A Graphical Modeling Tool Supporting Automated
Schedule Synthesis for Time-Sensitive Networking

Morteza Hashemi Farzaneh, Stefan Kugele, and Alois Knoll
Department of Informatics
Technical University of Munich
Boltzmannstr. 3, 85748 Garching bei Miinchen
Email:{hashemif,kugele knoll} @in.tum.de

Abstract—Time-Sensitive Networking (TSN) is a set of new
standards which is being developed by the Institute of Elec-
trical and Electronics Engineers to support mixed-criticality
requirements based on Ethernet technology. These standards
have recently raised the attention of real-time domains such as
automation and automotive. To support tight timing guarantees,
Time-Aware Shaper (IEEE 802.1Qbv) is introduced based on the
theory of time-triggered communication. However, the configu-
ration of Time-Aware Shaper requires expertise and is a time
consuming procedure.

We aim to automate this procedure reducing configuration
overhead. A novel graphical modeling is introduced which com-
bines the strengths of model-based and logic programming mod-
eling paradigms. Using the graphical editor, network topology,
dataflow based on a publisher and subscriber concept, and the
quality of service requirements are specified. Facts for a network
knowledge base are automatically derived from the model.

This knowledge base is used to generate constraints for sched-
ule synthesis. These constraints are solved using a Satisfiability
Modulo Theories solver to find a correct schedule. Moreover, we
exploit the solver’s capability of producing unsatisfiable cores and
use it for network model correction. We annotated all generated
schedule constraints and mapped them to the stream names to
track the unsatisfiable streams from the solver’s output.

We gained insightful results showing that this information
significantly helps to correct an unsatisfiable network model to
find a feasible schedule.

I. INTRODUCTION

Time-Sensitive Networking (TSN) [1] is a task group of
the Institute of Electrical and Electronics Engineers (IEEE)
which is developing new standards to support mixed-criticality
communication with tight timing requirements based on Eth-
ernet technology. These standards have recently raised the
attention of real-time domains such as automation and auto-
motive. To guarantee hard real-time requirements, Time-Aware
Shaper (TAS) standard (IEEE 802.1Qbv) is introduced based
on the theory of time-triggered communication. Using TAS
and based on the frames’ priority, frame queuing delays in
the egress ports are minimized. Gate Control List (GCL) is a
main component of TAS and contains a list of gate opening
times for all 8 priorities queues based on IEEE 802.1Q. Each
network port contains a GCL and it requires to be correctly
configured in order to give latency and jitter guarantees and
avoid deadline exceeding.

978-1-5090-6505-9/17/$31.00 ©2017 IEEE

Finding a feasible time-triggered schedule is a known NP-
complete problem [2]. To deal with this problem, timing
requirements are transformed to schedule constraints and pre-
pared for constraint solvers such as Satisfiability Modulo The-
ories (SMT) [2]-[4] or Integer Linear Programming (ILP) [5]
to find a feasible schedule for GCL configuration. To achieve
this transformation, information about e. g. frames and affected
egress ports in relation to their timing requirements have to
be extracted.

However, without an adequate network model, this trans-
formation is time-consuming especially at network design
time when repeated changes are expected. It also requires
expertise in the solver platform in order to obtain a correct
transformation.

Contributions: In this paper, we aim to automate the
GCL schedule synthesis to reduce the network configuration
overhead. (i) We introduce a model-driven approach including
a graphical editor to specify network topology, dataflow based
on a publisher and subscriber concept, and the quality of ser-
vice (QoS) requirements (following data-centric middleware
approaches (cf. [6], [7]). This editor can be used by real-time
application developers and network managers. (ii) We apply
logic programming as a modeling paradigm to transform the
designed graphical network model to a network knowledge
base. The network knowledge base is the basis of our network
query tool called TSN Declarative Network Manager (DNM).
Using adequate queries, schedule constraints are generated.
Moreover, developers and network managers can use DNM
to verify reliability requirements in the network. (iii) We
demonstrate our tool using an exemplary use case and show
how a generated unsatisfiable core (a feature of SMT solvers)
of a given network model helps to correct it and find a feasible
schedule.

Outline: The remainder of this paper is structured as
follows. First, we present the state-of-the-art in Section II, then
we propose the main contributions in Section III. Section IV
presents our case study and finally we conclude in Section V.

II. STATE-OF-THE-ART

Gomaa [8] presents a methodology to design real-time and
distributed applications, which integrates object-oriented, and
concurrency concepts by using the Unified Modeling Lan-
guage (UML) [9]. In [10], a graphical notation is introduced

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:17:00 UTC from IEEE Xplore. Restrictions apply.

to characterize the automotive software architecture and to
distribute processes and tasks on processors. In [11], a graph-
ical notation is developed to model Multicore Programmable
Logic Controllers (MPLC) in networked automation systems
to increase analyzability of these systems. MATLAB Simulink
and Stateflow [12] are graphical modeling and simulation tools
which are widely used in different research and industrial
fields such as in developing real-time and embedded systems.
SysML [13] is a graphical modeling language based on an
extended subset of UML. It is used for system engineering
and supports mechanisms for system design and verifica-
tion. Ptolemy [14] is an open-source platform supporting
experimentation with an actor-oriented design which offers a
graphical user interface to modify the models. MARTE [15] is
a UML profile and is applied for modeling real-time systems.
UPPAAL [16] is a tool box based on timed automata to support
modeling, simulation and verification of real-time systems. It
offers graphical and textual modeling tools.

In contrast to the mentioned modeling approaches, we
define a metamodel with a formal semantics based on logic
programming paradigm and use it in combination with the
graphical modeling tool to create and maintain a knowledge
base (in the sense of artificial intelligence) of network facts
and use them to configure and verify the network.

