size maximal matching problem to the
negation of NecessaryUtility. The minimum size maximal matching problem
is shown to be NP-hard on subdivision graphs of degree at most 3 in [12].

Reduction 3. Let us have a subdivision graphG of degree at most 3 and integer
r. The graph G is bipartite with vertices u1, . . . , uN of degree exactly 2 and
vertices v1, . . . , vM of degree at most 3. WLOG, we can assume that N ≥ M
and there are no two vertices from U that are connected to the same two vertices
from V . We construct an allocation instance PG,r as follows:

– Agents: 2 agents ui1, ui2 per ui and agents a1, . . . , aN−r, b1, . . . , bM and c
(i.e. 3 ·N +M − r + 1 agents),

– Items: 1 item per vj and items x1, . . . , xN , y1, . . . , yN , z1, . . . , zN−r and w
(i.e. 3 ·N +M − r + 1 items),

– Non-zero utilities: for each i ∈ [1, N ], j ∈ {1, 2}, agent uij has utility 1 for
items xi, vij , yi, z1, . . . , zN−r; for each i ∈ [1, N −r], agent ai has utility 1 for
items x1, . . . , xN ; agents b1, . . . , bM have each utility 1 for item w; agent c
has utility 1 for items zN−r, w, and

– Ordering: o = (x1 . . . xNv1 . . . vMy1 . . . yNz1 . . . zN−rw).

The expected utility of each of the agents b1, . . . , bM is at least 1/M iff
pc(w, o) = 0. This observation holds because each of the agents b1 to bM have
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equal utilities for items in which case they receive item w with the same proba-
bility which apparently is also equal to their expected utility as this is the only
item they like. Theorem3 follows from this observation.

Theorem 3. With n > 2 agents, 0/1 utilities and the Balanced Like mech-
anism, problem NecessaryUtility is in coNP-hard under Turing reductions.

Proof. There is a maximal matching in G of cardinality at most r iff there is an
allocation in PG,r in which agent c receives item w iff pc(w, o) > 0. The second
“iff” is trivial. We, therefore, focus on the first “iff”. The “only if” direction is
easier to show and, for reasons of space, we only show the more difficult “if”
direction. Suppose next that π is an allocation of all items in PG,r in which
agent c receives item w.

1. Item w is allocated in π to agent c as their first item. To see this, suppose
they also get some items among zN−r. Now, they would not be feasible when
item w arrives as agents b1, . . . , bM have zero items in π and the mechanism
would have given item w to an agent among b1, . . . , bM and not to agent c.

2. Prior to item w in π, agent c have received zero items. Hence, items
z1, . . . , zN−r are allocated in π to N − r agents as their first items. By the
preferences, these agents are from different pairs among u11, u12, . . . , uN1, uN2

because, for each pair of agents ui1, ui2, either ui1 or ui2 is forced to get item
yi. WLOG, let us assume that agents u11, . . . , u(N−r)1 get items z1, . . . , zN−r

in π.
3. Prior to item z1 in π, agents u11, . . . , u(N−r)1 have zero items. Hence, N − r

items among y1, . . . , yN are allocated in π to u12, . . . , u(N−r)2 as their first
items. These items are y1, . . . , yN−r. For i in [N −r+1, N ], we note that item
yi is allocated in π to either ui1 or ui2 as their first or second item.

4. Prior to item y1 in π, agents u11, u12, . . . , u(N−r)1, u(N−r)2 have zero items.
By the preferences, agents a1, . . . , aN−r must then receive items x1, . . . , xN−r

in π. For i in [N−r+1, N ], item xi is allocated in π to either ui1 or ui2, say ui2.
We conclude that agents u(N−r+1)1, . . . , uN1 have zero items prior to item
v1 in π. Moreover, only agents u(N−r+1)1, u(N−r+1)2, . . . , uN1, uN2 receive
items v1, . . . , vM in π. Finally, only l ≤ r agents among u(N−r+1)1, . . . , uN1

get items in π among v1, . . . , vM as first items as some of these agents
might like the same items among v1, . . . , vM . WLOG, let these agents be
u(N−l+1)1, . . . , uN1 and they are allocated in π items v1, . . . , vl as first items.

The constructed set µπ = {(uN−l+1, v1), . . . , (uN , vl)} contains only edges
from the graph G which are vertex-disjoint. Therefore, this set is a match-
ing in G. Moreover, the cardinality of this set is l at most r. We next show
that µπ is a maximal matching. For the sake of contradiction, suppose that µπ

remains a matching if we add a new edge to it, say (u, v). The edge (u, v) is
vertex-disjoint with the edges in µπ. This means that vertex u is not among
uN−l+1, . . . , uN and vertex v is not among v1, . . . , vl. Hence, vertex u is among
u1, . . . , uN−l. In the allocation π, agents u11, u12, . . . , u(N−r)1, u(N−r)2 do not
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receive any items among v1, . . . , vM . This implies that all these agents are feasi-
ble for the items they like among v1, . . . , vM but they do not get them in π. As
agents u(N−l+1)1, . . . , uN1 get items v1, . . . , vl as their first items, we conclude
that some agents among u(N−l+1)1, u(N−l+1)2 . . . , uN1, uN2 receive items vl+1,
. . . , vM as their second items. Therefore, it must be the case that all agents
u11, u12, . . . , u(N−r)1, u(N−r)2 do not like any item among vl+1, . . . , vM . Other-
wise, the mechanism would allocate some of these items to agents among u11, u12,
. . . , u(N−r)1, u(N−r)2. This is just the way in which the mechanism works. And,
we reached a contradiction with the existence of the allocation π. Finally, in the
graph G, vertices u1, . . . , uN−r are connected only to vertices among v1, . . . , vl.
Hence, v is among v1, . . . , vl. This fact contradicts that µπ ∪ {(u, v)} is a match-
ing. ⊓%

4.2 The Case of 2 Agents

By Observations 1 and 2, the outcomes of Like are tractable. Surprisingly, in
contrast to Theorems 1, 2 and 3, the outcomes of Balanced Like become
tractable with only two agents and when the ordering of items is fixed.

Theorem 4. With n = 2 agents, general utilities and the Balanced Like
mechanism, problems ExactUtility and NecessaryUtility are in P.

Proof. We use a dynamic program. Each state s = (p, q) in it encodes that agent
a1 has p items, agent a2 has q items, and its probability p(s). By induction, we
show that there are at most 2 different states after each allocation round. In
the base case, consider round 1. There are at most 2 states after this round
depending on whether both a1 and a2 or only one of them like the first item.
In the hypothesis, consider round j and suppose there are at most two states
after round j. In the step case, consider round j + 1. Now, there are two cases.
In the first one, there is only one state after round j. The result follows by the
base case. In the second case, there are two states after round j. Let these be
(p, q) and (p − 1, q + 1) where p+ q = j. If only one agent likes item oj+1, each
state transits into a new state and the result follows. If both a1 and a2 like item
oj+1, we consider four sub-cases depending on the difference p− q: (1) (p, q) and
(p−1, q+1) for p−q > 2, (2) (q+2, q) and (q+1, q+1) for p−q = 2, (3) (q+1, q)
and (q, q + 1) for p − q = 1 and (4) (q, q) and (q − 1, q + 1) for p − q = 0. For
sub-case (1), each state transits into one new state with the same probability.
For sub-case (2), (q + 2, q) transits into (q + 2, q + 1), and (q + 1, q + 1) into
(q + 2, q + 1) and (q + 1, q + 2). For sub-case (3), both states transit into the
same new state with probability 1. For sub-case (4), (q, q) transits into (q, q+1)
and (q + 1, q), and (q − 1, q + 1) into (q, q + 1). We conclude that there are at
most two different states after round j + 1 in each sub-case.

The probability p1(j +2, o) is equal to
∑

sj +1
p(sj+1) · p(a1 gets oj +2|sj +1)

where sj +1 is such a state after round j + 1 in which agent a1 is feasible for
item oj+2. The conditional probability p(a1 gets oj +2|sj+1) of agent a1 for item
oj+2 is (i) 0 or 1 in sub-case (1), (ii) 0, 1/2 or 1 in sub-case (3) and (iii) the



40 M. Aleksandrov and T. Walsh

probability of the state in which they are feasible in sub-cases (2) and (4). We
can compute the states, their probabilities and hence the probabilities of agents
and their utilities in O(m) space and time. ⊓%

5 Manipulations

We next consider how agents can act strategically. The Like mechanism is
strategy-proof and hence agents have an incentive to bid sincerely for items.
In contrast, the Balanced Like mechanism is not strategy-proof and agents
can have an incentive to bid strategically for items [1]. We thus focus on strategic
misreporting of bids with Balanced Like. In particular, we study the worst
case when the utilities and the ordering of the items are known to the misre-
porting agent. Any complexity results, in this case, provide lower bounds on
the complexity in the case of partial or probabilistic information. We formulate
the next problems where uim(vi, o) denotes the utility of agent ai supposing
their bid vector is vi = (vi1, . . . , vim) and the other agents bid sincerely. Let
ui = (ui1, . . . , uim) denotes their sincere bid vector.

ExactManipulation
Input: I = (A,O,U, o), ai, u

i, vi.
Output: uim(vi, o) − uim(ui, o).

NecessaryManipulation
Input: I=(A,O,U, o), ai, v

i, ui, k ∈ Q.
Question: uim(vi, o) − uim(ui, o) ≥ k?

Theorem 5. With n > 2 agents, 0/1 utilities and the Balanced Like mech-
anism, problem ExactManipulation is in #P-hard under arithmetic reduc-
tions.

Proof. Consider instance EG. Let us modify this instance a bit. We add one new
item z between items w and x in the ordering o such that only agent a3·N +1

likes z with 1. Let FG denote this new instance. Suppose that all agents in
FG bid sincerely. Thus, agent a3·N+1 receives each of the items w and z each
with probability 1 because they are the only agent who likes them. However,
they receive item x with probability 0. Therefore, u(3·N+1)(3·N+3)(u(3·N+1), o) =
2. Suppose that all agents in FG bid sincerely except agent a3·N+1 who bids
strategically 0 for item z. Let v(3·N+1) be their bidding vector in this case.
We can now remove item z because no agent bids positively for it. But, then
we obtain instance EG. By Theorem2, we have u(3·N+1)(3·N+3)(v(3·N+1), o) =
1+p3·N+1(x, o). The instance of ExactManipulation uses instance FG, agent
a3·N+1 and vectors u(3·N+1) and v(3·N+1). Its hardness follows by Theorem 2. ⊓%

Observe that the truthful report of agent a3·N+1 in the proof of Theorem5
leads to their utility being 2 whereas their insincere report leads to their util-
ity being at most 2. Hence, their strategic move cannot lead to an increase in
their utility but the computation of the exact difference in utility is intractable.
However, as we discuss next, computing an exact profitable insincere report that
leads to such an increase is also intractable.

Necessary manipulations might be easy even when exact manipulations are
hard. For example, in the proof of Theorem5, suppose that agent a3·N+1 has
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cardinal utility for item x that is strictly greater than (3N ).(3N + 1). If they
bid sincerely, their expected utility is 2. If they bid strategically zero for item
z, their expected utility is strictly greater than 2. This necessary increase can
be decided in polynomial time but computing the exact increase is intractable.
However, necessary manipulations are also in general not always easy even if we
ask merely for any increase in the expected utility of a given agent.

Theorem 6. With n > 2 agents, 0/1 utilities and the Balanced Like mecha-
nism, problem NecessaryManipulation is in coNP-hard under Turing reduc-
tions.

Proof. Consider instance PG,r. Suppose all agents bid sincerely. Hence,
uc(3N +M−r+1) (uc, o) = pc(zN−r, o) + pc(w, o). Suppose all agents bid sin-
cerely except agent c who bids strategically 0 for item w. Let their bidding
vector be vc. We have that uc(3N+M−r+1)(vc, o) = pc(zN−r, o). The instance
of NecessaryManipulation uses as input instance PG,r, agent c, vectors vc

and uc, and rational number k = 0. We conclude that uc(3N +M−r+1)(vc, o) −
uc(3N+M−r+1)(uc, o) ≥ 0 iff pc(w, o) = 0. The result follows by Theorem3. ⊓%

Another definition of the manipulation problem is whether a player can
possibly increase their utility by insincere reporting, rather than computing
the necessary or exact gain. Observe that in the proof of Theorem6, we have
that uc(3N+M−r+1)(uc, o) − uc(3N+M−r+1)(vc, o) > 0 iff pc(w, o) > 0. We con-
clude that possible manipulations are also intractable in general by the proof of
Theorem3. Finally, by Theorem4, we conclude that possible, necessary and exact
manipulations are easy with just two agents and items arriving from a fixed
ordering. By Theorem1 and the discussion after it, we conclude that necessary
and exact manipulations are hard with two agents and items arriving from a
distribution.

6 Related Work and Conclusion

We studied the worst-case computational complexity of possible, necessary and
exact outcomes returned by the Like and Balanced Like mechanisms suppos-
ing agents act sincerely. With Like, there is no benefit for agents to act strate-
gically. With Balanced Like, the agents might be strategic but we proved
that computing a manipulation is computationally intractable in general. Some
results are however tractable for the case of 2 agents. Our study of the online allo-
cations returned by the Like and Balanced Like mechanisms is in-line with
many results in offline fair division, voting theory and partial tournaments where
possible, necessary and exact outcomes play crucial role; see e.g. [2,4,5,20]. Our
results provide a stepping stone towards better understanding strategic behav-
ior. A number of works already considered such behavior for offline mechanisms;
see e.g. [3,6]. Another interesting future directions would be to estimate the out-
comes of our mechanisms or to look at fixed-parameter tractable algorithms for
these problems [10,13,15].
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Abstract. This paper combines two key ingredients for online algo-
rithms - competitive analysis (e.g. the competitive ratio) and advice com-
plexity (e.g. the number of advice bits needed to improve online decisions)
- in the context of a simple online fair division model where items arrive
one by one and are allocated to agents via some mechanism. We consider
four such online mechanisms: the popular Rankingmatching mechanism
adapted from online bipartite matching and the Like, Balanced Like
and Maximum Like allocation mechanisms firstly introduced for online
fair division problems. Our first contribution is that we perform a com-
petitive analysis of these mechanisms with respect to the expected size
of the matching, the utilitarian welfare, and the egalitarian welfare. We
also suppose that an oracle can give a number of advice bits to the mech-
anisms. Our second contribution is to give several impossibility results;
e.g. no mechanism can achieve the egalitarian outcome of the optimal
offline mechanism supposing they receive partial advice from the oracle.
Our third contribution is that we quantify the competitive performance
of these four mechanisms w.r.t. the number of oracle requests they can
make. We thus present a most competitive mechanism for each objective.

1 Introduction

Competitive analysis is a well-known technique to measure the quality of online
versus offline decisions [4,20]. Online decisions are irrevocable (i.e. we cannot
change past decisions) and instantaneous (i.e. we cannot use future knowledge).
Offline decisions are made supposing the entire problem information is avail-
able. Competitive analysis has been applied in various areas during the years,
e.g. online bipartite matching, online stochastic matching, online sequential allo-
cation, online sequential bin packing, online scheduling [1,10,11,13,14].

For some online problems, quite successful algorithms are already known
under particular assumptions about the arriving input (e.g. [7]). For other prob-
lems, this is unfortunately not the case. For example, in the uniform knapsack
problem, any deterministic online algorithm without advice has an unbounded
competitive ratio. Interestingly, with just one bit of advice, it is possible to imple-
ment a 2-competitive algorithm for this problem [15]. In general, we can increase
the competitive ratio of any online algorithm by giving it enough advice. This
motivates the development of novel frameworks such as advice complexity.
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 44–57, 2017.
DOI: 10.1007/978-3-319-67190-1 4
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An online algorithm has now an access to an oracle tape for the problem of
interest and can request an advice string when making a decision. The oracle is
normally assumed to have an unlimited computational power but the number
of bits in the advice string must be polynomially bounded in the size of the
input offline problem. For a detailed survey on advice complexity, we refer to
[5]. Advice complexity is also related to semi-online and look-ahead algorithms
that suppose some of the input is available [19].

This raises a number of questions. How many advice bits are sufficient to
increase the competitive ratio of an online algorithm to a certain threshold? How
many bits are needed to match an optimal offline algorithm? For example, in the
popular paging problem, to achieve offline optimality with an online algorithm
we need ⌈log2 k⌉ bits of advice to specify which page to delete from the buffer
of size k. This results in advice complexity of n · ⌈log2 k⌉ for instances with n
requests, whereas it is shown that n + k bits of advice suffice [3,8]. As another
example, in online bipartite matching with a graph of size n (i.e. the number of
vertices in a partition), a corresponding deterministic online algorithm is optimal
(w.r.t. the expected matching size) whenever it has an access to ⌈log2 n!⌉ but
not less advice bits [17].

Here, for the first time, we introduce techniques from competitive analysis
and advice complexity into online fair division. Online fair division is an impor-
tant and challenging problem facing society today due to the uncertainty we may
have about future resources, e.g. deceased organs to patients, donated food to
charities, electric vehicles to charging stations, tenants to houses, even students
to courses, etc. We often cannot wait until the end of the year, week or even
day before starting to allocate incoming resources. For example, organs cannot
be kept too long on ice or products cannot be stored in the warehouse before
distributing to a food bank [21,22]. We extend past work by asking how many
advice bits are needed to increase the welfare.

Advice helps us understand how the competitive ratio depends on uncertainty
about the future. It can be based on information about past or future items.
For example, consider the allocation of food donations to charities by a central
decision maker. A number of contractors usually donate food on a regular basis
and at specific times so the decision maker knows when some of the items will
arrive. Also, each item could have a type that is the set of charities that like the
item. The oracle might then keep track on the item types that have arrived in
the past and thus bias the allocation of the new item type whenever possible.
As another example, consider the allocation of deceased organs to patients. The
administrator of a hospital might know what organs will arrive that can be
exchanged with a neighboring hospital. They might use this offline information to
improve significantly the best local online match for the current organ. Further,
the oracle could keep track of how long patients are in the waiting list and thus
bias the future organ matching decisions based on this information under various
constraints, e.g. a patient should not wait for an organ more than 30 days, a
patient who arrived at time moment 10 to the waiting list should receive organs
earlier than a patient who arrived after time moment 10, etc.
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Our contributions: Our work is novel for several reasons. For example, we com-
bine advice complexity and competitive analysis in the context of online fair
division. As another example, we study multiple objectives and online competi-
tiveness of mechanisms. We first observe a 1-to-1 correspondence between online
bipartite matching and online fair division. By using this correspondence, we can
transfer and significantly extend objectives and algorithms from online bipartite
matching to online fair division and vice versa. This is useful for a number of rea-
sons. For example, agents in fair division have preferences and can be strategic
which is an aspect not typically considered in bipartite matching. As a second
example, allocations may be more difficult to find than matchings if we want
them to satisfy multiple fairness and efficiency criteria. We thus view algorithms
for online bipartite matching as mechanisms for online fair division. Following
this, we study the competitive performance of the popular matching Ranking
mechanism and the attractive Like, Balanced Like and Maximum Like allo-
cation mechanisms w.r.t. three different objectives: the expected matching size,
the utilitarian welfare and the egalitarian welfare. We consider three settings,
namely online fair division setting without advice, with full advice and with par-
tial advice. In each of these settings, we analyse these four mechanisms and
present a most competitive mechanism for each objective supposing adversarial
input. We further plot their competitive ratios. We finally proved that there
is no mechanism that maximizes the expected matching size or the egalitarian
welfare and uses less than full advice.

The next Sect. 2 provides the notions, the mechanisms and the objectives
that we use throughout the paper. In Sects. 3, 4 and 5, we report our results
for the online setting without advice, the online setting with full advice and the
online setting with partial advice, respectively. Finally, we discuss related work,
future work and conclude in Sect. 6.

2 Preliminaries

Online bipartite matching instance: An instance G has (1) a set of n “boy”
vertices, (2) a set of m “girl” vertices, (3) a weight matrix where the (i, j)-th cell
contains the weight of the edge between vertices the i-th “boy” vertex and the
j-th “girl” vertex, and (4) a sequence of the “girl” vertices. We consider binary
(i.e. unweighted graph) and non-negative (i.e. weighted graph) weights.

Online fair division instance: An instance I has (1) a set A of agents
a1, . . . , an, (2) a set O of indivisible items o1, . . . , om, (3) utility matrix U =
(uij)n×m where uij is the private utility of agent ai for item oj , and (4) ordering
o of the items. We consider binary and general non-negative rational utilities.

Online setting: Let GI = (A,O,U, o) be the online bipartite graph associated
with I. We suppose that ordering o reveals item oj in round j when each agent
ai bids a rational non-negative value vij for item oj and a mechanism allocates
item oj to an agent. Further, we assume that the ordering o is adversarial which
captures the worst-case arrival sequences.
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Fair division axioms: Amechanism is strategy-proof if, with complete informa-
tion, no agent can misreport their utilities and thus increase their expected out-
come. Agent a1 envies (ex ante) ex post agent a2 if a1 assigns greater (expected)
utility to the (expected) allocation of a2 than to their own (expected) allocation.
A mechanism is bounded envy-free (ex ante) ex post with r if no agent envies (ex
ante) ex post another one with more than r given the (expected) allocation
returned by the mechanism. A mechanism is (ex ante) ex post Pareto efficient
if its returned (expected) allocation is Pareto optimal.

Mechanisms: We use an oracle tape to specify some of the behavior of the opti-
mal offline mechanism. An online mechanism M does not consult the oracle tape
and makes the current decision supposing the past decisions are irrevocable and
no information about future items is available. By comparison, its modification
Adviced M can at each round decide whether to consult the oracle or not. If
“yes”, the oracle encodes the identifier of the agent that should receive the item
on the advice tape when the mechanism reads the tape and allocates the item
to the adviced agent. If “no”, Adviced M runs M to allocate the current item.
There are two extreme cases. If Adviced M does not read the oracle tape at
any round, then its performance coincides with the one of M . If Adviced M
reads the oracle tape at each round, then its performance coincides with the one
of an optimal offline mechanism.

We consider four online mechanisms. The Maximum Like mechanism allo-
cates each item oj uniformly at random to an agent with the greatest bid for
oj . The Ranking mechanism from [13] picks a strict priority ordering over the
agents uniformly at random and allocates each item oj to an agent that has
positive bid for it, has not been allocated items previously and has the greatest
priority. We further use the Like and Balanced Like mechanisms from [2].
The Like mechanism allocates each item oj uniformly at random to an agent
that bids positively for the item. The Balanced Like mechanism allocates each
item oj uniformly at random to an agent among those agents who bid positively
for the item and have been allocated fewest items previously. We modify these
four mechanisms to read advice bits from the oracle tape: Adviced Maximum
Like, Adviced Ranking, Adviced Like and Adviced Balanced Like.

These mechanisms satisfy many nice axioms. For example, Maximum Like
is Pareto efficient. In fact, it is one of a few Pareto efficient mechanisms but
unfortunately it is not strategy-proof or envy-free. Like is strategy-proof and
envy-free ex ante. In fact, each envy-free ex ante mechanism assigns probabilities
for items to agents as Like does. However, Like is not envy-free ex post. In
contrast, Balanced Like mechanism bounds the envy ex post. Interestingly,
with 0/1 utilities, it is also Pareto efficient and envy-free ex ante. We further
analysed the matching Ranking mechanism from a fair division point of view.
For example, it is strategy-proof, envy-free ex ante and bounds the envy ex post
but only with simple 0/1 utilities. However, it is not Pareto efficient in this
setting as it may discard items. These axiomatic properties are well-understood.
We, therefore, turn attention to the competitive properties of these mechanisms.
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Objectives: Given instance I, each mechanism induces a probability distrib-
ution over a set ΠI of allocations. The expected matching size k(I) is equal
to

∑
π∈ΠI

p(π) · k(π) where p(π) is the probability of allocation π and k(π) is
the number of agents that are allocated items in π. The expected utility ui(I)
of agent ai is

∑m
j =1 pi(j, I) · uij where pi(j, I) is the expected probability of

agent ai for item oj . The utilitarian welfare u(I) is equal to
∑n

i=1 ui(I). The
egalitarian welfare e(I) is equal to minni=1 ui(I).

Example 1 (Upper-triangular instance). Consider I with n agents, n items
and let each agent ai has utilities equal to 1 for items o1 to on− i+1. For a
deterministic mechanism that allocates all items to agents that like them, we
have that k(I) ∈ {1, 2, . . . , n}, u(I) = n and e(I) ∈ {0, 1}. ⊓%

Performance measures: We use the objectives in order to define three statis-
tics to measure the performance of online mechanisms over all instances.

(ES)min
I

k(I) (1)

(UW )min
I

u(I) (2)

(EW )min
I

e(I) (3)

Online ratios with advice: We say that an online mechanism M has an offline
(online) competitive ratio c(m) with m advice bits w.r.t. welfare W if, for an
instance I and an ordering o of m items, we have that W (OPToff(on)) ≤ c(m) ·
W (M(I)) + b(m) holds where b(m) is an additive constant and OPToff(on) is
the optimal offline (online) mechanism. Note that the OPToff mechanism does
not depend on the ordering of the items whilst OPTon does. A mechanism M is
most c(m)-competitive w.r.t. welfare W if M has a competitive ratio c(m) w.r.t.
W and each other mechanism has a competitive ratio that is at least c(m). We
say that M1 is strictly better than M2 on a set of instances if the welfare value
of M1 is not lower than the one of M2 on all instances from the set, and greater
than the one of M2 on some instances from the set. We say that M1 and M2

are incomparable if M1 is strictly better than M2 on some instances and M2 is
strictly better than M1 on some other instances.

We suppose throughout the paper that agents sincerely report their utilities
for items. Also, we assume that each agent has positive utility for at least one
item and each item is liked by at least one agent. We show our results for the
case when m = n and there is a perfect allocation in I (or perfect matching in
GI), i.e. an allocation in which each agent receives exactly one item that they
like. However, we also draw conclusions for the case when m > n and there
is an allocation in which each agent receives at least one item that they like.
Finally, we extended all our results to the case when the maximum number of
agents that receive items that they like in each possible allocation is k < n (or
maximum matching in GI of cardinality k < n). However, we omit these results
for reasons of space.
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3 Online Fair Division Without Advice

We study the competitiveness of our four online mechanisms w.r.t. to the optimal
offline mechanism for the expected matching size (ES), the utilitarian welfare
(UW) and the egalitarian welfare (EW). The optimal offline mechanism returns
an allocation in which each agent receives exactly one item for (ES), an allocation
in which each item is received by an agent that values it most for (UW) and a
perfect allocation that maximizes the egalitarian welfare for (EW).

3.1 Expected Matching Size

A mechanism that maximizes the objective k(I) also maximizes both u(I) and
e(I) simultaneously when agents have simple binary utilities. By Theorem 2
from [17], no deterministic online mechanism can maximize (ES). We, therefore,
turn our attention to randomized mechanisms for (ES). By [13], the Rank-
ing mechanism is most competitive for (ES) with expected matching size of
n · (1− 1

e )+ o(n) when the arriving sequence is adversarial. Its competitive ratio
is 1+ 1

e− 1 . For this reason, we next report the competitive ratios of Balanced
Like, Like and Maximum Like with respect to the optimal offline mechanism
and Ranking. The optimal offline mechanism returns a matching of expected
size n.

Theorem 1. The Like and Balanced Like mechanisms are 2-competitive
and 2 · (1 − 1

e )-online competitive whereas the Maximum Like mechanism is
n-competitive and n · (1 − 1

e )-online competitive for (ES).

Proof. For Balanced Like, consider the Random mechanism that allocates
each next item uniformly at random to an agent among those with 0 items.
If no such agent exists for the current item, then Random discards the item.
The Balanced Like mechanism can be seen as a completion of Random, i.e.
Balanced Like allocates even the items that Random discards. It is easy
to prove that the expected matching sizes of Balanced Like and Random
are the same for each instance. Therefore, the Balanced Like and Random
mechanisms achieve the same expected matching size for each instance. By [13],
the minimum such size is equal to n

2 + o(log2 n).
For Like, consider n agents, n items. Suppose that each agent likes the first

n/2 items. The remaining n/2 items are chosen by the adversary. We have that
k ∈ [1, n/2] different agents are allocated the first n/2 items. The adversary then
chooses the next n/2 items in such a way so that n/2 different agents like them
and k of them are the ones matched the first n/2 items. The expected matching
size is n

2 + o(log2 n). There could be instances, however, when this size is lower.
For Maximum Like, consider an instance with n agents and n items. Let

us suppose that all agents have positive utilities for all items but only agent a1
has the greatest utility for each item. The mechanism gives all items to agent
a1 and thus achieves a matching size of 1. Note that this is the worst possible
outcome. For each instance, the expected matching size of this mechanism is at
least 1 because it allocates all items to at least one agent. ⊓%
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Observation 1. The Ranking mechanism is strictly better than the Bala-
nced Like mechanism which is strictly better than the Like mechanism for
(ES).

ForRanking andBalanced Like, the result in Observation 1 follows imme-
diately from Theorem1. By Lemma 1, Balanced Like is at least as competitive
than Like for each instance. For some instances, Balanced Like is more com-
petitive than Like. Hence, Balanced Like is strictly better than Like.

Lemma 1. Let πj be an allocation of items o1 to oj, and ρj and σj extend πj

to all items by using Balanced Like and Like, respectively. Further, let b(ρj)
and l(σj) be their probabilities. For each instance, j ∈ [1, n] and πj, we have that∑

ρj
b(ρj) · k(ρj) ≥

∑
σj

l(σj) · k(σj) holds.

Ranking outperforms Maximum Like in general over all instances. In con-
trast, there are instances on which Maximum Like outperforms Ranking. We
illustrate this in Example 2.

Example 2 (Expected matching incomparabilities). Consider the fair
division of 2 items between 2 agents. Let u11 = 2, u12 = 0, u21 = 1, u22 = 2.
The expected matching sizes of Maximum Like and Ranking are 2
and 3/2. ⊓%

If m > n, our results hold as well. We conclude that Ranking is more
competitive than Balanced Like, Like and Maximum Like for (ES) in the
worst case.

3.2 Utilitarian Welfare

In general, the utilitarian welfare can be maximized even online with no informa-
tion about future items. One most competitive online mechanism that achieves
the optimal offline welfare is Maximum Like. Hence, the offline and online
competitive ratios of online mechanisms conflate to just one competitive ratio.

Proposition 1. With general utilities, the Maximum Like mechanism maxi-
mizes (UW).

Proof. Maximum Like allocates each next item in the ordering to an agent
with the greatest utility for the item. The returned online welfare value coincides
with the maximum possible offline value of this welfare, i.e. the maximum utility
sum over the items. ⊓%

The result in Proposition 1 is straightforward in our setting but there are fair
division settings in which optimizing the utilitarian welfare is intractable even
offline when the entire problem input information is available [18]. We, therefore,
find our result fundamental. On the other hand, with binary utilities, note that
each mechanism that gives all items to agents that like them maximizes the
utilitarian welfare. Indeed, Balanced Like and Like do maximize it whereas
Ranking does not because it might discard items.
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Observation 2. With 0/1 utilities, the Balanced Like and Like mechanisms
are strictly better than the Ranking mechanism for (UW).

With general utilities, Like is n-competitive; see the example in the proof
of Theorem 9 from [2]. By comparison, Ranking and Balanced Like are not
competitive from a utilitarian perspective even with just two agents and two
items. We illustrate these results in Example 3.

Example 3 (Utilitarian non-competitiveness). Consider the fair division
of 2 items to 2 agents. Let u11 = 0, u12 = 1, u21 = 1, u22 = u. The optimal offline
utilitarian welfare is u+ 1 whereas the one of Balanced Like and Ranking
is 2. Their ratios go to ∞ as u goes to ∞. ⊓%

Our Example 3 is in-line with an impossibility example and an impossibility
remark presented by [14] for online weighted bipartite matching. These show
that there is no deterministic or randomized online algorithm that maximizes
(or minimizes) the perfect utilitarian welfare (the sum of the utilities in a per-
fect allocation) where the competitive ratio of the algorithm depends only on
the number of agents n. In contrast, our utilitarian welfare objective (UW) is
different because its maximum value could be obtained by allocating all items to
a single agent. As a result, Maximum Like is a mechanism whose competitive
ratio does not depend even on n and Like is a mechanism whose competitive
ratio depends solely on n.

If m > n, the Maximum Like mechanism remains optimal for (UW). We
used the argument in the proof of Theorem 9 from [2] to construct an example
and show that Like remains n-competitive. Both Ranking and Balanced Li-
ke remain not competitive; see the example in the proof of Theorem 10 from
[2]. We conclude that Maximum Like is more competitive than Ranking, Ba-
lanced Like and Like for (UW) in any case.

3.3 Egalitarian Welfare

In this section, we optimize the egalitarian welfare. It is easy to see that there is
no deterministic online mechanism that maximizes the egalitarian welfare. We
focus therefore on randomized mechanisms.

With binary utilities, both Like and Balanced Like are n-competitive
from an egalitarian perspective; see Example 1. Moreover, Maximum Like is
equivalent to Like and hence it is also n-competitive. With general utilities,
Maximum Like is unfortunately not competitive at all even with just two agents
and two items. See Example 4 for this simple result.

Example 4 (Egalitarian non-competitiveness). Consider the fair division
of 2 items to 2 agents. Let u11 = 2, u12 = 2, u21 = 1, u22 = 1. An optimal offline
egalitarian mechanism gives say item o1 to agent a1 with probability 1 and item
o2 to agent a2 with probability 1. Its egalitarian welfare is equal to 1. Maximum
Like gives items o1 and o2 to agent a1 with probability 1. Its welfare is equal to
0. Hence, its ratio is ∞. ⊓%
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Interestingly, with general utilities, Like, Balanced Like and Ranking
are all most n-competitive from an egalitarian perspective.

Theorem 2. With general utilities, the Balanced Like, Like and Ranking
mechanisms are most n-competitive for (EW).

Proof. The mechanisms have competitive ratios of n. Consider instance I, agent
ai and the first item oj in the ordering such that agent ai has positive utility
for it. We show that e(I) is at least 1

n . With Like, we have that the probability
pi(j, I) of agent ai for item oj is equal to 1/nj where nj is the number of agents
that like item oj . Since nj ≤ n, we have pi(j, I) ≥ 1/n. With Balanced Like
and Ranking, the worst case for agent ai is when they have been allocated 0
items prior round j and all agents together have positive utilities for item oj .
Therefore, we have pi(j, I) ≥ 1/nj ≥ 1/n. Hence, agent ai receives expected
utility of at least 1

n . This lower bound is achieved in Example 1.
Next, we confirm that every other mechanism has competitive ratio at least

n. Consider the upper-triangular instance from Example 1 and a mechanism M .
If M shares the probability for the first item uniformly at random, then its
competitive ratio is equal to 1

n . If M shares the probability for the first item not
uniformly at random, then its competitive ratio is lower than 1

n . Suppose that
M gives the first item to agent an with probability p > 1

n . The probability of
some other agent must be smaller than 1

n as these probability values sum up to
at most 1. WLOG, suppose that the probability q of agent a1 for this first item is
one such value smaller than 1

n . The egalitarian welfare on the upper-triangular
instance is then p. However, consider next the lower-triangular instance, i.e.
agent ai likes items o1 to oi. The mechanism gives expected utility of q < 1

n to
agent a1. This value is also the welfare on the lower-triangular instance. M has
competitive ratio of 1/q because the optimal offline welfare is 1. ⊓%

Observation 3. With 0/1 utilities, the Ranking mechanism is strictly better
than the Balanced Like mechanism which is strictly better than the Like
mechanism for (EW).

Observation 3 can be shown similarly as Observation 1. Surprisingly, there are
instances on which Maximum Like outperforms all the other three mechanisms
even though it is not competitive in general. See Example 5 for this result.

Example 5 (Egalitarian incomparabilities). Let I has 2 items, 2 agents
and u11 = 2, u12 = 1, u21 = 1, u22 = 2. The value of e(I) of Maximum Like is
2 whereas the value of e(I) of Balanced Like, Like or Ranking is equal to
3/2. ⊓%

If m > n, Ranking and Balanced Like become not competitive; see the
example in the proof of Theorem 10 from [2]. Like however remains most n-
competitive; see the example in the proof of Theorem 9 from [2]. We conclude
that Like is more competitive than Ranking, Balanced Like, Maximum
Like for (EW) in the worst case.
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4 Online Fair Division with Full Advice

We next study most competitive adviced mechanisms for the expected matching
size (ES), the utilitarian welfare (UW) and the egalitarian welfare (EW). By
Proposition 1, there is a deterministic online mechanism that maximizes (UW)
even without any advice. We, therefore, focus on (ES) and (EW).

We assume that the oracle specifies on the tape a different agent for each of
the n items. Such an encoding requires ⌈log2 n!⌉ advice bits. By Theorem 1 from
[17], there is a deterministic online mechanism that uses ⌈log2 n!⌉ advice bits and
maximizes (ES). By Theorem 2 from [17], no deterministic online mechanism
can use less than ⌈log2 n!⌉ advice bits and maximize (ES). These two results
are inherited for (EW) as well. Interestingly, we next prove that no randomized
online mechanism can use less than ⌈log2 n!⌉ advice bits and maximize either
objective (ES) or (EW).

Theorem 3. There is no randomized online algorithm that uses less than
⌈log2 n!⌉ advice bits and maximizes (ES). Even with 0/1 utilities, there is no
randomized online algorithm that uses less than ⌈log2 n!⌉ advice bits and maxi-
mizes (EW).

Proof. For (ES), suppose that there is such a mechanism. The maximum value
of (ES) is n. Let π be an allocation returned by the mechanism and p(π) its
probability. Recall that k(π) ≤ n denotes the number of different agents that
receive items in π. If

∑
π p(π) < 1 holds, then we conclude that

∑
π p(π) ·

k(π) < n holds. Therefore, the mechanism does not maximize (ES) which is a
contradiction. Consequently,

∑
π p(π) = 1 holds. But, now we have that

∑
π p(π)·

k(π) < n iff k(π) < n for some π returned by the mechanism. Therefore, as the
mechanism maximizes (ES), we conclude that k(π) = n for each π. To sum up,
the mechanism returns only perfect allocations and their probabilities sum up to
1. We can define now a deterministic online mechanism given one π returned by
the randomized online mechanism. This deterministic online mechanism also
uses less than ⌈log2 n!⌉ advice bits and maximizes (ES). This is in contradiction
with Theorem 2 from [17]. This result holds even with more items than agents.

For (EW) and binary utilities, suppose that there is such a mechanism. Hence,
each agent receives an expected utility of 1 and the probability of 1 for each
item is shared completely between agents that like the item. Given instance
I, consider the random assignment matrix P (I) = (pi(j, I))n×n of this mech-
anism. The matrix P (I) is bistochastic because

∑n
i=1 pi(j, I) = 1 for each j

and
∑n

j =1 pi(j, I) = 1 for each i hold. By the famous result of Birkhoff, every
bistochastic matrix is a convex combination of permutation matrices [6]. Each
permutation matrix corresponds to a perfect allocation in I. There could be mul-
tiple combinations for the same bistochastic matrix. For each such combination,
we can define a randomized online algorithm that uses less than ⌈log2 n!⌉ advice
bits and maximizes (ES). This is in contradiction with the previous result. This
result holds even with more items than agents. ⊓%
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5 Online Fair Division with Partial Advice

In this section, we report the reciprocal ratios of the mechanisms. We assume
that the oracle specifies agents for k < m items. We start with the case when
m = n. For (ES), the oracle specifies a different agent for each of the first k
items. An efficient encoding requires ⌈log2 k!⌉ advice bits. If k = n−1, Adviced
Ranking and Adviced Balanced Like are optimal because they keep track
on the past allocation whereas Adviced Maximum Like and Adviced Like
have ratios 1 − 1

n and 1 − 1
n + 1

n2 . If k < n − 1, we next report their ratios.

Theorem 4. With ⌈log2 k!⌉ advice bits, Adviced Ranking is most (e−1)n+k
en -

competitive for (ES).

Proof. The mechanism has two components: (1) one that allocates items deter-
ministically and (2) another one that allocates items according to Ranking. Let
the entire input graph be GI with n vertices in each partition. Let us remove
the k deterministically decided vertices from both partitions together with their
edges from GI . Now, consider the remaining bipartite sub-graph with (n − k)
vertices in each partition. This graph has perfect matching of size (n − k) and
Ranking matches vertices in this graph. Therefore, the expected matching size
of Ranking on this smaller graph is (n − k) · (1− 1

e ) + o(n − k). We conclude
that this size for Adviced Ranking is k + (n − k) · (1 − 1

e ) + o(n − k).
By Theorem 1 from [17], the deterministic component of Adviced Rank-

ing maximizes (ES) on the bipartite sub-graph of GI that contains the adviced
2 · k vertices. By [13], we conclude that the randomized component of Adviced
Ranking maximizes (ES) on the bipartite sub-graph of GI that contains the
remaining unadviced 2 · (n − k) vertices. ⊓%

By Theorem 2 from [17] and our Theorem3, there is no mechanism that uses
less than ⌈log2 k!⌉ advice bits and has a greater competitive ratio than Adviced
Ranking with ⌈log2 k!⌉ advice bits. We also obtained that the offline ratios of
Adviced Maximum Like, Adviced Balanced Like and Adviced Like for
(ES) and k ∈ [1, n − 1) are k

n ,
k+n
2n and at most k+n

2n . Their online ratios are
ek

(e−1)n+k ,
e(k+n)

2(e− 1)n+2k and at most e(k+n)
2(e− 1)n+2k . In Fig. 1, we plot these ratios

for n = 10 agents and k ∈ [0, n] oracle calls.
For (UW), (EW) and 0/1 utilities, the oracle specifies a different agent for

each of the first k items. For (UW) and general utilities, the oracle specifies
an agent for each of k most valued items. The worst case for Adviced Rank-
ing and Adviced Balanced Like is when the adviced allocation biases the
allocation of future items towards agents who receive negligibly small utilities for
these items. Instead, Adviced Like allocates each such unadviced item to an
agent with probability at least 1

n . Adviced Maximum Like optimizes (UW) by
Proposition 1. For (EW) and general utilities, the oracle computes an allocation
of k items to agents that maximizes the egalitarian welfare and then specifies the
k agents for the k items in this computed allocation. Adviced Ranking and
Adviced Balanced Like focus on agents with zero and fewest items whereas
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Fig. 1. (left) w.r.t optimal offline mechanism, (right) w.r.t. Adviced Ranking

Adviced Like and Adviced Maximum Like perform as Like and Maximum
Like.

We next consider the case when m > n. For (ES), we conclude the same
results as above. For (UW), (EW) and 0/1 utilities, we assume that the oracle
specifies k agents for the first k items in the ordering for which the k agents are
different. For (UW), (EW) and general utilities, the oracle specifications are as
in the case when m = n. We summarize all ratios in Table 1.

Table 1. Ratios for k ∈ [0,m) adviced items and l ∈ [1, n) adviced agents: (b) - binary
utilities, (g)-general utilities.

Mechanism (UW)-b (UW)-g (EW)-b (EW)-g (EW)-g

m ≥ n m ≥ n m ≥ n m = n m > n

Adv.Max.Like 1 1 1
n 0 0

Adv.Bal.Like 1 k
m

1
n − l

1
n − l 0

Adv.Like 1 k
m + 1

n − k
nm

1
n

1
n

1
n

Adv.Ranking ≤ n
m

k
m

1
n−l

1
n − l 0

6 Related Work and Conclusions

We combined competitive analysis, advice complexity and online fair division.
Our results are simple but fundamental to understand better the interface
between matching and fair division problems. In conclusion, the chair might use
Adviced Ranking for (ES), Adviced Maximum Like for (UW) and Adviced
Like or Adviced Balanced Like for (EW). We quantify the offline and online
performance of these mechanisms with respect to the number of advice bits they
can read from an oracle tape. We also presented two impossibility results and
closed an open question from [17].

In future, we will analyse other b-matching mechanisms from a fair division
viewpoint [11,12]. Also, we can explore more objectives (e.g. the Nash welfare)
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or competitive measures (e.g. price of anarchy) [2,9]. There are more general
matching models with weights attached to the “boy” vertices or “girl” vertices
arriving from a known distribution or a random order [16]. It would be interesting
to see if our mechanisms remain most competitive in such models.

References

1. Albers, S., Hellwig, M.: Semi-online scheduling revisited. Theor. Comput. Sci. 443,
1–9 (2012)

2. Aleksandrov, M., Aziz, H., Gaspers, S., Walsh, T.: Online fair division: analysing
a food bank problem. In: Proceedings of the Twenty-Fourth IJCAI 2015, Buenos
Aires, Argentina, pp. 2540–2546, 25–31 July 2015
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Abstract. The highly influential framework of conceptual spaces
provides a geometric way of representing knowledge. Instances are rep-
resented by points in a high-dimensional space and concepts are rep-
resented by convex regions in this space. After pointing out a problem
with the convexity requirement, we propose a formalization of concep-
tual spaces based on fuzzy star-shaped sets. Our formalization uses a
parametric definition of concepts and extends the original framework
by adding means to represent correlations between different domains in
a geometric way. Moreover, we define computationally efficient opera-
tions on concepts (intersection, union, and projection onto a subspace)
and show that these operations can support both learning and reasoning
processes.

Keywords: Conceptual spaces · Star-shaped sets · Fuzzy sets

1 Introduction

One common criticism of symbolic AI approaches is that the symbols they oper-
ate on do not contain any meaning: For the system, they are just arbitrary tokens
that can be manipulated in some way. This lack of inherent meaning in abstract
symbols is called the “symbol grounding problem” [17]. One approach towards
solving this problem is to devise a grounding mechanism that connects abstract
symbols to the real world, i.e., to perception and action.

The framework of conceptual spaces [15,16] attempts to bridge this gap
between symbolic and subsymbolic AI by proposing an intermediate concep-
tual layer based on geometric representations. A conceptual space is a high-
dimensional space spanned by a number of quality dimensions that are based on
perception and/or subsymbolic processing. Convex regions in this space corre-
spond to concepts. Abstract symbols can thus be grounded in reality by linking
them to regions in a conceptual space whose dimensions are based on perception.

The framework of conceptual spaces has been highly influential in the last
15 years within cognitive science and cognitive linguistics [13,14,31]. It has also
sparked considerable research in various subfields of artificial intelligence, rang-
ing from robotics and computer vision [8–10] over the semantic web and ontology
integration [2,12] to plausible reasoning [11,27].

One important question is however left unaddressed by these research efforts:
How can an (artificial) agent learn about meaningful regions in a conceptual
space purely from unlabeled perceptual data?
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 58–71, 2017.
DOI: 10.1007/978-3-319-67190-1 5
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Our approach for solving this concept formation problem is to devise an
incremental clustering algorithm that groups a stream of unlabeled observations
(represented as points in a conceptual space) into meaningful regions.

In this paper, we point out that Gärdenfors’ convexity requirement prevents
a geometric representation of correlations. We resolve this problem by using star-
shaped instead of convex sets. Our mathematical formalization defines concepts
in a parametric way that is easily implementable. We furthermore define compu-
tationally efficient operations on these concepts, which can support both machine
learning and reasoning processes. This paper therefore lays the foundation for
our work on concept formation.

The remainder of this paper is structured as follows: Sect. 2 introduces the
general framework of conceptual spaces and points out a problem with the notion
of convexity. Section 3 describes our formalization of concepts as fuzzy star-
shaped sets. In Sect. 4, we define operations on these sets and in Sect. 5 we show
that they can support both machine learning and reasoning processes. Section 6
summarizes related work and Sect. 7 concludes the paper. Proofs of our propo-
sitions are provided in an appendix available online at http://lucas-bechberger.
de/appendix-ki-2017/.

2 Conceptual Spaces

2.1 Definition of Conceptual Spaces

This section presents the cognitive framework of conceptual spaces as described
in [15] and introduces our formalization of dimensions, domains, and distances.

A conceptual space is a high-dimensional space spanned by a set D of so-
called “quality dimensions”. Each of these dimensions d ∈ D represents a way in
which two stimuli can be judged to be similar or different. Examples for quality
dimensions include temperature, weight, time, pitch, and hue. We denote the
distance between two points x and y with respect to a dimension d as |xd − yd|.

A domain δ ⊆ D is a set of dimensions that inherently belong together.
Different perceptual modalities (like color, shape, or taste) are represented by
different domains. The color domain for instance consists of the three dimensions
hue, saturation, and brightness.

Gärdenfors argues based on psychological evidence [5,28] that distance within
a domain δ should be measured by the weighted Euclidean metric:

dδ
E(x, y,Wδ) =

√∑

d∈δ

wd · |xd − yd|2

The parameter Wδ contains positive weights wd for all dimensions d ∈ δ repre-
senting their relative importance. We assume that

∑
d∈δ wd = 1.

The overall conceptual space CS is defined as the product space of all dimen-
sions. Again, based on psychological evidence [5,28], Gärdenfors argues that dis-
tance within the overall conceptual space should be measured by the weighted

http://lucas-bechberger.de/appendix-ki-2017/
http://lucas-bechberger.de/appendix-ki-2017/
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Manhattan metric dM of the intra-domain distances. Let ∆ be the set of all
domains in CS. We define the distance within a conceptual space as follows:

d∆
C (x, y,W ) =

∑

δ∈∆

wδ · dδ
E(x, y,Wδ) =

∑

δ∈∆

wδ ·
√∑

d∈δ

wd · |xd − yd|2

The parameter W = ⟨W∆, {Wδ}δ∈∆⟩ contains W∆, the set of positive domain
weights wδ. We require that

∑
δ∈∆ wδ = |∆|. Moreover, W contains for each

domain δ ∈ ∆ a set Wδ of dimension weights as defined above. The weights in
W are not globally constant, but depend on the current context. One can easily
show that d∆

C (x, y,W ) with a given W is a metric.
The similarity of two points in a conceptual space is inversely related to their

distance. Gärdenfors expresses this as follows :

Sim(x, y) = e−c·d(x,y) with a constant c > 0 and a given metric d

Betweenness is a logical predicate B(x, y, z) that is true if and only if y is
considered to be between x and z. It can be defined based on a given metric d:

Bd(x, y, z) : ⇐⇒ d(x, y) + d(y, z) = d(x, z)

The betweenness relation based on dE results in the line segment connecting
the points x and z, whereas the betweenness relation based on dM results in an
axis-parallel cuboid between the points x and z. We can define convexity and
star-shapedness based on the notion of betweenness:

Definition 1 (Convexity). A set C ⊆ CS is convex under a metric

d : ⇐⇒ ∀x ∈ C, z ∈ C, y ∈ CS : (Bd(x, y, z) → y ∈ C)

Definition 2 (Star-shapedness). A set S ⊆ CS is star-shaped under a metric
d with respect to a set

P ⊆ S : ⇐⇒ ∀p ∈ P, z ∈ S, y ∈ CS : (Bd(p, y, z) → y ∈ S)

Gärdenfors distinguishes properties like “red”, “round”, and “sweet” from
full-fleshed concepts like “apple” or “dog” by observing that properties can be
defined on individual domains (e.g., color, shape, taste), whereas full-fleshed
concepts involve multiple domains.

Definition 3 (Property). A natural property is a convex region of a domain in
a conceptual space.

Full-fleshed concepts can be expressed as a combination of properties from
different domains. These domains might have a different importance for the
concept which is reflected by so-called “salience weights”. Another important
aspect of concepts are the correlations between the different domains [20], which
are important for both learning [7] and reasoning [21, Chap. 8].
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Fig. 1. Left: Intuitive way to define regions for the concepts of “adult” and “child”
(solid) as well as representation by using convex sets (dashed). Right: Representation
by using star-shaped sets with central points marked by crosses.

Definition 4 (Concept). A natural concept is represented as a set of convex
regions in a number of domains together with an assignment of salience weights
to the domains and information about how the regions in different domains are
correlated.

2.2 An Argument Against Convexity

Gärdenfors [15] does not propose any concrete way for representing correlations
between domains. As the main idea of the conceptual spaces framework is to find
a geometric representation of conceptual structures, we think that a geometric
representation of these correlations is desirable.

Consider the left part of Fig. 1. In this example, we consider two domains,
age and height, in order to define the concepts of child and adult. We would
expect a strong correlation between age and height for children, but no such
correlation for adults. This is represented by the two solid ellipses.

Domains are combined by using the Manhattan metric and convex sets under
the Manhattan metric are axis-parallel cuboids. Thus, a convex representation
of the two concepts results in the dashed rectangles. This means that we cannot
geometrically represent correlations between domains if we assume that concepts
are convex and that the Manhattan metric is used. We think that our example
is not a pathological one and that similar problems will occur quite frequently
when encoding concepts. From a different perspective, also Hernández-Conde
has recently argued against the convexity constraint in conceptual spaces [18].

If we only require star-shapedness instead of convexity, we can represent the
correlation of age and height for children in a geometric way. This is shown in
the right part of Fig. 1: Both sketched sets are star-shaped under the Manhattan
metric with respect to a central point. Although the star-shaped sets do not
exactly correspond to our intuitive sketch in the left part of Fig. 1, they definitely
are an improvement over the convex representation.1

1 The weaker requirement of star-shapedness allows us to “cut out” some corners from
the rectangle. This enables us to geometrically represent correlations.
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Star-shaped sets cannot contain any “holes”. They furthermore have a well
defined central region P that can be interpreted as a prototype. Thus, the con-
nection that was established between the prototype theory of concepts and the
framework of conceptual spaces [15] is preserved. Replacing convexity with star-
shapedness is therefore only a minimal departure from the original framework.

The problem illustrated in Fig. 1 could also be resolved by using the Euclid-
ean metric instead of the Manhattan metric for combining domains. We think
however that this would be a major modification of the original framework. For
instance, if the use of the Manhattan metric is abolished, the usage of domains
to structure the conceptual space loses its main effect of influencing the over-
all distance metric. Moreover, psychological evidence [5,28,29] indicates that
human similarity ratings are reflected better by the Manhattan metric than by
the Euclidean metric if different domains are involved (e.g., stimuli differing in
size and brightness). As a psychologically plausible representation of similarity
is one of the core principles of the conceptual spaces framework, these findings
should be taken into account. Furthermore, in high-dimensional feature spaces
the Manhattan metric provides a better relative contrast between close and dis-
tant points than the Euclidean metric [3]. If we expect the number of domains
to be large, this also supports the usage of the Manhattan metric from an imple-
mentational point of view.

Based on these arguments, we think that weakening the convexity assumption
is a better option than abolishing the use of the Manhattan metric.

3 A Parametric Definition of Concepts

3.1 Preliminaries

Our formalization is based on the following insight:

Lemma 1. Let C1, ..., Cm be convex sets in CS under some metric d and let
P :=

⋂m
i=1 Ci. If P ̸= ∅, then S :=

⋃m
i=1 Ci is star-shaped under d w.r.t. P .

Proof. Obvious (see also [30]).

We will use axis-parallel cuboids as building blocks for our star-shaped sets.
They are defined in the following way:

Definition 5 (Axis-parallel cuboid). We describe an axis-parallel cuboid2 C
as a triple ⟨∆C , p−, p+⟩. C is defined on the domains ∆C ⊆ ∆, i.e. on the
dimensions DC =

⋃
δ∈∆C

δ. We call p−, p+ the support points of C and require:

∀d ∈ DC : p+d , p
−
d /∈ {+∞,−∞} ∧ ∀d ∈ D \DC : p−

d := −∞ ∧ p+d := +∞

Then, we define the cuboid C in the following way:

C = {x ∈ CS | ∀d ∈ D : p−
d ≤ xd ≤ p+d }

2 We will drop the modifier “axis-parallel” from now on.
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Lemma 2. A cuboid C is convex under d∆
C , given a fixed set of weights W .

Proof. It is easy to see that cuboids are convex with respect to dM and dE .
Based on this, one can show that they are also convex with respect to d∆

C , which
is a combination of dM and dE .

Our formalization will make use of fuzzy sets [32], which can be defined in
our current context as follows:

Definition 6 (Fuzzy set). A fuzzy set Ã on CS is defined by its membership
function µÃ : CS → [0, 1].

Note that fuzzy sets contain crisp sets as a special case where µÃ : CS →
{0, 1}. For each x ∈ CS, we interpret µÃ(x) as degree of membership of x in Ã.

Definition 7 (Alpha-cut). Given a fuzzy set Ã on CS, its α-cut Ãα for α ∈
[0, 1] is defined as follows:

Ãα = {x ∈ CS | µÃ(x) ≥ α}

Definition 8 (Fuzzy star-shapedness). A fuzzy set Ã is called star-shaped under
a metric d with respect to a (crisp) set P if all of its α-cuts Ãα are either empty
or star-shaped under d w.r.t. P .

One can also generalize the ideas of subsethood, intersection, and union from
crisp to fuzzy sets. We adopt the most widely used definitions:

Definition 9 (Operations on fuzzy sets). Let Ã, B̃ be two fuzzy sets defined on
CS.

– Subsethood: Ã ⊆ B̃ : ⇐⇒ (∀x ∈ CS : µÃ(x) ≤ µB̃(x))
– Intersection: ∀x ∈ CS : µÃ∩B̃(x) := min(µÃ(x), µB̃(x))
– Union: ∀x ∈ CS : µÃ∪B̃(x) := max(µÃ(x), µB̃(x))

3.2 Fuzzy Simple Star-Shaped Sets

By combining Lemmas 1 and 2, we see that any union of intersecting cuboids
is star-shaped under d∆

C . We use this insight to define simple star-shaped sets
(illustrated in Fig. 2):

Definition 10 (Simple star-shaped set). We describe a simple star-shaped set
S as a tuple ⟨∆S , {C1, . . . , Cm}⟩. ∆S ⊆ ∆ is a set of domains on which the
cuboids {C1, . . . , Cm} (and thus also S) are defined. We further require that the
central region P :=

⋂m
i=1 Ci ̸= ∅. Then the simple star-shaped set S is defined as

S :=
m⋃

i=1

Ci
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Fig. 2. Left: Three cuboids C1, C2, C3 with nonempty intersection. Middle: Resulting
simple star-shaped set S based on these cuboids. Right: Fuzzy simple star-shaped set
S̃ based on S with three α-cuts for α ∈ {1.0, 0.5, 0.25}. (Color figure online)

In practice, it is often not possible to define clear-cut boundaries for concepts
and properties. It is, for example, very hard to define a generally accepted crisp
boundary for the property “red”. We therefore use a fuzzified version of sim-
ple star-shaped sets for representing concepts, which allows us to define impre-
cise concept boundaries. This usage of fuzzy sets for representing concepts has
already a long history (cf. [6,13,22,26,33]). We use a simple star-shaped set S
as a concept’s “core” and define the membership of any point x ∈ CS to this
concept as maxy∈S Sim(x, y):

Definition 11 (Fuzzy simple star-shaped set). A fuzzy simple star-shaped set
S̃ is described by a quadruple ⟨S, µ0, c,W ⟩ where S = ⟨∆S , {C1, . . . , Cm}⟩ is a
non-empty simple star-shaped set. The parameter µ0 ∈ (0, 1] controls the highest
possible membership to S̃ and is usually set to 1. The sensitivity parameter c > 0
controls the rate of the exponential decay in the similarity function. Finally,
W = ⟨W∆S , {Wδ}δ∈∆S}⟩ contains positive weights for all domains in ∆S and
all dimensions within these domains, reflecting their respective importance. We
require that

∑
δ∈∆S

wδ = |∆S | and that ∀δ ∈ ∆S :
∑

d∈δ wd = 1.
The membership function of S̃ is then defined as follows:

µS̃(x) = µ0 ·max
y∈S

(e−c·d∆S
C (x,y,W ))

The sensitivity parameter c controls the overall degree of fuzziness of S̃ by
determining how fast the membership drops to zero. The weights W represent
not only the relative importance of the respective domain or dimension for the
represented concept, but they also influence the relative fuzziness with respect
to this domain or dimension. Note that if |∆S | = 1, then S̃ represents a property,
and if |∆S | > 1, then S̃ represents a concept.

The right part of Fig. 2 shows a fuzzy simple star-shaped set S̃. In this illus-
tration, the x and y axes are assumed to belong to different domains, and are
combined with the Manhattan metric using equal weights.
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Proposition 1. Any fuzzy simple star-shaped set S̃ = ⟨S, µ0, c,W ⟩ is star-
shaped with respect to P =

⋂m
i=1 Ci under d∆S

C .

Proof. See appendix (http://lucas-bechberger.de/appendix-ki-2017/).

4 Operations on Concepts

In this section, we define some operations on concepts (i.e., fuzzy simple star-
shaped sets). The set of all concepts is closed under each of these operations.

4.1 Intersection

If we intersect two simple star-shaped sets S1, S2, we simply need to intersect
their cuboids. As an intersection of two cuboids is again a cuboid, the result of
intersecting two simple star-shaped sets can be described as a union of cuboids.
It is simple star-shaped if these resulting cuboids have a nonempty intersection.
This is only the case if the central regions P1 and P2 of S1 and S2 intersect.3

However, we would like our intersection to result in a simple star-shaped set
even if P1∩P2 = ∅. Thus, when intersecting two star-shaped sets, we might need
to apply some repair mechanism in order to restore star-shapedness.

We propose to extend the cuboids Ci of the intersection in such a way that
they meet in some “midpoint” p∗ ∈ CS (e.g., the arithmetic mean of their
centers). We create extended versions C∗

i of all Ci by defining their support
points like this:

∀d ∈ D : p−∗
id := min(p−

id, p
∗
d), p+∗

id := max(p+id, p
∗
d)

The intersection of the resulting C∗
i contains at least p∗, so it is not empty.

This means that S′ = ⟨∆S1 ∪ ∆S2 , {C∗
1 , . . . , C

∗
m∗}⟩ is again a simple star-shaped

set. We denote this modified intersection (consisting of the actual intersection
and the application of the repair mechanism) as S′ = I(S1, S2).

We define the intersection of two fuzzy simple star-shaped sets as S̃′ =
I(S̃1, S̃2) := ⟨S′, µ′

0, c
′,W ′⟩ with:

– S′ := I(S̃α′

1 , S̃α′

2 ) (where α′ = max{α ∈ [0, 1] : S̃α
1 ∩ S̃α

2 ̸= ∅})
– µ′

0 := α′

– c′ := min(c(1), c(2))
– W ′ with weights defined as follows (where s, t ∈ [0, 1])4:

∀δ ∈ ∆S1 ∩ ∆S2 :
(
(w′

δ := s · w(1)
δ + (1 − s) · w(2)

δ )

∧ ∀d ∈ δ : (w′
d := t · w(1)

d + (1 − t) · w(2)
d )

)

∀δ ∈ ∆S1 \ ∆S2 :
(
(w′

δ := w(1)
δ ) ∧ ∀d ∈ δ : (w′

d := w(1)
d )

)

∀δ ∈ ∆S2 \ ∆S1 :
(
(w′

δ := w(2)
δ ) ∧ ∀d ∈ δ : (w′

d := w(2)
d )

)

3 Note that if DS1 ∩ DS2 = ∅, then P1 ∩ P2 ̸= ∅.
4 In some cases, the normalization constraint of the resulting domain weights might
be violated. We can enforce this constraint by manually normalizing them.

http://lucas-bechberger.de/appendix-ki-2017/
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When taking the combination of two somewhat imprecise concepts, the result
should not be more precise than any of the original concepts. As the sensitivity
parameter is inversely related to fuzziness, we take the minimum. If a weight is
defined for both original sets, we take a convex combination, and if it is only
defined for one of them, we simply copy it.

Note that for α′ < max(µ(1)
0 , µ(2)

0 ), the α-cuts S̃α′

1 and S̃α′

2 are still guaranteed
to be star-shaped, but not necessarily simple star-shaped. In order to be still
well-defined, the modified crisp intersection I will in this case first compute
their “ordinary” intersection, then approximate this intersection with cuboids
(e.g., by using bounding boxes) and finally apply the repair mechanism.

4.2 Union

As each simple star-shaped set is defined as a union of cuboids, the union of two
such sets can also be expressed as a union of cuboids. However, the resulting
set is not necessarily star-shaped – only if the central regions of the original
simple star-shaped sets intersect. So after each union, we might again need to
perform a repair mechanism in order to restore star-shapedness. We propose to
use the same repair mechanism that is also used for intersections. We denote the
modified union as S′ = U(S1, S2).

We define the union of two fuzzy simple star-shaped sets as S̃′ = U(S̃1, S̃2) :=
⟨S′, µ′

0, c
′,W ′⟩ with:

– S′ := U(S1, S2)
– µ′

0 := max(µ(1)
0 , µ(2)

0 )
– c′ and W ′ as described in Sect. 4.1

Proposition 2. Let S̃1 = ⟨S1, µ
(1)
0 , c(1),W (1)⟩ and S̃2 = ⟨S2, µ

(2)
0 , c(2),W (2)⟩ be

two fuzzy simple star-shaped sets. If we assume that ∆S1 = ∆S2 and W (1) =
W (2), then S̃1 ∪ S̃2 ⊆ U(S̃1, S̃2) = S̃′.

Proof. See appendix (http://lucas-bechberger.de/appendix-ki-2017/).

4.3 Subspace Projection

Projecting a cuboid onto a subspace results in a cuboid. As one can easily see,
projecting a simple star-shaped set S onto a subspace results in another simple
star-shaped set. We denote the projection of S onto domains ∆S′ ⊆ ∆S as
S′ = P (S,∆S′).

We define the projection of a fuzzy simple star-shaped set S̃ onto domains
∆S′ ⊆ ∆S as S̃′ = P (S̃,∆S′) := ⟨S′, µ′

0, c
′,W ′⟩ with:

– S′ := P (S,∆S′)
– µ′

0 := µ0

– c′ := c
– W ′ := ⟨{|∆′

S | ·
wδ∑

δ′∈∆S′ wδ′
}δ∈∆S′ , {Wδ}δ∈∆S′ ⟩

http://lucas-bechberger.de/appendix-ki-2017/
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Note that we only apply minimal changes to the parameters: µ0 and c stay
the same, only the domain weights are updated in order to not violate their
normalization constraint.

Projecting a set onto two complementary subspaces and then intersecting
these projections again in the original space yields a superset of the original set.
This is intuitively clear for simple star-shaped sets and can also be shown for
fuzzy simple star-shaped sets under one additional constraint:

Proposition 3. Let S̃ = ⟨S, µ0, c,W ⟩ be a fuzzy simple star-shaped set. Let
S̃1 = P (S̃,∆1) and S̃2 = P (S̃,∆2) with ∆1 ∪ ∆2 = ∆S and ∆1 ∩ ∆2 = ∅. Let
S̃′ = I(S̃1, S̃2) as described in Sect. 4.1. If

∑
δ∈∆1

wδ = |∆1| and
∑

δ∈∆2
wδ =

|∆2|, then S̃ ⊆ S̃′.

Proof. See appendix (http://lucas-bechberger.de/appendix-ki-2017/).

5 Supported Applications

5.1 Machine Learning Process: Clustering

The operations described in Sect. 4 can be used by a clustering algorithm in the
following way:

The clustering algorithm can create and delete fuzzy simple star-shaped sets.
It can move and resize an existing cluster as well as adjust its form by modifying
the support points of the cuboids that define its core. One must however ensure
that such modifications preserve the non-emptiness of the cuboids’ intersection.
Moreover, a cluster’s form can be changed by modifying the parameters c andW :
By changing c, one can control the overall degree of fuzziness, and by changing
W , one can control how this fuzziness is distributed among the different domains
and dimensions. Two neighboring clusters S̃1, S̃2 can be merged into a single
cluster by unifying them. A single cluster can be split up into two parts by
replacing it with two smaller clusters.

So clusters can be created, deleted, modified, merged, and split – which is
sufficient for defining a clustering algorithm.

5.2 Reasoning Process: Concept Combination

The operations defined in Sect. 4 can also be used for combining concepts.
The modified intersection I(S̃1, S̃2) roughly corresponds to a logical “AND”:

Intersecting “green” with “blue” results in the set of all colors that are both
green and blue to at least some degree. The modified union U(S̃1, S̃2) can be
used to construct higher-level categories: For instance, the concept of “fruit” can
be obtained by the unification of “apple”, “banana”, “pear”, “pineapple”, etc.

Gärdenfors [15] argues that adjective-noun combinations like “green apple”
or “purple banana” can be expressed by combining properties with concepts.
This is supported by our operations of intersection and subspace projection:

http://lucas-bechberger.de/appendix-ki-2017/
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In combinations like “green apple”, property and concept are compatible. We
expect that their cores intersect and that the µ0 parameter of their intersection
is therefore relatively large. In this case, “green” should narrow down the color
information associated with the “apple” concept. This can be achieved by simply
computing their intersection.

In combinations like “purple banana”, property and concept are incompat-
ible. We expect that their cores do not intersect and that the µ0 parameter
of their intersection is relatively small. In this case, “purple” should replace the
color information associated with the “banana” concept. This can be achieved by
first removing the color domain from the “banana” concept (through a subspace
projection) and by then intersecting this intermediate result with “purple”.

As one can see from this short discussion, our formalized framework is also
capable of supporting reasoning processes.

6 Related Work

This work is of course not the first attempt to devise an implementable formal-
ization of the conceptual spaces framework.

An early and very thorough formalization was done by Aisbett and Gibbon
[4]. Like we, they consider concepts to be regions in the overall conceptual space.
However, they stick with Gärdenfors’ assumption of convexity and do not define
concepts in a parametric way. Their formalization targets the interplay of sym-
bols and geometric representations, but it is too abstract to be implementable.

Rickard et al. [24,25] provide a formalization based on fuzziness. They repre-
sent concepts as co-occurrence matrices of properties. By using some mathemat-
ical transformations, they interpret these matrices as fuzzy sets on the universe
of ordered property pairs. Their representation of correlations is not geometri-
cal: They first discretize the domains (by defining properties) and then compute
the co-occurrences between these properties. Depending on the discretization,
this might lead to a relatively coarse-grained notion of correlation. Moreover, as
properties and concepts are represented in different ways, one has to use differ-
ent learning and reasoning mechanisms. Their formalization is also not easy to
work with due to the complex mathematical transformations involved.

Adams and Raubal [1] represent concepts by one convex polytope per domain.
This allows for efficient computations while being potentially more expressive
than our cuboid-based representation. The Manhattan metric is used to com-
bine different domains. However, correlations between different domains are not
taken into account as each convex polytope is only defined on a single domain.
Adams and Raubal also define operations on concepts, namely intersection, sim-
ilarity computation, and concept combination. This makes their formalization
quite similar in spirit to ours. One could generalize their approach by using
polytopes that are defined on the overall space and that are convex under the
Euclidean and star-shaped under the Manhattan metric. However, we have found
that this requires additional constraints in order to ensure starshapedness. The
number of these constraints grows exponentially with the number of dimensions.
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Each modification of a concept’s description would then involve a large con-
straint satisfaction problem, rendering this representation unsuitable for learn-
ing processes. Our cuboid-based approach is more coarse-grained, but it only
involves a single constraint, namely that the intersection of the cuboids is not
empty.

Lewis and Lawry [19] have recently formalized conceptual spaces using ran-
dom set theory. They define properties as random sets within single domains
and concepts as random sets in a boolean space whose dimensions indicate the
presence or absence of properties. Their approach is similar to ours in using a
distance-based membership function to a set of prototypical points. However,
their work focuses on modeling concept combinations and does not explicitly
consider correlations between domains.

Many practical applications of conceptual spaces (e.g., [10–12,23]) use only
partial ad-hoc implementations of the conceptual spaces framework which usu-
ally ignore some important aspects of the framework (e.g., the domain structure).

Finally, we can relate our work to statistical relational learning (SRL): Our
geometric representation of concepts is a complex data structure (in SRL one
typically uses logics for this) that is augmented with soft computing in the form
of fuzziness (similar to the usage of probability theory in SRL).

7 Conclusion and Future Work

In this paper, we proposed a new formalization of the conceptual spaces frame-
work. We aimed to geometrically represent correlations between domains, which
led us to consider the more general notion of star-shapedness instead of Gärden-
fors’ favored constraint of convexity. We defined concepts as fuzzy sets based on
intersecting cuboids and a similarity-based membership function. Moreover, we
provided different computationally efficient operations and illustrated that these
operations can support both learning and reasoning processes.

This work is mainly seen as a theoretical foundation for an actual imple-
mentation of the conceptual spaces theory. In future work, we will enrich this
formalization with additional operations. Moreover, we will devise a clustering
algorithm that will work with the proposed concept representation. Both the
mathematical framework presented in this paper and the clustering algorithm
will be implemented and tested in practice which will provide valuable feedback.
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Abstract. Neighborhood-based approaches often fail in sparse scenar-
ios; a direct implication for recommender systems exploiting co-occurring
items is often an inappropriately poor performance. As a remedy, we pro-
pose to propagate information (e.g., similarities) across the item graph
to leverage sparse data. Instead of processing only directly connected
items (e.g. co-occurrences), the similarity of two items is defined as the
maximum capacity path interconnecting them. Our approach resembles a
generalization of neighborhood-based methods that are obtained as spe-
cial cases when restricting path lengths to one. We present two efficient
online computation schemes and report on empirical results.

Keywords: Recommender systems · Information propagation · Maxi-
mum capacity paths · Co-occurrence · Sparsity · Cold-start problem

1 Introduction

Recommender systems often utilize co-occurrences of items to pass informa-
tion between users and items. The underlying idea is that users sharing many
items are considered similar and that an item is likely being recommended when
it frequently co-occurs with an actually viewed one. Many systems use explicit
co-occurrences of items to compute recommendations [13,16,19,28], but also col-
laborative methods such as neighborhood-based approaches [15,23] and matrix
factorisation techniques [5,12,21] inherently ground on leveraging co-occurrence
data.

However, the glory of collaborative filtering is quickly turned into a major
limitation in the presence of sparsity; the cold-start problem being only one
extreme case of this observation. If two items never explicitly co-occur in the
data, they cannot be utilized by the recommendation engine at all. In large sys-
tems, co-occurrence matrices are naturally large-scale, but sparse. The sparsity
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however does not change much over time due to the fact that the size of the
matrix grows quadratically in the steadily increasing number of items, but the
number of matrix entries increases only linearly in the number of co-occurring
items. In practice, block structures are frequently observed. This implies several
strongly connected components (e.g., genres, subjects, categories) that are again
loosely connected to each other.

The cold-start problem appears in many situations, e.g., at the very beginning
of collecting data, or when adding new items or new users. In the first case, not
enough information has yet been collected to distinguish items. In the latter
cases, the new items and users are isolated and connect to the others with
only a few edges. In these scenarios, user tendencies cannot be inferred with
high confidence; hence, co-occurrence-based methods are prone to fail and new
techniques are required to extend neighborhoods of items appropriately.

In this paper, we study recommender systems for sparse settings to tackle
cold-start problems and data sparsity. To increase the item neighborhood, we
propose to leverage the transitive hull of all maximum capacity paths in the item
graph, such that local item neighborhoods are extended to other connected com-
ponents of the item graph. By doing so, co-occurrences are propagated through
the item graph and similarities between all items, that are connected by at least
one path, can be computed. We present two efficient online algorithms for inte-
gral as well as arbitrary capacities, respectively. We empirically evaluate our
approaches on synthetic and standard datasets. In controlled cold-start scenar-
ios, we identify limitations of collaborative filtering-based methods and show
that the proposed approaches lead to better and more precise results.

The remainder is structured as follows. Section 2 reviews related work and
Sect. 3 introduces the problem setting. We present our main contribution in
Sect. 4. Section 5 reports on our empirical results and Sect. 6 concludes.

2 Related Work

Neighborhood-based collaborative filtering (CF) methods are perhaps the most
widely used type of recommender systems. Although user-based approaches are
not practical in real settings because of scalability issues [23], item-based col-
laborative filtering is very common. Besides being conceptually simple, a major
advantage of CF-based approaches is the similarity measure that can be adapted
to a problem at-hand. Common choices are for instance co-occurrence, cosine,
correlation, Pearson, as well as hybrid similarity measures [1].

Co-occurrence data is frequently the basis for recommender systems [16,28]
and approaches range from co-occurrence data sampled from random walks in
item-item graphs [13] to generalizations of the aspect model [10] by consider-
ing three-way co-occurrences between users, items and item content [19]. The
resulting generative models may also address cold-start problems [24].

Intrinsically, matrix factorization approaches [14,22] are neighborhood-based
algorithms as well; high dimensional vectors are embedded in compact spaces by
low dimensional (linear) transformations while preserving the notion of similar-
ity. This class of algorithms performs well when the amount of training data is
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sufficiently large, but causes problems when data is sparse. Examples for such
sparse scenarios are again cold-start and cross-selling problems [27]. With respect
to collaborative filtering, this problem is handled by using additional information
on the user like age, gender, etc. [4]. Another approach is to consider transitivity
closures of item-graphs [2]. An application to recommender system is for example
proposed in [25] using a Jaccard similarity measure.

To address recommendation in sparse scenarios, we rephrase the task as a
propagation problem in an item-graph [6]. Drawing from network flow theory,
we focus on the maximum capacity path [11,18] between two items. In general,
using the maximum flow model would be appropriate as well, but as graphs
in our application are usually very large, but sparse, the additional complexity
spent on flow algorithms does not seem to be adequate with respect to the fact
that in sparse scenarios, there is only one path at all, if a connection between
items exists at all.

Maximum capacities have been used together with recommender systems
by Malucelli et al. [17] before. The authors define similarity as the solution of
a bi-criterion path problem [9] that is computed using a Dijkstra-based algo-
rithm. Unfortunately, the authors choose some cumbersome definitions instead
of linking their contribution to graph theory, and do not investigate the effect
of sparsity. Unfortunately, the proposed algorithm has a complexity of O(n4),
thus rendering its application infeasible in large-scale scenarios. Nevertheless, it
is a useful approach for small-scale problems. We review their contribution in
Sect. 3.3 and use the algorithm as a baseline in Sect. 5.

3 Preliminaries

3.1 Rationale

The rationale behind our approach is as follows. Considering weighted graphs,
we require a function that translates the transitive closure in the binary case
to weighted problems. Shortest path trees are such a translation in case of an
additive weight function. However, we do not have additive weights in our case,
otherwise the applied measure (e.g. co-occurrence) would increase with the num-
ber of edges on a path, which is counterintuitive.

There are approaches normalizing shortest paths by the number of hops
they consist of, i.e. computing the average weight of a path. This is not reason-
able either as paths consisting of many strongly weighted edges and just one
lowly weighted (bridging) edge, have a strong average weight despite of the fact
that they virtually decompose into two connected components. Multiplicative
approaches are not appropriate either as the weight of the path might be lower
than the lowest weight of one of its edges, in particular when it is normalized by
the number of hops.

Therefore, we focus on the minimum weight of the path’s edges for corre-
lating two items interconnected by that path. This choice seems appropriate as
the weights of transitive connections between two nodes are independent of the
length of the path in the first place. Bottlenecks are addressed in a reasonable
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way: the weight of the transitive connection is determined by the lowest weighted
edge it contains. Eventually, for two nodes u and v, we consider the connect-
ing path that has the highest minimum edge weight among all other connection
path, i.e. the maximum capacity path.

3.2 Maximum Capacities

Let G = (V,E) be a weighted graph, where V is a set of n nodes and E a set
of m edges. Furthermore, let A = (aij) be its related adjacency matrix. In order
to ease the following definitions, we assume without loss of generality that G is
acyclic, and all self similarities are set to infinity (i.e. aii = ∞)1. The capacity
of a path is defined as follows.

Definition 1 (Capacity). Let p = ((u, u1), . . . , (ul−1, v)) be a path between two
vertices u = u0 and v = ul. The capacity, c(p), of p is defined as the minimum
weight of its edges:

c(p) := min
(uk,uk+1)∈p

(
aukuk+1

)
.

Since there may be more than just one connecting path for a pair of nodes, we
regard the path that implies the maximum capacity among all paths.

Definition 2 (Maximum Capacity). Let Puv = {p0, . . . , pk} be the set of all
the paths between u and v. The maximum capacity, mc(u, v), between u and v
is defined as maximum of all the paths capacities in Puv:

mc(u, v) := max
p∈Puv

(c(p)) .

Computing maximum capacity paths with a minimum number of hops using
max-min matrix products is prohibitively expensive with a complexity of
O(n4). The Dijkstra algorithm is able to efficiently compute maximum capac-
ity paths from a dedicated start node in O(n log(n) + m). This amounts to
O(n2 log(n) +mn) when considering shortest paths between all pairs of nodes.
Before we introduce two efficient algorithms in Sect. 4, we briefly review the
bi-criterion shortest path approach by [17].

3.3 Bi-criterion Shortest Path

Malucelli et al. [17] propose a capacity-based algorithm for recommendation.
Their algorithm also considers the transitive closure of the graph, however the
edge weights are given by solutions of a bi-criterion shortest path optimization
problems, as shown in the following definition.

1 Note that paths are usually cycle free by definition and capacities do not change by
repeating cycles.
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Definition 3 (Bi-criterion Capacity). Let Puv = {p0, ..., pk} be the set of all
the paths between u and v. The length of a path p is denoted as λ(p) and its
capacity as c(p). The bi-criterion capacity, bc(u, v), between u and u is defined
as follows:

bc(u, v) := max
c(p)

(
c(p)
λ(p)

)
.

One problem with this approach is the fact that the same result (maximum
capacity paths with a minimum number of hops) might be computed by a much
simpler algorithm: (i) compute (all) maximum capacity paths (e.g. by using
Dijsktra), and (ii) finally choose the one with the minimum number of hops.
This can be achieved in O(n3) in total, whereas the approach proposed in [17]
takes O(n4) and is much more complex to implement.

Note that similar problems have been studied in [7]. In this paper, we use the
bi-objective label correcting algorithm with node-selection introduced by [26].
See [20] for an extensive review.

4 Maximum Capacity Algorithms

The following two sections are dedicated to two online algorithms that efficiently
compute maximum capacity paths. Section 4.1 approaches the problem by a
bucket style approach in case all weights are integral. Section 4.2 uses a tree-
based approach and works with arbitrary edge weights.

4.1 Max Capacity Buckets

The basic idea is to consider the sub-graphs Gα of G, referred to as buckets,
containing all the edges with weights higher than a given α ∈ N0. In theory, α
might be a real number, however in practice it can only be an integer as each
of them needs to be stored separately. Note that G0 = G. As the graphs Gα are
acyclic and not necessarily connected, they can also be seen as forests.

Gα = (Vα, Eα) such that
{
Eα := {(i, j) ∈ E : aij > α}
Vα := {i ∈ V, j ∈ V : (i, j) ∈ Eα}.

The update of the buckets is straightforward. When the user views a new
item v, edge to previously seen item (u, v) are updated as follows:

– the adjacency of the undirected edge is increased by one: auv = auv + 1,
– if not in Vauv , the nodes u and v are added to Gauv as trivial trees,
– finally, the connected components containing u and v are merged: the root of

the smallest tree becomes a child of the other root.

