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Abstract— Zonotopes are a special subclass of polytopes,
which have several favorable properties: They can be rep-
resented in a compact way and they are closed under the
Minkowski sum as well as under linear transformations. Zono-
topes are a popular set representation used e.g. for reachability
analysis of dynamic systems, set-based observers and robust
control. The complexity of algorithms that work on zonotopes
strongly depends on their order (i.e. their number of generators
and dimensions), which is often increased by operations like
the Minkowski sum. Thus, to keep computations efficient,
zonotopes of high orders are often over-approximated as tight
as possible by zonotopes of smaller order. This paper has two
main contributions: First, we propose new methods based on
principle component analysis (PCA), clustering and constrained
optimization for tight over-approximation of zonotopes. Second,
we provide an overview of the most important known methods
for order reduction and compare the performance of new and
known methods in low- and high-dimensional spaces.

I. INTRODUCTION

Zonotopes are point-symmetric sets in n-dimensional
space that can be represented in a very compact way: A
zonotope Z is defined by a center c ∈ Rn and p generators
g(i) ∈ Rn, i ∈ {1, . . . , p} stored as columns of a matrix
G ∈ Rn×p as

Z = (c | G) :=

{
c+

p∑
i=1

βig
(i) : βi ∈ [−1, 1]

}
. (1)

Figure 1 illustrates the construction of a zonotope, con-
sisting of three 2-dimensional generators.
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Fig. 1. Construction of zonotope Z = (c | [g1, g2, g3]) according to (1)
by adding line segments: c⊕ l̂1 ⊕ l̂2 ⊕ l̂3, where l̂i = [−1, 1] · gi.

Zonotopes have the favorable property that they are closed
under the Minkowski sum. Thus, the sum of two zono-
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topes Z1 = (c1 | G1) and Z2 = (c2 | G2) is a zonotope
and can be computed as Z1⊕Z2 = (c1+c2 | [G1 G2]). Fur-
thermore, zonotopes are closed under linear transformations
AZ = (Ac | AG) [2], [23].

Due to these properties, zonotopes have become increas-
ingly popular in several areas. They are used to compute the
reachable states of dynamic systems for safety verification
[2], which is important in autonomous driving [5], human-
robot collaboration [26] and smart grids [3]. Other applica-
tions are rigorous state estimation of linear and nonlinear
systems [1], [12], [13], systems with uncertain parameters
[25], and state estimation for model predictive control [10],
[24]. Furthermore, zonotopes are used as a set representation
in automated theorem provers [22], as abstract domains
in abstract interpretation for static program analysis [19],
[17], and as bounding volumes for fast collision detection
algorithms [21].

In addition, zonotopes are studied in the field of compu-
tational geometry. They are associated with higher Bruhat
orders [14]. Zonotopes with large 2D-cuts are investigated
in [27]. A technique to approximate a zonoid by a zonotope
in fixed directions is presented in [11] and the problem of
approximating a ball by a Minkowski sum of segments with
equal length is addressed in [9]. An algorithm that solves the
fixed rank convex quadratic maximization in binary variables
by constructing parallel zonotopes is proposed in [15]. In [6]
coherence and enumeration of tilings of 3-zonotopes is
analyzed, while in [16], the problem of listing all extreme
points of a zonotope is studied.

The complexity of algorithms that work on zonotopes
depends and increases with the order of the zonotopes. The
order of a n-dimensional zonotope Z that is described by p
generators is ord(Z) = p

n . Operations like the Minkowski
sum that increase the order of a zonotope are repeatedly
used during reachability analysis, for example. Thus, to
keep computations efficient, Z is often over-approximated
by another zonotope Zred of smaller order: Z ⊆ Zred. It is
important that this over-approximation is as tight as possible
to ensure that reachability analysis still provides good results
[2], [28].

Currently, there are only a few methods known for order
reduction. We provide a short overview of these methods.
Furthermore, we propose new fast techniques for order
reduction, yielding in tight over-approximations especially
in spaces with more than two dimensions.

Subsequently, we focus on methods that over-approximate
a zonotope Z by another zonotope Zred of order 1. The
reason for this is that each method can be easily extended
to reduce to a higher order. This extension approach works



the same for all presented methods and is described for one
technique in section II-A [18]. Thus, reducing to order 1
most obviously illustrates the different performance of the
presented methods.

II. KNOWN ORDER REDUCTION METHODS

A. Box Method

The box method is a simple and fast technique for
over-approximating a zonotope Z = (c | G) =(
c | g(1), g(2), . . . , g(p)

)
by Zred. This reduction method sorts

the generators according to

||g(1)||1 − ||g(1)||∞ ≤ · · · ≤ ||g(p)||1 − ||g(p)||∞ (2)

where ||g(i)||1 =
∑n
k=1 |g

(i)
k | is the L1-norm and ||g(i)||∞ =

max
k
|g(i)k | is the infinity norm [18]. The value g

(i)
k , i ∈

{1, . . . , p}, k ∈ {1, . . . , n} refers to the k-th element of the
i-th generator of G (Gik). If the order of the desired over-
approximating zonotope Zred is greater than 1, Z is split
into two zonotopes Z1 =

