

Automatic Adaptive Sampling in Parametric Model Order Reduction by Matrix Interpolation

Maria Cruz Varona*, Mashuq-un-Nabi[‡], Boris Lohmann[§]

*§Chair of Automatic Control,

Technical University of Munich, Germany

[‡]Department of Electrical Engineering, Indian Institute of Technology Delhi, India

July 4th, AIM 2017

Motivation

Large-scale full order model (FOM)

Reduced order model (ROM)

$$\mathbf{E}_r \quad \dot{\mathbf{x}}_r = \mathbf{A}_r \quad \mathbf{x}_r + \mathbf{B}_r \quad \mathbf{u}$$
$$\mathbf{y}_r = \mathbf{C}_r \quad \mathbf{x}_r$$

 $\mathbf{x}_r \in \mathbb{R}^r, \ r \ll n$

Projective Model Order Reduction

Approximation of the state vector:

$$\mathbf{x} = \mathbf{V} \mathbf{x}_r + \mathbf{e}, \quad \mathbf{V} \in \mathbb{R}^{n \times r}$$

Petrov-Galerkin projection:

Rational Interpolation by Krylov subspace methods

Moments of a transfer function

 $\mathbf{G}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$ $= \mathbf{G}(\Delta s + s_0) = -\sum_{i=0}^{\infty} \mathbf{M}_i(s_0)(s - s_0)^i$

 $\mathbf{M}_i(s_0)$: i-th moment around s_0

Krylov subspace:

 $\mathcal{K}_{r}\left(\mathbf{M},\mathbf{v}\right)=\left[\mathbf{v},\mathbf{M}\,\mathbf{v},\mathbf{M}^{2}\,\mathbf{v},\cdots,\mathbf{M}^{r-1}\mathbf{v}
ight]$

Moment Matching by Rational Krylov (RK) subspaces

Bases for input and output Krylov-subspaces:

Moments from full and reduced order model around certain shifts match!

Parametric Model Order Reduction (pMOR)

- Linear dynamic systems with design parameters (e.g. material / geometry parameters,...)
- Goal: numerically efficient reduction with preservation of the parameter dependency

Timoshenko beam

Flow sensing anemometer

Solar panels

pMOR by Matrix Interpolation – Main Idea

[Panzer et al. '10]

pMOR by Matrix Interpolation – Procedure

1.) Individual reduction

 $\mathbf{E}_{r,i}\dot{\mathbf{x}}_{r,i}(t) = \mathbf{A}_{r,i}\mathbf{x}_{r,i}(t) + \mathbf{B}_{r,i}\mathbf{u}(t) \qquad \mathbf{E}_{r,i} = \mathbf{W}_i^T \mathbf{E}_i \mathbf{V}_i, \quad \mathbf{A}_{r,i} = \mathbf{W}_i^T \mathbf{A}_i \mathbf{V}_i$ $\mathbf{y}_{r,i}(t) = \mathbf{C}_{r,i}\mathbf{x}_{r,i}(t) \qquad \mathbf{B}_{r,i} = \mathbf{W}_i^T \mathbf{B}_i, \qquad \mathbf{C}_{r,i} = \mathbf{C}_i \mathbf{V}_i$

 $\mathbf{p}_i, \ i = 1, \dots, K$ $\mathbf{V}_i := \mathbf{V}(\mathbf{p}_i)$ $\mathbf{W}_i := \mathbf{W}(\mathbf{p}_i)$

pMOR by Matrix Interpolation – Procedure

[Panzer et al. '10]

How to choose T_i and M_i ?

Goal: Adjustment of the local bases V_i to $V_i^* = V_i T_i$, in order to make the gen. coordinates $x_{r,i}^*$ compatible w.r.t. a reference subspace \mathbf{R} .

Dual procedure for the local bases \mathbf{W}_i

pMOR by Matrix Interpolation – Procedure

[Panzer et al. '10]