The maximum capacity between two nodes u and v is given by the biggest index
of the buckets containing u and v.

mc(u, v) := max (α : (u, v) ∈ Vα)
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Graphs are implemented as dictionaries to leverage speed of their key search.
The first step is just a modification or a creation of keys in a dictionary that is
O(1) in average. The next step check if nodes are in a subgraph. In case of a
positive answer this is done in constant time. However as weights grow, it will
occur that at least one of the nodes will return a negative answer. The test will
then have gone through all the keys at a linear cost of O(n). The final step
needs to find the roots of two trees which can be done in O(log n). Merging is
performed by altering the property of the nodes which is constant O(1). In total,
an update has a complexity of O(n+ log(n)).

The evaluation of the maximum capacity between two nodes is done by
browsing the buckets in increasing weight order until one of the nodes is not
included anymore. Again, the respective test in each sub-graph requires in aver-
age O(1). The search stops when a test is negative, in which case we have costs
O(n). Hence the overall complexity of the maximum capacity is O(a⋆+n), where
a⋆ is the largest weight given by a⋆ := max(u,v)∈E(auv). Note that the computa-
tion could be sped up by starting the search from Gauv as the maximum capacity
cannot be smaller than the weight of the direct edge, if it exists.

4.2 Max Capacity Trees

The well-known and efficient label correcting algorithm, known as Dijkstra’s
Algorithm [3], for the computation of shortest paths in directed graphs from a
source node s might be easily adapted for the computation of maximum capac-
ity paths. The distances/maximum capacities need to be initialized with −∞
instead of ∞. Paths are then built using the following alternative update scheme
preserving time and space complexity, where π is the predecessor function:

for each neighbor v of u:
if mc(s, v) > min{mc(s, u); auv}:

mc(s, v) := min{mc(s, u); auv}
π(v) := u

end if

The algorithm yields a tree rooted at some specified start node s containing all
nodes of the item graph, each with a label determining the capacity of the unique
(maximum capacity) path to the root node s. The algorithm is computed several
times such that each node of the graph becomes the start node exactly once. We
obtain n rooted maximum capacity trees. The runtime of Dijkstra amounts to
O(m+ n log n), where n = |V |, and m = |E|, so this yields to O(nm+ n2 log n)
for the all-pairs variant.

Runtime complexity might be reduced to O(n3) in total by using an all-
pairs shortest path algorithm, for example the Floyd-Warshall algorithm, which
makes use of two n × n matrices: a capacity matrix MC stating the maximum
capacities mc(u, v) for each path between a pair of nodes u and v, and a matrix
Π holding the predecessor labels πu,v for the reconstruction of a max capacity
path connecting u and v. This is beneficial in case of an online algorithm, where
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edges are generated successively, as updates take place in two matrices instead
of n different tree structures, that contain specific edges weight.

Despite a concrete implementation as single source or all-pairs algorithm, we
use the label correction idea to develop an online algorithm for the computation
of maximum capacity trees. The algorithm maintains a forest at any time. As
with shortest path trees, the trees contain maximum capacity paths. Initially,
we start with a forest of trivial trees consisting of only a single node each.
There are no edges and weights are strictly nonnegative, hence mc(u, v) = 0 for
all (u, v) ∈ V 2. We add edges (co-occurrences) successively. Whenever an edge
(u, v) with weight w is added, the following cases may occur:

(i) there is already a tree edge (u, v) with mc(u, v) < w: set mc(u, v) := w,
(ii) there is no tree edge (u, v) yet, u and v are part of different trees: connect

the two trees by inserting (u, v) and set mc(u, v) := w,
(iii) there is no tree edge (u, v) yet, u and v are part of the same tree: inserting

(u, v) would generate a cycle. In order to avoid that, follow the path from u
to v and determine the lowest capacity weight edge(s) on this path: if w is
lower, leave everything as is, otherwise remove the lowest capacity weight
edge (in case there are more than one, choose one arbitrarily), and insert
(u, v) instead.

Finally, we have to update the matrices according to the above operation: update
predecessor labels πu,v in case of (ii) and (iii), and update the capacities mc(u, v)
in all three cases. The runtime complexity of an update operation is bounded
by O(n2).

The determination of the item(s) to recommend connected to an item u by
paths of maximum capacity amounts to looking up the maximum in one column
or row, respectively, of the matrix. This amounts to O(n). Determining the
n−1 recommendations to all other nodes in decreasing order of their connecting
maximum capacity paths amounts to sorting that column or row in decreasing
order by their capacities. This amounts to O(n log n). Note that the tree-based
variant can be implemented for arbitrary, i.e. real-valued edge capacities.

4.3 Discussion

Using bi-criterion capacities as in [17] favors shorter paths; hence closer items
are ranked higher. However, all items in the connected components are still
reachable. In that sense, the bi-criterion approach ranges in between purely
neighborhood-based and our maximum capacity-based approaches. Consider the
following example:

A simple neighborhood-based approach will simply connect the nodes a and
b by their connecting edge and leads to a score of one. The bi-criterion algorithm
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however enumerates all paths between a and b and decides for the aggregated
score of three as the capacity is weighted by the length of the path. Finally, max-
imum capacity also enumerates all paths from a to b but chooses the maximum
of the three capacities as the resulting score.

Note that the two maximum capacity-based algorithms described in Sect. 4
tackle the problem differently, but produce the same results. Due to lack of
space, we leave this textual statement without formal proof as the algorithmic
invariants are easy to verify. In the empirical evaluation, we compare both in
terms of their complexities but focus on the tree-based approach when we study
performance.

5 Empirical Evaluation

5.1 Time and Space Complexity

To compare the complexities of the proposed algorithms in time and space, we
train the buckets (MCb) and the tree-based (MCt) algorithms on a synthetic
dataset made of 21k items and 50k transactions. The experiment consists of
sequentially reading and processing/storing the data. Except for the first trans-
action, the maximum capacity of each transaction is computed on its arrival to
update the buckets or trees. For comparison, we include as a baseline the cost
of only building and reading the adjacency matrix A.

Figure 1 shows the results for varying training set sizes. The upper left sub-
figure shows the linear growth of edges in the size of the data. The bottom
left sub-figure indicates that all three algorithms learn at the similar pace. This
result is not surprising as all three algorithms have to learn the adjacency matrix.
However, it is interesting to see that updating the buckets or the trees is negligible
compared to only adjacencies.

Fig. 1. Runtime comparisons
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On the other hand, the bottom right sub-figure shows that the data structure
is very important for the capacities. The co-occurrence baseline is extremely fast
as it simply retrieves coefficients from the matrix. By contrast, the tree structure
proves very costly when it comes to retrieve elements. The tree structure has to
build the path to the root at least once, even if the two nodes are in the same
connected component (or on the same tree). This may be overcome by using
a matrix holding all maximum capacities between all pairs of nodes such as
in the Floyd-Warshall algorithm. Then, evaluations take constant time whereas
the complexity of updates remains unchanged. As capacities are monotonously
increasing, two n × n matrices are sufficient, one for the maximum capacities
between each pair of nodes, and one for the predecessors.

A drawback of the buckets-based approach is the amount of buckets. There
are as many of them as there are different weights. The consequence for the
memory usage can be observed in the upper right sub-figure. It should be noted
that for both maximum capacity algorithms, the adjacency matrix is built along
the buckets or trees. However, it is not necessary to compute the capacities
themselves. In a production system, the adjacency matrix can be discarded once
the learning has been done. Hence, the actual memory usage for a recommender
system that is based on one of the two propagation algorithms would be the
difference of the respective curve and the baseline. This implies that the tree-
based method is in fact very efficient.

5.2 Precision and Incertitude on Cold-Start

We compare co-occurrence (CC), cosine (CS), the Bi-Criterion Shortest Path
(BCSP) approach by [17] and two variants of maximum capacity (MC) and
(MC+dist). The latter aims at breaking similarity blocks by sorting items in a
block relatively to the average distance of the maximum capacity paths. Note
that as we use the tree-based algorithm, these distances are side products.

We evaluate the different approaches on the MovieLens 1M dataset [8]. It
contains over 1 million ratings of 3952 movies made by 6040 users. A rating
is defined by a userID, a movieID, a score and a timestamp. The ratings are
binarized by thresholding scores greater than three (positive examples). Scores
smaller or equal than three are considered negative examples.

The cold-start problem is simulated by reading and processing the data
chronologically. If the actual rating is for a movie rated less than 20 times more
but at least once, a recommendation is computed using the average similarity to
the previously positively rated items of the user. If it is the user’s ir the item’s
first rating, it is skipped. The threshold of 20 is chosen as we are interested in
the early stage of the cold start problem. For fairness, only the first thousand
recommendations are reported, as BCSP requires more than a day to complete
the experience. At this point the adjacency matrix reaches approximatively 1%
of sparsity. The experience is repeated six times by skipping respectively none,
the 2k, 4k, 6k, 8k and 10k first ratings. The reported results are the average of
the six iterations.
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Fig. 2. Standard metrics.
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A limitation appears as collaborative filtering cannot distinguish the movies
that have the same similarity. As a consequence, the returned ranking will made
of blocks of the same values. The size of the block containing the expected item
is called incertitude. Note that this situation is frequent in this early stage of a
recommender system. In our evaluation, we assume that the item is ranked in
the middle of the block of items sharing the same similarity. This amounts to
treating items as randomly distributed inside each block.

Figure 2 shows the evolution of four standard metrics: Success@10 defined as
the number of times the desired movie has been ranked in the top 10 for the
first thousand recommendations, Precison@10, Recall@10 and Mean Reciprocal
Rank. For clarity the standard deviation of the measurement are shown only for
CC and MC+dist represented by the shaded area around the average lines. All
curves are smoothed by showing only one point for every 30 recommendations.

The four plots are consistent. Irrespectively of the performance metric,
MC+dist performs best. The single ranked version, MC, performs as good as
CC but its performance drops fast and starts to follow BCSP while still being
better and faster. With increasing recommendations, CC catches up and stays
close to MC+dist on average, which is also indicated by the overlapping standard
deviations. It is interesting to point out that MC+dist’s results are more stable
over the six repetitions which is shown by small standard deviation compared to
that of CC. Not shown in the figure is the break-even point where the two lines
decouple and CC becomes more successful on average. However the difference
becomes only significant much later.

The superiority of the double ranked MC-based approach is supported by
its very low incertitude as shown in Fig. 3. Here again, the standard deviation
is shown only for CC and MC+dist. Despite its high likelihood to rank the
expected item in the top 10, CC is much more uncertain than MC+dist. The
block of the expected item is on average made of 315 items, while the average
for MC+dist is only 39. It is interesting to observe that the double ranking of
MC+dist render its performance more accurate than its simpler peer, in terms

Fig. 3. Evolution of the incertitude of each model’s recommendation.
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of precision and ambiguity of the recommendation. Note that this improvement
comes almost for free. The MC+dist is also particularly more consistent over
the six folds of the experiment, as the standard deviation is again much smaller
than that of CC.

6 Conclusion

We cast the problem of recommendation as a propagation problem in an item
graph using network flow theory and proposed two efficient online algorithms, a
bucket and tree-based one. Empirically, the two algorithms effectively leverage
sparse data at enterprise level scales. Our approaches distinguish themselves in
cold-start scenarios, in term of precisions and quality of their recommendations.
Future work will study the relation with T-transitive closures.
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Abstract. For inference in probabilistic formalisms with first-order
constructs, lifted variable elimination (LVE) is one of the standard
approaches for single queries. To handle multiple queries efficiently, the
lifted junction tree algorithm (LJT) uses a specific representation of a
first-order knowledge base and LVE in its computations. Unfortunately,
LJT induces unnecessary groundings in cases where the standard LVE
algorithm, GC-FOVE, has a fully lifted run. Additionally, LJT does not
handle evidence explicitly. We extend LJT (i) to identify and prevent
unnecessary groundings and (ii) to effectively handle evidence in a lifted
manner. Given multiple queries, e.g., in machine learning applications,
our extension computes answers faster than LJT and GC-FOVE.

Keywords: Probabilistic logical models · Reasoning · Lifting

1 Introduction

AI research and application areas such as machine learning (ML) need efficient
inference algorithms. Modeling realistic scenarios results in large probabilistic
knowledge bases (KBs) that require reasoning about sets of individuals. Lifting
uses symmetries in a KB, also called model, to speed up reasoning with known
objects. We study the problem of reasoning in large KBs with symmetries for
answering multiple queries, a common scenario in ML. Answering queries reduces
to computing marginal distributions. We aim to enhance the efficiency of these
computations exploiting that a model remains constant under multiple queries.

In [3], we introduce a lifted junction tree algorithm (LJT) for multiple queries
on models with first-order constructs. The algorithm combines the junction tree
algorithm [12] and lifted variable elimination (LVE) [18]. LJT currently does not
provide a lifted run for all models that have a lifted solution in LVE, requiring
unnecessary groundings. This paper contributes the following: First, we identify
when LJT induces unnecessary groundings. Second, we add a fusion step that
aims at preventing these groundings for models with a lifted solution in LVE.
Third, we add efficient evidence handling.

LJT imposes some static overhead for building a first-order junction tree (FO
jtree) and for propagating knowledge in this tree. The fusion step slightly adds
to the static overhead in exchange for faster knowledge propagation. Evidence
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 85–98, 2017.
DOI: 10.1007/978-3-319-67190-1 7
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handling does not affect FO jtree construction but inherently affects knowledge
distribution and query answering. We significantly speed up runtime compared to
LJT and LVE. Overall, we handle multiple queries more efficiently than existing
approaches tailored for handling single queries.

The remainder of this paper is structured as follows: First, we look at related
work on exact inference and lifting. Next, we introduce basic notations and recap
LJT. Then, we present conditions for groundings and our extensions regarding
fusion and evidence. A short evaluation shows the potential of our approach.
Last, we give a conclusion and provide future work.

2 Related Work

For single queries given some evidence, researchers have sped up runtimes for
inference significantly over the last two decades. For propositional formalisms,
VE decomposes a model into subproblems to evaluate them in an efficient order
[21]. We can represent such a decomposition using a dtree [6]. LVE, also called
first-order VE (FOVE), first introduced in [14] and expanded in [13,15], exploits
symmetries at a global level. LVE saves computations by reusing intermediate
results for isomorphic subproblems. Its current standard form GC-FOVE gener-
alizes counting and decouples lifting from constraint handling [18].

For multiple queries in a propositional setting, Lauritzen and Spiegelhalter
[12] present jtrees along with a reasoning algorithm that uses a message passing
scheme, known as probability propagation (PP). Well known PP schemes include
[11,16] trading off runtime and storage differently. The connection between jtrees
and VE lies in a dtree representing a VE: The clusters of a dtree form a jtree
[7]. Taghipour et al. [19] introduce first-order dtrees (FO dtrees) and perform a
theoretical analysis of lifted inference using the clusters of an FO dtree.

Many researchers apply lifting to various settings, e.g., continuous or dynamic
KBs [5,20], logic programming [2], or theorem proving [10]. For example, van
den Broeck [4] lifts weighted model counting and knowledge compilation. Lifted
belief propagation combines PP and lifting, often using lifted representations
[1,9,17], allowing for approximate inference. Das et al. [8] use graph data bases
storing compiled models for scalability. To the best of our knowledge, none of
them focus on multiple queries or changing evidence.

In [3], we lift jtrees introducing FO jtrees. Our reasoning algorithm induces
additional groundings and does not handle evidence effectively. We widen its
scope with our extensions regarding fusion and evidence.

3 Preliminaries

This section introduces basic notations, provides an overview of LVE and recaps
LJT along with FO jtrees based on [3,18].
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Fig. 1. Parfactor graph for Gex

3.1 Parameterized Models

Parameterized models compactly represent models with first-order constructs.
We first denote basic building blocks for constructing more complex structures.

Definition 1. Let L be a set of logical variable names (logvars), Φ a set of factor
names, and R a set of random variable names (randvars). A parameterized
randvar (PRV) R(L1, . . . , Ln), n ≥ 0, is a syntactical construct of a randvar
R ∈ R, combined with logvars L1, . . . , Ln ∈ L to represent a set of randvars.
Domain D(L) refers to the values a logvar L can take and range(A) to the
values a PRV A can take. A constraint (X, CX) is a tuple of a sequence of
logvars X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi) restricting logvars to
certain values. Symbol ⊤ marks that no restrictions apply and may be omitted.

Parametric factor (parfactor) g has a function mapping inputs to real val-
ues. We specify g with ∀X : φ(A) | C. X is a set of logvars that g gener-
alizes over. A = (A1, . . . , An) is a sequence of PRVs, each PRV built from
R and possibly L. We omit (∀X :) if X = logvars(A). C is a constraint on
X. φ : ×n

i=1range(Ai) '→ R+ is a potential function with name φ ∈ Φ. φ is
identical for all randvars represented by the logvars in A w.r.t. C. A full spec-
ification of φ includes values for each combination of input values. A set of
parfactors forms a model G := {gi}ni=1 representing the probability distribution
PG = 1

Z

∏
f∈gr(G) φf (Af ). Term gr(G) denotes a set of instances with all logvars

in G grounded.

The terms logvars(P ) and randvars(P ) denote the logvars and randvars in input
P , e.g., a parfactor or model. We specify model Gex for publications on some
topic. We model that the topic may be hot, serves business markets and applica-
tion areas, people do research, attend conferences, and publish in publications.

Example 1. Let L = {A,M,P,X}, Φ = {φ0,φ1,φ2,φ3}, and R =
{Hot,Biz,App,Res, Conf, Pub}. We build five binary PRVs with n >
0 and one with n = 0: Hot, Biz(M), App(A), Conf(X), Res(X),
Pub(X,P ). The model reads Gex = {g0, g1, g2, g3} where g0 = φ0(Hot),
g1 = φ1(Hot,App(A), Biz(M))|C1, g2 = φ2(Hot,Conf(X), Res(X))|C2,
and g3 = φ3(Hot,Conf(X), Pub(X,P ))|C3. We omit concrete functions
for φ0 to φ3. We exemplarily define constraint C3 = ((P,X), C(P,X)).
Let D(P ) = {p1, p2} and D(X) = {alice, eve, bob}. We define C(W,X) as
{(p1, eve), (p1, bob), (p2, alice), (p2, eve)}. φ3 applies to all tuples in C3. Figure 1
depicts Gex as a graph with six variable nodes for the PRVs and four factor
nodes for g0 to g3 with edges to the PRVs involved.
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The semantics of a model is given by grounding w.r.t. constraints and building
a full joint distribution. Query answering (QA) asks for a probability distribution
of a randvar w.r.t. a model’s joint distribution and fixed events (evidence). A
grounded PRV Q and a set of events E (grounded PRVs with values) build a
query P (Q|E). For Gex, P (pub(eve, p1)|conf(eve)) forms a query. Next, we look
at QA algorithms seeking to avoid grounding and building a joint distribution.

3.2 Lifted Variable Elimination

LVE employs two main techniques for QA, (i) decomposition into isomorphic
subproblems and (ii) counting of domain values leading to a certain range value.
The first one refers to lifted summing out. The idea is to compute VE for one case
and exponentiate the result for isomorphic instances. The second one exploits
that all randvars of a PRV A evaluate to range(A), forming a histogram by
counting for each v ∈ range(A) how many instances of gr(A) evaluate to v.

Definition 2. #X∈C [P (X)] denotes a counting randvar (CRV) with PRV P (X)
and constraint C, where logvars(X) = {X}. Its range is the space of possible his-
tograms. If {X} ⊂ logvars(X), the CRV is a parameterized CRV (PCRV) repre-
senting a set of CRVs. Since counting binds logvar X, logvars(#X∈C [P (X)]) =
X \ {X}. We count-convert a logvar X in a parfactor g = L : φ(A)|C by turn-
ing a PRV Ai ∈ A,X ∈ logvars(Ai), into a CRV A′

i. In the new parfactor g′,
the input for A′

i is a histogram h. Let h(ai) denote the count of ai in h. Then,
φ′(. . . , ai−1, h, ai+1, . . . ) maps to

∏
ai∈range(Ai)

φ(. . . , ai−1, ai, ai+1, . . . )h(ai).

For both techniques, preconditions exist, see [18]. E.g., to sum out PRV A
from parfactor g, logvars(A) = logvars(g). To count-convert logvar X in g, only
one input in g contains X. Let us apply LVE to parfactor g1 ∈ Gex.

Example 2. In g1 = φ1(Hot,App(A), Biz(M))|C1, we cannot sum out any PRV
as neither includes both logvars. To sum out App(a) of some a in the propo-
sitional case, we would multiply all factors that include App(a) into a fac-
tor with inputs Hot, App(a), and Biz(m1), . . . Biz(mn) for each market in
C1. All Biz(mi) lead to true or false, making Biz(M) a CRV. We rewrite
Biz(M) into #M [Biz(M)] and g1 into g′

1 = φ′(Hot,App(A),#M [Biz(M)])|C1.
The CRV refers to histograms that specify for each v ∈ range(Biz(M)) how
many grounded PRVs evaluate to v. The mappings (h, a, true) '→ x and
(h, a, false) '→ y in φ become (h, a, [n1, n2]) '→ xn1yn2 in φ′. We can now sum
out App(A).

Evidence shows symmetries as well, exhibiting the same value for n ground
randvars of a PRV. Evidence parfactor φE(P (X))|CE holds evidence for PRV
P (X). Potential function φE and constraint CE encode the observed values and
randvars. For each evidence parfactor gE , LVE tests each parfactor g ∈ G if
CE ∩ C ̸= ∅. If true, it splits g for lifted absorption: We add a duplicate g′ and
restrict C to tuples where a component receives evidence through gE and C ′ to
tuples unaffected by evidence. Then, g absorbs gE , eliminating P in g.
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Hot App(A) Biz(M)

{g0, g1}

C1

Hot Conf(X) Res(X)

{g2}

C2

Hot Conf(X) Pub(X,P )

{g3}

C3
Hot Hot, Conf(X)

Fig. 2. FO jtree for Gex (local parcluster models in gray)

Example 3. We observe that Conf(x1), . . . , Conf(x10) are true. In evidence par-
factor gE = φE(Conf(X))|CE , CE restricts X to x1, . . . , x10. φE(true) = 1 and
φE(false) = 0. gE affects g2 and g3. After splitting, g2 and g3 absorb gE .

3.3 Lifted Junction Tree Algorithm

LJT builds an FO jtree for faster QA. We first define a parameterized cluster
(parcluster) and FO jtrees, analogous to propositional jtrees, before diving into
the algorithm. Compared to [3], we assign a set of parfactors F , i.e., a local
model, to a parcluster instead of one parfactor due to evidence splitting.

Definition 3. A parcluster C is denoted by C := ∀L : A | C where L is a
set of logvars and A is a set of PRVs with logvars(A) ⊆ L. We omit (∀L :)
if L = logvars(A). Constraint C puts limitations on L. Each parcluster has a
possibly empty set of parfactors F assigned. A parfactor gC = φ(Aφ)|Cφ assigned
to C fulfills (i) Aφ ⊆ A, (ii) logvars(Aφ) ⊆ L, and (iii) Cφ ⊆ C.

Definition 4. An FO jtree for a model G is a pair (J , fC) where J is a cycle-
free graph and fC is a function mapping each node i in J to a label Ci called
a parcluster. An FO jtree must satisfy three properties: (i) A parcluster Ci is a
set of PRVs from G. (ii) For every parfactor g = φ(A)|C in G, A appears in
some Ci. (iii) If a PRV from G appears in Ci and Cj, it must appear in every
parcluster on the path between nodes i and j in J . Set Sij, called separator of
edge i—j in J , contains the shared randvars of Ci and Cj.

By way of construction, LJT assigns each parfactor inG to exactly one parcluster
in (J , fC), by adding them to local models Fi at nodes i.

Example 4. For Gex, Fig. 2 shows its FO jtree with three parclusters, C1 =
∀A,M : {Hot,App(A), Biz(M)}|⊤, C2 = ∀X : {Hot,Conf(X), Res(X)}|⊤,
and C3 = ∀X,P : {Hot,Conf(X), Pub(X,P )}|⊤. Separators are S12 = S21 =
{Hot} and S23 = S32 = {Hot,Conf(X)}. Each parcluster has one or two par-
factors in its local model (g0 could have been assigned to any of them).

LJT answers a set of queries Q given a model G and evidence E. The main
workflow is: (i) Construct an FO jtree for G. (ii) Enter E. (iii) Pass messages.
(iv) Compute answers for Q. For construction, see [3]. Message passing spreads
information among nodes. Two passes propagating information from peripheral
to inner nodes and back suffice [12]. A message mij from node i to node j is a
parfactor with the PRVs in Sij as inputs. To compute mij , we sum out Ai \Sij
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from Fi and the messages from all other neighbors. If a node has received mes-
sages from all neighbors but one, it sends a message to the remaining neighbor
(inbound pass). In the outbound pass, messages flow in the opposite direction.
To answer a query, we take a parcluster covering the query terms and sum out
all non-query terms in its model and received messages.

Example 5. In the FO jtree in Fig. 2, messages flow from nodes 1 and 3 to node
2 and back with the corresponding separators as inputs. E.g., messages between
nodes 1 and 2 have the argument Hot. For m12, we sum out App(A) and Biz(M)
from F1. For m21, we sum out Conf(X) and Res(X) from F2 and message m32

from node 3. After message passing, we can answer, e.g., query P (Conf(x1)) at
node 3 by summing out Hot and Pub(X,P ) from F3 ∪ {m23}.

4 Algorithm-Induced Groundings

A lifted solution to a query given a model means that we compute an answer
without grounding a part of the model. Not all models have a lifted solution as
LVE requires certain conditions to hold to be applicable. Computing a solution to
queries based on these models involves groundings with any exact lifted inference
algorithm. But additionally to inherent groundings, LJT may induce unnecessary
groundings during message passing as the separators may impede a reasonable
elimination order. Grounding a logvar is expensive and, during message passing,
may propagate through all nodes, forcing even more groundings in a worst case.
This section examines when algorithm-induced groundings occur and derives
conditions for messages that allow lifted solutions if possible.

Within this section, we use examples displayed in Fig. 3. Each example is a
node with two PRVs in its parcluster and an edge with a separator consisting of
one of the PRVs. The local model has one parfactor with both PRVs as inputs.
We use the labels L = {X,Y,Z} and R = {P,Q,R} to build PRVs.

Informally, LJT does not induce groundings due to message calculations if
it can sum out the PRVs in a separator last. Figure 3a shows an example with-
out groundings. The parcluster contains P (X) and Q(X,Y ). For the message,
we have to eliminate Q(X,Y ) from the local parfactor. Q(X,Y ) fulfills all pre-
conditions for lifted summing out. We can sum out P (X) last. No groundings
occur.

Formally, for message mij from node i to j with parcluster Ci = Ai|Ci, local
model Fi, and separator Sij , we eliminate the parcluster PRVs not part of the
separator, i.e., Eij := Ai \ Sij , from the local model and all messages received
from other nodes than j, i.e., F ′ := Fi∪{mil}l ̸=j . To eliminate E ∈ Eij by lifted
summing out from F ′, we replace all parfactors g ∈ F ′ that include E with a
parfactor gE = φ(AE)|CE that is the lifted product of these parfactors g. Let
SE
ij := Sij ∩ AE be the set of randvars in the separator that occur in gE . For

lifted message calculation, it necessarily has to hold ∀S ∈ SE
ij ,

logvars(S) ⊆ logvars(E). (1)
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P (X)
Q(X,Y )

φ(P (X), Q(X,Y ))

Ci P (X)

(a) No groundings

P (X)
Q(X,Y, Z)

φ(P (X), Q(X,Y, Z))

Ci Q(X,Y, Z)

(b) Groundings

P (X)
Q(X,Y )

φ(P (X), Q(X,Y ))

Ci Q(X,Y )

(c) #Y [Q(X,Y )]

Fig. 3. Conceptual examples with liftable and non-liftable message calculation

P (X)
. . .

φ(P (X), . . . )

CkP (X) P (X)

(a) No groundings at Ck

P (X)
Q(Y )

φ(P (X), Q(Y ))

CkP (X) Q(Y )

(b) No groundings at Ck

P (X)
R(X)

φ(P (X), R(X))

CkP (X) R(X)

(c) Groundings at Ck

Fig. 4. Conceptual examples with #X [P (X)] in incoming message

Otherwise, E does not include all logvars in gE . We may induce Eq. (1) for a
particular S by count conversion if S has an additional, count-convertible logvar:

logvars(S) \ logvars(E) = {L}, L count-convertible in gE . (2)

If Eq. (2) holds, we count-convert L, yielding a (P)CRV in mij , else, we ground.
Figure 3b shows a parcluster with E = P (X) and S = Q(X,Y,Z) where

we ground. As logvars(Q(X,Y,Z)) ̸⊆ logvars(P (X)) and Q(X,Y,Z) has two
logvars not in P (X), Eqs. (1) and (2) do not hold. We can count-convert Y (or
Z), still leaving us with Z (or Y ) to ground. In Fig. 3c, the separator PRV,
Q(X,Y ), has one logvar, Y , more than P (X). Y is count-convertible so Eq. (2)
holds. We count-convert Y , building #Y [Q(X,Y )]. Now, X is the only logvar
and we sum out P (X). The same holds if P has more logvars, e.g., P (X,Z).
Y would not be count-convertible if the parcluster and parfactor contain, for
instance, a PRV R(Y ) as Y appears in two PRVs, leading to a grounding of Y .

Count conversion of a logvar L may prevent groundings at node i but the
(P)CRV of the affected PRV S may cause problems at node j. As S appears in
Fj , we have S present as a PRV and a (P)CRV. If we do not need to sum out
S or if L is count-convertible in gS , the (P)CRV does not lead to groundings.
But if we have to eliminate S and L is not count-convertible, we need to ground
all occurrences of the counted logvar in the affected parfactors. Hence, count
conversion only helps in preventing a grounding if all following messages can
handle the resulting (P)CRV. Formally, for each node k receiving S as a (P)CRV
with counted logvar L, it has to hold for each neighbor n of k that

S ∈ Skn ∨ L count-convertible in gS (3)

Let us look at some examples for clarification. Figure 4 shows example nodes
as in Fig. 3 with another edge and #X [P (X)] in an incoming message. In Fig. 4a,
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#X [P (X)] does not lead to groundings as P (X) is in the next separator, i.e.,
the first disjunct in Eq. (3) holds. However, as #X [P (X)] becomes part of the
next message, we have to check if #X [P (X)] causes groundings at the receiving
node. Figure 4b shows a case where #X [P (X)] is not in the next separator but
X is count-convertible, i.e., the second disjunct in Eq. (3) holds. As an aside,
to actually sum out #X [P (X)], we need to count-convert logvar Y in Q(Y ).
But that conversion is not due to #X [P (X)]. In Fig. 4c, neither disjunct holds
for P (X). P (X) is not in the separator and X is not count-convertible as X
appears in R(X) as well. Because X is not count-convertible, we cannot combine
the counted P (X) with the local P (X) for summing out. Instead, we need to
ground X and sum out each P (x), x ∈ D(X), individually.

In the next section, we derive a test for unnecessary groundings at nodes
based on Eqs. (1) to (3) without messages being sent.

5 Extended Lifted Junction Tree Algorithm

We extend LJT to prevent unnecessary groundings by adding a fusion step and
to fully support evidence in an efficient manner.

5.1 Fusion: Preventing Groundings

The main idea of fusion is to merge nodes if message calculation needs ground-
ings. We first set up a grounding test. Then, we present fusion using the test to
decide mergings. Last, we analyze the effects on data structure and workload.

Test for Groundings. Checking message mij , PRV E to eliminate, and separator
PRV S, the test strings together Eqs. (1) to (3). Testing E only needs AE of gE ,
making it easier to build. But, we need to track changes from quasi-eliminating
E for the next PRV E′. Our test runs before message passing. Since we do not
have the actual messages for F ′, we assume that a message covers the separator.
This slight over-approximation may result in a larger AE which may lead to
more PRVs in SE

ij that have to fulfill Eqs. (1) to (3). Thus, our test may identify
a grounding that does not occur. The test outcomes for S given mij and E are:

Eq. (1) holds → No groundings. Check next S.
Eq. (1) does not hold → Check Eq. (2).
Eq. (2) holds → Check Eq. (3) for each node receiving S.

Eq. (2) does not hold → Groundings.
Eq. (3) holds → No groundings. Check next S.
Eq. (3) does not hold → Groundings.

Extension. We use the test to decide if we merge two nodes. Merging nodes i and
j means building their union in terms of parclusters and neighbors. Formally, the
union of parclusters Ci and Cj , denoted by Ci∪Cj , is given by gr(Ci)∪gr(Cj).
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Exploiting that parclusters have certain properties by way of construction, we
need not ground but can build the union component-wise. For the local models,
we build Fi ∪Fj . Regarding graph structure, the merged node k with parcluster
Ck = Ci ∪ Cj takes over all neighbors from i and j.

Algorithm1 shows pseudo code for fusion combining the grounding test with
merging given an FO jtree J . For each node i in J , we merge i with a neighboring
node j until Eqs. (1) to (3) hold if applicable. Algorithm2 shows LJT with the
new step in line 3 after construction. The other steps remain the same.

Theorem 1. FusedLJT is sound, i.e., produces the same result as LJT.

Proof sketch. The proof relies on LJT being sound. Fusion alters an underlying
FO jtree with merging, preserving the FO jtree properties. Given LJT is sound,
LJT works with a valid FO jtree after fusion and produces sound results.

FusedLJT does not induce any unnecessary groundings. As the grounding
test over-approximates, we may merge two nodes whose messages do not need
groundings. But, no node remains that grounds due to message calculation.

We add a parameter α to encode how many steps our grounding test should
follow. If α = 0, we do not execute the fusion step. If α = 1, we only check Eq. (1)
at a node i. It saves work on checking Eqs. (2) and (3) concerning (P)CRVs
which may inhibit smaller local models for faster query answering. If α = 2, we
additionally check Eq. (2) and move on to the next PRV in SE

ij if it holds. If
α = 3, we also check Eq. (3) at j. With α > 3, we check Eq. (3) at all nodes
receiving a (P)CRV with a path length of α − 3 starting from j.

Effects. We look at the effects of fusion on LJT in terms of data structure
and workload. Regarding data structure, effects can range from no change to a
collapse into one node. Without a change, we add work for all checks without any
merging (no or only model-inherent groundings). Collapsing into one node with
the input model in its local model is a worst case scenario: We add overhead for
construction and fusion without a payoff as query answering compares to LVE.

Regarding workload, fusion adds to it for checking Eqs. (1) to (3). At a node
i, most work occurs if Eq. (1) does not hold for each neighbor j, PRV E ∈ Eij ,
and PRV S ∈ SE

ij . Then, we check for each S that Eq. (2) holds and for each
neighbor at nodes k reached through j receiving S that Eq. (3) holds. Let c1,
c2, and c3 denote the workload of checking Eqs. (1) to (3), respectively. Let dk
denote the number of neighbors at a node k. Then, a workload amounts of

Algorithm 1. Fusion of FO jtree J to prevent groundings
1: function fuse(FO jtree J)
2: for node i in J do
3: while ∃ node j ∈ neighbors(i), E ∈ Eij , S ∈ SE

ij : (Eq. (1) does not hold ∧
(Eq. (2) does not hold ∨ Eq. (3) does not hold)) do

4: merge(i, j)
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Algorithm 2. Extended Lifted Junction Tree Algorithm
1: function FusedLJT(Model G, Queries Q, Evidence E)
2: FO jtree J = FO-jtree(G)
3: fuse(J)
4: enterEvidence(J ,E)
5: passMessages(J)
6: getAnswers(J ,Q)

TFusion(J ) =
∑

i

∑

j

|Eij | · |SE
ij | ·

(
c1 + c2 +

∑

k

(dk − 1) · c3

)
(4)

where i covers the nodes in J , j the neighbors of i, and k the nodes reached
through j. If α = 0, we do not add work, save for an if-condition check. If α = 1
or 2, Eq. (4) ends after c1 or c2. With increasing α, we reach more nodes k.

In a worst case, we have the most checks if Eij and Sij have the same size,
i.e., 1

2 |Ai|. We replace Ai with Amax denoting the largest parcluster, meaning
the one with the most PRVs. As we cover each edge twice checking each neighbor
j of each node i, we rewrite

∑
i

∑
j with 2 · |E|, E being the set of edges in J . We

reformulate
∑

k as |E|−1 since we may cover each edge except i—j. Combined,
we have a complexity of O(|E|2 · |Amax|2).

5.2 Evidence Handling

This section formalizes evidence handling, a central feature of any inference
algorithm. Though we look at evidence in general, we have to keep in mind that
computing conditional probabilities, i.e., marginals given evidence, is not liftable
unless evidence consists of PRVs with at most one logvar [4].

Extension. Entering evidence includes formalizing when we add evidence, how
we distribute it, and how we absorb it. We add an evidence parfactor gE with
constraint CE to local model Fi at node i with constraint Ci in its parcluster iff

Ci ∩ CE ̸= ∅ (5)

Unlike LVE, we avoid testing all parfactors in G using the third FO jtree
property. The property states that if a PRV appears in parclusters Ci and Cj , it
must appear in every parcluster on the path between nodes i and j. To distribute
gE , we find a first node with a parcluster that meets Eq. (5) and add gE . If adding
gE at a node i, we add gE to each neighboring node j if Ci projected onto the
PRVs in separator Sij fulfills Eq. (5). After distributing all evidence, we split the
parfactors in the local models accordingly and use lifted absorption. (We store
the original model for new evidence.)

In the following example, we add the evidence from Example 3 (Conf(X) is
true for 10 people) to the FO jtree of Gex.
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Example 6. Conf(X) appears in parclusters C2 and C3. For lifted absorption in
C2, we split the parfactor in F2 into g2 = φ2(Hot,Conf(X), Res(X))|(C2 \CE)
and g′

2 = φ2(Hot,Conf(X), Res(X))|CE . g′
2 absorbs gE by dropping the values

where ¬conf(X) and removing Conf(X) from its arguments. F2 is now {g2, g′
2 =

φ2(Hot,Conf(X))|CE}. Absorbing gE in C3 proceeds analogously.

With new evidence, LJT enters evidence and passes messages again. We can
save work on both if evidence changes only incrementally: We only enter changed
evidence. After entering evidence, leaf nodes calculate a new message if evidence
changed. Without a change, an empty message is sent. Inner nodes calculate a
message if their own evidence changed or a non-empty message arrived from any
neighbor. Otherwise, they send an empty message.

Theorem 2. Evidence handling in LJT is sound, i.e., is equivalent to handling
evidence in the ground version.

Proof sketch. The proof relies on the LVE operations, specifically lifted absorp-
tion and splitting, and LJT to be sound. Since lifted absorption drops the affected
PRVs, we enter evidence at each node that includes evidence randvars. With a
correct split and absorption in the local model of a node, the node absorbs
evidence correctly. Given LJT is sound, all following computations are sound.

Effects. Evidence has an effect on message passing and query answering since the
local models change with absorption of evidence. The effect is inherent to han-
dling evidence. Message passing starts after lifted absorption. In case evidence
affects sender and receiver, i.e., the evidence PRVs are part of the separator,
the message covers those PRVs without evidence since the part with evidence
is already absorbed at both parclusters. In case evidence only affects the sender
but logvars(Sij) ∩ logvars(gE) ̸= ∅, the message consists of two parts, one for
the part without evidence and one for the part with evidence as Fi is shattered
w.r.t. CE splitting up all occurrences of logvars(gE). In all other cases, evidence
is hidden from the other nodes through summing out.

Entering evidence means checking Eq. (5) for each evidence parfactor gE ∈ E
at each node and each parfactor in a local model absorbing gE in a worst case
scenario, leading to a worst case complexity of O(|N | · |E| · |Fmax|), N denoting
the set of nodes in J and Fmax the largest local model. With more evidence,
the size of intermediate results decreases and consequently, runtimes fall.

If a change in evidence leads to changes in all nodes, a full message passing
run is necessary. With changes only in one part of the model, we save calculating
inbound messages from the unchanged part and outbound messages distributing
the information from the unchanged part to the remaining model.

6 Empirical Evaluation

We have implemented a prototype of the LJT extended with fusion and evi-
dence handling, named exfojt. Taghipour provides a baseline implementation
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of GC-FOVE including its operators (available at https://dtai.cs.kuleuven.be/
software/gcfove), named gcfove in this test. We include the gcfove operators
in exfojt. We test our implementation against gcfove.

We have also implemented a propositional junction tree algorithm as a refer-
ence point, named jt. jt requires substantially more time and memory and
therefore, is not part of the discussion. We compare runtimes for inference
summed up over queries answered, averaged over several executions per setup.

Fusion. We use a variation of Gex as input whose FO jtree has four nodes and
requires groundings with α = 0 and α = 2. If α = 1, its FO jtree has two nodes
with five PRVs in its largest parcluster after fusion. If α = 3, its FO jtree has
three nodes with four PRVs in its largest parcluster after fusion. The probability
entries are random. We query each PRV once with random groundings.

Figure 5 shows runtimes with increasing domain sizes for jt (filled triangle),
gcfove (circle), and exfojt with α ∈ {0, 1, 2, 3} (squares). There is no strong
difference noticeable for varying α and the depth of its checks in terms of runtime
with this limited example. Between construction and message passing, the fusion
step does not add significantly to the overhead.

The runs of exfojt with groundings (filled squares) have a runtime worse
than the runtime of jt for small domains. Runtimes for exfojt without ground-
ings (empty squares) and gcfove do not have the steep increase in runtime with
larger domains. exfojt (α = 1, α = 3) needs 30 to 60% of the time gcfove needs
which it trades off with memory. It requires 1.06 to 1.16 times the memory of
gcfove. The decrease in runtime is mirrored in the number of LVE operations
performed, independent of the size of the grounded model: exfojt (α = 1)
performs 170 operations (181 with α = 3). gcfove performs 368 operations.

Evidence. We use Gex as input with random probability entries and set α = 0.
We enter evidence on all PRVs except Hot and Pub(X,P ) ranging from 0% to
100% in 5% steps. We query each PRV once and Pub(X,P ) twice with random
groundings. We fix the domain sizes, yielding |gr(Gex)| = 111, 000.

Figure 6 shows runtimes with increasing evidence coverage. On all evidence
settings, exfojt (triangles) outperforms gcfove (circles). Entering evidence
increases runtimes since handling evidence costs time. With more evidence, run-
times decrease for both programs as a larger part of the model is fixed with

https://dtai.cs.kuleuven.be/software/gcfove
https://dtai.cs.kuleuven.be/software/gcfove
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evidence. Apart from the settings with 0% and 100% evidence, exfojt needs 8
to 16% of the time gcfove needs. In terms of VE operations, exfojt needs 128
operations (including message passing) against 475 by gcfove. exfojt trades
off runtimes with memory. It requires 1.2 to 1.4 times the memory of gcfove.

With its static overhead, exfojt outperforms gcfove with the second query
at 0% evidence. In all other cases, exfojt is faster with the first query.

In summary, spending effort on building an FO jtree and passing messages
pays off. Even with little evidence, exfojt runs faster after the first query.

7 Conclusion

We present extensions to LJT to answer multiple queries efficiently in the pres-
ence of symmetries in a model. We identify when LJT induces unnecessary
groundings during message passing. To remedy this effect, we add a step to LJT
that merges parclusters. Additionally, we formalize how LJT handles evidence.
We speed up runtimes significantly, especially with evidence, for answering mul-
tiple queries compared to the current version of LJT and GC-FOVE.

We currently work on adapting LJT to incrementally changing knowledge
bases. Other interesting algorithm features include parallelization, construction
using hypergraph partitioning, and different message passing strategies as well
as using local symmetries. Additionally, we look into areas of application to see
its performance on real-life scenarios.
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Abstract. Flood-filling algorithms as used for coloring images and
shadow casting show that improved locality greatly increases the cache
performance and, in turn, reduces the running time of an algorithm. In
this paper we look at Dijkstra’s method to compute the shortest paths
for example to generate pattern databases. As cache-improving contri-
butions, we propose edge-cost factorization and flood-filling the memory
layout of the graph. We conduct experiments in commercial game maps
and compare the new priority queues with advanced heap implementa-
tions as well as and with alternative bucket implementations.

1 Introduction

For finding shortest paths in a graph G = (V,E,w) Dijkstra’s algorithm [6] is the
apparent implementation option, as for a consistent heuristic h, where w(u, v) ≥
h(u)− h(v) for all edges (u, v), the A* algorithm [16] is equivalent to Dijkstra’s
method applied to a compiled graph; the heuristic h reweights edges e = (u, v)
to map the original graph G = (V,E,w) setting w′(u, v) = w(u, v)+h(v)−h(u)
to G = (V,E,w′).

In this paper we solve the single-source all-target shortest paths problem
where the search does not terminate at a goal. In this setting, lower-bound
heuristics are not helpful, as they only modify the ordering of nodes visits. Hence,
even in the presence of search heuristics, improvements to Dijkstra’s original
method remain essential.

The all-target shortest paths problem usually arises in the inverse graph, with
directed edges reversed. For example, in an abstract graph the goal distances
from every node are used to precompute heuristic estimate tables called pattern
databases [4], effective in both AI search [20], and AI planning [8].

Speed-up techniques accelerate on-line one-pair shortest paths queries,
including containers, edge flags etc. [14,30], which also determine all-target
shortest paths in the precomputation stage. The running time for finding all-
target shortest paths also crucially affects the applicability of multi-goal motion
planning [23]. Last but not least, computing all shortest paths from/to a distin-
guished set of map nodes is a necessity in vehicle routing systems to compress
large maps. This generates distance tables, serving as inputs for variants of the
traveling salesman problem [15].

c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 99–113, 2017.
DOI: 10.1007/978-3-319-67190-1 8
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In modern computers with a hierarchy of caches, localizing the search can
be effective: the retrieval time for the next nodes can decrease considerably
if they are already present in a cache, rather than located in main memory.
We introduce and analyze data structures that exploit either the limited set
of available cost values, or the graph memory layout to prefer a cache-friendly
exploration. For the former we propose an algorithm that operates on a matrix
of cost buckets, and for the latter we study a flood-fill algorithm for shortest
path search. Such traversal order different to Dijkstra’s algorithm may lead to
reopening of nodes. The hope is that by fewer cache misses the search becomes
faster and compensates for this additional work.

The paper is structured as follows. We start with Dijkstra’s algorithm and
then turn to general priority queues. Next, we study bucket-based implementa-
tions, especially ones that can deal with large edge weights. The technical core
besides the comparison of a larger body of state-of-the-art priority queues on an
agreed benchmark are the analyses of the correctness of the flood-fill algorithm
and of the efficiency of the factorized priority queue representation. We run the
algorithms on commercial games maps.

2 Dijkstra’s Algorithm

Finding shortest paths in a directed and weighted graph G = (V,E,w) with
E ⊆ V × V and w : V → R+ is essential to many areas of computer science.
While for general graphs (assuming an adjacency list representation) the input
is of size O(|E|+ |V |), in planar graphs by the virtue of Euler’s formula we have
|E| = O(|V |), so that the input (and the output) have size O(|V |).

It is an open question if there is a shortest path algorithm for that is linear
in the size of a general graph. For special graph classes, like planar graphs [19]
and undirected graphs with integer or IEEE floating point weights [29], the
problem has been theoretically solved, with the results for directed graphs con-
tinouously improving [25]. The algorithms, however, are involved: for planar
graphs, graph separators are recursively applied, while for undirected graphs
with integer weights, heaps that are efficient only for very large values of |V |
have been proposed. Essentially, the proper choice of a data structure for short-
est path search remains challenging.

One implementation for shortest path search uses a bitvector for tagging
elements to be open (visited). While for dense graph this option imposes an
acceptable overhead, for sparse graphs with limited branching, finding the next
open node can be costly. The priority queue itself has to provide the usual
operations is-empty, insert, find-min, decrease-key, and extract-min.

3 General Priority Queues

With binary heaps, Fibonacci heaps, and pairing heaps we look at general prior-
ity queues that can be used to solve the shortest paths problem in any directed
graph with totally-ordered cost function. They are general in the sense that
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they are supporting the full set of priority queue operations, including a delete
and a decrease-key (Fibonacci and pairing heaps also provide an efficient meld)
operation. This flexibility of the priority queue, however, comes at a price, as
these operations require maintaining handles to nodes, given that nodes are
continously moved within the priority queue data structure.

Our implementation takes additional node labels (unlabeled, labeled or
scanned) to avoid redundant work [3]. It assumes the merging of graph and
queue nodes. This joint node representation includes: the state label, a linked
list of graph edges; the element for storing the distances; the heap priority infor-
mation for the node; and the pointers for linking the elements in the heap. An
edge is a pair of a successor node ID and according weight (cost/distance). In
some graphs the joint node representation was more important than the type of
the data structure [3]. One reason was to avoid memory allocation, another was
that efforts for maintaining handles were removed.

For general priority queues in a precomputation stage, the grid is scanned
once and compiled into a graph with nodes for the cells and edges for the links
connecting cells.

3.1 Binary Heaps

The first structure we look at is a binary heap, as independently suggested by
Floyd and Williams in the context of the Heapsort algorithm [11,31]. As all
operations are logarithmic, in total at most O((|E|+ |V |) log2 |V |) time is spent
for finding the shortest paths with a priority queue based on binary heaps; |V |
delete-min and at most |E| decrease-key operations are executed in Dijkstra’s
algorithm.

We have also implemented k-ary heaps for k > 2 that have a smaller height
but a larger node branching factor. This leads to a better cache performance (for
k = 4 about half as many cache misses [22]). When deleting the minimum at each
branch one has to find the smallest of the elements stored at its children. This
minimum finding requires k − 1 element comparisons and one more comparison
is needed to determine whether or not we can stop the traversal. Since the height
of a k-ary heap of size n is h(n, k) = ⌈logk(kn − n + 1)⌉ (the height of a single
node being 1), insertion involves at most h(n + 1, k) − 1 element comparisons
and minimum extraction at most k × (h(n, k) − 1) element comparisons. There
is an interesting trade-off between the cost of these two operations: By making
k larger, insertion becomes faster but delete-min becomes slower. But even for
the best trade-off k = 4 the runtime improvements wrt binary heaps were small
(see also [26] for a study on addressable priority queues), so that as the baseline,
in the experiments we, therefore, stick to binary heaps.

3.2 Fibonacci Heaps

Fibonacci heaps are doubly-linked root lists of heap-ordered trees. They have
been characterized as a lazy-meld version of a binomial queue, which itself is
an extension to binomial trees. A binomial tree Bn, in turn, is a tree of height
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n with 2n nodes in total (and i nodes at depth i) and consists of two trees
Bn−1. Binomial queues are unions of heap-ordered binomial trees. Tree Bi is
represented in queue Q if the ith bit in the binary representation of size |Q| is
set.

Several trees of rank i may be represented in one Fibonacci heap. Consolida-
tion traverses the linear list and merges trees of the same rank so that each rank
becomes unique. The priority queue operations of extracting the minimum and
decreasing the key of a node in a Fibonacci heap result in O(|E|+ |V | log2 |V |)
worst-case time for finding shortest paths [13]. This efficiency is mainly due to
the amortized constant time for decrease-key. There are priority queues with
worst-case constant decrease-key operations [2,7], but for basic edge cost data
types these structures are less performant. Moreover, there are recent sugges-
tions to simplify the implementation of Fibonacci heaps. We implemented several
Fibonacci heap variants and chose one that was at least as good as the recent
implementation refinement in [18].

3.3 Pairing Heaps

A pairing heap is a heap-ordered (not necessarily binary) self-adjusting tree.
The basic operation is pairing, which combines two pairing heaps by attaching
the root with the larger key to the other root as its leftmost child. For two
pairing heaps with respective root values l1 and l2, pairing inserts the first as
the leftmost subtree of the second if l1 > l2, and otherwise inserts the second
into the first as its leftmost subtree.

Pairing takes constant time and the minimum is found at the root. In a
multiway tree representation realizing the priority queue operations is simple.
Insertion pairs the new node with the root of heap; decrease-key splits the node
and its subtree from the heap (if the node is not the root), decreases the key,
and then pairs it with the root of the heap; delete splits the node to be deleted
and its subtree, performs a delete-min on the subtree, and pairs the resulting
tree with the root of the heap. Minimum deletion itself removes and returns the
root, and then, in pairs, pairs the remaining trees. Then, the remaining trees
from right to left are incrementally paired,

Since the multiple-child representation is difficult to maintain, the child-
sibling binary tree representation for pairing heaps is used, in which siblings
are connected as follows. The left link of a node accesses its first child, and the
right link of a node accesses its next sibling, so that the value of a node does
not exceed the values of the nodes in its left subtree. The time analysis for pair-
ing heaps [12], e.g., with two-phase root consolidation is involved. Nonetheless,
empirical work [27] shows strong evidence that pairing heaps perform well in
practice.

4 Bucket-Based Priority Queues

There are priority queue data structures that exploit the data type of the keys.
While for general priority queues we only imposed a total order, for bucket-based
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structures we usually require integer keys with a maximum edge weight C =
maxe∈E w(e). As we aim at general weight functions, we scaled and truncated
real-valued distance values like

√
2. Due to this approximation of floating-point

data considerably large integer edges costs are generated (based on the Taylor
expansion, there are fractional representation of

√
2 with a small error, with the

constant denominator to be compiled away). The worst-case time performance
for a one-level bucket representation of the priority queue [5] is O(C · |V |+ |E|),
as we might have C − 1 empty buckets in between two non-empty ones. For
a constant value C, the shortest paths algorithm based on buckets has optimal
complexity, but for the cost values we consider, the performance degrades quickly.

Most shortest paths algorithms based on buckets assume a monotone cost
function, that is the cost of each successor node is larger than the one of the
current one. This leads to addressable priority queues that only need to support
push (aka insert), top (aka find-min) and pop (aka delete-min). The reason for
buckets to work is that while a node might be reached and stored more than
once with different cost values, it will be expanded first with optimal cost. We
maintain traversal information such as distance or visitedness in tables, and
assume to have access to the information if a cell is free or occupied. We choose
pairs of distance and grid location to be stored in the priority queue.

4.1 Radix Heaps

Let C be the maximum weight of all edges. One-level buckets are arrays of of
lists size C that contain the nodes to be expanded. There are multi-level bucket
representations that decrease the influence on C to

√
C and below. To decrease

the effect on C further, radix heaps have been proposed with an amortized worst-
case complexity of O(1) for delete-min and decrease-key and O(log2 C) for the
insert operation [1].

A radix heap [1] maintains a list of ⌈log2(C + 1)⌉ + 1 buckets of sizes 1, 1,
2, 4, 8, 16, etc. Elements in the buckets are doubly-linked. The main difference
to layered buckets is the use buckets of exponentially increasing sizes. There-
fore, only O(log2 C) buckets are needed. This leads to an O(|V | log2 C + |E|)
time shortest path algorithm. There are further theoretical improvements like a
combination of radix with Fibonacci heaps [1] but for our domain, we consider
log2 C to be sufficiently small.

When assuming that the maximum edge weight is a constant independent of
the size of the graph, the radix heap implementation for Dijsktra’s algorithm is
a linear-time algorithm. However, as

√
2 is infinitisimal, choosing a small C is

not immediate.

4.2 Bucket Maps

To bypass this dependency on C completely a map of buckets can be used, e.g.,
maintained in the form of a search tree (as done in STL). This way only buckets
that are non-empty are stored and inspected for expansion.
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The access time, however, increases to the logarithm of number of all buck-
ets currently stored in the queue. In the unlikely case, each bucket contains at
most one element. In principle, bucket maps work not only for integer but also
for floating-point data and even real-valued data, as long as there is a toatal
ordering. As the buckets are ordered and considered along costs we call the
bucket-map algorithm cost.

4.3 Factorized Heaps

In octile grids with Euclidean distances, every path has cost k · 1 + l ·
√
2 for

some integer values k, l ≥ 0 (both k and l are smaller than any upper bound L
of the length of the optimal path). This can be exploited to label the following
table of buckets.

k, l 0 1 2 3 4 · · ·
0 0 + 0 ·

√
2 0 +

√
2 0 + 2 ·

√
2 0 + 3 ·

√
2 0 + 4 ·

√
2 · · ·

1 1 + 0 ·
√
2 1 +

√
2 1 + 2 ·

√
2 1 + 3 ·

√
2 1 + 4 ·

√
2 · · ·

2 2 + 0 ·
√
2 2 +

√
2 2 + 2 ·

√
2 2 + 3 ·

√
2 2 + 4 ·

√
2 · · ·

3 3 + 0 ·
√
2 3 +

√
2 3 + 2 ·

√
2 3 + 3 ·

√
2 3 + 4 ·

√
2 · · ·

4 4 + 0 ·
√
2 4 +

√
2 4 + 2 ·

√
2 4 + 3 ·

√
2 4 + 4 ·

√
2 · · ·

5 5 + 0 ·
√
2 5 +

√
2 5 + 2 ·

√
2 5 + 3 ·

√
2 5 + 4 ·

√
2 · · ·

...
...

...
...

...
...

. . .

By processing the labels in this table we precompute an index that is used for
addressing the buckets during the search. The order of buckets has to warrant
increasing cost, so we sort the table entries. In the worst case L is linear in
|V |, e.g., in a grid with a singleton path from start to goal in the form of a
spiral. In practice, however, L will be much smaller; in search practice we can
safely assume L2 = O(|V |). The order of expanding nodes within a bucket can
be chosen freely and, thus, a natural bucket scan makes the algorithm cache
oblivious.

As a side product, we can remove buckets that are no longer needed, which
improves the memory profile of the algorithm. Moreover, by assuming an exact
sorting of the bucket labels, the algorithm does not rely on infinitisimal numbers
and works with arbitrary precision. In octile grids that we will look at, cutting
corners is not allowed.

Determining the ordering of indices reduces to sorting, and with a standard
sorting algorithm it takes L2 log2 L2 = O(|V | log2 |V |) time to sort the numbers
labeling the buckets in the worst case. With multiway-merging (or k-way merg-
ing) [17] the complexity reduces to L2 log2 L = O(|V | · log2(

√
|V |)), which is an

acceptable off-line effort, as for any given L the work to compute the index is
done only once.

Theorem 1 (Complexity Factorized Shortest Paths Search). If L2 =
O(|V |), in an octile grid Algorithm 1 requires time O(|V |).
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procedure factorize(start, indices)
global ← 0
for 0 ≤ i < X, 0 ≤ j < Y :

vis[i][j] ← 0
pq[0].append(start)
s ← 1, n ← 0
while true :

for 0 ≤ i < |pq[n]| :
(x, y) ← pq[n][i]
s ← s − 1
if not vis[x, y] :

vis[x, y] ← 1
if not vis[x+ 1][y] and not obs[x+ 1][y] :

pq[MaxLength+ n].append((x+ 1, y))
s ← s+ 1

[...]
if not vis[x+ 1][y − 1] and not obs[x+ 1][y − 1] and (not obs[x][y −
1] or not obs[x+ 1][y]) :

pq[1 + n].append((x+ 1, y − 1))
s ← s+ 1

[...]

pq[n] ← ∅
if s = 0 :

break
do:

global ← global+ 1
n ← indices[global]

while pq[n] = ∅
Algorithm 1. Code for factorized shortest paths search.

Proof. After precomputation, Dijkstra’s algorithm as shown in Fig. 1 takes
O(|V | + K) time, where K is the number of buckets found empty during the
search. All operations in the outer while loop are constant-time, the additional
efforts in the do-while loop for pushing the pointers are O(K). As K ≤ L2 and
L2 = O(|V |) we achieve an optimal linear runtime complexity for Dijkstra’s
algorithm.

One may also set a bit in a vector in case of insertion in the corresponding
bucket, so that finding the first non-empty bucket is a leading zero count (native
on modern processors). The factorized shortest path algorithm is localized in
the sense that states in one bucket residing next to each other in memory are
expanded one after the other. There is only a small number of buckets into which
successors are inserted.

5 Cache-Efficient Layout

The layout of the nodes to be visited can result in drastic changes to the perfor-
mance. For example in 2D image manipulating software, filling areas in a new
color is usually addressed with flood-filling that strictly prefers the y- to the
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x-direction [24]. In a memory layout neighboring cells are preferred to be visited
subsequent to each other.

A related sweep-line exploration of a state space has been seen in the
more general context of external-memory model checking [10,21]. The algorithm
defines a progress measure and initiates several scans over the search space.

5.1 Flood-Filling

For cache-efficient shortest-path search, the algorithmic considerations are more
challenging than for coloring and breadth-first search. In the literature we found
only one proposal to refine shortest path search via flood-filling [23]. The main
idea is the following: when traversing the grid row-wise when encounting an
obstacle, the cells above or below the current one are enqueued. A new scan for
them is invoked only if at that time it offers a possible cost improvement.

As with Dijkstra’s algorithm the approach initializes every entry in the dis-
tance map with infinity and the current position with 0. The algorithm maintains
a queue of cells from which to scan, beginning with the starting position. From
each cell, the algorithm scans the distance map first to the left and then to
the right. For each scanned cell, a tentative distance is computed by a one-step
lookahed.

This way, nodes may be reconsidered more than once for improvement. It is
not difficult to see that the strategy may lead to a quadratic number of reopen-
ings. In this work, we show that the suggested implementation in Fig. 2 fails to
find shortest paths. If one is not willing to sacrifice optimality for an increase in
speed, we design an optimal algorithm at the cost of further reopenings. In the
following we call a node with coordinates (i, j) settled if minDist(i, j) = dist[i, j].

In our setting, the algorithm has to compute the optimal goal distances for
all nodes in the grid. However, as said, there are cases, in which the flood-fill
algorithm fails.

Theorem 2 (Flood-Fill Shortest Paths Search). Algorithm 2 (without
improvements) does not necessarily compute the optimal solution cost at each
node.

Proof. We show that the problem exists even in 4-way grids and with uniform
instead of Euclidian weights. We prove the result by providing a counter-example.
One problem of the Algorithm2 is settling a node that is still to be reopened,
as a settled node with minDist(i, j) = dist[i, j] terminates the scanning process.
Take the example in Table 1 of a small grid fragment (X denotes a blocked cell),
where we have enqueued but not updated the value at cell (c), reaching it on
a better path via cell (d). Before deleting cell (c) from the queue and initiating
the scan from right to left, we come from the other side via cell (e) and reach
cell (b) with a worse value than the one at cell (d). While scanning from left
to right, cell (c) will settle, even though it is pending in the queue. Now, when
extracting cell (c) from the queue it already has the value updated, which in
turn limits other cells from participating in the new information. For example
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procedure MinDist(x, y)
d ← ∞
if dist[x − 1, y] ≥ 0 and d > dist[x − 1, y] + w((x − 1, y), (x, y)) :

d ← dist[x − 1, y] + w((x − 1, y), (x, y))
if dist[x − 1, y − 1] ≥ 0 and d > dist[x − 1, y − 1] + w((x − 1, y − 1), (x, y)) :

d ← dist[x − 1, y − 1] + w((x − 1, y − 1), (x, y))
[...]
return d

procedure better(x, y)
return dist[x, y] > max{MinDist(x, y), 0}

procedure scan(x, y, γ)
i ← y + γ
d ← MinDist(x, i)
while dist[x, i]≤d :

dist[x, i] ← d
if not vis(x − 1, i) and better(x − 1, i) and not better(x − 1, i − γ) :

open.push((x − 1, i)) vis(x − 1, i) ← 1
if not vis(x+ 1, i) and better(x+ 1, i) and not better(x+ 1, i − γ) :

open.push((x+ 1, i)) vis(x+ 1, i) ← 1
i ← i+ γ

procedure floodfill(start)
for 0 ≤ i < X, 0 ≤ j < Y − 1 :

dist[i, j] ← obs[i, j]? − ∞ : ∞
open.push(start)
dist[start] ← 0
vis[start] ← 1
while open ̸= ∅ :

(x, y) ← open.pop()
vis[start] ← 0
if (s = start) or better(x, y) :

if s ̸= start :
dist[x, y] ← MinDist(x, y)

if not vis(x − 1, y) and better(x − 1, y) :
open.push((x − 1, y)); vis(x − 1, y) ← 1

if not vis(x+ 1, y) and better(x+ 1, y) :
open.push((x+ 1, y)); vis(x+ 1, y) ← 1

scan(x, y,−1)
scan(x, y,+1)

Algorithm 2. Flood-fill shortest paths search (improvements colored in red).

having (a)–(e) equal to ∞,∞,∞, 1, 3 yields 5, 4, 2, 1, 3 instead of the optimum
value sequence 4, 3, 2, 1, 3.

Hence, we prevent nodes from modification if they are currently contained in
the queue. However, in octile grids diagonal reachable cells not in the queue can
also settle and block scanning, like cell (b) due to an improvement encountered
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Table 1. Counterexample and corresponding queue content with invoked scans (*
denoting the settlement of nodes).

in cell (d). As the minimum distance at cell (b) will not change in the scan
started in cell (c) the scan stops and will not update cell (a). Therefore, as a fix
we additionally continue scans even if intermediate nodes in a scan are settled.
This leads to the improved implementation of the flood-fill (hightlighted in red
in Algorithm2).

Precise conditions, on whether or not the traversal order in a localized algo-
rithm retains optimal solutions have been derived by [9]. In the classical case if
G = (V,E,w) is a positively weighted graph and dist be the tentative distance
for the true shortest path value δ in Dijkstra’s original algorithm. We have the
invariance that at the time a node u is selected (and about to be expanded),
we have dist(u) = δ(s, u). This way we change the exploration order and allow
reopening of nodes [9].

Lemma 1 (Reopening). Let G = (V,E,w) be a weighted graph, p = (s =
v0, ..., vn = t) be a least-cost path from the start node s to any selected goal
node t, and dist be the tentative value of the shortest paths in an shortest path
algorithm that allows reopening. At each selection of a node u from open, we
have the following invariance: (I) Unless t is closed with dist(t) = δ(s, t), (a)
there is a node vi in open such that dist(vi) = δ(s, vi), and (b) no j > i exists
such that vj is closed with dist(vj) = δ(s, vj).

Here, we do not have an explicit list of closed noded. To avoid duplicates in
the open list, in Algorithm2 (with its improvements) nodes in open are marked
visited. Expanded nodes are closed, if they are not in open. With the change
from strict inequality to inequality we avoid case (b), and obtain the following
result.

Theorem 3 (Optimality Floodfill). Algorithm2 (with improvements) com-
putes the optimal solution cost at each node.

Proof. As the edge costs are strictly positive the values at each node monoton-
ically rise, so that shortest paths have no cycles. Hence, the length of all optimal
paths are bounded by the size of the node set. In our case of all-target search,
we do not have a specific goal t but invariance (Ia), holds for all selections of t.
It says that for all nodes t eventually we have dist(t) = δ(s, t). The problematic
case of a settled node with dist(vj) = δ(s, vj) for which j > i exists has been
bypassed changing comparator < to ≤ in procedure scan.
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6 Experiments

For the evaluation we used a single core of a desktop PC (Ubuntu 14.04 LTS
(64Bit), Intel Core i7-4500U, 1.8GHz, 16GB; L1 cache: 32K, L2 cache: 256K,
L3 cache: 3072K). We considered two sets of problems.

6.1 Game Graphs

For game graphs, we took all the maps from the GPPC-15 benchmark repository
[28]. While the task lists include many s-to-t queries, we removed the goals t and
concentrated on the efforts needed for computing shortest paths in a complete
state-space enumeration.

There are several possible starting locations. The performance measured in
Figs. 1 and 2 is the CPU time for the solving the first instance, in which the
initial cell was not blocked (by the additional frame cells).

Fig. 1. Time in ms for SSSP search in the game maps of Baldur’s Gate II and Starcraft
(left to right) using scatter plots wrt the performance of SSSP search with binary heaps.
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Fig. 2. Time in ms for SSSP search in the game maps of Warcraft III and Dragon
Age (left to right) using scatter plots wrt the performance of SSSP search with binary
heaps.

Fig. 3. Time in ms for SSSP search in random maps; in scatter plot wrt the search
with binary heaps.
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From the plots we can clearly identify that improved flood-fill is generally
the fastest method despite its additional work for re-expanding nodes. Moreover,
pairing heaps result in the fastest general single-source shortest paths method
and perform equally well, if not better than the factorized priority queue data
structures. Fibonacci beat binary heaps, and the cost-based exploration main-
taining an STL map performs worst.

6.2 Random Graphs

Next, we took random maps from the GPPC-15 benchmark repositorium. Note
that for a random number of obstacles, where each grid cell is marked occupied
with parameterized probability p ∈ {10%, 20%, 30%, 40%}, for larger values of p
the grid quickly becomes disconnected. In Fig. 3 we again measured the time of
the first instance for which the initial cell was not blocked. The general perfor-
mance picture on the relative quality of the different shortest-path algorithms,
however, remained roughly the same.

7 Conclusion

Shortest path search is essential in all almost areas of computer science, and the
flood-fill algorithm provides an interesting example for a cache-efficient imple-
mentation. The experiments in moderately-sized game maps show that this strat-
egy pays off: we obtain a roughly six-fold speed-up of flood-filling wrt a binary
heaps, and about halving the runtime wrt pairing heaps and a related contribu-
tion of factorizing total cost.

Localization of the search is of crucial importantance to reduce the access
to disk and to remove communication overhead between processes [9]. Cache-
efficient shortest-path search, thus, completes the picture by showing that careful
designs of search algorithms that improve locality within main memory are effec-
tive. Moreover, general priority queues can be as efficient and sometimes even
outperform solutions specialized for integer keys or grids, so that extensions of
the flood-fill shortest-path algorithms to other graph layouts are exiting research
avenues for the future.
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9. Edelkamp, S., Schrödl, S.: Localizing A*. In: AAAI, pp. 885–890 (2000)

10. Evangelista, S., Kristensen, L.M.: A sweep-line method for Büchi automata-based
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Abstract. A shallow semantic embedding of an intensional higher-order
modal logic (IHOML) in Isabelle/HOL is presented. IHOML draws on
Montague/Gallin intensional logics and has been introduced by Melvin
Fitting in his textbook Types, Tableaus and Gödel’s God in order to dis-
cuss his emendation of Gödel’s ontological argument for the existence of
God. Utilizing IHOML, the most interesting parts of Fitting’s textbook
are formalized, automated and verified in the Isabelle/HOL proof assis-
tant. A particular focus thereby is on three variants of the ontological
argument which avoid the modal collapse, which is a strongly criticized
side-effect in Gödel’s resp. Scott’s original work.

Keywords: Automated theorem proving · Computational meta-
physics · Higher-order logic · Intensional logic · Isabelle · Modal logic ·
Ontological argument · Semantic embedding

1 Introduction

The first part of this paper introduces a shallow semantic embedding of an
intensional higher-order modal logic (IHOML) in classical higher-order logic
(Isabelle/HOL1). IHOML, as introduced by Fitting [15], is a modification of
the intensional logic originally developed by Montague and later expanded by
Gallin [18] by building upon Church’s type theory and Kripke’s possible-world
semantics. Our approach builds on previous work on the semantic embedding of
multimodal logics with quantification [6], which we expand here to allow for actu-
alist quantification, intensional terms and their related operations. From an AI
perspective we contribute a highly flexible framework for automated reasoning
in intensional and modal logic. IHOML, which has not been automated before,

1 In this paper we work with the Isabelle/HOL proof assistant [22], which explains the
chosen abbreviation. Generally, however, the work presented here can be mapped to
any other system implementing Church’s simple type theory [13].
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has several applications, e.g. towards the deep semantic analysis of natural lan-
guage rational arguments as envisioned in the new DFG Schwerpunktprogramm
RATIO (SPP 1999).

In the second part, we present an exemplary, non-trivial application of this
reasoning infrastructure: A study on computational metaphysics2, the computer-
formalization and critical assessment of Gödel’s [19] (resp. Dana Scott’s [25])
modern variant of the ontological argument and two of its proposed emendations
as discussed in [15]. Gödel’s ontological argument is amongst the most discussed
formal proofs in modern literature. Several authors (e.g. [2,3,11,15,20]) have
proposed emendations with the aim of retaining its essential result (the necessary
existence of God) while at the same time avoiding the modal collapse (whatever
is the case is so necessarily) [26,27]. The modal collapse is an undesirable side-
effect of the axioms postulated by Gödel (resp. Scott). It essentially states that
there are no contingent truths and everything is determined.

Related work3 has formalized several of these variants on the computer and
verified or falsified them. For example, Gödel’s axiom’s system has been shown
inconsistent [9,10], while Scott’s version has been verified [8]. Further exper-
iments, contributing amongst others to the clarification of a related debate
regarding the redundancy of some axioms in Anderson’s emendation, are pre-
sented and discussed in [7]. The enabling technique in these case studies has
been shallow semantic embeddings of extensional higher-order modal logics in
classical higher-order logic (see [4,6] and the references therein).4

In contrast to the related work, Fitting’s variant is based on intensional
higher-order modal logic. Our experiments confirm that Fitting’s argument,
as presented in his textbook [15], is valid and that it avoids the modal col-
lapse as intended. Due to lack of space, we refer the reader to our (computer-
verified) paper [17] for further results. That paper has been written directly in
the Isabelle/HOL proof assistant and requires some familiarity with this system
and with Fitting’s textbook.

The work presented here originates from the Computational Metaphysics lec-
ture course held at the FU Berlin in Summer 2016 [28].

2 Embedding of Intensional Higher-Order Modal Logic

2.1 Type Declarations

Since IHOML and Isabelle/HOL are both typed languages, we introduce a type-
mapping between them. We follow as closely as possible the syntax given by
2 This term was originally coined by Fitelson and Zalta in [14] and describes an
emerging, interdisciplinary field aiming at the rigorous formalization and deep logical
assessment of philosophical arguments in an automated reasoning environment.

3 More loosely related work studied Anselm’s older, non-modal version of the ontolog-
ical argument directly in Prover9 [23] and PVS [24].

4 In contrast to deep semantic embeddings, where the embedded logic is presented as
an abstract datatype, our shallow semantic embeddings avoid inductive definitions
and maximize the reuse of logical operations from the meta-level. In particular,
tedious new binding mechanisms are avoided in our approach.
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Fitting ([15] p. 86), according to which, for any extensional type τ, ↑τ becomes
its corresponding intensional type. For instance, a set of (red) objects has the
extensional type ⟨e⟩, whereas the concept ‘red’ has intensional type ↑⟨e⟩.
typedecl e — type for entities
typedecl w — type for possible worlds
type-synonym wo = (w⇒bool) — type for world-dependent formulas

Aliases for some common complex types (predicates and relations).

type-synonym ie=(w⇒e) (↑e) — individual concepts (map worlds to objects)
type-synonym se=(e⇒bool) (⟨e⟩) — (extensional) sets
type-synonym ise=(e⇒wo) (↑⟨e⟩) — (intensional predicative) concepts
type-synonym sise=(↑⟨e⟩⇒bool) (⟨↑⟨e⟩⟩) — sets of concepts
type-synonym isise=(↑⟨e⟩⇒wo) (↑⟨↑⟨e⟩⟩) — 2-order concepts
type-synonym see=(e⇒e⇒bool) (⟨e,e⟩) — (extensional) relations
type-synonym isee=(e⇒e⇒wo) (↑⟨e,e⟩) — (intensional) relational concepts

2.2 Logical Constants as Truth-Sets

We embed modal operators as sets of worlds satisfying a corresponding formula.

abbreviation mand ::wo⇒wo⇒wo (infix∧) where ϕ∧ψ ≡ λw . (ϕ w)∧(ψ w)
abbreviation mor ::wo⇒wo⇒wo (infix∨) where ϕ∨ψ ≡ λw . (ϕ w)∨(ψ w)
abbreviation mimp::wo⇒wo⇒wo (infix→) where ϕ→ψ ≡ λw . (ϕ w)−→(ψ w)
abbreviation mequ::wo⇒wo⇒wo (infix↔) where ϕ↔ψ ≡ λw . (ϕ w)←→(ψ w)
abbreviation mnot ::wo⇒wo (¬-) where ¬ϕ ≡ λw . ¬(ϕ w)
abbreviation mnegpred ::↑⟨e⟩⇒↑⟨e⟩ (⇁-) where ⇁Φ ≡ λx .λw . ¬(Φ x w)

Possibilist quantifiers are embedded as follows.5

abbreviation mforall ::( ′t⇒wo)⇒wo (∀ ) where ∀ Φ ≡ λw .∀ x . (Φ x w)
abbreviation mexists::( ′t⇒wo)⇒wo (∃ ) where ∃ Φ ≡ λw .∃ x . (Φ x w)

The actualizedAt predicate is used to additionally embed actualist quantifiers
by restricting the domain of quantification at every possible world. This stan-
dard technique has been referred to as existence relativization ([16], p. 106),
highlighting the fact that this predicate can be seen as a kind of meta-logical
‘existence predicate’ telling us which individuals actually exist at a given world.
This meta-logical concept does not appear in our object language.

consts Actualized ::↑⟨e⟩ (infix actualizedAt)
abbreviation mforallAct ::↑⟨↑⟨e⟩⟩ (∀ A) — actualist variants use superscript
where ∀ AΦ ≡ λw .∀ x . (x actualizedAt w)−→(Φ x w)

abbreviation mexistsAct ::↑⟨↑⟨e⟩⟩ (∃ A)
where ∃ AΦ ≡ λw .∃ x . (x actualizedAt w) ∧ (Φ x w)

Frame’s accessibility relation and modal operators.

5 Possibilist and actualist quantification can be seen as the semantic counterparts of
the concepts of possibilism and actualism in the metaphysics of modality. They relate
to natural-language expressions such as ‘there is’, ‘exists’, ‘is actual’, etc.
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consts aRel ::w⇒w⇒bool (infix r)
abbreviation mbox :: wo⇒wo (!-) where !ϕ ≡ λw .∀ v . (w r v)−→(ϕ v)

abbreviation mdia :: wo⇒wo (♦-) where ♦ϕ ≡ λw .∃ v . (w r v)∧(ϕ v)

2.3 Equality

abbreviation meq :: ′t⇒ ′t⇒wo (infix ≈) — standard equality (for all types)
where x ≈ y ≡ λw . x = y

abbreviation meqC :: ↑⟨↑e,↑e⟩ (infix ≈C) — equality for individual concepts
where x ≈C y ≡ λw . ∀ v . (x v) = (y v)

abbreviation meqL:: ↑⟨e,e⟩ (infix ≈L) — Leibniz equality for individuals
where x ≈L y ≡ λw . ∀ ϕ. (ϕ x w)−→(ϕ y w)

2.4 Extension-of Operator

According to Fitting’s semantics ([15], pp. 92–94), ↓ is an unary operator apply-
ing only to intensional terms. A term of the form ↓α designates the extension
of the intensional object designated by α, at some given world. For instance,
suppose we take possible worlds as persons, we can therefore think of the con-
cept ‘red’ as a function that maps each person to the set of objects that person
classifies as red (its extension). We can further state that the intensional term
r of type ↑⟨e⟩ designates the concept ‘red’. As can be seen, intensional terms in
IHOML designate functions on possible worlds and they always do it rigidly. We
will sometimes refer to an intensional object explicitly as ‘rigid’, implying that
its (rigidly) designated function has the same extension in all possible worlds.6

Terms of the form ↓α are called relativized (extensional) terms; they are
always derived from intensional terms and their type is extensional (in the color
example ↓r would be of type ⟨e⟩). Relativized terms may vary their denotation
from world to world of a model, because the extension of an intensional term
can change from world to world, i.e. they are non-rigid.

In our Isabelle/HOL embedding, we had to follow a slightly different app-
roach; we model ↓ as a predicate applying to formulas of the form Φ(↓α1 . . .αn).
For instance, the formula Q(↓a1)w (evaluated at world w) is modeled as
#(Q ,a1)w, or (Q # a1)w using infix notation, which gets further translated into
Q(a1(w))w.

(a) Predicate ϕ takes as argument a relativized term derived from an (inten-
sional) individual concept of type ↑e.
abbreviation extIndArg ::↑⟨e⟩⇒↑e⇒wo (infix #) where ϕ #c ≡ λw . ϕ (c w) w

(b) A variant of (a) for terms derived from predicates (types of form ↑⟨t⟩).
abbreviation extPredArg ::(( ′t⇒bool)⇒wo)⇒( ′t⇒wo)⇒wo (infix ↓)
where ϕ ↓P ≡ λw . ϕ (λx . P x w) w

6 The notion of rigid designation was introduced by Kripke in [21], where he discusses
its many interesting ramifications in logic and the philosophy of language.
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2.5 Verifying the Embedding

The above definitions introduce modal logic K with possibilist and actualist
quantifiers, as evidenced by the following tests.7

abbreviation valid ::wo⇒bool (⌊-⌋) where ⌊ψ⌋ ≡ ∀w .(ψ w) — modal validity
lemma K : ⌊(!(ϕ → ψ)) → (!ϕ → !ψ)⌋ by simp — verifying K principle
lemma NEC : ⌊ϕ⌋ =⇒ ⌊!ϕ⌋ by simp — verifying necessitation rule

Local consequence implies global consequence (not the other way round).8

lemma localImpGlobalCons: ⌊ϕ → ξ⌋ =⇒ ⌊ϕ⌋ −→ ⌊ξ⌋ by simp
lemma ⌊ϕ⌋ −→ ⌊ξ⌋ =⇒ ⌊ϕ → ξ⌋ nitpick oops — countersatisfiable

(Converse-)Barcan formulas are satisfied for possibilist, but not for actualist,
quantification.

lemma ⌊(∀ x .!(ϕ x )) → !(∀ x .(ϕ x ))⌋ by simp
lemma ⌊!(∀ x .(ϕ x )) → (∀ x .!(ϕ x ))⌋ by simp
lemma ⌊(∀ Ax .!(ϕ x )) → !(∀ Ax .(ϕ x ))⌋ nitpick oops — countersatisfiable
lemma ⌊!(∀ Ax .(ϕ x )) → (∀ Ax .!(ϕ x ))⌋ nitpick oops — countersatisfiable

β-redex is valid for non-relativized (intensional or extensional) terms.

lemma ⌊(λα. ϕ α) (τ ::↑e) ↔ (ϕ τ)⌋ by simp
lemma ⌊(λα. ϕ α) (τ ::e) ↔ (ϕ τ)⌋ by simp
lemma ⌊(λα. !ϕ α) (τ ::↑e) ↔ (!ϕ τ)⌋ by simp
lemma ⌊(λα. !ϕ α) (τ ::e) ↔ (!ϕ τ)⌋ by simp

β-redex is valid for relativized terms as long as no modal operators occur.

lemma ⌊(λα. ϕ α) #(τ ::↑e) ↔ (ϕ #τ)⌋ by simp
lemma ⌊(λα. !ϕ α) #(τ ::↑e) ↔ (!ϕ #τ)⌋ nitpick oops — countersatisfiable

Modal collapse is countersatisfiable.

lemma ⌊ϕ → !ϕ⌋ nitpick oops — countersatisfiable

2.6 Stability, Rigid Designation, De Dicto and De Re

Intensional terms are trivially rigid. This predicate tests whether an intensional
predicate is ‘rigid’ in the sense of denoting a world-independent function.

abbreviation rigid ::( ′t⇒wo)⇒wo where rigid τ ≡ (λβ. !((λz . β≈z ) ↓τ)) ↓τ

7 We prove theorems in Isabelle by using the keyword ‘by’ followed by the name of a
proof method. Some methods used here are: simp (term rewriting), blast (tableaus),
meson (model elimination), metis (ordered resolution and paramodulation), auto
(classical reasoning and term rewriting) and force (exhaustive search trying different
tools). In our computer-formalization and assessment of Fitting’s textbook [17], we
provide further evidence that our embedded logic works as intended by verifying the
book’s theorems and examples.