Logic programming is used as a platform for modeling
and verification of Cyber-Physical Systems (CPS) in [17]-
[19]. The motivation is to bridge between logic programming
and hybrid automata as the underlying model. Loo et al. [20]
propose a declarative networking modeling approach based on
logic programming language Datalog which is a subset of Pro-
log. This work is extended in [21] and used for declarative net-
work verification of e.g. routing protocols. A Datalog-based
declarative network management approach is proposed in [22].
Lopes et al. [23] show that Prolog is sufficiently expressive
and suitable for implementation of distributed protocols. In
contrast to our contribution, the mentioned approaches lack
on graphical modeling features.

Ontology-based approaches are applied for network man-
agement tasks [24]-[27]. Vergara et al. [28] review these
proposals regarding their advantages and shortcomings. The
paper claims, that ontology-based interoperability frameworks
can help to ease several tasks in the network management. It
helps network administrators towards automation of parts of
management tasks. In our previous work [29], an ontology-
based approach was proposed to improve the modeling and
plug-and-play capabilities of TSN. Describing network man-
agement policies such as firewall rules are proposed in [30]
and [31] to show the capabilities of ontology-based network
management. Martinez et al. [32] propose an ontology-based
information extraction system to fill the configuration gap
in hybrid Software-Defined Networks (SDN). One use case
is the formalization of switch and router configurations to
reduce the configuration overhead for administrators. In this
paper, we apply logic programming as reasoning engine and
replace the ontological visualization (cf. [29]) with a graphical
modeling approach (i) to improve the visual features of our

Object-Oriented Logic Programing
Metamodel Definitions Metamodel Definitions
@:

.®- :r): Model | Logical Fact
! Modeler 1t Instance 1 Generator

€ I~ Graphical Network
Real-time Application
TSN Declarative

Developer
Network Manager

Modeling

8
Automated Constraints
Generator

@ Network I
| Knowledge Base !

NKB Query Interface

' TSN
1 Inference Rules
1
1

|@_ Configurator (Solver)

1 o
Real-time Application | L . Network Property Verifier)
Developer or

TSN Manager

Configuration and Verification

Used by

R

Platform design-time

Interact with ——e

Created by ----= >

Fig. 1: Overview of the modeling approach

modeling tool including network topology and dataflow, and
(ii) to embed the graphical modeling tool directly into a
programming environment and use it for constraint generating
and solving. The mentioned advantages are missing in the
classical ontology tools such as Protégé [33].

Simulation-based approaches [34]-[38] are used to analyze
the performance of Audio Video Bridging (AVB) and time-
triggered Ethernet. They are very useful to gain an insight
in these technologies. However, they cannot cover all corner
cases and therefore are not suitable for formal verification
of critical requirements. To overcome this problem, formal
analysis methods such as in [39]-[41] are developed to verify
the performance of the TSN shapers. Both simulation-based
and formal methods do not deal with configuration challenges
of TSN such as schedule synthesis. The schedule synthesis of
time-triggered Ethernet is discussed in [2]-[5].

We use the theoretical contributions of these papers in our
modeling tool and combine them with the logic programming
approach towards automation of TSN configuration procedure
and simplified network verification. Moreover, we exploit the
solver’s capability of producing unsatisfiable cores and analyze
them in order to correct the network model.

III. APPROACH

As depicted in Figure 1, the modeling approach consists
of a metamodel which is used as a basis for the graphical
modeling tool to created graphical model instances. Applica-
tion developers or TSN managers use the graphical editor to
specify the dataflow and to annotate the QoS requirements
of the developing real-time applications. For instance, it can
be annotated that a specific application contains periodic data
transmission with tight timing constraints or it has reliability
requirements and therefore requires e.g. multiple disjoint
paths (cf. IEEE 802.1CB). The modeling tool is also used
to define the network topology and the physical properties of
the components.

Using a formal metamodel based on logic programming
and following our previous work [42], the graphical model

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:17:00 UTC from IEEE Xplore. Restrictions apply.

(.)portsource | | me

NetworkView 0.1] belongsTolink

(0.%] node I
(1..1] portTarget 0.4 port TSN i
0.4 link =]
r E o T stton
%] Node ink B B Por
0 T sion 20
> name : Estring 9 3
=) port
753, Domain
(] switeh || B estation Y]
) perodic Tope.
\~]

H Qos

© name: EString

(g o Tome

= na n all
size- it 1 e
*) publish
0.4) publishes 60 Relibilty Qos
e Publihes

[FailoperationalQos

uuuuuuuuu

] TimingQoS
© maxLatency : Int
© priority:Int

Fig. 2: Object-oriented metamodel of the network (left) and
the graphical modeling palette (right)

S numOfRedundantlinks :Int \ ‘ | PeriodicTopic

period : Int

instances are transformed into a knowledge base inside the
DNM. We use Prolog as a concrete implementation of logic
programming and transform the graphical network model
instance into Prolog facts. Moreover, we implemented Prolog
rules to use the advantages of logical inference to (i) query and
verify network properties such as required redundant disjoint
paths and (ii) query the required information from the network
model to generate time-triggered schedule constraints. Using
a Satisfiability Modulo Theories (SMT) solver, the constraints
are solved and it will be decided whether there is a feasible
schedule. The constraints can also be used for verification of
manually created schedules. The solver checks the schedule
and decides if all constraints (real-time requirements) are
fulfilled.

A. Graphical Modeling Tool

To define the object-oriented model of the network, we
use the Eclipse Modeling Framework (EMF)!. A network
model consists of a network view which contains all graphical
network components. A network node is either a switch or an
end-station. Nodes have at least one Ethernet port. Switches
and end-stations are connected through ports. A /ink connects
two nodes and has exactly one source and one target port.