(
0n | g(1), . . . , g(q)

)
and Z2 =(

c | g(q+1), . . . , g(p)
)
, such that Z1 contains the smallest q

and Z2 contains the largest (ord(Z)− 1)n generators (with
respect to (2), where 0n is a vector of n zeros). Z1 is
over-approximated by any of the methods presented in the
following. One possibility to over-approximate Z1 is by
computing its interval hull as proposed by Kühn in [23]:

IH(Z1) := [c− δg, c+ δg], δg =

q∑
i=1

|g(i)|. (3)

The reduced zonotope Zred is the Minkowski sum of Z1 and
Z2:

Zred = Z1 ⊕ Z2 =
(
c |
[
diag (δg) , g(q+1), . . . , g(p)

])
,

(4)

where diag (δg) returns a diagonal matrix with δg as diago-
nal elements.

A variant heuristic to sort the generators before splitting

is by using the L2-norm ||g(i)||2 =

√∑n
k=1

(
g
(i)
k

)2
as

proposed in [12].

B. The Transformation Method

Another order reduction method which over-approximates
a zonotope Z by a parallelotope, i.e. a zonotope of order 1, is
proposed by Althoff in [2]. The approach is based on the idea
of linearly transforming a zonotope Z by a transformation
matrix A such that its shape becomes similar to a box (i.e.
an axes-aligned parallelotope). The transformed zonotope
is over-approximated by its box-shaped interval hull. Then,
the interval hull is transformed back into the original space
to obtain an over-approximating parallelotope Zred = A ·
IH(A−1Z) as illustrated in Figure 2. The most challenging
part of this approach is to find a linear transformation
matrix A that transforms Z into a box-like zonotope.

The transformation method as proposed in [2] uses a
subset of n generators of the original zonotope Z as
transformation matrix. This choice of A ensures that the

IH(A−1Z) A IH(A−1Z)

Fig. 2. Over-approximation of zonotope Z (blue) of order 2 by Zred

(magenta) of order 1 using the transformation method [2].

reduced zonotope touches the facets of the original zonotope.
The suggested methods in [2] for choosing this subset of
generators are:

• The method ExSey uses a parameter y ∈ {n, . . . , p}
and performs an exhaustive search among the y longest
generators (according to the L2-norm) of Z to find the
combination of generators that results in Zred with the
smallest volume. The number of possible combinations
is
(
y
n

)
and thus in O(yn) (see Algorithm 1) [2].

• The method NSey,z uses two parameters y ∈ {n, . . . , p}
and z ∈ {n, . . . , y}. NSey,z normalizes the generator
matrix G: For each dimension i ∈ {1, . . . , n}, the
length leni of the interval in which all values Gik
(k ∈ {1, . . . , p}) are located is computed. Then each
value Gik is divided by the corresponding leni. Next, it
determines the y longest generators according to their
L2-norm. Among these y generators, the z combina-
tions that maximize |det

(
g(i1), . . . , g(in)

)
| are chosen.

Thereafter, an exhaustive search for the best combina-
tion of generators on the selected z combinations is
performed. Each generator of the final combination is
normalized (divided by its L2-norm) [4].

Algorithm 1: Over-approximation by ExSey , see [2]

Input: Zonotope Z = (c | G), y ∈ N
Output: Zonotope Zred

1 Select the longest n+ y generators of Z: Gy
2 for all possile matrices A containing n columns of Gy

do
3 Zcand = A · IH

(
A−1Zcand

)
4 if volume (Zcand) < volume (Zred) then
5 Zred = Zcand

6 end
7 end

III. NEW ORDER REDUCTION METHODS

In this section, we describe new methods to over-
approximate a zonotope Z of order greater than 1 by a
zonotope Zred of order 1. These methods can be extended to
reduce Z to a zonotope of higher order than 1 as described
in section II-A for the box method.

The first and second technique (principle component anal-
ysis and line clustering) are based on the transformation



method and propose new and efficient approaches to de-
termine a transformation matrix A. Finding such a ma-
trix A that transforms Z into a box-like zonotope is the
most challenging part of this order reduction approach. The
third and fourth method (direct constrained optimization and
SVD-based constrained optimization) directly compute the
generator matrix of the reduced zonotope. The evaluation
and performance of all methods are discussed in section IV.

A. Principle Component Analysis (PCA)

A n-dimensional zonotope Z = (c | G) that is de-
scribed by p > n generators can be imagined as the
mapping of a p-dimensional hypercube to n-dimensions.
Over-approximating Z by Zred can be considered as a reduc-
tion problem, i.e. describing the mapped high-dimensional
hypercube by n-generators such that the covariance between
the new generators is zero (as detailed below).

A well known solution for such reduction problems is
principle component analysis (PCA), which we employ to
find a transformation matrix as shown in Algorithm 2.

Algorithm 2: Over-approximation by PCA

Input: Zonotope Z = (c | G)
Output: Zonotope Zred

1 X = [G −G]T
2 Covariance: Co = XTX
3 Decomposition: USV T = Co
4 Zred = U · IH

(
UTZ

)
First, we computed a generator matrix X (line 1) such

that the mean vector over X is
−
x =

2p∑
i=1

x(i) = 0n.