8 We utilize here (counter-)model finder Nitpick [12] for the first time. For the conjec-
tured lemma, Nitpick finds a countermodel (not shown here), i.e. a model satisfying
all the axioms which falsifies the given formula.
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Following definitions are called ‘stability conditions’ by Fitting ([15], p. 124).
abbreviation stabilityA::( ′t⇒wo)⇒wo where stabilityA τ ≡ ∀ α. (τ α) → !(τ α)
abbreviation stabilityB ::( ′t⇒wo)⇒wo where stabilityB τ ≡ ∀ α. ♦(τ α) → (τ α)

We prove them equivalent in S5 logic (using Sahlqvist correspondence).
lemma equivalence aRel =⇒ ⌊stabilityA (τ ::↑⟨e⟩)⌋ −→ ⌊stabilityB τ⌋ by blast
lemma equivalence aRel =⇒ ⌊stabilityB (τ ::↑⟨e⟩)⌋ −→ ⌊stabilityA τ⌋ by blast

A term is ‘rigid’ if and only if it satisfies the stability conditions.
lemma ⌊rigid (τ ::↑⟨e⟩)⌋ ←→ ⌊(stabilityA τ ∧ stabilityB τ)⌋ by meson
lemma ⌊rigid (τ ::↑⟨↑e⟩)⌋ ←→ ⌊(stabilityA τ ∧ stabilityB τ)⌋ by meson

De re is equivalent to de dicto for non-relativized terms.9

lemma ⌊∀ α. ((λβ. !(α β)) (τ ::⟨e⟩)) ↔ !((λβ. (α β)) τ)⌋ by simp
lemma ⌊∀ α. ((λβ. !(α β)) (τ ::↑⟨e⟩)) ↔ !((λβ. (α β)) τ)⌋ by simp

De re is not equivalent to de dicto for relativized terms.
lemma ⌊∀ α. ((λβ. !(α β)) ↓(τ ::↑⟨e⟩)) ↔ !((λβ. (α β)) ↓τ)⌋
nitpick[card e=1 , card w=2 ] oops — countersatisfiable

2.7 Useful Definitions for the Axiomatization of Further Logics

The best-known normal logics (K4, K5, KB, K45, KB5, D, D4, D5, D45, ...)
can be obtained by combinations of the following axioms:
abbreviation T where T ≡ ∀ ϕ. !ϕ → ϕ
abbreviation B where B ≡ ∀ ϕ. ϕ → !♦ϕ
abbreviation D where D ≡ ∀ ϕ. !ϕ → ♦ϕ
abbreviation IV where IV ≡ ∀ ϕ. !ϕ → !!ϕ
abbreviation V where V ≡ ∀ ϕ. ♦ϕ → !♦ϕ

Instead of postulating combinations of the above axioms we make use of the well-
known Sahlqvist correspondence, which links axioms to constraints on a model’s
accessibility relation. We show that reflexivity, symmetry, seriality, transitivity
and euclideanness imply axioms T,B,D, IV, V respectively.10

lemma reflexive aRel =⇒ ⌊T⌋ by blast
lemma symmetric aRel =⇒ ⌊B⌋ by blast
lemma serial aRel =⇒ ⌊D⌋ by blast
lemma transitive aRel =⇒ ⌊IV ⌋ by blast
lemma euclidean aRel =⇒ ⌊V ⌋ by blast
lemma preorder aRel =⇒ ⌊T⌋ ∧ ⌊IV ⌋ by blast — S4: reflexive + transitive
lemma equivalence aRel =⇒ ⌊T⌋ ∧ ⌊V ⌋ by blast — S5: preorder + symmetric

9 The de dicto/de re distinction is used regularly in the philosophy of language for
disambiguation of sentences involving intensional contexts.

10 Implication can also be proven in the reverse direction (which is not needed for our
purposes). Using these definitions, we can derive axioms for the most common modal
logics (see also [5]). Thereby we are free to use either the semantic constraints or the
related Sahlqvist axioms. Here we provide both versions. In what follows we use the
semantic constraints for improved performance.
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3 Gödel’s Ontological Argument

3.1 Part I - God’s Existence Is Possible

Gödel’s particular version of the argument is a direct descendant of that of
Leibniz, which in turn derives from one of Descartes. His argument relies on
proving (T1) ‘Positive properties are possibly instantiated’, which together with
(T2) ‘God is a positive property’ directly implies the conclusion. In order to
prove T1, Gödel assumes (A2) ‘Any property entailed by a positive property is
positive’. As we will see, the success of this argumentation depends on how we
formalize our notion of entailment.

abbreviation Entails::↑⟨↑⟨e⟩,↑⟨e⟩⟩ (infix$) where X$Y ≡ !(∀ Az . X z → Y z )
lemma ⌊(λx w . x ̸= x ) $ χ⌋ by simp — an impossible property entails anything
lemma ⌊¬(ϕ $ χ) → ♦∃ A ϕ⌋ by auto — possible instantiation of ϕ implicit

The definition of property entailment introduced by Gödel can be criticized
on the grounds that it lacks some notion of relevance and is therefore exposed
to the paradoxes of material implication. In particular, when we assert that
property A does not entail property B, we implicitly assume that A is possibly
instantiated. Conversely, an impossible property (like being a round square)
entails any property (like being a triangle). It is precisely by virtue of these
paradoxes that Gödel manages to prove T1.11

consts Positiveness::↑⟨↑⟨e⟩⟩ (P) — positiveness applies to intensional predicates
abbreviation Existence::↑⟨e⟩ (E !) — object-language existence predicate
where E ! x ≡ λw . (∃ Ay . y≈x ) w

Gödel’s axioms for the first part essentially say that (A1) either a property or its
negation must be positive, (A2) positive properties are closed under entailment
and (A3) also closed under conjunction.

abbreviation appliesToPositiveProps::↑⟨↑⟨↑⟨e⟩⟩⟩ (pos) where
pos Z ≡ ∀ X . Z X → P X

abbreviation intersectionOf ::↑⟨↑⟨e⟩,↑⟨↑⟨e⟩⟩⟩ (intersec) where
intersec X Z ≡ !(∀ x .(X x ↔ (∀ Y . (Z Y ) → (Y x ))))

axiomatization where
A1a: ⌊∀ X . P (⇁X ) → ¬(P X ) ⌋ and
A1b: ⌊∀ X . ¬(P X ) → P (⇁X )⌋ and
A2 : ⌊∀ X Y .(P X ∧ (X $ Y )) → P Y ⌋ and
A3 : ⌊∀ Z X . (pos Z ∧ intersec X Z ) → P X ⌋

lemma True nitpick[satisfy ] oops — model found: axioms are consistent
lemma ⌊D⌋ using A1a A1b A2 by blast — D axiom is implicitely assumed

Positive properties are possibly instantiated.
11 To prove T1, the fact is used that positive properties cannot entail negative

ones (A2), from which the possible instantiation of positive properties follows. A
computer-formalization of Leibniz’s theory of concepts can be found in [1], where
the notion of concept containment in contrast to ordinary property entailment is
discussed.



Automating Emendations of the Ontological Argument in IHOML 121

theorem T1 : ⌊∀ X . P X → ♦∃ A X ⌋ using A1a A2 by blast

Being Godlike is defined as having all (and only) positive properties.

abbreviation God ::↑⟨e⟩ (G) where G ≡ (λx . ∀ Y . P Y → Y x )
abbreviation God-star ::↑⟨e⟩ (G∗) where G∗ ≡ (λx . ∀ Y . P Y ↔ Y x )
lemma GodDefsAreEquivalent : ⌊∀ x . G x ↔ G∗ x⌋ using A1b by force

While Leibniz provides an informal proof for the compatibility of all perfections,
Gödel postulates this as A3 (the conjunction of any collection of positive prop-
erties is positive), which is a third-order axiom. As shown below, the only use
of A3 is to prove that being Godlike is positive (T2 ). Dana Scott, apparently
noting this, proposed taking it directly as an axiom (see [15], p. 152).12

theorem T2 : ⌊P G⌋ proof −
{ fix w
have 1 : ((pos P) ∧ (intersec G P)) w by simp
have (∀ Z X . (pos Z ∧ intersec X Z ) → P X ) w using A3 by (rule allE )
hence (((pos P) ∧ (intersec G P)) → P G) w using allE by (rule allE )
hence ((pos P ∧ intersec G P) w) −→ P G w by simp
hence P G w using 1 by (rule mp)

} thus ?thesis by (rule allI )
qed

Conclusion for the first part: Possibly God exists.

theorem T3 : ⌊♦∃ A G⌋ using T1 T2 by simp

3.2 Part II - God’s Existence Is Necessary, if Possible

We show here that some additional (philosophically controversial) assumptions
are needed to prove the argument’s conclusion, including an essentialist premise
and the S5 axioms. (Gödel’s resp. Scott’s original version works in extensional
HOML already for modal logic B [8,9]). Further derived results like monotheism
and absence of free will are also discussed.

axiomatization where A4a: ⌊∀ X . P X → !(P X )⌋

A4b was originally assumed by Gödel as an axiom. We can now prove it.

lemma A4b: ⌊∀ X . ¬(P X ) → !¬(P X )⌋ using A1a A1b A4a by blast
lemma True nitpick[satisfy ] oops — model found: all axioms A1-4 consistent

Axiom A4a and its consequence A4b together imply that P satisfies Fitting’s
stability conditions ([15], p. 124). This means P designates rigidly. Note that this
makes for an essentialist assumption which may be considered controversial by
some philosophers: every property considered positive in our world (e.g. honesty)
is necessarily so.

lemma ⌊rigid P⌋ using A4a A4b by blast

12 We provide a proof in Isabelle/Isar, a language specifically tailored for writing proofs
that are both computer- and human-readable. We refer the reader to [17] for other
proofs not shown in this article.
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Gödel defines a particular notion of essence. Y is an essence of x iff Y entails
every other property x possesses.13

abbreviation Essence::↑⟨↑⟨e⟩,e⟩ (E) where E Y x ≡ Y x ∧ (∀ Z . Z x → Y$Z )
abbreviation beingIdenticalTo::e⇒↑⟨e⟩ (id) where id x ≡ (λy . y≈x )

Being Godlike is an essential property.

lemma GodIsEssential : ⌊∀ x . G x → (E G x )⌋ using A1b A4a by metis

Something can have only one essence.

lemma ⌊∀ X Y z . (E X z ∧ E Y z ) → (X $ Y )⌋ by meson

An essential property offers a complete characterization of an individual.

lemma EssencesCharacterizeCompletely : ⌊∀ X y . E X y → (X $ (id y))⌋
proof (rule ccontr) — Isar proof by contradiction not shown here

Gödel introduces a particular notion of necessary existence as the property some-
thing has, provided any essence of it is necessarily instantiated.

abbreviation necessaryExistencePredicate::↑⟨e⟩ (NE)
where NE x ≡ (λw . (∀ Y . E Y x → !∃ A Y ) w)

axiomatization where A5 : ⌊P NE⌋ — necessary existence is a positive property
lemma True nitpick[satisfy ] oops — model found: so far all axioms consistent

(Possibilist) existence of God implies its necessary (actualist) existence.

theorem T4 : ⌊∃ G → !∃ A G⌋ proof − — not shown

We postulate the S5 axioms (via Sahlqvist correspondence) separately, in order
to get more detailed information about their relevance in the proofs below.

axiomatization where
ax-T : reflexive aRel and ax-B : symmetric aRel and ax-IV : transitive aRel

lemma True nitpick[satisfy ] oops — model found: axioms still consistent

Possible existence of God implies its necessary (actualist) existence (note that
we only rely on axioms B and IV ).

theorem T5 : ⌊♦∃ G⌋ −→ ⌊!∃ A G⌋ proof − — not shown
theorem GodExistsNecessarily : ⌊!∃ A G⌋ using T3 T5 by metis
lemma GodExistenceIsValid : ⌊∃ A G⌋ using GodExistsNecessarily ax-T by auto

Monotheism for non-normal models (using Leibniz equality) follows directly from
God having all and only positive properties, but the proof for normal models is
trickier. We need to consider previous results ([15], p. 162).

lemma Monotheism-LeibnizEq :⌊∀ x . G∗ x → (∀ y . G∗ y → x≈Ly)⌋ by meson
lemma Monotheism-normal : ⌊∃ x .∀ y . G y ↔ x ≈ y⌋ proof − — not shown

Fitting [15] also discusses the objection raised by Sobel [27], who argues that
Gödel’s axiom system is too strong since it implies that whatever is the case is so
13 Essence is defined here (and in Fitting’s variant) in the version of Scott; Gödel’s

original version leads to the inconsistency reported in [9,10].
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necessarily: the modal system collapses. In the context of our S5 axioms, we can
formalize Sobel’s argument and prove modal collapse valid ([15], pp. 163–164).

lemma useful : (∀ x . ϕ x −→ ψ) =⇒ ((∃ x . ϕ x ) −→ ψ) by simp
lemma ModalCollapse: ⌊∀ Φ. Φ → !Φ⌋ proof −
{ fix w
{ fix Q
have (∀ x . G x → (E G x )) w using GodIsEssential by (rule allE )
hence ∀ x . G x w −→ (Q → !(∀ Az . G z → Q)) w by force
hence 1 : (∃ x . G x w) −→ ((Q → !(∀ Az . G z → Q)) w) by (rule useful)
have ∃ x . G x w using GodExistenceIsValid by auto
from 1 this have (Q → !(∀ Az . G z → Q)) w by (rule mp)
hence (Q → !((∃ Az . G z ) → Q)) w using useful by blast
hence (Q → (!(∃ Az . G z ) → !Q)) w by simp
hence (Q → !Q) w using GodExistsNecessarily by simp
} hence (∀ Φ. Φ → ! Φ) w by (rule allI )
} thus ?thesis by (rule allI )

qed

4 Fitting’s Variant

In this section we consider Fitting’s solution to the objections raised in his dis-
cussion of Gödel’s Argument ([15], pp. 164–169), especially the problem of modal
collapse, which has been metaphysically interpreted as implying a rejection of
free will. In Gödel’s variant, positiveness and essence were thought of as pred-
icates applying to intensional properties and correspondingly formalized using
intensional types for their arguments (↑⟨↑⟨e⟩⟩ and ↑⟨↑⟨e⟩, e⟩ respectively). In this
variant, Fitting chooses to reformulate these definitions using extensional types
(↑⟨⟨e⟩⟩ and ↑⟨⟨e⟩, e⟩) instead, and makes the corresponding adjustments to the
rest of the argument (to ensure type correctness). This has some philosophical
repercussions; e.g. while we could say before that honesty (as concept) was a
positive property, now we can only talk of its extension at some world and say of
some group of people that they are honest (necessarily honest, in fact, because
P has also been proven ‘rigid’ in this variant).14

consts Positiveness::↑⟨⟨e⟩⟩ (P)
abbreviation Entails::↑⟨⟨e⟩,⟨e⟩⟩ (infix$) where X$Y ≡ !(∀ Az . (|X z |)→(|Y z |))
abbreviation Essence::↑⟨⟨e⟩,e⟩ (E) where E Y x ≡ (|Y x |) ∧ (∀ Z .(|Z x |)→(Y$Z ))

Axioms and theorems remain essentially the same. Particularly (T2) ⌊P ↓G⌋
and (A5) ⌊P ↓NE⌋ work with relativized extensional terms now.

theorem T1 : ⌊∀ X ::⟨e⟩. P X → ♦(∃ Az . (|X z |))⌋ using A1a A2 by blast
theorem T3deRe: ⌊(λX . ♦∃ A X ) ↓G⌋ using T1 T2 by simp
lemma GodIsEssential : ⌊∀ x . G x → ((E ↓1G) x )⌋ using A1b by metis

14 In what follows, the ‘(|-|)’ parentheses are used to convert an extensional object into
its ‘rigid’ intensional counterpart (e.g. (|ϕ|) ≡ λw . ϕ).
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The following theorem could be formalized in two variants15 (drawing on
the de re/de dicto distinction). We prove both of them valid and show how the
argument splits, culminating in two non-equivalent versions of the conclusion,
both of which are proven valid.
lemma T4v1 : ⌊∃ ↓G → !∃ A ↓G⌋ proof − — not shown
lemma T4v2 : ⌊∃ ↓G → ((λX . !∃ A X ) ↓G)⌋ using A4a T4v1 by metis

In contrast to Gödel’s version (as presented by Fitting), the following theorems
can be proven in logic K (the S5 axioms are no longer needed).
lemma T5v1 :⌊♦∃ ↓G⌋−→⌊!∃ A ↓G⌋ using T4v1 T3deRe by metis
lemma T5v2 :⌊(λX . ♦∃ A X ) ↓G⌋ −→ ⌊(λX . !∃ A X ) ↓G⌋ using T4v2 by blast

Necessary Existence of God (de dicto and de re readings).
lemma GodNecExists-deDicto: ⌊!∃ A ↓G⌋ using T3deRe T4v1 by blast
lemma GodNecExists-deRe: ⌊(λX . !∃ A X ) ↓G⌋ using T3deRe T5v2 by blast

Modal collapse is countersatisfiable even in S5. Note that countermodels with
a cardinality of one for the domain of individuals are found by Nitpick (the
countermodel shown in Fitting’s book has cardinality of two).
lemma equivalence aRel=⇒⌊∀ Φ. Φ→ !Φ⌋ nitpick[card e=1 , card w=2 ] oops

5 Anderson’s Variant

In this section, we verify Anderson’s emendation of Gödel’s argument [3], as
presented by Fitting ([15], pp. 169–171). In the previous variants there were
no ‘indifferent’ properties, either a property or its negation had to be posi-
tive. Anderson makes room for ‘indifferent’ properties by dropping axiom A1b
(⌊∀X . ¬(P X ) → P (⇁X )⌋). As a consequence, he changes the following def-
initions to ensure argument’s validity.
abbreviation God ::↑⟨e⟩ (G) where G ≡ λx . ∀ Y . (P Y ) ↔ !(Y x )
abbreviation Essence::↑⟨↑⟨e⟩,e⟩ (E) where E Y x ≡ (∀ Z . !(Z x) ↔ Y $ Z )

There is now the requirement that a Godlike being must have positive properties
necessarily. For the definition of essence, Scott’s addition [25], that the essence
of an object actually applies to the object, is dropped. A necessity operator has
been introduced instead.16

The rest of the argument is essentially similar to Gödel’s (also in S5 logic).
theorem T1 : ⌊∀ X . P X → ♦∃ A X ⌋ using A1a A2 by blast
theorem T3 : ⌊♦∃ A G⌋ using T1 T2 by simp

If g is Godlike, the property of being Godlike is its essence.17

15 Fitting’s original treatment in [15] left several details unspecified and we had to fill
in the gaps by choosing appropriate formalization variants (see [17] for details).

16 Gödel’s original axioms (without Scott’s addition) are proven inconsistent in [9].
17 This theorem’s proof could be completely automatized for Gödel’s and Fitting’s

variants. For Anderson’s version however, we had to reproduce in Isabelle/HOL the
original natural-language proof given by Anderson (see [3], Theorem 2*, p. 296).
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theorem GodIsEssential : ⌊∀ x . G x → (E G x )⌋ proof − — not shown

The necessary existence of God follows from its possible existence.

theorem T5 : ⌊♦∃ G⌋ −→ ⌊!∃ A G⌋ proof − — not shown

The conclusion could be proven (with one fewer axiom, though more complex
definitions) and Nitpick is able to find a countermodel for the modal collapse.

lemma GodExistsNecessarily : ⌊!∃ A G⌋ using T3 T5 by metis
lemma ModalCollapse: ⌊∀ Φ. Φ → !Φ⌋ nitpick oops — countersatisfiable

6 Conclusion

We presented a shallow semantic embedding in Isabelle/HOL for an intensional
higher-order modal logic (a successor of Montague/Gallin intensional logics) and
employed this logic to formalize and verify three different variants of the onto-
logical argument: the first one by Gödel himself (resp. Scott), the second one by
Fitting and the last one by Anderson.

By employing our embedding of IHOML in Isabelle/HOL, we could not only
verify Fitting’s results, but also guarantee consistency of axioms. Moreover, for
many theorems we could prove stronger versions and find better countermod-
els (i.e. with smaller cardinality) than the ones presented by Fitting. Another
interesting aspect was the possibility to explore the implications of alternative
formalizations of axioms and theorems which shed light on interesting philosoph-
ical issues concerning entailment, essentialism and free will.

The latest developments in automated theorem proving, in combination with
the embedding approach, allow us to engage in much better experimentation dur-
ing the formalization and assessment of arguments than ever before. The poten-
tial reduction (of several orders of magnitude) in the time needed for proving or
disproving theorems (compared to pen-and-paper proofs), results in almost real-
time feedback about the suitability of our speculations. The practical benefits of
computer-supported argumentation go beyond mere quantitative aspects (eas-
ier, faster and more reliable proofs). The advantages are also qualitative, since a
significantly different approach to argumentation is fostered: We can now work
iteratively (by trial-and-error) on an argument by making gradual adjustments
to its definitions, axioms and theorems. This allows us to continuously expose
and revise the assumptions we indirectly commit ourselves to every time we opt
for some particular formalization.
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Abstract. Situation-aware route planning gathers increasing interest.
The proliferation of various sensor technologies in smart cities allows the
incorporation of real-time data and its predictions in the trip planning
process. We present a system for individual multi-modal trip planning
that incorporates predictions of future public transport delays in routing.
Future delay times are computed by a Spatio-Temporal-Random-Field
based on a stream of current vehicle positions. The conditioning of spatial
regression on intermediate predictions of a discrete probabilistic graph-
ical model allows to incorporate historical data, streamed online data
and a rich dependency structure at the same time. We demonstrate the
system with a real-world use-case at Warsaw city, Poland.

1 Introduction

With the emergence of smart cities, trip computation received increased atten-
tion. While conventional trip computation algorithms minimize a static cost
function and provide an optimal route for an unlikely stationary traffic situ-
ation with constant costs. Traffic situations are not stationary but vary over
time, e.g. at rush hour commuters cause traffic jams at streets which are almost
empty at night. The integration of various sensor systems (e.g. crowdsourcing,
video cameras, automatic traffic loops, [20]) in the smart city ecosystem enables
incorporation of real-time measurements in intelligent traffic systems, and their
predictions [21].

In this work, we target, for the first time, the question how to incorporate
predictions of delays in the public transport network in multi-modal trip plan-
ning. In result, we aim to obtain a smart trip planner that supports citizens
of a smart city to make informed decisions on their transit route. The possible
benefits for the informed travelers are:

1. A smart decision among different modes of transportation,
2. a smart choice among different transit routes,
3. an informed decision among different initial walking directions, or
4. different transit stops.

c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 128–141, 2017.
DOI: 10.1007/978-3-319-67190-1 10
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Fig. 1. Exemplified trips for same start and goal. Top: different tram lines are sug-
gested, bottom: different initial walking direction is suggested. Best viewed in color.
(Color figure online)

We exemplify points two and three next in Warsaw, the capital of Poland,
for different representative cases, see Fig. 1. In the two subfigures on the top
same origin destination pairs lead to different transit suggestions. Different initial
walking directions are suggested in the lower subfigures of Fig. 1.

As seen in previous examples, the prediction of delay supports planning of
situation-aware trips in advance (not just when travelling). This enables a smart
decision for the very first step and even enables decision to start a trip earlier or
later (depending on expected transfer reachability). Imagine for example, dining
with your friends in the suburbs of your city. On your return, our trip planner
provides you with the information that the required transfer in the city centre
(from the tram in the suburbs to your means of transportation) is likely not to be
reached (Note that we incorporate predictions based on the current situation in
contrast to existing planners that incorporate just current information). Based
on this information, you may stay longer with your friends instead of useless
waiting outside at the tram station.
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Our approach towards this situation-aware trip planner detects current and
past delays of transit vehicles based on a comparison of their live GPS streams
with the scheduled arrival times. Of course, other sensor technology e.g. Blue-
tooth would have been also possible [13,23], but with stationary sensors you
easily get problems of sensor placement [16] and a stream of GPS data from
the vehicles is available in the city of Warsaw. The detected delays are used to
estimate future delays by a probabilistic graphical model. These real-time predic-
tions are incorporated in route computations generated with OpenTripPlanner
an open source trip planning tool. The data, our approach bases on, are

– the street network,
– public transport schedules and
– a real-time stream of the current vehicle positions.

We perform our experiments in Warsaw, Poland, and use open data provided
via open geospatial consortium standardized protocols and interfaces.

Our paper is structured as follows. Section 2 reviews current state-of-the-art
for routing algorithms and positions our work. Afterwards, we present the real-
time architecture of our approach that uses predictions-as-a-service. In Sect. 4 we
present the application of an existing Spatio-Temporal-Random-Field (STRF)
model to the real-time tram delay prediction task. In Sect. 5 we highlight the
application of our approach and discuss future directions for improvement in the
closing Sect. 6.

2 Related Work

The task to plan a route from one start location to a target location is called trip
planning, when multiple means of transportation (also called ‘travel modes’) are
involved this becomes multi-modal trip planning. The integration of transporta-
tion systems with personal constraints, residential and city services systems can
offer real promise for implementing an intelligent transportation infrastructure
that can efficiently address issues beyond congestion, resiliency and safety. Trip
planning operates on a graph representation of the road and transit network the
so-called traffic network G consisting of vertices V (e.g. junctions) and connect-
ing edges E (e.g. streets). A cost function maps each edge to a positive number
that denotes how much it would ‘cost’ to travel the corresponding segment. The
cost function needs to be homogeneous throughout the traffic network, but can
be defined in several ways, such that it holds the most important aspects: for
example length of the segment, travel time, or comfortableness. With a given
start and end location in the traffic network, trip planning searches the path
that connects start and goal and minimizes the cost.

Several algorithms exist to compute this minimizing path. Dijkstra [5] pro-
poses a best-first traversal of the graph where the candidates for traversal are
hold in a priority-queue. In the slightly modified version of the algorithm A∗

[9] the order in the priority-queue for the traversal not only depends on the
cumulated costs to reach a vertex in the graph but also on the expected costs
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to reach the goal from this vertex. Bound by Minkowski’s inequality, whereas
||x + y||p ≤ ||x||p + ||y||p (known as triangle inequality for p = 2), A∗ prunes
the search space in comparison to Dijkstra’s Algorithm. A sound heuristic for
the remaining cost estimation is the geographical distance that is always lower
than the road-based distance. In multi-modal trip planning multiple of these
traffic networks G (one for each mode) are linked together at locations where it
is possible to switch from one mode to another (transfer vertices). Multi-modal
trip planning requires a consistent cost function which is applicable to all parts
of the traffic network and thus to all modes of transportation.

In case of static cost functions contraction hierarchies [7] are a data structure
that speeds-up the A∗ algorithm and enables trip calculation in large traffic net-
works at European scale. Instead of searching the shortest path directly within
the traffic network, contraction hierarchies reduce the search space to the most
important ones. In a preprocessing step these important segments are identified
(based on the topology) and the network is extended by edges between these
important links.

For transit networks, Transfer Pattern [1] provides a speed-up heuristic.
Transfer Pattern exploit that a transit network consists of central locations
(hubs as major airports or train stations) where most people from a particular
region have to change the means of transportation. These (multi-modal) routing
heuristics are great for trip computation in embedded devices, and according
to [2] they provide sufficient accuracy in case of dynamic cost functions (based
on estimations and predictions of traffic). However, dynamic transfer patterns
[14] incorporate also unexpected novel transfers that were enabled by the delay
itself.

In this work, we focus on the incorporation of dynamic cost estimates in
multi-modal trip planning. Thus, we combine a real-time prediction of delay in
transit networks with the trip computation. Previous works introduce already
the incorporation of traffic predictions in vehicular path finding. E.g. the work in
[15] proposes situation-aware routing with real-time predictions. Their method
bases on a spatio-temporal graphical model that provides estimates for future
traffic values based on current and past observations. These spatio-temporal
estimates serve as cost function for routing and traffic jams were avoided. The
work in [19] uses Conditional Random Fields for future traffic prediction, but
lacks the inclusion in the trip planning application.

In contrast to vehicular traffic, trams and trains can not overtake, and vehi-
cles in transit networks wait for each others (e.g. connecting trains), this causes
delays to propagate differently than vehicular traffic jams. In addition, two modes
of transportation may share the same physical resource (e.g. buses or trams
riding on vehicular street). Thus, two forms of delays in transit networks are
distinguished in literature: 1) a vehicle is late due to own reasons, and 2) other
vehicles are late caused by the former [18].

Several models for transit delays are reported in literature. The work in [4]
assumes independence. In contrast, [8] allows delays to cumulate. Sophisticated
models incorporate dependencies among the vehicles into the delay [11]. In the
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trip planning application it is a crucial requirement to the prediction model
to provide real-time predictions. Thus, we highlight two recent works on delay
prediction and delay recognition: [6] applies queueing theory and assumes delays
to aggregate, [24] detects delays and unexpected vehicle movement in real-time
from the GPS traces.

In contrast, our approach will be a probabilistic one, where similar to the
approach in [6] the delay of a vehicle at the stops in a trip depends on its
predecessors and the delay event that a vehicle is delayed is detected directly
from its GPS stream [24] using spatio-temporal constraints, in the experiments
section we compare our approach to [6].

3 Architecture

Our proposed system comprises two layers (1) a real-time event detection layer
that processes the incoming GPS data stream of the transit vehicles (detection
of delay events and estimation of future delays), and (2) an asynchronous trip
planning layer which is triggered by user-generated trip queries and incorporates
current predictions1.

In the event detection layer, every single GPS data is processed and cur-
rent delays of the vehicles are detected, furthermore this information is used
to update (in real-time) predictions of the expected delay for the whole day.
The survey in [22] provides a list of possible spatio-temporal event detection
and pattern matching frameworks depending on the required expressiveness of
the spatio-temporal pattern. We decide to use a streams framework and pose
spatio-temporal constraints as real-time operators to the stream of GPS data
points.

The asynchronous trip planning layer incorporates the predictions as a ser-
vice and utilizes them for multi-modal trip computations. In result, we obtain
situation-aware routes. Similar to [15], we base our trip planning on the Open-
TripPlanner (OTP) implementation. This open source routing software provides
interfaces for inclusion of transit schedules (in the commonly used General Tran-
sit Feed Specification (GTFS) standard2) and OpenStreetMap (see Fig. 2).

3.1 OpenTripPlanner

OpenTripPlanner (OTP) is an open source initiative for multi-modal route com-
putation. The traffic network for route computation is generated using open data
from OpenStreetMap and public transport schedules (in the widely used Google
Transit Feed Standard protocol). Thus, OpenTripPlanner is an open source trip
planner that connects to open data and provides route calculation capabilities for
multiple modes of transportation (e.g. walking, transit) and their combinations.

1 Our source code and the required virtual machine are publicly available as vagrant
box at https://bitbucket.org/tliebig/developvm.

2 https://developers.google.com/transit/gtfs/.

https://bitbucket.org/tliebig/developvm
https://developers.google.com/transit/gtfs/
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Fig. 2. Architecture of our proposed trip planner system. The real-time processing of
the GPS streams detects delays of the vehicles, assigns them to trips and estimates real-
time predictions of future delays. By a REST server these delays are handed in GTFS-
realtime format to the OpenTripPlanner server. The user triggers a trip query with
his/her browser and during trip computation real-time predictions are incorporated.
Best viewed in color. (Color figure online)

3.2 Streams Framework

We use TU streams framework as real-time engine [3]. It contains basic real-
time machine learning algorithms and provides any-time predictions-as-a-service
functionality. Furthermore it seamlessly compiles to Apache Kafka or Flink and
thus can be integrated in state-of-the-art distributed real-time architectures.

The steps for delay estimation from the GPS stream of the transit vehicle
locations are:

– Data cleaning: Removal of duplicates and noisy GPS recordings.
– Plausibility Test: Test whether the recorded GPS location is plausible given
previous recordings.

– Trip Matching: Match the position of the vehicle to a trip and line of the
transit graph.

– Delay Estimation: Estimate current delay of the vehicles using the assigned
trip and line information, and matching it to the schedule.

– Delay Prediction: Compute estimates of future delays given the training data
and past and current delay.

The latter predictions are served to OpenTripPlanner in GTFS realtime format
via a Representational State Transfer (REST) webserver interface.

4 Tram Delay Prediction with STRF

The preliminary analysis of tram location data compared with schedule data,
confirms the findings of [17], namely that:
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– departure time not matching schedule time can be identified, but has to be
analysed carefully, taking into account limited certainty of departure time
estimation,

– still, noticeable number of early and late departure events can be observed in
the data,

– tram delays and early departures significantly vary based on the time of the
day and tram line.

This provides basis for the prediction of tram delays. Moreover, since not on time
departures happen, situation-aware trip planning as an alternative to static route
planning is fully justified.

In our approach, we assume that the delays do not occur at random, but
follow a stochastic process. Thus, we may introduce random variables for the
delay of a particular line, particular ride, and specific station. Graphical mod-
els provide an intuitive way to represent dependencies among random variables
in a network structure. Thus, we model the (previously in real-time detected)
tram delay by a probabilistic graphical model. Some of its random variables are
related, these relations are noted by edges. In this probabilistic graphical model,
we may apply observations as evidence and use loopy belief propagation to gain
an estimate of the maximum a-posteriori probability. In our model, we differen-
tiate the random variables in time and space: spatially we connect the random
variables along a trip of a tram with edges, temporally we introduce one layer
of this spatial structure for every ride of the line and connect edges to adjacent
stations. Thus one vertex in the graph holds the delay of the corresponding ride
at the corresponding stop, and one layer in the spatio-temporal random field rep-
resents the delay of one ride. The so built spatio-temporal random field not only
uses discrete space and time but also discrete random variables. We distinguish
these five states:

1. more than 5min too early
2. 1 to five minutes too early
3. in time
4. 1 to 4min belated
5. more than 4min belated

When a tram passes a stop, the time of the delay is detected, and the corre-
sponding node is set to its observed value. Afterwards, the maxprod-algorithm
is applied to estimate a maximum a-posteriori (MAP) configuration.

In order to model the delay of the public transit vehicles as measured by
the GPS stream, a Spatio-Temporal Random Field is constructed. The intuition
behind STRF is based on sequential probabilistic graphical models, also known as
linear chains, which are popular in the natural language processing community.
There, consecutive words or corresponding word features are connected to a
sequence of labels that reflects an underlying domain of interest like entities or
part of speech tags. If a sensor network, represented by a spatial graph G0 =
(V0, E0), is considered that generates measurements over space and time, it is
appealing to identify the joint measurement of all sensors with a single word in
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a sentence and connect those structures to form a temporal chain G1 − G2 −
· · · − GT . Each part Gt = (Vt, Et) of the temporal chain replicates the given
spatial graph G0, which represents the underlying physical placement of sensors,
i.e., the spatial structure of random variables that does not change over time.
The parts are connected by a set of spatio-temporal edges Et−1;t ⊂ Vt−1 × Vt

for t = 2, . . . , T and E0;1 = ∅, that represent dependencies between adjacent
snapshot graphs Gt−1 and Gt, assuming a Markov property among snapshots, so
that Et;t+h = ∅ whenever h > 1 for any t. The resulting spatio-temporal graphG,
consists of the snapshot graphs Gt stacked in order for time frames t = 1, 2, . . . , T
and the temporal edges connecting them: G := (V,E) for V := ∪T

t=1Vt and
E := ∪T

t=1{Et ∪ Et−1;t}.
Finally, G is used to induce a generative probabilistic graphical model that

allows us to predict (an approximation to) each random variables MAP state as
well as the corresponding marginal probabilities. The full joint probability mass
function is given by

pθ(X = x) =
1

Ψ(θ)

∏

v∈V

ψv(x)
∏

(v,w)∈E

ψ(v,w)(x).

Here, X represents the random state of all sensors at all T points in time and x
is a particular assignment to X. It is assumed that each sensor emits a discrete
value from a finite set X . By construction, a single vertex v corresponds to a
single stop s at a fixed point in time t. The potential function of an STRF has
a special form that obeys the smooth temporal dynamics inherent in spatio-
temporal data.

ψv(x) = ψs(t)(x) = exp

〈
t∑

i=1

1
t − i+ 1

Zs,i,φs(t)(x)

〉

The STRF is therefore parametrized by the vectors Zs,i that store one weight for
each of the |X | possible values for each stop s and point in time 1 ≤ i ≤ T . The
function φs(t) generates an indicator vector that contains exactly one 1 at the
position of the state that is assigned to stop s at time t in x and zero otherwise.
For a given data set, the parameters Z are fitted by regularized maximum-
likelihood estimation.

As soon as the parameters are learned from the data, predictions can be
computed via MAP estimation,

x̂ = arg max
xV \U∈X

pθ(xV \U | xU ), (1)

where U ⊂ V is a set of spatio-temporal vertices with known values. The nodes
in U are termed observed nodes. Notice that U = ∅ is a perfectly valid choice
that yields the most probable state for each node, given no observed nodes. To
compute this quantity, the sum-product algorithm [12] is applied, often referred
to as loopy belief propagation (LBP). Although LBP computes only approximate
marginals and therefore MAP estimation by LBP may not be perfect [10], it
suffices our purpose.
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5 Experiments

In our experiments, we use real-time GPS traces of trams in Warsaw, Poland3,
and predict current tram delays. The street network, we use, originates from
OpenStreetMap, the tram schedule (in standardized GTFS format) was gener-
ated manually. As stated in previous section, we build one STRF model for every
line, the stations of one trip form the spatial graph and each trip generates a
temporal extrusion of the graph. Thus, a random variable is generated for the
delay of a tram at every stop. The dependencies among these variables are mod-
eled as stated in previous section. The data was trained with data recorded from
June 13th till June 17th.

We apply the model to data on July 4th, 2016. In Fig. 3, we plot an example
query without incorporation of our real-time predictions and, beneath, with a
proposed trip. The figure highlights that our approach utilizes the prediction-as-
a-service and suggests trips with different tram lines or initial walking directions
based on predicted delays.

A comparison of our method with the queuing model presented in [6] for line
15 can be seen in Tables 1 and 2. As can be seen, the related approach performs
worse in four of five classes, highest improvement of our method is in class two.
Only in class three our method performs slightly worse.

The poor performance in the delay prediction task of both methods seems
to highlight some challenges with the data we used. Possible problem could be
that the tram schedule originates from a different period than the GPS data and
the schedule is outdated. If so, there should be a systematic at which time and
space our method performs well and worse and it should not be at random.

Therefore, we utilize the visual approach presented in [17] and inspect in
more detail the accuracy of our predictions in Fig. 4. Every line corresponds to
one trip and every column to one stop. The vertical axis denotes the line per
day and the horizontal axis the stop per trip. The patterns that are visual in
the figure, e.g. high accuracy in the beginning of the day or at the end of a trip,
justify our assumption that the model accuracy does not change arbitrary but
depends on the schedule. Incorporation of up-to-date tram schedules is, thus, a
major point for future work.

3 Data was provided via https://api.um.warszawa.pl.

https://api.um.warszawa.pl
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Fig. 3. Results for same start and goal. Top: without incorporation of real-time predic-
tions, Bottom: Real-time predictions are incorporated and suggested trip avoids line
33. Best viewed in color. (Color figure online)
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Table 1. Confusion matrix of the predic-
tion results for line 15 using our approach.
Horizontally predicted classes (P) verti-
cally True classes (T). In the end precision
(Prec.) and recall (Rec.).

T P

1 2 3 4 5 Prec.

1 601 188 40 0 20 0.71

2 40 979 385 5 30 0.68

3 462 948 3307 40 803 0.59

4 180 128 320 197 432 0.15

5 426 252 479 120 1510 0.54

Rec. 0.35 0.39 0.72 0.54 0.54

Table 2. Confusion matrix of the predic-
tion results for line 15 using queueing app-
roach by [6]. Horizontally predicted classes
(P) vertically True classes (T). In the end
precision (Prec.) and recall (Rec.).

T P

1 2 3 4 5 Prec.

1 721 9 476 1 57 0.57

2 8 28 55 0 1 0.3

3 768 69 6608 43 508 0.82

4 1 6 43 5 2 0.09

5 93 3 771 0 350 0.29

Rec. 0.45 0.24 0.83 0.1 0.38

Legend for accuracy plot in Figure 4.

Fig. 4. Accuracy per random variable in
the STRF for line 15. Depicts horizontally
stop per trip and vertically trip per day,
compare [17]. Find the legend next to the
figure. Best viewed in color. (Color figure
online)
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6 Discussion

In this work we presented a novel approach to incorporate real-time delay pre-
dictions in a multi-modal trip planner. The achieved model incorporates the
predictions and generates situation-aware trips which allow for informed travel
plan decisions within a smart city. These decisions can be a situation-aware ini-
tial walking direction, a situation-aware transfer from one line to another, or a
different tram connection. We highlighted usability of our approach in the city
of Warsaw, Poland. For real-world application the dynamic multi-modal rout-
ing has to become more efficient to handle thousands of route queries a day. A
possible solution would be the incorporation of dynamic transfer pattern [2]. We
studied this direction in [14]. Another important task is the combination with
other modes of transportation and their predictions: vehicular traffic jams, avail-
ability of bike rentals or parking lots. In this direction it will be important to
analyse how the modes of transportation interact with each others, e.g. a tram
or bus is stuck in a vehicular traffic jam.
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Abstract. Instead of wastefully sending entire images at fixed frame
rates, neuromorphic vision sensors only transmits the local pixel-level
changes caused by movement in a scene at the time they occur. This
results in a stream of events, with a latency in the order of micro-seconds.
While these sensors offer tremendous advantages in terms of latency and
bandwidth, they require new, adapted approaches to computer vision,
due to their unique event-based pixel-level output. In this contribution,
we propose an online multi-target tracking system utilizing for neuro-
morphic vision sensors, which is the first neuromorphic vision system in
intelligent transportation systems. In order to track moving targets, a
fast and simple object detection algorithm using clustering techniques is
developed. To make full use of the low latency, we integrate an online
tracking-by-clustering system running at a high frame rate, which far
exceeds the real-time capabilities of traditional frame based industry
cameras. The performance of the system is evaluated using real world
dynamic vision sensor data of a highway bridge scenario. We hope that
our attempt will motivate further research on neuromorphic vision sen-
sors for intelligent transportation systems.

Keywords: Neuromorphic vision · Dynamic vision sensor, Multi-object
tracking · Intelligent transportation system · Clustering

1 Introduction

In the past decade, computer vision research has been devoted to classical, frame-
based cameras. Such cameras have been widely used in intelligent transporta-
tion systems [7]. To identify the shortcomings of state-of-the-art approaches,
researchers have created standardized vision benchmarks and developed new
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 142–154, 2017.
DOI: 10.1007/978-3-319-67190-1 11
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Fig. 1. The results of our tracking-by-clustering system. (a) the labeled event data. (b)
the object hypotheses generated by clustering algorithm. (c) the tracking results with
tracker ID. One color per object. (Best viewed in color).

approaches to overcome the challenges posed by these standard datasets [12].
This has greatly contributed to the rapid development in many application areas,
such as autonomous driving or traffic monitoring. However, we note that new
sensing technologies have received insufficient attention and still offer significant
potential for improvements of intelligent transportation systems (Fig. 1).

In this paper, we present an approach to intelligent transportation systems
(ITS) based on neuromorphic vision sensors [15], which are event-based sen-
sors inspired by biological vision that use silicon retinas. Traditionally, ITS use
conventional vision sensors for perception tasks and consequently have to cope
with well known challenges, such as the limited real-time performance and sub-
stantial computational costs. The key problem is that conventional cameras see
the world as a series of frames, which contain enormous amounts of redundant
information, wasting memory access, energy, computational power and time.
In contrast, neuromorphic vision sensors only transmit local pixel-level changes
caused by movement in a scene at the time of occurrence and provide an infor-
mation rich stream of events with a latency in the order of micro-seconds. Apart
from the latency, requirements for data storage and computational resources
are drastically reduced due to the sparse nature of the event stream. Another
excellent property of neuromorphic vision sensors is their high dynamic range of
120 dB. In combination, these properties of neuromorphic vision sensors enable
entirely new designs of intelligent systems, profiting from extremely low latency
and high-dynamic range.

This paper tackles the mentioned challenges of traditional vision tasks from
the sensing perspective. We take advantage of the unique properties of neuro-
morphic vision sensors and propose an online multi-target tracking-by-clustering
system as the first case study on neuromoprhic vision sensor based intelligent
infrastructure in ITS. In conventional camera systems, object detection is car-
ried out with the help of methods like appearance feature extraction based on
learning methods. These methods are considered to be computationally demand-
ing [13]. Moreover, in order to get good detection performance, large amounts of
labeled data are required for the training and learning process. Also, dedicated
hardware such as GPUs is desired during the training and prediction stages.
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(a) (b) (c) (d)

Fig. 2. Different versions of DVS sensors: (a) Dynamic Vision Sensor 128 (DVS128). (b)
Embedded Dynamic Vision Sensor (eDVS). (c) Miniature Embedded Dynamic Vision
Sensor (meDVS). (d) Dynamic and Active Pixel Vision Sensor (DAVIS)

In contrast, we develop a simple and efficient multi-object detection algorithm
using clustering algorithms. An online multi-object tracking-by-clustering sys-
tem is built based on the detection hypothesis. The tracking system runs at an
average rate of 250–300Hz, which far exceeds the real time performance of con-
ventional cameras. We test our tracking-by-clustering method with real world
dynamic vision sensor data of a highway bridge scenario. We provide a detailed
analysis of our experimental results, point out the limitations of this work, and
provide insight for future work (Fig. 2).

2 Neuromorphic Vision Sensor

We provide a short description of different versions of the neuromorphic vision
sensor in this section. The purpose is to encourage researchers who are not
familiar with neuromorphic vision sensor to explore the potential applications
in the intelligent system.

Dynamic Vision Sensor. Comparing to conventional frame-based camera
which transmitted complete images at fixed latency (typically 30ms to 100ms),
the dynamic vision sensor [15] emitted events individually and asynchronously
at the time they occur. Events are time-stamped in the latency of micro-second.
A single event is a tuple (x, y, t, p), where x, y are the pixel coordinates of the
event in 2D space, t is the time-stamp of the event and p = 1 is the polarity of
the event, which is the sign of the brightness change (increasing or decreasing).

Embedded Dynamic Vision Sensor. For embedded systems in mobile robot-
ics such as unmanned aerial vehicle, an USB interface to transmit raw events
is not desirable, nor is a desktop PC for event processing acceptable. For this
purpose, a small embedded DVS (eDVS) is developed consisted of a DVS chip
and a compact 64MHz 32bit micro-controller directly connecting to the DVS
chip.
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Fig. 3. Visualization of the event stream from DVS which is facing a rotating scene. It
generates a spiral-like structure in space-time. Events are represented by colorful dots,
from red (far in time) to blue (close in time). Event polarity is not displayed. Noise is
visible by isolated points. This figure is adapted from [11]

Miniature Embedded Dynamic Vision Sensor. The miniaturized ver-
sion of the eDVS(meDVS) has minimum size (18 cm × 18 cm) and lightest
weight (2.2 g) of DVS so far [6]. The typical power consumption is 300mW.
The strengths of meDVS make it desirable to any applications on the limited
storage, bandwidth, and low latency of the on-board embedded system of the
intelligent system (Fig. 3).

Dynamic and Active Pixel Vision Sensor. In this paper we use a new neu-
romorphic vision sensor which is named the Dynamic and Active Pixel Vision
Sensor (DAVIS) [3]. The model DAVIS240 camera has a higher resolution of
240× 180, higher dynamic range, lower power consumption and allows a concur-
rent readout of global shutter image frames, which are captured using the same
photodiodes as for the DVS event generation. In this work, we only use the event
data (Fig. 4).

(a) (b)

Fig. 4. Background activity filter: (a) Events collected in 20ms time interval prior to
filtering (b) Events collected in 20ms time interval after filtering.
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3 Online Multi Object Detection and Tracking

We describe our multi object tracking-by-clustering system in this section. In
contrast to traditional object detection approaches, we generate our object
hypotheses directly from the measurements with a classic clustering method.
The advantage is that we can skip the background modeling step (dynamic
foreground segmentation) as most of the events transmitted by the dynamic
vision sensor result from dynamic objects. In order to estimate the states of
the actual objects, we integrate an online multi-target tracking method into our
system [1,4]. It is our opinion that only highly effective and online tracking
methodology can take full advantage of neuromorphic vision cameras. We uti-
lize a single hypothesis tracking methodology with standard Kalman filter and
frame-by-frame data association using the Hungarian method [1,4].

3.1 Vehicle Detection by Clustering Algorithm

Neuromorphic vision sensors transmit only dynamic information in the form of
sparse streams of asynchronous time-stamped events [13]. In this paper, we accu-
mulate event data for different time intervals (10ms, 20ms, 30ms), and cluster
event data reflecting objects together, which fits very well with classic cluster-
ing methods. Prior to generating object hypotheses, we perform a background
activity filter step to filter out noise from the events produced by the sensor. For
every new transmitted event, our filter checks the activity that occurred in an
area surrounding the event location. If there is no new activity (nothing within
a difference of δT time), the event is filtered out. We then evaluate two standard
clustering algorithms, named Mean-Shift [5] and DBSCAN [9] with our event
data.

Detection. As neuromorphic sensors only transmit relative light intensity
changes for each pixel, we cannot utilize methods which use appearance fea-
tures, such as color and texture as input. In this work, we consider event data
as pure 2D point data. The clustering technique is applied to generate object
proposals. We evaluate two classic clustering methods: mean-shift clustering
(Mean-Shift) [5] and density based spatial clustering of applications with noise
(DBSCAN) [9].

Detection by Mean-Shift: The mean-shift algorithm considers the input as a
probability density function and the objective of the algorithm is to find the
modes of this function [5]. These modes represent the centers of the discovered
clusters. The input points are fed to the kernel density estimation and then the
gradient ascent method is applied to the density estimate. The density estimation
kernel uses two inputs: the total amount of points and the bandwidth or the size
of the window. The main disadvantage of the mean-shift algorithm is that its
iterative nature and density estimation make it slower than some alternative
other clustering algorithms. Figure 5a shows the mean-shift clustering results,
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Fig. 5. Detection-by-clustering results: (a) Mean-Shift clustering applied to the events
data accumulated at 20ms time interval (b) DBSCAN clustering applied to the events
data accumulated at 20ms time interval

with a chosen bandwidth of 20. The mean-shift algorithm successfully detected
six clusters.

Detection by DBSCAN: DBSCAN uses density based spatial clustering for appli-
cations with noise. For each point, the associated density is calculated by count-
ing the number of points in a search area of specified radius, ϵ, around the point.
The points with density higher than the specified threshold value, MinPts, are
classified as core points while the rest are classified as non-core points. Those non-
core points are also classified as noise points. The main advantages of DBSCAN
is that it can find the clusters of arbitrary shapes [8]. Figure 5b shows a DBSCAN
clustering result. The search radius, ϵ, is chosen as 5 and the density, MinPts, is
chosen as 10. Seven clusters including noise events have been detected.

By comparing the results depicted in Fig. 5, we choose DBSCAN as our
detection method due to its low-complexity, hence fast execution time and robust
nature. In Fig. 5a, it can be observed that while some false detections occur, in
Fig. 5b the DBSCAN shows promising results along with the indication of noise.

3.2 Online Multi-target Tracking

Our online multi-target tracking is a highly effective, simple and standard
method which is widely explored in traditional camera based multi object
tracking [1,4]. We utilize a single hypothesis tracking methodology with stan-
dard Kalman filter and frame-by-frame data association using Hungarian
method [1,4]. As the event data have no texture information, we use the bound-
ing box overlap as an simple association metric for the data association problem.

State Estimation. As a very general tracking scenario, we have no calibration
of the DAVIS sensor and no ego-motion information available. For each target
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in our tracking scenario, its state is modelled as:

x = [u, v, s, r, u̇, v̇, ṡ]T (1)

which contains the bounding box center of each cluster (u, v), the aspect ratios
(r), and the area scale (s), and their respective velocities in image coordinates.
We approximate the frame level displacements of each detected object with an
independent linear constant velocity model. (u, v, s, r) are direct observations of
the detected object state which the aspect ratio of the target’s bounding box is
considered as a constant value. The velocity components are solved optimally via
a Kalman filter framework when the target state is updated by a new associated
detected cluster.

Data Association. In oder to assign detected clusters to existing targets, each
target’s geometry and image coordinates are estimated by predicting its new
state in the current frame. The cost matrix for each detected cluster and each
existing target is calculated as the intersection over union distance (IOU). The
Hungarian algorithm is used to optimally solve the assignment problem. We also
define a minimum IOU to reject assignments where the detected cluster to target
cluster overlap is less than the threshold.

Track Handling. When a new cluster enters into the camera field of view or
when an existing target leaves the camera view, target identities get updated,
either by adding new IDs or by according deletion. We apply the same strategy
as presented in [1]. To add new IDs, we consider any detected cluster in the
current frame which has an overlap with the existence of untracked clusters in
previous frames. The covariance of the velocity component is initiated to large
values to reflect the uncertainty as the velocity is unobserved. Instead of solving
for detection for tracking in a global assignment problem, we choose an early
deletion of lost targets policy. This prevents unbounded growth of the number
of trackers. Trackers are terminated if targets are not detected for T lost frames.
We set the T lost to 1 concerning with frame-by-frame tracking.

4 Experiments

We evaluate the performance of our tracking-by-detection implementation on
testing sequences. Data are recorded in a typical highway bridge scenario where
the DAVIS sensor is attached to the bridge and faces the highway. We annotate
the recorded data by using the annotation software VitBAT [2]. As the first
work of multi-target tracking based on neuromorphic vision sensor, we are not
able to compare to state-of-the-art tracking algorithms. Instead, we provide our
evaluation results as a baseline tracker for future neuromorphic vision based
multi-object tracking methods. Additionally, we study the effects of different
parameters of the DBSCAN algorithm on the performance of object detection
in event data, and of different tracking parameters on the performance of the
multi-object tracking results.
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4.1 Metrics

For performance evaluation, we follow the current evaluation protocols for
visual object detection and multi-object tracking. Although these protocols are
designed for frame-based vision sensor, they are still suitable for quantitative
evaluation of our tracking method. In this work, we accumulate events to frames
in different time intervals. The detection and tracking results are in sampled
accumulated events frames which are the same with frame-based vision sensor.

The evaluation metrics for object detection is defined in [10]:

– Rcll(↑): Recall is defined as the proportion of all positive examples
– Prcn(↑): Precision is the proportion of all examples which are from the posi-

tive class
– FAR(↓): number of false alarms per frame

It is worth to note that the precision/recall curve is widely used for detection
evaluation. Since our detection result from clustering method has no probability
score, we are not able to provide the mean precision to summarise the shape of
the precision/recall curve.

The evaluation metrics for multi-object tracking is defined in [14], which is
also the standard MOT challenge metrics.

– MOTA(↑): multiple object tracking accuracy
– MOTP(↑): multiple object tracking precision
– MT(↑): number of mostly tracked trajectory
– PT(↑): number of partially tracked trajectory
– ML(↓): number of mostly lost trajectory
– FP(↓): number of false detection
– FN(↓): number of missed detection
– IDsw(↓): number of times an ID switched
– FR(↓): number of fragmentations

Evaluation measures with ↑, higher scores donote better performance. Evaluation
measures with ↓, lower scores denote better performance. Evaluation codes were
downloaded from MOT Challenge official website1.

4.2 Performance Evaluation

We report the detection and tracking performance of our approach in this section.
First, we analyze the impact of a key parameter of the DBSCAN algorithm on the
detection performance: ϵ, the search area radius (when calculating the associated
density by counting the number of points in that area). We then study the impact
of different sample intervals and detection results on the tracking performance.

1 https://motchallenge.net.

https://motchallenge.net
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Detection. We assess the detection performance by clustering approach in
terms of the metrics of recall, precision and false alarms per frame. Evalua-
tion was carried out using three different time intervals 10ms, 20ms,30ms and
four search radii 3, 4, 5, 6. The results of our detection evaluation are shown
in Table 1. As a result, detection performance improves with increasing search
radius ϵ at time interval 10ms, while a decrease of detection performance occurs
for increasing search radius at time intervals 20ms, 30ms. A possible explana-
tion is that for the time interval 10ms there are less events per frame than for
the time intervals 20ms, 30ms. We can also see from the Table 1 that there is
a large increase of Recall from time interval 10ms to time interval 20ms. Also
the maximum value of Recall for the time intervals 20ms and 30ms is above
58%, which shows that our detection by clustering method works better with
more events per frame and with a small search radius. The results indicate that
the detection performance is highly dependent on the number of events during
the accumulated time. This points out an alternative way of accumulating a
constant number of events instead of constant time intervals may increase the
robustness of our detection by clustering approach.

Table 1. The detection performance of DBSCAN algorithm on our neuromorphic
data with different time intervals and search area radius. We choose the recall (Rec),
precision (Prec) and false alarms (Fal) per frame as our evaluation metrics which are
widely used by traditional camera based object detection tasks (best viewed in color).

Tis ϵ = 3 ϵ = 4 ϵ = 5 ϵ = 6

Rec Prec Fal Rec Prec Fal Rec Prec Fal Rec Prec Fal

10ms 24.7% 56.6% 1.27 40.6% 78.6% 0.74 46.2% 82.9% 0.64 46.7% 83.0% 0.64

20ms 59.3% 79.2% 1.05 59.3% 78.6% 1.08 54.7% 74.1% 1.28 50.8% 70.2% 1.44

30ms 58.0% 82.5% 0.82 54.0% 77.8% 1.03 48.7% 71.7% 1.29 41.5% 65.5% 1.47

Tracking. Figure 6 shows the detection and tracking results in sampled accumu-
lated events data frames. From the tracking performance evaluations in Table 2,
MOTA and MOTP are increasing in line with the density radius ϵ at the time
interval 10ms. The number of mostly tracked trajectory (MT) is less than 10.
One possible reason is that there are less events at each time-stamp which result
in worse detection performance. As the tracking component is highly dependent
on the detection results, the number of times an ID switched is pretty large due
to the inconsistent detection results. The maximum value of MOTA and MOTP
are 44.6% and 70.9% at time interval 30ms. There is a clear trend toward better
performance when increase the time intervals with a small density radius. From
the overall tracking performance evaluation results in Table 3, the maximum
value of MOTA and MOTP are 34.8% and 70.5% at time interval 20ms and
30ms respectively. The MT of 20ms time interval is 96 which is much better
than others. The best tracking performance in Table 3 goes to the time interval
20ms. As a frame-by-frame based tracking approach, it is not surprising that we
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Table 2. The tracking performance using different detection results. We studied the
impact of time intervals from 10ms to 40ms and ϵ from 1 to 12. Due to space limita-
tions, we only present part of results in this table.

Tis ϵ MOTA↑ MOTP↑ MT↑ PT↑ ML↓ FP ↓ FN↓ IDs↓ FR↓
10ms 3 5.1% 63.9% 0 56 51 5756 22910 196 1494

10ms 4 29.0% 67.2% 4 70 33 3357 18051 184 1501

10ms 5 36.2% 69.2% 8 79 20 2891 16369 146 1302

10ms 6 36.7% 69.8% 9 77 21 2911 16196 151 1097

20ms 3 43.1% 69.5% 26 72 9 2374 6182 95 542

20ms 4 42.6% 70.4% 22 71 14 2451 6189 91 470

20ms 5 35.0% 70.2% 18 71 18 2905 6893 92 444

20ms 6 28.6% 70.0% 16 67 24 3276 7482 93 433

30ms 3 44.6% 70.7% 20 75 12 1247 4255 110 299

30ms 4 37.5% 70.9% 14 77 16 1563 4656 103 265

30ms 5 28.5% 70.4% 12 69 26 1950 5190 94 265

30ms 6 23.7% 70.3% 9 69 29 2067 5559 99 263

Table 3. The overall tracking performance across different detection results within the
same time interval.

Tis MOTA↑ MOTP↑ MT↑ PT↑ ML↓ FP ↓ FN↓ IDs↓ FR↓
10ms 28.3% 68.5% 30 358 147 18094 90029 805 6432

20ms 34.8% 70% 96 346 93 14410 34707 458 2294

30ms 30.6% 70.5% 60 359 116 9044 25576 493 1361

get large number of false detection, missed detection, ID switch and fragmenta-
tions. One possible way to decrease the number of missed detection, ID switch
and fragmentations is that by replacing the simple association metric IOU in
this paper to a more informed metric including motion information, it is able to
track objects through longer periods of occlusions and disappearances.

Runtime. The detection experiment was performed on a Intel CoreTMi5-2410M
CPU with 2.30GHz quad core processor and 4.00GB of RAM. The average
runtime by the DBSCAN algorithm for 10ms, 20ms and 30ms time intervals, is
51.99ms, 394.4ms, and 887.8ms respectively. The increasing computation time
is due to the increased number of events in the density search area, ϵ, and hence
calculating more distances. By increasing the ϵ in the same time interval, 10ms
for example, the computation time is also increasing. As our DBSCAN algorithm
is implemented in MATLAB without speed optimization, it is still a reasonable
result. For the tracking component, we are able to achieve 317 FPS, 286 FPS
and 284 PFS for the time intervals 10ms, 20ms and 30ms respectively. Apart
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Fig. 6. Tracking reulsts from Frame 24 to Frame 44. Colorful clusters correspond to
object hypotheses. It is easy to see that almost each object hypothesis is associated a
tracker with a unique ID. There are also small size clusters which are not tracked very
well (different colors are only used for visualization). (Color figure online)

from its simplicity, the tracker also combines the two desirable properties, speed
and precision.

4.3 Limitation

As the first attempt of introducing neuromorphic vision sensor in ITS, we think
that our work is still on its very early stage. Our method is not optimized for
the top performance on multi object detection and tracking, but rather keep
it as simple and efficient as possible and provide an initial analysis as well as
a baseline for future work in this direction. It is also important to note that
in order to take full usage of event data, completely new neuromorphic vision
algorithms are required instead of extending existing methods from computer
vision.

5 Conclusion

The introduction of neuromorphic vision sensor in this paper opens a promising
opportunity for a new type of sensing ability in intelligent transportation sys-
tem. The sparse stream of event data from the sensor captures only motion and
salient information which is perfect for the intelligent infrastructure systems.
The proposed event-based online multiple target tracking-by-detection system is
strikingly simple algorithm while it achieves good detection and tracking perfor-
mance with respect to runtime requirement. To the best of our knowledge, the
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presented system is the first application of neuromorphic vision sensor on ITS
which makes it well suited as a baseline, allowing for new researcher to work on
intersection of the neuroscience and intelligent system. As a baseline we would
like see new approaches to improving the detection and tracking performance.
As our experiment highlight the importance of detection results, future work
will investigate other clustering algorithm as well as feature learning methods
such as convolutional neural network for event-based object representation and
detection.
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Abstract. One of the first (and key) steps in analyzing an argumen-
tative exchange is to reconstruct complete arguments from utterances
which may carry just enthymemes. In this paper, using legal argument
from analogy, we argue that in this reconstruction process interpreters
may have to deal with a kind of uncertainty that can be appropriately
represented in Dempster-Shafer (DS) theory rather than classical prob-
ability theory. Hence we generalize and relax existing frameworks of
Probabilistic Argumentation (PAF), which are currently based on clas-
sical probability theory, by what we refer to as DS-based Argumentation
framework (DSAF). Concretely, we first define a DSAF form and seman-
tics by generalizing existing PAF form and semantics. We then present
a method to translate existing proof procedures for standard Abstract
Argumentation into DSAF inference procedures. Finally we provide a
Prolog-based implementation of the resulted DSAF inference procedures.

Keywords: Argumentation · Dempster-Shafer theory · Inference pro-
cedures

1 Introduction

An Abstract Argumentation framework (AF [4]) is a pair (Arg,Att) where Arg is
a set of arguments, Att ⊆ Arg×Arg is a set of attacks. The semantics of AF rests
on a crisp notion of argument acceptability, namely an argument X is acceptable
wrt a set S of arguments iff S attacks every argument attacking X. For example,
wrt the AF framework in Fig. 1(a)1, B is acceptable wrt {B} while A1 is accept-
able wrt none. AF has been used to unify different reasoning formalisms in AI,
and also extended in several directions. Notably, Probabilistic Argumentation
(PAF) [5,7,8,10,12,20] extends AF with classical probability theory. Under the
distribution semantics, a PAF framework is equivalent to a probabilistic distrib-
ution of AF frameworks representing different “possible worlds”. The probability
that an argument X is acceptable is obtained by marginalizing the joint proba-
bility distribution of possible worlds and the acceptability of X.

In real life people may not fully express their arguments for various rea-
sons even in areas where complete arguments are desired, e.g. the area of law.
1 Conventionally, arguments are shown as nodes and attacks as directed edges.
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Fig. 1. Abstract Argumentation frameworks

Hence one of the first (and key) steps in analyzing an argumentative exchange
is to reconstruct complete arguments from utterances which may carry just
enthymemes. In this process interpreters may have to deal with a kind of uncer-
tainty that can be appropriately represented in Dempster-Shafer (DS) theory
[3,15] rather than classical probability theory. To illustrate, in this paper we use
the analysis of Posner [13], a distinguished legal thinker, about Adam v. New
Jersey Steamboat. As summarized by Fig. 1 (detailed later), Posner gives three
“possible worlds” of the judge’s argumentation represented by AF frameworks
Fω1 ,Fω2 and Fω3 . He considers Fω1 very unlikely but does not compare the
other two frameworks. In DS terminology, Posner assigns a “mass” close to 0 to
Fω1 and a mass close to 1 to the set {Fω2 ,Fω3}. Note that Posner did not (and,
in fact, did not want to) assign masses to Fω2 and Fω3 individually. Had he done
so his analysis could have been represented in PAF, which requires probabilities
to be assigned to possible worlds individually.

To address the above limitation of PAF, in this paper we develop a generaliza-
tion of AF using Dempster-Shafer theory, which we refer to as a DS-based Argu-
mentation framework (DSAF). Concretely, we first define a form and semantics
for DSAF by mathematically generalizing the existing PAF form and semantics,
especially from the PAF proposal in [5]. It turns out that DSAF also generalizes
AF in an elegant and mathematical way, and this provides us a basis to then
develop a method to automatically translate existing AF proof procedures into
DSAF inference procedures. The resulted DSAF inference procedures are imple-
mented using Prolog (download link: http://ict.siit.tu.ac.th/∼hung/dsafengine).

To the best of our knowledge, though there are many existing proposals to
combine DST and argumentation theory (e.g. [2,9,11,14,16,17]), none of them
mathematically generalize PAF (and AF) like ours does (details in the paper
body). To stress, again, that this generalization helps us translate AF proof
procedures into DSAF inference procedures. We also believe that it allows DSAF
to take for granted other results from AF. Note that since PAF is a subclass
of DSAF, our DSAF inference procedures can also be used to compute PAF,
for which the current literature contains only the procedure for PAF grounded
semantics of Thang [18]. The literature has no inference procedures for DSAF.

To close this introduction, let’s remark that in this paper we motivate DSAF
by a reconstruction task of legal argument from analogy but one can eas-
ily imagine different applications for DSAF. For example, a recommendation

http://ict.siit.tu.ac.th/~hung/dsafengine
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system predicting the rating that a specific user would give to a product may
start with a model of a generic user (represented by an AF framework). It
then extends this model to take into account, for example, the specific user’s
preference profile, to construct a personalized model. There are various reasons
demanding that the personalized model be a DSAF framework rather than an
AF or PAF framework: the uncertainty about the user’s preference profile is
given by a DST mass function rather than a probability function; one user’s
preference profile gives rise to a set of indistinguishable models rather a single
model, etc.

The rest of the paper is structured as follows: Sect. 2 presents the back-
ground; Sect. 3 presents our model of DSAF; Sect. 4 presents an application of
DSAF in reconstructing legal argument from analogy; Sect. 5 abstractly presents
our DSAF inference procedures, whose procedural form is given in an online
appendix2; Sect. 6 presents related work and concludes.

2 Background

2.1 Argumentation

An Abstract Argumentation (AF) framework is a pair (Arg,Att) where Arg is
a set of arguments, Att ⊆ Arg ×Arg and (A,B) ∈ Att means that A attacks B
[4]. S ⊆ Arg attacks A ∈ Arg iff (B,A) ∈ Att for some B ∈ S. S defends A (aka
A is acceptable wrt to S) iff S attacks every argument attacking A. S is conflict-
free iff S does not attack itself; admissible iff S is conflict-free and defends each
argument in S; complete iff S is admissible and contains all arguments that S
defends; a preferred extension iff S is a maximal (wrt set inclusion) complete set;
the grounded extension iff S is the least complete set. An argument A is accepted
under semantics sem, denoted AF F ⊢sem A, iff A is in a sem extension. In this
paper, we restrict ourselves to sem ∈ {pr, gr}3.

AF has been used to unify different reasoning formalisms in AI, and also
extended in several directions to address its shortcomings. Notably, Probabilistic
Argumentation models [5,7,8,10,12,20] extends AF with classical probability
theory. One of the most early and abstract among these is the model of [5]
defined as a triple (F ,W, P ) where F = (Arg,Att) is a standard AF framework,
W is a set of possible worlds such that each ω ∈ W defines a subset of arguments
Argω ⊆ Arg, and P : W → [0, 1] is a probability distribution over W (i.e.∑
ω∈W

P (ω) = 1). The probability that an argument A is acceptable under a

2 http://ict.siit.tu.ac.th/∼hung/dsafengine/appendix.pdf.
3 Preferred/grounded.

http://ict.siit.tu.ac.th/~hung/dsafengine/appendix.pdf
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semantics sem is obtained by marginalizing the joint probability distribution of
possible worlds and the acceptability of A4. Concretely,

Probsem(A) =
∑

ω∈W
P (ω).P (Fω ⊢sem A | ω) =

∑

ω∈W:Fω⊢semA

P (ω)

where Fω denotes the AF framework (Argω, Att ∩ (Argω × Argω)).

2.2 AF Proof Procedures

Many proof procedures for AF have been developed, mostly by simulating dis-
putes between two fictitious parties. For example, in [19], to determine whether
AF F ⊢pr A, the authors simulate disputes where a proponent starts by putting
forward A, then alternates with an opponent in attacking each other’s previous
arguments. Formally a dispute is represented by a dispute derivation in which a
state is a tuple ti = ⟨Pi, Oi, SPi, SOi⟩. Pi ⊆ Arg is a set of arguments presented
by the proponent that have not been defended by the proponent. SPi ⊆ Arg
is the set of all arguments presented by the proponent. Oi ⊆ Arg is a set of
opponent’s arguments against arguments presented by the proponent in pre-
vious steps that are not counter-attacked yet by the proponent. SOi contains
opponent’s arguments that have been counter-attacked by the proponent.

Definition 1. Given a selection function, a dispute derivation for an argument
A is a sequence ⟨P0, O0, SP0, SO0⟩, . . . , ⟨Pn, On, SPn, SOn⟩ where:

1. Pi, Oi, SPi, and SOi are argument sets.
2. ⟨P0, O0, SP0, SO0⟩ = ⟨{A}, ∅, {A}, {}⟩ and Pn = On = ∅.
3. Let B be the argument selected at step i from either Pi or Oi.

(a) If B ∈ Pi and AttackB ∩ SPi = ∅5 then
Pi+1 = Pi \ {B} Oi+1 = Oi ∪ (AttackB \ SOi)
SPi+1 = SPi SOi+1 = SOi

(b) If B ∈ Oi then there exists some argument C ∈ AttackB \ (SOi ∪ Oi)
such that
Pi+1 = Pi ∪ {C} if C ̸∈ SPi, otherwise Pi+1 = Pi

Oi+1 = Oi \AttackedC
SPi+1 = SPi ∪ {C} SOi+1 = SOi ∪ (AttackedC ∩ Oi)

The intuition behind the above definition is as follows.
4 As discussed in [6], not all PAF proposals adopt this distribution semantics. For
example the PAF proposals of [7,8,20] define their semantics in terms of some ratio-
nal conditions on Probabilistic Distribution Function (PDF) f : Arg → [0, 1], for
f(A) to represent some value of argument A, which may not relate to the accept-
ability of A. In fact f(A) has been given diverse interpretations, from the truth of
A, the reliability of A, the probability of A being effective, the belief degree put into
A, to whatever measure that can be attached to A as an argument [7].

5 For X ∈ Arg, AttackX ! {Y ∈ Arg | (Y,X) ∈ Att} and AttackedX ! {Y ∈ Arg |
(X,Y ) ∈ Att}.
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– Rule 3(a):
• AttackB ∩ SPi = ∅: the proponent could not attack his own arguments.
• Oi+1 = Oi ∪ (AttackB \ SOi) excludes arguments belonging to SOi from
Oi+1, thus every opponent’s argument is counterattacked only once.

– Rule 3(b):
• C ∈ AttackB \ (SOi ∪ Oi): the proponent to select an argument among

possibly many arguments in AttackB to counter-attack B but the selected
argument should not have been deployed by the opponent.

• Oi+1 = Oi \ AttackedC : the proponent does not need to counterattack
those arguments in Oi that are attacked by C.

For illustration, a dispute derivation for argument B2 in AF F = (Arg,Att)
with Arg = {A,B1, B2} and Att = {(A,B1), (B1, B2), (B2, B1)} is given below.

i Pi Oi SPi SOi Rule (of Definition 1) used Remark

0 {B2} {} {B2} {} rule 2 Proponent starts dispute

1 {} {B1} {B2} {} rule 3.a Opponent attacks B2 by B1

2 {} {} {B2} {B1} rule 3.b Proponent repeats B2

As shown in [19], dispute derivations represent sound and complete proofs for
the preferred semantics because: (1) if ⟨P0, O0, SP0, SO0⟩ . . . ⟨Pn, On, SPn, SOn⟩
is a dispute derivation for argument A, then SPn is admissible and contains A;
(2) if an argument A belongs to an admissible set S of arguments in a finitary
argumentation framework, then for any selection function there is a dispute
derivation for A, whose component SPn of the final tuple is a subset of S.

2.3 Dempster-Shafer Theory (DST)

The key elements making up DST [3,15] are mass, belief and plausibility, and
combination rules. A mass function m over a frame of discernment (FoD) Θ
consisting of mutually exclusive and exhaustive hypotheses is such that m :
2Θ → [0, 1] and

∑
X⊆Θ

m(X) = 1. A subset X ⊆ Θ is called a focal element if

m(X) > 0. Belief function and plausibility function, which also have signature
2Θ → [0, 1], are derived fromm as follows: Bl(X) =

∑
Y ⊆X,Y ̸=∅

m(Y ) and Pl(X) =
∑

X∩Y ̸=∅
m(Y ). DST is said to subsume and relax Bayesian probability theory

because it does not require X in m(X) to be a singleton set.

3 DS-Based Argumentation Frameworks

In this section we present an extension of AF using Dempster-Shafer theory
instead of classical probability theory, as follows.
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Fig. 2. A DSAF framework

Definition 2. A DS-based Argumentation framework (DSAF) is a triple
(F ,W,m) where F = (Arg,Att) is an AF framework, W is a set of possible
worlds such that each ω ∈ W defines a subset of arguments Argω ⊆ Arg, and
m : 2W → [0, 1] is a mass function on FoD W.

We can graphically show a DSAF framework D = (F ,W,m) by annotating
each node A ∈ Arg of the graph of F with the set of possible worlds in which A
occurs, i.e. {ω ∈ W | A ∈ Argω}. From now on, we refer to this set by W (A).
Also let Fω denote AF framework (Argω, Att ∩ (Argω × Argω)).

Example 1. Figure 2 graphically shows DSAF D = (F ,W,m) where

– F = {Arg,Att} with Arg = {A,B1, B2} and Att = {(A,B1), (B1, B2),
(B2, B1)}.

– W = {ω1,ω2} with Argω1 = {A,B1, B2} and Argω2 = {B1, B2}.
– m = {{ω1} ,→ 0.1; {ω2} ,→ 0.2; {ω1,ω2} ,→ 0.7}.

Definition 3. The semantics of DSAF framework D = (F ,W,m) is defined by
two functions

Blsem(A) =
∑

Y ⊆Wsem(A),Y ̸=∅

m(Y ) and Plsem(A) =
∑

Y ∩Wsem(A) ̸=∅

m(Y )

where Wsem(A) ⊆ {ω ∈ W | Fω ⊢sem A}6.

Example 2. Continue Example 1, it is easy to see that Wpr(B1) =
{ω2};Wpr(B2) = {ω1,ω2};Wgr(B1) = ∅ and Wgr(B2) = {ω1}, and hence

– Blpr(B1) =
∑

Y ⊆{ω2}
m(Y ) = m({ω2}) = 0.2 and Plpr(B1) =

∑
Y ∩{ω2} ̸=∅

m(Y ) = m({ω2}) +m({ω1,ω2}) = 0.9
– Blpr(B2) =

∑
Y ⊆{ω1,ω2}

m(Y ) = 1 and Plpr(B2) =
∑

Y ∩{ω1,ω2} ̸=∅
m(Y ) = 1

– Blgr(B1) =
∑
Y ⊆∅

m(Y ) = 0 and Plgr(B1) =
∑

Y ∩∅̸=∅
m(Y ) = 0

– Blgr(B2) =
∑

Y ⊆{ω1}
m(Y ) = m({ω1}) = 0.1 and Plgr(B2) =

∑
Y ∩{ω1} ̸=∅

m(Y ) = m({ω1}) +m({ω1,ω2}) = 0.8

6 Note that Wsem(A) ⊆ W (A).
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It is easy to see that

Lemma 1. 0 ≤ Blsem(A) ≤ Plsem(A) ≤ 1.

Lemma 2. DSAF subsumes PAF.

Proof. Any PAF P = (F ,W, P ) can be represented by a DSAF D = (F ,W,m)
where each focal element of m is a singleton set {ω} for some ω ∈ W with
m({ω}) = P (ω). Probsem(A) defined by P equals Blsem(A) and Plsem(A)
defined by D.

4 Application: Reconstructing Argument from Analogy

In real life people do not often fully express their arguments for various reasons
even in areas where complete arguments are desired like the area of law. For
example, consider Adam v. New Jersey Steamboat (151 N.Y. 163, 168) where
the issue was whether the Steamboat owed passenger Adam who had occupied
a stateroom the same very high duty of care that as courts had held in previous
cases an innkeeper owes its guests, or the lower duty of care that as courts
had held in another case a railroad owes its passengers [13]. Judge O’ Brien
analogized the steamboat company to the innkeeper (calling the steamboat “a
floating inn”), rather than the railroad, and held therefore that the steamboat
company owed the higher duty of care to Adam and so was liable for the loss of
Adam’s 160$ by an intruder. The relevant portion of judge O’ Brien decision is

...The defendant has, therefore, been held liable as an insurer against the
loss which one of its passengers.... The relations that exist between a steam-
boat company and its passengers, who have procured staterooms for their
comfort during the journey, differ in no essential respect from those that
exist between the innkeeper and his guests...

So according to judge O’ Brien, the similarity between innkeepers and steam-
boat operators as providers of sleeping accommodations for travelers makes the
rule that governs innkeepers a candidate for a rule to govern steamboat opera-
tors. But what is “the innkeeper’s rule”? Unfortunately it is not stated in judge
O’ Brien’s argument, which is hence better seen as an enthymeme as follows.

A =

........................................................................... (the innkeeper’s rule).

.......................................................................(possibly other premises).
Steamboad and Adam signed a sleeping-accommodation contract (f1).

∴ The contract includes a guarantee of safety (o1).
Safety is destroyed by the intrusion(f2)

∴ Steamboat is liable for the intrusion(o2).

According to many legal experts, common view embraced in any legal system
is that in deciding a case, a judge needs to search for a rule that might cover it
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[1,13]. The many gaps in the law coupled with the judges’ duty to decide cases
whether or not there is a clear governing rule, force the judges to legislate. But
unlike the members of real legislatures, judges do not have the full democratic
legitimacy of a legislature. Hence they tend to reply on information that can be
gleaned from the previous cases and to emphasize the continuity between those
cases and the current case. By describing the decision in the current case as the
product of “analogy” to decisions in previous cases, they can often get away
with not stating a rule at all, leaving it to later judges or to academics to make
explicit the rule that is implicit in or can explain the line of cases. Multiples
interpretations for the same rule are usual. For example, for Porner [13] the
Innkeeper’s rule might be:

– A contract for sleeping accommodation must include a safety guarantee (r1).
– A contract for sleeping accommodation includes a guarantee of safety unless
it is made impossible by an act of God or the public enemies (r2).

– A business that provides sleeping accommodations to its customers must take
as much care to protect them as is feasible (r3).

These three rules result in three different reconstructions of argument A:

A1 =

r1
f1

∴ o1
f2
∴ o2

A2 =

r2
f3
f1

∴ o1
f2
∴ o2

A3 =

r3
f4
f1

∴ o1
f2
∴ o2

where f3, f4 stand for “Neither act of God nor the public enemies causes the
incident” and “It is feasible for Steamboat to safeguard its sleeper’s belongings.”

An interpreter could do further analysis to see which reconstructions are
more possible than the others. For example, on the basis that r1 is too broad
since it would require the railroad to extend the same high level of care to its
sleeping-berth customers, Posner considers A1 nearly impossible. This analysis
can be modeled by bringing in the following argument B to attack A1.

B =

Railroad and Customer signed a sleeping-accommodation contract.
Railroad is not liable for the loss of Customer’s belongings.

∴ Sleeping-accommodation contract not always includes a guarantee of safety.

Note that B does not attack A2 and A3. In fact, we can say that Posner
considers both A2 and A3 as possible reconstructions of A. Since he does not say
which one between r2 and r3 better represents Innkeeper’s rule, we can say that
he has no opinion as to which one between A2 and A3 reconstructs A better7.