1.) Individual reduction $ \mathbf{E}_{r,i}\dot{\mathbf{x}}_{r,i}(t) = \mathbf{A}_{r,i}\mathbf{x}_{r,i}(t) + \mathbf{B}_{r,i}\mathbf{u}(t) \qquad \mathbf{E}_{r,i} = \mathbf{W}_i^T\mathbf{E}_i\mathbf{V}_i, \mathbf{A}_{r,i} = \mathbf{W}_i^T\mathbf{A}_i\mathbf{V}_i \\ \mathbf{y}_{r,i}(t) = \mathbf{C}_{r,i}\mathbf{x}_{r,i}(t) \qquad \mathbf{B}_{r,i} = \mathbf{W}_i^T\mathbf{B}_i, \qquad \mathbf{C}_{r,i} = \mathbf{C}_i\mathbf{V}_i $	$egin{aligned} \mathbf{p}_i, \; i=1,\ldots,K \ \mathbf{V}_i &:= \mathbf{V}(\mathbf{p}_i) \ \mathbf{W}_i &:= \mathbf{W}(\mathbf{p}_i) \end{aligned}$
2.) Transformation to generalized coordinates	$\mathbf{x}_{r,i} = \mathbf{T}_i \mathbf{x}_{r,i}^*$ $\mathbf{V}_{\mathrm{all}} = [\mathbf{V}_1,, \mathbf{V}_K]$ $\mathbf{V}_{\mathrm{all}} \stackrel{\mathrm{SVD}}{=} \mathbf{U} \boldsymbol{\Sigma} \mathbf{N}^T$ $\mathbf{R} = \mathbf{U}(:, 1:r)$
3.) Interpolation $\mathbf{E}_{r}^{*}(\mathbf{p}^{\text{int}}) = \sum_{i=1}^{K} \omega_{i}(\mathbf{p}) \mathbf{E}_{r,i}^{*}, \mathbf{A}_{r}^{*}(\mathbf{p}^{\text{int}}) = \sum_{i=1}^{K} \omega_{i}(\mathbf{p}^{\text{int}}) \mathbf{A}_{r,i}^{*}$ $\mathbf{B}_{r}^{*}(\mathbf{p}^{\text{int}}) = \sum_{i=1}^{K} \omega_{i}(\mathbf{p}) \mathbf{B}_{r,i}^{*}, \mathbf{C}_{r}^{*}(\mathbf{p}^{\text{int}}) = \sum_{i=1}^{K} \omega_{i}(\mathbf{p}^{\text{int}}) \mathbf{C}_{r,i}^{*}$	$\sum_{i=1}^{K} \omega_i(\mathbf{p}^{\text{int}}) = 1$

But: how to choose the sample points??

Adaptive Sampling

Requirements:

- Parametric space should be adequately sampled
- Avoid undersampling and oversampling
- More parameter samples should be placed in highly sensitive zones

Quantification of parametric sensitivity:

- System-theoretic measure that quantifies the parametric sensitivity is needed in order to guide the adaptive refinement
- Adaptive sampling using angle between subspaces

Uniform Sampling:

Adaptive Sampling:

Adaptive Sampling via subspace angles

Concept of subspace angles:

- Usage for adaptive grid refinement:
- The larger the subspace angle, the more different are the projection matrices, and thus:
 - the higher the parametric sensitivity
 - and the more sample points can be introduced in the respective sub-span

- V_1 and V_2 are orthonormal bases for the subspaces \mathcal{V}_1 and \mathcal{V}_2
- The largest angle between the subspaces can be determined by

$$\theta_{12} = \arcsin\left(\sqrt{1-\sigma_r^2}\right) = \arccos(\sigma_r)$$

 σ_r : smallest singular value of $\mathbf{V}_1^T\mathbf{V}_2$

Automatic Adaptive Sampling: Pseudo-Code

- 1) Input $heta_{\max}$
- 2) Divide the entire parameter range into a uniform grid, calling it p_1, p_2, \cdots, p_K
- 3) While all $l_{i,i+1} > 1$ do
 - a) Calculate the projection matrices V_1, V_2, \dots, V_K / corresponding to each of these values p_1, p_2, \dots, p_K
 - b) Compute subspace angles $\theta_{12}, \theta_{23}, \cdots, \theta_{K-1,K}$ between these V_i 's, each taken pairwise
 - c) Calculate

$$l_{12} = \left\lceil \frac{\theta_{12}}{\theta_{\max}} \right\rceil, l_{23} = \left\lceil \frac{\theta_{23}}{\theta_{\max}} \right\rceil, \cdots, l_{K-1,K} = \left\lceil \frac{\theta_{K-1,K}}{\theta_{\max}} \right\rceil - \left\lceil \frac{\theta_{K-1,K}}{\theta_{\max}} \right\rceil$$

d) Divide the interval between p_1 and p_2 into l_{12} further intervals. Likewise, do the same for all the other intervals.

e) Obtain new grid points p_1, p_2, \cdots, p_N , whereas N > KEnd While Local reduction at sample points possible using any preferred MOR technique

theta(i) =

subspace(Vp{i},Vp{i+1})

Quantitative indicator of how many pieces each parameter interval is to be further broken

Stopping criterion:

- 1. All ratios are equal to 1
- 2. Specified maximum number of samples points reached

Next iteration: local reduction, etc. <u>only</u> at points that got added in the last while-loop iteration (efficient!)