A real-time application is presented as a domain. Each
domain contains one or more data fopics which are pub-
lished and consumed through ports within a domain. We
distinguish between a periodic topic and a sporadic topic.
The periodicity of the topics is highly relevant for schedule
synthesis. In contrast to periodic topics, the sporadic topics
have an attribute mininterval for minimum time between two
consecutive frames. This parameter is important for worst case
latency analysis of a sporadic frame.

Data topics with tight timing requirements have to be
periodic in order to be considered in the schedule synthe-
sis constraints in /[EEE 802.1Qbv. Each topic may contain
QoS requirements such as timing and fail-operational to
specify e.g. the number of required redundant links. The
metamodel and a palette of graphical modeling elements built
on top of it are presented in Figure 2.

To demonstrate the modeling tool, we used it to model
our in-vehicle automotive network example from [42]. The

Thttp://www.eclipse.org/modeling/emf/

[}

P headUnﬂ

LF audioAm|:vlifie|[‘H

Fig. 3: Modeling network topology using the graphical editor

example network consists of 5 TSN switches with each 8
ports. End-stations are connected to these switches and build
together the hardware topology as demonstrated in Figure 3.
The end-stations belong to different domains (applications).
The cameras are used in driver assistance system domain,
airbag sensors and actuators are involved in the real-time
airbag domain, and multimedia end-stations belong to the
entertainment domain. Having a closer look on the dataflow of

Soec

|mrmmm s e (o o L_.(Timi[i

i [e [

- - e

H H p airbagSensot

! ! Left ’i_/_')
(] T ——

1

1

i oooo
Wi

¥
D o
EX4
~@a
w
3
8
=3
|
8
Bl
£l
3

1 Ly
i ’iairba
f {f-.'airbagDomain : ﬁ
- ¥
I airb Lef{ [airb Right [’ airbagTrigge
Lol oo lle =)
L

Fig. 4: Modeling dataflow and QoS requirements using the
graphical editor

the airbag domain as depicted in Figure 4, airbagSensorRight
and airbagSensorLeft data topics are published by the sensors
and by ecu end-station. It controls the sensors’ data and
publishes airbagTrigger topic which is consumed by airbag
actuator. The QoS requirements are inside the topics. For
instance, airbagTrigger topic is a periodic topic and has both
timing and reliability requirements. The appropriate parameter
values such as period and size, etc. are entered textually in the
modeling tool (not demonstrated here).

B. Logic-Programming Metamodel

We use Prolog (SWI implementation), a well-known logic
programming language to define the formal metamodel of the
network knowledge base. Prolog is based on Horn clauses and
consists of facts and inference rules. Each rule has the form:
«:— B1,B2,...,B, which is equivalent to

BiABa A ANBp = «

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:17:00 UTC from IEEE Xplore. Restrictions apply.

In Prolog, « is called head and (31, B2, ..., By is the body of
the rule. The head is true if the body is true. Each § in the
body is a call to a predicate. The predicates in the body are
known as goals. They can be either a fact (a clause with empty
body) or a rule.

The whole knowledge base of a graphically modeled net-
work consists of facts. Rules are defined to be able to describe
logical relations between facts and rules. We use rules for
synthesis-related queries on the knowledge base in DNM.
Considering the example from Figure 4,

publishes (airbagSensorRight, airbagSensorRight_pl,
airbagbomain, airbagSensorRight) .

is a fact which describes that the end-station airbagSensor-
Right uses its Ethernet port airbagSensorRight_pl to publish
a data topic airbagSensorRight in the domain airbagDomain
domain and the following

firstPort (Domain, Topic,Port)
Topic) .

:— publishes(_,Port,Domain,

is a rule that declares that Port is the first egress port to
transmit Topic in Domain, if there is a fact publishes in the
knowledge base with the desired values. The query to find the
first egress port when publishing e. g. airbagTrigger topic is:

firstPort (airbagDomain, airbagTrigger,Port) .

|

and Prolog responds with Port=airbagSensorRight pl.

In the following, the formal semantics of facts are described.
Moreover, we present the inference rules which have been
developed to query the knowledge base regarding verification
and schedule synthesis.

1) Facts: The modeling clauses consist of the following
facts: topic, qos, publishes, consumes, end-station, switch,
and isLinked.

Let NODE denote the set of all network nodes consisting of
switches and end-stations denoted by the sets ESTATION and
SWITCH, respectively: NODE = SWITCHUESTATION. Moreover,
let PORT be the set of all Ethernet ports, which can be
connected using links, where LINK denotes the set of all links.
We denote with DOMAIN the set of all domains and with TOPIC
the set of all fopics.

For a better presentation, we also assume things to be named
(labeled) with strings by an injective function.

£: (NODE U LINK UDOMAIN U TOPIC) — STRING
where STRING is the set of all possible finite words.

Definition 1 (Network Topology). Let NV = (N, L, D) be
a network topology, where N C NODE is the set of nodes
of the network and L C P x P denotes the set of bi-
directional links between node ports, where P C PORT. Self-
loops are prohibited, i.e., V(p,p’) € L: p # p’. Moreover,
a port p can only be part of at most a single link, i.e.,
Hpe P|(p,p)e LV (p,p)e L} < 1. Each node has a
set of attached ports: ports: NODE — @(PORT). It holds that
each port is unique, i.e., Yn,n’ € N,n # n’: ports(n) N
ports(n’) = (. Switches and end-stations use Ethernet ports

to transmit or forward data topics embedded in Ethernet
frames. Moreover, let D C DOMAIN be the set of all network
domains. Each domain is assigned a set of topics T' C TOPIC:
topics: DOMAIN X p(TOPIC). Topics are injectively assigned to
domains, i.e., Vd,d' € D,d # d': topics(d) Ntopics(d’) = 0.

Commonly used topic types are periodic (per) and sporadic
(spo); the set of all topic types is referred to as TTYPE =
{per,spo}. Topic types are of importance for network config-
uration.