Then we compute the covariance Co between the generators
of X (line 2) and decompose Co using singular value
decomposition (SVD, line 3). The n most important, linear
independent directions are the eigenvectors that correspond
to the n largest eigenvalues of the covariance matrix, i.e. the
columns of U . Thus, we use U as the transformation matrix.
As U is orthogonal (U−1 = UT ), the computation of Zred

does not require a possibly time-consuming or numerically
instable matrix inversion anymore (line 4). This makes the
PCA-based reduction technique fast, numerically stable and
applicable to high-dimensional zonotopes of any order.

B. Line Clustering (LineCl)

Another quite intuitive way to determine a transformation
matrix A is clustering. Clustering groups the p generators of
zonotope Z = (c | G) into n groups (clusters) and computes
a representative vector for each cluster (see Figure 3). These
representative vectors are used as columns of the transfor-
mation matrix.

We consider two generators as similar if they point in
the same direction or in the opposite direction, because a
zonotope Z = (c | G) is point-symmetric with respect to c.
Thus, each generator g ∈ G can be replaced by −g without
changing Z.

l1

l2
c

Cluster 1

Cluster 2

Fig. 3. Clustering of 6 generators into 2 clusters (dotted blue and dashed
magenta), each represented by a vector: l1 and l2 (dotted and dashed gray-
black)

Considering these similarities, we propose to represent
a cluster k by a line that runs through the center of the
zonotope. Such a line can be described by an aligned
vector lk (see Figure 3). The distance between the line
represented by lk and a generator g is computed as the
orthogonal distance between the endpoint of g and the line
represented by lk (as illustrated in Figure 4):

d(lk, g) =

∥∥∥∥g − lTk g

‖lk‖2
lk

∥∥∥∥
2

(5)

This distance depends on the angle between lk and g and
on the length of g.
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c

Fig. 4. Minimizing the distance of a vector from a line is equivalent to
maximizing the length of its projection on the line.

For each cluster k we want to compute a representative line
described by a vector lk. This vector is computed such that
it minimizes the sum of squared distances between the line it
represents and the generators that are assigned to cluster k.

To this end, we show that minimizing the distance between
a generator g and a line segment, as defined in (5), is
equivalent to maximizing the length of the projection of g on
the line: Let g = g||+g⊥, where g‖ is the projection of g on
the line and g⊥ is orthogonal to the line (see Figure 4). Due
to the Pythagorean theorem |g|2 = |g|||2+ |g⊥|2 and the fact
that the length of g is constant, it follows that minimizing the
length of g⊥ is equivalent to maximizing the length of g||.

This maximization problem is well known and can be
solved by using singular value decomposition (SVD): The
vector lk describing the desired line for cluster k is the
eigenvector that corresponds to the largest eigenvalue of Gk
(where the columns of Gk are the generators of cluster k)
and lk is the first column of Uk [8, p. 38ff, chapter 3]:

Gk = UkSkV
T
k

lk = Uk · eT1
(6)



where e1 is the unit vector with a 1 at position 1.
To over-approximate a zonotope Z = (c | G) by clustering

we use Algorithm 3 (LineCl), which is based on algorithms
for K-means [7, p. 423ff, chapter 9].

Algorithm 3: Over-approximation by LineCl

Input: Zonotope Z = (c | G), ξ > 0, no. of runs r
Output: Zonotope Zred

1 for t = 1 : r do
2 Initialize L ∈ Rn×n using n randomly selected

columns of G ∈ Rn×p
3 while ||L− Lold||2 > ξ do
4 Assignment:
5 for Generator g of Z do
6 g is in cluster argmin

k
d(lk, g), see eq. (5)

7 end
8 Update cluster representatives:
9 Columns lk of L, see eq. (6)

10 Lold = L
11 end
12 Length assignment:

lk = lk
1

no generators in cluster k

∑
g∈cluster k |g|

13 Zcand = (c | L · IH(L−1Z))
14 if V (Zcand) < V (Zmin), see eq. (7) then
15 Lmin = L
16 Zmin = Zcand

17 end
18 end
19 Zred = Lmin · IH

(
L−1minZ

)
We initialize the cluster representatives using n randomly

selected generators of G and store them as columns of
matrix L (line 2). The random initialization of cluster rep-
resentatives can lead to non-reproducible results, thus we
do the same as the classical Kmeans algorithm: We run
algorithm 3 several times and keep the best result. Then, we
repeat the assignment and update step of Algorithm 3 until
achieving convergence, i.e. until the cluster representatives
do not change any more: First, each generator g is assigned to
the cluster from which representative it has minimal distance
(line 6). Second, the cluster representatives are recomputed
according to (6) (line 10). When Algorithm 3 has converged,
we assign each vector lk a length (line 12). After each run
of Algorithm 3, the volume [20] of the current reduced
candidate zonotope Zcand = (c | Gcand) = L · IH(c | L−1Z)
is computed (line 14):

V (Zcand) = 2n|det(Gcand)| (7)

Finally, the transformation matrix Lmin that leads to Zmin

with minimal volume is used to compute the over-
approximating zonotope Zred (line 19).

