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Motivation

Large-scale full order model (FOM) Reduced order model (ROM)
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Projective Model Order Reduction

Approximation of the state vector:

x|=|V||x;|+|e|, VeR"™

Petrov-Galerkin projection:

E, A, B,
'd A N\ 'd A N\ 'd A N\
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\_ \_

my?q: C VIl ix,




Chair of Automatic Control Control and Automation Group
Department of Mechanical Engineering Department of Electrical Engineering

Technical University of Munich Indian Institute of Technology-Delhi

Rational Interpolation by Krylov subspace methods

Momente matched: 2

-40 T —
Moments of a transfer function 5, e
s0F
G(s)=C(sE—A)"'B
m S0F i 4
Rl if
= G(As + ) Z M, (s0)(s — s0)" \
P a
M;(sg) : i-th moment around sg 800
Krylov subspace: o
!!SSMOR :

]Cr (M?V) — [VaMVaM2V7"' 7MT_1V] _10010'3 T 1£J T 12]‘ | | -----103

Frequency [rad/eec

Moment Matching by Rational Krylov (RK) subspaces

Bases for input and output Krylov-subspaces:
Im(V) = [A;!B, A;'EA;'B, ..., (A;'E)""'A_!'B] E> [Mi(w)_M”(m)]

m(W) = [A;TCT, AJTETATCT, ..., (A JET) 1A TCT] fori=0,...,2r

Moments from full and reduced order model around certain shifts match!
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Parametric Model Order Reduction (pMOR)

Large-scale parametric model Reduced order parametric model
E(p)x = A(p)x + B(p) u E,(p) X, = Ay(p) % + By(p) u
y = C(p)x pPMOR yr = Ci(p) %,
peDcR?

X ER", r<n

» Linear dynamic systems with design parameters (e.g. material / geometry parameters,...)

« Goal: numerically efficient reduction with preservation of the parameter dependency

7
- Ny py B, v, dy,yda FlowProfile
‘ E()
i L Senl. Heater SenR
y I h
Timoshenko beam Solar panels Flow sensing anemometer
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PMOR by Matrix Interpolation — Main ldea

P1 pint ? P2 P
ay > 7oy >
Model at p: Model at p™ Model at P2
Reduced model at p; Reduced model at p™ Reduced model at p2

\ Interpolation of /

reduced matrices

|

Reduced model at p™ from reduced
models at sample points P1 & p2
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PMOR by Matrix Interpolation — Procedure

[Panzer et al. "10]

pl pillt ? p2 p
a X e >
El)'(: A1x+B1u EQX: A2X+B2u
y = Cix y = Caox
Vlawl V2:W2

ET,lk’P,l - Ar,lxr,l + Br,lu Er,2kr,2 - A—’P,QX’I“,2 + B?",Qu

Yr1 = CT‘,].XT‘,l —~ | | | — Yr2 = Cr,2xr,2
direct interpolation
not meaningful

pi, t=1,..., K
V= V(pi)
W; .= W(p;)

Eri%ri(t) = Arixri(t) + Brsu(t)  E,., =W/E;V,, A,;=W,A,V,
YT,i(t) - Cr,ixr,i(t) Bm' = WE;FB?;, Cm' =C;V;
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PMOR by Matrix Interpolation — Procedure

[Panzer et al. "10]

pi, t=1,.... K
E, %X i(t) = A,ix,;(t) + B,,u(t) E,.;=W/EV;, A,;=W AV,

Vi :=V(p;)
yr.i(t) = Cr.iXr,i(t) B,i=W/B;, C.i=GCV; W, := W(p;)
Xr; = TiXy;
E:,z A:‘,z B:ﬂ)
M; E,Ti%;;(t) = M{ A, Tix;;(t) + M{ B, ;u(t) ( - ) ) Van=[Vi,..., Vi]
M, = (R W;) SVD
yri(t) = CriTix; (1) ( ) Va = UZN7
* R = U(Z, 1: 7")
Cr,i
How to choose T; and M, ?
Goal: Adjustment of the local bases V; to /(5\ High
VI =V,T;, in order to make the gen. Vi VS * correlation
coordinates X;.; compatible w.r.t. a S)/ Vi «— f'{i
T~xsT :
reference subspace R. Vs T; ViR =1

Dual procedure for the local bases W;
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PMOR by Matrix Interpolation — Procedure

[Panzer et al. "10]

Pi, ) = 1,...,K
E, %X i(t) = A,ix,;(t) + B,,u(t) E,.;=W/EV;, A,;=W AV,

V;:=V(p;)
() — ~ . —WTnR. — .V
yri(t) = Crixpi(t) B., =W, B, C,, = C;V, W, = W(ps)
Xpi = TiXy;
E:,'L Af;(:’z B:,'L
M7 E,  TiX; ;(t) = M{ A, i Tix; ;(t) + M{ B,;u(t) ( , ) 1 [V, V]
Mf,; = (R WZ - SVD

yri(t) = CT,iTiX:,i(t) ( ) Van = UZN7T

C* . R:U(:,l:?")