We derive facts from (i) the network topology (in particular
nodes and links), (ii) topics and quality of service attributes,
and (iii) published and consumed topics (w.r.t. data-centric
middleware). The derived facts are given next.

Definition 2 (Facts). (1) A switch fact f° is a pair (v, P)
where v € STRING denotes its name and P C PORT is the
set of the switch’s ports. Analogously, an end-station fact f¢
is defined as a tuple (v, P) where v € STRING denotes its
name and P C PORT is the set of the end-station’s ports.
(2) A link fact f'is a triple (p,p’,b) where (p,p’) € L and
be Nar is the link bandwidth. (3) A domain fact f9 is a pair
(v,T) where v € STRING denotes the name of domain d and
T = topics(d) is the set of owned topics. (4) A ropic fact
ftis a tuple (19,0t 7, p,0) where v, vt € STRING denote
the domain and topic name, respectively. The topic type is
denoted by 7 € TTYPE and its periodicity by p € NS‘ . Finally,
s N(J)r is the size of the topic. (5) A publishes fact fP and
a consumes fact f are both tuples (v", P, 9 vt) € STRING?
where V", 1P, 194, and vt denote the node, port, domain, and
topic names. (6) A Timing QoS fact f9 and Reliability QoS
fact f9" are defined as tuples f9 = (19,19, 1t w, 0) and f9"
(19,04 vt ¢) where v9, 19, 1t € STRING, w, 0, € NI denote
the QoS name, domain name, topic name, deadline, priority,
and number of redundant links. For periodic topics, we assume
w > p. Following IEEE 802.1Qbv with 8 priority classes, one
has 0 < p < 7.

Following, an excerpt of the facts from the automotive
example is presented which is generated from the graphical
model.

estation (airbagSensorRight, [esl_pl]).
isLinked (esl_pl, swl_pl, 1000000000).
topic (airbagDomain, airbagTrigger, periodic, 250
gosReliability(gl, airbagDomain, airbagSensorRight,
publishes (rightCam, es7_pl, adasDomain, rightCam) .
consumes (daCAM, es6_pl, adasDomain, rightCam).
switch (sw5, [sw5_pl, sw5_p2, sw5_p3, swS_p4, ..

400) .
2).

-1

2) Building the Network Knowledge Base: Using the before
defined logic programming metamodel, we transform the
graphical model instances of the network into the network
knowledge base (Prolog facts). A part of the transformation
algorithm is demonstrated in Algorithm 1. The graphical
model is analyzed to extract all periodic topics in the network
dataflow which are transformed into Prolog facts as a part of
the whole Network Knowledge Base (NKB). The automated
synthesis algorithms use NKB and inference rules to obtain
information required for generating stream constraints.

The generated NKB is also a powerful tool for verification

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:17:00 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Adding periodic topics to the knowledge base

Input: N = (N, L, D)
Output: NKB
1: for all d € D do
v4 < d.getName()
for all ¢ € topics(d) do
if periodic(t) then
vt « t.getName(), T < per
p t.getPeriod(), o + t.getSize()
fte (4t 7 p,0).
NKB.assertz(f*)
return NKB

>Network derived from the model
>Network knowledge base

W N

A

> Add f* to NKB
> Returns the updated NKB

of desired network properties. Using adequate queries, network
managers and application developers can for example verify
that there are at least two disjoint paths between two given
network nodes. Such a property is important if there are
fail-operational or redundancy requirements in the network.
In [42], an example for such a use case is presented.

It can also be used as a simple network database which
is used by the network managers or application developers
to obtain any information about the network architecture.
Such information is helpful when e.g. new applications are
developed or the network architecture has to be modified.

3) Inference Rules: We developed a set of inference rules
which relates the facts of the NKB and is used to extract
information from NKB or to verify e.g. network reliability
requirements. For instance, to make the isvrinked fact symmet-
ric, 1ink is defined as:

overlappingStreams (N1,D1,T1,P1,L1,N2,D2,T2,P2,L2, SharedEP)
:- streamFinder (N1,D1,T1,_,EP1l,_,P1,L1), streamFinder (
N2,D2,T2,_,EP2,_,P2,L2), Nl\== N2, listIntersect (EP1,
EP2, SharedEP) .

This way, we identify non-overlapping streams carrying these
topics where 1istintersect is a developed helper rule to find
the intersection of the egress port lists of each stream. Two
streams have to be non-overlapping if they share at least one
egress port. Using the rule alloverlappingStreams:

allOverlappingStreams (T1,T2,0ut) :- findall ({"domainl":
DStrl,"streaml":N1, "periodl":P1,"lengthl":L1l, "domain2":
DStr2, "stream2":N2, "period2":P2, "length2":L2}, (
overlappingStreams (N1,D1,T1,P1,L1,N2,D2,T2,P2,L2,_),
atom_string(D1,DStrl),atom_string(D2,DStr2)),0ut).

link (P1,P2,BW) :— isLinked (P1,P2,BW) .
link (P1,P2,BW) :— isLinked(P2,P1,BW) .

To find the involved end-stations, switches, and ports involved
in transmission of a topic, path is defined:

path(Start,End,Path) :- traveling(Start,End, [Start],Temp),
reverse (Temp, Path) .

where traveling and reverse are helper predicates. The rule
streanFinder finds all streams transporting a given topic and
extracts all involved ingress and egress ports on the streams’
paths. Network streams carry topics through the network.
Considering TAS, the egress ports are significant for schedule
synthesis of periodic streams. It is important to find out, which
periodicity p and data length o a periodic stream has. These
parameters are the basis for generating the stream schedule
constraints. The definition of streamFinder is:

streamFinder (Name, Domain, Topic,CL2,EP, IP,Period, Length) : -
firstPort (Domain, Topic,FirstP),lastPort (Domain, Topic,
LastP),path(FirstP,LastP,PL), removeSwitchDevice (PL,CL1)
, removeDevice (CL1,CL2) ,portClassifier (CL2, IP,EP),
generateStreamName (Name, Topic, FirstP, LastP),topic(
Domain, Topic,periodic,Period, Size),Length is Size+64.

where removeSwitchDevice, removeDevice, and portClassifier
are helper predicates. It checks for a given topic, all com-
munication paths from a publisher of the topic to its con-
sumers including all ingress and egress ports on these paths.
Each Ethernet frame has a minimum length of 64 Bytes. To
each given pair of two topics, we use overlappingStreams:

we collect all non-overlapping stream pairs in the network.
These rules are used in Algorithm 2 to extracted all required
input information to generate the constraints.