C. HybridPC

In addition, we have implemented a hybrid technique con-
sisting of LineCl (line clustering) and PCA, called HybridPC.

HybridPC executes both methods, evaluates the volume of
the obtained reduced zonotope Zred and returns Zred with
minimal volume.

We combined these two techniques because their strengths
complement each other: In most cases LineCl yields tight
over-approximations. However, there are some rare cases
in which it returns unnecessarily large over-approximations.
PCA-based over-approximation is robust, i.e. shows a con-
stantly good performance but does not return the tightest
possible over-approximation.

D. Constrained Optimization

Another way to over-approximate a zonotope Z by a
zonotope Zred of smaller order is to formulate this problem
as a constrained optimization problem.

1) Direct Optimization (CoOptdir): We want to obtain a
tight over-approximation of a zonotope Z = (c | G), G ∈
Rn×p by Zred = (c | C), C ∈ Rn×n. To this end, we need
to compute the generator matrix C. To ensure that Zred is
as tight as possible, we compute C by minimizing over the
volume [20] of Zred:

argmin
C

V (Zred) = argmin
C

2n|det(C)| = argmin
C

|det(C)|.

(8)

Zred must be an over-approximation of Z, i.e. Z ⊆ Zred.
If we transform both zonotopes by C−1 and use that the
identity matrix In is the generator matrix of an axis-aligned
box:

C−1Zred =
(
C−1c | C−1C

)
=
(
C−1c | In

)
= IH

(
C−1c | In

)
= IH

(
C−1Zred

) (9)

As C−1Z ⊆ IH
(
C−1Z

)
and zonotopes are closed un-

der linear transformations it holds that if IH
(
C−1Z

)
⊆

IH
(
C−1Zred

)
then Z ⊆ Zred. Thus, the constraint Z ⊆ Zred

can be encoded by:

IH
(
C−1c | C−1G

)
⊆ IH

(
C−1c | In

)
⇒ ∀i ∈ {1, . . . , n} :

p∑
j=1

|C−1G|ij ≤ 1
(10)

where we assume that both zonotopes have the same origin.
The problem of computing an over-approximating zono-
tope Zred = (c | C) of Z = (c | G) by minimizing
argmin

C
V (Zred) (equation 8) subject to Z ⊆ Zred (equa-

tion 10) is a constrained non-linear optimization problem.
We solve this problem using the MATLAB fmincon solver
and the interior-point algorithm. As an initial solution of
the optimization, we use the zonotope obtained by over-
approximating Z by the PCA-based method described in
section III-A.

2) SVD-Based Optimization (CoOptSVD): A disadvan-
tage of CoOptdir is that we need to compute the inverse
of the generator matrix for initialization and to obtain the
generator matrix of the over-approximation zonotope Zred.
This might become numerically instable in some cases.
Thus, we propose a SVD-based optimization method that
we call CoOptSVD, which does not need to invert matrices.



CoOptSVD initializes the generator matrix C ∈ Rn×n
of Zred using PCA. Then it decomposes it through SVD:
USV T = C where U and V are orthogonal and S is a
diagonal matrix. We still compute C by minimizing over the
volume, as shown below:

argmin
C

V (Zred) = argmin
C

2n|det(C)|

= argmin
C

|det(USV T )|

= argmin
S

n∑
i=1

ln(|Sii|)

(11)

We exploit the facts that det(AB) = det(A) det(B) and
U , V are orthogonal, which means that their determinants
are ±1. Furthermore, minimizing a function is equivalent to
minimizing the logarithm of this function. The inverse of C
can be computed using the fact that U and V are orthogonal
(U−1 = UT and V −1 = V T ) and S is diagonal (S−1 =
diag(s11, s22, . . . snn)

−1 = diag( 1
s11
, 1
s22
, . . . , 1

snn
)):

C−1 = (USV T )−1

=
(
V T
)−1

diag(s11, s22, . . . snn)
−1 (UT )−1

= V diag

(
1

s11
,
1

s22
, . . . ,

1

snn

)
UT

(12)

Thus, we do not need to invert matrices which makes this
optimization method numerically stable. The constraints of
this optimization problem are

UTU = In and V TV = In,

IH

(
0n | V diag

(
1

s11
,
1

s22
, . . . ,

1

snn

)
UTG

)
⊆ IH (0n | In)

⇒ ∀i ∈ {1, . . . , n} :
p∑
j=1

∣∣∣∣V diag

(
1

s11
, . . . ,

1

snn

)
UTG

∣∣∣∣
ij

≤ 1.

(13)

We solve this constrained non-linear optimization problem
as shown in Algorithm 4, using the MATLAB fmincon solver
and the interior-point algorithm.

Algorithm 4: Over-approximation by CoOptSVD

Input: Zonotope Z = (c | G), G ∈ Rn×p
Output: Zonotope Zred = (c | C), C ∈ Rn×n

1 Initialize C using Algorithm 2
2 Decomposition: C = USV T

3 while not converged do
4 Minimize: argmin

C
V (Zred) (11) Subject to: (13)

5 end
6 Compute USV T = C
7 Zred = (c | C)

IV. COMPARISON OF ORDER REDUCTION METHODS

To evaluate the performance of the presented methods,
we have implemented all techniques described above in
MATLAB as part of the CORA toolbox [4].