* ¢ in K * * in K in * K

E?"( t) — Zizlwi(p)ET,ir Ar(P t) — Zfi:lwi(p t)AT,@' Zw_(pint) —1
* 7 in K * * ¢ in K in * i=

B?‘(p t) - Zi=1wi(p)Br,ia Cr(p t) — Zizlwfi(p t)Cm- 1

But: how to choose the sample points??
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Adaptive Sampling

Requirements: Uniform Sampling:

 Parametric space should be adequately % ¢ ¢ ¢ // 3¢ X
sampled 41 D2 p3 P4 PK-1 DK

* Avoid undersampling and oversampling l l l l l l

* More parameter samples should be placed V, V, Vs V, Vg Vg
in highly sensitive zones

Quantification of parametric sensitivity: Adaptive Sampling:

+ System-theoretic measure that quantifies
the parametric sensitivity is needed in order H—H—x o // H*—X
to guide the adaptive refinement b1 b2 ps P4 PK—1PK

« Adaptive sampling using angle between l l l l l l
subspaces V., V, Vi V., Vi 1 Vi

10
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Adaptive Sampling via subspace angles

Concept of subspace angles:

(g, V) e V; and V, are orthonormal bases for the
subspaces V; and Vs

« The largest angle between the subspaces
can be determined by

/ [ 015 = arcsin ( 1 — JE) = arccos(o,.) }
B2
(p1,Vy) o, : smallest singular value of VIV,

Usage for adaptive grid refinement:

« The larger the subspace angle, the more

different are the projection matrices, and thus: Pz,V2)

— the higher the parametric sensitivity

— and the more sample points can be
introduced in the respective sub-span

ZE: (p1.Vy)

11
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Automatic Adaptive Sampling: Pseudo-Code

1) Input 6,ax Local reduction at sample
. , _ _ _ points possible wusing any
2) Divide the entire parameter range into a uniform grid, preferred MOR technique
Ca”ing it P1,pP2, " s PK
3) While all li,i-l—l >1do theta (1) =

. ) . subspace (Vp{i},Vp{i+1})
a) Calculate the projection matrices Vi, Va, -+, Vg P PR

corresponding to each of these values pi,p2,--- ,PK

Quantitative indicator of how
b) Compute subspace angles 612,623, - ,0k_1 K many pieces each parameter

between these V’s, each taken pairwise interval is to be further broken

c) Calculate

Stopping criterion:

- [_912 -‘,[23: [ 02 -‘,. k1 k= [HK_LK-‘ 1. All ratios are equal to 1
Onax Onax Omax 2. Specified maximum number
d) Divide the interval between p1 and pa2 into li2 further of samples points reached
intervals. Likewise, do the same for all the other
intervals Next iteration: local reduction,

_ _ _ etc. only at points that got
e) Obtain new grid points pi,p2, - ,Pn, Whereas N > K added in the last while-loop

End While iteration (efficient!)

12
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Numerical example: Timoshenko Beam

* Finite element 3D model of a Timoshenko beam //

« Parameter is the length of the beam: p = L ZV\~ F(b)
* One-sided Krylov reduction with shifts at so =0 Tiy L

¢ Gnax = 10° chosen ”

Table 1: Sample points p;, subspace angles ¢; ;41 and ratios l; ;41

pi[m] 0.5 1.5 25 35 45 55
ter 1 g 1] 2579 1420 861 7.06 5.73
li it 3 2 1 1 1
pim] 0.5 0.833 1167 15 2 25 35 45 55
ter 2 g ] 1015 859 7.05 818 6.03 861 7.06 573
it 2 1 1 11 11 1
pim] 05 0667 0833 1167 1.5 2 25 35 45 55
ter3 g7l 5.26 480 859 7.05 818 6.03 861 7.06 5.73

liit1 1 1 1 1 1 1 1 1 1

13
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Numerical example: Timoshenko Beam