C. Constraint Generator for TSN Configuration

Using the NKB, schedule synthesis constraints are gen-
erated. The schedule of the periodic topics has to be non-
overlapping [3]. In Algorithm 2, we describe the procedure of
generating the non-overlapping constraints.

The required network facts are obtained using adequate
queries on KNB. Each topic f* is always carried by a stream
S* from publisher S*.pub to consumer S*.con end-stations.
Topics can be carried by multiple streams. The stream variable
for gate opening time S*.tas (Line 10) is added to the solver
which is desired for the configuration and has to be found
by the solver. To calculate the transmission delay, the stream
length is divided by the available bandwidth (Line 13). In
each network node, processing times are required to analyze
the packet headers, etc. The processing delay of each stream
depends on the number of hops (Line 16). The interpacket gap
delay of a specific stream is calculated using the number of
MTU-sized frames of a stream multiplied with the defined in-
terpacket gap « divided by the available bandwidth b (Line 18).

In [3]-[5], the gate opening times of a periodic stream are
different for each egress port on the path. In contrast, we
sum all relevant delays (Line 19) and keep the gate open
for the worst-case delay S*.® ;. This way, the S*.tas is the
same for all egress ports on the path. It reduces the number
of constraints but also reduces the bandwidth utilization.
The gate opening interval for a stream has to fit inside its
period (Line 20).

We extract all non-overlapping stream pairs using
alloverlappingstreams rule (Line 21). The non-overlapping
constraints are generated and asserted (Line 30). When all
constraints are generated and asserted to the solver context,
the solving process starts (Line 31) to find a correct con-
figuration (Line 32) or a proof that the constraints are not
satisfiable (Line 34).

We can also use the automated synthesis procedure for
timing verification of existing schedules. In this case, network
managers or application evaluate use their manually (or using
other tools) prepared schedule containing gate opening times
for all streams. They use the modeling tool to generate
schedule constrains and input the available gate opening times.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:17:00 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Periodic topics and non-overlapping constraints

1: SMT : Solver

2: lem(z, ') > Least Common Multiple of z,z’
3w > Interpacket gap
4. miu > Maximum transmission unit
5: Dproc > Switch processing delay
6: Dprop > Propagation delay
7. St > Stream carrying topic f*
g for all S* € N = (N,L,D) do

9: St.tas > Desired gate opening time variable of S*
10: SMT.assert(S*.tas) > Add variable to the solver
11: b > Available bandwidth
12: Dirans > Transmission delay
13: St.Dyrans — (S 5.7)

14: St.pub, S*t.con > Publisher and consumer of S*
15: St.hops > # of hops from S*.pub to S*.con
16: St proe = PprocSthops

17: St.@ipg > Interpacket gap delay
18 SR, S—t‘ﬂ + 1) .

19: Sty < SEDyrans ST hops + SEPproe + SEDjpg +

Pprop
20: SMT.assert (S*.tas > 0 A S*.tas < St.p — S*.®

21: NOS > List of all non-overlapping stream pairs
22: for all pair = {S}, S}, pair € NOS A S} # S} do

all)

23: U, {0 lom(sstips’))) 1}

24 U, {0 7lcm(ssf’s) g

25: for all ¢; € \I/Z,wj € ¥, do

26: = ((Qﬁlsztp + Sf.tas + S;F,@a” <
27: ¥;St.p+ St.tas) v

28: (’(/JjS;.p—‘,-S;.taS—i-S;.(I)all <
29: ¥iS;.p+ S;.tas))

30: SMT.assert ()

31: if SMT .check() == SAT then
32: C = SMT.model()

33: else

34: U = SMT .unsatCore()

> If constraints satisfied
> TAS Configuration

> Conflicting constraints

The SMT solver tries to satisfy the constraints using the input
data. If all constraints are satisfied, the manually generated
gate opening times are verified. If the solver is not able to
satisfy all constraint, it returns an unsatisfiable core indicating
which stream constraints are unsatisfiable. We exploited this
feature and demonstrate it in Section IV.

IV. CASE STUDY

The objectives of the case study are to demonstrate: (i) the
capability of the graphical modeling tool to synthesize a
correct schedule for TAS and (i) to show how it gives
feedback to developers and network managers to modify their
model to correct its design problems and achieve a correct
synthesized schedule.

We designed an exemplary network model which is pre-
sented in Figure 5. Two switches which 8 ports each connect
end-stations that are physically separated by the switches.