A. Random Zonotope Generation and Performance Measure

A random zonotope with p n-dimensional generators is
obtained by sampling p independent generators. To obtain
a generator g, its endpoint is sampled from points that are
uniformly distributed on a unit hypersphere. To this end x

||x||2
is computed, where x ∈ Rn is a random variable with normal
distribution. The direction v of the generator g is obtained
by the vector pointing from the origin of the hypersphere
to the sampled endpoint. The length l of the generator is
sampled from a uniform, Gaussian or Gamma distribution in
the interval [0, 100]. The generator is given by g = lv.

To measure tightness of the over-approximation, we use
the volume ratio of the original zonotope Z and its over-

approximation Zred: R =
(
V (Zred)
V (Z)

) 1
n

as proposed in [2].
The smaller this ratio, the tighter is the over-approximation.
For medium and high dimensions or orders of Z, V (Z) is

not computable anymore, and we use RG =
(
V (Zred)
V (ZG)

) 1
n

as
a tightness measure, where ZG (of order 1) is obtained by
over-approximating Z using the box method. Thus, RG can
be smaller than 1.

B. Performance of Order Reduction Methods

All experiments are run in MATLAB (version R2016b,
with a memory limit of 10 GB) on a laptop with an Intel
i7 CPU with 2.5 GHz and 16 GB of RAM running Ubuntu
16.04.

For each combination of dimension and order, we eval-
uate the performance of all techniques described above on
100 randomly sampled zonotopes, as long as the technique
finishes in reasonable time and does not require more than
10 GB of memory. Sampling zonotopes from a uniform,
Gaussian or Gamma distribution has a small influence on
the performance of the methods. The box method performs
best on zonotopes sampled from a uniform distribution. The
other methods result in slightly tighter over-approximations
if the zonotope was sampled from a Gaussian or Gamma
distribution than from a uniform distribution. From now
on, only the results for zonotopes sampled from a uniform
distribution are shown. The most important results in low-
(n < 10), medium- (10 ≤ n ≤ 20) and high-dimensional
spaces (n ≥ 20) are summarized in Table I and Figure IV-B.

1) Box Method: The box method is fast, robust and on
average results in over-approximations of 1 up to 2 times the
original volume in low dimensions.

2) Transformation Method: The exhaustive search trans-
formation methods (ExSey and NSey,z) have been run on all
generators (y = all, ExSeAll), on the y = n + 8 longest
generators and z = n + 3 combinations (ExSe8, NSe8,3
where n is the number of dimensions). ExSeAll leads to tight
over-approximations, but the time needed to determine the
transformation matrix is in O((n ·ord(Z))n) (see Figure IV-
B, first line, second column). Thus, this method can only be
used to over-approximate zonotopes of small orders in low
dimensions. In the low dimensional space, ExSe8 and NSe8,3
lead to similarly tight over-approximations as ExSeAll does,
but need less time to determine the transformation matrix. On



TABLE I

PERFORMANCE OF ORDER REDUCTION METHODS. THE MEAN, MEDIAN AND MAX VALUE REFER TO R =
(

V (Zred)
V (Z)

) 1
n

OR RG =
(

V (Zred)
V (ZG)

) 1
n

AND RUNTIME IS GIVEN IN SECONDS AND IS SET TO ε IF < 0.0005. BEST VALUES ARE SHOWN IN BLUE.