Initial uniform grid with K = 6

Table 1: Sample points p;, subspace angles 6; ;4.1 and ratios ; ;41

= p;|m] 0.5 1.5 25 35 45 55
@ ter 1 g 1[°] 25.79 1420 861 T7.06 5.73
% i1 3 2 111
2 pifm] 0.5 0.833 1167 15 2 25 35 45 55
EL ter2 g ] 1015 859 7.05 818 6.03 861 7.06 5.73
(‘,)5 Liit 2 1 1 1 1 1 1 1
g piim] 0.5 0.667 0833 1167 15 2 25 35 45 55
'*% iter3 g o] 5.26 4.89 859 7.05 818 6.03 8.61 7.06 5.73
g liit1 1 1 1 1 1 1 1 1 1

Interpolation point p™* = 1.0
between ROM 3 & ROM 4

—

Final refined grid with N = 10

14
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Numerical results — Direct vs. Interpolated ROM

0 Bode Diagram Bode Diagram
T T 0 T T
. L.~ \ oA .
m . ‘I‘\ a “I\ |
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300 ' ' ‘ _ | .
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|
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g ‘ ‘ g
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Interp ROM at p™'=1, flnal grid
-90 ' : ‘ . 540 - ‘ J
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Frequency (rad/s) Frequency (rad/s)
FOM size n = 240, ROMs sizer =17 FOM size n = 2400, ROMs sizer = 25

Two errors: model reduction error + interpolation error
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Numerical results — Direct vs. Interpolated ROM

Impulse Response 3 Step Response
x 10
0.08 : : 0 : :
FOM at p"=1 FOM at p"=1
0.06 f Direct ROM at p™=1 05 Direct ROM at p™=1
0.04 L , I Interp. ROM at p'™=1, final grid Interp. ROM at p'™=1, final grid
r

0.02F | | :
[0} ]
= 3
€ -0.02 - | 1 €
< h <

0044 | |y

o
-0.06 [
H\‘
-0.08 |
\
—0.1 f 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.5 1 15

Time (seconds)

Time (seconds)

FOM size n = 2400, ROMs sizer =25 FOM size n = 2400, ROMs sizer = 25

With Matrinterp: no need to reduce the model for every new parameter value
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Numerical results — Initial vs. Final Grid

Bode Diagram Bode Diagram
0 T T T 0 T T
m \/ o K\/
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= ﬂ Interp. ROM p™=1, final grid o LU\
o \ \ o -360 1
2] 2] int_
I ol @ FOMp™=1
o O -720 /| =~ Interp. ROM p™=1, initgrid [—— 7
Interp. ROM p'™=1, final grid
-90 = : ‘ - -1080 - . : J J
102 104 108 108 10° 102 104 108 108
Frequency (rad/s) Frequency (rad/s)
FOM size n = 240, ROMs sizer =17 FOM size n = 2400, ROMs sizer = 25

ROMs calculated with the final grid yield better approximations
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Numerical results — Initial vs. Final Grid

Impulse Response <1073 Step Response

0.08

FOM p™=1
~ Interp. ROM p™=1, init grid
Interp. ROM p™=1, final grid

0.06 |

0.04

0.02 1 A
(] 0]
g o YR &
3 s
£ -0.02 . £
< <

FOM p'™=1

0.08 ol Interp. ROM p™=1, init grid
Interp. ROM p™=1, final grid
-0.1 ' ' ' ‘ L L 3.5 :
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.5 1 1
Time (seconds) Time (seconds)
FOM size n = 2400, ROMs sizer = 25 FOM size n = 2400, ROMs sizer = 25

ROMs calculated with the final grid yield better approximations

5
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Numerical results — Initial vs. Final Grid

107 f ' ' ' ' ' ' '
'f?r:tf;?ﬂd Quantitative evaluation of the
100F approximation
5 | || / N Relative H2 error for nP=100 different
& 107} I "«.‘ N - : uery points p™
=" | | / \ SN query p p
z | Errors particularly small in the
2 " proximity of the sample points
103} Final grid yields smaller errors for
: smaller beam lengths due to the
o o adaptive refinement in this region

0.5 1 1.5 2 25 3 3.5 4 4.5 5 55
Parameter Value

Relative H2 error between FOMs and
interpolated ROMs for different parameter
values and grids: FOM size n = 240, ROM
sizer =17
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EISSMOR Toolbox — Analysis and Reduction of
Parametric Models in 4\

~ Definition of parametric sparse state- ~ Different parametric reduction methods
space models available (offline- & online-phase)
psys = loadFemBeam3D (Opts) psysr = matrInterpOffline
psys = loadAnemometer3parameter (psys,param, r,Opts) ;

y : : ) :
Manipulation of psss-class objects psysr = globalPmorOffline

psys = fixParameter (psys,2,1.7) (psys, param, r, Opts)
psys = unfixParameter (psys, 3)

_ _ sysr = psysr (plInterp)
~ Compatible with the sss & sssMOR Y PEYSEIP F

toolboxes
v~ localReduction & adaptiveSampling

param = [pl, p2, p3, p4] as core functions

Sys = psys (param)
bode (psys,param); step(sys); %w' =
I(:Omlllg suoll! www.rt.mw.tum.de/?morlab
L

20
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Summary & Outlook

Takehome Messages:

A simple automatic sampling strategy is presented for adaptively choosing sample
points in parametric model order reduction

» Scheme uses concept of subspace angles to measure need of further sampling points

« Adaptive approach is fully automated and embedded in the matrix interpolation
framework

» Algorithm is applied to a Timoshenko beam model, achieving satisfactory results.

