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Large-scale full order model (FOM)

2

Motivation

MOR

Reduced order model (ROM)
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Projective Model Order Reduction

Petrov-Galerkin projection:

Approximation of the state vector:
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Moments of a transfer function
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Rational Interpolation by Krylov subspace methods

: i-th moment around

Bases for input and output Krylov-subspaces: 

Moments from full and reduced order model around certain shifts match!
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Moment Matching by Rational Krylov (RK) subspaces

Krylov subspace:
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Large-scale parametric model
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Parametric Model Order Reduction (pMOR)

Flow sensing anemometerTimoshenko beam

pMOR

Reduced order parametric model

• Linear dynamic systems with design parameters (e.g. material / geometry parameters,…)

• Goal: numerically efficient reduction with preservation of the parameter dependency

Solar panels
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pMOR by Matrix Interpolation – Main Idea

?

Model at Model at

Reduced model at Reduced model at

Model at

Reduced model at

Interpolation of

reduced matrices

Reduced model at         from reduced

models at sample points &
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pMOR by Matrix Interpolation – Procedure

1.) Individual reduction

direct interpolation

not meaningful

?

[Panzer et al. ’10]
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How to choose and ?
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pMOR by Matrix Interpolation – Procedure
[Panzer et al. ’10]

1.) Individual reduction

2.) Transformation to generalized coordinates

High 

correlation

:

Goal: Adjustment of the local bases       to

, in order to make the gen. 

coordinates        compatible w.r.t. a

reference subspace .

Dual procedure for the local bases
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pMOR by Matrix Interpolation – Procedure

1.) Individual reduction

2.) Transformation to generalized coordinates

3.) Interpolation

But: how to choose the sample points??

[Panzer et al. ’10]
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Adaptive Sampling

Requirements:

• Parametric space should be adequately

sampled

• Avoid undersampling and oversampling

• More parameter samples should be placed

in highly sensitive zones

Uniform Sampling:

Adaptive Sampling:Quantification of parametric sensitivity:

• System-theoretic measure that quantifies

the parametric sensitivity is needed in order

to guide the adaptive refinement

• Adaptive sampling using angle between

subspaces
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• and are orthonormal bases for the

subspaces and

• The largest angle between the subspaces

can be determined by

: smallest singular value of

Concept of subspace angles:
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Adaptive Sampling via subspace angles

Usage for adaptive grid refinement:

• The larger the subspace angle, the more

different are the projection matrices, and thus:

 the higher the parametric sensitivity

 and the more sample points can be

introduced in the respective sub-span
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1) Input   

2) Divide the entire parameter range into a uniform grid, 

calling it

3)   While all                 do

a) Calculate the projection matrices

corresponding to each of these values

b) Compute subspace angles

between these ´s, each taken pairwise

c) Calculate

d) Divide the interval between and into further

intervals. Likewise, do the same for all the other

intervals.

e) Obtain new grid points , whereas

End While
12

Automatic Adaptive Sampling: Pseudo-Code

Next iteration: local reduction,

etc. only at points that got

added in the last while-loop

iteration (efficient!)

theta(i) = 

subspace(Vp{i},Vp{i+1})

Quantitative indicator of how

many pieces each parameter

interval is to be further broken

Local reduction at sample

points possible using any

preferred MOR technique

Stopping criterion:

1. All ratios are equal to 1

2. Specified maximum number

2. of samples points reached
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• Finite element 3D model of a Timoshenko beam

• Parameter is the length of the beam: 

• One-sided Krylov reduction with shifts at 

• chosen

13

Numerical example: Timoshenko Beam
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Numerical example: Timoshenko Beam

Initial uniform grid with

Final refined grid with
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Interpolation point

between ROM 3 & ROM 4
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Numerical results – Direct vs. Interpolated ROM

FOM size n = 240, ROMs size r = 17 FOM size n = 2400, ROMs size r = 25

Two errors: model reduction error + interpolation error



Chair of Automatic Control
Department of Mechanical Engineering
Technical University of Munich

Control and Automation Group
Department of Electrical Engineering 
Indian Institute of Technology-Delhi

16

Numerical results – Direct vs. Interpolated ROM

With MatrInterp: no need to reduce the model for every new parameter value

FOM size n = 2400, ROMs size r = 25FOM size n = 2400, ROMs size r = 25



Chair of Automatic Control
Department of Mechanical Engineering
Technical University of Munich

Control and Automation Group
Department of Electrical Engineering 
Indian Institute of Technology-Delhi

17

Numerical results – Initial vs. Final Grid

ROMs calculated with the final grid yield better approximations

FOM size n = 2400, ROMs size r = 25FOM size n = 240, ROMs size r = 17
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Numerical results – Initial vs. Final Grid

ROMs calculated with the final grid yield better approximations

FOM size n = 2400, ROMs size r = 25FOM size n = 2400, ROMs size r = 25
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Numerical results – Initial vs. Final Grid