Now, let’s try to model Posner’s full analysis using existing argumentation
frameworks. The AF framework Fω1 in Fig. 1(a) represents Posner’s first “pos-
sible world” of O’ Brien’s decision making. Posner’s second and third possible
7 Other legal academics give different reconstructions of A, e.g. Brewer [1].
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worlds are represented by AF frameworks Fω2 and Fω3 respectively. Unfortu-
nately we can not say that Posner’s analysis is fully represented by three possible
worlds because Posner also assigns “masses” to them: namely a mass close to 0 to
Fω1 and a total mass close to 1 to the set {Fω2 ,Fω3}. So Posner’s analysis can
be represented by a DSAF framework D = (F ,W,m) where F = (Arg,Att)
with Arg = {A1, A2, A3, B} and Att = {(B,A1)}; W = {ω1,ω2,ω3}; and
m = {{ω1} ,→ 0.01; {ω2,ω3} ,→ 0.99}. Note that Posner did not assign masses
to Fω2 and Fω3 individually.

Finally, one might ask why Posner did not assign masses to Fω2 and Fω3

individually. We believe that, on one hand, he does not want to do so to avoid
possible overstatements. On the other hand, for the purpose of understanding
or explaining the judge’s decision, he does not need to do so. This is because his
current analysis already reveals that Blsem(A) ∼ 1, and because Probsem(A) ≥
Blsem(A), it must be that Probsem(A) > 0.5. In general judges decide a civil case
using the standard of proof that the plaintiff wins if the claim is more probable
than not (aka, a preponderance of the evidence). Hence with the current analysis,
Posner already understands the judge’s decision, though he does not know the
actual value of Probsem(A) inside the judge’s mind.

5 DSAF Inference Procedures

Inference procedures for DSAF compute Blsem(A) and/or Plsem(A) for a given
an argument A wrt a DSAF framework8. This section aims at automatically
deriving such procedures from AF proof procedures, which are supposedly
given9. To motivate our methodology, let us consider a naive approach below.

Data: An argument A and DSAF D = (F ,W,m); a AF proof procedure for
semantics sem

Result: Blsem(A)
/* Compute Wsem(A) = {ω ∈ W | Fω ⊢sem A}*/
Wsem(A) = {};
foreach ω ∈ W do

/* invoke AF proof procedure*/
if Fω ⊢sem A then

Wsem(A) = Wsem(A) ∪ {ω};
end

end
result = 0;
foreach non-empty focal element Y of m do

if Y ⊆ Wsem(A) then
result = result+m(Y );

end

end
return result;

8 In this section we always refer to an arbitrary but fixed DSAF framework D =
(F ,W,m) with F = (Arg,Att) if not explicitly stated otherwise.

9 Because of the lack of space, we present only the computation of Blsem(A). Note
that our Prolog-based implementation can compute both Blpr(A) and Plpr(A).



164 N.D. Hung

The major advantage of the above approach is that it does not need to make
any surgery to a given AF proof procedure. However, since AF proof procedure
is invoked afresh for different possible worlds (at the test if Fω ⊢sem A), the
common parts of different dispute derivations (for convenience, let’s call them
partial dispute derivations) are repeatedly constructed. To address the above
problem, common partial dispute derivations need to be reused among possible
worlds. This can be done by annotating each partial dispute derivation with a
set of focal elements10 of m where the partial derivation is valid for each possible
world of such a focal element. To avoid any surgery to given AF proof proce-
dures (so that the approach can be fully automated), the annotations should
not be incorporated into dispute derivation states. However, we can assume that
these states are readable and so are state transitions. Thus we define a function
FollowF ( , ) which can be considered as the “API” that AF proof procedures
provide.

Definition 4. Let F be an AF framework. For a dispute derivation state t and
a selection function sl, FollowF (t, sl) denotes the set of states that can imme-
diately follow t in a dispute derivation using sl.

The implementation of FollowF (t, sl) is up to AF proof procedures and
DSAF inference procedures should not be concerned with that. DSAF inference
procedures call FollowF (t, sl), examine each returned state t′ ∈ FollowF (t, sl)
and probably also the cause of state transition t → t′. In the following defini-
tion which describes our DSAF inference procedures abstractly, we use notation
t

O:B−−−→
P:C

t′ to say that state transition t → t′ is caused by the proponent’s move-
ment of argument C to attacks opponent’s argument B.

Definition 5. Given a selection function, a foci derivation for an argument
A is a sequence T0, T1, . . . , Tn where

1. Ti is a set of pairs of the form (t,X ) where t is a dispute derivation state and
X ⊆ 2W .

2. At each step i, a pair (t,X ) is selected from Ti, and Ti+1 = Ti \{(t,X )}∪∆T
where
(a) If X = ∅ then ∆T = ∅,
(b) Otherwise, an argument B is selected from the P or O component of t,

and
i. If B ∈ P then ∆T = {(t′,X )} if there is t′ ∈ FollowF (t, sl)11 other-

wise ∆T = ∅.
ii. If B ∈ O then ∆T = {(⟨P,O \ {B}, SP, SO⟩, {X ∈ X |

X ∩ W (B) = ∅})} ∪ {(t′, {X ∈ X | X ⊆ W (C)}) | t′ ∈
FollowF (t, sl) and t

O:B−−−→
P:C

t′}.

10 Recall that X ∈ 2W is a focal element of m iff m(X) > 0.
11 In this case FollowF (t, sl) is a singleton set.
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The intuition behind Definition 5 is as follows.

– Rule 1: Each dispute derivation state t is annotated with a set X of focal
elements where for each X ∈ X , the current partial dispute derivation (which
ends with state t) is still valid wrt each possible world ω ∈ X.

– Rule 2(a): the current partial dispute derivation is abandoned because there
is no focal element X ∈ X such that it is valid wrt each possible world ω ∈ X.

– Rule 2(b).i: the current partial dispute derivation is extended by state tran-
sition t → t′.

– Rule 2(b).ii: the current partial dispute derivation is extended by either ways:
• by state transition t

O:B−−−→
P:C

t′: Here the proponent is moving argument C
and hence a focal element X ∈ X is removed if argument C does not
occur in some possible world ω ∈ X.

• by keeping only focal elements X ∈ X where argument B (which is moved
by the opponent) does not occur in any ω ∈ X.

Our DSAF inference procedures are defined abstractly as follows.

Definition 6. A foci derivation d for an argument A is a foci deriva-
tion T0, T1, . . . , Tn where T0 = {(⟨{A}, ∅, {A}, ∅⟩,XA)} with XA = {X |
X is a focal element and X ⊆ W (A)}, and Tn consists of only pairs of the form
(⟨∅, ∅, , ⟩, ). The set of foci derived by d is

⋃
( ,X )∈Tn

X .

The following theorem says that our DSAF inference procedures are correct
whenever given AF proof procedures are sound and complete. For the lack of
space, we omit the proof.

Theorem 1. Assume the soundness and completeness of dispute derivations for
AF semantics sem. If Wd is the set of foci derived by a foci derivation d for an
argument A, then Blsem(A) =

∑
Y ∈Wd

m(Y ).

In the following, we demonstrate a Prolog-based implementation of our DSAF
inference procedures. As illustrated by code Listing 1.1, users need to specify
DSAF frameworks using a tiny syntax: arg(.,[.]) declares, for each argument
A, the set of possible worlds W (A) containing A; att(.,.) declares an attack
between two arguments; and m([.],.) assigns masses to sets of possible words.

Listing 1.1. The specification of the DSAF in Example 2

arg(a, [w1]).
arg(b1 , [w1,w2]).
arg(b2 , [w1,w2]).
att(a,b1).
att(b1 ,b2).
att(b2 ,b1).

m([w1],0.1).
m([w2],0.2).
m([w1,w2],0.7).
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Note that a DSAF specification is a valid Prolog program. The screen shot
in Fig. 3 shows how users could load the specification in code Listing 1.1, then
call our DSAF procedures to compute Blpr(.) and Plpr(.), using Prolog queries
blpr/1 and plpr/1 respectively.

Fig. 3. Sample invocations of DSAF procedures

6 Conclusions and Related Work

Abstract Argumentation (AF [4]) has been used to unify different reasoning for-
malisms in AI, and also extended in several directions to address its shortcom-
ings. Recently several authors combine AF with classical probability theory to
propose different Probabilistic Argumentation frameworks (PAF). In this paper,
using legal argument from analogy, we argue that interpreters of real-life argu-
ments may have to deal with a kind of uncertainty that can be appropriately
represented in Dempster-Shafer (DS) theory rather than the classical probabil-
ity theory. Hence we develop an extension of AF using Dempster-Shafer theory,
which we refer to as DS-based Argumentation framework (DSAF). Concretely,
we first define a DSAF form and semantics by generalizing the existing PAF
form and semantics. We then develop a method to translate existing proof pro-
cedures for standard Abstract Argumentation into DSAF inference procedures.
Finally, we give a Prolog-based implementation of the resulted DSAF inference
procedures. Note that since PAF is a subclass of DSAF, our DSAF inference
procedures can also be used to compute PAF, for which the current literature
contains only the procedure for PAF grounded semantics of Thang [18].

The results in this paper came out much easily since we define DSAF as a
mathematical generalization of PAF and AF. To the best of our knowledge,
though there are many existing proposals to combine DST and argumenta-
tion theory, none of them mathematically generalize PAF (and even AF) truly.
Notably, in [2,16] the authors combine DST with deductive reasoning, which
is a too simple form of argumentation because it does not allow attacks. In
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[9] Kohlas, Berzati and Haenni show how to associate probability mass with
formula and compute measures-like belief degrees of the reasoning with these
formula. However, arguments in [9] are restricted to conjunctions of literals. In
[11] Oren, Norman and Preece present argumentation semantics for subjective
logic equiped with measures from DST. In [17], Tang et al. shows how DST
measures associated with logical sentences and rules can be used to derive DST
measures of arguments constructed from such elements. However the authors
do not introduce any argumentation semantics for such a system of arguments.
Recently, Samet et al. in [14] introduces a so-called evidential argumentation
framework (EvAF) (F ,M) where F is a standard AF framework and M is a
set of mass functions each of which is associated with an individual argument
in F . Under Samet et al’s interpretation, each argument A in an EvAF (F ,M)
has a set of alternatives ΘA, and hence the mass function mA ∈ M represents
the uncertainty regarding which alternative in ΘA actually occurs. For example,
EvAF (F ,M) with F = ({A,B}, {(A,B)}); M = {mA,mB}; ΘA = {A1, A2},
ΘB = {B1}; mA = {{A1} ,→ 0.5; {A2} ,→ 0.5}; and mB = {{B1} ,→ 1.0} rep-
resents an argumentative context with an argument A attacking an argument
B; and while A has two equal alternatives, B has only one. The semantics of
EvAF are defined by coercing EvAF into AF. As a result, EvAF does not gen-
eralize PAF in anyway. Moreover, because AF can not handle DST measures,
the coercion of EvAF into AF may give counter-intuitive results. For exam-
ple, weirdly enough, B is accepted in the above sample EvAF. This is because
this EvAF is coerced into two AF frameworks (the authors call them “belief
scenario graphs”), namely F1 = ({A1, B1}, {}) and F1 = ({A2, B1}, {}). Note
that in these belief scenario graphs, A1, A2 do not attack B1 because for the
authors, an attack (Xi, Yj) (where Xi ∈ ΘX , Yj ∈ ΘY and X attacks Y accord-
ing to F) materializes only if Bl(Xi) ≥ Bl(Yj) and Pl(Xi) ≥ Pl(Yj), where
Bl and Pl are computed from mX and mY (see Sect. 3). So in the above sam-
ple EvAF, Pl(B1) = Bl(B1) = 1 and hence neither A1 nor A2 can attack B1.
Note that this argumentative context can be represented by a DSAF frame-
work with m(ω1) = m(ω2) = 0.5 shown below. Under our DSAF semantics,
Blsem(B1) = Plsem(B1) = 0, which faithfully reflects our expectation that B is
totally unacceptable.
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Abstract. This paper introduces an evolutionary tuning approach for
a pipeline of preprocessing methods and kernel principal component
analysis (PCA) employing evolution strategies (ES). A simple (1+1)-
ES adapts the imputation method, various preprocessing steps like nor-
malization and standardization, and optimizes the parameters of kernel
PCA. A small experimental study on a benchmark data set with missing
values demonstrates that the evolutionary kernel PCA pipeline can be
tuned with relatively few optimization steps, which makes evolutionary
tuning applicable to scenarios with very large data sets.

Keywords: Dimension reduction · Evolutionary machine learning ·
Machine learning pipelines · Kernel PCA

1 Introduction

Large and diverse data sets increase the demand for fast and flexible adaptations
of machine learning pipelines. Such pipelines comprise numerous preprocessing
steps like imputation of missing values, normalization and standardization, selec-
tion of a dimension reduction technique, and the choice of parameters. Finding
proper settings for such a machine learning pipeline is a combinatorial optimiza-
tion problem and often induces a large solution space. The choice of methods
and their parameterization have a significant impact on the learning result.

The objective of this paper is to demonstrate that even simple ES allow
a fast adaptation of machine learning pipelines for kernel PCA [10] compris-
ing preprocessing steps and kernel optimization like kernel bandwidths of radial
basis function kernels and degrees of polynomial kernels. The pipeline optimiza-
tion process will be demonstrated experimentally on incomplete data sets with
randomly missing values. The paper is structured as follows. Section 2 gives a
short introduction to kernel PCA. Related work is presented in Sect. 3. Section 4
introduces the evolutionary kernel PCA pipeline optimization process, which is
experimentally analyzed in Sect. 5. Conclusions are drawn in Sect. 6.
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2 Kernel PCA

In machine learning we often face the problem of processing high-dimensional
patterns. The intrinsic structure of the data is often much lower than the pat-
tern dimensionality. For example, the intrinsic structure of objects on photos is
lower than the dimensionality of the color and pixel space of a raw image. To
handle this problem, dimension reduction methods seek low-dimensional repre-
sentations x̂i ∈ Rq with i = 1, . . . , N of high-dimensional patterns xi ∈ Rd with
q < d without losing essential information. Such essential information may be
neighborhoods of patterns as well as distances between patterns.

PCA [3] computes a basis transformation with an estimate of the covariance
matrix C of the patterns x1, . . . ,xN with

∑N
i=1 xi = 0 with C = 1/N

∑N
i=1 xixT

i .
The orthogonal projections onto the eigenvectors are the principal components.
Schölkopf et al. [10] generalize PCA for handling nonlinear data by mapping the
data into a feature space F with a kernel function φ : RN → F . The following
depiction is a short introduction based on [10]. Also for the kernel version of
PCA the data mapped to F is assumed to be centered

∑N
i=1 φ(xi) = 0. For

computation of the feature space variant of the covariance matrix

Ĉ = 1/N
N∑

i=1

φ(xi)φ(xi)T , (1)

eigenvalues λ ≥ 0 and eigenvectors V ∈ F \ {0} have to be found that satisfy
λV = ĈV. After substitution the eigenvectors can be expressed with coefficients
α1, . . . ,αN such that V =

∑N
i=1 αiφ(x)i. With kernel matrix Kij = (φ(xi) ·

φ(xj)) it holds NλKα = K2α with α = (α1, . . . ,αN )T . For solutions of this
equation, the eigenvalue problem Nλα = Kα can be solved. After normalization
of solutions αk by normalizing vectors in F corresponding to 1 = αk · Kαk,
the projections of the mapping of a pattern φx onto the eigenvectors Vk are
achieved by

Vk · φ(x) =
N∑

i=1

αk
i (φ(xi) · φ(x)). (2)

The mapping φ(xi) does not have to be computed explicitly, but the dot product
is sufficient, commonly known as kernel trick.

The kernel functions we use for the kernel PCA pipeline are the linear kernel
k(xi,xj) = xT

i xj , the polynomial kernel k(xi,xj) = (xT
i xj+c)r of degree r with

c ∈ R, the radial basis function (RBF) kernel

k(xi,xj) = exp(−∥xi − xj∥2/(2γ2)), (3)

with kernel bandwidth γ, the sigmoid kernel k(xi,xj) = tanh(xi + xj + c) with
c ∈ R, and the cosine kernel (xi · xT

j )/(∥xi∥ · ∥xj∥). Their parameters will be
evolved with the (1+1)-ES as part of the pipeline tuning process.



172 O. Kramer

3 Related Work

From the analysis of related work on evolutionary search in unsupervised learn-
ing, we derive a short taxonomy, see Fig. 1. It divides the related work into three
branches: (1) evolutionary tuning of dimension reduction parameters, (2) evolv-
ing unsupervised learning pipelines, e.g., order and configuration of the pipeline
steps, and (3) primary learning approaches, where the ES is the main solver
of the primary machine learning optimization problem. The evolutionary kernel
PCA pipeline approach introduced in this work belongs to the second branch.

[e.g. cluster assignment, 
low-dimensional representations]

parameter tuning pipeline tuning primary learning

ES for unsupervised learning

[e.g. k of k-means,  
minPtS, eps of DBSCAN]

[e.g. metric of normalization, 
kernel type of kernel PCA]

clustering 
dim. red.

Fig. 1. Taxonomy of ES in unsupervised learning with examples for objective variables
targeting clustering (upper row) and dimension reduction (lower row).

Evolutionary methods have proven well in tuning unsupervised methods like
clustering. For example in [4], the parameters of DBSCAN are optimized with
differential evolution. Further, evolutionary algorithms have been applied to sub-
space clustering problems [5]. For optimization of supervised machine learning
parameters Bayesian optimization is a common approach, e.g., presented for
latent Dirichlet allocation, structured support vector machines, and convolu-
tional neural networks in [11]. Evolutionary tuning of kernels for support vector
machines has been conducted in [2].

Few work has been introduced for the automatic evolution of machine learn-
ing pipelines. Olson et al. [8] proposed an evolvable machine learning pipeline
called tree-based pipeline optimization tool (TPOT) for supervised learning
based on scikit-learn [9] with tree-based genetic programming. The approach
does not allow the employment of dimension reduction measures.

The primary optimization problem can be solved by evolutionary techniques.
For example, evolutionary clustering aims at finding clusters in data with evolu-
tionary algorithms [1]. An unsupervised regression variant for dimension reduc-
tion has been introduced that alternates gradient descent and iterative evolu-
tionary embeddings [7].

Kernel PCA has originally been introduced by Schölkopf et al. [10]. It has
successfully been applied to many domains, e.g. in [6]. Sun et al. [12] evolved
kernel parameters of kernel PCA with evolutionary algorithms for fault diagnosis
applications.
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4 Pipeline Evolution

The dimension reduction pipeline employed in this work comprises the three
steps imputation, preprocessing, and dimension reduction. The imputation step
is based on the scikit-learn [9] method preprocessing.Imputer. It imputes
all occurrences of missing values. The pipeline optimization process can choose
among three possibilities, i.e., imputation based on the mean, the median, or
the most frequent value of each dimension for all patterns. The output of the
imputation step is a complete pattern set without missing values.

As next step the imputed patterns are forwarded to the preprocessing
step, which has the task of transforming patterns to be more suitable for
the dimension reduction process. Similar to the imputation step, the pre-
processing methods are based on the scikit-learn class preprocessing, and
use the ScaleStandardScaler() with or without mean centering before scal-
ing, the MinMaxScaler() with intervals [0, 1], [−1, 1], [0, 100], [−100, 100], the
RobustScaler(), and the Normalizer() with l1-norm, l2-norm, and max-norm.

The last step is the kernel PCA step, which can be parameterized with a
linear kernel, a polynomial kernel, an RBF kernel, a sigmoid kernel, and a cosine
kernel. For the polynomial kernel the degree of freedom can be a discrete value
from the interval [2, 20] with the term c ∈ R taking values from 10−20, 10−19

to 1020. The same settings are possible for the sigmoid kernel, while the RBF
kernel bandwidth settings range in the same interval.

preprocessing.normalize(X)

0   3   2   1  10

Imputer(missing_values='NaN', strategy='mean')

gamma = 10-2

kernel="rbf"

norm='l2'

genotype phenotype

Fig. 2. Exemplary illustration of genotype-phenotype mapping of the dimension reduc-
tion pipeline. The vector of integers encodes the choice of imputation method, of pre-
processing variant with parameterization, of kernel type, and its parameter.

To examine, if evolutionary search is a powerful tool for the pipeline tuning
task, we restrict the budget of fitness evaluations to less than 0.2% of the solution
space size. The overall number of method and parameter choices is 26,460 and
we only allow 50 pipeline evaluations, which may be a reasonable scenario in
case of large data sets or computationally restricted domains.

The chromosome that represents the dimension reduction pipeline is a vec-
tor z ∈ Zn of n integers. Each gene zi encodes the choice of a method or its
parameterization. The chromosome is translated into an scikit-learn machine
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learning pipeline. Figure 2 illustrates this genotype-phenotype mapping. In this
example, the imputer employs the mean-method for reconstructing missing val-
ues, normalization is based on the l2-norm, and kernel PCA uses an RBF-kernel
with bandwidth γ = 10−2.

For optimization of the dimension reduction pipeline, a (1+1)-ES is used, see
Algorithm 1. Based on solution z the ES generates an offspring solution z′ ∈ Zn

in each generation with random resetting. Each gene zi is mutated with rate
σ = 1/n by randomly drawing a new integer from the interval [0, li −1], where li
is the number of possible settings for the i-th pipeline part. The initial solution
is drawn in the same way.

Algorithm 1. (1 + 1)-ES with random resetting
1: choose z with zi ∈ [0, li − 1] uniformly at random
2: repeat
3: produce z′ from z with random resetting and probability 1/n
4: replace z with z′ if f(z′) ≤ f(z)
5: until termination condition

The Shepard-Kruskal index is a reasonable measure for evaluating the dimen-
sion reduction result. In the evolutionary optimization process, it defines the
objective function. Shepard-Kruskal measures the maintenance of distances in
the low dimensional space. Let D be the distance matrix in data space and
D̂ be the distance matrix in the low-dimensional space. Both contain the pair-
wise Euclidean distances and are considered as normalized. The Shepard-Kruskal
measure is defined as the Frobenius norm of the differences of the normalized
distance matrixes

Esk = ∥D − D̂∥2F . (4)

A low Shepard-Kruskal measure is preferable. For example, if distances are com-
pletely preserved, the Shepard-Kruskal measure is zero. Further dimension reduc-
tion measures exclusively concentrate on the maintenance of neighborhoods, e.g.,
the co-ranking matrix measure, and can easily replace Esk in our approach.

5 Experiments

In this section we analyze the dimension reduction pipeline evolution experimen-
tally on a small set of benchmark problems. The analysis is based on the data
sets Digits, Friedman, a Wind data set, and a set comprising image segmen-
tation features, each with N = 500 incomplete patterns employing two missing
rates. The missing values1 are randomly generated with uniform distribution and
missing rate m. Table 1 shows the outcome of the experimental results of fifty
(1+1)-ES runs optimizing the Shepard-Kruskal measure Esk. The table shows
1 type numpy.nan in Python.



Evolving Kernel PCA Pipelines with Evolution Strategies 175

Table 1. Experimental analysis of the evolving kernel PCA pipeline approach on the
four benchmark data sets. The figures show the best, mean, standard deviations, and
worst results for Esk of 50 (1+1)-ES runs, each with 50 fitness function evaluations.
PCA serves as reference method. Bold values indicate the most successful runs.

Data m Best mean ± dev Worst PCA

Digits 0.1 132.90 136.17 ± 2.84 140.60 138.39

0.25 137.33 143.49 ± 5.47 151.21 138.39

Friedman 0.1 286.35 309.37 ± 13.13 322.77 324.94

0.25 315.76 316.68 ± 0.82 317.94 317.45

Wind 0.1 43.67 45.16 ± 2.53 50.16 31.78

0.25 59.11 72.94 ± 8.45 81.75 31.78

Image 0.1 33.87 41.07 ± 8.85 53.55 40.08

0.25 25.75 43.19 ± 24.38 88.28 40.08

the best, mean, standard deviations, and the worst results of the runs. For com-
parison, a simple PCA is conducted on the complete data sets without missing
values. The target dimensionality is q = 2.

The results show that the (1+1)-ES pipeline evolution achieves significantly
better results than standard PCA despite the fact that the latter is based on
the data set with complete patterns and no missing values. Only in case of the
Wind data set, standard PCA outperforms the evolved pipeline, which may be
due to a significant influence of the incomplete patterns. The mean, standard
deviations, and worst values show that the results are quite stable. Most Esk

values are better for low missing rates.
Figure 3 visualizes the fitness developments of the evolutionary runs onDigits,

Friedman, and the Image data set with missing rate m = 0.1. The plots show
the developments of the mean, best, and worst fitness values of 50 runs at each
generation for the complete evolutionary runs. The fitness developments on the
Digits data set differ at the beginning. When the optimization process finds an
adequate method constellation, the fitness improves fast and converges to similar

Fig. 3. Fitness developments of the evolutionary kernel PCA pipeline process on Digits,
Friedman, and the Image data set with missing rate m = 0.1.
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(a) PCA (b) Kernel PCA pipeline, miss-
ing rate m = 0.1

(c) Kernel PCA pipeline, miss-
ing rate m = 0.25

Fig. 4. Visualization of exemplary embeddings of PCA on the complete Digits data set
and two kernel PCA pipelines evolved on the incomplete Digits data set with missing
rates m = 0.1 and m = 0.25.

values. On Friedman, the first part of the optimization process is converging fast,
while the second part shows different behaviors in different runs. Different runs
vary significantly on the Image data set.

Figure 4 visualizes the final embeddings that result from the dimension reduc-
tion processes. PCA achieves a Shephard-Kruskal measure of Esk = 122.67 in
this run, which is outperformed by both kernel PCA pipelines for the missing
rates m = 0.1 with Esk = 118.93 and m = 0.25 with Esk = 115.93. The plots
show that all settings lead to reasonable embeddings without significant differ-
ences between the complete and the incomplete data sets. Moreover, the two
evolved pipeline results are rotated variants of the PCA embedding.

6 Conclusions

Machine learning pipelines become more and more complex because of numer-
ous preprocessing steps. Further, each step requires the specification of numer-
ous parameters. The overall optimization problem induces a particularly large
space of pipeline variants. In this paper, we demonstrate how ES can be used to
evolve kernel PCA pipelines for dimension reduction. The analysis concentrates
on incomplete data sets comprising the steps imputation, preprocessing, and ker-
nel tuning. A simple (1+1)-ES achieves satisfying tuning results, in particular
when considering the large size of the solution space. With a small budget of
only 50 evaluations at most 0.2% of the solution space can be visited, but yet
the resulting embedding shows excellent Shepard-Kruskal values.

A Data Sets

UCI Digits comprises handwritten Digits with d = 64. Friedman is a regression
problem generated with scikit-learn and d = 500. The Wind data set is
based on spatio-temporal time series data from the National Renewable Energy
Laboratory (NREL) comprising 11 threeMW turbines for three years in a 10-
minute resolution, resulting in d = 11 dimensions. The Image data set contains
image segmentation data with d = 19 dimensions.
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Abstract. Dimensionality reduction (DR) lowers the dimensionality of
a high-dimensional data set by reducing the number of features for each
pattern. The importance of DR techniques for data analysis and visual-
ization led to the development of a large diversity of DR methods. The
lack of comprehensive comparative studies makes it difficult to choose
the best DR methods for a particular task based on known strengths
and weaknesses. To close the gap, this paper presents an extensive exper-
imental study comparing 29 DR methods on 13 artificial and real-world
data sets. The performance assessment of the study is based on six quan-
titative metrics. According to our benchmark and evaluation scheme, the
methods mMDS, GPLVM, and PCA turn out to outperform their com-
petitors, although exceptions are revealed for special cases.

Keywords: Dimensionality reduction · Manifold learning · Feature
extraction

1 Introduction

High-dimensional data appear in many applications, but are demanding in differ-
ent ways. High dimensionalities not only challenge storage and network through-
put technologies, but also complicate data analysis tasks. For humans, data with
a dimensionality larger than three are difficult to understand since no intuitive
visualization is possible. Even if machine learning techniques are employed to
extract important information from the data, e. g., by clustering or classification,
a high dimensionality is impeding as it requires a large training data set (curse
of dimensionality) and extends the runtime.

DR computes a mapping F : Rd → Rq from a d-dimensional data space to a
q-dimensional latent space with q < d. Each data point (pattern) from the orig-
inal data set is mapped to a latent point with only q features. In other words,
each pattern is embedded into latent space leading to an embedding (manifold)
of the whole data set. The dimensionality q of the latent space (intrinsic dimen-
sionality) is often not determined by the DR methods, but has to be estimated
with separate techniques, e. g., maximum likelihood [27]. Instead of an estima-
tion, the user can adapt the intrinsic dimensionality to his needs. For example,
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 178–192, 2017.
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an intrinsic dimensionality less or equal three is often chosen if DR is used to
visualize data.

The way of computing mapping F significantly differs among the DR meth-
ods. Unlike feature selection, feature extraction methods generate completely
new dimensions, which are combinations of the old ones and are therefore not
directly interpretable. Our study exclusively concentrates on feature extraction
methods. We include parametric methods that explicitly learn F and its parame-
ters, and that are able to embed new unknown patterns. But we also concentrate
on non-parametric DR methods that directly map high-dimensional patterns to
latent points and thus modeling F. The study also comprises numerous convex
and non-convex techniques. Convex methods use convex objective functions that
guarantee to find the corresponding optimum, while non-convex methods might
yield better mappings, in particular for non-linear data, but do not guarantee
to find the best solution of their objective function. Furthermore, the methods
can be grouped into families which apply similar mathematical concepts.

Due to the fact that new DR methods are often compared only against older
established DR methods, like PCA [18,37], Isomap [47] or LLE [40], but not
against newer ones, overall quality differences are not transparent. In most exist-
ing studies only few data sets and few quantitative measures are used deterio-
rating the understanding, why methods have specific strengths and weaknesses.
These reasons hamper a reasonable performance evaluation of DR methods for
defined applications and motivate the comparative study this paper presents.

This work is structured as follows: We review existing comparative studies
in Sect. 2 and explain the setup of our experiments in Sect. 3. Afterwards, we
evaluate the outcomes of our experiments in Sect. 4. A summary concludes this
paper in Sect. 5.

2 Current Comparative Studies

In the current literature, various contributions giving an overview of DR tech-
niques exist, e. g., [10,25]. They describe method design and applied mathemat-
ical concepts, but do not include empirical comparisons. Therefore, they do not
give insights into differences between the methods regarding practical usage.

Other contributions, e. g., by Gisbrecht and Hammer [12], investigate the
suitability of DR methods for visualization tasks. They embed high-dimensional
data sets with different DR methods, visualize the resulting manifolds and assess
the embedding quality with one quantitative measure. Nevertheless, these com-
parisons are not satisfactory as data sets, method diversity and metrics run too
short.

The most extensive quantitative study is presented by van der Maaten et al.
[33]. Newer methods like UNN [20], EE [5] or t-SNE [32] are not included. Mys-
ling et al. [35] conduct a quantitative comparison that examines the dependence
of four DR methods on data set properties, like data density and noise, in terms
of a classification and a regression error. Also Yeh et al. [52] present a limited
comparison with three DR methods on one data set with respect to one metric
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that assesses the methods’ suitability as pre-processing techniques before clus-
tering. Furthermore, some studies exist that compare DR methods solely for
specific applications, e. g., by Niskanen and Silvén [36].

3 Experimental Setup

Our experimental study comprises 29 DR methods, 13 data sets, and six metrics.
On each data set, each DR method is executed repeatedly, each time with a sep-
arate parameter setting like grid search. Due to the non-deterministic behavior
of some DR methods, each of these executions is run 25 times. Only for meth-
ods with an extensive runtime only 3 repetitions are conducted. The metrics are
computed for each run and are averaged over the 25 repetitions. For each DR
method we aggregate one value per data set and metric, i.e., the best one the
DR method has achieved among all parameter settings.

3.1 DR Methods

We selected the DR methods in our study with the objective to include at
least one method from each family of unsupervised feature extraction meth-
ods (Fig. 1). The convex DR methods are based on an eigenvalue (or spectral)
decomposition. They can be subdivided according to whether the eigenvalue
decomposition is performed for a sparse or full matrix. Within both categories
the DR methods employ different mathematical techniques. Kernels make DR
methods capture non-linear structures in the data. Neighborhood graphs are
used to set up a distance matrix containing the similarities of neighbored pat-
terns, which are often measured in terms of Euclidean distances. DR methods
use the distance matrix, but can only embed patterns belonging to the largest
sub-graph. Since our evaluation requires an embedding for all patterns we embed
the remaining patterns with a so called out-of-sample extension implemented by
van der Maaten [31].

Concepts used by non-convex methods are unsupervised regression, neural
networks, and probabilistic approaches. Regression methods optimize the latent
points so that the patterns reconstructed from the latent points by k-nearest
neighbors (kNN) regression differ as little as possible from the original patterns.
In case of so called autoencoders, neural networks for DR have an odd number
of layers and the middle layer of neurons represents the latent point belonging
to the input pattern. During the training procedure the weights are optimized
so that the output of the network, i. e., the reconstructed pattern, is similar to
the input, i. e., the original pattern.

Probabilistic DR methods can also be divided into different families: meth-
ods based on the latent variable model (LVM), techniques employing a mixture
model and methods that use probabilities as a measure for the similarity of pat-
terns and latent points. Methods based on the LVM assume that the features
of the observed patterns are random variables underlying a common probability
distribution, which actually is based on a smaller set of unobservable random
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Fig. 1. A taxonomy of employed unsupervised DR methods, based on [33]

variables, so called latent variables. The values of the latent variables are the
latent points. They are optimized along with the parameters of the probability
distribution to maximize the likelihood for observing the patterns. A mixture
model is an aggregation of multiple density estimators to one larger estimator.
Its parameters and the latent points are optimized similar to the optimization
procedure of the LVM.

This experimental study is based on the following methods, which we also
arranged in a taxonomy (Fig. 1): CE (Conformal Eigenmaps) [44], DM (Diffu-
sion Maps) [6,7], EE (Elastic Embedding), FA (Factor Analysis) [45], GPLVM
(Gaussian Process LVM) [24], HLLE (Hessian LLE) [9], Isomap (Isometric
Feature Mapping), itUKR (iterative UKR) [29], KPCA (Kernel PCA) [43],
LE (Laplacian Eigenmaps) [3], LLC (Locally Linear Coordination) [46], LLE
(Locally Linear Embedding), LLTSA (Linear LTSA) [53], LPP (Locality Preserv-
ing Projections) [14], LTSA (Local Tangent Space Alignment) [54], MC (Mani-
fold Charting) [4], MDS (Multidimensional Scaling), MLLE (Modified LLE) [55],
mMDS (metric MDS) [48], MVU (Maximum Variance Unfolding) [50,51], nMDS
(nonmetric MDS) [23], NPE (Neighborhood Preserving Embedding) [13], PCA
(Principal Component Analysis), PPCA (Probabilistic PCA) [39], SM (Sammon
Mapping) [41], SNE (Stochastic Neighbor Embedding) [16], t-SNE (t-Distributed
SNE), UKR (Unsupervised Kernel Regression) [34], and UNN (Unsupervised
Nearest Neighbors). The autoencoder was proposed in [8,17].

We use the following implementations: scikit-learn [38] for mMDS, nMDS,
MLLE and HLLE, Matlab code by Vladymyrov and Carreira-Perpiñán for EE
according to [49], Matlab toolbox by Klanke [19] for UKR, self-implementation
of UNN in Python in accordance with Kramer [21, Sect. 4.1], Python code for
itUKR from its author and the Matlab toolbox by van der Maaten [31] for all
other methods.
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Table 1. Parameter ranges of convex DR methods

Technique Parameter ranges

DM t ∈ {1, 10, 30, 50, 70, 90},σ ∈ {0.2, 1.0, 5.0}
LE, LPP k ∈ {5, 9, 13, 50, 100},σ ∈ {0.2, 1.0, 5.0}
KPCA i ∈ {100, 200, 300, 400, 500}
Isomap, MVU, LLE, MLLE, NPE,
CE, HLLE, LTSA, LLTSA

k ∈ {5, 7, 9, 11, 13, 15, 50, 100}

Table 2. Parameter ranges of non-convex DR methods

Technique Parameter ranges

PPCA i ∈ {100, 200, 300, 400, 500}
GPLVM σ ∈ {0.2, 0.5, 1.0, 2.5, 5.0}
LLC k ∈ {5, 13, 100}, a ∈ {2, 9, 20}, i ∈ {200, 400}
MC a ∈ {2, 7, 12, 20}, i ∈ {200, 400}
SNE, t-SNE p ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
EE h ∈ {0.01, 0.1, 0.0, 10.0, 100.0}, p ∈ {5, 25, 50}
UKR kernel ∈ {Gaussian,Quartic,Triweight}
UNN k ∈ {5, 10, 20, 40},κ ∈ {10, 30, 50}
itUKR κ ∈ {30, 50, 70}, bandwidth ∈ {10, 20, 30, 40, 50}
Autoenc λ ∈ {0.0, 0.2, 0.5, 1.0, 1.5, 2.5, 5.0}

The parameter settings we employ are listed in Tables 1 and 2; methods
without parameters are not included. For a description of the parameters we
refer to the documentation of the respective implementation. We executed each
method for each parameter value combination except the autoencoder. Due to
an extensive runtime we ran the autoencoder on the data sets CNS and ORL
(Sect. 3.3) only with setting λ = 0.0. We chose value 0.0 since a larger λ often
led to NaN metric values on other data sets because latent points were mapped
nearly to the same point.

3.2 Metrics

No single criterion for DR methods exists, since the information to be preserved
depends on the data set and the purpose of the DR task. Therefore, we assess
the methods’ quality with different metrics. On the one hand, we measure the
topology preservation in terms of neighborhood preservation (ENX), distance
preservation (EKS) and structure preservation in general (DSRE, E1NN, CRR).
On the other hand, we measure the DR methods’ ability for preceding a classi-
fication or regression task in terms of information preservation (EKNN, CRR).
These metrics seem to be reasonable as it is assumed that most important
information of a data set is encoded in its spacial properties. We adapt some
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metrics so that all metrics are error measures, i. e., lower values represent better
qualities.

The ENX measure becomes better the more latent points belonging to neigh-
bored patterns are neighbors, i. e. the more neighborhoods are preserved. It is
based on the co-ranking matrix Q [26]. Following Lueks et al. [30], we adapt
ENX to

ENX (k) = 1 − 1
nk

k∑

i=1

k∑

j =1

qij , (1)

where qij is an entry of Q, variable n is the number of patterns or latent points
and k is the neighborhood size.

EKS [22] is the objective function of the MDS variants and is computed from
the squared Frobenius norm of the distance of the normalized distance matrices
of patterns (DP) and latent points (DL):

EKS = ∥DP − DL∥2F . (2)

The distance matrices are normalized by dividing each value by the largest value
of the respective matrix. A small EKS indicates similar distances between latent
points and their corresponding patterns.

The DSRE [20] measures how well the patterns can be reconstructed from
the latent points by applying the kNN regression model fL with

fL : Rq → Rd, fL (l) =
1
k

∑

i∈Nk(l,L)

pi. (3)

Let P ∈ Rn×d denote a pattern matrix, L ∈ Rn×q the corresponding matrix
of latent points, pi ∈ Rd the ith pattern and l ∈ Rq a latent point. The set
Nk (l,L) contains the indices of the k latent points from L that are most similar
to l. Then the DSRE is defined as

DSRE(L, k) = ∥P − fL(L)∥2F , (4)

where fL(L) ∈ Rn×d is a matrix containing the reconstructions of all patterns.
A good DSRE is attained if latent points of neighbored patterns are neighbored.

E1NN [42] measures the overlapping of points with labels from different
classes in the data and the latent space. In a w. r. t. E1NN optimal DR process
latent points from different classes are clearly separated. This could be desired
e. g. for visualization tasks. E1NN counts the number l− of latent points whose
next neighbor has a label from a different class and divides it by p−, which is
analogously defined for patterns:

E1NN =
l−

p− . (5)

An E1NN larger than one indicates a worse structure of the manifold compared
to the data space.



184 A. Meier and O. Kramer

CRR [36] calculates the ratio of the number of falsely classified latent points
and the number of falsely classified patterns. EKNN [22] is the counterpart of
CRR for regression. It is the ratio of the regression error of the latent space and
the regression error of the data space. CRR and EKNN use the kNN classifi-
cation and regression model, respectively. They are useful to examine whether
a classification or regression task, respectively, would be more successful on the
original or reduced data set.

CRR and E1NN are only applicable to data sets with discrete labels, EKNN
only to data sets with continuous labels, whereas ENX, DSRE and EKS are
suitable for all data sets. We set the metrics’ parameter k, representing the
neighborhood size, to 15. Based on the results of Lee and Verleysen [26] this
seems to be a reasonable compromise between fluctuating metric values for a
very small k and smooth values for a large k.

3.3 Data Sets

We apply the DR methods to five artificial and eight real-world data sets. The
artificial data sets come from the comparative study of van der Maaten et al. [33].
Swiss roll, Broken swiss roll, Helix and Twin peaks are shown in Fig. 2, HD is
a 10-dimensional data set with a 5-dimensional manifold. They have known
manifolds and are generated with the Matlab toolbox by van der Maaten [31].

The real-world data sets stem from different domains and employ different
dimensionalities. In Table 3, their properties are listed. The intrinsic dimension-
alities are estimated with the maximum likelihood estimator implementation by
van der Maaten [31]. For the MNIST data set, only the GMST estimator from
the same toolbox computed a reasonable dimensionality. For the experiments we
randomly select 300 patterns from each data set, except for Iris and CNS since
they contain less patterns.

Table 3. Properties of real-world data sets

Data set Dim. Intrins. dim. Label type #Classes Description

Iris [38] 4 3 Discrete 3 Plant properties of iris flowers

Boston [38] 13 2 Contin. - House properties

Digits [38] 64 17 Discrete 10 Pictures of handwritten digits

RCT [28] 386 28 Contin. - CT pictures of different persons

MNIST [28] 784 2 Discrete 10 Pictures of handwritten digits

HIVA [2] 1617 15 Discrete 2 Properties of drugs

CNS [15] 7130 30 Discrete 2 Gene data of tumor patients

ORL [1] 10304 7 Discrete 40 Faces of different persons
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(a) Swiss roll (2) (b) Broken swiss roll (2)

(c) Helix (1) (d) Twin peaks (2)

Fig. 2. Artificial data sets and intrinsic dimensionalities. Colors represent labels.

4 Experimental Results

Before the actual evaluation, we examine the statistical significance of the dif-
ferences between the DR methods. We conduct one Friedman test per metric
leading to statistically significant p values (ENX: 4.25e−28, EKS: 1.65e−43,
DSRE: 4.57e−66, E1NN: 1.94e−36, CRR: 7.58e−36). For EKNN, no test can
be conducted since EKNN requires data sets with continuous labels but only
two such data sets are included in our study. For the analysis of the metric val-
ues we perform two steps. First, we rank the methods and analyze their rank
differences. Second, we compute quality differences that give better insight into
the methods’ performance. In both steps we compare the methods’ performance
with respect to both the metrics and the data sets.

4.1 Analysis of Rank Differences

Each DR technique is separately assigned to a rank so that each technique
T employs a rank RT (D,M) for each data set D and metric M . For a more
manageable comparison, we average the ranks of each technique in two ways,
i. e., over all data sets resulting in one average rank per metric ∅RT (M) and over
all metrics resulting in one average rank per data set ∅RT (D). Figures 3 and 4
show the average ranks for the convex and non-convex methods with the best



186 A. Meier and O. Kramer

Fig. 3. Average ranks per metric for best-ranked convex (at the top) and non-convex
methods (at the bottom). Column ∅ contains the row averages. The color gradient
visualizes the differences of values within columns: small (yellow) values are better
than large (red) ones. (Color figure online)

Fig. 4. Average ranks per data set for best-ranked convex (at the top) and non-convex
methods (at the bottom). Data sets are separated into artificial (left) and real-world
ones (right). Columns ∅(a.) and ∅(r.) contain the row averages for artificial and real-
world data sets, respectively. The differences between both are listed in the last column.

average rank among all methods (i. e. with best value in column ∅ of Fig. 3),
which were able to embed all data sets.1

Considering the average ranks per metric (Fig. 3), in particular EE, t-SNE
and UKR achieve promising results, while no method performs best w. r. t. all
metrics. Taking into account the average ranks per data set (Fig. 4), it can
be observed that the presented methods (except Isomap and MLLE) perform
better on real-world data sets, due to lower values in column ∅(r.) than in
∅(a.). Furthermore, on real-world data sets clearly better results of non-convex
methods in contrast to convex methods can be observed. However, PCA is nearly
as good as other non-convex methods.

1 MVU, CE, NPE, LPP, HLLE, LLTSA (convex) and SM, FA, MC (non-convex)
were not able to embed up to six real-world data sets due to, e. g., not computable
eigenvalue problems, extensive runtime (more than four weeks) or too few patterns.
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4.2 Analysis of Quality Differences

To compare the methods’ quality differences, based on the percentage of the
maximum accuracy employed by Fernández-Delgado et al. [11] we compute for
each DR technique T the percentage of the minimum error (PME) per metric
M with

PMET (M) =
1
13

∑

D∈{Swiss roll,...,ORL}

value for M achieved by T on D

M∗ on D

and equivalently per data set D with

PMET (D) =
1
6

∑

M∈{ENX,...,EKNN}

value for M achieved by T on D

M∗ on D
,

where M∗ is the best (minimum) value for metric M that any DR technique has
achieved on data set D. For example, PMEPCA (ENX) = 2.0 denotes that the
ENX values of PCA are on average two times worse than the best ENX value of
any DR method. For each DR method only the data sets are included into the
average for the PME measure, which the method was able to embed. This may
unfairly improve the PME values of failing methods since their missing metric
values for the respective data sets do not influence their PME values, whereas
the possibly poor metric values of other methods deteriorate their PME values.

In the left part of Fig. 5 the nine best PME values per metric and the cor-
responding DR techniques are listed. It is notable that the differences of the
PME values are approximately equal among the metrics except for EKS. This
has two reasons. First, SM and mMDS are unfairly preferred since the EKS
is their objective function. Second, the methods’ absolute values for EKS dif-
fer stronger than their values for other metrics, in particular on real-word data
sets. Hence, the PME values of DR techniques with failed embedding attempts
are improved especially regarding the EKS. Averaging the PME values over all
metrics and ignoring the failing methods, e. g., SM, CE and MVU (Sect. 4.1),
shows that mMDS, GPLVM and PCA are by far the best DR methods (Fig. 5,
middle part). This is surprising since mMDS and PCA belong to the earliest DR
methods.

Comparing the results of the rank and the PME analysis regarding the met-
rics it can be observed that the methods with best ranks (EE, t-SNE, UKR)
surprisingly do not always have best PME values. This is mainly caused by
the poor quality of their embeddings regarding the EKS. Averaging the PME
values without EKS (Fig. 5, right part) again leads to t-SNE, EE and UKR as
best methods. Interestingly Isomap, MLLE and LE are among the best-ranked
methods despite their poor average PME values (Fig. 5, middle part).

At last we analyze the PME values per data set. Figure 6 contains the PME
values for the best convex and non-convex methods according to their average
PME values listed in the middle part of Fig. 5. The symbols ### signify a
failed embedding attempt; reasons for them are given in Sect. 4.1. We observe
that all best convex and non-convex methods have a better average PME value
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Fig. 5. PME values per metric in ascending order (left part), average PME per method
(middle part), and average PME without values for EKS (right part). Smaller (yellow)
values are better, convex methods are highlighted blue. (Color figure online)

Fig. 6. PME values per data set for methods with best average PME (Fig. 5, middle
part)

on real-world than on artificial data sets (Fig. 6, columns ∅(r.) and ∅(a.)). This
observation is consistent with the results from the rank analysis, albeit no differ-
ences between convex and non-convex methods can be observed. The suitability
for practical usage of the methods listed in Fig. 6 is emphasized by the finding
that all other methods except LLTSA perform much worse on real-world than
on artificial data sets. In general, the PME values per data set have to be inter-
preted critically because they are strongly influenced by the EKS due to the
large differences between best and worse EKS values among the DR methods.
This strong influence not necessarily reflects the actual importance of the EKS
as quality measure, which may depend on the application purpose.

In summary, mMDS, GPLVM and PCA score well in both evaluation parts.
EE, t-SNE and UKR only perform well regarding the ranks, but do not have
satisfying PME values due to their poor EKS values. In contrast, there are some
methods (SM, CE, MVU) that seem to be quite good but fail on some real-world
data sets.

5 Summary

In this paper we present a quantitative experimental study that assesses the
quality of 29 DR methods on 13 artificial and real-world data sets with six
metrics. It goes beyond previous comparisons by employing more and newer
methods from all families of unsupervised feature extraction methods using a
larger number of data sets and examining a variety of quality properties.
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Based on our analysis mMDS, GPLVM and PCA are the overall best DR
methods. However, depending on which metrics actually are reasonable quality
measures for a specific application, other methods may be better choices, like
e. g., EE, t-SNE, and UKR if distance preservation is negligible. Depending on
the data set the experimental results of this paper may guide the choice of
methods in real applications.

Of course, our findings can only be generalized to a certain extend due to
the no free lunch theorem. But as an extensive experimental analysis is often
impossible due to time and cost constraints, we recommend to choose a reason-
able subset of DR methods based on our results, to perform an own evaluation
and to select the best among these methods for performing the final DR task.
According to the application, suitable metrics should be chosen for the analysis.
For example, in a pipeline with classification, CRR and EKNN are appropriate
test candidates as they assess information preservation.

Future work may concentrate on an extension and update of the experimental
analysis w. r. t. the set of benchmark methods, problems, and test metrics.
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Abstract. Task networks are a powerful tool for AI planning. Classi-
cal approaches like forward STN planning and SHOP typically devise
non-deterministic algorithms that can be operationalized using classical
graph search techniques such as A*. For two reasons, however, this strat-
egy is sometimes inefficient. First, identical tasks might be resolved sev-
eral times within the search process, i.e., the same subproblem is solved
repeatedly instead of being reused. Second, large parts of the search space
might be redundant if some of the objects in the planning domain are
substitutable.

In this paper, we present an extension of simple task networks that
avoid these problems and enable a much more efficient planning process.
Our main innovation is the creation of new constants during planning
combined with AND-OR-graph search. To demonstrate the advantages
of these techniques, we present a case study in the field of automated ser-
vice composition, in which search space reductions of several magnitudes
can be achieved.

1 Introduction

Hierarchical planning is an established and powerful technique for AI planning
[1,3,13]. One interesting application of hierarchical planning is automated service
composition, which is the task to compose a new software artifact from exist-
ing ones [8,15,19]. However, there are settings in which standard hierarchical
planning, even when looking like a natural approach, turns out to be infeasible.

As an illustration, we consider the example of nested dichotomies, a technique
for polychotomous classification in machine learning [5]. A nested dichotomy
(ND) is a binary tree, in which every node n is labeled with a set c(n) ⊆ Y
of classes Y, such that the root is labeled with Y, and c(n) = c(n1) ∪̇ c(n2)
for every inner node n with successors n1 and n2. Figure 1 shows two example
dichotomies for the case of four classes. An object to be classified is submitted
to the root and, at every inner node, sent to one of the successors by the binary
classifier associated with that node; the class assigned is then given by the leaf
node reached in the end. Since different NDs give rise to different sets of binary
classification problems, the overall performance is strongly influenced by the tree
topology. Considering an ND as a “classification service”, hierarchical planning
appears to be a natural approach for its configuration: starting at the root, the
splits are configured iteratively until every leaf node is labeled with exactly one
class.
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 193–206, 2017.
DOI: 10.1007/978-3-319-67190-1 15
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Fig. 1. A partial and a complete ND for four classes.

The first problem with classical hierarchical planning is that, when enumerat-
ing different NDs, the same subsolutions are computed several times. For exam-
ple, both NDs in Fig. 1 contain the node A,B, which is refined twice by a classi-
cal planner. The second problem is that each node of the ND is represented by
a planning constant, but the constants actually have no specific meaning. For
example, we need 7 constants, say v1, ..., v7, for the nodes of the right ND of
Fig. 1. It does not matter which of the nodes is represented by which constant,
but a classical planner tries all combinations, which yields an enormous and
unnecessary search space explosion.

We propose planning with independent task networks (ITN) to overcome
these problems (Sect. 2). The main novelties are the on-the-fly creation of plan-
ning constants and the reuse of subsolutions through the notion of AND-OR-
graph search. In a case study, we show that this can yield search space reductions
of several orders of magnitude (Sect. 3). The case study also sheds light onto a
class of planning problems rarely considered in the planning community, e.g., the
typical competitions, namely the one of automated service composition. While
most frequently considered planning problems may not exhibit the discussed
property of independent tasks, it is a common (sometimes essential) property in
every recursive program. Drawing attention to this class of planning problems
is, hence, another aim of the paper.

2 Independent Task Network Planning

We introduce our method in four steps. The first two subsections explain the
formal basis of planning in general and hierarchical planning, respectively. We
then describe the core elements of ITN planning and the ITN algorithm. Finally,
we address some important aspects of the ITN that enable additional search
space reductions.

2.1 Basic Elements of Planning

As for any planning formalism, our basis is a logic language L and planning
operators that are defined in terms of L. The language L has function-free first-
order logic capacities, i.e., it defines an infinite set of variable names, constant
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names, predicate names, and quantifiers and connectors to build formulas. An
operator is a tuple ⟨nameo, preo, posto⟩ where nameo is a name and preo and
posto are formulas from L that constitute preconditions and postconditions,
respectively.

The postconditions posto are often restricted to be literal sets, like in
STRIPS. We relax this assumption a bit and allow conditional postconditions,
i.e., posto is of the form

∧
α → β where α is a formula from L and β is a set of

literals.
A plan is a sequence of ground operations. As usual, we use the term ground

to say that all variables have been replaced by terms that only consist of con-
stants. That is, an operation is ground if all variables in the precondition and
postcondition have been substituted by terms from L that only contain con-
stants. Ground operators are also called actions; we write prea and posta for its
precondition and postcondition, respectively.

The semantic of actions is that they modify the state in which they are
applied. A state is a set of ground positive literals. Working under the closed
world assumption, we assume that every ground literal not explicitly contained
in a state is false. An action a is applicable in state s iff s |=cwa prea. The
successor state s′ induced by this application is s if a is not applicable in s and
(s∪ add) \ del otherwise; here, add and del contain all the positive and negative
literals, respectively, that are in a conditional postcondition of a whose condition
is true in s.

2.2 Simple Task Networks

A simple task network (STN) is a partially ordered set T of tasks [7]. A task
t(v0, ..., vn) is a name together with a list of parameters, which are variables or
constants from L. A task named by an operator is called primitive, otherwise it
is complex. A task whose parameters are constants is ground.

We are interested in deriving a plan from a task network. Intuitively,
we can refine (and ground) complex tasks iteratively until we reach a task
network that only consists of ground primitive tasks, i.e., a set of partially
ordered actions. While primitive tasks can be realized canonically by a sin-
gle operation, complex tasks need to be decomposed by methods. A method
m = ⟨namem, taskm, prem, Tm⟩ consists of its name, the (non-primitive) task
taskm it refines, a logic formula prem ∈ L that constitutes a precondition, and
a task network Tm that realizes the decomposition. Replacing complex tasks
by the network specified in the methods we use to decompose them, we itera-
tively derive new task networks until we obtain one with ground primitive tasks
(actions) only.

The definition of a simple task network planning problem is then straight
forward. Given an initial state s0 and a task network T0, the planning problem
is to derive a plan from T0 that is applicable in s0. A simple task network
planning problem is then a tuple ⟨s0, T0, O,M⟩, where O and M are finite sets
of operators and methods, respectively.
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Fig. 2. The task network that refines node n of a partial nested dichotomy.

Note that the definition of a method usually contains more variables than
the task it refines. That is, it makes use of objects that are not directly relevant
for formulating the task, yet relevant to solve it in the spirit of the respective
method.

2.3 Independent Task Networks: General Idea

We propose independent task networks (ITNs), which are an extension of STNs,
with the purpose to enable an efficient decomposition of independent subprob-
lems. The core feature of ITNs is that tasks may be labeled as independent to
assert that each of its refinements is compatible with every refinement of non-
preceding tasks. More formally, let T be a task network with t ∈ T marked as
independent, and let T ′ ⊂ T \ {t} be the tasks in T that are no predecessors of
t. Then for every state s on which we decompose T , and for which plans π and
π′ can be derived from {t} and T ′, respectively, such that π.π′ is applicable in s,
every derivable plan π′′ of {t} applicable in s must be combinable with π′ such
that π′′.π′ is applicable in s. In other words, the choice of the first partial plan
π′′ does not affect the applicability of the second partial plan π′.

As an example, consider the task network in Fig. 2. This is the task network
belonging to the method that refines a non-terminal node of a partial dichotomy
by splitting it up into two new child nodes. The first two tasks in the network are
primitive, i.e., they can be realized by single actions, and the last three tasks are
complex. The tasks init(n, lc, rc, x ), shift(y , x , lc, rc), and config(lc, rc) create
the child nodes lc and rc of n and define their labels; the exact formalization is
given below in Sect. 3.2. The tasks refine(lc) and refine(rc) mark a refinement of
those child nodes, i.e., they are independent since their solutions are independent
of each other. Every plan derived for refine(lc) can be combined with every plan
derived for refine(rc).

The need to manually define whether or not a task is independent of the oth-
ers has its root in the difficulty to define complete conditions of independence
that can be checked automatically. Indeed, it is easy to specify sufficient con-
ditions, e.g., based on the task names. For example, we can syntactically check
whether two tasks must be independent if all methods and operators reachable
from them have disjoint preconditions and effects respectively. However, this
specific rule is too strict in general, and we expect that deciding independence
in general is undecidable. On the other hand, in particular when the planning
algorithm simulates a recursive execution tree—like in our nested dichotomy
problem but also, the expert easily sees that the tasks are independent.
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Algorithm 1. IFD(s, T,O,M)
1 if T = ∅ then return the emply plan U ← {t | t ∈ T, t has no non-recursive

predecessor in T}
2 if U = ∅ then
3 choose any u ∈ T that has no predecessor in T
4 if u is a primitive task then
5 active ← {(a,σ) | a is a ground instance of an
6 operator in O, σ is a substitution such that
7 namea = σ(tu), and a is applicable to s}
8 if active = ∅ then return failure choose any (a,σ) ∈ active

π ← IFD(γ(s, a),σ(T \ {u}), O,M)
9 if π = failure then return failure else return a.π

10 else
11 active ← {(m,σ) | a is a ground instance of a
12 method in M , σ is a substitution such that
13 namem = σ(tu), and m is applicable to s}
14 if active = ∅ then return failure choose any (m,σ) ∈ active
15 return IFD(s,σ(Tm), O,M)

16 end

17 else
18 ∀u ∈ U : πu = IFD(s, {u}, O,M)}
19 πT−U ← IFD(s, T \ U,O,M)
20 return πu1 ...πun .πT−U

21 end

The non-deterministic independent forward decomposition (IFD) algorithm
is shown in Algorithm 1. In fact, the part for U = ∅ is equal to the partial
forward decomposition algorithm (PFD) [7, p. 243] except that the recursive
call is IFD and not PFD. So the important points are the computation of the
relevant recursive tasks U in the beginning (line 1), and the final else-branch
where those tasks are resolved (lines 16–19). Note that there is no choice point in
the last branch, because all of the tasks must be solved—no decision is required.
The independent tasks are solved in isolation and the solution of the remaining
problem is appended to the concatenation of subsolutions of the independent
tasks. It is easy to show that the routine is sound and complete; we omit the
proofs of these formal properties due to space limitations.

A deterministic implementation of the above algorithm can be devised by an
AND-OR-graph search such as general best first (GBF). As usual, the choice
points (non-deterministic choices) constitute OR-nodes in such a graph. While
PFD induces a simple OR-graph, the last branch of RFD induces an AND-node
with one successor for each u ∈ U and one for T \ U . Note that the child nodes
here are partially ordered: there is no order among the child nodes for u ∈ U ,
but all of them are ordered previously to the node for T \ U .
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Fig. 3. Context functions help identify search graph nodes.

2.4 A Look at the Details

While the RFD algorithm is already sufficient to solve subproblems indepen-
dently, we allow for three more features that are important to actually achieve
an efficiency improvement in the planning process. These features are constant
creation, context functions, and lonely methods.

First, we allow operators (and methods) to introduce new constants. Intu-
itively, the connection to independent tasks is that those tasks constitute sub-
problems, which are derived from the current one. In Fig. 2, for example, refining
the child nodes lc and rc are subproblems we derived from n. Since lc and rc
are only relevant for this specific task, it is reasonable that they are created
only for this purpose and known only within this method instead of being taken
from a previously defined object storage. In the algorithm, this becomes rele-
vant when active methods and actions are determined. Here, substitutions map
output parameters not to constants of the state s but to globally unique new
constants from L.

Second, ITNs allow one to equip tasks with context functions that enable the
identification of equal subproblems during the search process. We face the prob-
lem that we may create independently solvable identical tasks that cannot be
recognized as such. For example, the nested dichotomies in Fig. 1 both contain
the node labeled A,B. Covering both dichotomies in the course of plan deriva-
tion, we would encounter a task refine(v1 ) for some state s1 and refine(v2 ) for
some state s2, where v1 and v2 are different constants both encoding the refine-
ment of A,B. That is, the subproblems refine(v1 ) and refine(v2 ) are identical,
but s1 ̸= s2 and v1 ̸= v2 prevent us from detecting this equality. A context
function φt : S → S × Λ overcomes this problem by assigning a state s a pair
(s′,λ), where s′ ⊆ s is a reduction of the state s, such that a plan derived from
{t} is applicable in s′ iff it is applicable in s, and λ ∈ Λ is a bijective mapping
of constants in s′ to constants in L, i.e., a renaming of constants. In the above
example, we would have λ(v1) = AB = λ(v2), where AB is a constant, and the
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states are reduced to the literals really relevant to the subproblems such that
φrefine(v1 )(s1) = φrefine(v2 )(s2).

Incorporating context functions in the search algorithm simply means to
change the recursive call for the tasks u ∈ U in the lower else-branch to
RFD(φ(s), {λ(u)}, O,M). Figure 3 shows how this allows for the identification
of nodes in the search space.

Third, methods may be declared as lonely in order to denote that the possible
derivations of the resulting task network do not depend on the choices of the
parameters. This is important for methods that only check some property while
not affecting the state. For example, we may want to check that a node n is
labeled with exactly one class. We achieve this by (i) choosing one class in the
label of n, removing it, and (ii) checking whether the node label is then empty.
If n would be labeled with several classes, the emptiness check (ii) would fail
independently of which class we chose. Hence, we only need one representative
of the labels of n to check the condition, i.e., only one instance of that method
is required.

Just like simple task networks, ITNs induce a specific planning routine. It is
common sense that simple task networks can only be reasonably solved through
forward planning [7]. For ITNs, this is particularly true due to the context func-
tions, which can not be evaluated until the state of invocation is known. Typi-
cally, this is only the case if the task network is resolved in a forward fashion.

3 Case Study: Configuration of Dichotomies

The improvements that can be achieved by ITN planning (in the settings where
it applies) obviously depend on the concrete problem at hand. Here, we focus on
the problem of ND configuration already presented in the introduction. For this
example, we demonstrate a tremendous reduction of the search space (fully effec-
tive if AND-OR-graph search can reasonably be applied). Prior to proceeding,
let us again emphasize that the approach is by no means restricted to this prob-
lem, but applies to other configuration problems (e.g., the configuration of deep
neural networks) in very much the same way. All implementations are available
for public1.

3.1 Nested Dichotomies

As already explained, nested dichotomies reduce a polychotomous classification
problem to a set of binary problems (that are presumably easier to solve). To this
end, the set of classes is recursively partitioned into subsets, and for each such
partition, a classifier is trained on a given set of training data. The criterion to
be optimized is the overall prediction accuracy (percentage of correctly classified
items), which depends on the quality of the binary classifiers, and therefore on
the topology of the ND. Given a dichotomy, the accuracy can be estimated by
training the required binary classifiers and applying the ND to suitable test data.
1 Sources are available at http://www.felixmohr.de/en/research/crc901/itn.

http://www.felixmohr.de/en/research/crc901/itn
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Since training and evaluation are not relevant here, we ignore these steps in
our case study; instead, we focus on searching the space of nested dichotomies
(topologies). This already constitutes a challenging planning problem. It has
been shown that for n classes, there are (2n− 3)!! nested dichotomies [5], where
!! is the double factorial (and not taking the factorial twice). Hence, for 10 classes,
there are 34,459,425 many nested dichotomies—certainly too many for picking
one by hand.

3.2 Problem Formalization

We now explain how the configuration of such NDs can be encoded as a hierarchi-
cal planning problem. The formalization makes sure that each ND is constructed
exactly once. Besides the standard elements, it requires universal quantifiers,
conditional postconditions whose conditions may be 2-CNFs, and outputs, which
are separated by a semicolon. We need five operators, which will correspond to
primitive tasks:

1. init(n, x ; lc, rc)
Pre: in(x ,n)
Post:

∧
true → in(x , rc) ∧ bst(x , rc) ∧ sst(x , rc)
∀xn : in(xn ,n) ∧ xn ̸= x → in(xn , lc)
∀x2, xo : x ̸= x2 ∧ in(x2, n)∧

sst(x ,n) ∧ (¬in(xo ,n) ∨ xo > x2 ) → sst(x2 , lc)
∀xs : sst(xs ,n) ∧ xs ̸= x → sst(x , lc)

2. shift(y , x , lc, rc)
Pre: in(x , l) ∧ bst(y , r)
Post: in(x, r) ∧ bst(x, r) ∧ ¬in(x, l) ∧ ¬bst(y, r)

3. close(l , lw , r , rw)
Pre: in(lw , l) ∧ in(rw , r)
Post: ∅

Intuitively, the idea behind these operators is to split up the labels of a node
until every leaf node is labeled with a single class. A node is refined by creating
two child nodes (via the init operator), where initially all classes except one (x)
of the parent are in the left child. Then, we can use the shift operator to move
single classes from the left to the right child. The predicates bst and smt are
used to memorize the biggest and smallest elements of nodes, which is necessary
to avoid mirroring NDs, i.e. one separating A,B from C,D and the other C,D
from A,B The close operator is used to guarantee the existence of at least one
class in each of the children, which are the “witnesses” lw an rw.

We need two tasks with five methods to complete the specification. The
first task is refine(n), which means that the classes of node n shall be split up
somehow. The second task is config(l , r), which means that classes are to be
moved from the left to the right child of some node. In the following, lonely
methods are annotated with an asterisk, and independent tasks are underlined.
There are three methods for refine(n):
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1. finalSplit∗(n, x , y ; lc, rc)
Pre: in(x ,n) ∧ in(y ,n) ∧ y > x ∧ ∀z : in(z ,n) → z = x ∨ z = y
Task Network:
init(n, lc, rc, y)

2. isolatingSplit(n, x ; lc, rc)
Pre: in(x ,n)
Task Network:
init(n, lc, rc, y) → refine(lc)

3. doubleSplit(n, x , y ; lc, rc)
Pre: in(x ,n) ∧ in(y ,n) ∧ y > x ∧ ¬sst(x ,n)
Task Network:
init(n, lc, rc, y) → shift(y , x , lc, rc) → config(lc, rc) → refine(lc) → refine(rc)

There are two methods for config(l , r), which are

1. shiftElementAndConfigure(l , r , x , y)
Pre: in(x , l) ∧ bst(y , r) ∧ x > y
Task Network: shift(x, y, l, r) → config(l, r)

2. closeSetup∗(l , lw , r , rw)
Pre: in(lw , l) ∧ in(rw , r)
Task Network: close(l, lw, r, rw)

The initial task network is then simply {refine(root)} where the initial state s0
defines root and the ordering of classes. That is, s0 = ϕ(C) ∧

∧
x∈C in(x, root)

where C is the set of classes and ϕ maps C to an arbitrary explicit total order
of items of C, e.g., the lexicographical order. The latter one is important to
maintain the bst and sst predicates.

3.3 Results

The evaluation is a mixture of experiments and rough bound estimates. On the
one hand, it is non-trivial to calculate the exact search space sizes for a problem.
Moreover, since the results cannot be immediately generalized, this calculation is
not worth the effort. On the other hand, since we only want to demonstrate the
general effects, namely orders of magnitudes of search space reduction, accurate
values only distract from the key message. For the same reason we omit the
proofs for the bounds. In fact, we determined better bounds than the ones we
report here, but these are complicated to compute, which is not justified in light
of the limitations imposed by the setup and space.

The results are summarized in Fig. 4. In cases where the number could not
be computed algorithmically, values with an asterisk were estimated based on
expansion models. We now discuss the results in detail.

The Baseline: Standard STN/PFD Planning. We can easily modify the
above encoding to make it fit to standard STN planning. Since standard planning
cannot create new objects, we must define a set of objects for the nodes of the
dichotomy already in the initial state. Every nested dichotomy for k classes
has 2k − 1 many nodes, one of which is the root, so the initial state of the
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problem must define the root node object and 2k − 2 additional node objects.
The methods and operators that create objects are redefined in the sense that
the outputs are now inputs. An auxiliary predicate inuse(x ), which is initially
true for the root node and false for the other node objects, is required to be false
in the preconditions of the “creating” methods and operator, and it is set to true
in the postcondition of the creating operators. In addition, we add lc ̸= rc to the
preconditions in order to make sure that the two “created” objects are distinct.
Such a problem can then be fed to an implementation of PFD [7]; since we are
interested in the total search space size, we used a simple breadth first search.

In principle, a more efficient encoding is possible for STN planning. When
using alternative effects with universal quantifiers, we could simulate the con-
stant generation process. However, these are not supported by common hierar-
chical planners, and such an encoding would also require a neat implementation
of the planner in order to avoid an explosion of the node expansion time. Besides,
this option is limited to cases where we already know the number of required
constants, which is not the case in many scenarios, e.g., the configuration of a
deep neural network.

The search space growth under this encoding renders the search process hope-
less. One can show that the number of nodes induced for an OR-graph by PFD
planning is at least (2k − 3)!!k, where k is the number of classes.

The extreme search space explosion is caused by an unnecessary redundancy
in the set of found solutions. This is because different node objects are used
to carry out the same operation. For example, a node ni is split into children
(ni+1, ni+2), (ni+1, ni+3), . . ., (ni+1, nl), . . ., (nl−1, nl), even though only one
of those would be sufficient. This is avoided by creating new constants, which
are built exactly for that single refinement purpose. This problem was discussed
previously in the context of automated service composition [9]. As a consequence,
PFD produces 2, 72, and 17 280 solution nodes for k = 2, 3, and 4, respectively,
although there are actually only 1, 3, and 15 distinct solutions.

Improvement by Creating Constants. Now consider the case that we still
stick to an OR-graph search like PFD but allow the creation of new objects.
That is, the encoding is as specified above, except that we apply PFD instead of
the RFD algorithm introduced in Sect. 2.3. In the following, we call this strategy
PFD+OC.

In comparison to the naive approach of a standard STN encoding, the search
space size already looks much more feasible. For values of k = 2, ..., 10, the values
are contained in the second column of the table in Fig. 4. Clearly, the search space
is still quite huge, i.e., still grows exponentially in the number of classes, but the
order of magnitude is much less. More precisely, we can safely upper bound the
search space size by c · k · (2k − 3)!!, where k is the number of classes and c is a
small constant. By the above lower bound for naive search, this implies that the
search space size is smaller by a factor of at least ( 2k−3!!

c·k )k−1 > (2k − 3!!)k−2.
This enormous gap can be observed in Fig. 4 between the green and the red line.
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# classes PFD PFD + OC RFD
2 1 15 18
3 27 59 64
4 56 625 349 202
5 1.3E+10* 2 694 625
6 7.1E+17* 26 000 1 935
7 1.3E+28* 301 833 5 988
8 1.1E+41* 4 094 241 18 456
9 5.8E+56* 42 788 697* 56 563
10 2.4E+75* 660 099 747* 172 381

(a) Number of edges
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Fig. 4. Search space sizes for the three models measured in terms of the number of
edges, which corresponds to the number of nodes for STN. Values with asterisk were
obtained by estimates, since the model exceeded the machine resources. (Color figure
online)

Improvement by ITN Planning. Let us now consider the savings achieved by
ITN planning. That is, we apply the RFD algorithm to the problem description
as given above.

The result is again a dramatic search space reduction. The search space
growth is still exponential but significantly less than in the case of STN planning
with object creation. We can lower bound the search space size of PFD+OC by
k · (2k − 3)!! ≫ 10k−2 and upper bound the search space size of ITN planning
by 3k+1. These bounds imply that the search space size of PFD+OC is at least
3k−2 times higher than the search space size induced by running an AND-OR-
graph search on the graph imposed by the RFD algorithm. In other words, for
deriving NDs, the search space of PFD+OC is exponentially larger than the
one of ITN planning.

Another important (though maybe typical) observation one can make by
comparing the two blue lines in Fig. 4 is that the number of edges in ITN plan-
ning grows slower than the number of solutions. This is because the solutions
are implicitly stored in the sub-graphs of the search space, so we actually need
less nodes and edges to cover all solutions than in the other approaches. The
impact of such an efficient representation can be quite paramount. For example,
for the case of NDs it is often said that one cannot consider all NDs [5], which is
a reasonable assertion at first sight given their tremendous number. Of course,
there are limits. However, with an admissible and sufficiently informative heuris-
tic for solution bases, we can actually (implicitly) consider all NDs even for sizes
that significantly exceed the possibilities of OR-graphs.

3.4 Discussion

The case study of ND configuration impressively shows the potential benefits of
ITN planning with respect to the search space size. In fact, the improvements
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are so obvious that no further discussion is needed. Instead, we dedicate the
remaining space to the discussion of some more subtle aspects.

For example, a reduction of the search space does not immediately imply
better solutions. First, in spite of all savings, we usually cannot construct the
complete search graph. Instead, we still need to rely on heuristic search to explore
promising parts of the search space. If these heuristics are good enough, it may
happen that we find comparable solutions, or even the optimal ones, within a
given time bound.

Second, an important requirement for successful AND-OR-graph search is
that the quality of a solution can be aggregated from its partial solutions. If this
is not directly possible, AND-OR-graph search may even deliver worse results
than a simple best-first search, which has a complete solution base available in
every node, no matter the search space size. However, at least for the shift from
classical STN planning to STN planning with object creation, we can be certain
that solution qualities will be at least as good and often better. Any heuristic
we can apply for the classical STN planning version, we can also apply for the
one with object creation. More precisely, for each node n of the search space of
the object creation version, there is a set N(n) of actually equivalent nodes in
the search space of the classical problem formulation that are very likely to be
all expanded before any solution is found.

To summarize, an ITN planning encoding does significantly decrease the
search space size regardless of whether the search takes place in an OR-graph or
an AND-OR-graph. Compared to the use of a classical encoding, this enables a
much more efficient search. In this regard, AND-OR-graph search is even better
than OR-graph search, but this approach assumes that solution quality can be
aggregated from partial solutions.

4 Related Work

We are not the first in pointing out the necessity to create new constants during
planning. In particular, for web service composition [10], the positive effect of
allowing the introduction of new objects on the search space size was already
discussed in [9]. In fact, such a technique was even incorporated earlier into a
forward planning, [17], backward planning [12], and partial ordered planning [11].
However, we are not aware that constant creation has been used in hierarchical
planning.

Constant creation can be simulated with effects that allow for negation, uni-
versal quantifiers, and implications. However, the only planners allowing univer-
sal quantifiers we are aware of, which are SIPE-2 [18], SHOP2 [13], and SIADEX
[2], have no support for conditional effects; SHOP2 and SIADEX do not even
support negations in the effects [6]. But in many cases, we have no canonical
upper bound for these constants anyway. While we do have one in our example,
in others, like configuring a deep neural network, there is no such bound for the
number of layers.
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A recent survey [6] categorizes HTN planning methods and discusses expres-
siveness of HTN planning languages and their impact on parallelizability. Cur-
rently, the most popular approach to implement HTN planning is depth first
search in an OR-graph, which is adopted for instance by SIPE-2 [18], UCMP
[3], SHOP2 [13], and SIADEX [2]. We are not aware of any other hierarchical
planning algorithm that applies AND-OR-graph search.

The idea of reusing subsolutions has been addressed through the notion of
“task sharing”. Task sharing identifies common sub-tasks for sharing within a
plan [16]. In [1] the HTN formalism is compared to a unified version of Hierar-
chical Goal Network (HGN) [14] and task sharing. However, task sharing only
reuses subsolutions within a plan but does not use this knowledge within plan
search, e.g., by organizing the search space like ITN.

5 Conclusion

We have introduced independent network planning as an alternative to classical
hierarchical planning methods such as STN planning. While we do not claim
that the required property of independent tasks is satisfied in planning problems
frequently considered in the competitions (which it is probably not), we have
shown at the example of nested dichotomy configuration that there are relevant
practical problems where the conditions apply and where the search space size is
decreased by several orders of magnitude. Nested dichotomies are not a patho-
logical case: Since the core idea is to reuse computation results, we assume that
ITN planning plays a role similar to dynamic programming, which makes it a
key technology in automated service composition problem.

Our current work is focused on the use of ITN planning for automated
machine learning [4], i.e., the automated configuration of data processing and
model induction pipelines for learning predictive models from data. While our
example of nested dichotomies originates from this domain, it constitutes only
a first step and small share in this endeavor.
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12. Mohr, F., Jungmann, A., Kleine Büning, H.: Automated online service composi-
tion. In: 2015 IEEE International Conference on Services Computing, SCC, pp.
57–64 (2015)

13. Nau, D.S., Au, T., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.:
SHOP2: an HTN planning system. J. Artif. Intell. Res. (JAIR) 20, 379–404 (2003)

14. Shivashankar, V., Kuter, U., Nau, D.S., Alford, R.: A hierarchical goal-based for-
malism and algorithm for single-agent planning. In: Proceedings of AAMAS, pp.
981–988 (2012)

15. Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: HTN planning for web
service composition using SHOP2. J. Web Semant. 1(4), 377–396 (2004)

16. Smith, D.E., Frank, J., Cushing, W.: The ANML language. In: Proceedings of
KEPS (2008)

17. Weber, I.M.: Semantic Methods for Execution-level Business Process Modeling:
Modeling Support Through Process Verification and Service Composition. LNBIP,
vol. 40. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05085-5

18. Wilkins, D.E.: Can AI planners solve practical problems? Comput. Intell. 6(4),
232–246 (1990)

19. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S web
services composition using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.)
ISWC 2003. LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-39718-2 13

http://dx.doi.org/10.1007/978-3-319-34168-2
http://dx.doi.org/10.1007/978-3-319-34168-2
http://dx.doi.org/10.1007/978-3-642-05085-5
http://dx.doi.org/10.1007/978-3-540-39718-2_13
http://dx.doi.org/10.1007/978-3-540-39718-2_13


Complexity-Aware Generation of Workflows
by Process-Oriented Case-Based Reasoning

Gilbert Müller(B) and Ralph Bergmann

Business Information Systems II, University of Trier, 54286 Trier, Germany
{muellerg,bergmann}@uni-trier.de

http://www.wi2.uni-trier.de

Abstract. One of the biggest challenges in business process manage-
ment is the creation of appropriate and efficient workflows. This asks
for intelligent, knowledge-based systems that assist domain experts in
this endeavor. In this paper we investigate workflow creation by apply-
ing Process-Oriented Case-Based Reasoning (POCBR). We introduce
POCBR and describe how it can be applied to the experience-based gen-
eration of workflows by retrieval and adaptation of available best-practice
workflow models. While existing approaches have already demonstrated
their feasibility in principle, the generated workflows are not optimized
with respect to complexity requirements. However, there is a high inter-
est in workflows with a low complexity, e.g., to ensure the appropriate
enactment as well as the understandability of the workflow. The main
contribution of this paper is thus a novel approach to consider the work-
flow complexity during the workflow generation. Therefore, a complexity
measure for workflows is proposed and integrated into the retrieval and
adaptation process. An experimental evaluation with real cooking recipes
clearly demonstrates the benefits of the described approach.

Keywords: Case-based reasoning · Process-Oriented Case-Based Rea-
soning · Workflow complexity · Workflow adaptation

1 Introduction

Business process management is a well-established discipline that deals with the
identification, modeling, analysis, improvement, and implementation of business
processes [1]. Workflow management is a specific area of business process man-
agement that aims at “the automation of a business process, in whole or part,
during which documents, information or tasks are passed from one participant
to another for action, according to a set of procedural rules” [39]. In the recent
years, the use of workflows has significantly expanded from the original domain
of business processes towards new areas such as e-science [36], information inte-
gration [14], private activities [12], and even cooking [28]. One of the biggest
challenges in the application of workflows today arises from the fact that work-
flows must be constructed or adapted more frequently [1,11,32]. This asks for
intelligent, knowledge-based systems that assist domain experts in the creation
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 207–221, 2017.
DOI: 10.1007/978-3-319-67190-1 16
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or adaptation of workflows. Such systems must be able to represent and reason
with knowledge about workflows and workflows elements, such as task, and data
items.

In our research we address this problem by the application of Process-
Oriented Case-Based Reasoning (POCBR) [25], which deals with the integration
of Case-Based Reasoning (CBR) with process-oriented research areas like work-
flow management. POCBR aims at providing experience-based support for the
automatic extraction [10], generation [20], execution [4], monitoring, and opti-
mization [26,35] of workflows. We use POCBR to support the construction of
workflows by reuse of already available workflows. Workflows are retrieved [6] and
subsequently adapted [27,29,30] to new purposes and circumstances. More pre-
cisely, a case base (or repository) of successful workflows reflecting best-practices
in a domain is the core of such a POCBR approach. Users can query the repos-
itory with a specification of important properties of the workflow s/he wants
to create in order to retrieve potentially reusable workflows. Using adaptation
methods from CBR, workflows can be automatically adapted to better match
the user’s requirements.

While existing approaches have already demonstrated their feasibility in prin-
ciple, the generated workflows are not optimized with respect to complexity
requirements. However, complex workflows are more difficult to understand and
to maintain, which may also result in a higher error-proneness of the workflow
model [9]. Furthermore, the enactment of workflow models must not exceed the
skills of the workflow participants or given time restrictions. In this paper, we
address this issue by proposing a novel approach for the complexity-aware gen-
eration of workflows. Therefore, we introduce a measure for workflow complexity
that can be used to asses created workflows automatically. Then, we adjust the
POCBR methods for retrieval and adaptation such that this measure is consid-
ered during workflow creation. The proposed approach is fully implemented and
demonstrated in the domain of cooking using workflows describing real cooking
recipes. The complexity-aware creation of cooking workflows thus leads to new
recipes which are easy to prepare.

The remainder of this paper is organized as follows: The next section presents
the foundations of POCBR and our approaches for retrieval and adaptation.
Then, we introduce a complexity measure for workflows and explain how the
POCBR approaches can be adjusted to consider this measure. Finally, we present
an experimental evaluation of the described approach.