R Distr.: uniform, Dim.: 3, Order: 2 Distr.: uniform, Dim.: 3, Order: 4 Distr.: uniform, Dim.: 3, Order: 6
Method Mean Median Max Std. Time Mean Median Max Std. Time Mean Median Max Std. Time
Box 1.647 1.576 2.507 0.248 ε 1.387 1.376 1.827 0.088 ε 1.329 1.331 1.509 0.053 ε
ExSeAll 1.099 1.092 1.208 0.044 0.007 1.158 1.162 1.241 0.027 0.062 1.178 1.181 1.222 0.022 0.215
ExSe8 1.099 1.092 1.208 0.044 0.006 1.159 1.162 1.241 0.028 0.046 1.181 1.182 1.231 0.023 0.044
NexSe8 1.099 1.092 1.208 0.044 0.002 1.166 1.166 1.251 0.033 0.003 1.192 1.194 1.291 0.03 0.003
PCA 1.374 1.375 1.552 0.079 ε 1.302 1.301 1.427 0.048 ε 1.283 1.282 1.362 0.033 ε
LineCl 1.302 1.209 4.412 0.371 0.081 1.276 1.228 2.226 0.169 0.084 1.315 1.238 3.177 0.299 0.087
HybridPC 1.206 1.193 1.46 0.107 0.081 1.234 1.229 1.427 0.059 0.084 1.24 1.239 1.362 0.044 0.087
CoOptdir 1.122 1.099 2.189 0.127 0.504 1.289 1.153 5.035 0.629 0.652 1.203 1.177 2.79 0.178 0.526
CoOptSVD 1.249 1.218 1.515 0.105 1.252 1.234 1.221 1.392 0.064 1.339 1.228 1.219 1.338 0.048 1.112
R Distr.: uniform, Dim.: 6, Order: 2 Distr.: uniform, Dim.: 6, Order: 4 Distr.: uniform, Dim.: 6, Order: 6
Method Mean Median Max Std. Time Mean Median Max Std. Time Mean Median Max Std. Time
Box 2.108 2.09 2.669 0.153 ε 1.747 1.744 1.876 0.057 ε 1.666 1.665 1.819 0.042 ε
ExSeAll 1.258 1.263 1.371 0.061 0.267 1.401 1.403 1.467 0.032 38.418 1.446 1.449 1.488 0.022 555.627
ExSe8 1.258 1.263 1.371 0.061 0.264 1.411 1.415 1.502 0.036 0.865 1.487 1.484 1.638 0.044 0.866
NexSe8 1.26 1.265 1.407 0.062 0.007 1.418 1.419 1.548 0.042 0.017 1.495 1.493 1.624 0.045 0.017
PCA 1.708 1.712 1.851 0.063 ε 1.619 1.618 1.706 0.043 0.001 1.586 1.585 1.65 0.026 0.001
LineCl 1.903 1.746 4.341 0.58 0.144 2.035 1.898 4.311 0.562 0.163 2.472 1.932 21.792 2.218 0.179
HybridPC 1.615 1.66 1.83 0.137 0.144 1.606 1.612 1.706 0.052 0.164 1.579 1.579 1.65 0.035 0.18
CoOptdir 1.333 1.32 1.803 0.096 3.976 1.354 1.352 1.46 0.035 3.641 1.389 1.387 1.446 0.025 3.407
CoOptSVD 1.48 1.449 1.798 0.153 7.421 1.419 1.396 1.678 0.083 8.369 1.424 1.405 1.65 0.068 8.476

RG Distr.: uniform, Dim.: 10, Order: 5 Distr.: uniform, Dim.: 10, Order: 10 Distr.: uniform, Dim.: 10, Order: 15
Method Mean Median Max Std. Time Mean Median Max Std. Time Mean Median Max Std. Time
Box 1.0 1.0 1.0 0.0 ε 1.0 1.0 1.0 0.0 ε 1.0 1.0 1.0 0.0 ε
ExSe8 0.894 0.896 0.976 0.034 14.733 1.052 1.045 1.335 0.053 16.015 1.107 1.098 1.278 0.047 14.697
NexSe8 0.897 0.898 1.027 0.037 0.243 1.059 1.055 1.232 0.049 0.263 1.119 1.104 1.494 0.072 0.243
PCA 0.933 0.933 0.98 0.019 0.001 0.969 0.968 1.003 0.014 0.001 0.978 0.978 1.003 0.012 0.001
LineCl 1.778 1.56 6.724 0.924 0.306 2.035 1.589 22.59 2.262 0.417 1.837 1.559 14.563 1.46 0.443
HybridPC 0.933 0.933 0.98 0.019 0.304 0.969 0.968 1.003 0.014 0.416 0.978 0.978 1.003 0.012 0.443
CoOptdir 0.847 0.847 0.899 0.019 10.811 0.899 0.898 0.938 0.015 15.455 0.922 0.922 0.951 0.011 16.576
CoOptSVD 0.798 0.792 0.967 0.032 28.985 0.907 0.881 0.996 0.05 25.524 0.907 0.903 0.985 0.021 26.692
RG Distr.: uniform, Dim.: 15, Order: 5 Distr.: uniform, Dim.: 15, Order: 10 Distr.: uniform, Dim.: 15, Order: 15
Method Mean Median Max Std. Time Mean Median Max Std. Time Mean Median Max Std. Time
Box 1.0 1.0 1.0 0.0 ε 1.0 1.0 1.0 0.0 ε 1.0 1.0 1.0 0.0 ε
ExSe8 0.956 0.951 1.094 0.044 295.49 1.148 1.141 1.319 0.055 355.923 1.232 1.215 1.452 0.062 288.544
NexSe8 0.97 0.957 1.163 0.057 3.843 1.154 1.147 1.311 0.055 4.056 1.246 1.237 1.509 0.073 3.72
PCA 0.93 0.93 0.962 0.015 0.001 0.968 0.967 1.006 0.01 0.001 0.978 0.978 0.998 0.008 0.001
LineCl 2.409 1.882 25.774 2.745 0.459 2.235 1.978 7.736 0.952 0.93 2.955 1.998 43.52 4.519 0.895
HybridPC 0.93 0.93 0.962 0.015 0.464 0.968 0.967 1.006 0.01 0.924 0.978 0.978 0.998 0.008 0.946
CoOptdir 0.848 0.848 0.884 0.013 24.459 0.896 0.894 0.921 0.011 35.235 0.915 0.915 0.94 0.009 31.141
CoOptSVD 0.823 0.819 0.924 0.03 58.112 0.953 0.958 1.094 0.03 78.255 0.977 0.974 1.127 0.027 67.467
RG Distr.: uniform, Dim.: 15, Order: 50 Distr.: uniform, Dim.: 15, Order: 100 Distr.: uniform, Dim.: 15, Order: 300
Method Mean Median Max Std. Time Mean Median Max Std. Time Mean Median Max Std. Time
Box 1.0 1.0 1.0 0.0 0.001 1.0 1.0 1.0 0.0 0.001 1.0 1.0 1.0 0.0 0.001
PCA 0.994 0.993 1.003 0.004 0.004 0.997 0.997 1.004 0.003 0.007 0.999 0.999 1.002 0.002 0.041
LineCl 2.257 1.715 12.39 1.76 2.032 1.715 1.475 5.496 0.715 2.687 1.513 1.115 12.791 1.393 6.253
HybridPC 0.994 0.993 1.003 0.004 2.043 0.997 0.997 1.004 0.003 2.773 0.999 0.999 1.002 0.002 6.515
CoOptdir 0.962 0.962 0.981 0.006 49.344 0.976 0.976 0.993 0.005 49.154 0.99 0.99 0.997 0.003 63.939
RG Distr.: uniform, Dim.: 45, Order: 10 Distr.: uniform, Dim.: 45, Order: 15 Distr.: uniform, Dim.: 45, Order: 30
Method Mean Median Max Std. Time Mean Median Max Std. Time Mean Median Max Std. Time
Box 1.0 1.0 1.0 0.0 0.001 1.0 1.0 1.0 0.0 ε 1.0 1.0 1.0 0.0 0.001
PCA 0.925 0.926 0.935 0.005 0.004 0.963 0.963 0.973 0.004 0.004 0.976 0.976 0.982 0.002 0.006
RG Distr.: uniform, Dim.: 60, Order: 10 Distr.: uniform, Dim.: 60, Order: 15 Distr.: uniform, Dim.: 60, Order: 30
Method Mean Median Max Std. Time Mean Median Max Std. Time Mean Median Max Std. Time
Box 1.0 1.0 1.0 0.0 ε 1.0 1.0 1.0 0.0 0.001 1.0 1.0 1.0 0.0 0.001
PCA 0.924 0.924 0.936 0.004 0.004 0.963 0.963 0.972 0.003 0.005 0.976 0.976 0.98 0.002 0.006