Relative H2 error between FOMs and

interpolated ROMs for different parameter

values and grids: FOM size n = 240, ROM

size r = 17

• Quantitative evaluation of the

approximation

• Relative H2 error for nP=100 different 

query points

• Errors particularly small in the

proximity of the sample points

• Final grid yields smaller errors for

smaller beam lengths due to the

adaptive refinement in this region
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Toolbox – Analysis and Reduction of

Parametric Models in 

Different parametric reduction methods 

available (offline- & online-phase)

localReduction & adaptiveSampling

as core functions

Definition of parametric sparse state-

space models

Manipulation of psss-class objects

Compatible with the sss & sssMOR

toolboxes

psys = loadFemBeam3D(Opts)

psys = loadAnemometer3parameter

psys = fixParameter(psys,2,1.7)

psys = unfixParameter(psys,3)

param = [p1, p2, p3, p4]

sys = psys(param)

bode(psys,param); step(sys);

psysr = matrInterpOffline

(psys,param,r,Opts);

psysr = globalPmorOffline

(psys,param,r,Opts)

sysr = psysr(pInterp)

www.rt.mw.tum.de/?morlab

http://www.rt.mw.tum.de/?morlab
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Takehome Messages:

• A simple automatic sampling strategy is presented for adaptively choosing sample

points in parametric model order reduction

• Scheme uses concept of subspace angles to measure need of further sampling points

• Adaptive approach is fully automated and embedded in the matrix interpolation

framework

• Algorithm is applied to a Timoshenko beam model, achieving satisfactory results.

Future Extensions / Ongoing Work:

• Extension of proposed adaptive sampling scheme to 2D and 3D parametric case

• Higher dimensional case (d > 3) with adaptive sparse grids is topic of future research

• psssMOR toolbox is being actively developed and will be available open-source very soon!!

21

Summary & Outlook

Thank you for your attention!
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Backup
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Numerical results – Direct vs. Interpolated ROM

FOM size n = 2400, ROMs size r = 25FOM size n = 240, ROMs size r = 17
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Numerical results – Direct vs. Interpolated ROM

FOM size n = 2400, ROMs size r = 25FOM size n = 240, ROMs size r = 17
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Numerical results – Initial vs. Final Grid

FOM size n = 2400, ROMs size r = 25FOM size n = 240, ROMs size r = 17
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Numerical results – Initial vs. Final Grid

FOM size n = 2400, ROMs size r = 25FOM size n = 240, ROMs size r = 17



sss & sssMOR – MATLAB Toolboxes

28
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Powered by: M-M.E.S.S. toolbox [Saak, Köhler, Benner] for Lyapunov equations

Available at www.rt.mw.tum.de/?sssMOR

[Castagnotto/Cruz Varona/Jeschek/Lohmann ’17]: „sss & sssMOR: Analysis and

Reduction of Large-Scale Dynamic Systems in MATLAB“, at-Automatisierungstechnik] 29

Toolboxes for sparse, large-scale models in 

sys = sss(A,B,C,D,E); sysr = tbr(sys,r)

sysr = rk(sys,s0)

sysr = irka(sys,s0)

sysr = cure(sys)

sysr = cirka(sys,s0)

bode(sys), sigma(sys)

step(sys), impulse(sys)

norm(sys,2), norm(sys,inf)

c2d, lsim, eigs, connect,…

…

http://www.rt.mw.tum.de/?sssMOR
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Main characteristics

State-space models of very high order              

on a standard computer

Many Control System Toolbox functions, 

revisited to exploit sparsity 

Allows system analysis in 
frequency (bode, sigma, …) and 

time domain (step,norm,lsim,…), as 

well as manipulations
(connect,truncate,…)

Is compatible with the built-in syntax

New functionality: eigs, residue, 

pzmap,…

Classical (modalMor, tbr, rk,…) and 

state-of-the-art (isrk, irka, cirka, 

cure,…) reduction methods

Both highly-automatized
sysr = irka(sys,n)

and highly-customizable
Opts.maxiter = 100

Opts.tol = 1e-6

Opts.stopcrit = ‘combAll’

Opts.verbose = true

sysr = irka(sys,n,Opts)

solveLse and lyapchol as core 

functions
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Comprehensive

documentation with

examples and references

sssMOR App

graphical user interface

completely free

and open source

(contributions welcome)



Chair of Automatic Control
Department of Mechanical Engineering
Technical University of Munich

Control and Automation Group
Department of Electrical Engineering 
Indian Institute of Technology-Delhi

Comprehensive

documentation with

examples and references

sssMOR App

graphical user interface

completely free

and open source

(contributions welcome)
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Comprehensive

documentation with

examples and references

sssMOR App

graphical user interface

completely free

and open source

(contributions welcome)