2 Process-Oriented Case-Based Reasoning

Case-Based Reasoning is a problem solving paradigm built upon a rule of thumb
suggesting that “similar problems tend to have similar solutions” [2,16,34]. The
core of every case-based problem solver is a case base, which is a collection of
memorized experience, called cases. The R4-CBR cycle proposed by Aamodt
and Plaza [2] consists of the four CBR phases retrieve, reuse, revise, and retain,
which are performed sequentially when a new problem (also called new case or
query) must be solved [22].
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Fig. 1. POCBR architecture

In POCBR a case is usually a workflow or process description expressing
procedural experiential knowledge. Most basically, POCBR aims at generating
new workflows or processes by retrieval and reuse of existing ones. The overall
architecture the POCBR approach we follow is illustrated in Fig. 1. First, a case
base (or repository) of semantic workflows is constructed by selecting appropriate
best-practice workflows from existing sources. The workflows in this case base can
be reused, i.e., for a particular problem situation a suitable process represented
as workflow can be suggested. This is primarily achieved by retrieving the best
matching workflow from the repository. If required, the workflow is automatically
adapted according to the requirements and restriction in the particular scenario.
In the following of this section, we will summarize our related research in the
field of POCBR.

2.1 Semantic Workflows

In order to formalize procedural experience, we employed semantic workflows
[6] as case representation. Broadly speaking, a workflow consists of a set of
activities (also called tasks) combined with control-flow structures like sequences,
parallel (AND) or alternative (XOR) branches, as well as repeated execution
(LOOP). In addition, tasks exchange certain data items, which can also be of
physical matter. Tasks, data items, and relationships between the two of them
form the dataflow. For the example application domain of cooking, a workflow
describes the preparation steps required and ingredients used in order to prepare
a particular dish. Here, the tasks represent the cooking steps and the data items
refer to the ingredients being processed.

We consider workflows represented as a graph W = (N,E) consisting of
nodes N = NT ∪ ND ∪ NC and edges E = EC ∪ ED. Nodes represent tasks
NT , data nodes ND, or control-flow nodes NC . The execution order of tasks is
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defined by control-flow edges EC ⊆ (NT ∪NC)×(NT ∪NC) and the consumption
or production of data nodes is specified by dataflow edges ED ⊆ (NT × ND) ∪
(ND × NT ). Furthermore, we enforce that each task t ∈ NT consumes (∃d ∈
ND : (d, t) ∈ ED) and produces (i.e., ∃d ∈ ND : (t, d) ∈ ED) at least one data
node. An example workflow graph for a sandwich recipe is illustrated in Fig. 2.

spread addgrate sprinkle bake

baguette salami

cheese

sandwich
dish

+ +

task nodedata node

open

layer

slice

cucumber

mix

mayonnaise ketchup tabasco sandwich
sauce

Fig. 2. Example of a block-oriented cooking workflow

To support retrieval and adaptation of workflows, the individual workflow
elements are annotated with ontological information resulting in a semantic
workflow [6]. We use a taxonomy of data items and a taxonomy of tasks to
define the relevant aspects of their semantics and in particular as a means for
similarity assessment. A taxonomy organizes the involved terms in a generaliza-
tion/specialization hierarchy. In particular, an inner node represents a general-
ized term that stands for the set of more specific terms below it. An example
data item taxonomy in the cooking domain is given in Fig. 3 organizing cook-
ing ingredients. For example, the generalized term vegetarian stands for the
set {potatoes, rice, noodles, . . .}. Inner nodes in generalized workflows represent
that an arbitrary ingredient from the set of its specializations can be chosen.

ingredients

vegeterian non vegeterian

vegetables liquidsside dish

... ...

seafood meat

...

beef pork chicken turkey

...

potatoes rice noodles

0.01

0.10.1

0.60.70.5 0.6 0.3

Fig. 3. Example of an ingredient taxonomy
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2.2 Similarity-Based Workflow Retrieval

We developed a semantic similarity measure for workflows that enables the sim-
ilarity assessment of a case workflow Wc w.r.t. a query workflow Wq [6], i.e.,
sim(Wc,Wq). Each query workflow element xq ∈ Wq is mapped by the function
m : Wq → Wc to an element of the case workflow xc ∈ Wc, i.e., xc = m(xq). The
mapping is used to estimate the similarity between the two workflow elements
utilizing the taxonomy, i.e., sim(xq, xc). The similarity of tasks or data items
reflects the closeness in the taxonomy and further regards the level of the tax-
onomic elements. In general, the similarity is defined by the attached similarity
value of the least common ancestor, e.g., sim(beef, pork) = 0.6 (see Fig. 3). If
a more general query element such as meat is compared with a specific element
below it, such as pork, the similarity value is 1. This ensures that if the query
asks for a recipe containing meat, any recipe workflow containing any kind of
meat is considered highly similar. All the similarity values of the mappings are
then aggregated to estimate an overall workflow similarity.

To capture user requirements for a workflow to be generated, we employ
POQL (Query Language for Process-Oriented Case-Based Reasoning) [31]. It
allows to represent a query q consisting of desired and undesired data items
and/or tasks of the workflow to be constructed. Let qd = {x1, . . . , xn} be a
set of desired data items or tasks and qu = {y1, . . . , yn} be a set of undesired
data items or tasks. A query q is defined as (x1 ∧ . . . ∧ x2) ∧ ¬y1 ∧ . . . ∧ ¬yn.
POQL also enables the specification of generalized terms, i.e., if a vegetarian
dish is desired, this can be defined by ¬meat. The query q is then used to guide
retrieval, i.e., to search for a workflow which at best contains all desired elements
but no undesired element. Based on the query q the not matching elements can
be identified, enabling to determine the elements to be deleted or added to the
retrieved workflow during the subsequent adaptation stage. The query fulfillment
for a query q and a workflow W is defined as the similarity between the desired
tasks/data items and the workflow W and the number of undesired tasks/data
items not contained inW according to the semantic similarity measure in relation
to the size of the query:

QF (q,W ) =
∑

x∈qd
sim(x,m(x)) + |{y ∈ qu|sim(y,m(y)) ̸= 1}|

|qd|+ |qu|
(1)

Consequently, similar desired data items or tasks increase the query fulfill-
ment, while matching undesired data items or tasks reduce the query fulfillment
between the POQL query and the workflow.

2.3 Automatic Workflow Adaptation

We aim at supporting the users in situations in which the best matching workflow
from the case base does not sufficiently fulfill the query. This requires that the
workflow is automatically adapted according to the restrictions and requirements
specified in the query, i.e., workflow elements or fragments are added or deleted
according to the particular needs.
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For that purpose, we developed several domain-independent workflow adap-
tation methods which we now briefly describe (for a more detailed description
of these methods we refer to our previous work [27–30]). Since such adapta-
tion methods usually require a significant amount of domain-specific adaptation
knowledge, we additionally developed new methods that allow to automatically
learn the required adaptation knowledge from the workflow repository. Hence,
we distinguish between a learning phase of adaptation knowledge and a problem
solving phase in which for a given query the best matching workflow is adapted
such that it matches the particular problem scenario at best (see Fig. 1). The
developed adaptation methods can mostly be classified into transformational
adaptation, compositional adaptation and adaptation by generalization [22].

Transformational Adaptation. The operator-based adaptation [30] is a trans-
formational adaptation method in which the individual transformation steps are
performed by so called workflow adaptation operators. They are denoted in a
STRIPS-like manner. An operator consists of two workflow sub-graphs we call
streamlets: a DELETE-streamlet specifies a workflow fragment to be deleted
from the workflow and an ADD-streamlet represents a workflow fragment to
be added to the workflow. The overall adaptation is implemented as a search
process that aims at incrementally modifying the workflow with the goal to
increase the query fulfillment (see formula 1). The required workflow adapta-
tion operators can be learned from the workflow repository by analyzing pairs
of highly similar workflows (selected by using a similarity threshold). For each
pair, the difference is determined and workflow operators are generated, whose
ADD and DELETE-streamlets basically cover those differences. Roughly speak-
ing, the generated operators thus transform one workflow of the pair into the
other one.

Compositional Adaptation. The developed method for compositional adap-
tation is based on the idea that each workflow can be decomposed into mean-
ingful sub-workflows called workflow streams [27]. This decomposition is based
on the fact that the final workflow output is quite often achieved by producing
partial outputs that are somehow combined to create the final workflow out-
put. Such workflow streams can be automatically discovered from the workflow
repository in the learning phase. Workflow streams represent valuable adaptation
knowledge, which are used as “chunks” that can be used as replacement during
compositional adaptation. More precisely, a workflow stream can be replaced by
a stream learned from another workflow that produces the same partial output
but in a different manner, i.e., with other task or data items. Workflow streams
can only be replaced, if their data nodes indicate that they represent the same
kind of sub-process. This ensures that replacing an arbitrary stream does not
violate the syntactic correctness of the workflow. Compositional adaptation is
also implemented as a search process that aims to increase query fulfillment, but
it replaces larger portions of a workflow than transformational adaptation.
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Adaptation by Generalization and Specialization of Workflows. Finally,
generalization and specialization was investigated as a third adaptation approach
[29]. A generalized workflow is structurally identical to the base workflow but
the semantic descriptions of task and data items are generalized. We general-
ize a workflow by considering a set of similar workflows as training samples and
employ the taxonomy as generalization hierarchy from which generalized seman-
tic descriptions are selected. The computed generalized cases are then stored as
a generalized workflow repository. During problem solving, adaptation is per-
formed by specializing a previously generalized workflow in a manner such that
query fulfillment is maximized.

Integration of Adaptation Methods. The three approaches can be inte-
grated to form a hybrid adaptation approach that combines the three adaptation
capabilities [28]. This integration involves the actual adaptation process as well
as the learning phase.

First of all, during the learning phase, adaptation operators and workflow
streams can be learned not only from the available specific workflows, but also
from workflows resulting from generalization. Thus, we first apply generalization
to the workflows in the case base and then we learn adaptation operators and
workflow streams from the generalized workflows. The learned knowledge can
then be used when adapting generalized workflows retrieved from the generalized
case base.

 POQL Query

generalized
casebase streams

adaptation
operators

adaptation specialization

generalized casebase

? retrieval

Fig. 4. Integration of adaptation approaches

The adaptation process itself then uses the three adaptation methods in com-
bination (see Fig. 4). First, similarity-based retrieval selects the best matching
workflow from the generalized case base of semantic workflows. Then, composi-
tional adaptation is applied. Thereby, entire sub-workflows (e.g., the preparation
of the sandwich sauce) are replaced by matching learned sub-workflows (e.g.,
other sauces) from other workflows. Next, adaptation is performed by applying
adaptation operators, which result in additional modifications of the workflows
(e.g., the ingredient tomato is replaced by mushrooms). Finally, the workflows
are specialized (if necessary) by replacing single generalized data items or tasks
by means of the specified taxonomy (e.g. the generalized ingredient meat is
replaced by chicken).
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In all approaches, the adaptation of the workflow is performed by chaining
several adaptation steps w α1→ w1

α2→ . . .
αn→ wn = w′, which iteratively transforms

the retrieved workflow w towards an adapted workflow w′. This process solves an
optimization problem aiming at maximizing the query fulfillment (as specified
in formula 1). This optimization process is implemented as a heuristic search
procedure with the goal to achieve an adapted workflow with the highest query
fulfillment possible. In the domain of cooking, this integrated adaptation process
aims at adding missing desired ingredients/preparation steps and at removing
undesired contained ingredients/preparation steps specified in the query.

3 Complexity Assessment of Workflows

We now summarize related work on workflow complexity and then introduce
a novel criterion for the retrieval and adaptation process that considers the
complexity of workflows in addition to the query fulfillment. Thus, retrieval and
adaptation become complexity-aware by optimizing the constructed workflow
also in this regard.

3.1 Business Process Complexity

In business process literature, several assessment approaches exist that aim
at measuring process quality. Existing quality models [21] propose quality
attributes, criteria, and predicates. They relate to the efficacy and efficiency of
business processes and measure the quality of process design, implementation,
and enactment. In addition, quality metrics have been proposed for business
process models [13,23,37] as a means for the systematic and automated assess-
ment of certain quality attributes. The discussions of process model quality also
involves complexity as an important issue. Several authors discuss process com-
plexity from the perspective of pragmatic quality referring to the understandabil-
ity of the process model [24,33]. Various complexity measures for process models
have been proposed in the literature. A study performed by Latva-Koivisto [18],
for example, suggests the use of graph complexity measures (e.g., coefficient net-
work complexity or a complexity index ). Furthermore, various approaches assess
the complexity of business processes based on established measures in software
development [7,8,19]. For example, Cardoso et al. [9] present complexity mea-
sures that include the number of activities or control-flow elements, consider
the complexity induced by control-flow nodes, or the complexity resulting from
the dataflow. As an alternative approach, Vanderfeesten et al. [38] introduce the
cross-connectivity metric considering the connectivity strength between process
elements. For process models based on petri nets (referred to as workflow nets)
Lassen and Van der Aalst [17] presented several complexity metrics. However,
despite the large number of different complexity measures, no standard approach
for assessing the complexity of workflows currently exists.
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3.2 Complexity-Aware Query Fulfillment

In order to consider complexity during the construction process, a new
complexity-aware criterion is required. In this work, we consider the complexity
of a workflow W as a generic function complexity(W ) → [0, 1] that assigns a
high value to workflows with a high complexity and a lower value to less complex
workflows.

QFcomplexity(q,W ) = α ·QF (q,W ) + (1 − α) · (1 − complexity(W )) (2)

Based on this complexity function, we define a new complexity-aware query
fulfilment measure QFcomplexity(q,W ) → [0, 1] (see Eq. 2). Both criteria are
weighted by a parameter α ∈ [0, 1]. The complexity-aware query fulfilment mea-
sure replaces the original measure specified in formula 1. It is used during the
retrieval process to select the best matching workflow from the case base and dur-
ing the hybrid adaptation process. Thus, it aims at optimizing the constructed
workflow also with regard to complexity. Please note that this results in a multi-
objective optimization problem and thus the adaptation may not be able to
maximize the query fulfillment and to reduce the complexity of the workflow at
the same time.

3.3 Complexity Measure

Due to the various approaches and perspectives to measure workflow complexity
presented in the literature, we assume that the complexity of a workflow is not
determined by a single feature, but is composed of several criteria. We introduce
a new complexity function complexity(W ) → [0, 1] that covers five different
indicators for determining the complexity of a workflow (see Table 1).

Table 1. Complexity criteria

Critera description Criteria measure

Number of data nodes |ND|
max{|ND

1 |,...,|ND
n |}

Number of control-flow elements |NT ∪NC |
max{|NT

1 ∪NC
1 |,...,|NT

n ∪NC
n |}

Complexity of dataflow 1 − 2·|NT |
|ED|

Complexity of tasks

∑

t∈NT
taskComplexity(t)

|NT |

Lead time leadTime(W )
max{leadTime(W1),...,leadTime(Wn)}

The first two criteria measure basic complexity properties, i.e., the number
of control-flow elements (task and control-flow nodes) as well as the number
of data nodes in the workflow W = (N,E). Both measures are normalized by
the highest amount of control-flow elements or data nodes contained in a work-
flow from the case base. Consequently, workflows with more data nodes or more
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control-flow elements are assumed to be more complex. Furthermore, the com-
plexity of tasks as well as the complexity of dataflow represent two additional
complexity criteria. The complexity measure for the dataflow considers the aver-
age amount of data nodes consumed and produced by the tasks, which assigns
a high complexity value to those workflows in which the tasks NT consume and
produce a large amount of data nodes1 ED. For computing the complexity of
tasks, which determine the required skill level for executing the task [21], each
task t in the taxonomy is annotated by an estimated task complexity value
taskComplexity(t) ∈ [0, 1]. The criterion is defined as the average complexity
of the tasks in the workflow W . Finally, the total time to execute a particu-
lar workflow (also referred to as lead time [15]) is also considered as an indi-
cator for the workflow complexity. Therefor, each task t in the taxonomy is
annotated by an approximated throughput time throughputT ime(t) ∈ N . The
throughput time [15] measures the execution time of a task t as the elapsed
time between finishing the previous task and finishing the particular task t.
The lead time for a workflow W is then heuristically measured by aggregating
the throughput times of the tasks. We denote maxPath(W ) ⊆ NT as those
tasks that are part of the longest sequence path with regard to highest total
throughput time from start to end node. The overall lead time is then computed
by adding up the single throughput times of the tasks in maxPath(W ), i.e.,
leadT ime(W ) =

∑
t∈maxPath(W ) throughputT ime(t). To assess the correspond-

ing complexity, this value is normalized in relation to the workflows from the
repository as defined in Table 1. The overall complexity measure complexity(W )
of a workflow W is then defined as the arithmetic mean of these five complexity
criteria.

3.4 Complexity in the Cooking Domain

As our evaluation is performed in the cooking domain, we will now briefly
describe the implications of the domain-independent complexity measure
described in the previous section on cooking recipes. In the cooking domain,
the complexity of workflows basically determines the difficulty of preparation.
Due to several reasons, amateur chefs may search for easy-to-prepare cooking
recipes with a low complexity. Thus, the complexity-aware generation of cooking
workflows is a highly relevant application field.

We assume that also in cooking the complexity is composed by various cri-
teria that are mostly reflected by the introduced complexity measure. Thus, we
measure the number of preparation steps (number of control-flow nodes) and
number of ingredients (number of data nodes) as two basic complexity crite-
ria. Furthermore, the complexity of dataflow determines the complexity of the
preparation, assuming that recipes in which each preparation step consumes and
produces a high amount of ingredients is more complex. The application of task
complexity in the cooking domain measures the complexity of preparation steps.

1 Please note that each task in a workflow consumes and produces at least one data
node, respectively.
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For instance, the preparation step blanche is more complex than the prepara-
tion step mix. The lead time denotes the duration time of preparation, which
is another indicator for the preparation complexity. The preparation step mix,
for example, is considered as short, while baking results in a longer preparation
time.

4 Experimental Evaluation

We implemented the described approach for complexity-aware workflow gener-
ation by extending our generic POCBR system CAKE [5]. Using CAKE, we
also developed an application in the cooking domain, called CookingCAKE [28],
which uses a workflow repository of 61 sandwich recipe workflows manually mod-
elled from various Internet sources (e.g., sandwich recipes on WikiTaaable [3]2).
The resulting workflows are purely sequential, thus no control-flow nodes occur.
The employed taxonomies of preparation steps and ingredients are based on the
WikiTaaable ontology and were manually annotated with similarity, preparation
time, and task complexity values.

A running prototype of the complexity-aware workflow generation in Cook-
ingCAKE is available under http://cookingCAKE.wi2.uni-trier.de/complexity.
The query of CookingCAKE involves desired and undesired ingredients as well
as desired and undesired preparation steps. An example query could ask to
generate a salmon and cherry tomato recipe without using any kind of cheese.
CookingCAKE then selects the best matching workflow from the repository and
subsequently adapts it according to the novel criterion QFcomplexity(q,W ). Thus,
the system tries to maximize the query fulfilment on the one hand and on the
other hand aims at reducing the complexity of the workflow to generate an
appropriate easy-to-prepare recipe for an amateur chef.

To evaluate the complexity-aware approach for workflow construction in the
cooking domain, we performed several leave-one-out experiments. We generated
61 queries automatically as follows: for each workflow W in the repository, a
corresponding query was constructed by selecting the most similar workflow W ′

from the repository and by determining the difference between the two workflows.
The constructed query considers workflow elements as desired that are only con-
tained in the workflow W and considers the elements only contained in workflow
W ′ as undesired. At most 4 randomly selected ingredients and 2 preparation
steps are determined as desired or undesired respectively. For each query we
executed the described POCBR approach to generate an appropriate workflow,
while the workflow from which the query was derived was temporarily removed
from the repository. We performed this experiment with the standard approach,
applying only the query fulfillment criterion as well as with the complexity-aware
approach. For the complexity-aware recipe construction we chose the parameter
α = 0.5 to consider the query fulfillment and the complexity in equal shares. For
both approaches, we measured the query fulfillment, the complexity, and the

2 http://wikitaaable.loria.fr.

http://cookingCAKE.wi2.uni-trier.de/complexity
http://wikitaaable.loria.fr
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Table 2. Evaluation results: average values over all queries

Query fulfillment Complexity Combined Computation time

Standard retrieval 0.83 0.43 0.70 1.15 s

Standard adaption 0.92 0.48 0.72 18.73 s

Complexity-aware retrieval 0.75 0.28 0.74 1.42 s

Complexity-aware adaption 0.87 0.29 0.79 9.49 s

combined complexity-aware criterion of the retrieved as well as of the adapted
workflow.

The evaluation results illustrated in Table 2 clearly demonstrate several ben-
efits of the presented approach. First of all, the experiments confirm our previous
experimental evaluations of the adaptation methods [27,29,30] by showing that
they lead to a significant increase in query fulfillment (from 0.83 to 0.92 for the
standard approach and from 0.75 to 0.87 for the complexity-aware approach).
For the domain of cooking this means that cooking recipes are generated that are
close to the users requirements. Second, the impact of the proposed complexity-
aware query fulfillment approach is clearly visible. During retrieval, less complex
workflows are selected as starting point for adaptation. In both approaches adap-
tation tends to increase the workflow complexity in favor of query fulfillment.
However, altogether with the complexity-aware approach, the complexity of the
generated workflow is significantly reduced (−40%), while the query fulfillment
itself is only slightly decreased (−5%). Furthermore, the overall computation
time is significantly decreased3.

5 Conclusions and Future Work

This paper presents a new approach to consider workflow complexity during
the automatic generation of workflows in a case-based manner. The complexity
measure is composed of several criteria including the number of tasks and data
items, the complexity of the tasks and the dataflow as well as the lead time. We
demonstrated the benefits of the presented approach in an experimental study
in the domain of cooking based on real cooking recipes and ontologies.

In future work, the complexity assessment will be extended and evaluated
by considering various other complexity and quality measures (see Sect. 3.1). So
far, we demonstrated our methods primarily in the domain of cooking. Thus,
we further aim at broadening the experimental basis by exploring existing work-
flow and business process model repository collections. In particular, we will
investigate the field of scientific text mining workflows in more detail.

Acknowledgements. This work was funded by the German Research Foundation
(DFG), project number BE 1373/3-3.

3 The adaptation time depends on the size of the workflow, which is usually smaller,
if a less complex workflow is retrieved.
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Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 480–494. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-69534-9 36

39. Workflow Management Coalition: Workflow management coalition glossary & ter-
minology (1999)

http://dx.doi.org/10.1007/978-3-642-45100-3_8
http://dx.doi.org/10.1007/978-3-642-45100-3_8
http://dx.doi.org/10.1007/978-3-540-69534-9_36


LiMa: Sequential Lifted Marginal Filtering
on Multiset State Descriptions
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Abstract. Maintaining the a-posteriori distribution of categorical states
given a sequence of noisy and ambiguous observations, e.g. sensor data,
can lead to situations where one observation can correspond to a large
number of different states. We call these states symmetrical as they can-
not be distinguished given the observation. Considering each of them
during the inference is computationally infeasible, even for small scenar-
ios. However, the number of situations (called hypotheses) can be reduced
by abstracting from particular ones and representing all symmetrical
in a single abstract state. We propose a novel Bayesian Filtering algo-
rithm that performs this abstraction. The algorithm that we call Lifted
Marginal Filtering (LiMa) is inspired by Lifted Inference and combines
techniques known from Computational State Space Models and Multiset
Rewriting Systems to perform efficient sequential inference on a para-
metric multiset state description. We demonstrate that our approach is
working by comparing LiMa with conventional filtering.

1 Introduction

Maintaining the a-posteriori distribution of categorical states given a sequence
of noisy and ambiguous observations, e.g. sensor data, can lead to situations
where one observation can correspond to a large number of different states.
For example, when tracking persons based on anonymous presence sensors, we
do not know which concrete person corresponds to which observation (track)
[9,11,25]. We call such persons (more general entities) observation equivalent,
i.e. they cannot be distinguished, based on the current observation. Thus, the
number of states that need to be considered can grow very large, even for small
scenarios. For example, when tracking the location and movement of 6 persons in
10 rooms, there are already 106 possible states. Even though this is a theoretical
number of states, also the states that actually need to be tracked and cannot be
precluded given the observation (also called hypotheses) is large. Thus, inference
quickly becomes infeasible for real-world sized domains due to the combinatorial
explosion with respect to the number of hypotheses that need to be tracked.

Several approaches exists that try to exploit such symmetries. Approaches
that abstract from the identity of the entities [11,16] cannot be used, because
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 222–235, 2017.
DOI: 10.1007/978-3-319-67190-1 17
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identifying observations might reveal the correspondence between some of the
tracks and some of the identities. Additionally, in order to answer application
specific questions, we might need the identity of entities. Such scenarios require
an inference algorithm that can represent observation equivalent entities as a
group, thus compactly representing states that are different but cannot be dis-
tinguished given the sensor data. However, this approach must also be able to
break symmetries, i.e. split groups, when indicated by observations. Recently,
Lifted Inference [12,18,23] showed that inference in graphical models can be
performed on a first-order level, by reasoning over equivalent random variables
as a group. However, none of these approaches allows to recursively compute
the a-posteriori distribution, which is necessary when the complete observation
sequence is not known in advance such as when using real world sensor data.

We propose a novel filtering algorithm that can compactly represent sym-
metrical states. It employs a multiset state representation that allows to group
observation equivalent entities. This abstract state representation is embedded in
the Bayesian Filtering framework in order to recursively compute the a-posteriori
state distribution. For this purpose, the next belief state according to a transi-
tion model is predicted followed by an update of the probabilities according to an
observation model that takes the current observation into account. This allows
us to reason over them as a group, leading to a more compact belief state and a
much more efficient filtering algorithm. To exemplify our approach, we will use
the following office scenario [22] as a running example throughout the paper:

Example 1 (Office scenario). Up to six agents are in an office building with five
rooms and a hall connecting the rooms. There are also two coffee machines and
ten coffee capsules in a storage. Agents can walk between the rooms and take a
capsule from the storage, respectively, replenish the coffee machine. If a capsule
is inserted in the coffee machine, agents can take a coffee. All rooms contain
presence sensors that detect if at least one agent is present. Our goal is to track
the current state (positions of agents, items the agents are carrying as well as
the number of capsules left and the state of the coffee machine etc.) based on
sequences of presence sensor data.

The agents in this scenario are observation equivalent, as they cannot be
distinguished given the presence sensor data. Although this scenario is a specific
instance, the underlying problem is more general and can be found in many simi-
lar scenarios involving multiple observation equivalent entities acting in parallel.
Note that this scenario requires modeling of entities along with their properties
and thus cannot be solved by considering the number of entities only.

In Sect. 2, we introduce basic concepts that lay the foundations for our
novel inference approach. The inference approach itself is described in Sect. 3.
Section 4 evaluates the inference mechanism and Sect. 5 presents connections to
other methods and related work. We finish this paper with our conclusion and
a description of our future work in Sect. 6.
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2 Preliminaries

In the following, we will give a brief overview of two concepts our approach is
based on. Computational State Space Models allow Bayesian Filtering in a state
space described by precondition-effect actions. Multiset Rewriting Systems offer
a formalism for compactly representing states with multiple equivalent entities.

Computational State Space Models (CSSMs) allow the knowledge-based con-
struction of state spaces for Bayesian Filtering. They are for instance used for
human behavior and goal recognition [2,19]. The transition model is described
by a computable function by means of preconditions and effects. This allows the
compact representation of potentially infinite state spaces by avoiding explicit
state enumeration. Standard methods for Bayesian Filtering (e.g. Particle Fil-
tering) is used to estimate the most likely state sequence.

CSSMs allow to handle large, even infinite, state spaces [17]. However, CSSMs
perform inference in grounded state spaces (i.e. concrete values are assigned to
all state variables). For representing observation equivalent states, this means
the approach needs to track all of the different observation equivalent states
individually, leading to a combinatorial explosion.

Multiset Rewriting Systems (MRSs) are an established formalism for mod-
eling systems with many equal objects. They are for instance used to model
chemical reactions happening in a solution [4] or cell interactions [5]. The state
of such a system is described as a multiset of entities, where each entity is an
instance of one of finitely many species. The reactions between entities are mod-
eled as multiset rewriting rules that have preconditions (a multiset of entities
that are consumed by the reaction) and effects (a multiset of entities that are
created by the reaction). Under the probabilistic maximally parallel semantics
[3], a maximal set of applicable rules (a compound rule) is applied in parallel.
Each rule is assigned a rate, which defines the probability of a compound rule.

We are interested in MRS because they allow an abstract representation of
states with multiple, equivalent entities. However, Bayesian Filtering algorithms
for MRSs that incorporate observations have not yet been devised.

3 LiMa: Lifted Marginal Filtering

In the following, we present our approach that performs Bayesian Filtering using
a multiset-based state representation. Our concept of Bayesian Filtering in state
spaces described by precondition-effect actions is based on CSSMs (cf. Sect. 2).
The state space representation is inspired by MRSs, which enable a compact
representation of multiple equivalent states.

This section aims at giving a comprehensive overview of our Lifted Marginal
Filtering approach. The next section is concerned with the question how states
can be formalized in an abstract manner to represent multiple observation equiv-
alent situations (Sect. 3.1). Section 3.2 extends this abstract representation to be
capable of expressing uncertainty. The efficient manipulation of this uncertain
abstract representation regarding a model of the system’s dynamics is introduced
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in Sect. 3.3. Section 3.4 describes how observations can be taken into account to
perform a complete Bayesian Filtering cycle. As Bayesian Filtering is used to
answer application specific questions, in particular questions about the activity
of the entities, we discuss how this can be performed in LiMa in Sect. 3.5.

3.1 Abstract State Description

Similar to MRS, we model a state as a multiset of entities with certain properties,
e.g. objects or persons, that are part of a situation. Such entities often have many
properties in common, but some properties with different values. For example,
two persons may both be at the same location and both holding nothing in their
hands, but having different names. In MRSs, these two persons are considered
a different species. Thus, inference in MRS with many entities that are not
exactly equal leads to a combinatorial explosion in the number of species. This
combinatorial explosion can be avoided by extending the multiset representation
to be able to group entities that are similar, but not equal.

For this purpose, our state space representation separates the structure of the
entities from the actual property values of these entities, allowing us to group
entities with similar structure, but different property values. While the number
as well as the structure of entities is maintained in what we call a state formula,
the possibly uncertain property values are maintained in the context. The con-
text contains representations of densities1 encoding the uncertainty respectively
certainty over the entity properties. It is connected to the structure via density
labels. Our inference algorithm manipulates the structure (the state formula),
as well as these representations. Below, we introduce the concepts of entities,
state formulae and contexts in detail including examples referring to the office
scenario (Sect. 1).

An entity is a finite map of property names (called slots) to density labels.
These density labels are used as a “name” for the possibly uncertain property
values in the form of density representations that are later defined in the context.

Example 2. Let E be an entity that models agents with three slots
Location, Holds and Name, with E(Location) = “LHall”, E(Holds) =
“LNil” and E(Name) = “LNames”. We represent the entity as E =
⟨Location: “LHall”,Holds: “LNil”,Name: “LNames”⟩.

Multiple entities involved within a scenario are encoded using multisets2 such
that multiple similar entities are grouped together: Let E := {E1, E2, . . . , En} be
entities and let i1, . . . , in be natural numbers. A state formula over E is defined as
a multiset over E . We use [[ i1E1, i2E2, . . . , inEn ]] to represent multisets of entities
with corresponding cardinalities.
1 We use the term density to refer to densities over continuous domains as well as
probability distributions over finite domains.

2 A multiset over some set S is defined as a partial map from S to N. We use
[[n1s1, n2ss, n3s3 ]] to denote the multiset containing s1, s2 and s3 with the corre-
sponding cardinalities. We use M(S) to refer to the set of all multisets over S.
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Example 3. The situation in which 5 agents are located in the hall and another
agent is located in room A can be represented as a state formula φ as follows:

φ = [[ 5⟨Location: “LHall”,Holds: “LNil”,Name: “LNames”⟩,
1⟨Location: “LRoomA”,Holds: “LNil”,Name: “LNames”⟩ ]]

After modeling the structure as well as the number of entities, the actual
property values are to be defined. The state formula is connected to the corre-
sponding context that encodes the actual property values via density labels: A
context is a finite map from density labels to density representations.

Below, we assume that, given a representation r of a density function d,
there exists an algorithm Split, which accepts r and a value v as input and
returns a representation r′ of a density d′ that is the result of removing v from
d. We furthermore assume an algorithm Likelihood, which accepts r and a
value v as input and returns the likelihood of v with respect to d. For example,
let r = U(a, b, c) represent a finite urn containing the items a, b and c, then
Split(r, a) must return the representation of an urn containing b and c, and
Likelihood(r, v) will give 1/3 for each item.

A context γ is called valid wrt. a given state formula φ, if and only if for
all density labels occurring in φ there exists a density representation in γ and
all density representations occurring in γ are referenced within φ. Furthermore,
every density function d encoded in the context γ must be able to be split using
Split at least as many times as the sum of the cardinalities of the entities
referencing this density. As an example, a context that connects “LNames” to
an urn with three values only is not valid for the state formula as in Example 3,
because the density is referenced six times.

In the example below, we use δ(x) to represent a density function which
is non-zero for x only (i.e. we use δ(x) to refer to Dirac delta for continuous
domains and the Kronecker delta for finite domains), we call δ(x) to be a single-
ton distribution. Note that singleton distributions cannot be split according to
Split and instead returns the same distribution. U is used to represent a finite
urn as described above. Note that when using the δ(x) density, we might draw
x multiple times compared to U(x).

Example 4. Let two contexts γ1 and γ2 be defined as follows and let φ be the
state formula as in Example 3, then γ1 is not valid whereas γ2 is valid for φ.

γ1 = { “LHall” #→ δ(hall), “LNil” #→ δ(nil), “LNames” #→ U(a, . . . , f) }
γ2 = γ1 ∪ { “LRoomA” #→ δ(roomA) }.

Below we assume all contexts to be valid contexts. A pair φγ of state formula
φ and valid context γ is called a lifted state. Note that by using this representation
we assume all densities in the context to be independent from each other.

Example 5. The two situations (a) six agents are in the hall, and (b) five are
in the hall and the sixth is in room A can be modeled as lifted state s1 and s2
as follows:
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s1 = [[ 6⟨Location: “LHall”,Holds: “LNil”,Name: “LNames”⟩ ]]γ1
s2 = [[ 5⟨Location: “LHall”,Holds: “LNil”,Name: “LNames”⟩,

1⟨Location: “LRoomA”,Holds: “LNil”,Name: “LNames”⟩ ]]γ2

Note that representing s2 in conventional grounded approaches would require to
track at least six different hypotheses, namely agent a, b, c, d, e, or f being in
room A. In our formalization, however, these situations are encoded using the
single hypothesis s2.

This formalism allows to represent multiple observation equivalent states as
a single lifted state. Note that additional to the connection of MRS this repre-
sentation employs Rao-Blackwellization: Some aspects of the state are described
explicitly (via the state formula), while some aspects have a parametric repre-
sentation (via the context).

3.2 Handling Uncertainty over Lifted States

Lifted states enable the modeling of groups of situations, i.e. groups of con-
ventional states. However, as there are several sources of noise (observations,
non-deterministic actions, ...), we will consider not just a single lifted state, but
a probability distribution over lifted states as CSSMs maintain a probability dis-
tribution over grounded states. We call this probability distribution lifted belief
state.

Before introducing it in detail, we define the concepts of grounded states :
A ground state is a lifted state if and only if its context consists of singleton
distributions only. Ground states correspond to the states used in conventional
Bayesian Filtering: Each ground state represents a specific situation, while a
lifted state in general represents a set of situations. We call this set of situations
state instances, i.e. the state instances are the set of ground states that are
subsumed under a lifted state. Note that this set is infinite if one of the underlying
densities has an infinite domain.

A probability distribution over lifted states, called lifted belief state, thus
specifies a probability distribution over sets of grounded states. We will use lifted
belief states to represent the current set of hypotheses while tracking activities
based on noisy observations.

Example 6. Let S = {s1, s2} with s1 and s2 be as given in Example 5. Let
b(s1) = 0.75 and b(s2) = 0.25. Then b is a belief state over S. Below we will
use the following notation to describe belief states: b = {0.75 × s1, 0.25 × s2}. b
describes the situations in which with probability 0.75 all six agents are in the
hall, and with probability 0.25 one of them is in room A.

3.3 Abstract State Dynamics

After describing how states can be modeled in an abstract manner (cf. lifted
states) and how uncertainty about the actual state can be represented (cf. lifted
belief state), in this section, we describe how the dynamics of the system is
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modeled and how the representation is manipulated efficiently. This corresponds
to the predict step of Bayesian Filtering. We call the function that maps a lifted
belief state to a successor lifted belief state the transition model.

We use precondition-effect actions to model the dynamics of the system. The
transition model is a parallel execution of multiple actions that are all applicable
in the current state, similar to MRSs.

An action maps a set of entities satisfying the precondition (specific slots and
slot values) to a new set of entities. These new entities are obtained by removing
entities, by creating new ones, or by modifying entities (updating slot values,
removing slots or adding slots). Before defining actions, we introduce a notion
of slot and entity constraints:

Slot constraints check if a single value satisfies a condition. That is, slot
constraints are Boolean functions of slot values indicating whether the condition
is satisfied. We denote such functions as sc := λv #→ v ≡ vtest. v is the property
value to be evaluated and v ≡ vtest is a Boolean expression of the property value,
e.g. a test for (in)equality wrt. a given value, or set membership of simply the
constant function true and false.

Multiple slot constraints then are combined in an entity constraint that maps
slot names on slot constraints. Thus, an entity satisfies an entity constraint if:
(1) the entity possesses all slots that are connected to a slot constraint, and (2)
all slot constraints are satisfied. Note that considering the corresponding context
may be necessary to decide on the satisfaction of slot constraints.

Example 7. Let sch := (λv #→ v ≡ hall) be the slot constraint testing if the
given slot value v is identical to the value ‘hall’, sc⊤ := (λv #→ ⊤) be the slot
constraint used to ensure the presence of a given slot. Then ec1 = {Location #→
sch} is an entity constraint, satisfied by all entities and corresponding contexts
with a slot Location whose value is hall, and ec2 = {Name #→ sc⊤} is satisfied by
all entities which posses the slot Name.

As mentioned above, actions can modify the set of entities. A function trans-
forming an entity into a new one is called entity update function. Possible entity
update functions include the addition of new slots, the update of slot values or
the removal of slots. These operations always include the modification of the cor-
responding context γ. However, for ease of understanding, we omit to mention
that the context has always to be updated accordingly. I.e. given an entity E ,
we use E{s #→ v} to refer to the entity which results by setting the slot s to the
value v (i.e., addition or update of s), and we use E{−s} to refer to the entity
obtained by removing slot s.

The effects of an action are specified by an effect function mapping a tuple
of entities to a multiset of entities. This multiset can contain new entities, and
entities resulting from performing entity update functions on the original entities.
An action schema is the specification of an action, consisting of (1) a name, (2)
a sequence of entity constraints π (preconditions), and (3) an effect function ϵ.

Example 8. For ec1 as in Example 7, the schema (‘H2A’, [ec1], (E) #→
[[ 1E{Location #→ RoomA} ]]) captures the movement from the hall to room A.
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An action is applicable in a given lifted state if and only if the state contains
entities which satisfy the actions preconditions. However, if a lifted state contains
an entity possessing all slots required by the entity constraint but with a non-
singleton distribution in one of these slots, we cannot decide whether the entity
satisfies the precondition. In this case, we split the corresponding lifted state into
two lifted states: One where the precondition is satisfied, and one which contains
all other grounded states that are instances of the original lifted states. Note
the similarity to splitting in Lifted Inference [18]. These splits also involve the
modification of the context as the densities encoding the uncertainty regarding
the preconditions will be split (using Split) into two densities to remove the
uncertainty. This does not necessarily require a complete grounding of the state,
but only as far as needed to decide on the preconditions.

Example 9. Let act = (‘H2A’,πact, (E) #→ [[ 1E{Location #→ RoomA} ]]) be an
action schema, and πact = [{Location #→ sch,Name #→ sca}] be the corresponding
precondition. Let sch := (λv #→ v ≡ hall) and sca = (λv #→ v ≡ a) be the
corresponding slot constraints. Then, act encodes the move action from the hall
to room A performed by the agent named a. Considering the lifted state s2 as
in Example 5, there is no entity that already satisfies the action’s preconditions.
However, there is an entity in s2 that is more general so that a modified version
of this entity would satisfy the preconditions πact. Thus, the lifted state can be
split according to this entity on slot Name into the two lifted states: (1) a is at
room A and the other agents are in the hall (satisfying the preconditions), and
(2) a is at the hall, one of the other agents is in room A and the remaining
are in the hall, too (not satisfying the preconditions). These splits include the
modification of the context: the urn representation U(a, . . . , f) will be converted
into U(b, . . . , f) and another density representation δ(a) will be inserted.

Splits, thus, can be used to ensure satisfaction of preconditions of an action
schema. An action schema a together with a sequence of entities e satisfying the
precondition is called an action instance. The entities in e are consumed while
applying the action and replaced by the effect. I.e., the resulting state can in
principle be computed by s′ = s \ e∪ ϵ(e). Unfortunately, this would require the
state s to be grounded. As described below it is also possible to compute the
resulting state in a lifted manner. Before, we introduce the concept of maximal
compound actions that encode the idea of maximally parallel actions in MRSs: A
multiset of action instances is calledmaximal compound action (short: compound
action) with respect to a lifted state if no further action instance can be added
to the set so that the compound action can still be applied in the lifted state.
Note that a compound action is applicable only if there is no entity referenced
in two action instances.

Given a state formula φ, we can compute the successor states as follows:

1. Compute the set of maximal compound actions C
2. For each c ∈ C: (a) Compute the resulting splits, and (b) Compute the

successor state sc,
3. Merge the resulting successor states.
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Predicting the successor states by a set of maximal compound actions might
result in a set of lifted states that can be merged or pruned to reduce the num-
ber of hypotheses. A simple form of merging is summing probabilities of equal
lifted states, as there might be multiple compound actions resulting in the same
lifted state. Furthermore, multiple similar states can be merged by combining
their entities so that the corresponding slot values are joined (exact or approx-
imate). However, in this paper, we only perform simple merging by summing
probabilities of equal lifted states.

3.4 Observation Model

In the previous section, we described state transitions based on actions. This
corresponds to the predict step in Bayesian Filtering. In this section, we describe
how the update step is realized in LiMa. This means, we want to manipulate the
belief state, by use of an observation.

An observation is simply a condition on a property value, similar to a pre-
condition of an action. The observation model OM takes a lifted belief state and
the current observation to calculate a list of new states with updated probabil-
ities for every lifted state of the belief state. I.e., the probabilities of the lifted
states were weighted according to the current observation. For this purpose, the
observation model splits each lifted state in the belief state on the observation
and keeps only those lifted states that are consistent with the observation. The
probabilities are then normalized to get a new valid belief state. Note that this
procedure can easily be used for uncertain observations.

Example 10. For s1 as in Example 5, let b1 be a belief state with b1(s1) = 1.
Observing o = [{Location #→ sch,Name #→ sca}] with sch and sca as in Example 9,
we get OM(o, s1) = {1 × s′

1} with

s′
1 = [[ 5⟨Location: “LHall”,Holds: “LNil”,Name: “LNames′”⟩

1⟨Location: “LHall”,Holds: “LNil”,Name: “LNameA”⟩ ]]
{ “LHall” #→ δ(hall), “LNil” #→ δ(nil), “LNames′” #→ U(b, . . . , f), “LNameA” #→ δ(a) }

After multiplying this with the probabilities in b1 and normalizing it (both trivial
in this example), we get b′

1 = {1 × s′
1} as new belief state for observing o in b1.

3.5 Reasoning over Lifted States

The predict and update steps (described in Sects. 3.3 and 3.4) together define a
complete Bayesian Filtering cycle. As we aim at answering application specific
questions during the inference, we need to be able to reason about the lifted
belief state after every predict-update-cycle.

Example 11. Considering the lifted belief state in Example 6, the question we
want to answer is “Where is a?”. I.e. we want to calculate the distribution of
values of the Location slot for entities with the Name being a. For this purpose,
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Fig. 1. Maximum number of (lifted) states during inference (left) and inference time
(right) for grounded inference and Lifted Inference with LiMa. For the grounded infer-
ence, the scenarios with 5 and 6 agents could not be calculated due to the high com-
putational effort. Note the log scale on the y axis.

every lifted state in the lifted belief state needs to be evaluated against this
question. In our example, both lifted states s1 and s2 contain only entities with
slot Name mapping to the density U(a, . . . , f). I.e. agent a is involved in any of
those more general entities and thus the corresponding lifted states need to be
split to decide on the position of a:

(s1) Splitting the entity in s1 on Name with value a results in a single lifted state
as the only possible Location for a is the hall. Thus, the probability of agent
a being at the hall in s1 is 1.0 resp. 0.75 (weighted by the probability of s1).

(s2) There are 2 entities in s2 with Name mapping to a density that includes
agent a. A split on the name of agent a results in two possible lifted states:
(a) a is at the hall, or (b) a is at room A. Whereas the first lifted state
represents 5 grounded states, the second represents only one. Thus, a is at
the hall with a probability of 5

6 and at roomA with a probability of 1
6 . These

need to be weighted by the probability of the lifted state s2.

Summing up the particular probability gives a probability that agent a is at the
hall of 0.95833 and that the agent is at room A of 0.04167. Note that this split is
for answering the application specific questions only. However, the un-split lifted
states will be used for the further inference.

4 Evaluation

In the following, our approach is compared with a conventional Bayesian Fil-
tering algorithm based on grounded states. As benchmark, we use the office
dataset [21] that is described as office scenario in Sect. 1. It includes 720 obser-
vation sequences (120 for each number of agents between one and six) for which
we perform activity recognition using both approaches.
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Here, we have been particularly interested in the number of states considered
during the inference task (i.e. the number of states in the belief state with non-
zero support) as a measure of performance, as all approaches become infeasible if
a very large number of hypotheses has to be considered. Furthermore, the relation
between lifted and grounded states demonstrates the level of abstraction. For this
office scenario, the number of agents is the factor determining the size of the state
space. Therefore, we calculated the maximal number of states (i.e. hypotheses)
maintained during Bayesian Filtering for each observation sequence. For LiMa,
we counted the lifted states, and for the grounded approach the number of
grounded states are considered. The results are shown in the left part of Fig. 1.
Note the log scale on the y axis.

The maximum number of states visited during Bayesian Filtering grows expo-
nentially for both inference algorithms. However, for LiMa, the number of states
is several orders of magnitude smaller than for the grounded state representation.
Thus, LiMa successfully exploits observation equivalence by reducing the large
number of grounded states to a much smaller number of lifted states. In fact,
for the grounded state representation, Bayesian Filtering has been infeasible for
problems with 5 or 6 agents due to the large number of states. Furthermore, con-
sidering the overall time necessary for each inference task, LiMa also performs
several orders of magnitude faster than the grounded approach (see right part
of Fig. 1).

5 Related Work

There are several other approaches that perform efficient probabilistic inference
or Bayesian Filtering on an abstract (e.g. logical) representation. A prominent
approach concerned with inference in relational graphical models is known as
Lifted Inference. The general idea is to exploit symmetries in the model, e.g. in
cases where many objects with similar properties and relationships are present.
We refer to [13,15] for a more thorough overview. Opposed to LiMa, these
methods do not explicitly support sequential inference in dynamic domains, i.e.
Bayesian Filtering consisting of a predict-update cycle. The approach presented
in [1] efficiently evaluates multiple Lifted Inference queries on the same network,
but is not concerned with dynamic models, where random variables depends
on random variables from previous time slices. Lifted Inference algorithms for
dynamic models have also been devised [10], but this approach lacks an efficient
way to preserve the lifted representation over time. Furthermore, it performs
approximate inference, while LiMa is exact.

Ideas from Lifted Inference have also been used in the Relational Kalman
Filter [7,8]. This approach is similar to LiMa in the sense that it performs lifted
Bayesian Filtering. That is, a compact representation of the belief state is main-
tained by grouping equivalent variables, and reasoning over them is performed
“in bulk”. However, the approach can only be used for gaussian linear models,
like the standard Kalman filter.

First-Order Markov Decision Processes (FOMDPs) [6,20] employ first-order
logic to represent states of a Markov Decision Process. The task performed in
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these formalisms is lifted planning, i.e. obtaining an abstract policy (that is
independent of specific domain objects), given a goal. The algorithmic ideas
used in this context decision-theoretic regression are different from Bayesian
Filtering applied by LiMa. However, there is a certain relationship between Lifted
Inference and FOMDPs that has recently been discussed in [14].

6 Conclusion and Future Work

In this work, we presented a modeling formalism for abstract states that encodes
multiple grounded states in a Bayesian Filtering context. Our approach that we
call Lifted Marginal Filtering (LiMa) combines ideas of Computational State
Space Models (CSSMs) and Multiset Rewriting Systems (MRS) to overcome the
combinatorial explosion in grounded inference approaches. Our abstraction is
based on observation equivalence, i.e. we reason over groups of situations that
cannot be distinguished given the observations. Such groups (lifted states) are
represented as a multiset of structure descriptions (entities) along with a context
that describes the corresponding (possibly uncertain) values that can be inserted
into that structure in the form of density functions. The transition model of
LiMa is represented by precondition-effect actions similar to CSSMs that are
combined to compound actions representing a maximally parallel application of
such simple actions which is similar in MRS. We showed that applying actions
and observations may require splitting of lifted states as in Lifted Inference, and
derived a Bayesian Filtering algorithm that is capable of this representation and
computes prediction and update in the lifted domain. To answer application
specific questions, we demonstrated how to reason over lifted states. We expect
that in many scenarios, these answers can often be computed without completely
grounding and thus exploiting the lifted representation.

For an office scenario that suffers from a combinatorial explosion in the state
space size, we showed that the state space size as well as the inference time is
several orders of magnitude smaller than for the corresponding grounded infer-
ence.

Our approach can be extended in several ways. We will investigate the defi-
nition of a smoothing and MAP algorithm for the state representation. Further-
more, we plan to model time-dependency of state transitions, similar to Hid-
den Semi-Markov Models. Approximation is another interesting aspect: In some
domains, identifying observations may lead to many splits, so that the algorithm
actually resorts to grounded inference. This problem has been addressed before
in Lifted Inference [24] by grouping states that are only approximately equal. In
our case, this corresponds to approximate merging, which we plan to investigate
in the future. A further aspect is to investigate which continuous densities can
be used in the context, i.e. for which densities appropriate splitting functions
can be defined that result in a compact representation of the split densities.
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Abstract. Recently a new account to the problem of induction has been
developed [1], based on a priori advantages of regret-weighted meta-
induction (RW) in online learning [2]. The claimed a priori advantages
seem to contradict the no free lunch (NFL) theorem, which asserts that
relative to a state-uniform prior distribution (SUPD) over possible worlds
all (non-clairvoyant) prediction methods have the same expected predic-
tive success. In this paper we propose a solution to this problem based
on four novel results:
– RW enjoys free lunches, i.e., its predictive long-run success dominates

that of other prediction strategies.
– Yet the NFL theorem applies to online prediction tasks provided the

prior distribution is a SUPD.
– The SUPD is maximally induction-hostile and assigns a probability

of zero to all possible worlds in which RW enjoys free lunches. This
dissolves the apparent conflict with the NFL.

– The a priori advantages of RW can be demonstrated even under the
assumption of a SUPD. Further advantages become apparent when
a frequency-uniform distribution is considered.

Keywords: Problem of induction · No free lunch theorem · Online pre-
diction under expert advice · Regret-weighted meta-induction

1 Introduction: The NFL Theorem and Hume’s Problem
of Induction

How can inductive inferences be rationally justified, in the sense of being reliable
or at least preferable to non-inductive inferences? This is the problem of induc-
tion raised by the philosopher David Hume 250 years ago. Hume showed that
all standard methods of justification fail when applied to the task of justifying
induction. He concluded that induction has no rational justification at all.

The no free lunch theorem (NFL) expresses a deepening of Hume’s induc-
tive skepticism. In this paper we consider the NFL theorem in application to
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online prediction tasks. A number of variants of the NFL theorem have been
formulated (cf. [3–7]); the most general formulation is found in [8]. Wolpert’s
NFL theorem comes in a weak and a strong version. Since the strong version
rests on unrealistic assumptions about the loss function, we focus in this paper
on the weak NFL theorem. It says that the probabilistically expected success
of any (non-clairvoyant) prediction method is equal to the expected success of
random guessing or any other prediction method, provided one assumes (a) a
state-uniform prior probability distribution (abbreviated SUPD) i.e., one that
is uniform over all possible event sequences, and (b) a weakly homogeneous loss
function (see below).

Does the NFL theorem undermine the project of learning theory? A stan-
dard defense of learning theorists against the NFL challenge maintains that one
should not compute the expected success of learning strategies by means of a
SUPD. Rather one should compute expected success using the (conjectured)
actual distribution of the possible states of our environment, and ‘according to
our evidence’ the latter distribution is clearly not uniform.1 We argue that this
line of defense against the NFL challenge does not work, because our beliefs
about the actual distribution of possible states of our environment are them-
selves based on an inductive inference. Thus, this argument commits the fallacy
of circularity. A general argument demonstrating the unacceptability of circular
justifications runs as follows: If we accept the inductive justification of induc-
tion (“inductions were successful in the past, whence, by induction, they will
be successful in the future”), then – on pain of inconsistency – we must also
accept the anti-inductive justification of anti-induction (“anti-inductions were
not successful in the past, whence by anti-induction they will be successful in
the future”).

For a robust defense of inductive learning methods against the NFL challenge
a better argument is needed; one that does not presuppose what must be proved.
Recently, a non-circular response to the problem of induction has been proposed,
based on a priori advantages of regret-based meta-induction (in short: RW) in
online learning. In Sects. 2 and 3 these results are presented and confronted with
a version of the weak NFL theorem that applies to iterated prediction tasks in
online learning. Thereafter the apparent contradiction is analyzed and dissolved,
from the long-run (Sect. 4) and short-run perspectives (Sect. 5). Our analysis
leads to four novel results that are summarized in the conclusion (Sect. 6).

2 Regret-Based Meta-Induction

In the area of regret-based learning, theoretical results concerning the vanishing
long-run regrets of certain meta-strategies of prediction have been developed that
hold universally, i.e., for strictly all possible event sequences, independently from
any assumed probability distribution [2]. Although labeled as “online learning
under expert advice” these results characterize the performance of strategies of
meta-learning, inasmuch as a forecaster which we call the “meta-inductivist”
1 Cf. [6, Sect. 4] and [7, Sect. 3], citing statements from a 1994 e-mail discussion.
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tracks the past success rates of accessible prediction methods (“experts”) and
utilizes that information in constructing an improved prediction strategy. Since
the meta-inductivist predicts future events based on past success rates, short-
run regrets (compared to the best method) are unavoidable. However, in the
long run the regret-weighted meta-inductivist is guaranteed to predict at least
as accurately as the best accessible prediction method, even in circumstances
of non-convergent success rates of the independent methods. A standard label
for this property is “Hannan-consistency” [2, p. 70]. Schurz and Thorn [9] argue
that it is preferable to call this property access-optimality, because

– it expresses a long-run optimality result restricted to accessible methods, and
– this label is in line with standard game-theoretical terminology of “optimal-
ity” and “dominance”; results concerning access-dominance are stated below.

The proposed solution to the problem of induction developed in [1,10] works
as follows: The meta-strategy RW has an ‘a priori’ justification, because in the
long run it is recommendable in every possible environment to apply this meta-
strategy on top of all prediction methods accessible to the epistemic agent. Fol-
lowing [1] we explicate this result within the framework of prediction games.

Definition 1 (Prediction game). A prediction game is a pair ((e),Π) con-
sisting of:

(1) An infinite sequence (e) := (e1, e2, . . .) of events en coded by real numbers
between 0 and 1, possibly rounded according to a finite accuracy. In what
follows V ⊆ [0, 1] denotes the value space of possible events en ∈ V. Each
time n corresponds to one round of the game.

(2) A finite set of prediction methods (or ‘players’) Π = {O1, . . . , Om,
M1, . . . ,Mk} whose task, in each round n, is to predict the next event en+1

of the event sequence. Methods are of two sorts, independent ‘object-level’
methods O1, . . . , Om (algorithms or experts) who base their predictions on
the observed events, and dependent ‘meta-level’ methods M1, . . . ,Mk who
base their predictions on those of the independent methods in dependence on
their success (this is meant by the Oi’s ‘being accessible’ to the Mj’s).

An example of (e) could be a sequence of daily weather conditions. In what
follows the variable ‘X’ ranges over arbitrary prediction methods. We use the
following notions:

– pn(X) is the prediction of method X for time n delivered at time n − 1.
– The distance of the prediction pn from the event en is measured by a normal-

ized loss function, ℓ(pn, en) ∈ [0, 1].
– The natural loss-function is defined as the absolute distance between predic-

tion and event, |pn−en|. The theoretical results below apply to a much larger
class, namely to all loss functions that are convex in the argument pn.

– s(pn, en) := 1 − ℓ(pn, en) is the score obtained by prediction pn of event en.
– absn(X) :=

∑n
i=1 s(pi(X), ei) is the absolute success achieved by method X

until time n.
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– sucn(X) := absn(X)/n is the success rate of method X at time n.
– maxsucn is the maximal success rate of the independent methods at time n.

The simplest meta-inductive strategy is Imitate-the-best, abbreviated ITB,
which, in each round n, imitates the prediction of the independent method with
maximal success at time n. ITB fails to be universally access-optimal: Its success
rate breaks down when it imitates adversarial methods, who return inaccurate
predictions as soon as their predictions are imitated by ITB [1, Sect. 4].

The strategy of regret-weighted meta-induction comes in several versions. Its
simplest version is abbreviated as RW and defined as follows (where O1, . . . , Om

are the independent methods of the prediction game):

Definition 2 (Regret-weighted meta-induction)

(i) The absolute regret of RW with respect to independent method Oi at time n
is defined as Regn(Oi) := absn(Oi) − absn(RW ) and the relative regret as
regn(Oi) := Regn(Oi)/n.

(ii) Where wn(Oi) := max(Regn(Oi), 0), the predictions of RW are defined as

pn+1(RW ) :=
∑m

i=1 wn(Oi) · pn+1(Oi)∑m
i=1 wn(Oi)

as long as n > 0 and the denominator is positive; else pn+1(RW ) = 0.5

RW is identical with the polynomially weighted forecaster Fp described in
[2, p. 12] with parameter p set to 2.

Theorem 1 (Universal access-optimality of RW). (Cesa-Bianchi and
Lugosi 2006, Corollary 2.1)

For every prediction game ((e),Π) with RW ∈ Π the following holds:
(1.1) (Short run:) (∀n ≥ 1) sucn(RW ) ≥ maxsucn −

√
m
n .

(1.2) (Long-run:) limsupn→∞(maxsucn − sucn(RW )) = 0.

In the short run, RW may suffer from a possible regret. According to
Theorem1, RW’s relative regret is upper-bounded by

√
m
n and converges to

zero when n grows large, or it oscillates endlessly but with a limsup converging
to zero.

An improvement of RW is possible with help of so-called exponential weights.
The weights of exponential regret-based meta-induction, abbreviated ERW, are
defined as: wn(X) := e

√
(8·ln(m)/n)·Regn(X). If ERW’s predictions are defined as

in Definition 2(ii) but with help of exponential weights, then one can prove that
ERW’s short-run regret is upper-bounded by 1.77 ·

√
ln(m)/n [2, Theorem2.3].

This is a significant improvement, but in regard to the NFL theorem the differ-
ence between RW and ERW is negligible: their long-run advantage is identical
and their performance difference in the simulations presented in Sect. 5 turned
out to be minor. Therefore we concentrate our investigation on RW.

Even if the events are binary, RW’s predictions are real-valued, because
proper weighted averages of 0 s and 1 s are real-valued. Thus the predictions
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are assumed to be elements of a value space Vp ⊆ [0, 1] that may extend the
space of event values: V (V ⊆ Vp).

What stands in apparent conflict with the NFL theorem is not the access-
optimality of RW but rather its access-dominance, that is, the fact that RW
performs at least as well and sometimes better than other accessible meth-
ods. By definition, a meta-method M dominates another method X (in the
long run) iff (i) there is no prediction game ((e),Π) with {X,M} ⊆ Π and
limsupn→∞(sucn(X) − sucn(M)) > 0, but there is a prediction game ((e)′,Π ′)
with {X,M} ⊆ Π ′ and limsupn→∞(sucn(M) − sucn(X)) > 0; this implies
that X is not access-optimal. Theorem 1 asserts the access-optimality but not
the dominance of regret-based meta-induction. Since there are other methods,
different from RW, that are likewise long-run optimal (such as ERW men-
tioned above), RW cannot be universally access-dominant. However, the fol-
lowing restricted dominance result for RW can be derived from Theorem1.

Theorem 2 (access-dominance for RW)

(2.1) RW dominates every accessible prediction method X (in the long run) that
is not universally access-optimal.

(2.2) Not universally access-optimal in the long run are (a) all independent (non-
clairvoyant) methods, and (b) among meta-strategies, for example, (b1) all
one-favorite methods (who at each time point imitate the prediction of one
independent method) and (b2) success-weighting, which identifies weights
with success rates (also called “Franklin’s rule” [11, p. 83]).

Proof. Theorem (2.1) is an immediate consequence of Theorem1 and the defin-
itions of “access-optimality” and “-dominance”.

Proof of Theorem (2.2)(a): Let O be an independent method and (e′) an
O-adversarial event sequence defined as follows: e′

1 = 0.5, and e′
n+1 = 1 if

predn+1(O) < 0.5; else e′
n+1 = 0. The predictions of the perfect (e′)-forecaster

O′ are identified with the so-defined sequence, i.e., pn(O′) = e′
n. In the prediction

game ((e′), {O,O′, RW}) the success rate of O can never exceed 1/2, that of O′ is
always 1 and that of RW converges to 1 (by Theorem1). So O is not universally
access-optimal.

The proof of Theorem (2.2)(b1) is found in [1, Sect. 4] and that of (2.2)(b2)
in [9, Sect. 7]. ⊓(

Theorem (2.1+ 2) entails that in the long run there are “free lunches” for regret-
based meta-induction in the sense that there are prediction methodsX and event
sequences (e) for which RW’s long run success is strictly greater than that of
X without there being any ‘compensating’ event sequences (e′) in which RW’s
long-run success is smaller than that of X. This apparent conflict with the NFL
folklore is investigated in the next sections.

3 NFL Theorems for Prediction Games

It is not straightforward to apply the NFL theorems to regret-based online learn-
ing. First of all, the RW account is more general than the NFL framework as
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the results of the former account hold even if clairvoyant methods are admitted
– these are prediction functions that may have future events as input. How-
ever, regret-based meta-induction should not only be attractive for those who
consider paranormal worlds as possible. Thus in what follows we take the non-
clairvoyance assumption of the NFL theorems [8, p. 1380] as granted.

Two further possible hindrances of applying the NFL framework to regret-
based online learning are treated as follows:

– Regret-based learning is defined for meta-strategies, while the NFL frame-
work applies to arbitrary prediction methods (defined as computable func-
tions from past event sequences into the next event). But every finite com-
bination of a fixed set of independent prediction methods is itself a defined
prediction method. Thus the NFL framework equally applies to prediction
meta-strategies, given that they are applied to an (arbitrary but) fixed set of
independent methods. This assumption will be made in the following.

– Online learning consists of a (possibly infinite) iteration of one-shot learning
tasks in which the test item of round n is added to the training set of round
n+1. For this reason the NFL theorems are only applicable if one assumes a
SUPD (see below).

The strong version of Wolpert’s NFL theorem presupposes that the loss func-
tion is homogeneous [8, p. 1349], which means by definition that for every possible
loss value c, the number of possible event values e ∈ V for which a given pre-
diction leads to a loss of c is the same for all possible predictions. This require-
ment is overly strong; it is satisfied for prediction games with binary events
and the zero-one loss function loss 1− 0, which has only two possible loss values:
loss 1− 0(p, e) = 0 if p = e and loss 1− 0(p, e) = 1 if p ̸= e. As soon as real-valued
predictions are allowed, a reasonable loss function will assign a loss different
from 0 or 1 to predictions different from 0 or 1. Such a loss function is no longer
homogeneous. So the strong NFL theorem does not apply to RW or any other
real-valued prediction method. Note that real-valued predictions not only make
sense in application to real-valued events but also to binary or discrete events, by
predicting their conjectured probabilities. Only a weak version of the NFL the-
orem holds for prediction games with binary events and real-valued predictions,
provided the loss function is weakly homogeneous:

Definition 3 (Weakly homogeneous loss function). 2 A loss function is
weakly homogeneous iff for each possible prediction the sum of losses over all
possible events is the same, or formally, iff ∀p ∈ Vp:

∑
e∈V ℓ(p, e) = c⋆ (where

c⋆ is a constant).

For binary games with real-valued predictions and natural loss function the
condition of Definition 3 is satisfied, since for every prediction p ∈ [0, 1], ℓ(p, 1)+
ℓ(p, 0) = 1− p+ p = 1. Under this assumption the following weak NFL theorem
holds for the probabilistic expectation value (ExpP ) of the success rate of a
2 [8] mentions the weak no free lunch theorem in a small paragraph on p. 1354; for our
purpose this NFL theorem is the most important one.
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prediction method X, where “(e1−n)” abbreviates “(e1, . . . , en)” and V(C) =
{ℓ(p, e) : p ∈ Vp, e ∈ V} is the set of possible loss values:

Theorem 3 (Weak NFL theorem for prediction games). Given a state-
uniform P -distribution over the space of event sequences with r possible event
values and a weakly homogeneous loss function, the following holds for every
(non-clairvoyant) prediction method X and n ≥ 0:

The expectation value of X’s success rate after an arbitrary number of rounds
is 1− c⋆

r , or formally, ExpP (sucn(X)) :=
∑

c∈V(C) c ·P (sucn(X) = c) = 1− c⋆

r .

Proof. First we prove the following.

Lemma: For every prediction method X, the expectation value of X’s loss in the
prediction of the ‘next’ event equals c*/r, conditional on every possible sequence
of ‘past’ events, or formally:

ExpP (ℓ(pn+1, en+1) | (e1 − n)) :=
∑

c∈V(C)

c · P (ℓ(pn+1, en+1) = c | (e1 − n)) = c⋆/r.

Proof of lemma: As in [8] we allow that prediction methods are probabilistic,
i.e., deliver predictions conditional on past events with certain probabilities
P (pn+1 | (e1−n)). First we compute the conditional probability of a particular
loss value c. By probability theory it holds for all n ≥ 0:

P (ℓ(pn+1, en+1) = c | (e1−n)) =
∑

pn+1∈Vp

∑
en+1∈V δ(ℓ(pn+1, en+1), c) ·

P (pn+1, en+1) | (e1−n)), where “δ” is the Kronecker symbol. By probability
theory we obtain =

∑
pn+1∈Vp

∑
en+1∈V δ(ℓ(pn+1, en+1), c) · P (pn+1 | (e1−n),

en+1) · P (en+1|(e1−n)), which gives us by non-clairvoyance =
∑

pn+1∈Vp∑
en+1∈V δ(ℓ(pn+1, en+1), c) · P (pn+1 | (e1−n)) · P (en+1|(e1−n)), and by re-

arranging terms =
∑

pn+1∈Vp
P (pn+1 | (e1−n)) ·

∑
en+1∈V δ(ℓ(pn+1, en+1), c) ·

P (en+1|(e1−n)), and finally by the state-uniformity of P (*) =
∑

pn+1∈Vp

P (pn+1|(e1−n)) · (1/r) ·
∑

en+1∈V δ(ℓ(pn+1, en+1), c). Next we compute the
expectation value: ExpP (ℓ(pn+1, en+1) | (e1−n)) :=

∑
c∈V(C) c · P (ℓ(pn+1,

en+1) = c | (e1−n)) from which we get by the result in line (*) =
∑

c∈V(C) c ·∑
pn+1∈Vp

P (pn+1 | (e1−n)) · (1/r) ·
∑

en+1∈V δ(ℓ(pn+1, en+1), c) and by re-
arranging terms =

∑
pn+1∈Vp

P (pn+1 | (e1−n)) · (1/r) ·
∑

c∈V(C) c ·
∑

en+1∈V δ

(ℓ(pn+1, en+1), c).
Note that “

∑
c∈V(C) c ·

∑
en+1∈V δ(ℓ(pn+1, en+1), c)” is nothing but the sum

of pn+1’s loss values for all possible events, i.e.,
∑

en+1∈V ℓ(pn+1, en+1). So, by
the weak homogeneity of the loss function, we continue as follows: =

∑
pn+1∈Vp

P (pn+1 | (e1−n)) · (1/r) · c⋆ = c⋆/r (since
∑

pn+1∈Vp
P (pn+1 | (e1−n)) = 1).

(End of proof of lemma.)
The expectation value of X’s success rate is the expectation value of the sum

of X’s scores divided by n. Since the result of the lemma holds for every round n,
the additivity of expectation values (ExpP (X1 +X2) = ExpP (X1) +ExpP (X2))
entails that ExpP (sucn(X)) = n · (1 − (c⋆/r))/n = 1 − (c⋆/r). ⊓(
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The SUPD is a necessary condition of the application of the NFL theorem to
prediction games, because its proof presupposes that the P-distribution over V is
uniform conditional on every possible past sequence. There are generalizations
of NFL theorems for one-shot learning procedures to certain non-uniform P-
distributions [6], but they are not valid for prediction games.

For prediction games with real-valued events, convex loss functions are not
even weakly homogeneous, although certain restricted NFL theorems can be
demonstrated [12]. However, in this paper we focus on prediction games with
binary events, to which the weak NFL theorem applies, because here the apparent
conflict of this theorem with RW’s access-dominance is most vivid.

4 Meta-Induction and NFL: The Long-Run Perspective

Is there a contradiction between the weak NFL theorem and the existence of
free lunches for RW meta-induction? In regard to the long run perspective our
answer can be summarized as follows: No, the contradiction is only apparent.
According to Theorem2 (Sect. 2) there are RW-accessible methods whose long-
run success rate is strictly smaller than that of RW in some world states and
never greater than that of RW in any world state. Let us call these methods
Xinf (for “inferior”). Nevertheless the state-uniform expectation values of the
success rates of RW and Xinf are equal, because the state-uniform distribution
that Wolpert assumes assigns a probability of zero to all worlds in which RW
dominatesXinf ; so these worlds do not affect the probabilistic expectation value.

Wolpert seems to assume that the state-uniform prior distribution is epis-
temically privileged. Reasonable doubts can be raised here, inasmuch as a well-
known result in probability theory tells us that the state-uniform distribution is
the most induction-hostile prior distribution one can imagine:

Theorem 4 (Induction-hostile uniformity). [13, pp. 564–566], [14, pp. 64–
66]: Assume the probability density distribution DP is uniform over the space of
all infinite binary event sequences {0, 1}ω. Then P (en+1 = 1 | (e1−n)) = 1/2,
for every possible next event en+1 and sequence of past events (e1−n). Thus P
satisfies the properties of a random IID-distribution over {0, 1}, whence inductive
learning from experience is impossible.

Theorem4 implies that a proponent of a state-uniform distribution believes
with probability 1 that the event sequence to be predicted is an IID random
sequence, i.e., (a) it consists of mutually independent events with a limiting
frequency of 0.5, and (b) it is non-computable. Condition (a) follows from
Theorem4 and condition (b) from the fact that there are uncountably many
sequences, but only countably many computable ones. However, the sequences
for which a non-clairvoyant prediction method can be better than random guess-
ing are precisely those that do not fall into the intersection of classes (a) or (b).
Summarizing, according to a state-uniform prior distribution we are a priori
certain that the world is completely irregular so that no inductive or other intel-
ligent prediction method can have more than random success.
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If every sequence (e) ∈ {0, 1}ω is represented by a real number r ∈ [0, 1] in
binary representation, then the state-uniform density distribution DP is uniform
over the interval [0, 1]. Yet, if the same density is distributed over the space of
statistical hypotheses Hr, asserting that the limiting frequency of 1s in (e) is
r (for r ∈ [0, 1]), it becomes maximally dogmatic, being concentrated over the
point r = 1/2: D(Hq) = 0 for q ̸= r and D(Hq) = ∞ for q = r.

According to a second well-known result in probability theory, a prior dis-
tribution that is not state-uniform but frequency-uniform, i.e., uniform over all
possible frequency limits r ∈ [0, 1] of binary sequences, is highly induction-
friendly. Such a distribution validates Laplace’s rule of induction, P (en+1 =
1 | freqn(1) = k

n ) = k+1
n+2 . Solomonoff [15, Sect. 4.1] has proved that a distri-

bution is frequency-uniform iff the probability it assigns to sequences decreases
exponentially with their algorithmic complexity.

Which prior distributions are more ‘natural’, state-uniform ones or frequency-
uniform ones? In our eyes, this question has no objective answer. It is a great
advantage of the optimality of meta-induction that it holds regardless of any
assumed prior probability distribution. For a frequency-uniform prior distribu-
tion the probability of world-states in which meta-induction dominates random
guessing in the long run is one. For a state-uniform prior the probability of
world-states in which meta-induction dominates random guessing in the long
run is zero. Nevertheless there are (uncountably) many such world-states and
we should certainly not exclude these induction-friendly world-states from the
start by assigning a probability of zero to them. This consideration gives us
the following minimal acceptance criterion for prior distributions: They should
assign a positive (even if small) probability to those world-states in which access-
dominant prediction methods enjoy their free lunches.

5 Meta-Induction and NFL: The Short-Run Perspective

For finite sequences, the strict dominance of RW fails since the advantage of RW
meta-induction comes at a certain regret. Is meta-induction still advantageous
over the space of all short-run sequences? This question is addressed in this
section.

Table 1 presents the result of a simulation of all possible binary prediction
games with a length of 20 rounds. The considered independent methods are

– majority-induction “M-I”, predicting the event that so far has been in the
majority, or formally, pn+1(M-I) = 1/0.5/0 iff freqn(1) > / = / < 0.5,

– majority anti-induction “M-AI”, predicting the opposite of M-I, i.e.,
pn+1(M-AI) = 1/0.5/0 iff freqn(1) < / = / > 0.5, and

– averaging “Av”, which always predicts the average of all possible event values,
which is 0.5 in binary games.

The considered meta-inductive strategies are RW and, for sake of comparison,
ITB.
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Table 1 displays the frequencies of sequences for which the absolute success
of a prediction method (based on the natural loss function) lies in a particular
interval, as specified at the left margin. Success intervals are arranged symmetri-
cally around the average value 10. As expected, the weak NFL theorem applies:
in accordance with it one sees on the bottom line that the state-uniform average
success is the same for all five methods. Nevertheless the frequencies of sequences
for which these methods reach certain success levels are remarkably different.

The success frequencies of M-I and M-AI are different for different success
intervals, because M-I has its highest success in very regular sequences (e.g.,
1111. . .) with high frequencies of 1s or of 0s, in which ties of so far observed
frequencies are rare, while M-AI has its highest success in oscillating sequences
(e.g., 1010. . .) in which ties of so far observed frequencies are frequent. This
brings a score of 0.5 more often to M-AI than M-I. As a result, M-I’s success can
climb higher than M-AI’s success, though the frequency of such cases is small.
In compensation, the number of sequences in which M-AI does only little better
than average is higher than the corresponding number of sequences for M-I.
Observe the mirror-symmetric distribution of sequences over M-I’s and M-AI’s
success intervals, following from the fact that for any given sequence abs20(M-I)
= 1− abs20(M-AI).

In contrast, Av always predicts 0.5 and earns a sum-of-scores of 10 in all
possible worlds. The meta-inductive methods ITB and RW reach the top suc-
cesses that object-induction (M-I) achieves in highly regular worlds, although in
a diminished way due to their short run regrets. The advantage of RW is that
it manages to avoid low success rates: following from its near access-optimality
RW’s success is in every possible sequence close to the maximal success in this
sequence; so RW cannot fall much behind Av’s success rate which is 0.5 (10 of
20 points) in all sequences. In contrast, M-I has a poor performance, and ITB
and M-AI an even worse performance, in some sequences.

Similar tendencies can also be observed in other settings. Increasing the num-
ber of rounds has the effect that the frequency of sequences with high or low
success rates steadily decreases, as explained in the previous section.

Based on these results we obtain a justification of object-induction and meta-
induction even within the induction-hostile perspective of a state-uniform prior
distribution for binary short-run sequences. What counts are two things: (a)
To reach high success in those environments which allow for non-accidentally
high success by their intrinsic regularities. This is what independent inductive
methods do. (b) To protect oneself against high losses (compared to average
success) in induction-hostile environments. This is what cautious methods such
as Av do. The advantage of RW meta-induction is that it combines both: reaching
high success rates where it is possible and avoiding high losses. Thus RW achieves
‘the best of both worlds’. This, however, comes at the cost of a certain short-run
regret.

The preceding version of a justification of meta-induction works within
the most induction-hostile prior distribution – a SUPD. If one switches to a
frequency-uniform prior distribution, one thereby adopts an induction-friendly
perspective. This result is displayed in Table 2 for a simulation of all possible
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Table 1. Meta-induction and no-free-lunch for binary-event games. Cells show percent-
age of possible binary sequences with 20 rounds, for which the five methods M-I, M-AI,
Av, ITB and RW have reached certain intervals of absolute successes (left margin).

M-I M-AI Av ITB RW
A
b
so
lu
te

su
cc
es
s
in
te
rv
al
s

[0,1) 0 0.0002 0 0 0

[1,2) 0 0.003 0 0.0004 0

[2,3) 0 0.029 0 0.008 0

[3,4) 0 0.159 0 0.077 0

[4,5) 0 0.618 0 0.394 0

[5,6) 0.537 1.824 0 1.412 0

[6,7) 3.540 4.254 0 3.708 0

[7,8) 9.579 8.035 0 7.555 0

[8,9) 15.622 12.476 0 12.966 36.491

[9,10) 18.346 16.065 0 18.238 23.472

10 8.910 8.910 100 9.848 0

(10,11] 16.065 18.346 0 17.642 14.835

(11,12] 12.476 15.622 0 14.213 11.880

(12,13] 8.035 9.579 0 8.155 7.469

(13,14] 4.254 3.540 0 3.558 3.595

(14,15] 1.824 0.537 0 1.486 1.513

(15,16] 0.618 0 0 0.555 0.560

(16,17] 0.159 0 0 0.152 0.153

(17,18] 0.029 0 0 0.029 0.029

(18,19] 0.003 0 0 0.003 0.003

(19,20] 0.0002 0 0 0.0002 0.0002

State-uniform
average success

10 10 10 10 10

sequences of length 20 applied to the methods of Table 1. In Table 2 the left mar-
gin displays intervals for the possible frequencies of 1s in the 20-round sequences
and the cells display the achieved (average) absolute successes of the methods
for sequences whose frequencies lie in these intervals.

Note that the more decentered a frequency interval, the lower is its cor-
responding entropy. M-I is most successful in all frequency intervals that are
not close to the center. It is only in the interval [0.4,0.6] – which, of course,
contains many more individual sequences than the other intervals – that Av
performs better than M-I. However, Av’s mean success in this interval is worse
than the mean success of the anti-inductive method M-AI, which performs badly
in the decentral intervals. Again, the meta-inductive methods combine both fea-
tures: in the central interval they don’t lose much compared to Av, while in the
decentral intervals their mean success rate comes close to that of M-I and beats
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Table 2. Meta-induction for binary events from the perspective of frequency-uniform
distributions. Cells show (average) absolute successes of the five methods M-I, M-AI,
Av, ITB and RW, for binary sequences with 20 rounds, in dependence of their event-
frequencies (left margin).

M-I M-AI Av ITB RW
F
re
q
u
en

cy
in
te
rv
al
s

[0,0.1] 17,5 2,5 10 17,12 17,14

[0.1,0.2] 15,4898 4,5102 10 14,7254 14,7103

[0.2,0.3] 13,4314 6,56857 10 12,2263 12,1212

[0.3,0.4] 11,2313 8,76873 10 9,81723 9,90422

[0.4,0.5] 8,82824 11,1718 10 9,80868 9,77248

[0.5,0.6] 8,82824 11,1718 10 9,80868 9,77248

[0.6,0.7] 11,2313 8,76873 10 9,81723 9,90422

[0.7,0.8] 13,4314 6,56857 10 12,2263 12,1212

[0.8,0.9] 15,4898 4,5102 10 14,7254 14,7103

[0.9,1] 17,5 2,5 10 17,12 17,14

Average for
frequency uniform
distribution

13.30 6.70 10 12.74 12.73

that of Av and M-AI. As expected, the frequency-uniform expectation values of
the absolute success is much higher for inductive than for non-inductive methods;
M-I has the lead, closely followed by ITB and RW.

6 Conclusion

In this paper we applied the (weak) no free lunch (NFL) theorem to regret-based
meta-induction (RW) in the framework of prediction games. The challenge of the
NFL theorem cannot be ‘solved’ by arguing that expected successes should be
computed relative to the ‘actual’ (instead of some prior) distribution, because
this idea is viciously circular. A more robust defense is possible based on an
a priori result concerning the access-dominance of RW. Since this dominance
result implies the existence of free lunches for RW it seems to contradict the
NFL theorem. This conflict was dissolved based on four core result:

(1) A weak NFL theorem can be proved for prediction games (with binary events
and natural loss function) under the assumption of a SUPD (a state-uniform
probability distribution). A SUPD is maximally induction-hostile. In con-
trast, a frequency-uniform distribution is induction-friendly. Either sort of
prior distribution is subjective and biased.

(2) Concerning success in the long run, the meta-inductive prediction strategy
RW enjoys free lunches compared to all prediction methods that are not
access-optimal (and most prediction methods aren’t). However, the SUPD
underlying the NFL theorem assigns a probability of zero to the class of all
event sequences in which RW dominates other methods. This dissolves the
apparent conflict with the NFL within the long-run perspective.
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(3) Concerning success in the short run, the following short-run advantage of
RW can be demonstrated even under the induction-hostile perspective of an
SUPD:What counts is (a) to reach high success rates in regular (low-entropy)
environments, which is what independent inductive methods do, and (b) to
protect against high losses, compared to average success, in irregular (high-
entropy) environments, which is what cautious “averaging” methods do. RW
meta-induction combines both advantages, at the cost of a small short-run
regret.

(4) If one assumes a frequency-uniform prior, then (meta-) inductive prediction
strategies outperform non-inductive methods for all event sequences whose
entropy is not close-to-maximal.
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Abstract. Autonomous robots need to perceive and represent their
environments and act accordingly. Using simultaneous localization and
mapping (SLAM) methods, robots can build maps of the environment
which are efficient for localization and path planning as long as the envi-
ronment remains unchanged. However, facility logistics environments are
not static because pallets and other obstacles are stored temporarily.