(€37 dom2 |

‘ &' &8 &' & t10 & 11 & 12

) L) L) C) C) o

Fesﬁ Fesa Fess Pesw Fesn Fesu

T

Wl W% W @Q Bl [Bed

({3dom1 |

A o
‘ &'t &'t '3 &' &2 t5 &2 t6

D eo L) D D D D

Fig. 5: Topology of the case-study

TABLE I: Stream properties and schedule synthesis results

Non-overlapping Length | First Gate Opening

‘Strcam with Domain | Topic | Publisher | Consumer | Period (ns) (Byte) Time (ns)
51 s9 dom1 t; es1_pi esy_p; 500.000 400 38.072
So 3 doml1 to es;_py €Ss_py 2.000.000 1000 0
3 doml t; eso_p; es;_p; 8.000.000 3000 0
8y dom1 ty ess_py es3_py 16.000.000 6000 8.103.096
55 dom2 t; es7_pi es;_p; 500.000 400 186.480
S dom?2 tro eSi1_pr es;_pi 100.000.000 5000 7.705.352
Sy dom?2 ty esy_py ess_py 500.000 400 0
ss 0:810: 812513 dom2 t; esi_p esi_p 500.000 400 167.608
59 k dom2 g ess_pi esip_pp 500.000 400 186.480
S10 dom?2 tg esg_py €Si2_P1 5.000.000 5000 0
811 85 59 dom2 to esg_p; esgo_p; 100.000.000 10000 99.205.352
S12 11,810, 89, s¢ dom2 ty esy_p; es;p_p; 100.000.000 5000 205.352
S13 56,85, 50,510, 511,812 dom2 . esy_p;r es;p_p; 100.000.000 5000 481.128
S1y 89 dom2 ts ess_pi esy_p; 500.000 400 0

Two domains are available which describe the communication
topics. Using the NKB, we extracted the 14 streams carrying
topics through the network. The details about streams, topics,
non-overlapping relations of the streams, and the synthesized
schedule are available in Table I. The stream’s gate open-
ing values are all in a correct range between 0 and the
streams’ periods. Streams {sg, ss, S7, 510,514} do not have
non-overlapping requirements and thus, have the same gate
opening time t = 0.

In our demonstration setup, we used a desktop PC with
an Intel Core i7 CPU and 4GB RAM. For the synthesis,
we used the SMT solver Z3 Version 4.5.0°. We use Gigabit
Ethernet in our models. We exploit the capability of SMT to
produce unsatisfiable core unsatCore, if no feasible schedule
is found. The unsatCore in our modeling use-case is a subset
of constraints whose conjunction is unsatisfiable. To facilitate
backtracking, we assigned an additional boolean variable to
each constraint. The name of these Boolean variables are
directly related to network stream names. This way, we are
able to check which constraints related to which streams are
unsatisfiable. To evaluate this approach, we designed three
scenarios. In scenario one and two, we add two new streams in
the model which we know that they are unsatisfiable together
and analyze the output of solver’s unsatCore. In scenario three,
we add five unsatisfiable streams and demonstrate how to
correct the model step-by-step using the unsatCore results.

Zhttps://github.com/Z3Prover/z3

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:17:00 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Step-by-step model correction using SMT’s unsatisfiable core

Length

Publisher (Byte)

New streams | Domain Topic Consumer Period (ns)

Model Correction Round 1

ns; dom1 s esia_p1 es;_p1 100.000.000 | 40000

Action [Resulting UNSAT_STREAMS | All constraints | UNSAT-CORE

nsg doml1 ts es5_pi1 ess_pi 100.000.000 | 40000 period of #5=20.000 ns s5 from (Table I), ns; ‘ 5706 ‘ 102
nsg dom1 t; es;_pg esy_pi1 500.000 400 Model Correction Round 2
nsy dom2 ts ess_pi1 esi_Pi1 500.000 400 Action ing UNSAT_STREAMS | All constraints | UNSAT-CORE

nss dom?2 tg esg_p1 es;_p1 5.000.000 5000

modify ns;: 85,87 from (Table I),
esya_p; 10 esg_p; (topic tg) nss

4628 4

All constraints UNSAT-CORE UNSAT_STREAMS

Model Correction Round 3

10252 402 nsy, s7 from (Table I)

Action | Resulting UNSAT_STREAMS | All constraints | UNSAT-CORE

route f5 to es;_p; and connect esyz_p; to the right switch | No | 0 | 0

A. Scenario 1

As depicted in Table III, two new streams ns; and nsg
are added into the network model (cf. Table I). The length
of nsg is 30000 Bytes and the period of ns; is 250us. The
time which is required to transmit nsy is near to the period
of ns;. This combination leads to unsatisfiability. Considering
the network model, these streams are isolated from the rest of
the network. For this scenario, 4032 constraints were generated
and the solver returned 4 streams in the unsatCore which are
all related to the new streams. This information is helpful to
modify the model e. g. reducing the length of ns, or increasing
the period of ns;.

B. Scenario 2

In this scenario and similar to scenario 1, we added two
unsatisfiable new streams which are not isolated anymore and
go through the two switches in the network (to esy). The
results, show that unsatCore contains an increased number
of 136 unsatisfiable constraints. Interestingly, all of these
constraints are directly related to the new added streams, while
stream 7, also has non-overlapping constraints with the newly
added streams. This information is as also very helpful to
correct the model. The details of this scenario are presented
in Table IV.

C. Scenario 3

In this scenario, we add five new challenging streams to
distribute unsatisfiable streams in the network. The details of
these streams are available in Table II. We want to show how
unsatCore helps to correct the model in order to obtain a
correct configuration. Two streams ns; and nsp have a length
of 40000 Bytes. High frequent streams nss and ns; have a
short period of 500us. The medium-sized stream nss has a
length of 5000 Bytes and a period of 5000us. For synthesis,
5706 constraints are generated. The result of the first execution
of the solver returns 102 unsatisfiable constraints all pointing
to mse and s-. In the first correction round, we decreased the
length of nsz to 20000 Bytes. The next execution of the solver
returned the same amount of unsatisfiable constraints but this
time pointing to the streams s5 and ns;. Because of the big
size of ns;, we modified it such that es;» sends data to esg
instead of to es;. The results show a significant decrease of
unsatisfiable constraints which are related to s5, the modified
nsy, and s7. In the final step, we modify the route of ¢5 to
es;_p; instead of to esg_p; and connect the physical port
esyz2_p; to the right switch avoiding compatition of ¢7 and t¢.
The last execution of the solver returned a correct schedule.
The details of the model correction steps are demonstrated
in Table II.