Numerical example: Timoshenko Beam

- Finite element 3D model of a Timoshenko beam
- Parameter is the length of the beam: $p \equiv L$
- One-sided Krylov reduction with shifts at $s_0 = 0$
- $\theta_{\rm max} = 10^{\circ}$ chosen

	$p_i[m]$	inpro pointo	$\frac{1}{0.5}$		$\frac{1.5}{1.5}$	2.5	$\frac{3.5}{3.5}$	4.5	5.5
iter 1	$\theta_{i,i+1}[^{\circ}]$			25.79	14.2	0 8	.61 7	7.06	5.73
	$l_{i,i+1}$			3	2		1	1	1
	$p_i[m]$	0.5	0.833	1.167	1.5 2	2.5	3.5	4.5	5.5
iter 2	$\theta_{i,i+1}[^{\circ}]$	10.15	8.59	7.05	8.18	6.03 8	.61 7	7.06	5.73
	$l_{i,i+1}$	2	1	1	1	1	1	1	1
iter 3	$p_i[m]$	0.5 0.667	0.833	1.167	1.5 2	2.5	3.5	4.5	5.5
	$\theta_{i,i+1}[^{\circ}]$	5.26 4	.89 8.59	7.05	8.18	6.03 8	.61 7	7.06	5.73
	$l_{i,i+1}$	1	1 1	1	1	1	1	1	1

Table 1: Sample points p_i , subspace angles $\theta_{i,i+1}$ and ratios $l_{i,i+1}$

Numerical example: Timoshenko Beam

Initial uniform grid with K = 6

ne		$p_i[m]$		0.5	5		1.5	2.	5 3.5	4.5	5.5
her	iter 1	$\theta_{i,i+1}[^{\circ}]$				25.79) 1	14.20	8.61	7.06	5.73
So		$l_{i,i+1}$				3		2	1	1	1
ing		$p_i[m]$	0.5	0.8	33	1.167	1.5	2	2.5 3.5	4.5	5.5
npl	iter 2	$\theta_{i,i+1}[^{\circ}]$	10	0.15	8.59	7.05	8.18	8 6.03	8.61	7.06	5.73
Sar		$l_{i,i+1}$		2	1	1	1	1	1	1	1
Ke	iter 3	$p_i[m]$	0.5 0.	667 C).833	1.167	1.5	2	2.5 3.5	4.5	5.5
apti		$\theta_{i,i+1}[^{\circ}]$	5.26	4.89	8.59	7.05	8.18	8 6.03	8.61	7.06	5.73
Ada		$l_{i,i+1}$	1	1	1	1	1	1	1	1	1
						Int	terpola	ation p	oint p^{in}	t = 1.	0

Numerical results – Direct vs. Interpolated ROM

FOM size n = 240, ROMs size r = 17

FOM size n = 2400, ROMs size r = 25

Two errors: model reduction error + interpolation error

Numerical results – Direct vs. Interpolated ROM

FOM size n = 2400, ROMs size r = 25

FOM size n = 2400, ROMs size r = 25

With MatrInterp: no need to reduce the model for every new parameter value

Numerical results – Initial vs. Final Grid

FOM size n = 240, ROMs size r = 17

FOM size n = 2400, ROMs size r = 25

ROMs calculated with the final grid yield better approximations

Numerical results – Initial vs. Final Grid

FOM size n = 2400, ROMs size r = 25

FOM size n = 2400, ROMs size r = 25

ROMs calculated with the final grid yield better approximations

Numerical results – Initial vs. Final Grid

- Quantitative evaluation of the approximation
- Relative H2 error for nP=100 different query points $p^{\rm int}$
- Errors particularly small in the proximity of the sample points
- Final grid yields smaller errors for smaller beam lengths due to the adaptive refinement in this region

ssMor Toolbox – Analysis and Reduction of Parametric Models in 📣

- Definition of parametric sparse statespace models
 - psys = loadFemBeam3D(Opts)
 - psys = loadAnemometer3parameter
- Manipulation of psss-class objects

```
psys = fixParameter(psys,2,1.7)
psys = unfixParameter(psys,3)
```

Compatible with the sss & sssMOR toolboxes

```
param = [p1, p2, p3, p4]
sys = psys(param)
```

```
bode(psys,param); step(sys);
```

 Different parametric reduction methods available (offline- & online-phase)

```
psysr = matrInterpOffline
(psys,param,r,Opts);
```

```
psysr = globalPmorOffline
(psys,param,r,Opts)
```

sysr = psysr(pInterp)

 localReduction & adaptiveSampling as core functions

www.rt.mw.tum.de/?morlab

Summary & Outlook

Takehome Messages:

- A simple automatic sampling strategy is presented for adaptively choosing sample points in parametric model order reduction
- Scheme uses concept of **subspace angles** to measure need of further sampling points
- Adaptive approach is fully automated and embedded in the matrix interpolation framework
- Algorithm is applied to a **Timoshenko beam model**, achieving satisfactory results.