This paper proposes a novel solution for updating maps of changing
environments (i.e. environments with low-dynamic or semi-static objects)
in real-time with multiple robots. Each robot is equipped with a laser
range sensor and runs localization to estimate its position. Each robot
senses the change in the environment with respect to a current map,
initially built with a SLAM method, and constructs a temporary map
which will be merged into the current map using localization informa-
tion and line features of the map. This procedure enables the creation of
long-term mapping robot systems for facility logistics.

1 Introduction

For autonomous navigation, robots need a representation of the operating envi-
ronment. Maps of static environments can be built using simultaneous local-
ization and mapping (SLAM) methods. Maps built with SLAM work well for
localization and path panning as long as the environment remains static [9]. But
most of the environments are not static due to changes during day-to-day opera-
tions. These changes can be due to high-dynamic objects or low-dynamic objects.
Objects whose location change can be observed in the robot’s field of view, e.g.
humans or other moving vehicles are high-dynamic objects. Objects like pallets
and stationary vehicles, which are stationary in the robot’s field of view, are
low-dynamic objects [26,31]. Low-dynamic objects are also termed semi-static
objects [25]. Considering changes in the environment due to the low-dynamic
objects can improve the localization capabilities of the robot system [25] and
improve path planning of large robot teams [17] as well as the coordination of

c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 249–261, 2017.
DOI: 10.1007/978-3-319-67190-1 19
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a multi-robot system. If the up-to-date map could be combined with a coordi-
nation algorithm (e.g. Multi-Agent-System), fixed routes could be changed and
optimized for changes in the environment. A very crucial part is the reduction
of “reactive behaviours”. If the robots of the multi-robot system can share the
information about dynamic or semi-static objects, the efforts of obstacle avoid-
ance could be reduced. This could save costs and time in logistic environments
because the robots can always drive the faster path which is coordinated with
all robots and planned according to the latest environment information. Hence
coordinated path planning with updated environment information could reduce
waiting time and guarantees the achievement of transports [22,23].

The mapping of dynamic obstacles is therefore a major step towards life-long
robot navigation. The scope of this work is (1) to detect the low-dynamic objects
and (2) to update the representation of the environment in long-term operation
of multi-robot system.

The following terminology is used throughout the paper:

– Static Map: Map built initially by a standard SLAM algorithm. It contains
static features of the environment like walls and fixed machinery which never
changes. Its line features will be used by the approach for alignment.

– Temporary Map: Maps built by each robot upon detecting changes.
– Current Map: Map updated so far by merging temporary maps. With each
sensor update every robot checks for changes in the environment in compar-
ison to the current map. Initially, the current map is the same as the static
map.

The paper is organized as follows. In the next section related work is pre-
sented. The succeeding section describes the approach and explains the method
for calculating divergence and line-based map merging. Real-world results are
presented in Sect. 5 followed by conclusions and future work.

2 Related Work

In case of building a static map of an unknown environment with a single robot
system, many SLAM methods are described in literature. Most of those methods
are based on the Extended Kalman Filter (EKF) [12] and the Rao-Blackwellised
particle filter [27]. Cooperative Simultaneous Localization and Mapping (C-
SLAM) methods are used in case of multi-robot systems [13]. Particle filters
are also extended to handle multi-robot SLAM [14].

Handling changes in the environment for life-long navigation of robots is
currently a major research topic [4]. Meyer-Delius et al. [25] used temporary
maps for localisation in a semi-static environment. Their approach maintains
temporary maps in a KD-tree and uses the corresponding map when obser-
vations are not consistent with the static map. Temporary maps are created
when the fraction of range measurements in the current observation, which is
not consistent with the current map (called outlier ratio), exceeds a predefined
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threshold, and when no existing temporary map explains the current observa-
tions. Temporary maps are discarded when the average outlier ratio is high.
Jensen et al. [15] employed the shape information of objects and visibility cri-
teria to update changes in a semi-static environment. Both [15,25] are for the
case of a single robot system. In [10], each robot maintains a global map and
senses changes in the environment based on divergence of short term and long
term likelihoods. Upon detecting a change, a temporary map is built. Temporary
maps are merged into the global map using rigid transformation. The calculation
of the transformation bases on the Hough spectrum [11]. The resulting map is
dispatched to the other robots, and each robot updates its map based on this
information. Kleiner et al. [17] used occupancy grid maps with Hidden Markov
Models (HMM) to detect changes with a large team of robots in real-time to
compute an optimal road map.

Various direct and indirect map merging algorithms [20] find transformations
between maps (that are built by individual robots) using relative positions, and
common areas. Carpin et al. [11] find the transformation between maps based
on Hough transform, X-spectrum and Y-spectrum. Lakaemper et al. [19] used
shape similarity to merge maps with polygonal curves.

Many autonomous guided vehicle systems are present for intra-logistics in
warehouses for material flow and order fulfillment. Kiva systems use the mobile
robot drivepod shown in Fig. 1(a) [3] which uses cameras for navigation to read
bar codes placed on the floor. The KARIS system, shown in Fig. 1(b) [30], uses
grid map based Monte Carlo localization for autonomous navigation. Grenze-
bach’s G-Pro vehicles, see Fig. 1(c) [1], use induction loops in the floor for naviga-
tion. Fraunhofer IML’s Cellular Transport System [16] replaces conveyor systems
by a swarm of Cellular Transport Vehicles, shown in Fig. 1(d), with transport
capabilities for material handling.

(a) Kiva System (b) Karis System

(c) Granzbach G-Pro AGV (d) Cellular Transport Vehicle

Fig. 1. Robots in warehouse logistics
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3 Approach

In the approach proposed in this paper each robot detects changes in the envi-
ronment and builds a temporary map. The temporary maps are merged into the
current map. An initial map of the environment is built with a standard SLAM
algorithm which contains only static parts of the environment (i.e. walls and
fixed installations). This map will be called static map in the following.

Each robot is equipped with a laser range sensor and runs the localization to
estimate its position. Sensor observations and the estimated position are used
to detect changes in the environment with respect to the given current map (at
first, the initial current map equals the static map). Upon detecting a change in
the environment, the robot can start and stop building a temporary map which
will be merged into the current map. Figure 2 shows an outline of the approach.
In this context a robot can either be in free state in which it did not detect any
change, or a robot can be in building temporary map state in which the robot
detected a change and is building a temporary map. Afterwards, merging of the
temporary map and the current map is done using line features from the static
parts of the environment. The updated current map will be used for further
detection of changes.

3.1 Assumptions

The approach makes the following assumptions for reliable map merging:

– The localization uncertainty is not very high. Otherwise matching of corre-
sponding lines will be difficult.

– The environment has enough line features. This is mostly common in indoor
environments.

– Enough static line features of the environment are present in a temporary
map. If a temporary map contains entirely new information, it will not be
possible to do line matching.

The three main blocks of the approach, Detecting/sensing change, Building tem-
porary maps, Map merging, are described in the following subsections.

3.2 Detecting/Sensing Change

Detecting/sensing change in the environment is done using weighted recency
averaging of the likelihood and utilizes the method of [9]. The main idea is to
find the divergence of short-term and long-term measurement likelihood for a
given tuple of an estimated pose xt, a laser scan Zt and a map m:

Wavg(t) = p(zt|xt,m), (1)

Wslow(t+ 1) = Wslow(t) + αslow ∗ (Wavg(t) − wslow(t)), (2)
Wfast(t+ 1) = Wfast(t) + αfast ∗ (Wavg(t) − Wfast(t)), (3)

d(t) = max(0, 1 − Wfast(t)
Wslow(t)

). (4)
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Fig. 2. Outline of the approach

– If d(t) > 0 start building a temporary map.
– If d(t) ≤ 0 stop building the temporary map and merge it with the current

map.

αslow,αfast are decay parameters such that 0 ≤ αslow ≪ αfast and Eq. (1)
represents a laser sensor model based on beam range finder model [29] to find
the probability p of the observation Zt being at the location xt given the map
m. Figure 3 shows the evolution of the divergence d(t), αslow, αfast, αavg for a
period of about five minutes navigation through a changing environment. Besides
changes in the environment also a rotation of the robot can cause a change in the
divergence which may trigger the creation of a temporary map even if there is
no change in the environment. This is mitigated by not updating the divergence
during rotation of the robot which can be seen in the plot as constant values.

3.3 Building Temporary Maps

Temporary maps were built using the Hector SLAM [2] package available in
Robot Operating System (ROS) [7]. Hector SLAM builds the occupancy grid
based on scan matching by aligning the end points of current laser scan beams
with the map learned so far using a Gauss-Newton approach. A multi-resolution
map representation is used to address the problem of local minima [18]. Examples
of temporary maps can be seen in Figs. 4(b) and 5(c).

3.4 Fusion/Merging Temporary Map

The goal of the merging process is to align and merge the temporary maps with
the current map. In this step an obstacle which is temporarily mapped will be
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Fig. 3. Evaluation of divergence, wavg(t), wfast(t), wslow(t)

added to the map or subtracted by its removal. To align the maps, localization
information and line features are used. Initially, the temporary map is trans-
formed into a static map coordinate system, utilizing the first robot location
from which the construction of the temporary map started. Depending on the
localization method, the accuracy of the estimated position varies. The effect
of an uncertainty in the localization position can be seen in Fig. 4(c). Ideally, if
the estimated position, obtained by localization, is accurate, the temporary map
should align with the current map perfectly. To adjust misalignments of these
maps, occurring due to the uncertainty in estimated position, line features from
the static environment are used. The correcting transformation T{dx, dy, dθ}
is calculated sequentially, i.e. initially a correction in angle dθ is found. After-
wards, the vertical displacement dy and the horizontal displacement dx are cal-
culated [28].

Line segments from the static map and the temporary map are extracted
using the Hough transform [6]. Due to the width of the edges and noise in
the sensor readings the same edge can provide various lines. This set of line
segments is preprocessed so that each edge is represented by a single line segment.
Extracted lines can be seen in Fig. 4(c), green and red line segments correspond
to static and temporary maps, respectively. Afterwards, matching line segments
in pairs are determined. Each line segment is represented by Hesse Normal Form
which contains the normal distance from the origin r and the angle between the
normal and the horizontal axis θ. A pair of lines is defined by the normal distance
(rm − rn) and angular difference (θm − θn). For a given pair of line segments
in the temporary map {ltm, ltn}, all the matching pairs of line segments in the
static map are found. All the lines in the static map are candidates for matching
line segments. For both segments in the temporary pair, a normal is drawn from
the mid point. In turn, the nearest line segment from the candidate line segments
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(a) Static Map of the environment (b) Temporary map

(c) Overlay Temporary Map with localization (d) Correction in angle

(e) Vertical Correction (d) Horizontal Correction

Fig. 4. Exemplification of the proposed map merging steps using line segments. (Color
figure online)

of the matched static pair is found. The nearest lines are matching lines if the
nearest line segment pair is matched with temporary pair.

Correction in angle dθ is the mean value of the angle differences between the
matched line segments weighted by the length of the temporary line. The vertical
displacement dy is the normal distance between the matching line segments after
rotating temporary line segments with correction angle dθ.

Before calculating the horizontal displacement dx, the temporary map is
transformed with the previously calculated correction in angle dθ, see Fig. 4(d),
and the vertical displacement dy (Fig. 4(e)). The horizontal displacement is cal-
culated by finding maximum matching horizontal displacement i.e. the displace-
ment which corresponds to the maximum matching of grid cells in the static
map and transformed temporary map.

4 Implementation

The approach has been implemented on Cellular Transport System (CTS) vehi-
cles (Fig. 1(d)) [16]. Each vehicle is equipped with a Sick safety laser sensor
and runs landmark-based Monte Carlo localization to estimate its position. The
server runs Ubuntu 14.04 with ROS Indigo. Each vehicle sends its estimated
position (xt) and the corresponding laser reading (Zt) to the server through
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ZeroMQ [8]. On the server the divergence is calculated and temporary maps are
built. Merging of the temporary maps with the static map is done on server.

5 Experiments and Results

The approach has been tested in the LivingLab for Cellular Transport Systems at
the Fraunhofer Institute for Material Flow and Logistics [5]. The dimension of the
testing area is about 60m × 18m. Initially a complete map of the environment
with static parts is built using Hector SLAM which can be seen in Fig. 5(a).
This static map contains walls, picking stations (seen as ellipses) and other
fixed installations (one on the right and another one far to the left). Later, two
pallets were placed in the environment and few other stationary robots were
also present along the horizontal wall at the bottom during the experiment. A
test robot was made to navigate along the path shown in Fig. 5(b) at speed of
0.5m/s which takes about 5min. In this experiment, the robot detected changes
at four locations and corresponding maps were built.

One of the temporary maps is shown in Fig. 5(c). The temporary maps are
transformed and merged into the current map. Figure 5(d) shows correction of
temporary map overlaid onto current map. The two pallets were successfully
detected and updated in the map after merging the temporary maps, cf. Fig. 5(e).
In addition, added stationary robots can be seen along the horizontal wall at the
bottom (Fig. 6).

Next, the performance of map matching has been investigated in detail. Two
cases are distinguished: (1) addition of obstacles and (2) removal. The robot
speed is equal in both cases. For each case three temporary maps are presented

(a) Static Map (b) Path of robot during experiment

(c) Exemplified Temporary Map (d) Overlaying Temporary Map

(e) Final map after Merging

Fig. 5. Results of map updating
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(a) Temporary Map1 (b) Matching of Temporary Map1

(c) Temporary Map2 (d) Matching of Temporary Map2

(c) Temporary Map3 (d) Matching of Temporary Map3

Fig. 6. Evaluation of line matching for temporary maps in case of obstacle addition.
Lines from both the static and the temporary map are numbered and shown in green,
and red, respectively. Additionally lines from the temporary map after using corrected
transformation are shown in blue. Best viewed in color. (Color figure online)

Table 1. Performance of edge-wise matching in case of obstacle addition.

Temporary

map

Temporary

line ID

Global

line ID

Distance

difference

in px

Angle

difference

in degrees

Map1 0 2 0.707107 0

Map1 1 12 0.707107 0

Map1 2 9 0.707107 0

Map1 3 2 0.689639 −1.20035

Map1 4 0 1.6094 2.24936

Map2 0 2 2.54951 0

Map2 2 2 0.695382 −0.925865

Map2 3 12 0.707107 0

Map2 4 9 0.707107 1.20035

Map2 5 2 1.58114 0

Map3 0 8 2.54951 0

Map3 1 4 0.695382 0

Map3 2 8 0.707107 0

Map3 3 5 0.707107 0

Map3 6 17 1.58114 3.08052

Map3 8 11 0.707107 0.605741

Map3 9 2 1.58114 0
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Table 2. Performance of edge-wise matching in case of obstacle removal.

Temporary
map

Temporary
line ID

Global
line ID

Distance
difference
in px

Angle
difference
in degrees

Map1 0 2 0.707107 0

Map1 1 22 1.58114 0

Map1 2 2 1.58378 −0.605741

Map1 3 12 1.58114 0

Map1 4 9 0.707107 0

Map1 5 22 1.58114 0

Map2 0 0 0.707107 0

Map2 1 0 0.707107 0

Map2 2 0 0.707107 0

Map2 3 0 0.707107 0

Map2 4 0 1.57597 1.21538

Map2 5 0 0.707107 −1.83647

Map2 7 0 0.707107 2.24936

Map2 8 4 0.707107 0

Map2 9 11 1.4301 −1.25872

Map2 11 0 1.58114 0

Map2 14 0 1.58114 0

Map2 17 0 0.707107 0

Map3 1 2 0.707107 0

Map3 2 8 0.707107 0

Map3 3 0 1.63474 4.13334

Map3 4 4 0.707107 0

Map3 5 8 0.707107 0

Map3 6 0 0.695467 −1.03391

Map3 7 2 52.5024 0

Map3 9 22 1.59199 −1.93029

Map3 11 2 0.707107 2.81821

Map3 12 8 1.58114 0

Map3 13 5 1.59479 −2.3415

and the edge-wise matching errors are highlighted. The resulting maps for case
one (addition of obstacle) are shown in Fig. 7 (Tables 1 and 2).

Results from the two datasets above show that the approach has produced
consistent occupancy grid maps which represent the map changes. Also from the
evaluation calculations, the distance difference between matched lines in almost
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(a) Temporary Map1 (b) Matching of Temporary Map1

(c) Temporary Map2 (d) Matching of Temporary Map2

(c) Temporary Map3 (d) Matching of Temporary Map3

Fig. 7. Evaluation of line matching for temporary maps in case of obstacle removal.
Lines from both static and temporary map are numbered and shown in green, and red,
respectively. Additionally lines from temporary map after using corrected transforma-
tion are shown in blue. Best viewed in color. (Color figure online)

all the cases was less than 1 or 2 pixels. This error can occur due to the noise
from the laser measurements or due to the approximation of lines from Hough
transformation. Also the angle difference between matched lines was zero in most
cases and maximum difference obtained was less than 5 degrees.

6 Conclusion and Future Work

We proposed a method for updating the environment map for long term oper-
ation of a multi-robot system. Therefore, we utilized line features to merge
grid maps. Our experiments demonstrate practicability of the approach. The
method can be applied easily in a multi-robot environment. Next steps will be,
besides improvement of the approach, to perform qualitative evaluations in more
complex and realistic scenarios for longer durations. The mapping of dynamic
obstacles is a major step towards life-long navigation. In future, related path
planning, collision avoidance and congestion avoidance problems will also be
studied. The fusion with stationary sensors (e.g. Bluetooth [21,24]) directs to
autonomous vehicle problems, where Car/to/Infrastructure communication is an
active research topic.
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Abstract. Within the general objective of conceiving a cognitive archi-
tecture for image interpretation able to generate outputs relevant to sev-
eral target user profiles, the paper elaborates on a set of operations that
should be provided by a cognitive space to guarantee the generation of
relevant descriptions. First, it attempts to define a working definition of
contrast operation. Then, revisiting well-known results in cognitive stud-
ies, it sketches a definition of similarity based on contrast, distinguished
from the metric defined on the conceptual space.

Keywords: Similarity · Contrast · Conceptual spaces · Relevance ·
Description generation · Triangle inequality · Asymmetry · Diagnosticity
effect

1 Introduction

Similarity, for its fundamental role in human reasoning, occupies a central role in
cognitive science. In general, it is modeled as a function of a context-dependent
distance (e.g. [1]). On the other hand, most machine learning methods rely on
adequate metrics to perform comparisons between inputs; certain methods even
attempt to achieve (pseudo-)metric learning. This convergence towards geomet-
ric models is not without problems. First, there exist many empirical studies,
starting from the famous work of Tversky [2], that show that similarity in human
judgment does not satisfy fundamental metric axioms. Secondly, a good part of
reasoning operations performed by artificial devices still relies on symbolic means
(e.g. ontologies expressed in description logics), that do not have a direct geomet-
ric interpretation. Attempts to fill these gaps exist, for instance by enriching the
metric model of similarity with additional elements to align it with the empir-
ical results (e.g. [3]), or by approaching the logical structures used in artificial
reasoning via geometrical notions (e.g. [4]).

This work attempts to follow an alternative path. On the one hand, we con-
tinue along the tradition of works on psychological spaces, and precisely, we
build upon the theory of conceptual spaces [5,6], acknowledging a third cogni-
tive level, between symbolic and associationistic, where conceptual entities are
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 262–275, 2017.
DOI: 10.1007/978-3-319-67190-1 20
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geometric representations. In our general research project, we aim to introduce
conceptual spaces as a sort of middle-ware for image interpretation applications.
Here, assuming that conceptual spaces exist, we focus on operations required for
generating relevant descriptions, i.e. pertinent characterizations of a given input.
We sketch a technical solution satisfying properties of predication observed in
direct experiences. As a result of this proposal, we argue that the mismatches
between geometric and empirical properties of similarity might not be a con-
sequence of the space per se but of neglecting part of the mechanisms behind
description generation.

The paper unveils its arguments incrementally. We first give a brief overview
of the theory of conceptual spaces [5,6] and of a recent variation [7], focusing
on pertinent predication. We then sketch the infrastructure required for gen-
erating relevant descriptions starting from simple examples of predication, but
which are already problematic for semantic approaches relying on set theory.
From this base, we present an alternative definition of similarity, that predicts
results observed in empirical studies (asymmetry of similarity judgments, non
satisfaction of the triangle inequality, diagnosticity effect). A note on further
developments ends the paper.

2 Conceptual Spaces and Predication

2.1 Overview on Conceptual Spaces

According to Gärdenfors’ theory of conceptual spaces [5,6], the meaning of words
can be faithfully represented as convex regions in a high-dimensional geometric
space, in which dimensions correspond to cognitively primitive features. Tech-
nically, conceptual spaces are usually modeled as vector spaces (e.g. [8–10]). An
object of the conceptual space is characterized by several qualities or attributes:

(q1, q2, . . . , qn),∀i : qi ∈ Qi

where Qi are sets of possible values for each quality qi. Quality dimensions
correspond to the ways in which two stimuli can be considered to be similar or
different, usually according to an ordering relation of the stimulus. In general, the
Qi are modeled as concrete domains on R, R2, . . . , N,N2, etc. but proposals exist
to process nominal domains (e.g. [11,12]). So far, we used the term domain in
the mathematical sense. However, in works on conceptual spaces—in agreement
with the cognitive psychology literature—the term domain identifies a set of
integral dimensions, i.e. dimensions that cannot be separated perceptually (e.g.
for humans, the color dimensions hue-luminosity-saturation). A conceptual space
consists therefore of:

C = D1 × D2 × . . . × Dm

where each Di is a domain. As each Di consists of a set of qualities, the resulting
structure is hierarchical. According to its proponents, this infrastructure enables
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the distinction between objects, i.e. points of the space (used to represent exem-
plars and prototypes, i.e. exemplar-based and prototypical bodies of knowledge
[11]), and concepts, defined as regions of the space.

To guarantee betweenness among similar elements, natural properties corre-
spond to convex regions in a domain [5]. A concept is a combination of properties,
typically across multiple domains (linguistically, properties are usually expressed
as adjective-like attributes, while concepts as nouns or verbs). Prototypes emerge
as centroids of those convex regions (properties or concepts); at the same time,
the division of conceptual spaces in regions can be seen as the result of a competi-
tion between prototypes, that might be captured by Voronöı tessellations, useful
for categorization applications; technically, existing implementations exploit e.g.
region connection calculus (RCC) [8], or polytope structures [13].

Evidently, there is a strong affinity between the representation based on fea-
tures used in machine learning and the idea of conceptual spaces. For instance,
word embeddings techniques also represent the meaning of words as points on a
high-dimensional Euclidean space; however, conceptual spaces offer two advan-
tages: first, working with regions and not only with similarity, they provide an
intuitive way to process subsumption, overlap and typicality; second, dimensions
of conceptual spaces have (or should have) a direct relation to a domain, while
word embeddings dimensions are essentially meaningless.1

2.2 Predication and Relevance

The theory of conceptual spaces assumes a generally working association between
regions and linguistic marks. For this insistence on lexical meaning, the proposal
can be seen as an extension of the symbolic approach. A recent alternative
proposal [7] considers instead that predicates are the result of contrast operations
made on the fly between conceptual objects, following principles of relevance. In
essence, contrast is a “difference” operator (denoted with −) between the vectors
pointing to the exemplar (O) and to the prototype (P ):

C = O − P

Being the outcome C a vector, with (theoretically) the same dimensionality
of the conceptual space, it may be a conceptual object as well. However, this
vector should not be interpreted extensionally, but rather as a conceptual force
or modifier ; we will name these objects contrastors.

The proposal carries interesting innovations. First, whereas practically all
other works rely on a global distance, it does not necessarily require a holistic
perspective on all available dimensions. Second, it does not have to refer to
average lexical meanings emerging from usage, but it is computed contingently
with C and P grounded on the agent’s own experience.2 Third, working with
1 Jameel and Schockaert [14] show that a NLP architecture based on conceptual spaces
yields better results than word-embeddings and knowledge-graph embedding.

2 The negotiation of the specific symbols associated to C and P (anchoring), here
assumed as given, remains deferred at social level.
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contrast would allow to overlook the convexity constraint, requiring in principle
only access to the representational level of points. For these reasons, we take it
as a starting point for our investigation. In the following, we start working out
an implementation of contrast, missing in the original paper [7].

3 Experiments for the Specification of Contrast

3.1 First Example: “red dog”

In predicate logic, the expression “red dog” is usually written as an x such
that Red(x) ∧ Dog(x), that, in the set-theoretic semantics, refers to an entity
included both in the set of dogs and in the set of red entities. However, a red
dog is not red as would be a red face, nor as would be a red book; in the
usual labeling of colors it looks actually rather brown. Being red—semantically—
might depend on the type of object on which the predicate applies. Accepting
this, we suppose that the description of an object is constructed in at least two
steps: first, an association to the nearest prototype (categorization), and then
the extraction of the characteristic features by contrast. In this work, we bypass
the prototype association, assuming it as given (machine learning algorithms
have been proven successful in this respect). We focus only on the contrastive
component of predication. In our example, “this dog” exemplar contrasted with
the “dog” prototype should return a “red” contrastor.

For simplicity, we consider dogs as defined merely by their colors. We have
taken the RGB colors of 9 common furs of dogs from the Internet, and converted
them in HLS dimensions (hue, luminosity, saturation), in accordance with the
conceptual space literature. Other color spaces, such as CIELAB or CIELUV
can even better match visual perception, and first experiments confirm that the
proposed approach applies in these spaces as well. For the sake of the argument,
we continue with HLS. The statistical properties of the set are:3

mean: [ 0.10 0.52 0.46 ], std dev: [ 0.02 0.22 0.27 ]

Simplifying, we could take the mean as a prototype of color of a dog. This
computation is transparent or at least less sensible to frequency effects; we are
not averaging on actual populations of dogs, but on breeds. Figure 1 shows the
selected points and the centroid, including points from the HLS spectrum with
a plausible label association, e.g. “red” to (0, 0.5, 1).

Let us consider a dog exemplar that would go under the “red sable” label. As
a first step, we see contrast as vectorial difference of exemplar and prototype:4

[ 0.07 0.24 0.92 ] - [ 0.10 0.52 0.46 ] = [ -0.16 -0.28 0.45 ]

3 Hue is an angular dimension, so the calculation of mean and standard deviation
follows circular (also known as directional) statistics methods.

4 Given two angles a and b, we have computed a − b as the angle of the vectorial
difference of the two normalized vectors corresponding to the input angles, which is
equivalent to the circular mean of a and b+ π.
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Fig. 1. Colors of dog furs and standard colors (with labels), on HLS dimensions. (Color
figure online)

As the contrastor aims to capture the distinctive characteristics of the subject
entity (e.g. this dog), with respect to a reference entity (e.g. the dog prototype),
it lies, as a vector, in the same space as the two conceptual objects. The operation
in itself however gives no evident clue on how to compare the outcome with, for
instance, a previously acquired contrastor.

Let us consider now a red book. Assuming that practically all colors are pos-
sible for a book cover, each quality dimension can be modeled under a uniform
distribution. When normalized, their standard deviation is 1/

√
12 ≈ 0.29.5 We

may then define an empirical principle of relevant dimension: the more the stan-
dard deviation along a normalized quality dimension approaches 0.29 the less we
expect that quality to be relevant to form the prototype. In the extreme case,
we should not take it to define the centroid. Applying roughly the principle on
the dog case, the only pertinent dimension for the prototype is hue.

Now, the standard mathematical tool for vectorial spaces requires that points
have a value for all coordinates. However, conceptual spaces have potentially
infinite dimensions, and points may have undefined dimensions. To enable the
possibility to operate with any point, we introduce a void value ∗ when a certain
dimension is not applicable.6

We want to identify a method to generate, from this representation, that
our dog is a red dog, and that our book is a red book. For the book, being
the prototypical book color void, the color characterization mirrors the color
specification given by the sensory module, i.e. there is no contextualizing effect

5 µ = 1/2, Var = E[(X − µ)2] =
∫ 1

0
(x − 1/2)2dx = 1/12.

6 In a similar spirit, Aisbett and Gibbon [15] introduce the idea of distinguishing point.
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due to the prototype.7 In formula, we have that:

(.., a, ..) − (.., ∗, ..) = (.., a, ..)

The color spectrum serves as a source of contrastors. In the case of dogs, we
expect instead a contextualizing effect. Assuming that contrastors have proto-
types as well, we require a method to compute to which category the contrastor
we computed falls upon, in order to enable a reuse of this category in different
contexts (e.g. red dog, red book, red face). In clustering algorithms (see e.g.
[16]) the comparison between two numeric points is done using distance mea-
sures (usually Euclidean, Manhattan or Chebychev), or functions such as cosine
similarity, Pearson correlation measure etc. In typicality-based clustering (e.g.
[17]), it relies on a typicality degree computed using a internal resemblance (with
other members of the cluster) and an external dissimilarity (with members of
other clusters).

Fig. 2. Hue, luminosity, saturation (HLS) color spectrum. (Color figure online)

For the aim of this paper, we do not need to decide a clustering algorithm (i.e.
a prototype formation mechanism), nor to settle upon how a contrastor should
be associated to its prototype (i.e. a categorization mechanism).8 In the fol-
lowing, we will denote the category/prototype association with the symbol ‘!’.
For instance, in our red dog example, we have: (0.07, 0.24, 0.92) − (0.10, ∗, ∗) =
(−0.16, 0.24, 0.92) ! red. In effect, looking at the HLS spectrum (Fig. 2), the
contrastor calculated for our dog exemplar is still in the gravitation of red but
on the opposite side of brown and yellow.9

3.2 Second Example: “a above b”

Imagine we have two objects, a and b, one above the other. In predicate logic
their relationship might be written as above(a, b), that, from a logical point of
7 This contextualization can be interpreted as informational compression. When a pro-
totype cannot be formed for a quality (because e.g. exemplars exhibit a uniform dis-
tribution with respect to that dimension), the sensory input cannot be compressed.

8 As exemplars and contrastors are vectors of the same space, it is plausible to hypoth-
esize that they share similar prototyping/categorization mechanisms.

9 The fact that the contrastor is capturing magenta can be explained by an incomplete
parametrization of additional semantic aspects (concerning e.g. the actual conceptual
space on which contrast is applied).



268 G. Sileno et al.

view, would be the inverse of below(b, a). From a natural language point of view,
however, considering a an apple and b a table, we observe it is much more natural
to say “the apple is on the table” rather than “the table is below the apple”.
We hypothesize therefore that contrast is at stake, selecting the relation most
pertinent to the situation.

Objects are extended: they occupy a certain space, that may be described as
a solid shape, with a center and a rotation angle, or, when captured in images,
by pixels. Intuitively, directional relations should be computed by this spatial
information. Applying the principle of contrast here, we should have that a
contrasted with b should return an “above” contrastor.

Simplifying, let us reduce objects to points. Considering their positions speci-
fied in e.g. a 2D space, we have that (ax, ay)−(bx, by) is actually a seen from b, or,
equivalently, as if the origin of the space has been moved to b. Defining the above
contrastor prototype as a vector (0, u), with u positive number, and similarly
below (0,−u), right (u, 0), left (−u, 0), it seems we might utilize the same prin-
ciple of the previous example. For instance, (2, 4) − (1.5, 2) = (−0.5, 2) ! above
(and a bit of left), with u = 2. This interpretation brings two questions to the
foreground. First, objects are never points: if they are represented as such, it is
because they have been discretized at a certain granularity. Second, vectors have
an intrinsic metric unit, which, mathematically, is inherited by the contrastor
(when constructed through vector difference), but we expect e.g. above to be the
same relation when applied to macro or to micro-objects. Leaving the study of
such normalization mechanism to future research, we focus on the first problem.

Fig. 3. Computing directional relationships using morphological dilation [18].

We consider an existing method [18] used in image processing to compute
directional relative positions of visual entities (e.g. of biomedical images). The
method exploits mathematical morphology operators—namely fuzzy dilation—
to create an adequate fuzzy landscape (a fuzzy region) from a model of the
directional relationship, and the position and shape of a reference object. The
strength of the relation between the target and the reference is quantified via a
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normalized degree of intersection of the target object with the fuzzy landscape
region (please refer to [18] for technical details). We have reported in Fig. 3 an
example similar to the “the apple is on the table” case. The strength of b below
a results to be inferior to a above b, basically because the “below a” region, seen
through the “b” mask, contains gray pixels, while the opposite is not true.

Interpreting the previous operations at a higher level, we can draw interesting
observations. The method enables the comparison of two descriptions, but it
does not primarily make any reference to a contrast between two entities. The
strength of the directional relationship is computed via its realization in the
image space. The structuring element stands as a model of the region above
of a point element located at the origin; it corresponds to the reification of all
possible answers to the question “Is this point above the origin?” The dilation
operation contextualizes these answers using the reference b; it is as if the binary
relation above(a, b) is reduced to a unary form: above b(a). The subject entity
a is then taken into account in the computation of the degree of intersection:
how much a’s extension falls within the virtual entity above b. If we consider
multiple virtual entities as right of b etc. we are recreating a problem similar
to the categorization/prototype association, but where the categories have been
created on the fly and concern the image space around the reference. Rather
than performing a direct contrast between two objects (a − b ! above), here it
seems we are exploiting the dual operation merge (a ! b + above).10 In effect,
this mapping works also in the previous example, i.e. we are able to map this dog
− prototype dog ! red to this dog ! prototype dog + red.

This intuition sheds light on how ! may operate. The right operand specifies
the final result (the category or the nearest prototype to which the contrastor is
associated); but to achieve it, several possible candidates, distributed over the
conceptual space, have to be adequately compared to the left operand. If the
left and right operands can be processed as points, cluster association methods
will do. If they are regions, we will need to assess the overlap over the candi-
date regions, using analytical (as the intersection degree) or also random (e.g.
Monte Carlo) methods. These candidate regions might need to be realized (i.e.
contextualized with a reference) when they are not directly available, which is
an operation computationally expensive. In future work, we will investigate how
to remap the merge operations to the left part of the contrast equation.

4 Similarity

In this section we build upon the previous analysis to define similarity. We
will start from presenting two reference models of similarity judgment presented
in cognitive science, widely used in many applications (particularly Tversky’s
model); we will then introduce our model of similarity as double contrast, and
evaluate it with empirical results reviewed in the literature.

10 This interpretation is still compatible with the contrast formula, as, in effect, we are
implicitly assuming that a has not a prototypical position.
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4.1 Similarity as Feature Matching

A rich tradition of psychological and cognitive studies on similarity starts from
working with sets of features associated with objects.11 In a well-known paper,
Tversky [2] argued that similarity cannot be modeled as a distance, because
many empirical experiences shows that similarity judgments does not satisfy
three geometric axioms:

– minimality : d(a, b) ≥ d(a, a) = 0; respondents identify another object similar
to the object more often than an object to itself;

– symmetry : d(a, b) = d(b, a); for instance, “Tel Aviv is like New York” is not
the same as “New York is like Tel Aviv”;

– triangle inequality : d(a, b) + d(b, c) ≥ d(a, c); for instance, Russia and Cuba
are (were) similar as political systems, Cuba and Jamaica are similar geo-
graphically, but Russia and Jamaica do not share anything.

Besides, Tversky [2] observes another relevant phenomenon:

– diagnosticity effect : the result of similarity judgment changes when the list
of possible alternative changes. For instance, participants are asked for the
country most similar to Austria to be decided amongst Hungary, Poland (at
those times both communist countries), and Sweden; most responses indicate
Sweden. If Norway is added to the list, however, responders turn to Hungary.

Given certain assumptions, Tversky proves that similarity can be expressed
with what he calls the contrast model (A is a set of features of a, B of b):

S(a, b) = θf(A ∩ B) − αf(A \B) − βf(B \A)

where S is the similarity scale, f a non-negative scale, and θ, α and β positive
parameters. If α > β, the model creates the asymmetry between subject a and
reference b, explaining the observed lack of symmetry in similarity judgments.
This account is also compatible with an observed imperfect complementarity of
similarity and dissimilarity (difference, in Tversky’s terms).

4.2 Similarity with Density Effects

Soon after Tversky’s proposal, Krumhansl [3] presented an alternative model to
explain the same phenomena, attempting to recover the geometrical hypothesis.
She starts from the problem of minimality axiom, observing that in experiments
problems increase when the subject point has many neighbors, i.e. when it is

11 It is worth observing that such collections are the result of a preliminary extraction
and compilation by some modeler. Approaches based on conceptual spaces, although
certain implementations may be in practice very similar to feature-based works (e.g.
by considering nominal dimensions), in principle insist on direct, perceptual grounds
of quality dimensions.
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more prototypical. She then considers similarity as a function both of an inter-
point distance, and of a spatial density of stimuli points:

d′(a, b) = d(a, b) + αδ(a) + βδ(b)

where δ is a density function. The similarity function is then suggested to be
a composition of this distance with a monotonically decreasing function. Like
Tversky, she suggests that the difference between similarity and dissimilarity in
empirical tests may be due to different factors α, β or to difference in density
between subject and referent points.

4.3 Similarity as Double Contrast

So far, we have not defined similarity in our account. For calculating contrast,
we have used distances inherent to the integral dimensions. These distances may
in effect be interpreted as quantities of how much two stimuli are dissimilar, but,
because these two stimuli should belong to the same domain (e.g. color, image
space), they cannot refer to (multi-dimensional) concepts. Similarity, instead,
operates at level of concepts. This is evident in metaphors, i.e. expressions like
“my love is as deep as the ocean”, “he is like a lion”. For this reason, we start
from sketching a general template for metaphor generation.

For simplicity, let us consider a sentence like “he is strong”. Following the
red dog example, this predicate should result from the operation:

this person − prototype person ! strong, ...

Saying instead “he is like a lion”, we are performing a double operation: we are
matching one or more characteristic properties of that person with one or more
characteristic properties of the concept of lion.

this person − prototype person ! X, ...

prototype lion − prototype animal ! X, ...

However, whereas the contrastor category X is recognized as the same in the
contrasts, the two contrastors have plausibly different intensities. The asymmetry
between the subject and the referent can be seen as a consequence of the relative
intensities of the contrastors (cf. above vs below). We can generalize this idea:

Proposition 1 (Comparison Ground). A comparison ground between two
conceptual objects holds when the contrasts with their prototypes results into two
contrastors falling upon the same category, but possibly with different intensities.
The natural reference is the object whose contrastor has greater intensity.

The suspension dots in these equations are meant to show that in principle many
contrastors could be generated, related to different domains. For instance, lion’s
distinguishing features are being strong, living in the savannah, etc. Why we
match the strength dimension rather than the position? A descriptive criterion
may be because in common-sense there are few animals as strong as lions, but
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there are plausibly many other animals that live in the savannah. This criterion
is related to the empirical principle of relevance.

Tversky’s asymmetry examples, e.g. “Tel Aviv is like New York”, can be
interpreted following the metaphor’s template. This sentence means that one or
more distinctive characteristic of New York are used as modifiers for defining Tel
Aviv. To decide whether it is nightlife, cosmopolitanism or green areas we may
use the descriptive criterion to compute the distinctiveness of certain features.
Saying the opposite (“New York is like Tel Aviv”) would mean to activate Tel
Aviv’s more distinctive characteristics.

For the triangle inequality, suppose the concept of country is defined by
political and geographical dimensions. A sentence like “Cuba is similar to Rus-
sia”, without defining the dimensions of the comparison, follows a scheme similar
to the metaphor case, but in this case, the two objects belong to the same cate-
gory. The double contrast works in the Cuba–Russia case (for the matching on
the political dimension) and in the Jamaica–Cuba case (for the matching on the
geographical dimension), but it does not work in the Jamaica–Russia case, as it
is not able to find a common comparison ground.

To explain the diagnosticity effect, we hypothesize that respondents con-
struct a rough estimate of the group. Rather than a real prototype, we are
dealing here with a temporary construct, bringing to the foreground the relative
distinctive features of the given individuals. For the sake of the argument, let us
consider a simplified model of Tversky’s test (political index 1 means commu-
nist country; position approximates the position on a map of the centers of the
countries). Averaging these values, we can construct a sort of virtual prototype
of the group, with and without Norway:

political_index position (x, y)
Austria 0 1, 0
Hungary 1 2, 0
Poland 1 2, 1
Sweden 0 1, 4
Norway 0 0, 4
Group prototype without Norway 0.5 1.5, 1.25
Group prototype with Norway 0.4 1.2, 1.8

Following the double contrast formula, in order to decide which country in the
group is most similar to Austria, we have first to contrast the Austria object with
the virtual prototype, and then apply the same operation to the other countries
to form a compatible comparison ground. In the group without Norway, we need
to specify Austria’s political dimension, as the group is split perfectly in two; for
the spatial dimension, Austria is more central in the group, so geography is a bit
less pertinent dimension to describe the country. Sweden is selected as the most
similar country to Austria because the comparison ground lies on the political
index. In the group with Norway, it is more common not to be a communist
country (so the political dimension becomes a bit less pertinent), whereas the
center goes further North: the geographical dimension becomes more pertinent.
For this internal change, Hungary is selected as more similar to Austria.
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The search for a satisfactory comparison ground can also explain the experi-
ences in which the minimality axiom is not satisfied. The original tests were
about recognizing, given a Morse code, the most similar code in a list of codes,
including the input one [3]. According to our model, when the input is far from
the group prototype it is more difficult to find a reference with which to form a
comparison ground: the respondent will correctly identify the same element as
the best response to the task. When the input is near to the prototype, another
entity may be satisfactorily similar to stop the search.

Comparison. Although the models presented by Tversky [2] and Krumhansl
[3] might yield as well predictions aligned with these experiences, they require
the specification of adequate parameters and, more importantly, the manual
selection of features (potentially infinite). Consider two objects that are almost
the same, save for a detail that make them crucially different in pertinence to a
task: Tversky’s contrast model would lead to implausible results, as the weight of
common features would outnumber that of distinct features. On the other hand,
proposals as that of Krumhansl’s have the problem of defining a coherent global
distance amongst features. In principle, our proposal is not concerned by these
problems: we have not used any parameters; if the conceptual spaces have been
correctly constructed, they are grounded to perceptive spaces and respecting the
conceptual hierarchies; contrast and similarity are computed without relying on
global distances.

5 Conclusion and Further Developments

The paper presents a novel account of contrast and similarity operations to
be performed on conceptual spaces. Contrast relies on distances computed along
integral dimensions (belonging to independent cognitive domains), capturing dis-
similarities between entities on given scales of stimuli. Similarity judgments are
modeled instead as double contrasts forming a comparison ground, where the dis-
tinctive characteristics of a reference are used as contrastors. To our knowledge,
such sequential, multi-layered nature of similarity has not been hypothesized
before in the literature. The dimensions of psychological spaces, even in the
theory of conceptual spaces, are usually elicited via multi-dimensional scaling
(MDS) techniques applied on people’s similarity judgments, presupposing the
existence of underlying metrics to be captured by features expressed in a verbal
form. These approaches and similar dimensional reduction techniques used in
machine learning conflate two aspects of similarity, respectively of perceptual
and contrastively analogical nature, that our proposal attempts to distinguish.

Future work is required to complete our specification of contrast: additional
semantic parameters, the analytical relationship with merge, and a definition
operating on regions.12 Prototypes were processed here merely as points; how-
12 As the merge operation (+) seems to be captured by dilation, we are currently

investigating methods to capture contrast (−) considering the dual morphological
operator erosion: first experiments look promising.
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ever, the empirical principle of relevance presented here relies on standard devi-
ation, and for that, it works with a neighborhood of the mean, representative
of an underlying group or population. The principle was applied in a binary
fashion: either the prototype has no effect on the exemplar, or the prototype
counts at par with the exemplar. The next step would be to specify a graded
solution, taking into account some regional information of prototypes, captured
by standard deviation or other means. We expect the problem has points of
contact with the contrast on regions. Parallel to this work, we need to study the
interaction of possible definitions of contrast with dependent qualities, to take
into account semantically redundant information.

Finally, this work focused on the descriptive aspect of predicate generation,
but relevance is not only a matter of best description. At higher level, additional
factors play a role, as e.g. the rarity or the emotional response associated to the
situation to be described. Understanding how this interplay works will be crucial
for generating truly pertinent descriptions.
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Abstract. This paper reports on a research project to use Artificial
Intelligence (AI) technology to reduce the alarm handling workload of
control room operators in a terminal in the harbour of Antwerp. Sev-
eral characteristics of this terminal preclude the use of standard meth-
ods, such as root cause analysis. Therefore, we focused attention on the
process engineers and developed a system to help these engineers reduce
the number of alarms that occur. It consists of two components: one
to identify interesting alarms and another to analyse them. For both
components, user-friendly visualisations were developed.

1 Introduction

This paper presents work conducted together the company Agidens on alarm
management for a liquid bulk terminal in the harbour of Antwerp, Belgium.
This terminal handles various fluids and gasses. These typically arrive by ship,
are transferred on-site tanks, and are later transferred again to trucks, trains or
barges. This is done by a complex network of pipelines, valves and pumps.

The terminal is monitored by operators in a control room, who ensure that
scheduled tasks are executed as planned. E.g., when a new transfer needs to be
started, the operators are responsible for establishing a route between the two
endpoints (e.g., from tank to loading station) by opening and closing the appro-
priate valves. Because of the dangerous products, safety is very important. The
installation contains numerous sensors that raise alarms as soon as parameters
leave the expected operating conditions. Handling these alarms is a significant
part of the workload of the control room operators. Moreover, significant exper-
tise is required to distinguish important alarms from irrelevant ones.

The main goal of this project was to investigate the use of AI technology to
improve the alarm handling workload of the operators. Before going into more
detail, we discuss some relevant properties of the terminal.

Discontinuous operations. Activity on the terminal consists of different processes,
which are typically rather short-lived, lasting at the most a few hours. More-
over, each of these processes (i.e., transfer operations between two end-points)
is almost unique, in the sense that even when they share a common origin and
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destination, the route between them may be different, as may the product that
is being transferred, its temperature or its level in the tank.

Changing circumstances. The terminal is continuously undergoing maintenance
and expansion. From one day to the next, the layout of the terminal may there-
fore be different. Moreover, normal operations are sometimes halted in order to
perform these tasks, which may in itself cause a flurry of alarms.

No complete terminal model. Information about the terminal is spread out over
different databases. During the project, we investigated whether it would be
possible to integrate these databases into a single coherent model. However,
the companies involved decided against this, because of the prohibitive cost of
constructing such a model and of keeping it up-to-date.

Infrequent and diverse alarms. Roughly 20000 different alarms can be generated
in the terminal. Obviously, many of these occur very infrequently.

2 Related Work

It is widely recognised that, in a complex modern industrial environment, the
task of operators is growing ever more complex, and that technological support
is needed to keep this manageable [5]. Several opportunities exist for Artificial
Intelligence technology to play a role in solving this problem.

Many approaches focus on providing real-time advice to the operator about
a specific alarm, e.g., by means of a root cause analysis [8]. This kind of func-
tionality typically requires detailed knowledge about the layout of the industrial
system that is being monitored [7]. Because, in our case, information about the
layout of the terminal is not available, these methods are not applicable for us.

A different approach is to reduce the number of alarms shown to the oper-
ators, e.g., by filtering them according to specific rules [4,6,9]. In the course of
this project, we extensively discussed this possibility with the operators. How-
ever, because of the dangerous nature of the chemicals handled in the terminal,
no sufficiently safe policy for hiding alarms could be determined.

3 Project Goals

There are several ways in which the workload of operators might be reduced.
Initially, the project considered providing online advice to the operators, to help
them handle alarms more quickly. However, this approach was abandoned for a
number of reasons. First, in order to give specific advice for a concrete situation,
the present condition of the terminal needs to be known. While the status of indi-
vidual components is known, the lack of a complete model of the terminal means
that it is unknown how these components relate to each other. Because of this
lack of knowledge, it would be difficult to achieve a high degree of accuracy in the
operator advice provided by the system. Second, a closer inspection revealed that
the operators typically do not spend a lot of time handling individual alarms.
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Since their main focus is on completing the tasks at hand, they typically simply
retry the operation, reroute around a damaged component and/or call mainte-
nance. To significantly affect their workload, it is more important to reduce the
number of alarms that occur in the first place, rather than the time spent on
each alarm. Third, because of the dangerous products being handled, it is not
desirable to actually hide alarms from the operators: the final decision should
always be in the hands of a human operator.

For these reasons, we decided not to focus directly on the operators them-
selves, but to focus instead on the terminal’s process engineers. By helping them
to better understand which alarms are occurring and why, we can enable these
engineers to improve the processes on the terminal, thereby indirectly also reduc-
ing the number of alarms that the operators have to deal with.

4 Identifying Interesting Alarms

As a first step towards helping the process engineer reduce the number of alarms,
we attempt to identify alarms that are interesting for him to take a closer look
at. Discussions with the engineers revealed that two parameters are important
for this. First, of course the number of occurrences of an alarm is important:
analysing alarms that occur very rarely is probably not a good investment of
the engineer’s time. Second, our system could create the most added value for
the engineers by alerting them to alarms that are lingering in the background.
An alarm that occurs repeatedly during a single shift will be reported by the
operator and so the process engineer will already be aware of it. However, an
alarm that occurs, e.g., only a few times each week, might go unnoticed.

Fig. 1. Visualisation of alarm occurrences (Color figure online)

Based on these two parameters, we developed the visualisation shown in
Fig. 1. In this scatter plot, the Y-axis plots the number of occurrences of the
alarm. The X-axis attempts to capture the degree to which this is a “lingering
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Fig. 2. An alarm with low Poisson λ (left) and one with high λ (right)

alarm”. To this end, we fit a Poisson distribution to the occurrence graph of the
alarm. Figure 2 shows an example of an alarm for which the parameter λ of the
best-fit Poisson distribution is low and one for which it is high. Those with low λ
are the kind of “lingering” alarms in which the process engineers are interested.

We define four different areas in the graph: (1) alarms occurring less than
once a month (shown in green in Fig. 1); (2) alarms occurring more than once
a day (red); (3) other alarms with λ parameter below average, i.e., “lingering”
(yellow); (4) other alarms with λ parameter above average (orange).

Our system allows the engineers to construct such graphs for different selec-
tions of alarms, by applying various kinds of filtering and grouping operations. In
addition, there is also the possibility of constructing a difference-graph for two
different selections. This allows to easily detect, e.g., alarms that occur more
frequently in a certain time period or in a specific subsystem.

5 Automated Analysis of Alarms

Once the process engineer has found an alarm to investigate further, our system
will attempt to help him identify the circumstances in which this alarm occurs.
It does this by training a Machine Learning model to predict the occurrence
of this alarm. However, our main focus is not on achieving a high prediction
accuracy, but rather on constructing models that can easily be interpreted by the
engineer. For this reason, we have chosen to use decision tree learning algorithms,
in particular, those from Spark [1], Scikit-learn [2] and Weka [3].

Our main goal is to produce decision trees that help the process engineer
analyse alarms on the terminal, by alerting him to patterns that he might not
have noticed otherwise. Over the course of this project, we closely collaborated
with the engineers in order to discover which kind of decision trees are best
suited for this purpose. A first observation is that the depth of the tree is crucial:
branches of more than three nodes were very difficult for the process engineer
to interpret. A second observation is that the engineers are mainly interested in
nodes with a large positive bias (i.e., with a greater ratio of covered positive to
covered negative examples than the root node). Combining these two observa-
tions, the most interpretable trees can be achieved by minimizing the depth of
positive leafs.
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When discussing the learned decision trees with the process engineers, it
became apparent that they still found these hard to interpret. In addition, they
were often distracted by less relevant parts of the trees. In an attempt to make
the trees easier to interpret, we developed a visualisation with the following
features. The thickness of an edge from parent P to child C is proportional
to the fraction of positive examples covered by P that is still covered by C.
When reading the tree from top to bottom, this allows to easily keep track of
in which branches most of the alarms occur. The thickness of a node’s border
is proportional to the sum of the impurity gains of all the different appearances
in the tree of the feature used in this node’s decision. This makes it easy to see
at a glance which features are most relevant for predicting the occurrence of the
alarm, even when these features get used in different parts of the tree. Finally,
nodes that cover more than a given number of positive examples are highlighted
(Fig. 3).

Fig. 3. Visualisation of a decision tree

In addition to these visualisations, we also allow the user to hide parts of
the tree, in order not to be distracted by less relevant parts. In particular, it
is possible to: (1) hide nodes that cover fewer positive examples than a given
threshold; and (2) hide subtrees of nodes whose ratio of covered positive to
covered negative examples is outside a specified range.

Even with these visualisations, the engineers continued to find it hard to
locate the information they were most interested in (i.e., in which circumstances
does the alarm typically occur) and to interpret the information in the tree.
Therefore, we also developed an alternative representation, in which a branch of
the tree is represented as a rule, in the following format:

The alarm occurred in 73 out of 88 cases in which:
– the last half hour the value of sensor1 increased by more than 1.9;
– the value of sensor2 lies between 2.3 and 2.9.

This describes 53% of the 136 occurrences of this alarm.
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Such a rule is constructed by iterating over all decisions in the branch. We
convert all branches to rules and list them in descending order of number of
covered alarms, so that the most interesting rules appear first.

A problem with this method arises when multiple highly correlated features
contribute to an alarm: a decision tree will typically contain only one of these,
while the process engineer would like to see them all. For this reason, we also
allow the user to train an entire random forest of multiple decision trees. In the
presence of highly correlated features, the randomness of the forest will make
different trees use a different feature from the correlated set. We then generate
rules for the most interesting branches in this entire random forest.

6 Results

Our system has been tested out in collaboration with the process engineers. For
the first component of the system, the engineers found that the statistics and
visualisations indeed enabled them to identify interesting “lingering” alarms.
They therefore judged this component to provide a relevant added value.

The second component was more challenging. For our initial prototypes, the
engineers found it difficult to interpret the decision trees. After the improvements
that were outlined in the previous two sections, the engineers eventually had a
more positive reaction. In the final prototype that we delivered, the engineers
found it significantly easier to identify relevant information. Moreover, they also
agreed that the information in the trees was typically indeed indicative of the
underlying causes for the alarms. However, they also found that most of this
information was typically either already evident to them from their own expe-
rience, or that it would have been easily obtained by manually inspecting the
logs. They therefore judged that the system did not provide enough added value
to warrant its being integrated into their production environment.

7 Conclusions

This paper reports on a research project in collaboration with the company
Agidens and an oil tanking terminal in the harbour of Antwerp, Belgium. Our
goal was to investigate the use of Artificial Intelligence technology to reduce
the workload of control room operators. Several characteristics of this terminal
make it impossible or undesirable to apply standard methods, such as decision
support by means of root cause analysis, or rule-based alarm reduction.

Therefore, we focused attention on the process engineers, in order to help
them reduce the number of alarms that occur. We developed a system consist-
ing of two components: the first visualises the alarms with the goal of allowing
the process engineers to identify lingering alarms that may be beneficial to inves-
tigate; the second applies decision tree/forest learning methods in order to detect
patterns that might help the process engineers figure out the general causes for
certain kinds of alarms. For this purpose, interpretability of the learned models
is crucial. We therefore developed different visualisations of the models.



Alarm Management on a Liquid Bulk Terminal 285

When evaluating the prototype of the system, the engineers saw a clear ben-
efit in the first component. The second component was found to be usable and
to produce relevant results, but provided only limited added value.
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Abstract. This paper presents an approach to learn the agents’ action
model (action blueprints orchestrating transitions of the system state)
from plan execution sequences. It does so by representing intra-action
and inter-action dependencies in the form of a maximum satisfiability
problem (MAX-SAT), and solving it with a MAX-SAT solver to recon-
struct the underlying action model. Unlike previous MAX-SAT driven
approaches, our chosen dependencies exploit the relationship between
consecutive actions, rendering more accurately learnt models in the end.

1 Introduction

In the planning community, intelligent agents require an action model to plan
and solve real world problems. It is, however, becoming increasingly cumbersome
to codify this model, and is more efficient to learn these action blueprints from
plan execution sequences. This learning provides an opportunity for the evolution
of the model towards a version more consistent and adapted to its environment,
augmenting the possibility of success of the plans. Our approach, called SRM-
Learn (Sequential Rules-based Model Learner), uses alternating state-action
representations as input to learn an action model as the output. It proceeds as
follows: it represents a set of intra-action and inter-action dependencies in the
form of constraints of a weighted maximum satisfiability problem. This problem
is then solved with the help of a MAX-SAT solver, the solved constraints being
used to reconstruct the underlying action model. This paper is divided into the
following sections: we present some related work in Sect. 2, and define our learn-
ing problem in Sect. 3. We then detail our approach in Sect. 4, and present our
empirical evaluations in Sect. 5. We conclude the paper with some perspectives
and future work in Sect. 6.

2 Related Work

Learning action models in the field of Automated Planning (AP) has a con-
siderable history. Some prominently used machine learning (ML) techniques to
learn action models include: inductive techniques (e.g. PELA [7]), reinforce-
ment learning techniques (e.g. LOPE [6]) and so on. More specific to our case,
c⃝ Springer International Publishing AG 2017
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various approaches have used the MAX-SAT framework to learn deterministic
actions (e.g. ARMS [10]), macro-actions [12], models in Hierarchical Task Net-
works (HTNs) [11] and so on. In particular, our approach is on the same lines
of ARMS, which also generates intra-action and inter-action constraints (mined
with the Apriori algorithm [1]). As compared to ARMS, we hypothesize and
experimentally demonstrate that short term dependencies among consecutively
executing action pairs are a stronger indicator of correlation between actions,
leading to improved learning.

3 Preliminaries and Problem Formulation

We begin by providing some definitions of key concepts. Predicates are proper-
ties that constitute the world state and actions. Here, each action a∈A where
A = {a1, a2, . . . , an}, n being the maximum number of actions in the domain.
An action model m is the blueprint of all the domain-applicable actions, each
action defined as an aggregation of: (i) the action name (with zero or more
typed variables as parameters), and (ii) predicates in the form of preconditions
(pre list i.e. predicates whose satisfaction determines the applicability of the
action) and effects (add and del list i.e. predicates added and deleted respec-
tively from the current world state by action execution). A plan is a sequence
of actions π = [a1, a2, . . . , an] that drives the system from the initial state to
a goal state. Each such sequence consisting of (i) the initial state of the world,
(ii) alternating action and state representations, and (iii) a desired goal state;
constitutes a trace of a trace set T. A sequential rule ax → ay is a relation-
ship between two actions ax, ay ∈ A such that if ax occurs in a sequence, then
ay will occur successively in the same sequence. Two measures are defined for
sequential rules, these are (i) support (ax → ay) = |ax → ay|/|T |, and (ii)
confidence (ax → ay) = |ax → ay|/|ax|. Given the aforementioned information,
our learning problem is as follows: given a set of plan traces T, the objective is
to learn the underlying action model m which best explains the observed plan
traces. AP uses a certain number of domains from the International Planning
Competition (IPC), out of which we use the gripper domain to illustrate SRM-
Learn (see Fig. 1). In this domain, the task of the robot is to move an object
from one room to another, the principal domain actions being move, pick and
drop.

4 Approach

Our approach is divided into three phases (see Fig. 2) which are elaborated in
the forthcoming subsections.

4.1 Annotation and Generalization

Firstly, each trace is taken one by one, and each action as well as each predi-
cate from the initial, goal and intermediate states is scanned to substitute the
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Fig. 1. Illustration of our learning problem. The learnt action model is written in
PDDL (Planning Domain Description Language) [9] and conforms to the semantics of
STRIPS [3].

Fig. 2. Approach phases of SRMLearn

instantiated parameters with corresponding variable types, producing general-
ized actions and predicates. We then associate each action with its relevant
predicates, where a predicate is said to be relevant to an action if they share
the same variable types. The set of relevant predicates to an action ai ∈ A can
be denoted as relPreai . With generalized actions and predicates, a candidate
action dictionary is built for the actions, where the key is the name of the action
ai and the value is a list of all relevant predicates to that action relPreai (see
Fig. 1).

4.2 Constraint Generation

In this phase, we account for certain intra-action hard constraints and inter-
action soft constraints.
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Hard Constraints. In order to satisfy the semantics defined in Sect. 3, each
action in A must satisfy certain intra-action constraints. Thus, for each action
ai ∈ [a1, a2, . . . , an] and each relevant predicate p ∈ relPreai : (i) p cannot be in
the add list and the del list for the same action, and (ii) p cannot be in the add
list and the pre list for the same action.

Soft Constraints. The soft constraints among the actions may be short-term
or long-term.

Short-Term Constraints. We hypothesize that if a sequential pair of actions
appears frequently in the traces, there must be a reason for their frequent co-
existence. We thus employ an algorithm called TRuleGrowth [4,5] used for min-
ing sequential rules common to several sequences that appear in a trace set.
Given (1) a trace set T, and (2) two user-specified thresholds, namely support
and confidence as input, TRuleGrowth outputs all sequential rules having a
support and confidence higher than support and confidence respectively. Start-
ing with 20 traces, we consistently double the number of traces till we reach
200. In the process, we identify frequent sequential rules (action pairs) which
consistently maintain the confidence and support over an increasing number of
traces. These frequent pairs can be suspected to share a “semantic” relationship
among themselves. These relationships are quantified by the ARMS [10] sys-
tem, and serve as heuristics to explain the frequent co-existence of these actions.
These heuristics produce good results in the case of the ARMS system, which
serves as incentive for re-using them. More precisely, if there is an action pair
(ai, aj), 0 ≤ i < j ≤ (n − 1) where n is the total number of actions in the plan;
and prei, addi and deli represent ai’s pre, add and del list, respectively:

– A predicate p such that (p ∈ relPreai , p ∈ relPreaj ) added by the first action
(p ∈ addi), which serves as a prerequisite for the second action aj (p ∈ prej),
cannot be deleted by the first action ai.

– A relevant predicate p (p ∈ relPreai , p ∈ relPreaj ) added by the first action
ai also appears in the pre list of the second action aj .

– A predicate p that is deleted by the first action ai is added by the second
action aj .

– The above plan constraints can be combined into one constraint and restated
as: ∃p((p ∈ (prei∩prej)∧p ̸∈ (deli))∨(p ∈ (addi∩prej))∨(p ∈ (deli∩addj))).

Long-Term Constraints. We introduce this set of constraints to explore the rela-
tionships between a chain of actions constituting a plan.

– If a predicate p is observed to be true for the last action an of a plan sequence
and p is a relevant predicate to a1, . . . , ai, . . . , an where 0 ≤ i < n, then
the predicate p must exist in the add list of ai. This can be expressed as
p ∈ adda1 ∨ adda2 ∨ . . . ∨ addan−1 .

– Predicates constituting the initial state of the plan are preconditions of the
first executed action in the plan [10].
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– If a predicate p is observed to be true in the intermediate states right before
an action ak of a plan sequence, and p is a relevant predicate to ak+1, . . . , an,
then the predicate p must serve as a precursor to these following actions. This
can be expressed as p ∈ (preak+1 ∨ preak+2 ∨ . . . ∨ prean).

5 Evaluation

We evaluate the accuracy of SPMSAT. For this, we construct a CNF formula
consisting of a conjunction of the hard and soft constraints generated in Phase
2, each associated with a specific weight. The weights of the hard constraints
and the long term constraints are “hyperparameters” which must be continu-
ously tweaked and fine tuned to obtain the most accurate model. The weight
of the short term constraints are equivalent to the support of the rules which
are associated with the frequent action pairs obtained with the TRuleGrowth
algorithm. The support is chosen because it is an indicator of the frequency of
the action pair over the entire trace set. This CNF formula is then fed to a
weighted MAX-SAT solver which finds a truth assignment that maximizes the
total weight of the satisfied constraints, thus producing as output the constraints
which evaluate to true. The true constraints are used to reconstruct the entire
model, termed as the empirical model. This model is compared with artificial
models which are considered as the ground truth. Let diffpreai represent the
syntactic difference in pre lists of action ai in the ground truth model and the
empirical model. Each time the pre list of the ideal model presents a predicate
which is not in the pre list of the empirical model, the count diffpreai is incre-
mented by one. Similarly, each time the pre list of the empirical model presents
a predicate which is not in the pre list of the ideal model, the count diffpreai

is incremented by one. Similar counts are estimated for the add and del lists as
diffaddai and diffdelai respectively. This total count is then divided by the
number of relevant constraints for that particular action relConsai to obtain
the cumulative error per action. This error is summed up for every action and
averaged over the number of actions of the model to obtain an average error E
for the entire model.

The cumulative error for the model is thus represented by:

E =
1
n

n∑

i=1

diffPreai + diffAddai + diffDelai

relConsai

(1)

We evaluate the performance of SRMLearn with our implementation of
ARMS over five domains as follows: for each of the domains, we set the num-
ber of traces as (20, 50, 100, 200), generate and solve constraints with the help
of two SAT solvers ([2,8]), and calculate the cumulative error for SRMLearn
and ARMS. It should be noted that the key difference between SRMLearn and
ARMS lies in SRMLearn’s additional long term constraints and chosen data min-
ing algorithm (TRuleGrowth). The evaluation domains include depots, parking,
mprime, gripper and satellite and are represented in the Figs. 3, 4, 5, 6 and 7.
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Fig. 3. Error comparison in parking
domain

Fig. 4. Error comparison in mprime
domain

Fig. 5. Error comparison in depots
domain

Fig. 6. Error comparison in gripper
domain

Fig. 7. Error comparison in satellite domain

As can be seen, the error percentages with SRMLearn are lower than with
ARMS, indicating that frequent sequential action pairs mined with the TRule-
Growth algorithm demonstrate a stronger correlation than those mined with the
Apriori algorithm.
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6 Conclusion

This paper presents an approach called SRMLearn which learns the agents’
action model by encoding the inter and intra-action dependencies in the form
of a maximum satisfiability problem (MAX-SAT) and solves it with a weighted
MAX-SAT solver to reconstruct the underlying model. Experimental results rein-
force our hypothesis that exploiting relationships between consecutive actions
improves the learning accuracy. In future work, we intend to extend SRMLearn
to learn temporal action models comprising durative actions.
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Abstract. The present paper identifies an important narrative frame-
work that has not yet been employed to implement computational story
telling systems. Grounded in this theory, it suggests to use a BDI archi-
tecture extended with a personality-based affective appraisal component
to model fictional characters. A proof of concept is shown to be capable
of generating the plot of a folk tale. This example is used to explore the
system’s parameters and the plot-space that is spanned by them.

Keywords: Computational storytelling · Multi-agent systems · BDI ·
Narratology · Fictional characters

1 Introduction

The ability to invent stories is a distinctly human, creative act [1], so its com-
putational modelling lies in the scope of the AI research program. Computa-
tional storytelling is the study of algorithms that are capable of automatically
generating fictional narratives, and academic systems have been more or less
continuously researched for the last 40 years [2].

When analysed from a narratological perspectives, many systems implement
a functionalist view on fictional character grounded in structuralist narratol-
ogy [3]. That is, they treat characters as interchangeable action-sources mainly
defined over their function for the plot (e.g. hero, helper or opponent) [4]—a
view that subjugates character to plot. The functionalist view is challenged by
some post-classical narratologies that describe characters as distinct elements
of a fictional world, having internal states that cause the characters’ choice of
action [5–7]. From such a perspective, plot emerges from character’s actions,
instead of the actions being dictated by the plot. While some storytelling sys-
tems that subjugate plot to character have been put forward [8,9], to the best of
my knowledge none have been related to the respective narratological research.
Since it is my conviction that computational models can greatly benefit from the
rigorous analysis performed by narratologists, the present paper proposes a new
character-centric representational formalism for stories, grounded in two partic-
ularly promising post-classical theories: Marie-Laure Ryan’s approach [5], which
describes fictional characters, and how plot emerges from their actions, in terms
of a possible worlds framework; and Alan Palmer’s [7] extension, which outlines
c⃝ Springer International Publishing AG 2017
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in great detail narrative phenomena resulting from the functioning of fictional
minds. The present paper argues that a Multi-Agent Simulation (MAS), oper-
ating over a Belief-Desire-Intention (BDI) architecture [10,11] extended with a
personality-based affective appraisal system [12], offers itself for a computational
modelling of such a narrative framework.

It should be noted that by doing that the paper will focus on modelling
narrative phenomena and not on the process of a creatively generating new
narratives. The reason for this is the assumption that the process of generating
stories will become easier once a rich representational formalisms for stories
themselves is in place. For this to be the case, the representation should address
two questions: (1) which parameters affect the course of the story, and (2) how
can the quality of a particular story be measured. Hence, a first evaluation of
the resulting system is performed by showing how it can be used to to generate
the plot of the folk tale “The Little Red Hen”1, and by investigating what effect
changes in parameter values have.

2 Narratological Background

Two principle components of a narrative can be distinguished. Plot is the “con-
tent plane”: a causally ordered series of events, potentially happening in parallel
at multiple locations (what is told). Discourse is the “expression plane”: the
linear representation of events in a text, using stylistic devices like flash-backs,
flash-forwards and point of view (how it is told) [13]. Most computational sto-
rytelling research has been focused on plot [14], a trend which I will follow.

Possible Worlds Framework: Ryan [5,15] describes narratives as spanning a
narrative universe that consists of a factual domain created by the narrator: the
Textual Actual World (TAW); and a set of modal (’private’) worlds created by
the fictional characters.

The TAW “is a succession of different states and events which together form
a history. [. . . ] TAW also comprises a set of general laws that determine the
range of possible future developments [. . . ]” [5].

The modal domains are epistemic, axiological and deontic representations of
TAW by each character: their knowledge, wishes and obligations. The Knowledge
(K) World contains all propositions regarding a character’s beliefs about the nar-
rative universe: the TAW or other character’s private worlds. While K-Worlds
can be incomplete or conflicting regarding the narrative universe, for a character
they form their subjective, complete reality. The Wish (W) World “capture[s]
how a character would like the [TAW] to be” [15], it contains propositions she
wants to be true (or false), like an undesired state or a desired event. W worlds
can be inconsistent when a character’s wishes are mutually exclusive, or conflict-
ing with the narrative universe when propositions in TAW have a different truth
value than desired. The Obligation (O) World of a character is “[. . . ] a system of

1 http://www.home.uni-osnabrueck.de/leberov/little red hen.htm.

http://www.home.uni-osnabrueck.de/leberov/little_red_hen.htm
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commitments and prohibitions defined by social rules and moral principles” [5].
It contains propositions that have to be true (the obligatory) or false (the pro-
hibited) and can again be conflicting with the state of the narrative universe or
inconsistent with itself.

Characters are “individuals whose actions, experience, and destiny form the
central concern of narrative fiction” [15]. They select one of the not-actualized
propositions in their O or WWorlds (a goal) and formulate a plan, based on their
K-World, in order to change its truth value in TAW. Thus, fictional characters in
Ryan’s framework are fully constituted through their inner states, and the plans
they formulate depending on these states. Their actions result in state changes
in TAW and by that create the plot.

Fictional Minds and Actions: Following the theory so far, characters should
always take the same actions if they have the same beliefs, wishes and obligations.
However, e.g. in “The Little Red Hen” one character chooses to act upon a wish,
while another acts upon an obligation although both are in the same situation.

Based on cognitive science theories about real minds Palmer [7] discusses
how fictional minds are reconstructed from discourse, and by that creates a
teleological model of these minds that can be used to address the above problem
on a plot level. Like Ryan he points out that physical actions have a mental side
rooted in beliefs and desires, but also notes two other significant phenomena: One
is that different action tendencies can be a result of differences in personality,
while the other is that the reasoning necessary for any type of mind functioning
causes emotions, which in turn affect the selection of goals and by that also
a character’s actions. Palmer also points out that emotion and personality are
tightly interconnected because the latter provide tendencies not only in action
but also in affect.

With these insights at hand the problem above can be addressed by attribut-
ing different personalities to the characters of “The Little Red Hen” and observ-
ing that their planning strategy takes into account action tendencies based on
these personalities and on affect. The resulting framework is not only practi-
cal, but also a reasonable synthesis because, as Palmer himself points out, his
approach is an extension of Ryan’s work, especially on embedded narratives.

3 Implementation of a Character Architecture

There are several reasons for implementing the outlined narrative framework
using a BDI [11] approach. First, a strong conceptual overlap exists, since both
are rooted in possible worlds semantics [10] and explicitly model beliefs, inten-
tions and plans. Second, modelling fictional characters as rational agents and
TAW as environment allows plot to emerge from the interaction of agents with
each other and the environment. Third, the BDI architecture allows for a bal-
ancing between reactive and goal-directed behavior which makes it possible to
model the results of conflict through plan failures and re-planing. For the present
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implementation the Jason BDI framework was selected due to its active devel-
opment and further useful features like speech-acts and strong negation. It is
grounded in an (extended) BDI-logic as per Rao and Georgeff and uses proce-
dural reasoning techniques [16].

The structural properties of characters are modelled as follows. The K World
of a character is represented through an agent’s belief base. Incompleteness
and (partial) incorrectness are supported using the open-word assumption and
by allowing agent’s beliefs to be incorrect, for instance due to an unreliable
perception-function. A W World can be represented through its set of desires.
This allows modelling inconsistent W Worlds, since the set of desires that have
not yet been selected as intentions can contain conflicting propositions. The O
World can be represented using a combination of beliefs and desires: the belief
that the agent is expected to change the truth value of a proposition, and the
corresponding desire to change it. Since the set of desires can be inconsistent,
such a solution does not preclude a representation of conflicts between W and O
Worlds. The adoption of a goal and selection of a plan to achieve it are performed
by the BDI interpreter [11].

The standard BDI reasoning cycle can be extended with an affective com-
ponent grounded in the Five Factor Model of personality [17], as proposed by
Alfonso [12]. This means adding several steps to the reasoning algorithm, which
perform affective appraisal of internal and external events using emotions from
the OCC catalogue [18]. This emotions are aggregated into a multi-dimensional
mood vector that represents the agent’s medium-term affective state. Person-
ality is used to determine the agent’s default mood and influences the mood
update function. The present approach implements the control loop proposed
by Alfonso (see [12], Fig. 3) in three regards: (1) it changes the function that is
responsible for selecting intentions from desires, to take into account personality
instead of mood 11 : I ← filter(B,D, I, P ), (2) it adds the current mood as a
source of new desires 7 : D ← get options(B, I,M) and (3) it keeps track of the
agents that caused a mood (its targets) via the targets of emotions.

Such an architecture is sufficient to address the phenomena explicitly men-
tioned in Sect. 2. However, to model “The Little Red Hen” one additional phe-
nomenon needs to be addressed: communication. To model a direct information
exchange between agents, Jason’s speech-act formalisation [16] is employed. In
particular, the system implements the semantics of several speech act types:
(un)tell, (un)achieve, (un)tellHow, ask(One|All|How), which are all asyn-
chronous apart from ask. This set was extended with a synchronous version
of achieve in order to enable the communicative organization of collabora-
tive action. The reception of a speech act generates an internal event, which is
processed in the usual way.

4 Evaluation

For evaluation purposes a limited version of the character architecture was imple-
mented to model a set of fictional characters from whose interactions the plot of
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the well known folk tale “The Little Red Hen” can emerge. The tale was selected
because it involves all of the relevant phenomena, without requiring an elaborate
environment modeling.

Fig. 1. Extract from the plot dia-
gram created by an execution of
the implemented system. Depicts
actions performed, and inner events
experienced, by agents (excluding
beliefs for brevity).

The environment model is implemented
in Java and provides methods for all
agent actions: plant/1, tend/1, harvest/1,
grind/1 and bake/1, as well as a default
farming/0 action and a no-op relax/0
action. Executing the farming action several
times lets the diligent agent find a grain of
wheat, which is added to its inventory. The
environment maintains the current state of
the wheat as well as the agent’s inventories,
which are accessible to the agents through
perceptions. Owners of an item have access
to an eat/1 action, which removes the (edi-
ble) target item from their inventory, and a
share/2 action, which cornucopiously puts a
copy of the target item in the patients inven-
tory.

The characters are modeled using four
agents operating on the above architecture,
with access to the same plan library and ini-
tial belief base. The personality of the hen
is high on the conscientiousness (C), neuroti-
cism (N) and extraversion (E) traits, while
being medium on agreeableness (A). The personalities of the cat, pig and cow
are low on the C and A traits.

All agents have the obligation to perform farming work, however this is
selected as an intention only by agents with a sufficiently high C trait. Finding a
wheat grain activates the desire to produce bread, for which an appropriate plan
exists in the library. This plan includes the execution of several actions, which
are noted as laborious in the belief base. Agents high on the E trait have a meta
desire to request help from other agents using a synchronous achieve speech act,
before executing laborious tasks alone. Such a request can be either accepted or
rejected by the receiver, based on its A trait. The former case elicits a gratitude
emotion when appraised by the sender, while the latter case elicits anger [19].
If the mood of an agent is strongly negative on the pleasure dimension, high
on the arousal dimension and has targets, this activates a desire to punish the
targets. One of the possible plans for punishment can be triggered when the
agent is in possession of an edible item, in which case it uses an achieve speech
act to tell the targets to perform the eat(Edible) action, but does not share
the edible, which makes the action impossible for the receivers, and results in a
disappointment emotion.
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Unsurprisingly, executing the MAS generates the intended plot (see Fig. 1).
More interestingly, however, the system allows the user to explore2 a plot-space
by modifying the characters’ personalities: (1) If the hen’s C trait is low, she
prefers to relax and no plot emerges. (2) If her N trait is low her mood stabilizes
faster and she does not develop a punishment desire. (3) If her E trait is low she
does never request help, doesn’t get rejected and hence develops no punishment
desire. (4) In the last two cases, if also her A trait is high, the positive emotions
resulting from a successful creation of bread lead to a mood high on the pleasure
dimension, which activates the desire to share bread with all other agents. (5) If
another agent has a high A trait it complies with the help requests and doesn’t
get punished. (6) If at least two others have a high A trait, the hen’s positive
emotions outweigh the negative ones, and she shares bread with all other agents.

It is worth noting that the last case results in an interesting plot where a
lazy freeloader benefits from a benevolent society—a moral directly opposed to
the one of the original tale.

5 Discussion and Future Work

Two narrative theories presented above argue that fictional characters can be
modeled based on the following narrative phenomena: beliefs, wishes, obliga-
tions, personality, affect and planning. Plot is taken to be a secondary phenom-
enon that emerges from character actions and environment happenings. Taking
these observations, the present paper suggests a BDI architecture extended with
a personality-based affective appraisal system to model fictional characters. It
shows that the resulting system is capable of generating the plot of a folk tale.
The main parameters of the system so far are the five personality traits of each
agent, which span a plot-space that includes at least six alternative plots. By
that it illustrates how plot generation can be steered through personality in a
simulative system, while also generating the narrative phenomenon of affect.

The presented system needs to be able to model a broad range of narratives.
For that the character architecture needs to be extended to cover further narra-
tive phenomena: Ryan highlights the importance of reasoning about other agents
reasoning processes, in order to capture (double) deception. Palmer highlights
the importance of a nuanced representation of social interactions. Furthermore,
Ryan’s work includes a theory of plot-quality based on embedded narratives—
unrealized plans and counterfactual propositions in characters’ private worlds.
Thus, the next important step in the development of the proposed system is
to implement a plot-quality measure based on internal data generated by the
agent’s reasoning cycle. By doing that the proposed story model would define
a set of parameters that control plot generation as well as a quality measure to
evaluate particular instances of plot, and could thus prove a useful representa-
tional formalism for computational storytelling systems.
2 The exploration was performed by hand because the parameter space is fairly small:
4 characters with 4 relevant 3-valued personality traits. However, nothing precludes
an automatic approach to generate all permutations for a bigger use case.
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Abstract. Clinical practice guidelines (CPGs) serve to transfer results
from evidence-based medicine into clinical practice. There is growing
interest in clinical decision support systems (CDSS) implementing the
guideline recommendations; research on such systems typically consid-
ers combinations of workflow languages with knowledge representation
formalisms. Here, we report on experience with an OWL-based proof-
of-concept implementation of parts of the German S3 guideline for
schizophrenia. From the information-technological point of view, the
salient feature of our implementation is that it represents the CPG
entirely as a logic-based ontology, without resorting, e.g., to rule-based
action formalisms or hard-wired workflows to capture clinical pathways.
Our current goal is to establish that such an implementation is feasible;
long-range benefits we expect from the approach are modularity of CPG
implementation, ease of maintenance, and logical unity.

1 Introduction

Clinical practice guidelines (CPGs) are consensus documents intended to
improve the quality of the treatment of specific diseases following the paradigm
of evidence-based medicine. In the current work, we develop a methodology for
the ontology-centered implementation of CPGs that represents the guideline
content uniformly in terms of a description-logic based ontology, rather than
having separate expressive means for actions, e.g. a rule base as in [9] or a dedi-
cated workflow formalism as in many guideline languages (Sect. 5). We present a
proof-of-concept stage CPG-based clinical decision support system (CDSS) for
schizophrenia implemented following this methodology, formalizing parts of the
German S3 (i.e. high-evidence) guideline for schizophrenia [5]. Envisaging our
framework to evolve into a generic Clinical Guideline Module, currently instan-
tiated to ICD10 diagnostic code F20 (Schizophrenia), we call the arising tool
CGM/F20. Long-term advantages we expect from a purely ontological approach
include logical coherence, higher flexibility than achievable by hard-wired work-
flows, and ease of maintenance. We do emphasize that our preliminary results
do not yet justify any claim that these benefits will actually be realized; the pur-
pose of the current work is to explore how far a purely declarative logic-based
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 300–308, 2017.
DOI: 10.1007/978-3-319-67190-1 24
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implementation of a CPG is possible in principle. The schizophrenia guideline is
particularly suitable as a case study, being given largely as a collection of rec-
ommendations on good clinical practice rather than as a set of definite clinical
algorithms.

2 An Assistant for the Diagnosis and Treatment
of Schizophrenia

We briefly describe the envisaged use of CGM/F201. The tool consists of two
parts, a generic clinical guideline module, CGM, and a formalization of (por-
tions of) the Schizophrenia Guideline of the German Association of Psychiatry,
Psychotherapy and Psychosomatics (DGPPN) [5]. The tool is not currently inte-
grated into a real HIS, and instead implements basic patient data management
itself in a fairly naive way to enable the intended proof of concept.

Recommendations are based on the medical record of a patient, represented
as a time-ordered sequence of events such as symptoms reported, diagnoses made,
test results, therapeutic measures etc. To see how this works, let us assume that
a patient has been recently admitted and it is clear that he has been hearing
hallucinatory voices commenting on his behaviour for a prolonged time. Because
of additional symptomatology and patient background, he is considered possibly
HIV positive. The DGPPN-SG stipulates [5, pp. 31–32]:

A diagnosis of schizophrenia requires at least one unmistakable symptom
from Groups 1 to 4 (or two, if they are less certain), or at least two symp-
toms from Groups 5 to 8. These symptoms have to be constantly present
for a month or longer.