zonotopes of medium order in medium dimensional spaces,
the over-approximations computed by ExSe8 and NSe8,3 are
not tight anymore: Both methods perform worse than the box
method.

3) PCA-based Method: PCA (principle component anal-
ysis) is very fast and robust in any dimension and on
zonotopes of arbitrary order. It leads to over-approximations
that are constantly tighter than the box method (see Table I).
In high dimensions, this method results in the tightest over-
approximations of all techniques with feasible runtime.

4) LineCl: LineCl (line clustering, with 10 runs and ξ =
10−7) often results in tight over-approximations but in some
cases performs worse than the box method. The runtime of
LineCl is quite short. This method can be used on zonotopes
of any dimension or order.

5) HybridPC: HybridPC (hybrid of line clustering and
PCA, with 10 runs and ξ = 10−7) leads to good over-
approximations, within a reasonable runtime and works on
zonotopes of arbitrary orders in any dimension.

6) Constrained Optimization Methods: The optimiza-
tion methods CoOptdir (direct volume optimization) and
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Fig. 5. Performance of the best order reduction methods in low (n < 10), medium (10 ≤ n ≤ 20) and high dimensions (n ≥ 20). Left column: mean
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CoOptSVD (volume optimization based on SVD) use the
MATLAB nonlinear programming solver fmincon and the
interior-point algorithm with at most 5, 000 iterations and
100, 000 function evaluations. Both techniques lead to very
tight over-approximations and have a reasonable runtime, as
illustrated in Figure IV-B. CoOptdir sometimes has prob-

lems inverting a matrix that is close to singularity but is
faster than CoOptSVD. SVD-based constrained optimization
(CoOptSVD) can reduce zonotopes of up to medium orders
and dimensions. The direct optimization method (CoOptdir)
even works on zonotopes of high order and shows the best
performance of all methods on zonotopes of low up to



medium order and dimension (see Table I).
7) The Optimal Method: The optimal method for over-

approximating a zonotope Z by Zred of smaller order
strongly depends on the number of dimensions and on
the initial order of Z (see blue values in Table I). In the
2-dimensional space, or on zonotopes with order 2, the
exhaustive search methods ExSeAll and ExSe8 yield the
tightest over-approximations. If the original zonotope has
dimension greater than 4 and order greater than 2, the tightest
over-approximations are obtained by using the proposed
optimization techniques CoOptdir or CoOptSVD. CoOptdir
is faster and in most cases slightly better than CoOptSVD.
In high-dimensional space (n ≥ 20), the only methods
with feasible runtime are our PCA-based method and the
box method. In this case, the PCA-based technique leads to
slightly better over-approximations than the box method.

V. CONCLUSIONS AND FUTURE WORK

This paper has two main contributions: We propose several
new methods based on PCA, clustering (LineCl, HybridPC)
and constrained optimization (CoOptdir, CoOptSvd) for the
tight over-approximation of zonotopes. Furthermore, we pro-
vide an overview of the most important known methods
for order reduction and compare their performance with our
methods in low and high-dimensional spaces. The optimal
technique to over-approximate a zonotope Z depends on the
dimension and initial order of Z. In the low dimensional
space, the optimization methods (CoOptdir, CoOptSvd) we
propose lead to very tight over-approximations. If the di-
mension of Z is high, the best choice for obtaining a tight
over-approximation in a feasible runtime is our PCA-based
order reduction method.