Future Extensions / Ongoing Work:

« Extension of proposed adaptive sampling scheme to 2D and 3D parametric case
» Higher dimensional case (d > 3) with adaptive sparse grids is topic of future research

* psssMOR toolbox is being actively developed and will be available open-source very soon!!

Thank you for your attention!
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Numerical results — Direct vs. Interpolated ROM

Step Response

-3
0 X 10 | Step Response | ) 10°3
FOM at p™=1 FOM at p"™=1
. int_ .
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FOM size n = 240, ROMs sizer =17 FOM size n = 2400, ROMs sizer = 25
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Numerical results — Direct vs. Interpolated ROM

Impulse Response Impulse Response
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Numerical results — Initial vs. Final Grid

X1 03 Step Response ) 03 Step Response
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Amplitude
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Numerical results — Initial vs. Final Grid
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sss & sssSMOR — MATLAB Toolboxes
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Toolboxes for sparse, large-scale models in 4\

!!SS !}ssMOR

sys = sss(A,B,C,D,E); sysr = tbr(sys,r)
sysr = rk(sys,s0)
sysr = irka(sys, s0)
\ sysr = cure(sys)
sysr = cirka(sys, s0)

FOM

bode (sys), sigma (sys) — — —ROM
step(sys), impulse(sys)
norm(sys,2), norm(sys,inf)

>~
c2d, lsim, eigs, connect,.. >
Powered by: M-M.E.S.S. toolbox [Saak, Kohler, Benner] for Lyapunov equations v GitLab
Available at www.rt.mw.tum.de/?sssMOR -

[Castagnotto/Cruz Varona/Jeschek/Lohmann ’17]. ,,sss & sssMOR: Analysis and
Reduction of Large-Scale Dynamic Systems in MATLAB®, at-Automatisierungstechnik] 29


http://www.rt.mw.tum.de/?sssMOR

Chair of Automatic Control
Department of Mechanical Engineering
Technical University of Munich

s

State-space models of very high order
on a standard computer O (108)

Many Control System Toolbox functions,

revisited to exploit sparsity

Allows system analysis in
frequency (bode, sigma, ...)and

time domain (step, norm, 1sim,...), as

well as manipulations
(connect, truncate, ..)

Is compatible with the built-in syntax

New functionality: eigs, residue,
pzmap, ..

Control and Automation Group
Department of Electrical Engineering
Indian Institute of Technology-Delhi

!!ssMOR

Classical (modalMor, tbr, rk,...)and
state-of-the-art (isrk, irka, cirka,
cure,...) reduction methods

Both highly-automatized
sysr = 1rka(sys,n)

and highly-customizable
Opts.maxiter = 100
Opts.tol = 1le-6
Opts.stopcrit = ‘combAll’
Opts.verbose = true
sysr = irka(sys,n,Opts)

solveLse and lyapchol as core
functions

30
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sssMOR App
graphical user interface

completely free
and open source

(contributions welcome)

Details

| Workspace

Name =

EHEE Lz MR ORI e b "~

 Current Folder G Comn
[0 Name  Git Size T~ |fi >
® L extras Folder
i MOR Folder
E s Folder
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Comprehensive
documentation with
examples and references

completely free
and open source
(contributions welcome)
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Lehrstuhl fur Regelungstechnik

Welcome to the
sssWIOR App

developed at the Chair of Automatic Control, TU Miinchen

Loading and Setting up Models Load, create and save models

Model Order Reduction Reduce models
Plot impuise Response, Response,
Postprocessing and Visualization Bode Diagram, mewn and Pole-Zero Map

System Analysis Analyse models

for

and

and does not exploit the full functionality of the sssMOR toolbox.
hitps://www.rt. mw tum.de/?sssMOR

MorLAB N gwo
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(2 Search Documentation el ~

G EE L »Z» sssMORdoc b sssMOR b sic b -9

Current Folder ®

£ >> |

Comprehensive
documentation with
examples and references

sssMOR App
graphical user interface