(Translated from the original German, like all further guideline quotes; our
emphasis.) So let us assume that the patient’s EHR already contains the above-
mentioned information that he “unmistakably” hears commenting voices. Since
according to the DGPPN-SG, this is a symptom in Group 3, the system should
recommend the diagnosis of schizophrenia. In fact, the system mentions “acute
schizophrenia” as a possible diagnosis, but indicates that the recommendation
cannot yet be made definite due to missing information. This follows from the
guideline, which not only lists exceptional cases under which the diagnosis should
not be made [5, p. 32]:

One should not diagnose schizophrenia in the presence of an unmis-
takable brain disorder or while the patient is intoxicated or undergoing
detoxification.

but also dictates a differential diagnosis to rule out alternative psychotic disor-
ders. In addition to the putative diagnosis, the system recommends a measure,
namely to perform a test for HIV; this again follows from the guideline:

1
CGM/F20 is open source, and available at http://www8.cs.fau.de/research/cgm.

http://www8.cs.fau.de/research/cgm
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In case of a corresponding suspicion, an HIV test [. . . ] should be performed.

At this point the physician could, e.g., immediately dismiss “detoxification”
as a possibility, and then order blood tests and a brain scan to rule out the
remaining obstacles to the diagnosis. If the patient’s medical record were then
updated with negative results for all tests, the other scenarios would vanish and
the system would then actually recommend the diagnosis of acute schizophrenia.

We stress that this would be just a recommendation, that is, the diagnosis
would not be automatically issued by the system. So assume the physician agrees
with this diagnosis and records it in the system. The DGPPN-SG will now
recommend a pharmacotherapy, but only once the informed consent of the the
patient is recorded, as specified in the guideline [5, p. 43].

3 Implementation Challenges

We discuss challenges met in the implementation of the guideline (with solutions
described in Sect. 4), and pinpoint aspects that make an ontology-based approach
fit particularly well, but also ones were it becomes apparent that the current state
of the art in description logics could be improved.

Partial knowledge. Unlike database systems, the system should follow the open
world assumption as used in logic-based ontology languages; e.g. a condition
being unmentioned in a patient’s health record should be not conflated with
absence of the condition.

Defaults and exceptions. In Sect. 2 we saw a guideline excerpt formulated
in default case/exceptional case style: The CPG recommends to diagnose
schizophrenia when sufficiently many symptoms from a given list are present,
but then lists exceptions to this rule, such as not to issue the diagnosis if the
patient has a brain disorder. Under the open world assumption, just incorporat-
ing absence of exceptions as a condition into the general rule would not yield the
expected results: For instance, as we cannot yet dismiss the possibility of a brain
disorder at the time the patient with commenting voices in Sect. 2 is admitted,
the system would then simply not recommend a diagnosis of schizophrenia, with-
out further comment. It is thus crucial to distinguish between default actions and
exceptions when formalizing a guideline. On the other hand, the intended behav-
iour is not quite the same as in standard default reasoning paradigms, which
in the example would presumably simply recommend diagnosing schizophrenia
without further comment, unless a brain disorder is known to be present. In
contrast, our system would indicate to the physician that schizophrenia is a
likely diagnosis but explicitly hold off on a recommendation until exceptional
conditions are known to be absent.
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Epistemic queries. The user interaction with the system should depend on
whether certain facts regarding a patient are known or not; e.g. the system
should not ask questions whose answer is already in the patient record, or pur-
sue possible diagnoses that are already known to be ruled out. A full treatment
of such situations requires a query language with an epistemic operator [11],
not currently supported by mature OWL reasoners. We deal with this issue by
letting the tool launch appropriate ontological queries to check whether certain
facts are known, and then recombine queries, in particular negatively.

Dismissing possible exceptions. Exceptions may rest on complex logical combi-
nations of facts (e.g., a medication can be counterindicated by a combination
of conditions); dismissing such an exception as a whole amounts to negating a
complex concept, so having an expressive logic with unrestricted negation helps.

Judicious information gathering. Recommendations of the schizophrenia guide-
line sometimes depend on symptoms being “unmistakable” (eindeutig), and the
system needs to query the physician accordingly. On the other hand, the system
should not issue such a query for other symptoms (such as ‘high fever’).

Temporal relations. The guideline needs information about the temporal order
and duration of certain events, and moreover has concepts of a current phase
and previous phases of the disease.

4 The CGM/F20 Ontology

The CGM/F20 ontology consists of two static OWL ontologies, one for a gen-
eral modelling of time and one for the actual guideline content (once additional
CPGs are covered in future extensions, the latter will split into a generic and
a disease-specific part). Additionally, each patient is modelled as a separate
dynamic ontology that extends the static ontologies with assertional knowledge
modelling the patient data; it is generated at admission and is continuously
updated by the system as the clinical process progresses.

Time. As the guideline only needs fairly large-scale temporal concepts, we opt
for modelling a highly abstracted temporal ontology from scratch (partly using
SWRL) rather than import more fine-granular (clinical) temporal ontologies
such as CNTRO [18]. Our time ontology is based on the central concept of
event. Events may have a beginning, an end, and a duration, and may belong to
a session. We use sessions as logical time units, ending with the release of the
patient. One phenomenon creating the need for sessions is that many guideline
statements (e.g. on specific laboratory tests and on efficiency and side effects of
medications) depend on schizophrenia manifesting itself for the first time. An
attempt to model this condition by saying that the patient was not diagnosed
with schizophrenia in the past will clearly fail, as the relevant guideline recom-
mendations will then be blocked from the moment the patient is diagnosed with
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schizophrenia. Our solution is to formulate the condition in terms of sessions –
we require that the patient has not been diagnosed with schizophrenia in any
previous session.

Overall Design of the Guideline Model. Unsurprisingly, the guideline model
revolves around the concepts of Symptom, Diagnosis, Measure, and Patient. Addi-
tionally, there is a class TherapyGoal modelling abstract overall goals of the ther-
apy that are not refined to concrete therapeutic measures in the guideline. The
recommendations of the guideline are implemented in terms of named classes
of patients (those to which the recommendation applies), the recommendation
classes. These concepts are linked with the time ontology; in particular, symp-
toms, diagnoses and measures are events in the sense of the time ontology, and
always belong to a session.

One important point to think about in designing an ontology is what individ-
uals one imagines as potential members of a given class. For instance, we regard
classes of symptoms and measures as inhabited by concrete instances attached
to a given person over a given time period, e.g. ‘the delusions experienced by
patient X in the past three weeks’. To avoid conceptual pitfalls as pointed out
in [15], not all inhabitants of such classes are required to exist in the real world
– e.g. a therapeutic measure might just be recommended or currently planned.
How far such entities are real or just putative is determined by their relationship
to other individuals.

Recommendations are implemented in terms of object properties linking
measures with patients, and governed by definitions of recommendation
classes. There are three types of such properties: recommendations, non-
recommendations (e.g. for diagnoses already issued in the past), and counter-
recommendations (explicit discouragements). As indicated in Sect. 3, we need to
emulate a form of default reasoning. To this end, recommendation classes may,
via annotations, be associated with preconditions, expressed by precondition
classes. This enables us to assign patients to a recommendation class although
we yet do not know whether they fulfill these additional preconditions, and then
confirm the recommendation once the preconditions are checked.

Annotations are used to configure the behaviour of the tool, in particular the
query mechanism and the user interface. Besides for preconditions, we use anno-
tations to trigger queries for additional qualifications of symptoms such as unmis-
takability; to link to the guideline text; and to mark preconditions that the
physician is allowed to summarily dismiss without justification.

Reasoning. The reasoning service by means of which CGM/F20 arrives at rec-
ommendations is querying via SPARQL-DL formulas [17]. Ideally, one would
want to query for classes C of diagnoses such that the patient at hand belongs
to classes such as hasRecommendedDiagnosis some C; however, constructs of this
type go beyond (the well-documented and stable part of) SPARQL-DL. As a
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workaround, we populate classes of measures and diagnoses with generic indi-
viduals, which we use in place of the class in the definition of recommendation
classes. We then query for individuals that are, say, diagnoses, and are related
to the patient at hand via hasRecommendedDiagnosis. For example, diagnostic
recommendations for patient John are produced by the query
SELECT ?diagnosis WHERE {

John schizophrenia:hasRecommendedDiagnosis ?diagnosis.
FILTER NOT EXISTS {John schizophrenia:hasNonRecommendedDiagnosis ?diagnosis}.}

That is, we first query for recommended diagnoses and then filter out the non-
recommended ones in our emulation of defeasible reasoning. In the example, if
John has an unmistakable symptom from a certain list of symptoms, he will
satisfy hasRecommendedDiagnosis R Schizophrenia, but the diagnosis will not be
recommended if that diagnosis has already been made, putting John also in
the class hasNonRecommendedDiagnosis R Schizophrenia, so that R Schizophrenia

is removed from the result of the query. Having thus established diagnoses to
be explored, we next need to check the status of the preconditions before a
diagnosis can be conclusively recommended. We thus query for all classes John
belongs to, and then iterate over all preconditions of recommendation classes
John belongs to and check their status: If the John belongs to the precondition
class, its status is ‘confirmed’; if he is in the negation of the precondition class,
the status is ‘excluded’; and otherwise ‘unknown’.

Modularity. Currently we are only modelling a single CPG, but we provide an
interface which should also fit for other guidelines. In a multi-guideline frame-
work, one would put general-interest classes and object properties revolving
around symptoms, diagnoses, therapy goals etc. into a master ontology and let
ontologies for specific CPGs build on this ontology, using the same types of anno-
tations. The tool would likely require only little adaptation, barring extensions
necessary to cover new general phenomena not occurring in the schizophrenia
guideline. In a multi-guideline framework, guidelines could and should refer to
each other, e.g. for differential diagnoses. The logic-centered approach would then
presumably play out its advantages quite visibly, as clinical pathways could be
generated by combining logical axioms across different guidelines, avoiding the
need for laborious manual integration of workflows.

5 Related Work

Our work is situated in the highly active area of clinical decision support. For
systematic reviews of clinical decision support systems (CDSS) and guideline
implementations, see [7,12]. Current CDSS are mostly focused on somatic dis-
eases, one exception being the CompTMAP tool that implements a hard-wired
medication protocol for depression [19]. A range of dedicated formalisms has
been developed for the implementation of clinical practice guidelines; see [13] for
an overview. A common denominator of these languages is that they focus on
workflow descriptions fixing specific clinical paths, and use knowledge represen-
tation only at hardwired decision points in workflows. More recently, CDSS have
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emerged that are, like CGM/F20, based primarily on ontological representations,
typically in OWL. One approach is to represent workflows explicitly by modelling
states and transitions in OWL and SWRL [6,8,20]. Beyond this, ontologies have
been used for patient classification in diabetes [9] and lung cancer [16], and for
decision support in breast cancer follow-up [1], comorbidities in cardiology [2],
pre-operative testing [4], and chemotherapy [3]. Out of these, it is probably [4]
whose approach is most closely related to ours. The main differences between
the CDSS described in [4] and CGM/F20 are on the one hand the fact that
CGM/F20 deals with extended clinical processes and hence needs to consider
temporal concepts, and on the other hand specific implementation challenges
addressed in CGM/F20 that lead to extended use of DL querying in CGM/F20,
cf. Sects. 3 and 4.

6 Conclusions and Future Work

We have explored an approach to CPG implementation that relies on represent-
ing the full content of the guideline, including procedural parts, as an OWL
ontology. Our system CGM/F20 currently covers part of the German S3 guide-
line for schizophrenia. In its present state of development, CGM/F20 delivers
recommendations for the next step in a clinical path (of course still leaving the
actual decisions on diagnostic and therapeutic steps to the psychiatrist). The
guideline content and, in particular, its appropriate interactive presentation to
the user poses a number of specific challenges that are addressed in particular
by the careful design of DL queries and intensive use of annotations.

As an immediate next step, still within the proof-of-concept stage, we will
extend the tool to enable explicit look-ahead, i.e. to generate multi-step clinical
pathways and replan these as the actual clinical process unfolds, possibly using
OWL-S [10]. Moreover, we intend to substantiate our claim of genericity of our
CPG implementation framework by formalizing additional guidelines, aiming
especially for diseases whose diagnosis and treatment involve a vocabulary of
concepts that intersects with those of schizophrenia. A point of particular inter-
est is in-depth coverage of differential diagnoses. Interdisciplinary integration of
guidelines will increase the need for connecting CPG ontologies with standard
medical terminologies such as SNOMED CT or OpenGALEN [14].

References

1. Abidi, S., Abidi, S., Hussain, S., Shepherd, M.: Ontology-based modeling of clinical
practice guidelines: A clinical decision support system for breast cancer follow-up
interventions at primary care settings. In: MEDINFO 2007, pp. 845–849. IOS Press
(2007)

2. Abidi, S., Cox, J., Abidi, S., Shepherd, M.: Using OWL ontologies for clinical
guidelines based comorbid decision support. In: Hawaii International International
Conference on Systems Science, HICSS 2012, pp. 3030–3038. IEEE Comp. Soc.
(2012)



Ontological Modelling of a Psychiatric Clinical Practice Guideline 307

3. Beierle, C., Eisele, L., Kern-Isberner, G., Meyer, R.G., Nietzke, M.: Using onto-
logical knowledge about active pharmaceutical ingredients for a decision support
system in medical cancer therapy. In: Friedrich, G., Helmert, M., Wotawa, F.
(eds.) KI 2016. LNCS, vol. 9904, pp. 119–125. Springer, Cham (2016). doi:10.
1007/978-3-319-46073-4 9

4. Bouamrane, M.-M., Rector, A., Hurrell, M.: A hybrid architecture for a preop-
erative decision support system using a rule engine and a reasoner on a clinical
ontology. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 242–253.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-05082-4 17

5. Deutsche Gesellschaft für Psychiatrie, Psychotherapie und Nervenheilkunde (ed.)
Behandlungsleitlinie Schizophrenie. In: Gaebel, W., Falkai, P. (eds.) Steinkopff,
Darmstadt (2006)

6. Doulaverakis, C., Koutkias, V., Antoniou, G., Kompatsiaris, I.: Applying SPARQL-
based inference and ontologies for modelling and execution of clinical practice
guidelines: a case study on hypertension management. In: Riaño, D., Lenz, R.,
Reichert, M. (eds.) KR4HC/ProHealth -2016. LNCS, vol. 10096, pp. 90–107.
Springer, Cham (2017). doi:10.1007/978-3-319-55014-5 6

7. Garg, A., Adhikari, N., McDonald, H., Rosas-Arellano, M., Devereaux, P., Beyene,
J., Sam, J., Haynes, R.: Effects of computerized clinical decision support systems
on practitioner performance and patient outcomes: a systematic review. JAMA
293, 1223–1238 (2005)

8. Jafarpour, B., Abidi, S.R., Abidi, S.S.R.: Exploiting semantic web technologies to
develop OWL-based clinical practice guideline execution engines. IEEE J. Biomed.
Health Inform. 20, 388–398 (2016)

9. Kashyap, V., Morales, A., Hongsermeier, T.: On implementing clinical decision
support: achieving scalability and maintainability by combining business rules and
ontologies. In: AMIA Annual Symposium, vol. 2006, pp. 414–418. AMIA (2006)

10. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,
McGuinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to web services with
OWL-S. World Wide Web, WWW 2007 10, 243–277 (2007)

11. Mehdi, A., Rudolph, S., Grimm, S.: Epistemic querying of OWL knowledge bases.
In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leen-
heer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 397–409. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-21034-1 27

12. Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J.
Biomed. Inform. 46, 44–763 (2013)

13. Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., Hall, R., Johnson,
P., Jones, N., Kumar, A., Miksch, S., Quaglini, S., Seyfang, A., Shortliffe, E.,
Stefanelli, M.: Comparing computer-interpretable guideline models: a case-study
approach. J. AMIA 10, 52–68 (2003)

14. Rector, A., Rogers, J., Zanstra, P., van der Haring, E.: OpenGALEN: Open source
medical terminology and tools. In: AMIA Annual Symposium, p. 982. AMIA (2003)

15. Schulz, S., Stenzhorn, H., Boeker, M., Smith, B.: Strengths and limitations of
formal ontologies in the biomedical domain. Rev. Electron. Comun. Inf. Inov. Saude
3, 31–45 (2009)
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Abstract. We consider scenarios in which robots need to collaboratively
perform a task. Our focus is on scenarios where every robot has the same
goal and performs autonomous decisions on which next step to do to
reach the shared goal. The robots can synchronize by requesting each
others’ help. Our approach builds on a knowledge-based architecture in
which robot goals and behaviour are encoded declaratively using logic
programming, that is Prolog in our case. Each robot executes the same
Prolog program and requests help from other robots to cooperatively
solve some subtasks. In this paper we present the system architecture and
a proof-of-concept scenario of tidying up an apartment. In this scenario
a set of robots are working autonomously yet collaboratively to tidy up
a simulated apartment by placing the scattered objects in their proper
places.

Keywords: Collaborative robotics · Logical programming · Knowledge-
based system

1 Introduction

In many scenarios and applications, the behaviour of different robots collabo-
rating on a given task needs to be coordinated. This can be done via a central
planning component that computes an overall plan and instructs each robot
what to do in a particular time step. In such an approach, robots are not
autonomous as they essentially follow instructions given by a central planning
and synchronization component [1]. In contrast to this, we consider an app-
roach in which the behaviour of robots working collaboratively on a common
task can be coordinated in a decentralized fashion, leaving autonomy to every
robot. In human-robot collaboration, several planning and action-related aspects
must be implemented in collaborative task planning, human-aware navigation
and joint manipulation [4], this also applies to multi robot collaboration. Our
approach relies on declarative plans specified by means of a logic programming
formalism, Prolog in our case. Each robot essentially executes the same plan
and takes own decisions about which step to perform next. The behaviour of the
different robots is coordinated by allowing them to exchange messages request-
ing each others’ help. We instantiate this approach for a tidying up scenario
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 309–315, 2017.
DOI: 10.1007/978-3-319-67190-1 25
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in which a set of robots need to collaborate on the task of putting all objects
into their proper location. While many objects can be dealt with by each robot
autonomously, some objects require joint handling (e.g. carrying) and thus syn-
chronization between the robots. We perform experiments in a simulated world
and report the rate of task completion averaged over a number of runs. The main
novelty of the approach presented in this paper is that the robots work collab-
oratively, but are not coordinated centrally in contrast to other state-of-the-art
approaches supporting robot collaboration [1]. This is important as it allows for
autonomous but coordinated decision making and thus for more flexibility and
allows to accommodate issues that could not be foreseen at planning time.

2 System Architecture and Implementation

This section gives an overview of the system architecture and software imple-
mentation used to realise the system architecture (see Fig. 1).

The Knowledge Representation component acquires, stores and retrieves
knowledge that is needed by the system. World knowledge comprises knowl-
edge about everyday objects and their properties [5]. Such knowledge can be
represented as an ontology [2] and can for instance be obtained from existing
knowledge bases like OpenCyc [6] and RoboEarth [7]. Our ontology is encoded in
the Web Ontology Language (OWL) and accessed via an OWL API implemented
in KnowRob [8]1.

A separate process running in parallel updates the situational knowledge base
with the robot’s current environment, creating an entry for each object detected
with its unique object identifier and the timestamp. Object specific information
such as type, color, location of the object and other relevant descriptive features
are also stored in a database. We rely on a relational database, MySQL, in our
current implementation. A set of Prolog predicates is implemented to access
the situational knowledge base stored in MySQL using the SWI-Prolog-ODBC
Interface.

The Action Representation and Reasoning module implements a client-server
architecture with a SWI-Prolog client and a Java server. An action predicate in
Prolog represents an action that can be carried out by the robot. An action plan
predicate consists of a sequence of action predicates. Each action predicate in the
action plan predicate is executed sequentially with the ordering constraint that
the next action predicate in the sequence is only executed if the previous action
predicate was successful. For example, the action plan predicate pick and place
is modeled as the head of a rule consisting of four premises: reaching, picking,
moving and placing following [3]:

pick_and_place(R,O) :- reaching(R,O),picking(R,O),moving(R,O),
placing(R,O).

1 http://knowrob.org/kb/knowrob.owl.

http://knowrob.org/kb/knowrob.owl
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These premises correspond to the sequence of sub-actions that need to be
carried out for the pick-and-place action to be successful. The action predicate
picking is executed only when the previous action predicate reaching is success-
ful, i.e. an object can be picked only after the robot hand has reached the object.
Planning of concrete action executions takes place by generating ground Prolog
plans as a result of Prolog resolution at runtime. In order to allow for action exe-
cution by the robot, Prolog sends HTTP requests to the Abstract Robot Control
Module, specifying the action to be executed and the important parameters.

The Robot Control Module abstracts from specific robot platforms and is
implemented as a Java server that receives HTTP requests from Prolog and
invokes that robot controller method as specified in a mapping file that binds
an action name (requested by Prolog client) to actual methods executable on a
given robot platform.

The main predicate executed by each robot corresponds to the top goal of
tidying up the apartment:

tidy_the_apt(R) :- getObjs(Objs),tidy_up(Objs,R).

where R is an identifier of the robot, and Objs is a list of objects returned by
the predicate getObjs that are in the environment. The tidy up predicate is then
defined recursively and works through the list of objects:

tidy_up([O|T],R) :- tidy_obj(O,R),tidy_up(T,R).

The predicate that is responsible for tidying up a single object retrieves the
prototypical location of the object (PLO), checks whether it does not match the
current location and in this case moves the object to the prototypical location:

tidy_obj(O,R) :- getPLO(O,P), atLocation(P,L1), atLocation(O,L2),
wrongLocation(L1,L2), move_object(R,O,L1).

Before moving the object a set of pre-checks are performed e.g. such as whether
the object requires a one-robot or a two-robot grasp to be moved. After moving
the object, a set of post-checks are performed, e.g. to check whether the object
is indeed placed in its proper storage location:

move_object(R,O,L) :- pre_checks(R,O,L),pick_and_place(R,O,L),
post_checks(R,O,L).

3 Example Scenario

As a proof-of-concept of our approach, we simulate the behaviour of the system
in a simulated scenario of tidying up an apartment. In this scenario, a set of
robots are working collaboratively to tidy up the apartment by putting away
a certain number of objects that are lying around the apartment into their
appropriate storage places. The proper storage location of an object is defined in
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Fig. 1. UML component diagram of system architecture

the world knowledge by the predicate getPLO. A robot may randomly encounter
a moving obstacle (moving human). The robots perform the tidy-up-apartment
task by executing a series of pick-and-place tasks working independently and in
coordination with the other robots. The robots synchronize with other robots
by requesting their help via a messaging architecture implemented in our case
through messages represented in the database.

Consider a virtual apartment with a kitchen, a bedroom, a bathroom and
a living room (see Fig. 2). The virtual apartment is equipped with perception
sensors such as cameras, motion sensors etc., which can detect the location and
properties of the objects lying around in the apartment as well as location and
motion of the mobile robots moving around in the apartment. In our example
scenario, we consider the following objects: an apple and a banana lying on the
kitchen table which need to be stored within the fridge in the kitchen, a cup
and a plate on the dining table which needs to be deposited in the cupboard in
the kitchen. A toy scattered in the living room needs to be stored away in the
bedroom. A laundry basket lying in the bedroom needs to be brought into the
bathroom. As a special case, the basket requires two robots jointly lifting it so
that it can be moved.

While our approach can accommodate any number of robots, we perform
our simulations with two robots only. We assume that robots have a map of the
apartment and the ability to localise and navigate from one room to another.
The initial position of the objects and robots is generated randomly in each run
of our simulation. While the location of storage locations (e.g. fridge, cupboard,
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Fig. 2. Illustration of tidy up apartment scenario

box) as well as the apartment configuration can be adapted, it is fixed in our
simulations. Errors are simulated randomly with a certain probability, such as
a temporary/moving obstacle and the event of losing/dropping the object while
moving it. The perception module is simulated by using a static snapshot that
models the situation in terms of which objects are visible to the robot, their type
as well as location. This static snapshot is loaded into the MySQL database.

We analyze the behaviour of the system in the following situations that occur
while executing the aforementioned scenario:

1. Errorless condition: In this case no errors occur while picking up an object,
moving it to the destination location and placing it there.

2. Temporary Obstacle: In this case a temporary/moving obstacle is detected
in the path of the robot while moving to the destination location. The robot
waits for a few seconds until the moving obstacle (moving human) is out of the
way and then continues. We simulate an obstacle with a certain probability p1.

3. Lost Object: In this case the object is lost/dropped while moving. The
robot picks up the object from where it is dropped and then it continues. We
simulate an object loss with a certain probability p2.

4. Two types of Grasps: Depending on the object there are two types of
grasps. The one-robot grasp is used for lighter and smaller objects which
require only one robot to manipulate. The two-robot grasp is used for heav-
ier and bigger objects which require the combined effort of two robots to
manipulate.

As a proof of concept, Table 1 summarizes Task Execution Time (Task),
Error Conditions (Obstacle, Drop object), Total Task Execution Time (Total)
and Average Time (Average) over 5 simulations for each object. All times are
measured in seconds.
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Table 1. Times needed for each run of the simulation to store each object in the proper
place

4 Discussion and Conclusion

In this paper, we have proposed a knowledge-based and logic programming based
architecture that supports robots in collaborating to achieve a joint task while
allowing them to maintain their autonomy in taking own decisions. This is in
contrast to many state-of-the-art architectures in which the individual plans
are fixed by a central planning component and then are only executed by the
individual robots. This approach reduces flexibility of robots to adapt to chang-
ing conditions. Our robots all execute the same plan implemented as Prolog
directives and they request each others’ help when needed through a messaging
system. In our simulated scenario, robots collaborate in tidying up an apart-
ment with the goal of storing all objects into their proper place. While most
objects can be carried individually, some objects require joint action taking to
lift and move the object. Unforeseen problems such as interfering moving obsta-
cles, dropping objects etc. are simulated with a certain probability. We have
shown that our approach is robust to such unforeseen errors and all tasks could
be accomplished within the same temporal range in spite of errors occurring. It
shows also that the coordination of robots via the messaging system is effective
as also the objects requiring joint lifting and moving were stored successfully.
Future work includes the transfer and testing of the approach in a non-simulated
environment.

Acknowledgements. The authors acknowledge funding from the Cluster of Excel-
lence Cognitive Interaction Technology ‘CITEC’ (EXC 277), Bielefeld University.
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Abstract. Since its introduction two decades ago, the way researchers
parameterized and optimized Cartesian Genetic Programming (CGP)
remained almost unchanged. In this work we investigate non-standard
parameterizations and optimization algorithms for CGP. We show that
the conventional way of using CGP, i.e. configuring it as a single line
optimized by an (1+4) Evolutionary Strategies-style search scheme, is a
very good choice but that rectangular CGP geometries and more elab-
orate metaheuristics, such as Simulated Annealing, can lead to faster
convergence rates.

1 Introduction

Almost two decades ago Miller, Thompson, Kalganova, and Fogarty presented
first publications on CGP—an encoding model inspired by the two-dimensional
array of functional nodes connected by feed-forward wires of an Field Program-
mable Gate Array (FPGA) device [1,6]. CGP has multiple pivotal advantages:

– CGP comprises an inherent mechanism for the design of simple hierarchical
functions. While in many optimization systems such a mechanism has to be
implemented explicitly, in CGP multiple feed-forwards wires may originate
from the same output of a functional node. This property can be very useful
for the evolution of goal functions that may benefit from repetitive inner
structures.

– The maximal size of encoded solutions is bound, saving CGP to some extent
from “bloat” that is characteristic to Genetic Programming (GP).

– CGP offers an implicit way of propagating redundant information throughout
the generations. This mechanism can be used as a source of randomness and
a memory for evolutionary artifacts. Propagation and reuse of redundant
information has been show beneficial for the convergence of CGP.

– CGP encodes a directed acyclic graph. This allows to evolve topologies. An
example is the evolution of Artificial Neural Networks (ANNs) using CGP [7].

– CGP is simple. The implementation complexity in many programming lan-
guages is marginal relying on no special programming language properties
like the ability to handle tree structures efficiently.

c⃝ Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-67190-1 26



Parametrizing Cartesian Genetic Programming: An Empirical Study 317

Along with the mentioned advantages, CGP suffers as a combinatorial represen-
tation model from the usual sources of epistasis. For instance, rewiring a single
input of a functional node can change the overall transfer function dramatically.
Additionally, the spatial arrangement of functional nodes on a two-dimensional
grid introduces restrictions to the topology of the evolved solutions. Moving a
functional node among the grid requires rearranging the genotype, if possible.
Additionally, the connection set of an input of a node strongly depends on the
location of the node on the grid. These dependencies implicitly impact on the
evolvability and make it difficult to realize structural methods for CGP. For
instance, a recombination operator needs to restructure large parts of a geno-
type to be able to swap functionally related substructures among candidate
solutions [2,8]. A trial to free CGP from grid-induced epistasis was made in [3]
by assigning each input and output of a node signatures. Best-fitting signatures
were then used to clamp wires.

The first systematic investigation on an efficient optimization scheme for
CGP was done by Miller 1999 in [5]. Miller employed a regular GA with a
uniform recombination operator and a (1+ λ) mutation-only search scheme. He
configured CGP as a square grid of functional nodes with the maximal length of
feed-forward wires of two. In 1999 it was already know that a “neutral selection”
scheme that is preferring offspring individuals for propagating into the next
generation if they are on par or better than the parent individual is highly
beneficial for CGP. In a series of experiments Miller observed that the evolution
of digital circuits using CGP can be solved better by local search-like approaches
employing “neutral selection” than by GA.

In this work we address the question, whether the popular choice of (1 + 4)
search scheme in combination with single-line CGP genotype can be generalized.
For this, we rely on an unbiased parameter tuning method to identify (i) well-
performing parameterizations of CGP and (ii) efficient optimization schemes.

2 Experimental Setup

The first class of benchmark functions consists of Boolean adder, multiplier, and
even parity functions. The set of 2-input Boolean functions that may be used
as functional nodes in CGP genotypes is presented in Table 1. An experiment is
stopped if a perfect solution has been found or the maximal number of fitness
evaluations has been exceeded.

The second set of benchmark consists of twelve symbolic regression functions
(Koza-2, -3, Nguyen-4 . . . -10, Keijzer-4, -6, Pagie-1). A training data set consists
of c uniformly sampled from an interval [a, b]. The cost function is defined as
the sum of absolute differences between functional values of the reference and
evolved function at the data points of the according training set. An experiment
is terminated if the cost function reaches a value below or equal 0.01 or the
maximal number of fitness evaluations has been exceeded.
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Table 1. Functional set and parameter space explored by iRace.

Benchmarks Functional set

(i, i, 1)-add, (i, i)-mul a ∧ b, a ∧ b̄, ā ∧ b, a ⊕ b, a|b
Even parity a ∧ b, a ∧ b̄, ā ∧ b, a|b, a|b̄, ā|b
Koza +, −, ∗, /, sin, cos, ln(|n|), en

Keijzer +, ∗, n−1, −n ,
√
n

Optimization Algorithms

As the baseline method we select the (1+4) CGP The second and third algo-
rithms are (1 + λ) CGP and (µ+ λ) CGP, where the number of offspring indi-
viduals λ and the number of parents µ are subject to optimization. For all CGPs
schemes “neutral selection” has been realized. For optimizing Boolean circuits
we have additionally selected SA with the following colling strategy:

A ←
(Tstart − Tend)(N + 1)

N
; B ← Tstart − A; Tt ← A

t+ 1
+B.

Random sampling and random walk have also been investigated in preliminary
experiments and sorted out because of inferior results.

Automatic Parameter Tuning: To detect good parameterizations, we are
using the Iterated Race for Automatic Algorithm Configuration (iRace) pack-
age [4]. iRace was configured to execute 2000 trials for each of the tested
algorithm-benchmark pairs.

iRace usually evolves multiple good-performing configurations for an
algorithm-benchmark pair. To verify the results of iRace, we have computed for
each configuration the median performance in 100 runs. We have then selected
for each algorithm-benchmark pair the best performing configuration and report
it in this paper.

3 Results

Evolution of Boolean circuits: The first observation that can be made is that
the baseline (1+4) CGP on a single-line CGP is never a clear winner regard-
ing the median number of fitness evaluations when evolving functionally correct
Boolean circuits (c.f. Table 2). Except for the smallest benchmarks, the (2, 2, 1)-
adder and the (2, 2)-multiplier, and for the 8-parity benchmark SA is always a
clear winner. For the 8-parity benchmark SA is passed by (µ+ λ) CGP only by
roughly 2%. For larger benchmarks, like the (3, 3, 1)- and (4, 4, 1)-adder, (3, 3)-
multiplier, and the parity benchmarks, the best performing algorithm is 1.3 to 3
times faster than the baseline (1+4) CGP. When looking at the CE metric, SA
is the clear winner for all but the smallest and the (3, 3, 1)-adder benchmarks.
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Table 2. Evaluation of CGP parameters for Boolean functions. Not optimized para-
meters are marked with an “–”. The comparison prefers conventional (1+4) CGP, as
iRace budget is set to 2000 for all configurations and challengers have more parameters
to optimize. The results are measured in number of fitness evaluations. Best results are
printed in bold. nc and nr - number of CGP columns and rows; m - mutation rate;
Tstart and Tstop - starting and stopping temperatures for SA. CE at z = 99%.

goal algo- evolved parameters termination[no. evaluations] Comp. restart
function rithm nc nr µ λ m[%] Tstart Tstop 1Q median 3Q Effort at eval.

(2,2,1) add 1+4 CGP 200 – – – 2.1112 – – 14916 26532 49840 160753 91840
1+λ CGP 100 200 – 3 0.3215 – – 11316 18933 28797 89280 34350
µ+λ CGP 200 50 1 1 0.3803 – – 8114 13129 21723 67860 19849
SA 200 2 – – 1.8976 1299 0.0348 12242 20052 35411 109530 42284

(3,3,1) add 1+4 CGP 200 – – – 2.1512 – – 113168 194120 326156 689115 689112
1+λ CGP 150 1 – 3 1.9464 – – 105789 178344 302211 929794 581961
µ+λ CGP 100 4 1 3 0.8396 – – 122460 190539 330936 1018919 451407
SA 70 4 – – 1.3706 4671 0.4366 88335 149817 246126 750368 621896

(4,4,1) add 1+4 CGP 200 – – – 1.2341 – – 424924 697152 1182452 2830424 2404400
1+λ CGP 300 2 – 2 0.6852 – – 303080 501550 698950 2206982 1680482
µ+λ CGP 100 4 1 1 1.1503 – – 364545 545438 936699 2469195 2097544
SA 150 3 – – 0.6693 3610 0.6437 283038 400832 723341 2034761 1422236

(2,2) mul 1+4 CGP 100 – – – 2.9542 – – 3452 5564 9136 28434 14864
1+λ CGP 100 100 – 3 0.8680 – – 2121 3417 5474 16512 9009
µ+λ CGP 100 30 1 1 1.4332 – – 2079 3322 5465 17349 7279
SA 30 14 – – 2.4941 58 0.0889 2661 4183 6801 21275 9959

(3,3) mul 1+4 CGP 2000 – – – 0.5008 – – 274228 447220 722280 2103815 1787156
1+λ CGP 200 20 – 2 0.2988 – – 149824 288368 459822 1203021 1203020
µ+λ CGP 150 30 1 2 0.2971 – – 130250 224178 498888 1382722 361496
SA 200 100 – – 0.1622 3336 0.0870 84844 148145 356305 949607 169289

7-parity 1+4 CGP 300 – – – 1.2582 – – 175628 271048 427788 1347746 645976
1+λ CGP 300 8 – 2 0.7142 – – 100408 186250 262668 762572 381284
µ+λ CGP 300 2 1 2 0.9089 – – 118996 186674 291118 696589 696588
SA 150 8 – – 0.7584 1528 0.2000 87773 140463 238599 539214 458054

8-parity 1+4 CGP 2000 – – – 0.9057 – – 336420 461948 739504 2113156 1374636
1+λ CGP 200 6 – 3 1.0381 – – 310524 486894 798396 2408346 932859
µ+λ CGP 300 6 1 1 0.5578 – – 192417 323192 455204 1404562 702280
SA 300 4 – – 0.6733 417 0.3479 213877 329472 479532 1196482 1196482

9-parity 1+4 CGP 2000 – – – 0.8718 – – 628536 1011220 1718660 5380705 1487336
1+λ CGP 150 3 – 2 0.7050 – – 617418 959194 1570728 2859287 2859286
µ+λ CGP 300 3 1 1 0.8519 – – 512420 755543 1239866 3073095 1774561
SA 300 10 – – 0.3784 2209 0.2907 392406 579111 910828 2209561 1876989

Sometimes, the best performing algorithm regarding the median number of fit-
ness evaluations is not the winner regarding the CE. However, the differences in
medians and CE values between the winner algorithm regarding the median and
the winner algorithm regarding the CE are small to marginal.

Although we have showed for Boolean benchmarks that the conventional way
of parameterizing CGP can always be outperformed, we would like to emphasize
the following fact: Neither the best performing algorithm regarding the median
nor the best algorithm regarding the CE metric can be in general considered dom-
inant when it comes to the computational complexity of optimization and with
it, time. The reason for this is the inaccurate assumption that the computational
complexity of a fitness evaluation is constant among all CGP parameterizations.
For example, (µ+λ) CGP is the best-performing algorithm regarding the median
and CE metrics for the (2, 2, 1)-adder. However, despite worse median and CE
values, (1+4) CGP operating on a single-line CGP and SA evolve functionally
correct adders in much shorter time. This is because the genotype sizes found
by iRace are much smaller for the two algorithms than for the (µ + λ) CGP.
But even having identical CGP geometries the functional evaluation complexity
can vary greatly, as the number of active genes that are processed by the fitness
evaluation procedure can be different.
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Table 3. Evaluation of CGP parameters for symbolic regression functions. Not opti-
mized parameters are marked with an “–”. The comparison prefers conventional 1+4
CGP, as iRace budget is set to 2000 for all configurations and challengers have more
parameters to optimize.

goal optimization optimized parameters best fitness quartiles Success
function algorithm nc nr µ λ m[%] 1Q 2Q 3Q Rate
Koza-2 1 + 4 CGP 150 – – – 5 0.0095 0.0099 0.0325 0.65

1 + λ CGP 150 3 – 128 2 0.0091 0.0098 0.0364 0.68
µ + λ CGP 150 3 18 2048 10 0.0085 0.0099 0.0140 0.65

Koza-3 1 + 4 CGP 150 – – – 7 0.0104 0.0325 0.0328 0.21
1 + λ CGP 120 10 – 16 2 0.0087 0.0099 0.0325 0.49
µ + λ CGP 80 20 14 4096 5 0.0091 0.0100 0.0327 0.53

Nguyen-4 1 + 4 CGP 120 – – – 10 0.0120 0.0324 0.0487 0.21
1 + λ CGP 40 8 – 64 15 0.0129 0.022 0.0395 0.06
µ + λ CGP 60 6 18 2048 10 0.0101 0.0283 0.0498 0.24

Nguyen-5 1 + 4 CGP 60 – – – 7 0.0090 0.0100 0.0240 0.50
1 + λ CGP 150 10 – 16 2 0.0099 0.0099 0.0229 0.50
µ + λ CGP 150 20 22 4096 1 0.0085 0.0096 0.0100 0.77

Nguyen-6 1 + 4 CGP 100 – – – 2 0.0270 0.0382 0.0392 0.17
1 + λ CGP 60 20 – 8 1 0.0091 0.0191 0.0381 0.44
µ + λ CGP 80 14 – 4096 5 0.0100 0.0381 0.0407 0.25

Nguyen-7 1 + 4 CGP 200 – – – 7 0.0157 0.0262 0.0534 0.18
1 + λ CGP 120 8 – 4096 7 0.0099 0.01866 0.0382 0.25
µ + λ CGP 150 6 2 32 2 0.0116 0.0216 0.0288 0.20

Nguyen-8 1 + 4 CGP 150 – – – 15 0.0084 0.0111 0.0415 0.53
1 + λ CGP 80 10 – 16 2 0.0072 0.0084 0.0098 0.85
µ + λ CGP 150 6 2 32 2 0.0072 0.0088 0.0095 0.98

Nguyen-9 1 + 4 CGP 150 – – – 15 0.2475 0.4184 1.2077 0.00
1 + λ CGP 200 4 – 16 7 0.2707 0.6189 1.0801 0.01
µ + λ CGP 120 20 22 4096 15 0.5325 0.7245 1.0079 0.00

Nguyen-10 1 + 4 CGP 60 – – – 20 0.5728 0.9185 1.1150 0.01
1 + λ CGP 120 10 – 4096 20 0.3718 0.5727 0.7346 0.01
µ + λ CGP 150 20 8 4096 15 0.2975 0.4020 0.5921 0.00

Keijzer-4 1 + 4 CGP 22 – – – 5 3.6828 3.6828 3.6828 0.00
1 + λ CGP 200 20 – 16 7 2.1038 2.3413 2.4953 0.00
µ + λ CGP 120 20 22 1024 10 2.0837 2.2254 2.3484 0.00

Keijzer-6 1 + 4 CGP 100 – – – 2 0.3229 0.4883 0.6438 0.00
1 + λ CGP 60 20 – 64 10 0.1538 0.2184 0.3445 0.00
µ + λ CGP 200 20 6 256 0.0516 0.1008 0.2390 0.07

Pagie-1 1 + 4 CGP 150 – – – 20 31.5965 34.0846 35.2309 0.00
1 + λ CGP 200 20 – 512 10 14.9535 21.4781 30.7461 0.00
µ + λ CGP 200 20 14 256 15 14.7931 21.3225 30.1226 0.00

The second observation is that when tuning for λ or for λ and µ, small values
are identified by iRace as beneficial. With this, HC and its close derivatives seem
to work better for CGP when optimizing Boolean circuits.

In related work it was shown that the efficiency of (1+4) CGP on single-line
CGP increases with rising nc. This can be observed also in Table 2. However, the
efficiency of CGP can be improved using rectangular grids and slightly different
(µ+λ) CGP schemes as well as SA. This is our third observation for the evolution
of Boolean functions.

Evolution of Symbolic Regression Functions: The first observation of
Table 3 is that the regular (1+4) CGP can be outperformed always regarding
approximation accuracy except for the Nguyen-8 benchmark. The second obser-
vation is that (µ + λ) CGP is very successful. Except for three benchmarks it
is constantly better than all the other algorithms. For the symbolic regression
we cannot observe increased efficiency for single-line CGP when increasing nc.
However, and this is our next observation, the number of offspring individuals is
usually very large. This is similar to regular GP, where often large populations
are used. Unlike to GP, the mutation operator in CGP is working on single indi-
viduals. CGP mutation and GP recombination are operators with very similar
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mechanisms and effects. It is an open question we want to investigate in future
work: Assuming the intuition of the inner principle of GP is correct, i.e. parts
of the goal solutions are randomly sampled initially and distributed among indi-
viduals of a large population, then the goal of GP is put this puzzle together
correctly; Could GP also be solved effectively by a single-individual recombina-
tion (similar to CGP’s mutation) and with smaller population sizes?

The last two findings in in Table 3 are: Similar to Boolean functions, rec-
tangular CGP geometries are more efficient than single-line CGP and successful
mutation rates are rather high, which is in contrast to prior findings suggesting
to set the mutation rate as low as possible.

4 Conclusion and Future Work

In this paper, we proposed an empirical study investigating if the regular way
CGP is parameterized and optimized in related work is good. The results are
that, indeed, the single-line CGP with an (1+4) CGP scheme is good for Boolean
benchmarks but that much better results can be achieved for Boolean and sym-
bolic regression functions when using rectangular CGP grids and differently para-
meterized (µ + λ) CGP schemes as well as SA. Furthermore, we could observe
that similar to GP, CGP greatly benefits from large exploration rates, i.e. large
offspring populations and high mutation rates, when evolving symbolic regres-
sion functions. This behavior is surprising and requires further investigation. It
is especially interesting, if the former results on inner CGP mechanisms, like
“neutrality”, are still valid.

Following recommendations can be drawn from our experiments.

– For simple Boolean functions (1+1) HC applied on CGP with 30 to 50 rows
and 100 to 200 columns performs best.

– For complex Boolean functions SA applied on CGP with 3 to 10 rows and 30
to 300 columns performs best. Increasing the number of rows to 100 might
help in case of heavy functions, such as the multiplication.

– For Boolean functions the best observed mutation rate interval is [0.1, 1.6]%.
– For continuous functions CGP with 3 to 20 rows and 80 to 200 columns
performs best.

– For continuous functions CGP with µ = 2 . . . 22 and λ = 2048 . . . 4096 per-
forms best. It is worth investigating λ = 8 . . . 32 in cases where large λ values
do not result in fast convergence.

– For continuous functions the mutation rate may vary from 1% to 15% with
higher mutation rates being more successful for larger genotypes.

We will extend the benchmark set in our future work to more popular func-
tions, like classification and image-processing tasks, and approach the questions
regarding similarity of inner mechanisms to GP. Additionally we will try under-
stand properly the ambivalent nature of CGP making it successful for combina-
torial and continuous benchmarks.
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Abstract. Human-Computer Interaction (HMI) is useful in sterile environ-
ments such as operating rooms (OR) where surgeons need to interact with
images from scanners of organs on screens. Contamination issues may happen if
the surgeon must touch a keyboard or the mouse. In order to reduce contami-
nation and improve the interactions with the images without asking another team
member, the Gesture ToolBox project, based on previous methods of Altran
Research, has been proposed. Ten different signs from the LSF (French Sign
Language) have been chosen as a way to interact with the images. In order to
detect the signs, deep learning methods have been programmed using a
pre-trained Convolutional Neural Network (VGG-16). A Kinect is used to detect
the positions of the hand and classify gestures. The system allows the user to
select, move, zoom in, or zoom out images from organs on the screen according
to the recognised sign. Results with 11 subjects are used demonstrate this system
in the laboratory. Future work will include tests in real situations in an operating
room to obtain feedback from surgeons to improving the system.

Keywords: Human-Computer Interaction ! Deep learning ! Kinect

1 Introduction

Touchless Human-Machine Interface (HMI) is an interdisciplinary field with applica-
tions in robotics, computer gaming and sign-language interpretation. Moreover,
touchless HMI is very useful in sterile environments such as in the operating rooms
(OR) where surgeons need to interact with computers without introducing contami-
nation issues. Most of the time, the joysticks, buttons, or touch screens are wrapped in a
plastic and the surgeons need to change their gloves each time they have to use the
computers. It is quite common for surgeons to ask colleagues or nurses, who are in
another room to interact with the computers for moving images. This does not result in
time delays only if colleagues are effectively available [1].

The aim of the Gesture ToolBox project is to propose a simple touchless
Human-Machine Interface based on the surgeon’s hand gesture recognition using deep
learning methods. This investigation is based on previous work by the Altran Research
Medic@ team [2] using other machine learning techniques and descriptors of the
hand.
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2 Related Work

Several projects explore the possibilities of the deep learning method or meeting the
needs of the HMI for OR.

Touchless Human-Machine interfaces already exist for surgeons using different
techniques. One of these is based on myoelectric signals (MES) [3], unfortunately, it
needs electrodes or armbands which are not necessarily comfortable. In another project,
L. Di Tomasso, et al. propose a Leap Motion device [4] as a human interface for
neurosurgery. There are also solutions on the market for touchless interaction; for
instance, the product “Fluid” produced by Therapixel [5]. This solution is based on a
depth perception in addition to machine learning techniques that allows pointing one’s
fingers close to the screen in order to move images. On the other hand, the Gesture
ToolBox solution is oriented to interact with cameras standing between one and four
meters from the images to be interacted with.

Concerning the deep learning aspect, O. Koller, et al. use a CNN to recognise hand
shapes as an example, the main subject of this paper is to combine a CNN and an
iterative EM algorithm to train the CNN on a big dataset weakly labelled [6]. Another
paper from Huang, et al. describes the research of finger key point’s detection from a
mobile camera [7]. Their system is robust to changing background, however it is
available for only one finger which is not sufficient in the context of the Gesture
ToolBox project. Two other projects use deep learning algorithms and the Kinect for
hand segmentation and tracking [8] or sign language recognition [8, 9]. L. Pigou,
et al. include the recognition of the body and descriptors [8]. In the method, presented
in this paper, there is no hand feature extraction; this was a major part of the machine
learning based method mentioned in [2].

3 Methodology

3.1 The Ten Hand Gestures

In order to test the hand gesture recognition, ten gestures were chosen (Fig. 1) from the
French sign language (LSF). The algorithm has been trained with these particular
gestures because of their simplicity (not causing additional fatigue to the surgeons).

Fig. 1. Hand postures of the ten gestures
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3.2 Gesture ToolBox System

Users stand in front of the Kinect and perform the defined gestures with their right hand
in order to manipulate images on the screen in real time. The five main steps of the
program (Fig. 2., on the left) are repeated in every frame. The upstream training phase
of the neural network runs once. The code is flexible enough to recognise different
signs without major modifications thanks to the ease of use of this deep learning
approach.

Input Image from the Kinect and Skeleton Recognition. It uses the Microsoft
Kinect for Windows V2. This device is able to track people and their skeleton (up to 25
skeletal joints of a maximum of 6 people) [10].

Hand Extraction and Gesture Recognition. Once the skeleton is identified by the
Kinect (Fig. 2.), the position of the right hand is extracted for every frame; a picture
centred on the entire right hand is obtained.

Before launching the program, two files which contain the structure and the weights
of the neural network trained to classify the ten gestures, are loaded. The neural
network is fed every extracted RGB picture and classifies the gesture. In order to
reduce imprecisions, the result displayed is the most represented sign among the last
five classifications.

Actions and User Interface. The detected gestures are used to select, move, zoom in
or zoom out the images of the heart and the lungs on the screen. Future applications
will include moving real medical images or specific 3D objects from the industry.

3.3 Deep Learning

The gesture recognition phase of the project is done by a convolutional neural network
(CNN) adapted to the classification of pictures.

Fig. 2. Architecture of the gesture recognition system (left) and user interface (right)
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Data Acquisition. The project functions in real time dealing with pictures from
videos. Data acquisition must be specific for each type of gesture in each type of
environment (laboratory, very bright OR, etc.). For proof of concept, pictures were
collected from eleven people with different skin colours in front of a metallic closet
which provides a bicolour background. To simulate new pictures in order to increase
the size of the dataset, a small random translation and rotation was applied.

Classification into ten classes is a supervised problem, consequently, a label was
placed on the corresponding pictures. The final training dataset contains more than
2600 pictures for the ten classes with a quantity of between 220 and 320 pictures for
each class. This remains a small dataset; as a consequence, much attention was given to
the issue of overfitting.

Transfer Learning. A pre-trained neural network was used, in our case, the VGG-16
neural network [11] already trained on the ImageNet dataset [12] has been chosen and
retrained with our training dataset.

4 Tests and Results

The tests are conducted having the same background as in the training phase. In the
early state of the investigation, only four people contributed to these tests, including
one subject who did not contribute to the data acquisition.

4.1 Confusion Matrix

The confusion matrix (Fig. 3.) provides the results of the 333 gestures done.

Fig. 3. Confusion matrix (left) and relative frequencies of the classes (right)
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4.2 Evaluation

Thanks to the confusion matrix (Mij), the precision, recall, and the f-score for each sign
were obtained (Table 1).

5 Discussion

It is important to say that the program was deliberately given in difficult situations in
order to test its limits: people very far from the Kinect, very close, far from centre,
under a very strong light, with the right hand in front of the head or body. If the user is
at a correct distance and without excessive light or lack of light, the program has fewer
errors. Consequently, the authors would like to point out two main aspects.

5.1 Kinect’s Limitations

These results do not take into account bad skeleton recognition from the Kinect.
Sometimes, the Kinect is not able to detect the skeleton or distorts it. As a consequence,
it does not place the right hand at the correct position. In such cases, the last known
position of the right hand is used in order to extract the current hand position. In most
of the cases, it is a good approximation because the user does not move his or her hand
very abruptly. In other cases, the only solution is asking the person to move.

5.2 Errors

Three most common errors have been observed:

• The neural network is confused by two very similar signs. For instance, it confuses
the “H” and “V” signs if the users have a small gap between their index finger and
their middle finger (Fig. 4).

Table 1. Precision, recall, and f-score

Precision
( MiiP

j
Mji
)

Recall
( MiiP

j
Mij
)

f-score
( 2" precisioni " recalli

precisioni þ recalli
)

3 69.0% 90.9% 78.4%
4 100.0% 82.9% 90.7%
5 97.5% 90.7% 94.0%
A 90.7% 90.7% 90.7%
D 68.4% 86.7% 76.5%
H 92.9% 72.2% 81.3%
I 85.7% 72.0% 78.3%
L 76.5% 83.9% 80.0%
S 82.9% 80.6% 81.7%
V 67.7% 80.8% 73.3%
mean 83.1% 83.1% 83.1%
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• The neural network does not “see” one or two finger(s). Sometimes, the neural
network transforms “4” into “V” or “5” into “3. In the similar way, it transforms
“H” into “D” (and sometimes, “H” into “I”).

• The neural network “sees” one additional finger. Sometimes, it has been observed
that it classifies a “D” into a “V” or the sign “L” into a “3” because it “adds” a finger
near the others.

6 Conclusions and Future Work

In this paper, a deep learning solution for HMI was presented. The goal was not to
prove that deep learning method obtains better results than other solutions, in particular
classical machine learning methods, but to propose another way to process gestures. In
a previous work done by Altran research, Belhaoua et al. [2], hand-crafted features
were computed and decision trees were used for the classification. However, it might be
interesting to mix the deep learning approaches and more classical methods of image
processing or machine learning in order to overcome the Kinect’s limitations and
resolve the most commonly observed errors.

Tests in real conditions in operating rooms (OR) are now necessary in order to take
into account the surgeons’ feedback to improve the user interface to fill their
requirements. The creation of an interface which allows them to register their own
gestures in their particular environment and use them in the touchless interface is
already implemented.

More data will be necessary in order to reduce the defect of overfitting. Future
improvement may include the addition of the depth and infrared values provide by the
Kinect to a neural network using transfer learning. To give more functionality to the
surgeon, we may explore detecting both hands of the user using the mirror image of the
right hand. Finally, we may consider the use of standard cameras.
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Fig. 4. Intended sign: “H”, recognised sign: “V” (left), intended sign: “4”, recognised sign: “V”
(middle), intended sign: “D”, recognised sign: “V” (right)
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Abstract. In this paper, we analyze data generated by the extended
Mainzer Kindertisch (ERKI setup). The setup uses five loudspeakers to
generate 32 virtual sound sources which are ordered in an half circle. It is
a new test setup in the medical field. The task for the test candidate is to
locate sounds from different, randomly chosen directions. In our analysis,
we apply data from test results of adults and of children and compare
them. We show that the ERKI setup is applicable for sound localization
and that the generated data contain various properties which can be
explained by medical reasons. Further, we demonstrate the possibility to
detect noticeable test results with data generated by the ERKI setup.

1 Introduction

Auditory localization is one of the most rudimentary and functionally aspects
of human development. It aids orientation and can help to avoid dangerous
situations, e.g., in traffic. The auditory localization also enables humans to com-
municate in noisy environments. Thus, it is a crucial aspect in everyday life.
The perception of acoustic space is based on processing sounds with two ears
and so, directional hearing is a characteristic of binaural way of hearing. The
acoustic properties like signal intensity and arrival time are necessary for com-
puting source locations. They depend on the different perception of the left and
right ear. In clinical audiology, there is no standardized measuring method to
evaluate the binaural localization ability in the free-field. The statement about
the directional hearing is important for diagnostics, e.g., to determine Central
Auditory Processing Disorder. Therefore, one objective of our project Erfassung
des Richtungshörens bei Kindern (ERKI) is to upgrade a common diagnostic
setup for audiology in Germany [8]. With this new setup that we refer to as
ERKI setup, we measure the localization accuracy of adults and children [10]
because there are no standard values for the auditory development from birth
to adolescence [7]. The first test results are analyzed in this paper.

The paper is structured as follows. After the introduction, we present the
ERKI setup including a description of the test runs and the employed data set.
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 330–336, 2017.
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In Sect. 3, the basic properties of the data set are shown. In Sect. 4, approaches
from the field of dimensionality reduction are employed. At the end of this paper,
conclusions are drawn.

2 Extended Mainzer Kindertisch

The so called Mainzer Kindertisch is a typical pediatric diagnostic setup for
auditory measurements. Employing the original measuring system with five or
seven loudspeakers in a semicircular position, there is only low angular resolu-
tion of 30◦ or 45◦ between the loudspeakers. To archive a higher resolution, we
modified the setup [8] and added virtual sound sources between two adjacent
loudspeakers generated by loudspeaker level differences [9]. Figure 1 shows the
test setup. It is based on the Mainzer Kindertisch according to DIN ISO 8253-3:
speaker-distance of 1m to the reference point, five loudspeakers with a resolution
of 45◦. We apply 37 reference angles – five real and 32 virtual sound sources.
The sound sources are ordered in 5◦ steps from −90◦ to +90◦. In the schematic
of the setup, presented in Fig. 1(b), the acoustic cover is visualized by a dark
gray, the control dial is shown in green, the LED-light strip is presented in blue,
one example of a virtual sound source is visualized by red, and the loudspeakers
are shown in orange. During the localization experiments, the sounds from the
37 angles are played in a randomized order. The result of the test candidate is
recorded by the control dial and the LED-light strip gives a visual feedback. The
feedback is possible with a resolution of 1◦. Thereby, it is important that the test
candidate looks forward to the mark of 0◦. As the response time is about 400ms,
a stimuli of 300ms is employed to avoid head movements during the stimulus.
To avoid visual bias, the loudspeakers are hidden by a semicircular curtain. In
this paper, our selected stimuli is a pink noise with a level of 65 dB SPL.

A perceived direction x for an angle α is denoted as xα. The test result x
of a complete test run is ordered as x = (x−90◦ , x−85◦ , . . . , x90◦)T . To get a
perceived direction xα of a test result x, we define xα = (x)α. For a data set X,
it applies X = (x1,x2, . . . ,xn). In this paper, there are data sets for test results
of adults Xa and of children Xc with n = 58 for both data sets. We also define a
vector α containing all angles, i.e., α = (−90,−85, . . . , 90)T . Thus, the errors of

(a) Test setup (Photo: P. Meyer). (b) Schematic of the ERKI setup.

Fig. 1. The test setup. (Color figure online)
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a test result x can be described as x−α. We define |x| = (|x−90◦ |, |x−85◦ |, . . .)T .
As for each vector element in |x| the absolute value is computed, the absolute
errors are |x − α|.

3 Statistical Properties of the Data Set

In this section, we compute statistical properties of the data set and analyze
them. In the first step, mean values and mean errors are presented. Then, we
show the distribution of the errors.

In the first analysis, we compute the mean values x of test results x ∈ X
with X = Xa and X = Xc and the standard deviations σ. It applies x =
(x−90◦ , x−85◦ , . . .) with xα = 1

m ·
∑m

i=1(xi)α for the m = 37 different angles
in a data set X. Figure 2 visualizes x depending on α. Around the curves, the
standard deviations σ are shown by a semi-transparent layer. As expected in
both plots, a linear relation can be observed. In case of children, the standard
deviations are larger. For adults, the standard deviations for angles around 0◦

are especially low.

(a) Adults. (b) Children.

Fig. 2. Visualization of mean results.

(a) Adults. (b) Children.

Fig. 3. Visualization of mean differences.
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To better recognize the differences between x and α, Fig. 3 visualizes |x − α|
depending on α. Again, there are plots based on test results of adults and of
children. The vector |x − α| is computed like x but with a substitution of x by
|x−α|. It is important to compute |x − α| and not |x−α| because for x, e.g., two
errors with −10◦ and 10◦ will be compensated to 0◦. When employing |x − α|,
these two errors will be summarized to 20◦. In the plots, it can be observed that
the errors for angles around 0◦ are smaller than for larger angles. This is due to
the effect that humans can determine time and level differences between both
ears especially well for sounds coming from 0◦ [12]. In particular, this effect can
be recognized in the plot of test results of adults. The standard deviations of the
errors of children are clearly larger than of adults.

(a) Adults. (b) Children.

Fig. 4. Distribution of the individual errors. (Color figure online)

In the next step, we present the distribution of the individual errors. The
individual errors are the differences between the angle of the sound α and the
chosen angle xα by the test candidate. For the visualization, we consider all
angles and all test results. Figure 4 shows the distribution – on the left side
for adults and on the right side for children. In the background, the matching
histogram can be seen. The curves in blue and green visualize kernel density
estimates employing a Gaussian kernel. Additionally, we fitted a normal distrib-
ution, respectively a Gaussian distribution, to the data and plotted the normal
distribution in an semi-transparent red. In Fig. 4, it can be observed that the
distribution of the results of children is wider. Compared to the fitted normal
distributions, both curves have similar properties: they are higher at 0◦ and at
about 20◦ their values are smaller. Overall, the curves are similar to the fitted
normal distributions.

4 Dimensionality Reduction on the Data Set

After basic properties of the data set are presented, we focus on methods from
the field of dimensionality reduction to further evaluate the data set Xac includ-
ing all test results of Xa and Xc. A test result x is a pattern located in a
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37-dimensional space. We use dimensionality reduction [3,5] to embed the 37-
dimensional patterns of the test results x ∈ Xac to a two-dimensional space X q.
This two-dimensional space is visualized and offers additional information about
the data set Xac. For the low-dimensional data set Xq in the low-dimensional
space X q, it applies Xq = (xq

1,x
q
2, . . . ,x

q
n). So, xq describes a low-dimensional

pattern with xq = (xq
1, x

q
2)T and xq

1 is the low-dimensional representation of
the test result x1, while xq

1 is the first feature of the low-dimensional pattern.
As every dimensionality reduction reduces the amount of data, the important
question to find a matching low-dimensional representation is which information
of the data are interesting. In general, dimensionality reduction methods are
rated by their capability of maintaining neighborhoods and distances between
the patterns [2,4]. To be able to choose a matching low-dimensional space, we
employ three different dimensionality reduction methods: principal component
analysis (PCA) [1], t-Distributed Stochastic Neighbor Embedding (t-SNE) [11],
and iterative Dimensionality Photo-Projection (iDPP) [6]. Figure 5 visualizes the
low-dimensional spaces. As t-SNE is non-deterministic, the shown plot is only
one example but other plots computed by t-SNE are very similar. In Fig. 5(a),
the upper left und upper right space contain mainly patterns of test results of
children. In the lower center, most patterns are test results of adults. In Fig. 5(b),
no clear structures can be observed. The patterns of both classes look similar
to randomly generated Gaussian blobs. The low-dimensional space computed by
iDPP is visualized in Fig. 5(c). In this visualization in the lower, left, and right
part, there are mainly patterns of test results of children.

(a) PCA. (b) t-SNE. (c) iDPP.

Fig. 5. Visualization of low-dimensional spaces.

To choose the best matching low-dimensional space, we apply findings from
preliminary experiments employing a decision tree: some patterns of test results
of children can be separated easily but it is difficult to separate patterns of test
results of adults from the data set Xac. This property is well represented by
iDPP. In the low-dimensional space computed by PCA, a group of patterns of
test results of adults can be separated easily. The low-dimensional space com-
puted by t-SNE does not show any clear structures. Thus, we choose iDPP to
deeper analyze the low-dimensional space.

Figure 6 visualizes the same space as Fig. 5(c) but some patterns xq
i are visu-

alized by the matching curve for xi. Due to clarity, not for all points the curves
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Fig. 6. Visualization of a low-dimensional space including tiny plots of the matching
high-dimensional curves.

are visualized, i.e., i gets only few values from 1 ≤ i ≤ n. It can be observed
that in the center of the visualization, the curves are similar to a diagonal line.
Additionally, it can be seen that the outliers are curves with clearly different
developments. In the plot, all outliers are patterns of children. As the main pur-
pose of the ERKI setup is to detect noticeable test results of children, this is
important and indicates that the required information are within the data.

5 Conclusions

In this paper, we analyzed data generated by the ERKI setup. We showed that
there is a strong correlation between angles and mean values of test results.
This correlation is the basic requirement. If this demand is not met, the data
would not be applicable. We can observe various properties in the data which
can be explained by medical reasons, e.g., better localization results of angles if
the angle is about 0◦. This emphasis the applicability of data generated by the
ERKI setup. The findings made by applying dimensionality reduction methods
indicate that the ERKI setup is able to detect noticeable test results of children.
This is crucial as it is the main objective of the ERKI setup. In our future work,
we plan to employ different algorithms from the field of anomaly detection to
automatically detect noticeable test results.

Acknowledgments. We thank the Jade University of Applied Sciences for partly
supporting this work with the PhD program Jade2Pro.
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Abstract. When processing information from unstructured sources,
numbers have to be parsed in many cases to do useful reasoning on
that information. However, since numbers can be expressed in different
ways, a robust number parser that can cope with number representations
in different shapes is required in those cases. In this paper, we show how
to train such a parser based on Conditional Random Fields. As training
data, we use pairs of Wikipedia infobox entries and numbers from public
knowledge graphs. We show that it is possible to parse numbers at an
accuracy of more than 90%.

Keywords: Number parsing · Number interpretation · Conditional
Random Fields

1 Introduction

Number Parsing denotes the conversion of a string representation of a number
into a binary representation which is processed as an actual number, such as an
integer or a double value. For many systems in which subsequent processing of
numeric information (e.g., in terms of comparisons and/or arithmetic operations)
is required, number parsing is a necessary preprocessing step.

Since numbers can be represented in different formats (e.g., using different
thousands and decimal separators), using blanks in between or not, using differ-
ent characters for negation, etc., number parsing can be challenging if no prior
knowledge about the format at hand exists. For example, the representation
1,000 can be interpreted as one thousand or one, depending on the interpreta-
tion of the comma character as a thousands or a decimal separator.

When processing data from the Web, there are quite a few use cases where
number parsing is essential. Examples include:

– Information extraction. The creation of knowledge bases from Web resources,
e.g., DBpedia from Wikipedia [5], requires the processing of numeric infor-
mation in Wikipedia infoboxes.

– Question answering on the Web [7]. Questions including comparisons or arith-
metics (e.g., What is the largest lake in the United States? ) require processing
of numeric information, and, hence, parsing the corresponding numeric infor-
mation.

c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 337–343, 2017.
DOI: 10.1007/978-3-319-67190-1 29
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Fig. 1. Example from a Web page with numerical information. Source: https://en.
wikipedia.org/wiki/Hohwart, accessed May 9th, 2017

– Information integration. Approaches such as InfoGather [14], Google Fusion
Tables [2] or the Mannheim Search Join Engine [6] foresee the integration of
data from different sources, usually tables on the Web, into a joint database.
In order to create meaningful resources here, which allow for useful processing,
numbers need to be parsed into a common format.

A challenge which is common to all those use cases is that numeric data on the
Web comes in a large variety of formats. In the example depicted in Fig. 1, if an
intelligent agent was to answer the question whether one of the mountains was
higher or lower than another, interpreting the text would imply interpreting the
numbers, which, even in this small snippet from just one single source, come in
two different formats (with and without and thousands separator).

Despite the presence of those use cases and challenges, robust number parsing
is still far from being solved. Many named entity recognition tools and bench-
marks foresee the detection of number expressions [8], but without any further
parsing of the number (i.e., they merely identify a substring of a larger string
which contains a numerical expression).

This paper introduces a robust number parser for numeric data from the
Web. It is based on a Conditional Random Field (CRF) [4] annotator which
separates a string encoding numeric information into relevant parts, such as
digits, thousands or decimal separators. Based on this annotation, the string
can be interpreted as a number. We create a large number of training examples
using numerical values from two Semantic Web knowledge graphs generated from
Wikipedia – i.e., DBpedia and YAGO – and the corresponding raw strings from
Wikipedia. An evaluation on a sample of tables from the Web shows that the
overall accuracy of the approach exceeds 90%.

https://en.wikipedia.org/wiki/Hohwart
https://en.wikipedia.org/wiki/Hohwart
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Fig. 2. Overall depiction of the approach

2 Approach

Our approach takes pairs of a number and a string representation of that number
as input, as depicted in Fig. 2. While we used raw text values from Wikipedia
infoboxes, along with the corresponding numerical values found in the public
knowledge graphs DBpedia [5] and YAGO [12] for training, our approach can,
in general, be trained with any set of such pairs.

In a preparation step, the raw strings are tagged. The example tagger
processes both the characters of the raw string and the digits of the number
from left to right to create the training example, using the tags N (pre-decimal
digit), P (post-decimal digit), D (decimal separator), T (thousands separator),
and O (other). Each character of the string is processed as follows:

if the current character is the current digit of the number
if the current digit is a pre-decimal digit

tag with N
else

tag with P
current digit <- next digit

else if the current digit is a -
tag with M
current digit <- next digit

else if the remaining number of pre-decimal digits is 0
tag with D

else if the remaining number of pre-decimal digits is a multitude of 3
tag with T

else
tag with O

If there are digits left after the string has been processed, the whole example
is a mismatch and discarded as a training example.

After the tagging is done, the tagged strings are used train a CRF model. We
use LingPipe 4.1.21 as an implementation of Conditional Random Fields, and
1 http://alias-i.com/lingpipe/.

http://alias-i.com/lingpipe/
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the setup described in the tutorial2. This setup trains a linear chain CRF which
uses the current token and the previous tag as features. As the only change to
the example setup, we increased the number of maximum training cycles to make
sure that the CRF training converged by itself.

For applying the CRF model, we pass it a raw string and inspect the tag
sequence returned. A number is created by concatenating a - for an M tag, a .
for a D tag, and the corresponding character for each N tag in the order in which
they appear. Characters tagged as T and O are discarded. We create the numbers
for all predicted sequences. If a number is not valid, it is discarded. In case two
different sequences lead to the same number3, the corresponding probabilities
are added. The number with highest probability is returned.

3 Evaluation

We use two different datasets to create a large number of training examples, i.e.,
DBpedia [5] and YAGO [12], and we evaluate against a sample of HTML tables
containing relational data, drawn from the T2K corpus [9,10].

We compare our approach to two baselines, i.e., the built-in floating point
parser in Java4, and the number parsing engine of the Mannheim Search Join
Engine [6], a framework for searching and on-the-fly-integration of a large num-
ber of relational tables.

3.1 Datasets

DBpedia and YAGO are large-scale knowledge graphs, which are created from
Wikipedia infoboxes using a set of mapping rules which map those infoboxes to
a backing ontology. For number parsing, they use hard-coded number parsing
rules. Since the original strings from the Wikipedia infoboxes are also available,
we are able to collect pairs of a parsed number together with the original raw
text from which it was extracted (given a certain amount of noise, as explicated
below).

To evaluate our approach, we use (a) a hold-out set of 1,000 pairs from
both the DBpedia and the YAGO dataset which is not used for training, and
(b) a sample from the T2K corpus. The latter is a collection of relational Web
tables extracted from the CommonCrawl5. Those tables are annotated, among
others, with relations defined in the DBpedia ontology. From those, we sampled
1,000 non-empty table cells which are annotated with a number-valued relation
according to the ontology.

For each parsing strategy, we compute the accuracy (where we count only
deviations larger than 10−6 as errors, in order not to erroneously punishing
rounding errors) and the root mean squared error (RMSE).
2 http://alias-i.com/lingpipe/demos/tutorial/crf/read-me.html.
3 This case may occur, e.g., if two sequences differ only in a T and an O.
4 i.e., invoking Double.parseDouble(s) on a string s.
5 https://commoncrawl.org.

http://alias-i.com/lingpipe/demos/tutorial/crf/read-me.html
https://commoncrawl.org
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For the hold-out sets as well as the T2K set, we hand-annotated 1,000 string
values each with the correct number value. Note that although we have a parsed
value for the DBpedia and YAGO sets, we re-created that value manually, since
we do not rely on the internal parsing of the DBpedia and YAGO frameworks.
Furthermore, this gives as an estimate of how good those parsing techniques
work. This comparison yields that the DBpedia built-in parser has an accuracy
of 0.734, while the YAGO built-in parser has an accuracy of 0.500. This con-
firms shortcomings in the accuracy of the processing of numeric expressions from
Wikipedia also reported in other works [1,11,13].

3.2 Results

From both corpora, we take different sample sizes to train the CRF (i.e., 50,
500, 5,000, 50,000, and 500,000 instances), and also mixed samples (i.e., half
from DBpedia, half from YAGO). The results are depicted in Table 1. We can
observe that in all three cases, the mixed dataset with 500 training examples
yields the best performing CRF. As expected, the CRFs trained on DBpedia
and YAGO examples perform better than their counterpart on the respective
holdout sets (although they are outperformed by the mixed variant, which is
a bit surprising). The reason why the results constantly degrade when adding
more than 500 examples is likely due to some overfitting effect.

It is also remarkable that the plain Java parser performs better in terms of
RMSE in two out of three cases. The reason is that if it is capable of parsing
a number, the result is usually always correct, otherwise it is not capable of
parsing the number, in which case we treat the output as 0 for computing the
RMSE, i.e., the absolute error is bound by the values in the dataset. In contrast,
the CRF approach can also make predictions that are a few orders of magnitude
away from the actual value (e.g., when erroneously concatenating a number and
a year present in a string).

In terms of runtime, our approach is slower than the baselines: for parsing
a single number, the Java API takes 0.008ms per string, MSJE takes 0.0215,
while our approach takes 0.247.6 On the other hand, this means that even with
our approach, 4,000 strings can be parsed per second, which is fast enough for
most applications.7

3.3 Error Analysis

In addition to the quantitative analysis, we inspected the mistakes made by our
approach manually. There are several main sources of errors: strings containing
rare symbols adjacent to a number (such as rare currency symbols), negative
numbers, and numbers that are expressed partly textually (e.g., 3.2 million).
Negative numbers are very underrepresented in our training sets, thus, the CRF

6 Runtimes on a commodity Windows laptop.
7 The training of the CRF, however, can take up to several hours, but only needs to
be performed once. An executable version with the best pre-trained CRF is available
at http://bit.ly/2qRbwDq.

http://bit.ly/2qRbwDq
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Table 1. Results on the T2K dataset and the holdout sets of DBpedia and YAGO

Dataset T2K DBpedia holdout YAGO holdout

Approach Acc. RMSE Acc. RMSE Acc. RMSE

Java 0.171 7.03E+09 0.223 4.03E+09 0.4055 1.07E+07

T2K/MSJE 0.2155 7.03E+09 0.3 4.24E+149 0.4495 1.69E+07

DBpedia50 0.82 8.74E+09 0.779 5.70E+09 0.936 1.52E+07

DBpedia500 0.923 2.12E+05 0.936 8.25E+09 0.963 1.52E+07

DBpedia5000 0.89 1.26E+06 0.932 8.25E+09 0.793 1.52E+07

DBpedia50000 0.853 3.77E+07 0.928 1.04E+10 0.73 1.52E+07

DBpedia500000 0.863 4.41E+06 0.928 6.29E+13 0.767 1.52E+07

YAGO50 0.823 9.94E+09 0.715 5.70E+09 0.939 1.52E+07

YAGO500 0.929 1.84E+05 0.927 5.70E+09 0.984 1.52E+07

YAGO5000 0.92 6.92E+05 0.901 8.25E+09 0.983 1.52E+07

YAGO50000 0.922 2.12E+05 0.911 1.42E+15 0.982 1.52E+07

YAGO500000 0.921 6.87E+05 0.906 1.04E+10 0.981 1.52E+07

Mix50 0.906 6.84E+05 0.891 5.70E+09 0.984 1.52E+07

Mix500 0.933 2.12E+05 0.941 8.25E+09 0.986 1.52E+07

Mix5000 0.922 2.12E+05 0.938 8.25E+09 0.984 1.52E+07

Mix50000 0.919 1.26E+06 0.932 8.25E+09 0.983 1.52E+07

Mix500000 0.918 8.65E+05 0.929 6.29E+13 0.983 1.52E+07

always predicts a very low probability for a negative number. Partly textual
numbers cannot be handled by our approach, since it only tags digits and sep-
arators in a string. Extending the approach to semi-textual numbers is subject
to future work.

4 Conclusion and Outlook

In this paper, we have presented a first approach to train a robust number parser
using Conditional Random Fields. The parser was tested on different datasets,
where it constantly yields more than 90% accuracy.

Current limitations are the presence of rare symbols. To overcome those,
better and more diverse training sets are needed, although this is not trivial: in
an experiment, resampling the dataset for an equal coverage of symbols using
a Kennard Stone sample [3] did not bring any improvement here. Further chal-
lenges to be addressed include: methods are needed to cope with partly textual,
partly numerical representations, such as 3 million, and the interpretation of
units of measurement [11].

For use cases in which a set of numbers which are likely to be formatted
equally (e.g., from one column in a table) are to be processed, it would also
be interesting to adapt the approach in a way that it exploits those common
patterns.
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Abstract. Research into knowledge acquisition for robotic agents has
looked at interpreting natural language instructions meant for humans
into robot-executable programs; however, the ambiguities of natural lan-
guage remain a challenge for such “translations”. In this paper, we look
at a particular sort of ambiguity: the control flow structure of the pro-
gram described by the natural language instruction. It is not always clear,
when more conditional statements appear in a natural language instruc-
tion, which of the conditions are to be thought of as alternative options
in the same test, and which belong to a code branch triggered by a previ-
ous conditional. We augment a system which uses probabilistic reasoning
to identify the meaning of the words in a sentence with reasoning about
action preconditions and effects in order to filter out non-sensical code
structures. We test our system with sample instruction sheets inspired
from analytical chemistry.

1 Motivation

A current topic of research is the acquisition of knowledge for robotic agents,
aimed at enabling them to perform more complex manipulation tasks. One
method, explored in previous work [1], is to mine “how to” resources, such as wik-
iHow, for recipes and instructions for various activities. The benefits of having
robotic agents capable to understand natural language instructions are obvious.
On one hand, sites like wikiHow already contain a wealth of information about
many activities; on the other, it helps usability if a human can instruct a robot
as they would another human.

However, the state of the art is still far from agents robustly capable of under-
standing natural language. Humans, relying on their already rich commonsense
knowledge and experience, can tolerate much more ambiguity and underspeci-
fication in their communication than machines can. Work on resolving ambigu-
ities and inferring missing information is ongoing [1,2], but has focused so far
on instructions with a simple structure that can be represented as a sequence of
steps with ambiguous parameters.

In this paper, we are concerned with instructions with more complex struc-
tures caused by the presence of (the natural language equivalent of) program flow
controls such as conditionals and loops, which create ambiguities of structure.

c⃝ Springer International Publishing AG 2017
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Fig. 1. Two possible interpretations for the metal cation identification instruction

Consider the following text, describing a procedure to identify metal cations
in a solution: add three drops of NaOH to the solution. If a brown precipitate
appears, say the solution contains Iron. If a white precipitate appears, add five
mL of NaOH. If the precipitate disappears, say the solution contains Aluminum.
If the precipitate remains, say the solution contains Magnesium. Two possible
ways to interpret this text into a program are given in Fig. 1, and there are other
ways as well.

These two programs, though consistent with the operations enumerated in
natural language, behave very differently. Nevertheless, a human can tell the
second program is wrong, even without chemistry knowledge. The purpose of
the procedure described in the example is to identify the metal ions in a solu-
tion. Once the ion has been identified, therefore the goal has been reached, the
program should be over.

The example above suggests that at least some ambiguity in program struc-
ture can be resolved through knowledge of a task’s goal, and/or its component
actions in terms of preconditions and effects. It is this intuition we examine here.

2 Overview

We consider the problem of turning a text written in natural language into a
simple structured program (a “code tree”) that may contain simple statements,
conditionals (if..else if..else..end if structures) and loops. Currently, we support
arbitrarily complex conditionals, and loop-while/untils with one instruction in
their body.

First, the natural language text is fed into a probabilistic inference system
called Prac [1] which is used to identify the meanings of words and coreference
pronouns. PRAC uses Markov logic networks to represent a probability distrib-
ution on how various action requests are formulated; the networks are created
from training on large text corpora. Interpreting a text is formalized as a prob-
abilistic query: finding the most likely action(s) requested given the natural
languge text as evidence. This produces a list of so-called “action cores”, action
descriptions in terms of roles and values. Based on this list of action cores, the
system produces a list of candidate code trees, which are then validated based
on a STRIPS-like procedure that checks whether action preconditions are met
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at all points of the code tree. The STRIPS validation is used as a way to add
more knowledge and help disambiguating between structures for the code trees.

3 Representing Actions and World States

We use disjunctive normal form expressions (dnf-expressions) to represent
world states, action pre- and postconditions, and “ifconditions” (the condi-
tions appearing in an if or loop statement). A “term” is a simple statement
about the world state or its negation (for example, (STATE switch on) and
(NOT (STATE switch on)) are terms). A “clause” is a conjunction of terms.
A dnf-expression is then a disjunction of clauses.

We say that a clause is consistent (with itself) when it doesn’t contain both a
term and its negation; we will thereafter assume all clauses we work with are self-
consistent, except for postcondition clauses. We say two clauses are consistent if
there is no term appearing in one clause that appears negated in the other. We
say that clause A includes clause B if they are consistent and all terms appearing
in B also appear in A. The world state is represented by a dnf-expression in
which each clause is a possible world. The world state is updated during code
tree validation, based on the postconditions of the actions in the code tree. We
use open-world semantics: if something is not stated, in a possible world, to be
true or false, then it is unknown in that world.

A precondition is represented by a dnf-expression. When validating an
action in a code tree, we say that the action is valid if its precondition is known
to be true in all worlds that are possible when the action is encountered in the
code tree: for every possible world W, there exists a clause P in the precondition
such that W includes P. If an action is invalid when it is encountered in the code
tree, then this counts as an error and the code tree is considered invalid and
rejected.

An ifcondition is represented by a dnf-expression. When checking an if or
loop instruction in the code tree, we say that the instruction is meaningful if
its ifcondition is consistent with at least one of the worlds possible when the
instruction is met: there exists a possible world W, such that there exists a
clause P in the ifcondition, such that W and P are consistent with each other.
If there is no such possible world W, then this counts as a warning, which we
currently treat as a reason to reject a code tree.

A postcondition is represented by what is syntactically a dnf-expression;
this allows our actions to have several sets of possible effects, such as different
reactions which may be observed between a known and an unknown reagent.
However, we interpret a postcondition dnf differently from other expressions
above. In particular, clauses are allowed to be inconsistent and their order
matters. When performing an update on a possible world, terms about the
world are added in the order in which they appear in the postcondition clause,
and replace previous contradicting terms. For example, a postcondition branch
(AND (NOT (STATE s off)) (NOT (STATE s on)) (STATE s ?new)) first
makes sure the entity s will no longer be in either on or off states, and then puts
entity s in state ?new (which can be, for example, on).
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A terminal condition is a dnf expression we use to represent a goal state,
after which no more statements are expected. A terminal condition is considered
achieved if there is at least one possible world in which it holds: there is a possible
world W, such that there is a clause P in the terminal condition, such that W
includes P. The reason why we ask whether a satisfying possible world exists
(rather than requiring the terminal condition to hold everywhere) is to guarantee
that instructions achieving the terminal condition are the last executed in a code
tree.