All order reduction techniques reduce the order of a zono-
tope by over-approximating it. It remains to be answered, if
the presented method can be modified such that the reduced
zonotope is an under-approximation of the original zonotope
in addition.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support
by the European Commission project UnCoVerCPS under
grant number 643921.

REFERENCES

[1] T. Alamo, J. M. Bravo, and E. F. Camacho. Guaranteed state
estimation by zonotopes. In Proc. of the 42nd IEEE Conference on
Decision and Control, pages 5831–5836, 2003.

[2] M. Althoff. Reachability Analysis and its Application to the Safety
Assessment of Autonomous Cars. Thesis, Technische Universität
München, 2010.

[3] M. Althoff. Formal and compositional analysis of power systems using
reachable sets. IEEE Transactions on Power Systems, 29(5):2270–
2280, 2014.

[4] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop
on Applied Verification for Continuous and Hybrid Systems, pages
120–151, 2015.

[5] M. Althoff and J. M. Dolan. Online verification of automated road
vehicles using reachability analysis. IEEE Transactions on Robotics,
30(4):903–918, 2014.

[6] G. D. Bailey. Coherence and enumeration of tilings of 3-zonotopes.
Discrete & Computational Geometry, 22:119–147, 1999.

[7] C. M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[8] A. Blum, J. Hopcroft, and R. Kannan. Foundations of Data Science.
To appear.

[9] J. Bourgain and J. Lindenstrauss. Approximating the ball by a
Minkowski sum of segments with equal length. Discrete & Com-
putational Geometry, 9:131–144, 1993.

[10] J. M. Bravo, T. Alamo, and E. F. Camacho. Robust MPC of constrained
discrete-time nonlinear systems based on approximated reachable sets.
Automatica, 42:1745–1751, 2006.

[11] S. Campi, D. Haas, and W. Weil. Approximation of zonoids by
zonotopes in fixed directions. Discrete & Computational Geometry,
11:419–431, 1994.

[12] C. Combastel. A state bounding observer based on zonotopes. In
Proc. of the European Control Conference, pages 2589–2594, 2003.

[13] C. Combastel. A state bounding observer for uncertain non-linear
continuous-time systems based on zonotopes. In Proc. of the 44th
IEEE Conference on Decision and Control, and the European Control
Conference, pages 7228–7234, 2005.

[14] S. Felsner and G. M. Ziegler. Zonotopes associated with higher Bruhat
orders. Discrete Mathematics, 241:301–312, 2001.

[15] J.-A. Ferrez, K. Fukuda, and T. M. Liebling. Solving the fixed
rank convex quadratic maximization in binary variables by a parallel
zonotope construction algorithm. European Journal of Operational
Research, 166:35–50, 2005.

[16] K. Fukuda. From the zonotope construction to the Minkowski addition
of convex polytopes. Journal of Symbolic Computation, 38(4):1261–
1272, 2004.

[17] K. Ghorbal, E. Goubault, and S. Putot. The zonotope abstract domain
Taylor1+. In Proc. of the 21st International Conference on Computer
Aided Verification, pages 627–633, 2009.

[18] A. Girard. Reachability of uncertain linear systems using zonotopes.
In Hybrid Systems: Computation and Control, pages 291–305, 2005.

[19] E. Goubault and S. Putot. Static analysis of numerical algorithms.
In Proc. of the 13th International Static Analysis Symposium, pages
18–34, 2006.

[20] E. Gover and N. Krikorian. Determinants and the volumes of
parallelotopes and zonotopes. Linear Algebra and its Applications,
433(1):28–40, 2010.

[21] L. J. Guibas, A. Nguyen, and L. Zhang. Zonotopes as bounding
volumes. In Proc. of the Symposium on Discrete Algorithms, pages
803–812, 2005.

[22] F. Immler. A verified algorithm for geometric zonotope/hyperplane
intersection. In Proc. of the Conference on Certified Programs and
Proofs, pages 129–136, 2015.
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[28] B. Schürmann and M. Althoff. Convex interpolation control with
formal guarantees for disturbed and constrained nonlinear systems.
In Proc. of the 20th International Conference on Hybrid Systems:
Computation and Control, pages 121–130, 2017.


	INTRODUCTION
	Known Order Reduction Methods
	Box Method
	The Transformation Method

	New Order Reduction Methods
	Principle Component Analysis (PCA)
	Line Clustering (LineCl)
	HybridPC
	Constrained Optimization
	Direct Optimization (CoOptdir)
	SVD-Based Optimization (CoOptSVD)


	Comparison of Order Reduction Methods
	Random Zonotope Generation and Performance Measure
	Performance of Order Reduction Methods
	Box Method
	Transformation Method
	PCA-based Method
	LineCl
	HybridPC
	Constrained Optimization Methods
	The Optimal Method


	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	References