TABLE III: Isolated non-schedulable streams

New streams | Domain Topic Publisher Consumer Period (ns) %;;fg‘
ns; dom1 i 51 D1 56 D1 250.000 | 1500
nss dom1 te es5_p1 esg_P1 100.000.000 30000
All constraints UNSAT-CORE UNSAT_STREAMS
4032 4 nsy, NSy

TABLE IV: Cross-domain non-schedulable streams

Length

New streams | Domain Topic Publisher Consumer Period (ns) (Byte)
nsy dom1 ts es;_pl esy_pi 250.000 1500
nss dom1 te es5_pg €s7_Pi1 100.000.000 30000
All constraints UNSAT-CORE UNSAT_STREAMS
4444 136 nsy, NSz

D. Discussion of scalability

Because the presented synthesis problem is NP-complete,
it is necessary to mention the scalability limitations. We
observed that synthesis time increases when (i) the number
of streams increases, (ii) the difference of streams’ periods
increase (i.e., streams with long period length compete with
streams having short period length) and leads to expansion
of search space for a feasible schedule, and (iii) the stream’s
length increases and shrinks the solution space. The initial
observations are compatible with the findings in [3], [4]. We
observe that for up to 100 streams, the synthesis time remains
short (few seconds to 4 minutes). Adding more streams, this
time increases exponentially. We plan to extend our test cases
to achieve an empirical evaluation. The problem of long
synthesis times is discussed in [43].

V. CONCLUSION

To automate the procedure of time-triggered schedule syn-
thesis for Time-Sensitive Networking, a novel graphical mod-
eling tool is introduced which exploits object-oriented mod-
eling, logic programming, and Satisfiability Modulo Theories.
However, it is possible that the generated network models are
non-schedulable. We used the feature of generating unsatisfi-
able cores in SMT solvers, to construct helpful feedback to
correct non-schedulable network models step-by-step to find
a feasible schedule. We only considered the non-overlapping
requirements of time-triggered streams in this paper.

In a future work, we plan to extend the modeling tool in
order to increase the precision of the models by covering
more network details such as application level constraints.
Moreover, we plan to formulate and generate constraints for
peristaltic shaper of TSN (described in IEEE 802.1Qch —
Cyclic Queuing and Forwarding) using our graphical modeling
tool. In this case, only Algorithm 2 has to be modified and
the rest of the framework can be used without modifications.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:17:00 UTC from IEEE Xplore. Restrictions apply.

[1]
[2]

[3]

[4]

[5]

[6]

[8]

[9]
[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

Time-sensitive networking. (Date last accessed 10-April-2017). [Online].
Available: http://www.ieee802.org/1/pages/tsn.html

S. S. Craciunas and R. S. Oliver, “Combined task- and network-level
scheduling for distributed time-triggered systems,” Real-Time Systems,
vol. 52, no. 2, pp. 161-200, 2016.

W. Steiner, “An evaluation of smt-based schedule synthesis for time-
triggered multi-hop networks,” in 31st I[EEE Real-Time Systems Sympo-
sium, 2010, pp. 375-384.

S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner, “Scheduling
real-time communication in ieee 802.1gbv time sensitive networks,” in
Proc. of the 24th International Conference on Real-Time Networks and
Systems, ser. RTNS "16. ACM, 2016, pp. 183-192.

L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty, “Task- and
network-level schedule co-synthesis of ethernet-based time-triggered
systems,” in 19th Asia and South Pacific Design Automation Conference
(ASP-DAC), 2014, pp. 119-124.

Data distribution service. (Date last accessed 10-April-2017). [Online].
Available: http://www.omg.org/spec/DDS/

C. Buckl, M. Geisinger, D. Gulati, F. J. Ruiz-Bertol, and A. Knoll,
“Chromosome: a run-time environment for plug & play-capable embed-
ded real-time systems,” ACM SIGBED Review, vol. 11, no. 3, pp. 36-39,
2014.

H. Gomaa, “Designing concurrent, distributed, and real-time applications
with uml,” in IEEE Proc. of the 23rd International Conference on
Software Engineering, ser. ICSE ’01, 2001, pp. 737-738.

J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education, 2004.
F. Huber, B. Schitz, A. Schmidt, and K. Spies, AutoFocus — A tool for
distributed systems specification. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 467-470.

M. H. Farzaneh, S. Feldmann, C. Legat, J. Folmer, and B. Vogel-Heuser,
“Modeling multicore programmable logic controllers in networked au-
tomation systems,” in /[ECON 2013 - 39th Annual Conference of the
IEEE Industrial Electronics Society, 2013, pp. 4398-4403.

Stateflow. (Date last accessed 10-April-2017). [Online]. Available:
https://de.mathworks.com/products/stateflow.html/

T. Weilkiens, Systems engineering with SysML/UML: modeling, analy-
sis, design. Morgan Kaufmann, 2011.

J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity - the ptolemy
approach,” Proc. of the IEEE, vol. 91, no. 1, pp. 127-144, 2003.

F. Mallet and R. de Simone, “Marte: A profile for rt/e systems modeling,
analysis—and simulation?” in Proc. of the Ist International Conference
on Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, ser. Simutools ’08, 2008, pp. 43:1-43:8.

K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 1, no. 1,
pp. 134-152, 1997.

N. Saeedloei and G. Gupta, “A logic-based modeling and verification of
cps,” SIGBED Rev., vol. 8, no. 2, pp. 31-34, 2011.

G. Gupta and E. Pontelli, “A constraint-based approach for specification
and verification of real-time systems,” in Proc. Real-Time Systems
Symposium, 1997, pp. 230-239.

N. Saeedloei and G. Gupta, “A methodology for modeling and verifica-
tion of cyber-physical systems based on logic programming,” SIGBED
Rev., vol. 13, no. 2, pp. 34-42, 2016.