Future Extensions / Ongoing Work:

- Extension of proposed adaptive sampling scheme to 2D and 3D parametric case
- Higher dimensional case (d > 3) with adaptive sparse grids is topic of future research
- psssMOR toolbox is being actively developed and will be available open-source very soon!!

Thank you for your attention!

ПІП

Backup

References

[Amsallem '10]	Interpolation on manifolds of CFD-based fluid and finite element- based structural reduced-order models for on-line
[Bazaz et al. '15]	Adaptive Parameter Space Sampling in Matrix Interpolatory pMOR.
[Benner et al. '15]	A survey of projection-based model reduction methods for parametric dynamical systems.
[Baur et al. '15]	Comparison of methods for parametric model order reduction of instationary problems.
[Geuss et al. '08]	On Parametric Model Order Reduction by Matrix Interpolation.
[Panzer et al. '10]	Parametric Model Order Reduction by Matrix Interpolation.

Numerical results – Direct vs. Interpolated ROM

FOM size n = 240, ROMs size r = 17

FOM size n = 2400, ROMs size r = 25

Numerical results – Direct vs. Interpolated ROM

FOM size n = 240, ROMs size r = 17

FOM size n = 2400, ROMs size r = 25

Numerical results – Initial vs. Final Grid

FOM size n = 240, ROMs size r = 17

FOM size n = 2400, ROMs size r = 25

Numerical results – Initial vs. Final Grid

FOM size n = 240, ROMs size r = 17

FOM size n = 2400, ROMs size r = 25

sss & sssMOR – MATLAB Toolboxes

Toolboxes for sparse, large-scale models in 📣

Powered by: **M-M.E.S.S. toolbox** [Saak, Köhler, Benner] for Lyapunov equations Available at <u>www.rt.mw.tum.de/?sssMOR</u> [Castagnotto/Cruz Varona/Jeschek/Lohmann '17]: **"sss & sssMOR: Analysis and Reduction of Large-Scale Dynamic Systems in MATLAB**", at-Automatisierungstechnik]

Main characteristics

- State-space models of very high order on a standard computer O (10⁸)
- Many Control System Toolbox functions, revisited to exploit sparsity
- Allows system analysis in frequency (bode, sigma, ...) and time domain (step, norm, lsim,...), as well as manipulations (connect, truncate, ...)
- Is compatible with the built-in syntax
- New functionality: eigs, residue, pzmap,...

- Classical (modalMor, tbr, rk,...) and state-of-the-art (isrk, irka, cirka, cure,...) reduction methods
- Both highly-automatized
 sysr = irka(sys,n)

and highly-customizable

Opts.maxiter = 100
Opts.tol = 1e-6
Opts.stopcrit = `combAll'
Opts.verbose = true
sysr = irka(sys,n,Opts)

solveLse and lyapchol as core functions

MATLAB R2015b - academic use **S** ssMOR 0 . 6 4 4 4 5 S SS PLOTS APPS Search Documentation HOME New Variable Analyze Code 🔄 Find Files 🚽 Open Variable 💌 Run and Time ENVIRONMENT RESOURCES Save New New Compare Import 🖄 Clear Commands Script Data Workspace 2 Clear Workspace VARIABLE FILE 4 🔶 🖬 🖾 Z: > sssMORdoc > sssMOR > src > - 0 Current Folder 1 Command Window \odot Comprehensive Name Git Size T... * fx >> Folder extras $\left| + \right|$ documentation with Ι (±) MOR Folder + Folder 555 examples and references sssMOR App graphical user interface Details ~ 1 Workspace Name 🔺 Value completely free and open source 4 111 b. (contributions welcome) 1111-

s ss ssMOR	▲ MATLAB R2015b - academic use HOME PLOTS APPS ▲ MATLAB R2015b - academic use Image: Comparison of the system
Comprehensive documentation with examples and references	extras : MOR · SSS · I
sssMOR App graphical user interface	Details A Workspace © Name A V
completely free and open source (contributions welcome)	