Note that while our code tree validation procedure is inspired by STRIPS,
we go beyond it by using open-world semantics and actions with more sets
of possible effects. This is important, since we aim for an approach usable in
environments that are only partially known, and where the effects of actions are
unpredictable.

4 Code Tree Generation and Validation

As our motivating example shows, knowledge about the basic actions in a pro-
gram can help check that the program’s structure makes sense. We chose a
STRIPS representation for actions because it is easy to use. Note, we do not
do STRIPS planning; we obtain candidate “plans” from interpreting the input
natural language instruction, where a plan may not be just a sequence (as would
be the case with STRIPS plans) but instead a structured program with branches
and loops. A program is considered valid if the procedure described below comes
to the conclusion that at every step of the program, preconditions for the current
action to perform are met.

Our procedure is to generate all possible code trees from a list of action cores
returned by Prac, then discard from this list all code trees that produce errors
(preconditions not met) or warnings (meaningless ifconditions). In the future,
we will merge the validation and generation steps, for efficiency.

In order to validate a code tree, we first “unroll” all the loops present: a
loop is replaced with an IF statement (with ifcondition being the negation of
the loop termination condition), where the body of this IF is the body of the
loop repeated twice, followed by an assertion of the loop’s termination condition.
Our STRIPS-like validation, which we will call cs-validation here, is defined as
follows:

– sequences without control structures (branches or loops) are cs-valid if they
are valid STRIPS sequences (no invalid actions, no action after terminal con-
dition met)

– an IF and its branches are cs-valid if each branch is cs-valid, and if the
ifcondition is meaningful (consistent with at least one possible world)

– sequences with control structures are valid if each of their elements are cs-
valid

While the validation procedure traverses the code tree, it updates the world
state based on postconditions and assertions about the world state. Postcondi-
tions and assertions are applied to all possible worlds at a point in a program (all
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Fig. 2. Converting a list of action cores (left) into possible code trees (right)

clauses in the world state dnf expression). Entering an IF branch also affects the
world state: for instructions inside the IF body, only possible worlds consistent
with its ifcondition are considered.

Our procedure takes as input: the code tree to validate; a domain description
(action preconditions and effects); an initial world state; optionally, a terminal
condition.

We will now look at structural ambiguities caused by conditionals. Figure 2
shows the three possible structures that are consistent with a list of action cores
containing two conditional instructions (for conciseness, the action cores are sim-
plified). More structures are possible in the sequential case: if more statements
appear in block-1, there are several ways to split it into statements appearing
in, and outside of the IF body, but for ease of exposition, we will focus here on
these three cases.

We will refer to the postconditions of block-1 as the changes to the world
state done by the postconditions of the actions in block-1, and by the selection
of possible worlds made by ifcondition-1. Similarly, preconditions of block-2 will
mean here both the preconditions of the actions in block-2, and ifcondition-2.

A “nested” structure can be unambiguously selected when the preconditions
of block-2 depend on the postconditions of block-1 to be valid/meaningful. An
“else-if” structure can be unambiguously selected when block-1 achieves the
terminal condition, or the preconditions of block-2 would be invalidated by the
postconditions of block-1. An “else-if” structure can also be explicitly invoked
in natural language (for example by statements such as “otherwise, if”) and we
take this into account when generating candidate code trees: when it is clear
from the language that a conditional appears as an ELSE-IF branch of some
previous conditional, we mark it as such.

Currently, our approach does not have a way to unambiguously select the
sequential case. If the preconditions of block-2 are unaffected by block-1, then
both nested and sequential interpretations are still cs-valid; this will be shown
in the evaluation, below.

5 Evaluation

To test cs-validation as a method to disambiguate code structures we have used
several instruction sheets inspired by analytical chemistry. For page count rea-
sons we don’t include the action pre-/postconditions here, but these are available
on request; they are currently hand-coded, but we will look at more autonomous



From Natural Language Instructions to Structured Robot Plans 349

ways to acquire them. For each instruction sheet, we generate a list of code trees,
from which we then remove the code trees that generate errors or warnings dur-
ing cs-validation. When more code trees remain in the list, we also look at the
world state after each code tree is run.

An example instruction sheet is storage: if the jar is sealed, put it into the
fridge. If the jar is empty, then open the drawer. If the lid is there, take it and put
it on the jar. This results in 37 candidate code trees, out of which only the one
corresponding to the correct interpretation survives cs-validation. In this case,
cs-validation is able to uniquely select among the available options to arrange
control structures, and it is able to do so despite the large number of candidates
present.

Another example instruction sheet we use is base titration: put a drop of
alizarin into the test solution. Put drops of hydrogen chloride into the solution
until it turns yellow. If the drop count is less than five, put two drops of litmus
in the solution. If the solution turns red, put more drops of the NaOH in the
solution until it turns blue. There are three possible candidates generated for
this instruction sheet, out of which two survive cs-validation (given in Fig. 3).
These two candidates result in the same set of possible final world states, and
both look like plausible interpretations.

Fig. 3. CS-valid code trees for base titration

Another example instruction sheet is the metal cation identification, given in
Sect. 1. In this case, 55 candidate code trees are generated from the instruction
sheet, however only 2 survive cs-validation, which shows its power to prune the
candidate set. The surviving code trees are shown in Fig. 4. This time however
the two code trees do not result in the same set of possible final world states:
only the correct plan would say nothing when the analyte contains neither iron,
aluminum, or magnesium.

Ambiguities result when a nested and a sequential structure both survive cs-
validation. For base titration this appears benign, but in general the code trees
will not behave the same, and some further disambiguation (e.g. via questions
to a human) is necessary. Still, cs-validation significantly reduces the number of
candidates to disambiguate.
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Fig. 4. CS-valid code trees for metal cation identification

6 Related Work

There has been substantial work in analyzing the meaning of conditionals in nat-
ural language [3,4]. Other work has tackled the ambiguity of sentiment analysis
in conditionals [5]. We used an intensional interpretation [3], which matches the
procedural one from computer programming: a conditioned action is performed
iff its condition is true.

Extracting sequences of procedures (without branching) from text has been
shown in [6]. Workflows that branch into parallel tracks that may recombine
are extracted from text in [7] using a notion of “trace index”. These work-
flows describe deterministic, possibly parallel actions in known environments.
There are also natural language interpretation systems to enable dialog between
humans and robotic agents [8–10]. However, they are intended for deterministic
environments where the initial state is fully observable, and can handle only
simple conditionals– a condition, an action, optionally an else with its action,
with no nesting.
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Abstract. Emerging applications for various types of robots require
them to operate autonomously in the vicinity of humans. Ensuring the
safety of humans is a permanent requirement that must be upheld at all
times. As tasks performed by robots are becoming more complex, adap-
tive planning components are required. Modern planning approaches do
not contribute to a robot system’s safety capabilities, which are thus lim-
ited to means like reduction of force and speed or halt of the robot. We
argue that during a plan’s execution there should be a backup plan that
the robot system can fall back to as an alternative to halting. We present
our approach of generating variations of plans by optional exploitation of
opportunities, which extend the initially safe plan for extra value when
the current safety situation allows it, while maintaining recovery policies
to get back to the safe plan in the case of safety-related events.

Keywords: Automated planning · Collaborative robot · Opportunistic
planning · Robot safety

1 Introduction

Modern applications for robots are posing considerable challenges for the capa-
bilities of a robot system to determine the actions that it should take in order
to fulfill its goals. Typical solutions involve planning components, which use the
system’s knowledge to search for action sequences that lead from the current
state to a desired goal state. However, in real-world scenarios, the plan gener-
ated based upon abstract knowledge often cannot be followed due to external
events and possible failures. The robot system is still required to achieve the
posed goals rather than giving up or following a plan that has become point-
less. Collaborative robots facilitate a wide range of applications by letting teams
of humans and robots work together, utilizing each team member’s individual
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strengths. Typically, physical contacts between humans and robots will often
occur in such scenarios. With halts as the main means of dealing with contacts,
the team’s performance would plummet. Meanwhile, the problems that can be
solved collaboratively tend to be more complex than traditional robot problems,
boosting the need for powerful planning capabilities. In this paper we propose
to meaningfully support safety in robot planning by following the concept of
opportunistic planning, which we evolve in a way that also broadens its general
applicability.

2 Opportunistic Planning for Fallback Plans

A robot system must possess the means to properly adapt to unexpected events.
If these are related to safety, such as the appearance of a human in the robot’s
path, it is particularly desirable to provide a safe reaction after a minimal time
span. The potential to offer such a feature is defined by combined qualities of the
used planning approach and its implementation, the planning executive and the
way it is joined with the planner, the planning domain, and the planning problem
generation from current knowledge and sensor data. The planning executive
should be able to quickly switch to what we call a fallback plan. The fallback
plan is supposed to be significantly more useful than a plain halting of the robot.

We have examined planning approaches that may seem to be candidates
for realizing fallback plans naturally. Considerations of algorithms that provide
contingent plans [10], policies [8], or their common extreme form of universal
plans [5], have not lead to consistent productive approaches supporting safety.
Thus we moved the fallback plan functionality to the scope of the planning
executive. This component’s concept and integration into the overall architecture
follow the approach shown in the ROSPlan framework [2].

Previous research has suggested to enrich the executive with the capabil-
ity of exploiting opportunities [1,6] in order to fulfill additional non-mandatory
goals for an increased overall value. An opportunity is a plan fragment or tem-
plate thereof along with specifications of its use. Cashmore et al. [1] build this
meta-data around an object type, meaning that the opportunity can be applied
whenever such an object is encountered during execution.

Opportunistic planning is a candidate approach for realizing our fallback plan
concept. In a nutshell, the safe fallback plan corresponds to the main plan, and
opportunities are applied for optimizations or optional goals.

2.1 Example Scenario Opportunities

We are considering the scenario of a mobile manipulator that performs trans-
portation or service tasks in an indoor location, which could be a factory or an
office complex. We have identified the following types as a subset of the oppor-
tunities that the mobile manipulator can encounter in the example scenario:

Unsafe shortcut: There is a shorter connection between two points along the
safe path, but it was not used in the safe path for a reason: It bears an inherent
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Fig. 1. The robot plans to move from waypoint P1 to P6. The safe path, marked by
continuous arrows, traverses P2, P3, P4, and P5. There is a potential shortcut from
P2 to P5, denoted by dashed arrows, but a part of it crosses a safety-critical section
between waypoints Q and R.

increased safety risk. The shortcut crosses an area that is also frequented by
humans. It is necessary to traverse this passage at a lower speed, if it can be
crossed at all. Such an opportunity is sketched in Fig. 1.

Carry along: The robot knows the current location of an object that is not
related to the current mission, and that it should rather be at a different
location. The target location is near a point further down in the safe path.

Explore: The robot has detected that its surroundings differ from their rep-
resentation in the used map, e.g., a production line or some furniture was
moved, changing the abstract waypoint network.

Go faster: The opportunity consists of a modified copy of a sequence of move-
ment actions from the main plan, with parameters that control the movement
speed modified. The opportunity buys speed at the cost of safety at the action
level, which is then mitigated on the overall planning level.

2.2 Planning with Opportunity Instantiation

One main challenge in opportunistic planning lies in enabling the switching of the
execution from the main plan to an opportunity and back – which can be easily
extended to a nested view, allowing for switching between opportunities. The
previous work on planning with opportunities typically overcomes this challenge
by building on certain characteristics of their scenario. In the domain of [1], the
only elements that are relevant to both the main plan and to the opportunity are
the robots’ location, achieved utility, and the current time, which is treated as a
simplification of costs in general. As their opportunities are considered to be of
low probability – thus not foreseeable in the main plan – and high utility, they
should always be executed if expected durations still allow for sufficient chance
of completing the main plan. To perform the switching in either direction, it is
enough to execute a “go to” action, potentially replacing one or multiple other
such actions. In a similar way, [6] shows opportunities that are loops restoring
their initial state (besides achieved soft goals and resources spent) at the end,
consequently their execution can be inserted at certain states in the main plan’s
execution rather easily.
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In order to increase the aptitude of opportunistic planning for a greater
variety of domains and to make it support our safety concepts in particular, we
apply a few modifications to the idea. We refrain from some of the spontaneity
it bears in related work and in turn establish a certain level of preparedness.

The planning system knows a set of opportunity templates (OT), which rep-
resent the applicable opportunity types as listed above. Conceptually, an OT has
the same components as a PDDL [3,4,7,9] action – name, parameters, precon-
ditions, effects, and duration if durative actions are used, plus a plan fragment,
which consists of a list of parametrized actions just like the main plan. However,
in contrast to a concrete plan, the fragment can contain variables that match
the OT’s parameters and are thus assigned values in the course of the decision
for the opportunity’s usage. An opportunity instance (OI) is a copy of an OT,
with variables filled according to the foreseen execution of the OI.

Initially, the safe plan is generated by planning, using pessimistic assumptions
for all safety-related variables. E.g., for any part of the working area that may
be occupied by persons, the initial state for planning contains a fact denoting
that it is currently occupied. This way, we assure that only safe actions are
used in the plan. This pessimistic assumption is not applied to the evaluation of
opportunity applicability, which is done in the next step.

Checking the main plan against the available OTs, for each state we obtain
a set of candidate OIs. From our list above, this means for the “unsafe shortcut”
OT that the plan is searched for pairs of waypoints connected via safe move-
ments. The “carry along” OT is treated in a similar way: the plan is checked
for movements connecting an object’s current location with the place where it
should be. Note that, while waypoints pose a handy example, other OTs may
require considering different predicates of arbitrary semantics. Found tuples of
waypoints are used to parametrize the OI, then it can be processed further:

1. Check if the OI’s preconditions hold in its starting state.
2. Check if the OI’s effects break any preconditions of actions of the main plan

after the OI’s finishing state. Depending on the domain definition, this may
also consider action durations and resources spent in the OI.

3. Evaluate the utility against a OT-specific static or cost-dependent threshold.
4. Construct a recovery policy for the OI. This step is covered further below.

These steps can mostly be covered by utilizing or emulating the capabilities of
the used planner, such as comparing sets of facts and computing the state that
results from an action execution. If given in the domain, a metric in the terms of
PDDL 2.1 [3] could be a measure for utility. But, as for other steps listed here,
efficiency or easier feasibility may yield OT-specific hardcoded implementation
to be a viable means, since a generic solution that understands OT descriptions
is not yet available.

Failure of any of these processing steps cause the OI candidate to be dropped.
Others are remembered in the OI map for the execution, keyed to the respective
starting state. The actual execution of the OI is usually still tied to the later
evaluation of not yet known facts, such as observation results along the way.
Also, the preparation and maintenance of the OI map for the currently executed
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plan can be a recurring activity that the planning system performs in parallel,
taking into account new knowledge from sensor readings. Basically, following the
initial preparation of OIs – or even before its completion, the plan execution can
start in a straight-forward manner, with the extra step of considering switching
to a currently possible OI before triggering the execution of the current plan’s
next action.

Fig. 2. Example of a safe plan with an added opportunity instance

Figure 2 shows an example of an “unsafe shortcut” OI added to the plan from
the example in Fig. 1. On the top we see the plan for moving along the safe path
(states S1, S2, . . . , S6). The OI map includes the optional switching at S2 to
the shortcut OI via states O1, O2, O3, and O4. From there the executive would
switch back to S5, in which the robot is at the same location, P5.

3 Recovering from Failed Opportunities

To realize our safety requirements, an essential capability is the quick reaction
to events that would make the continuation of an OI a significant safety risk.

The OI is enriched with a recovery policy, which maps each OI state to a
recovery plan that leads to a state in the main plan. The recovery plan is a –
usually short, potentially empty – list of action instances that is to be executed
as the act of switching back from the opportunity to the main plan.

The construction of the recovery plan Px must be performed for each state
Ox of the opportunity. It follows these steps:

1. Trivial cases: If Ox is the first or last state of the OI, Px is empty.
2. Find a plan P0 from Ox to main plan state S0, which is the main plan state

from which the OI forked off. Verify that the remaining main plan still holds.
3. Find a plan Pf from Ox to main plan state Sf , which is the main plan state

at which the OI is joined to main plan after successful execution. Verify that
the remaining main plan still holds.

4. If neither P0 nor Pf are found, discard the OI.
5. If both P0 and Pf are found, compare them, e.g., based upon utility or

resource consumption, and choose the better one as Px.
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In the example OI from Fig. 2, we obtain the following recovery policy: From
O1, reach S2 via an empty plan. From O2, reach S2 via plan “go to P2”. From
O3, reach S5 via plan “go to P5”. From O4, reach S5 via an empty plan.

It is important to use the same safety assumptions in the finding of recovery
plans that were used for generating the main plan, so that only safe actions are
used in recovery plans. In the example, this assures that the robot does not get
a recovery plan from O2 telling it to move from waypoint Q to S5 with an unsafe
traversal of the critical area between Q and R, but rather to return to P2.

The other main plan states after S0 can also be considered as possible desti-
nations in the construction of recovery plans. It makes sense to enable or disable
this addition per OT. E.g., for a “carry along” OI, the recovery plan will con-
tain a “drop” action – possibly wrapped with movement to and from predefined
drop-off locations – from most OI states, and the destination state could be the
corresponding main plan state with the closest matching waypoint.

In the case of a safety-related event, such as an impending collision, the
immediate physical evasive reaction is beyond the responsibility of the planning
system. However, it must be followed by an estimation of the current state. If it
is a state in the OI’s plan fragment, the recovery policy can be applied to switch
back to the safe plan. The event or the reaction may have caused a deviation
that led to the equivalent of a main plan state already, but it is also possible that
the current state is an unforeseen one, in which case the system has to regress to
conventional replanning to solve its mission with an up-to-date plan. The new
plan can then be ameliorated by the application of opportunities.

4 Conclusion

In this paper we described our approach of using opportunistic planning to
provide a safety-supporting planning component for collaborative robots. The
scenario of a supportive mobile manipulator in a production space or similar
shared working environment is used to illustrate the suitability of our contri-
bution, which can just as well be transferred to different types of robots and
domains. The main plan is generated for completing the current mission in a
safe operation mode, while additional soft goals, including optimizations and
shortcuts, are achieved by opportunities. Safety-related events occurring during
the plan execution cause falling back to the always available safe plan rather than
a potentially hazardous delay for replanning. Recovery plans are short or even
empty and are also prepared before the opportunity’s execution, thus always
available when needed.

Our future work includes exploration of ways to process OTs with purely
formal and generic methods, increasing expressive power and reducing the need
for OT-specific implementation. There is also the need to underpin the apti-
tude of our approach by getting the implementation to a level that allows for
comparison with alternatives, mainly conventional replanning.



358 B. Reiterer and M. Hofbaur

References

1. Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B.: Opportunistic plan-
ning for increased plan utility. In: Finzi, A., Karpas, E. (eds.) Proceedings of the
4th Workshop on Planning and Robotics at ICAPS 2016, London, UK, pp. 82–92
(2016)

2. Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A.,
Palomeras, N., Hurtós, N., Carreras, M.: ROSPlan: planning in the robot oper-
ating system. In: Proceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS 2015), Jerusalem, Israel, pp. 333–341. AAAI
Press (2015)

3. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. (JAIR) 20, 61–124 (2003)

4. Gerevini, A.E., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic
planning in the fifth international planning competition: PDDL3 and experimental
evaluation of the planners. Artif. Intell. 173(56), 619–668 (2009)

5. Ginsberg, M.L.: Universal planning: an (almost) universally bad idea. AI Mag.
10(4), 40–44 (1989)

6. Gough, J., Fox, M., Long, D.: Plan execution under resource consumption uncer-
tainty. In: Proceedings of the Workshop on Connecting Planning Theory with
Practice at ICAPS 2004, Whistler, Canada, pp. 24–29 (2004)

7. Hoffmann, J., Edelkamp, S.: The deterministic part of IPC-4: an overview. J. Artif.
Intell. Res. (JAIR) 24, 519–579 (2005)

8. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998)

9. McDermott, D.V.: The 1998 AI planning systems competition. AI Mag. 21(2),
35–55 (2000)

10. Pryor, L., Collins, G.: Planning for contingencies: a decision-based approach. J.
Artif. Intell. Res. (JAIR) 4, 287–339 (1996)



Towards Simulation-Based Role
Optimization in Organizations

Lukas Reuter(B), Jan Ole Berndt, and Ingo J. Timm

Business Informatics I, Trier University, Behringstraße 21, 54296 Trier, Germany
{reuter,berndt,itimm}@uni-trier.de

Abstract. The modern workplace is driven by a high amount of avail-
able information which can be observed in various domains, e.g., in Indus-
try 4.0. Hence, the question arises: Which competences do actors need to
build and efficient work environment? This paper proposes an simulation-
based optimization approach to adapt role configurations for team work
scenarios. The approach was tested using a multiagent-based job-shop-
scheduling model to simulate the effects of various role configurations.

Keywords: Optimization · Multiagent-based simulation · Agent-based
modeling · Team cognitions

1 Introduction

The modern workplace is driven by a high amount of available information [5].
This phenomenon can be observed in various domains, e.g., in Industry 4.0 or
administration [8]. This poses a challenge for organizations to structure the infor-
mation process in order to enable access to relevant information for employees.
On the other hand, it is essential that employees have the required knowledge
and competences to process this information. If these requisitions of a struc-
tured information flow and the employee’s knowledge do not coincide, then neg-
ative effects like information overload can occur causing a delay in operation.
Especially, when the employee’s competences do not match their organizational
roles. Therefore the key question arises: How can roles be optimized in order to
build an efficient work environment? From an artificial intelligence perspective
agent-based modeling and multiagent-based simulation have been successfully
applied to the design and evaluation of novel approaches to flexible distributed
task processing and cooperative problem-solving [2,11]. Hence, it is a suitable
approach to model collaboration, e.g., in an Industry 4.0 context.

Towards this optimization issue, this paper presents a simulation based opti-
mization concept for roles which simulates the effects of different role configura-
tions. In order to model human actors, it is promising to integrate psychological
findings about the effects of role configurations on human teams with formaliza-
tion, modeling and simulation methods from distributed artificial intelligence.
Moreover, to enable simulation based optimization it is essential that the role
configurations for the simulation model are formalized and accessible for the
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 359–365, 2017.
DOI: 10.1007/978-3-319-67190-1 32
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optimization algorithm. Hence, the developed model uses the well-known Game
Description Language - GDL to formalize generic role descriptions, which then
can be used to configure a team work scenario for multiagent-based simulations.

The optimization model is tested using a multiagent-based implementation of
the job-shop-scheduling (JSS) problem, which models machines processing jobs.
This facilitates the evaluation of team knowledge structures by transferring role
configuration tasks to a formal optimization problem [14]. The roles in this JSS
model are optimized using a simulated annealing approach which adjusts the
overall process duration as an indicator for efficient role design. This approach
provides a first step towards the development of a multiagent-based simulation
as a method for designing and evaluating modern work processes in dynamic
and complex environments (e.g., in Industry 4.0).

The remainder of this paper is structured as follows. The next Sect. 2
describes role formalization from a distributed artificial intelligence and a busi-
ness psychological perspective. In Sect. 3 the role optimization approach is dis-
cussed which uses GDL as formalization for the role description, a multiagent-
based JSS simulation to model team work processes and simulated annealing
to optimize the role description for JSS. This model is tested and evaluated in
Sect. 4.

2 Role Optimization in Teams: Foundations
and Challenges

The representation and distribution of knowledge can be modeled and analyzed
by use of multiagent systems (MAS) [17]. From a distributed artificial intelli-
gence perspective, MAS apply decentralized solution strategies to complex com-
putational problems [16]. MAS consists of software agents which autonomously
fulfill different tasks and coordinate their distributed activities. These agents
process knowledge in their decision-making and exchange it in their coordina-
tion efforts [17].

In business psychology, teams are collective information-processing systems
[7]. Team members have qualifications required for their tasks, they can special-
ize of particular areas of expertise, or they share knowledge and information with
each other [4]. These various approaches to the organization of team knowledge
are known as team cognitions [10]. Team cognitions describe the structure in
which knowledge important to team functioning is mentally organized, repre-
sented, and distributed within the team and allows team members to anticipate
and execute actions [4]. Therefore, they are particularly suitable as a theoret-
ical concept for describing, modeling, and analyzing knowledge configuration
approaches in collaborative work processes. Team cognitions, as an emergent
state, are be conceptualized as (1) shared team knowledge (generalization) or
(2) distributed team knowledge (specialization) [4].

The problem of optimizing distributed problem-solving in MAS resembles
the challenge of identifying and applying appropriate team cognitions among
humans. Organizing roles and processes in team work plays an important role
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in artificial intelligence as well as business psychology. Researchers of both dis-
ciplines face the question of how knowledge should be shared or divided among
team members to allow for optimal collaboration. Consequently, this paper
adopts an interdisciplinary perspective in which the disciplines complement each
other to cope with that challenge and to develop a common understanding of
distributed work processes.

As a first step towards that vision, a formal setting for analyzing and simu-
lating collaborative work processes is required. That setting must be capable of
representing the spectrum of knowledge organization approaches between gener-
alization and specialization. This will allow for comparing different team cogni-
tions according to their performance in various task scenarios. To that end, the
remainder of this paper proposes an optimization approach to find efficient role
configurations for team work in a given scenario.

3 Formalizing and Optimizing Team Work Scenarios:
A Job-Shop-Scheduling Approach

This chapter presents a simulation-based optimization approach of role configu-
rations in the context of team work scenarios. The optimization itself is a search
for valid team configurations and consists of four subcomponents simulation,
performance, adaptation and role description, which have to be redefined for
domain specific contexts. In Fig. 1 shows the interaction of each component.

Fig. 1. Optimization approach for teamwork scenarios

From a business psychological perspective, roles define the capabilities and
qualifications an employee has to process different kinds of tasks. In order to use
multiagent-based simulation, one need to make role descriptions accessible for
software agents, i.e., one need to formalize them. Hence, a role formalization is
needed which enables agents to reason about their qualifications and capabilities.
These requirements resembles aspects of descriptions in general game playing
where agents try to solve games by a formalized description. The goal in this
domain is to develop intelligent agents (general game player) which can reason
about any games and their rules in a specific description [6]. In this domain the
game description language GDL is commonly used [12]. The definition of GDL is
written in Listing 1.1. GDL is universal and therefore a promising approach which
can be tested in different applications ,e.g., role descriptions in organizations [13].
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role (R) defines a role R
init (F) initial game state
true (F) refers to facts about the current state
legal (R,M) role R can do move M in the current position
does (R,M) player R does move M
next (F) refers to facts about the next game state
terminal the current position is terminal
goal(R,N) defines goal value for a role R

Listing 1.1. GDL definition [12]

In order to test the effects of different role configurations, a simulation which
is able to model role descriptions in team work scenarios is needed. In [14] a
multiagent-based approach which uses the well-known job-shop-scheduling prob-
lem to formalize team cognitions is successfully utilized. It simulates the effects
of various role configurations in teams, e.g. generalist vs. specialist structures.
Therefore, it is a first approach to test the efficiency of optimizing role descrip-
tions in GDL.

The job-shop-scheduling problem is a well-established problem formalization
in the area of production processes and describes the scheduling of jobs which
consists of tasks to machines [1]. Similar to human teams, in which team members
produce an output by processing information, the machines process tasks to
finish jobs [1,3]. The scheduling itself is described as an assignment of tasks ti
to machines mj , with the aim of optimizing the process efficiency which can
be measured with the overall process time. The key requirement for this task
allocation is knowing which jobs need to be done and which machines can process
them. In fact, different machine configurations can be used to represent different
role configurations in teams. The machine configurations are defined in the role
description for each machine and describe the skills i.e. the legal moves a machine
can make. The jobs which need to be processed are centrally accessible. Each
machine is capable of knowing which sort of task it is able to process (task
qualifications). Hence, it selects the next job which matches its task processing
skills. If the job currently processed has unfinished tasks left, the machine pushes
it back to job stock, which functions as pool of unfinished jobs.

role (machine1)
setSkill(machine1 ,task1) setSkill(machine1 ,task2) ...
legal(Machine , Task) ←−can_Process(Machine , Task) ...

Listing 1.2. Examplary role description in GDL

The JSS simulation model uses GDL role descriptions as input which includes
the knowledge structure of its expertise and simulates the processing of a set of
predefined jobs. A role definition for a single machine can be defined like the
following example in Listing 1.2.

Since there are many possible role description combinations, it is not man-
ageable to test each combination. Hence, it is essential to use an optimization
algorithm. Simulated annealing is an optimization procedure which combines hill
climbing and random walk. It is efficient and complete [9]. In order to successfully
apply simulated annealing to the job-shop-scheduling problem it is necessary to
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define configurations, cost function and neighborhood structure [15]. A configu-
ration is defined by the assignment of task processing skills to machines, i.e. the
GDL role description. The overall configuration is described as the sum of role
definitions of all agents.

Set of all Agents A : conf(A) =
n∑

i=1

role(ai) ∀ai ∈ A (1)

In order to optimize a certain role configuration it is essential to evaluate its
fitness. Therefore, a performance component evaluates the computed output
and defines a cost function. The cost function is given by the overall processing
time. The basic assumption is that an efficient role description is faster than an
inefficient one.

Set of all Jobs J : cost(J) =
n∑

i=1

processingT ime(ji) ∀ji ∈ J (2)

The neighborhood structure is defined by the permutation of task processing
skills. A neighbor of a role description is calculated by adding or removing one
skill from one machine. The neighborhood for roles is defined as follows:

Role(a2) is a neighbor of Role(a1) ⇔ Role(a2)± Task t = Role(a1) (3)

4 Experiments and Results

In order to address various knowledge structures it is necessary to create tasks in
different distributions. For example if the amount of tasks randomly distributed
over all task classes, it would address a specialist knowledge structure [14]. The
optimization approach is tested with binomial, normal and equal task distribu-
tions to address different role configurations. In Fig. 2 the results of an exemplary
optimization run with ten different task classes is shown. The relative frequency
describe how many machines are able to process a particular task class. It is
relatively set to the amount of overall machines, which is ten in this scenario.
In the task distribution chart the relative frequency shows how many task are
from a particular task class.

In order to measure the efficiency of the optimization it is calculated from
the relative difference of the process time of the initial start configuration and
the optimized start configuration. The initial start configuration is set to a ran-
dom role configuration. The binomial task distribution showed the highest opti-
mization efficiency of 32,60%. The optimization in normal and equal task dis-
tributions was lower (14,68% and 16,61%). To measure the impact of random
role configurations the sensitivity (standard deviation) for 20 simulation runs
is computed with the difference of the process time of the start configuration
and the optimized role configuration. The sensitivity is depending on the task
distribution. The equal distributions shows the lowest sensitivity (0,258s). The
normal (0,707s) and the binomial distribution (0,643s) are varying more in the
optimization result.
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Fig. 2. Role optimization result

5 Conclusions

This paper introduced a simulation-based optimization approach for role descrip-
tions which uses the game description language to formalize role descriptions. In
order to achieve this, psychological theory of team cognitions was integrated in
agent-based modeling from artificial intelligence. The concept was tested using
a multiagent-based job-shop-scheduling simulation to model the effects of dif-
ferent knowledge configurations. The simulation used role descriptions in GDL
as an input. The role configurations are adapted using a simulated annealing
optimization algorithm. An fictional setting is used which focuses on the effects
of shared or divided knowledge as role configurations in teams. The computed
results showed that simulated annealing can be successfully used to adapt role
configurations in teams.

Overall, it is a first approach to formalize and optimize role configurations for
artificial intelligence systems. However, work processes in reality have dependen-
cies between them and require communication of the team members. Therefore,
it would be necessary to integrate real data from experiments to evaluate this
model for a practical use. Moreover, to simulate work processes a more sophis-
ticated agent model is needed. A belief desire intention agent architecture is
a promising extension to model the actors behavior and decision making more
human.
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Abstract. Public Knowledge Graphs (KGs) on the Web are consid-
ered a valuable asset for developing intelligent applications. They contain
general knowledge which can be used, e.g., for improving data analyt-
ics tools, text processing pipelines, or recommender systems. While the
large players, e.g., DBpedia, YAGO, or Wikidata, are often considered
similar in nature and coverage, there are, in fact, quite a few differences.
In this paper, we quantify those differences, and identify the overlapping
and the complementary parts of public KGs. From those considerations,
we can conclude that the KGs are hardly interchangeable, and that each
of them has its strenghts and weaknesses when it comes to applications
in different domains.

1 Knowledge Graphs on the Web

The term “Knowledge Graph” was coined by Google when they introduced their
knowledge graph as a backbone of a newWeb search strategy in 2012, i.e., moving
from pure text processing to a more symbolic representation of knowledge, using
the slogan “things, not strings”1.

Various public knowledge graphs are available on the Web, including DBpe-
dia [3] and YAGO [9], both of which are created by extracting information from
Wikipedia (the latter exploiting WordNet on top), the community edited Wiki-
data [10], which imports other datasets, e.g., from national libraries2, as well as
from the discontinued Freebase [7], the expert curated OpenCyc [4], and NELL
[1], which exploits pattern-based knowledge extraction from a large Web corpus.

Although all these knowledge graphs contain a lot of valuable information,
choosing one KG for building a specific application is not a straight forward
task. Depending on the domain and task at hand, some KGs might be better
suited than others. However, there are no guidelines or best practices on how
to choose a knowledge graph which fits a given problem. Previous works mostly
report global numbers, such as the overall size of knowledge graphs, such as [6],
1 https://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.
html.

2 https://www.wikidata.org/wiki/Wikidata:Data donation.
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and focus on other aspects, such as data quality [2]. The question which KG fits
which purpose, however, has not been answered so far.

2 Overall Size and Shape of Knowledge Graphs

For the analysis in this paper, we focus on the public knowledge graphs DBpedia,
YAGO, Wikidata, OpenCyc, and NELL.3,4 For those five KGs, we used the most
recent available versions at the time of this analysis, as shown in Table 1.

Table 1. Global properties of the knowledge graphs compared in this paper

Version DBpedia YAGO Wikidata OpenCyc NELL

2016-04 YAGO3 2016-08-01 2016-09-05 08m.995

# instances 5,109,890 5,130,031 17,581,152 118,125 1,974,297

# axioms 397,831,457 1,435,808,056 1,633,309,138 2,413,894 3,402,971

Avg. indegree 13.52 17.44 9.83 10.03 5.33

Avg. outdegree 47.55 101.86 41.25 9.23 1.25

# classes 754 576,331 30,765 116,822 290

# relations 3,555 93,659 11,053 165 1,334

We can observe that DBpedia and YAGO have roughly the same number
of instances, which is not surprising, due to their construction process, which
creates an instance per Wikipedia page. Wikidata, which uses additional sources
plus a community editing process, has about tree times more instances. It is
remarkable that YAGO and Wikidata have roughly the same number of axioms,
although Wikidata has three times more instances. This hints at a higher level
of detail in YAGO, which is also reflected in the degree distributions.

OpenCyc and NELL are much smaller. NELL is particularly smaller w.r.t.
axioms, not instances, i.e., the graph is less dense. This is also reflected in the
degree of instances, which depicts that on average, each instance has less than
seven connections. The other graphs are much denser, e.g., each instance in
Wikidata has about 50 connections on average, each instance in DBpedia has
about 60, and each instance in YAGO has even about 120 connections on average.

The schema sizes also differ widely. In particular the number of classes are
very different. This can be explained by different modeling styles: YAGO auto-
matically generates very fine-grained classes, based on Wikipedia categories.
Those are often complex types encoding various facts, such as “American Rock
Keyboardists”. KGs like DBpedia or NELL, on the other hand, use well-defined,
manually curated ontologies with much fewer classes.
3 Freebase was discarded as it is discontinued, and non-public KGs were not consid-
ered, as it is impossible to run the analysis on non-public data.

4 Scripts are available at https://github.com/dringler/KnowledgeGraphAnalysis.

https://github.com/dringler/KnowledgeGraphAnalysis
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Since Wikidata provides live updates, it is the most timely source (together
with DBpedia Live, which is a variant of DBpedia fed from an update stream
of Wikipedia). From the non-live sources, NELL has the fastest release cycle,
providing a new release every few days. However, NELL uses a fixed corpus of
Web pages, which is not updated as regularly. Thus, the short release cycles do
not necessarily lead to more timely information. DBpedia has biyearly releases,
and YAGO and OpenCyc have update cycles longer than a year.

3 Category-Specific Analysis

When building an intelligent, knowledge graph backed application for a specific
use case, it is important to know how fit a given knowledge graph is for the
domain and task at hand. To answer this question, we have picked 25 popular
classes in the five knowledge graphs and performed an in-depth comparison. For
those, we computed the total number of instances in the different graphs, as well
as the average in and out degree. The results are depicted in Fig. 2.

Fig. 1. Knowledge Graphs inspected in this paper, and their interlinks. Like for the
Linked Open Data Cloud diagrams [8], the size of the circles reflects the number of
instances in the graph (except for OpenCyc, which would have to be depicted an order
of magnitude smaller).

While DBpedia and YAGO, both derived from Wikipedia, are rather com-
parable, there are notable differences in coverage, in particular for events, where
the number of events in YAGO is more than five times larger than the number
in DBpedia. On the other hand, DBpedia has information about four times as
many settlements (i.e., cities, towns, and villages) as YAGO. Furthermore, the
level of detail provided in YAGO is usually a bit larger than DBpedia.

The other three graphs differ a lot more. Wikidata contains twice as many
persons as DBpedia and YAGO, and also outnumbers them in music albums and
books. Furthermore, it provides a higher level of detail for chemical substances
and particularly countries. On the other hand, there are also classes which are
hardly represented in Wikidata, such as songs.5 As far as Wikidata is concerned,
the differences can be partially explained by the external datasets imported into
the knowledge graph.
5 The reason why so few politicians, actors, and athletes are listed for Wikidata is
that they are usually not modeled using explicit classes.
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Fig. 2. Number of instances (a), avg. indegree (b) and avg. outdegree (c) of selected
classes. D = DBpedia, Y = YAGO, W = Wikidata, O = OpenCyc, N = NELL.

OpenCyc and NELL are generally smaller and less detailed. However, NELL
has some particularly large classes, e.g., actor, song, and chemical substance,
and for government organizations, it even outnumbers the other graphs. On the
other hand, there are classes which are not covered by NELL at all.

4 Overlap of Knowledge Graphs

Knowledge graphs on the Web are equipped with links connecting identical enti-
ties between those graphs. However, due to the open world assumption, those
links are notoriously incomplete. For example, from the fact that 2,000 cities in
knowledge graph A are linked to cities in knowledge graph B, we cannot conclude
that this is the number of cities contained in the intersection of A and B.

Links between knowledge graphs can be determined using entity linkage
approaches [5], e.g., interlinking all entities with the same name.

Given that there is already a certain number of (correct) interlinks between
two knowledge graphs, we can also compute the quality of a linking approach
in terms of recall and precision. Given that the actual number of links is C, the
number of links found by a linkage rule is F , and that the number of correct
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links in F is F+, recall and precision are defined as

R := |F+|
|C| (1)

P := |F+|
|F | (2)

By resolving both to |F+| and combining the equations, we can estimate |C| as

|C| = |F | · P · 1
R

(3)

For our analysis, we use 16 combinations of string metrics and thresholds
on the instances’ labels: string equality, scaled Levenshtein (thresholds 0.8, 0.9,
and 1.0), Jaccard (0.6, 0.8, and 1.0), Jaro (0.9, 0.95, and 1.0), JaroWinkler
(0.9, 0.95, and 1.0), and MongeElkan (0.9, 0.95, and 1.0). Furthermore, to speed
up the computation, we exploit token-based blocking in a preprocessing step
(where each instance is only assigned to the block of the least frequent token),
and discarding blocks larger than 1M pairs.

As incomplete link sets for estimating recall and precision, we use the links
between the knowledge graphs, if present. If there are no links, we exploit tran-
sitivity and symmetry, and follow the link path through DBpedia (see Fig. 1).
NELL has no direct links to the other graphs, but links to Wikipedia pages
corresponding to DBpedia instances, which we use to create links to DBpedia
(indicated by the dashed line in the figure).

Figure 3 depicts the pairwise overlap of the knowledge graphs, using the 25
classes also inspected above, according to two measures: potential gain by joining
the two knowledge graphs (i.e., the relation of the union to the larger of the two
graphs), and the overlap relative to the existing KG interlinks.

'

(a) Overlap as potential gain (b) Overlap relative to existing links

Fig. 3. Number as potential gain (a) and relative to existing interlinks (b) of selected
classes. D = DBpedia, Y = YAGO, W = Wikidata, O = OpenCyc, N = NELL.
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Overall, we can observe that merging two graphs would usually lead to a 5%
increase of coverage of instances, compared to using one KG alone. The largest
potential gain most often comes from merging the larger knowledge graphs with
NELL. We can therefore conclude that NELL is rather complementary to most
of the other KGs under consideration. The most complementary classes, with
an average gain of more than 10% across all pairs of knowledge graphs, are
political parties and chemical substances. When looking at the overlap relative
to the number of existing links, NELL has the weakest interlinking: e.g., for
YAGO and NELL, the estimated overlap is more than eight times larger than
the number of interlinks. The classes with the weakest degree of interlinking
are countries (32 times larger overlap than explicit interlinks), movies (13 times
larger), and companies (10 times larger).6

5 Conclusions and Recommendations

We have compared the coverage and level of detail for 25 popular classes. Some
key findings from this comparison include:

– For person data, Wikidata is the most suitable source, containing twice as
many instances as DBpedia or YAGO, at a similar level of detail.

– Organizations, such as companies, are best described in YAGO.
– DBpedia contains more places than the other KGs, including almost four
times more cities, villages etc. than YAGO.

– While DBpedia and YAGO contain much more countries than Wikidata (due
to the inclusion of historic countries, such as the Roman Empire), Wikidata
holds the most detailed information about countries.

– Overall, DBpedia contains the largest number of artistic works, although
details differ for subclasses: Wikidata contains more music albums and
movies, while YAGO contains more songs. The most detailed information
about artistic works is provided by YAGO.

– Cars and spacecraft are best covered in YAGO, while DBpedia is the better
resource for ships.

– For events, YAGO is the most suitable source, both in terms of coverage and
level of detail.

– NELL contains the largest number of chemical substances. The highest level
of degree for chemicals, however, is provided in Wikidata.

– YAGO contains the largest number of astronomical objects.

Note that those numbers are not exhaustive, they merely demonstrate the need
for a careful analysis of KGs before exploiting them for a project at hand.

6 Note that it is not necessary that the linking approach is particularly good, as long as
we can estimate its quality reasonably well. In our experiments, the agreement about
the estimated overlap is rather high, showing an intra-class correlation coefficient
(ICC) of 0.969. In contrast, the size of the actual alignments found by the different
approaches differs a lot more, showing an ICC of only 0.646.
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In addition to the question which knowledge graph serves a certain task best,
another question is whether it makes sense to use more than one combined. Here,
we have observed that there is often a considerable complementarity. Especially
NELL is very complementary to the other KGs, although a lot less rich in details.
Thus, the coverage can often be extended significantly by combining different
KGs. This, however, requires refinement of the interlinking, since the interlinks
are usually incomplete.

Summarizing: Although DBpedia, YAGO, Wikidata & co. are often perceived
at somewhat similar to one another, our analysis has revealed that there are
considerable differences. Hence, when deploying a public KG in a project, it
makes sense to look at the details first before selecting one KG.
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Abstract. The classification of repositories found on GitHub can be
considered as a hard task. However, the solution of this task could be
helpful for a lot of different applications (e.g. Recommender Systems).
In this paper we present ClassifyHub, an algorithm based on Ensem-
ble Learning developed for the InformatiCup 2017 competition, which is
able to tackle this classification problem with high precision and recall.
In addition we provide a data set of classified repositories for further
research.

1 Introduction

GitHub is the largest [3] platform to organise and collaborate on different
projects (so-called repositories). The diversity of GitHub repositories reaches
from small LaTeX templates for homework up to huge software develop-
ment projects. Because of this diversity GitHub is ideal for many research
projects (e.g. influence of programming languages to code quality [10] or social
studies [14]).

To gain additional value out of the large variety of repositories on GitHub
it would be useful to classify these repositories into different disjunctive classes.
Such clustering could be used for many tasks like, for example, recommenda-
tion (so-called Recommender Systems) [1,11]. Another application would be the
improvement of search functions on GitHub.

In this paper we present ClassifyHub, an algorithm based on Ensemble Learn-
ing which tackles the GitHub Classification Problem and achieves high precision
and high recall considering the hard task. This algorithm reached the final round
in the InformatiCup 2017 competition, where the goal was to develop a complete
software solution with a time frame of about 5 month. In addition we provide a
data set with 681 classified repositories which can be used for further research.

2 Related Work

Ugurel et al. [15] classified source code archives into different application types
(like database or games), however they did not focus their work on content types
(like educational or data set) and furthermore only focused on application source
code instead of arbitrary repositories (like repositories containing only images).
c⃝ Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 373–379, 2017.
DOI: 10.1007/978-3-319-67190-1 34
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Kawaguchi et al. [6] proposed a system which classifies software in automat-
ically generated categories. Again, the categories seem to focus on application
types rather than content types. In addition, they used categories about the
technology used (e.g. libraries), as well as the architecture of the software.

Maskeri et al. [8] proposed a system to automatically extract topics from the
source code. These topics are more related to the implementation (like SSL or
Logging) than to the content type.

3 GitHub Classification Problem

The GitHub Classification Problem (based on the InformatiCup 2017 task) is a
problem from the area of classification. The task is the classification of reposi-
tories hosted on GitHub into exactly one of the following content categories:

– DEV: Software development projects and similar
– HW: Solutions for homework, exercises and similar
– EDU: Projects with educational purpose and similar
– DOCS: Documents with no educational intent and similar
– WEB: (Personal) websites
– DATA: Data sets
– OTHER: Repositories which do not fit in one of the above categories

Two aspects turn the GitHub Classification Problem into a hard tasks:

– There is a large variety of repositories on GitHub. One can find reposito-
ries with projects run by one person up to repositories with thousands of
contributors (e.g. the Linux kernel).

– The classification of repositories is sometimes ambiguous - many projects can
be classified into multiple categories.

4 Multi Classifier Solution

To tackle the GitHub Classification Problem we used an approach based on
Ensemble Learning [13]: Through the combination of multiple weak classifier
(which have to be better than random guessing) we get a single strong classifier
which is correct on the majority of data. This works because each weak clas-
sifier added reduces the total error of the strong classifier. In our solution the
probability of a class is equal to the average probability calculated by all weak
classifiers, as shown in (1).

P (class) =
∑classifier Pclassifier(class)

Nclassifier
(1)

4.1 Weak Classifier Used

Each weak classifier presented in the following sections returns a value between
zero and one which represents the probability with which the classifier classifies
a repository into one of the classes. The total sum of all classes can be higher
than one.
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FileClassifier. Based on the class of the repository one will likely find different
types of files in different repositories. A project of the class DEV is more likely
to have files of the type .cpp (C++ source code), .h (C/C++ header) or .java
(JAVA source code) while a repository of the DOCS class is more likely to
have files of the type .md (Markdown) or .pdf (document format). Often, the
file type is associated to the filename extension. The FileClassifer exploits this
for classification. While learning, the FileClassifier monitors the distribution of
extensions on the different classes (ignoring extensions which only occur once) as
shown in (2). For classification, the probability of all known filename extensions
in a repository will be averaged over all files as shown in (3).

P (class|extension) = Nextension in class

Nextension in all classes
(2)

P (class) =
∑extensions P (class|extension)

Nfiles
(3)

ReadmeClassifier. A lot of information about a project can be found in the self
description which is usually found as a README file. Based on this description
it is often possible to correctly classify the repository. To analyse README
files we use a Bag-of-words representation followed by a classification using the
k-Nearest Neighbor algorithm.

A Bag-of-words [12] is a special representation of a text where only the
appearance of a word has a meaning but not the context in which the word
appears. Although the context of the text is lost in this representation, it is still
possible to get a lot of information out of it. In our case we collected words in all
README files encountered during learning phase which only consist of letters
and numbers (independent of capitalisation). All words that only occur once are
removed. Based on the remaining words a list is created. During classification,
every occurring word in the README is set to 1, all other to 0. For every
README file one of these lists is created. These will then be used by the k-
Nearest Neighbor algorithm [5] (using the Jaccard distance [2]). The probability
of a class is equal to the distribution of classes with the smallest distance. To
classify a new repository a Bag-of-words is created for the README file. After
that the neighbourhood will be calculated. Based on the neighbourhood the
probability of the classes is calculated.

MetadataClassifier. Another source for the classification of repositories is
their meta data. GitHub provides an API to get a wide variety of meta data for
repositories. For the creation of a weak classifier we chose the following meta
data:

– Information whether the repository is a fork
– Information whether the repository has a website
– Size of repository
– Number of stargazers (equivalent to likes)
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– Number of watchers
– Information whether the repository has a wiki
– Information whether the repository has pages (website hosted by GitHub)
– Number of forks
– Number of bugs
– Number of subscribers

These meta data is then used in a decision tree [5].

LanguageClassifier. An evidence of the class of a repository is the used
programming language. GitHub provides a way to ask for the most used pro-
gramming language in a repository. The LanguageClassifier uses the language
returned by GitHub to calculate the probability of the different classes for a
repository. This allows a broad classification of many repositories. While learn-
ing, the classifier observes the languages used for the classes and calculates the
probability as shown in (4). The probability for a language not observed during
training is P (class|unknown language) = 0.

P (class|languange) = Nclass with language

Nlanguage
(4)

LanguageDetailsClassifier. The LanguageDetailsClassifier is based on the
same idea as the LanguageClassifier. However, it uses the percentage distrib-
ution of programming languages in a repository instead of the main language
(based on file size). The GitHub API is used to get the distribution of program-
ming languages. Based on this, a decision tree [5] is build which is used for
classification. Because of this, the LanguageDetailsClassifier has a more detailed
basis but looses some generalisation in comparison to the LanguageClassifier.

NameClassifier. Although there is a huge variety in names for repositories,
there seems to be some common patterns found in the names of repositories of
the different classes. For example, one finds many repositories with words like
‘dataset’, ‘list’ or ‘challenge’ in their name in the DATA class. This can be
exploited for classification. For this, we use the k-Nearest Neighbor algorithm
[5] with the Levenshtein distance (cost 1 for replacement) [4] to calculate the
distance between names.

CommitMessageClassifier. Whenever someone changes something in a repo-
sitory (a so called Commit) there must be a description of that change. These
descriptions often hold information which can be used for classification. As an
example, a description ‘Solution exercise 2’ will hint at the HW class.

We use the same method here as for the ReadmeClassifier : All messages are
put into a Bag-of-word [12]. The probability of a class is calculated using the
k-Nearest Neighbor algorithm [5] using the Jaccard distance [2].
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RepositoryStructureClassifier. Often, the structure of a repository gives
evidence for the class of the repository. For example, if two repositories contain
a folder named ‘lab2’ and one has the class HW, it is very likely that the second
one also belongs to the same class.

RepositoryStructureClassifier exploits this for classification. It uses a simi-
lar algorithm compared to the ReadmeClassifier : The structure of a repository
(consisting of paths of files, folders and similar) is converted to a Bag-of-words
[12], which is then classified using the k-Nearest Neighbor algorithm [5] using
the Jaccard distance [2].

4.2 Implementation

We implemented ClassifyHub in Python using scikit-learn [9] for many machine
learning algorithms. The implementation has a high degree of parallelisation
because all weak classifiers can run independently. To show the internals of our
algorithm we implemented a user interface in Qt/PyQt5.

5 Data Set

For training and evaluation purpose we created a data set containing 681 reposi-
tories of all 7 classes. We focused on an almost equal distribution over all classes
to prevent an overfitting to one single class. The data set contains repositories
with a wide variety to match the variety of repositories found on GitHub, which
were picked at random and classified by hand. This includes not using the main
repository all the time but also forks which sometimes do not get updated. The
distribution of classes in the data set can be found in Table 1.

Table 1. Distribution of classes in our
data set

Class Number repositories

DEV 127

HW 96

EDU 74

DOCS 77

WEB 95

DATA 86

OTHER 126

Sum 681

Table 2. Average results of a 10-fold
cross-validation

Target class Precision Recall

DEV 0.5474 0.7189

HW 0.4933 0.5311

EDU 0.5299 0.3534

DOCS 0.6314 0.4192

WEB 0.6744 0.8051

DATA 0.7681 0.7178

OTHER 0.5484 0.5430

Average 0.5990 0.5841
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6 Results and Discussion

We performed a 10-fold cross-validation on our data set, which should give
us a good overview (with slightly negative tendency) over the performance of
our algorithm [7]. The results are shown in Table 2. With the combination of
multiple weak classifier we were able to achieve both high precision (59.90%)
as well as high recall (58.41%). This is a good result especially because the
GitHub Classification Problem can be considered as a hard task due to the high
variety of repositories (even within a class). In addition, the distinction between
the different classes is often ambiguous, even for humans (e.g. the difference
between source code for homework and normal software projects). This might
lead to classifications which could be considered correctly by humans, but do
not correspond to the labels in the data set.

Both, high precision and recall, is achieved over all classes (with minor differ-
ences). This is useful because based on the future application both high precision
and recall might be needed:

– A high precision might be important if, for example, the classification will be
used to improve search results because a human often does not want to look
through many wrong results first.

– A high recall might be important e.g. for automatic recommendation (like
in Recommender Systems) to show a high variety of results. A single wrong
classification has less effect here, because there is no active search which would
be interrupted.

7 Conclusion

In this paper we presented ClassifyHub1, an algorithm which tackles the GitHub
Classification Problem with high precision (59.90%) and high recall (58.41%).
This is achieved through the usage of Ensemble Learning, which combines multi-
ple weak classifier to a single strong classifier. In addition, we provide a data set2
with 681 classified GitHub repositories which can be used for further research.

Acknowledgements. We would like to thank the organisers, the jury and all partic-
ipants of the InformatiCup 2017, for which ClassifyHub was developed.
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Abstract. Big data is a hot topic in research and industry. The avail-
ability of data has never been as high as it is now. Making good use
of the data is a challenging research topic in all aspects of industry and
society. The Bremen Big Data Challenge invites students to dig deep into
big data. In this yearly event students are challenged to use the month
of March to analyze a big dataset and use the knowledge they gained to
answer a question. In this year’s Bremen Big Data Challenge students
were challenged to predict the load of the university cafeteria from the
load of past years. The best of 24 teams predicted the load with a root
mean squared error of 8.6 receipts issued in five minutes, with a fusion
system based on the top 5 entries achieving an even better result of 8.28.

Keywords: Big data · Data analysis · Data challenge

1 Motivation

Technical advances in mobile devices and Internet technology, a growing range
of devices connected to the Internet, and the general public’s readiness to share
data and personal information produce more and more data every day. This data
accumulates to enormous datasets many of which are collections of unstructured
data [3]. Datasets of this size can no longer be handled by trivial means. Instead
they require specialist approaches to data generation, data acquisition, data
storage and data analysis. These approaches for big datasets call for engineers
and data scientists with expertise in data mining, machine learning and data
analysis. Using these skills they can leverage big data, uncover latent knowledge
hidden in the data and use the unstructured wealth of information to solve
problems and extract answers to relevant questions.

We live in an “era of big data” [3]. Using large datasets and the appropriate
computing power that is now available we can perform analyses which have not
been possible in the past. The usage and analysis of this data will open new
possibilities in research, both academic and industrial, and all aspects involved
c⃝ Springer International Publishing AG 2017
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in running a company. If encouraged and nurtured the availability of big data
and knowledge in data analysis will drive future development of services, devices
and the so-called “Internet of things”.

To advance development of techniques applicable to the analysis of such
datasets and to gain better understanding of specific sets of data, it has become
common practice to hold competitions: Teams can make predictions about a
dataset based on given training data and compete against each other to build the
system with the best performance on held-out test data (usually not published
until after the end of the competition), on platforms specifically built for such
competitions [2].

A subcategory of these challenges is those organized specifically for stu-
dents. Such competitions encourage the participants to familiarize themselves
with techniques commonly used in data science and machine learning and allow
them to compete specifically against their peers on a reasonably level playing
field. One noteworthy competition is the Data Mining Cup, an international
student competition with teams from over universities in over 20 countries [4].

2 The Bremen Big Data Challenge

The Bremen Big Data Challenge (BBDC) is a student challenge in the field
of big data. This yearly event aims at sparking interest in data science among
students. Each year the students are presented with a new big dataset and a
task to solve on the dataset. As researchers with an interest in data analysis and
lecturers tasked to prepare students for jobs in computer science we are very
keen to spread our fascination of data and its analysis to students. Through the
challenge as well as through our regular teaching we hope to show the students
the diversity of tasks in big data and find talented students willing to take part
in the variety of big data-related research at the University of Bremen.

The BBDC was created in 2016 and is open to all students in the federal state
of Bremen. Interested students can sign up for a newsletter which keeps them
updated with the latest BBDC news, and form teams of one to three participants.
On the first of March we publish the big dataset and the corresponding task
which is to be completed within 31 days. At the end of the challenge the best
five teams are awarded monetary prizes. The data and the reference of the task
are then published on the BBDC website [1].

In 2016 the task was to predict players’ performance in an online game based
on a history of past matches. In 2017 the task was to predict the load in Stu-
dentenwerk Bremen’s cafeteria [8] on the campus of the University of Bremen.

Compared to other data analysis competitions, the BBDC is a competition
that is limited to students local to the Bremen universities only. The task is cho-
sen to allow even those with absolutely no prior experience in machine learning
to participate, and the 2017 task directly relates to the lives of University of
Bremen students.

Solution submissions for the BBDC 2017 are handled using an automated
system that lets each team evaluate their solution on the test data three times
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a week (a total of 15 submissions which can be saved up). Each team that
has submitted at least one solution can also see the leaderboard showing the
currently best solution of each participating team.

3 The Bremen Big Data Challenge 2017

For the Bremen Big Data Challenge 2017 we cooperated with the Studentenwerk
Bremen [8] which, among other services for students, operates the cafeterias on
the campus of the University of Bremen. The question preceding this challenge
was: Can we predict the load the main cafeteria on campus will have at a specific
time? For this task we counted the number of receipts issued in every five-minute-
slot from January 2009 to November 2016. The participants were given the data
of these five-minute-slots for 2009 through 2015 and were asked to predict the
numbers for the year 2016. The challenge is evaluated using the root mean
squared error (RMSE) between the actual cafeteria load in the five-minute-slots
and the load prediction.

With a very straight-forward analysis we can draw first conclusions about
the data: There is no load around the beginning and end of each year. This is
the time the cafeteria is closed between Christmas and the new year. The term
in the winter semester usually runs from October to February and from April
to July in the summer semester. From personal experience we know that the
cafeteria is generally less crowded during the break (February to April and July
to October) than during the term. And indeed, the data shows a much higher
load during term than during break.

The data covers the whole time period from January 2009 through November
2016. This means that times at which the cafeteria did not issue any receipts
(e.g. during the night) are also included. The whole period contains a total of
829,191 five-minute-slots. In 752,841 slots (90.8%) there was no load and there
were receipts in 76,350 five-minute-slots (9.2%).

In the average working week all days have a similar distribution of the loads
with a small load in the morning and a large peak around midday. The highest
load occurs every day at the beginning of lunch time. The total load on an
average day varies with considerably less receipt being issued on Fridays than
on the other days. On an average day we observe the main load between 11:30
and 14:00 when lunch is served. During this period the load has several peaks,
all of which occur five to ten minutes after a full or half hour. Our interpretation
of this structure is that people meet for lunch at a full or half hour when their
classes end and arrive at the cafeteria’s checkout five to ten minutes later.

This first analysis shows that the cafeteria load depends on external infor-
mation such as the semester times and (obviously) cafeteria closing times. Par-
ticipants were therefore provided with additional data:

Semester times obviously influence the cafeteria load as described above. The
dataset therefore includes the start and end of the term as well as any days
without classes and the first-semester orientation week.
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Possible cafeteria guests are the group who visit the cafeteria and cause
the load there. For this reason the dataset contains the number of students
enrolled each semester and the numbers of researchers, lecturers and univer-
sity staff employed each year.

Weather may influence cafeteria load, since it is possible that fewer people
will walk to the cafeteria during a storm or heavy rain. The dataset there-
fore includes hourly information on wind, rain and temperature, courtesy of
Deutscher Wetterdienst [5].

Cafeteria menu varies every day and is available on the cafeteria’s website.
As some meals are more popular than others, the meals offered on a given
day might also influence the load of the cafeteria on that day. The menu is
provided as a textual description of each day’s menu (the same information
available to potential cafeteria visitors).

Participants were explicitly invited to include their own sources of additional
information e.g. public holidays, days when the cafeteria was closed, or special
events (such as conferences) held at the university.

4 The Course of the Bremen Big Data Challenge 2017

We developed a very straight-forward one-afternoon-baseline before we published
the dataset and the task. In this baseline we take into account the whole data
from 2009 through 2015 as training data. The system is based on semester times,
the day of the week and the time of day. Term and break are handled separately.
We calculate the mean of each five-minute-slot per weekday, e.g. the mean of all
five-minute-slots starting at 12:00 on a Monday during lecture time. Then we
assign this mean to the corresponding time-slots in the test data as the prediction
for the year 2016. The prediction of the straight-forward baseline achieves an
RMSE of 13.47. When preparing the data and for our baseline system we used
the pandas [6] and scikit-lean [7] libraries.

A total of 121 students from all three big universities in Bremen showed
interest in the challenge and signed up for the newsletter. 41 students from
the University of Bremen and the Hochschule Bremen formed the 24 teams
participating in the challenge. Figure 1 shows the progress of the leader’s score
during the challenge. The first submission with an RMSE of 17.81 was made on
the sixth day of the challenge. By the 10th day of the challenge the best score
had dropped below an RMSE of 10 and then slowly improved to the final score.
The final winning submission with an RMSE of 8.60 was made 5min before the
end of the challenge. Table 1 shows the top 5 teams at the end of the challenge.

The number of participants show that students in Bremen are interested in
big data and machine learning. Compared to 2016, there was a 10% increase
in the number of participants. If the Bremen Big Data Challenge became more
popular because of an increased awareness for big data among the students
remains to be seen in the next installment of the BBDC in 2018. The results
from the BBDC show that as hoped the majority of the teams performed better
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Fig. 1. The development of the leading team’s score over time.

Table 1. Results of the challenge: The top 5 and a late-fusion combined system.

Place RMSE Submission time

First Final

1 8.60 Mar 15 17:24:47 Mar 31 23:54:49

2 8.63 Mar 12 16:00:58 Mar 31 23:50:55

3 8.75 Mar 06 17:00:49 Mar 29 21:42:20

4 8.80 Mar 06 22:30:16 Mar 31 23:12:45

5 9.21 Mar 11 13:51:54 Mar 31 21:26:22

Fused 8.28

than our explicitly very straight-forward baseline. The approaches of the first
five teams are more complex and more powerful than our baseline, but not all
of them used machine learning. This shows that teams could participate and
achieve good results without deep knowledge of machine learning. Since this was
possible, the teams used substantially different approaches:

The winning team considered the customer behaviour underlying the issued
receipts: During the term many receipts are issued to students who timed their
lunch to be in between lectures, resulting in multiple sale spikes. In contrast,
during break students are not restricted by schedules and university staff make
up a higher percentage of the customers, leading to a more shallow sales curve. To
model this customer behavior they created template sales curves for the summer
term, winter term and break: They averaged the receipts issued for each five-
minute-slot and then normalized the standard deviation in this average day to
one. For each day they predicted a scaling factor for the template sales curve.
Multiplying the template sales curve with a predicted scaling factor results in
their prediction for that day. The scaling factor was predicted by a regression
tree with a maximum depth of 4. It was trained using year, month, day, weekday
and semester time as features. The target was the standard deviation of sales
(the scaling factor) on the day specified by the feature.

The second-place finisher predicted the receipt count directly using a 2 hid-
den layer (1000 and 300 ReLU units respectively) feed forward neural network
trained using RMSprop (with a learning rate of 0.0005 and a batch size of 128).
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In addition to the time, they also used weather information as additional fea-
tures and excluded federal holidays during which the cafeteria was closed. The
fourth place finisher used a similar technique (feedforward neural network with
slightly different architecture), but did not use weather or holiday information.

While the first- and second place finishers used common machine learning
techniques, the team that came in in third place used a rather simpler method
for their system: They assigned each slot the average past value according to the
mean of past slots with the same time-of-day, day of week, month and part of
the academic year after smoothing out the data with a median filter.

The fifth-placing teams entry was special insofar as it was the only highly-
placed entry that made use of the cafeteria menu: The system automatically
grouped textually similar menus and used them (as well as time and weather
features) as input for a gradient boosting regressor.

One similarity between all the winning entries is that they relied heavily
on selecting which data to train their systems on: All of them chose to exclude
data, sometimes using only the most recent year and often choosing to train their
system only for times during which the cafeteria is known to be open and setting
all other times to zero (or modeling them separately). While some systems are
similar, they do appear to be learning different things: A late fusion of all the
winning systems outputs (by taking their mean) results in a new system that
outperforms each single system by a large margin.

On average the teams spent 10.5 days between their first and their last sub-
mission. None of the first five teams spent less time than average on the challenge
and they used all their available submissions. This shows that time and dedica-
tion paid off. The best team’s prediction missed the number of receipts issued in
a five-minute-slot by just 8.6 receipts on average. The system based on the top
5 entries combined results achieved an even better result with an RMSE of 8.28.

5 Conclusion

Today, larger quantities of data and a wider range of data is available than ever
before. Working with this data and using this data to answer relevant questions
is not an easy task. The Bremen Big Data Challenge aims at sparking interest
in data research among students in Bremen. The Bremen Big Data Challenge
2017 focused on the load of the Studentenwerk Bremen’s university cafeteria.
Participants were supplied with the cafeteria’s load in five-minute-slots from
2009 to 2015 and supplementary data such as the cafeteria menu, semester times
and weather. Their task was to predict the cafeteria load in the five-minute-slots
of the year 2016. 24 teams participated in this year’s challenge and achieved a
range of good results with the best team’s prediction missing the true number
of receipts issued in a five-minute-slot by just 8.6 receipts. Combining the top 5
results the number of receipts issued is missed by only 8.28 receipts.

We will continue this tradition with the Bremen Big Data Challenge 2018.

Acknowledgements. We thank the Studentenwerk Bremen for providing us with the
dataset for the Bremen Big Data Challenge 2017.



386 J. Weiner et al.

References

1. Bremen Big Data Challenge: https://bbdc.csl.uni-bremen.de/
2. Carpenter, J.: May the best analyst win (2011)
3. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209

(2014)
4. Data Mining Cup: http://www.data-mining-cup.de/en/dmc-wettbewerb/

wettbewerb.html
5. Deutscher Wetterdienst - Archiv Monats- und Tageswerte: http://www.dwd.de/

DE/leistungen/klimadatendeutschland/klarchivtagmonat.html
6. McKinney, W.: Data structures for statistical computing in python. In: van der

Walt, S., Millman, J. (eds.) Proceedings of the 9th Python in Science Conference,
pp. 51–56 (2010)

7. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

8. Bremen, S.: http://www.stw-bremen.de/en

https://bbdc.csl.uni-bremen.de/
http://www.data-mining-cup.de/en/dmc-wettbewerb/wettbewerb.html
http://www.data-mining-cup.de/en/dmc-wettbewerb/wettbewerb.html
http://www.dwd.de/DE/leistungen/klimadatendeutschland/klarchivtagmonat.html
http://www.dwd.de/DE/leistungen/klimadatendeutschland/klarchivtagmonat.html
http://www.stw-bremen.de/en


Towards Sentiment Analysis
on German Literature

Albin Zehe(B), Martin Becker, Fotis Jannidis, and Andreas Hotho

University of Würzburg, 97074 Würzburg, Germany
{zehe,becker,hotho}@informatik.uni-wuerzburg.de,

fotis.jannidis@uni-wuerzburg.de

Abstract. Sentiment Analysis is a Natural Language Processing-task
that is relevant in a number of contexts, including the analysis of litera-
ture. We report on ongoing research towards enabling, for the first time,
sentence-level Sentiment Analysis in the domain of German novels. We
create a labelled dataset from sentences extracted from German novels
and, by adapting existing sentiment classifiers, reach promising F1-scores
of 0.67 for binary polarity classification.

Und sie lebten glücklich bis ans Ende ihrer
Tage. (German fairy tales)

1 Introduction and Related Work

The above quote is a common ending in German fairy tales. If you can not
tell whether or not this ending is happy, you have already come across the
problem this paper is concerned with: For Sentiment Analysis (SA), a task in
Natural Language Processing, there exists a multitude of solutions tailored to
specific datasets of English texts, but few for other languages - and none for our
domain: German novels. We aim to change this, as SA can help to achieve a very
interesting goal in the context of literature: a computer-readable representation
of a story. One viable approach for story representation is the use of sentiment
trajectories that describe the emotional state over the course of a novel. For
example, a wedding could be recognised in such a trajectory by a spike in positive
emotions, while the death of a protagonist would be accompanied by negative
words. Such representations have previously been used in [2,4,12]. Similarly,
[22] use sentiment trajectories to recognise one core element of a story’s plot:
the presence or absence of a Happy Ending.

Most of these previously used representations rely on relatively crude SA,
using only word-level sentiment. In order to take into account negation, inten-
sification etc., more complex systems have to be used. Such systems have been
a field of active research for a while. For example, [13] proposes an SVM-based
classifier relying on bag-of-words and syntactic features, as well as some manu-
ally crafted emotion features. Recently, Neural Network-based approaches have
become increasingly popular, redefining the state-of-the-art in SA. One mile-
stone was the introduction of RNTN [20] along with the Stanford Sentiment
c⃝ Springer International Publishing AG 2017
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Treebank (SST), which has since been used as a standard evaluation dataset.
RNTN reached an accuracy of 85.4% on the SST. [5] and subsequently [6] pro-
posed systems based on Convolutional Neural Networks, reaching accuracies of
up to 88.1%. Paragraph Vectors [7] have also been reported to yield accuracies of
up to 87.8% on the SST. Very recently, a system using a fundamentally different
approach with unsupervised pre-training has achieved accuracies of 91.9% on
the SST [17].

While working very well, these systems have only been used on English texts.
In contrast to that, our goal is to introduce sophisticated methods for SA into
the domain of German literature. To this end, we verify results from previ-
ously published approaches and evaluate their performance in our domain. To
make this possible, we create the German Novel Dataset (GND), a set of sen-
tences extracted from novels in German language, labelling these sentences with
sentiment information using crowdsourcing. We adapt three state-of-the-art SA
methods [6,7,13] forming a good basis for adaptation to German data, as they
rely on a straightforward and understandable model. [17] is currently unsuitable
for our evaluation, as its pre-training does not transfer well to other domains and
is too time intensive to retrain. Overall, our work is an important step towards
building a repository of advanced methods that can be used for the analysis of
German literature.

The remainder of this paper is structured as follows: In Sect. 2, we define
Sentiment Analysis and adapt existing approaches to German texts. Section 3
describes the English reference datasets and introduces our GND. Sections 4
and 5 report and discuss our findings. A summary and future work are given in
Sect. 6.

2 Sentiment Classification

Generally, Sentiment Analysis refers to the task of assigning a label, called polar-
ity, to a segment of text, describing whether it induces positive, negative or
neutral feelings in a human reader. In this work, SA is defined as a sentence
classification task, enabling classifiers to account for the effect of negation etc.
Assume a corpus C ⊂ S × L of sentences s ∈ S and polarity labels l ∈ L.
For example, c = (s, l) = (“I love you.”, 1) represents a sentence s with a pos-
itive polarity l. We perform two classification tasks, distinguished by the set
of possible polarities: (a) Binary classification: Lbin = {−1, 1} and (b) Ternary
classification: Lter = {−1, 0, 1}.1 A classifier of any kind is trained to predict
the correct label given a sentence, that is, to learn a function f : S → L with
f(s) = l.

We compare two different classifiers for our SA task: Support Vector
Machines (SVMs) [3] and Convolutional Neural Networks (CNNs) [8]. To rep-
resent sentences for the SVM, we use two different feature generation methods,
the NRC Representation [13] and Paragraph Vector [7]. For the CNN, we use
the model from [6], which we refer to as S-CNN.
1 Ternary labels are transformed into binary labels by omission of the neutral class (0).
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SVM Classifier. In this paragraph, we give a short overview of the sentence
representations used as input for the SVM.

NRC Representation. For the NRC Representation, a sentence is represented as
the concatenation of different kinds of n-gram and syntactic features in combina-
tion with a set of sentiment features constructed manually from the EmoLex [14].
We use the TreeTagger [19] to get part-of-speech-tags required for the syntactic
features. The representation employs a basic negation detection relying on a set
of English negation words. In order to be applicable to German text, this list
had to be translated. 2 Lemmatisation was not employed in n-gram generation,
as it did not improve results, but was used for the lookup of words in the senti-
ment lexicon. For a full description of the features, we refer to [13]. Note that we
do not use the full set of features described there, as we consider the following
features to be irrelevant outside the context of tweets: all-caps words, hashtags,
multiple punctuation marks, emoticons and elongated words. Also, using Brown
Clusters has been shown to be ineffective in [13].

Paragraph Vector. The Paragraph Vector-Framework extends the word2vec-
Framework [10,11] to create an embedding of a piece of text, for example a
sentence, in a low-dimensional space. Following [7], we directly use this embed-
ding as a feature vector for SA with Logistic Regression or other suitable clas-
sifiers/regressors. We use the implementation of Paragraph Vector provided by
gensim [18] to train sentence embeddings on our GNC (see Sect. 3).

S-CNN. The S-CNN is a sentence classification method based on a Convo-
lutional Neural Network. We use the variant referred to as “cnn-nonstatic” in
[6]. While [6] uses word2vec embeddings pre-trained on a very large corpus of
English news articles3, to our knowledge, no embedding trained on such a large
corpus is available for German. Again, we used gensim to train 300-dimensional
word2vec embeddings on our corpus of German novels. An implementation of
S-CNN is provided by the original author.4 Only small changes had to be made
to the code to make it compatible with German text, specifically the inclusion
of the character “ß” and German umlauts to the regular expression used for pre-
processing.

3 Datasets

In this section, we describe the datasets we use in our experiments. We use Eng-
lish reference corpora to verify results of the existing algorithms. Additionally, we
extract a dataset of sentences from German novels and label it by crowdsourcing
to evaluate the classifiers in our domain.

2 We use the words “nicht” (not), “kein” (no), “ohne” (without), “nie” (never),
“niemals” (never), “nirgends” (nowhere), “niemand” (nobody), and “keiner”
(nobody) as negation markers.

3 https://code.google.com/archive/p/word2vec/.
4 https://github.com/yoonkim/CNN sentence.

https://code.google.com/archive/p/word2vec/
https://github.com/yoonkim/CNN_sentence
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English SA Datasets. In order to validate the selected approaches as well
as existing results, we use two standard English datasets. The first one is a
dataset of tweets [15] used in [13]. It is downloadable via Twitter’s API. Some
differences may arise depending on the time of the download, but the distribution
over the polarity labels was mostly unchanged from that in [13] (14% negative,
49% neutral and 37% negative for the training set of 6128 samples.). The second
dataset is the Stanford Sentiment Treebank (SST) [20].

German Novel Dataset and Corpus. The German Novel Dataset (GND)
was generated using a crowdsourcing approach. It contains 270 labelled sentences
extracted from our German Novel Corpus (GNC) of over 600 novels in German
language from the TextGrid Digital Library5. Of these sentences, 89 are labelled
as “negative”, 124 as “neutral” and 57 as “positive”. The dataset is released
along with this paper.6

Labelling Process. To create the GND, we extracted all sentences from the GNC
containing at least three words and no more than 30 words or 1500 characters.
These sentences were then ranked using the ratio r = enw, where e is the number
of words in a sentence associated with emotions by the EmoLex [14] and w is the
total number of words in the sentence. We evaluated n ∈ {1, 2, 3} and selected
n = 3 because it led to sentences that were emotional, but did not consist
only of emotional words. 7 We selected the 210 highest ranked sentences and 90
additional sentences by random choice, resulting in 300 sentences for annotation.
We developed a web interface for the annotation process.8 The sentences were
annotated for ternary polarity and the eight basic emotions defined in [16] using
Microworkers and CrowdFlower.9 An Inter Annotator Agreement was calculated
and annotators were dropped, including all of their annotations, if they failed to
meet a defined threshold. We kept only sentences with at least five annotations
after filtering. The polarity of a training sample was selected by majority vote,
while a sentence was marked as conveying an emotion if at least two annotators
selected the emotion. For details on the annotation and selection process, see [21].

4 Results

Here, we briefly report the findings on the English datasets and give a more
detailed description of our results on the German Novel Dataset (GND).

Validating Classifiers on English Datasets. To validate our implementa-
tions, we evaluated all classifiers on the Twitter Dataset and the SST, repro-
ducing the results from [13] and [20]. On both datasets, the S-CNN gave better
5 https://textgrid.de/digitale-bibliothek.
6 https://www.dmir.org/datasets/german novel dataset.
7 We also evaluated other selection schemes, but found that random selection yielded
too many unemotional sentences, while r = e preferred very long ones.

8 Available on http://dmir.org/senticrowd/senticrowd. Login is possible with both
“Microworkers-ID” and “Kampagnen-ID” set to “demo” in the upper form.

9 http://www.microworkers.com and https://www.crowdflower.com.

https://textgrid.de/digitale-bibliothek
https://www.dmir.org/datasets/german_novel_dataset
http://dmir.org/senticrowd/senticrowd
http://www.microworkers.com
https://www.crowdflower.com
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results (F1-score of 0.86 for binary classification), but was much more sensitive
to parameter selection. We were not able to reproduce the results from [7], using
Paragraph Vectors as input for an SVM or Logistic Regression. Note that others
were also unable to reproduce them and one author of [7] considers them to be
invalid [9].

Evaluating Classifiers. All classifiers were evaluated on the GND and large
parameter studies as well as some feature analysis were performed.

Results Using an SVM. We start by describing the findings from the SVM-based
methods. For both the NRC features and the Paragraph Vectors, we used a linear
kernel SVM. For the Paragraph Vectors, we additionally employed an RBF-
kernel. To optimise parameters, we did a grid search over 20 values for C evenly
spaced on the log-scale from 10−2 to 102 and (where applicable) γ ∈ {0.01, 1, 10}.
We report micro-averaged F1-scores10 over all classes in the respective task. All
scores are calculated as the average over 10 independent runs of 10-fold cross-
validation. There were no major differences between runs (usually much less
than 5%).

We reached an F1-score of 0.43 for ternary and 0.67 for binary classification
respectively using a linear SVM trained on NRC features. Using Paragraph Vec-
tors as input to an SVM led to similar results. While these scores are not on
par with those on English datasets, they are far above those a majority baseline
would achieve (F1-score ≈ 0.5 for binary classification). There was no depen-
dency of the linear SVM on the value for C in the range we searched. Using
an RBF kernel made the classifier much more dependent on hyper- parameter
selection, but did not improve the results overall.

Results using S-CNN. We use random search [1] to jointly optimise Dropout
rate d, number of filters n per filter size and filter size s. We draw about 80
parameter combinations uniformly from d ∈ [0.0, 0.5], n ∈ [100, 500] ⊂ N and
s ∈ [2, 10] ⊂ N, as recommended in [23]. After sampling a filter size s, we use s−1,
s and s+1 in parallel for the CNN. The only parameter with clear influence on
the results is s. Using smaller values clearly outperformed larger ones, as shown
in Fig. 1. Generally, the S-CNN performed comparably or slightly worse than an
SVM trained on NRC features, with F1-score up to 0.67 for binary classification.

5 Discussion

On the German Novel Dataset (GND), all three methods yielded comparable
results. However, the SVM trained on NRC features is much less dependent
on hyper- parameter selection and requires less time to train than the S-CNN.
While training an SVM on Paragraph Vectors is also fast, the training of these
embeddings requires much time. We therefore consider the SVM trained on NRC
features to be the most suitable classifier for our task at the current state.

10 http://scikit-learn.org/0.17/modules/generated/sklearn.metrics.f1 score.

http://scikit-learn.org/0.17/modules/generated/sklearn.metrics.f1_score


392 A. Zehe et al.

2 4 6 8 10

Filter size

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

A
ve
ra
ge

F
1-
sc
or
e

Fig. 1. Dependency of the S-CNN on
the filter size for binary polarity classi-
fication on the GND. A datapoint cor-
responds to a specific combination of
the three tuned hyper-parameters.

Fig. 2. Absolute weights assigned to
feature groups by a linear SVM. Blue
dots are individual feature weights, red
dots group averages. Weights for all
classes plotted together.

To gain some further insight into the relevance of individual features, we
plotted the weights assigned to all NRC features by a linear SVM trained on the
full GND. Figure 2 shows the resulting plot comparing the average weight of our
feature types during classification. The manually constructed emotion features
(emo-feat.) obviously are most important to the classification. Similarly, the
pos-tag features play an important role, which may be due to their ability to
capture specific sentence structures. Word n-grams (n > 1) and skip-n-grams
(except, to some degree, n = 2) have only small influence, which is not surprising
considering their sparsity in the small GND. Unigrams have some relevance, but
are, interestingly, much less important than character-n-grams. We assume this
is due to the fact that character n-grams can actually group together different
words with the same stem, helping generalisation. Assuming that the filters in
the S-CNN capture information similar to n-gram features11, these findings are
consistent with those for the CNN. There, smaller filter sizes (i.e., corresponding
to lower order n-grams) performed best.

While the results achieved on the GND are certainly not on par with those on
the English datasets, this can most likely be explained by the training set that is
at least an order of magnitude smaller than the English sets. The performance
being far above that of simple baselines and the interpretability of the feature
weights show that the NRC features are able to capture information that is
useful for polarity classification on German literary text.

11 http://www.wildml.com/2015/11/understanding.
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6 Conclusion and Outlook

In this paper, we have presented first steps towards introducing more complex
SA methods to the domain of German literature. This is a prerequisite for plot
representation and other interesting tasks in the Digital Humanities. To this end,
we introduced a unique dataset of sentences extracted from German novels that
have been manually labelled with polarity information and basic emotions. Our
annotation interface can easily be used to extend this dataset in the future. While
the results are not on par with English SA, we have shown that the features and
classifiers are generally applicable in our domain and can recognise signals that
are useful for SA on German novels.

In future work, we will expand our dataset to enable training of more expres-
sive models, possibly also creating French and Spanish datasets, and introduce
domain- specific features to improve classification accuracy.
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