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and 1. Stoica, “Declarative
networking,” Commun. ACM, vol. 52, no. 11, pp. 87-95, 2009.

A. Wang, P. Basu, B. T. Loo, and O. Sokolsky, ‘“Declarative net-
work verification,” in International Symposium on Practical Aspects of
Declarative Languages. Springer, 2009, pp. 61-75.

T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proc. of the 1st ACM
Workshop on Research on Enterprise Networking, ser. WREN *09. New
York, NY, USA: ACM, 2009.

N. P. Lopes, J. A. Navarro, A. Rybalchenko, and A. Singh, “Applying
prolog to develop distributed systems,” Theory and Practice of Logic
Programming, vol. 10, no. 4-6, pp. 691-707, 2010.

A. Guerrero, V. A. Villagra, J. E. L. De Vergara, and J. Berrocal,

“Ontology-based integration of management behaviour and information
definitions using swrl and owl,” in Ambient Networks. Springer, 2005,

pp. 12-23.

[25]

[26]

(27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

S. Van der Meer, B. Jennings, D. O’Sullivan, D. Lewis, and N. Agoul-
mine, “Ontology based policy mobility for pervasive computing,” 2005.
J. Keeney, D. Lewis, D. O’Sullivan, A. Roelens, V. Wade, A. Boran,
and R. Richardson, “Runtime semantic interoperability for gathering
ontology-based network context,” in /0th IEEE/IFIP Network Opera-
tions and Management Symposium (NOMS), 2006, pp. 56-65.

P. Ray, N. Parameswaran, J. Strassner et al., “Ontology mapping for
the interoperability problem in network management,” IEEE Journal
on Selected Areas in Communications, vol. 23, no. 10, pp. 2058-2068,
2005.

J. E. L. De Vergara, A. Guerrero, V. A. Villagra, and J. Berro-
cal, “Ontology-based network management: study cases and lessons
learned,” Journal of Network and Systems Management, vol. 17, no. 3,
pp. 234-254, 2009.

M. H. Farzaneh and A. Knoll, “An ontology-based plug-and-play
approach for in-vehicle time-sensitive networking (tsn),” in [EEE 7th
Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), 2016.

A. K. Bandara, A. Kakas, E. C. Lupu, and A. Russo, “Using argumenta-
tion logic for firewall policy specification and analysis,” in Large Scale
Management of Distributed Systems. Springer, 2006, pp. 185-196.

T. Klie, F. Gebhard, and S. Fischer, “Towards automatic composition
of network management web services,” in /0th IFIP/IEEE International
Symposium on Integrated Network Management, 2007, pp. 769-772.
A. Martinez, M. Yannuzzi, J. Lopez de Vergara, R. Serral-Gracia,
and W. Ramirez, “An ontology-based information extraction system
for bridging the configuration gap in hybrid sdn environments,” in
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), 2015, pp. 441-449.

N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson, and
M. A. Musen, “Creating semantic web contents with protege-2000,”
IEEE intelligent systems, vol. 16, no. 2, pp. 60-71, 2001.

H. T. Lim, D. Herrscher, and F. Chaari, “Performance comparison of ieee
802.1q and ieee 802.1 avb in an ethernet-based in-vehicle network,” in
8th International Conference on Computing Technology and Information
Management (ICCM), vol. 1, 2012.

F. Reimann, S. Graf, F. Streit, M. Gla, and J. Teich, “Timing analysis
of ethernet avb-based automotive e/e architectures,” in IEEE 18th Con-
ference on Emerging Technologies Factory Automation (ETFA), 2013.
G. Alderisi, A. Caltabiano, G. Vasta, G. Tannizzotto, T. Steinbach, and
L. L. Bello, “Simulative assessments of icee 802.1 ethernet avb and
time-triggered ethernet for advanced driver assistance systems and in-
car infotainment,” in IEEE Vehicular Networking Conference (VNC),
2012, pp. 187-194.

P. Meyer, T. Steinbach, F. Korf, and T. C. Schmidt, “Extending ieee
802.1 avb with time-triggered scheduling: A simulation study of the
coexistence of synchronous and asynchronous traffic,” in IEEE Vehicular
Networking Conference, 2013, pp. 47-54.

T. Steinbach, H. T. Lim, F. Korf, T. C. Schmidt, D. Herrscher, and
A. Wolisz, “Beware of the hidden! how cross-traffic affects quality
assurances of competing real-time ethernet standards for in-car com-
munication,” in [EEE 40th Conference on Local Computer Networks
(LCN), 2015.

S. Thangamuthu, N. Concer, P. J. L. Cuijpers, and J. J. Lukkien,
“Analysis of ethernet-switch traffic shapers for in-vehicle networking
applications,” in Design, Automation Test in Europe Conference Exhibi-
tion (DATE), 2015, pp. 55-60.

D. Thiele, R. Ernst, and J. Diemer, “Formal worst-case timing analysis
of ethernet tsn’s time-aware and peristaltic shapers,” in /EEE Vehicular
Networking Conference (VNC), 2015, pp. 251-258.

D. Thiele and R. Ernst, “Formal worst-case performance analysis of
time-sensitive ethernet with frame preemption,” in IEEE 21st Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA), 2016.

M. H. Farzaneh, S. Shafaei, and A. Knoll, “Formally verifiable modeling
of in-vehicle time-sensitive networks (tsn) based on logic programming,”
in IEEE Vehicular Networking Conference (VNC), 2016.

F. Pozo, G. Rodriguez-Navas, H. Hansson, and W. Steiner, “Smt-based
synthesis of ttethernet schedules: A performance study,” in International
Symposium on Industrial Embedded Systems (SIES). 1EEE, 2015, pp.
1-4.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:17:00 UTC from IEEE Xplore. Restrictions apply.

