
Evolutionary Cost-Optimal Composition Synthesis of Modular Robots
Considering a Given Task

Esra Icer1,3, Heba A. Hassan2,3, Khaled El-Ayat2 and Matthias Althoff1

Abstract— Commercially available robots cannot always be
adapted to arbitrary tasks or environments, particularly when
the task would exceed the kinematic or dynamic limits of the
robot. Modular robots offer a solution to this problem, since
they can be reconfigured in various ways from a set of modules.
The challenge of choosing the optimal composition for a given
task, however, is hard since the search space of compositions
is vast. Our approach addresses this problem: instead of
finding the cost-optimal solution over all possible compositions
individually, we propose a time-efficient composition synthesis
method which uses evolutionary algorithms by taking task-
related objectives into account. Simulations show that our
algorithm finds the cost-optimal module composition with less
computation time than other methods in the literature.

I. INTRODUCTION

One of the current trends in robotics is to find new
solutions for industrial robots for different tasks or changing
environments. Although the available industrial robots offer
high efficiency, robustness, and accuracy for specific tasks, it
is not easy to adapt them for different tasks or environments.
As a solution to this problem, modular robot manipulators
consisting of several interchangeable, pre-designed modules
which enable one to configure various manipulators for
different tasks are proposed [1]. The unique properties of
modular robots, such as easy modification, easy maintenance,
flexibility and high versatility, make them a promising tech-
nology for future flexible manufacturing scenarios. Since
the structure of the robot is different for each module
combination, modular robot synthesis is a complex and time-
consuming combinatorial problem. In this work, we propose
an algorithm for selecting the cost-optimal composition from
a set of given modules for a given task. We define the task

as carrying a given payload from an initial pose to a final
pose passing through intermediate points in a cost-optimal
way while avoiding all obstacles in the environment.

We review previous works on cost-optimal, task-based
composition synthesis of modular robots considering a de-
sired objective function. Both deterministic and stochastic
methods have been used so far. In [2], an optimal composi-
tion synthesis method based on the genetic algorithm (GA) is
proposed which compares different compositions based on an
evaluation function to determine how well the composition
fulfills a given task in an obstacle-free environment. Another

1 Department of Computer Science, Technische Universität München,
85748 Garching, Germany. {icer, althoff}@in.tum.de
2 Department of Computer Science and Engineering, American Univer-
sity in Cairo, 113 Kasr Al Aini Street Cairo, Egypt. {heba.ali,
kelayat}@aucegypt.edu
3 These authors contributed equally to this work.

GA-based optimal composition synthesis method for modu-
lar robots considering only the physical properties of mod-
ules is proposed in [3]. A simulated-annealing-based method
which considers the kinematic constraints is presented in
[4]. In [5], a two-level GA-based method for tasks in
environments with static obstacles is proposed. This method
mainly consists of a top-level GA to generate compositions
from the given modules and a lower-level GA to optimize
joint positions. The same authors present another technique
which stores both composition and configuration information
in the same chromosome [6]. In [7], a GA-based modular
robot composition synthesis method for obtaining optimal
kinematic configurations for task-based, fault-tolerant manip-
ulators is proposed. A concurrent optimal design approach,
which mainly depends on grouping the variables to reduce
the number of independent variables in the optimization
process, is proposed in [8]. In [9], the task requirements are
split into 3 groups: i) those which must be satisfied, ii) those
without rigid targets, and iii) requirements not only to be
satisfied but also to be optimized. A progressive task-based
design approach for non-modular manipulators is proposed
in [10], which divides the design procedure into kinematic
design, planning, and kinematic control. A GA-based multi-
solution inverse kinematics solver is proposed in [11] to find
the best inverse kinematics solution for modular robots. All
the methods mentioned above only consider the given poses
in the task definition.

In contrast, we proposed a composition synthesis method
based on the elimination of unfeasible compositions in our
previous work [1], which not only takes the initial and
goal positions into account but also considers whether the
given task is achievable. We have also presented a cost-
optimal composition synthesis method which is mainly based
on the elimination of less likely compositions during the
optimization process [12].

However, although obstacles are not considered in most
work for modular robots, it is important to consider how
paths are planned in an environment with obstacles. Studies
on collision-free path planning are mainly based on two
approaches: i) configuration space (C-space) approaches
[13], [14] and ii) task space approaches [15]–[17]. In C-
space approaches, an n-dimensional space is constructed
for a manipulator with n degrees of freedom (DOFs), and
the robot is represented by a point [18]. In contrast to
C-space approaches, task space approaches try to find a
solution directly in the workspace of the robot [18]. Since
our goal is to find collision-free paths for a large number
of unique kinematic chains, the transformation of obstacles

for each composition from task space to joint space is
time-consuming. As a solution to this problem, we check
the collision in workspace although the path planning is
either done in configuration space or task space; this offers
simplicity and computational efficiency.

In this paper, we propose a composition synthesis al-
gorithm for modular robots for finding the cost-optimal
module composition using evolutionary algorithms. Com-
positions are varied by changing the modules and their
combinations. In contrast to previous literature, we i) present
a computationally-efficient composition synthesis algorithm
for modular robots using evolutionary algorithms, ii) con-
sider additional task-related objectives in the evaluation of
the compositions and generate a set of the best compositions
regarding the evaluation function, and iii) find an individual
cost-optimal solution for the set of the best compositions
(i.e. the optimal composition and its corresponding optimal
trajectory).

This paper is organized as follows: Sec. II explains the
combinatorial problem for modular robots. Sec. III describes
our optimal-composition synthesis method, followed by im-
plementation details in Sec. IV. Finally, conclusions are
drawn in Sec. V.

II. PROBLEM STATEMENT

Throughout this paper, we consider modular and serially
connected manipulators with n degrees of freedom, whose
kinematics are uniquely determined by a vector q 2 Rn

of joint positions, where q refers to angles for rotational
joints and translations for prismatic joints. Each possible
composition is referred to by k 2 {1, . . . , N}, where N is the
maximum number of possible compositions without consid-
ering constraints specified by a given task. The task require-
ments are constrained by the kinematic model of the robot
composition and the static obstacles in the environment. The
environment, consisting of static obstacles and the robot, is
indicated by W ⇢ R3. The space occupied by the robot as a
relation of its joint position vector is denoted by A(q) ⇢ W .
The joint vector of the kth composition is denoted by qk, and
the space occupied by the kth composition is presented by
A(qk) ⇢ W .

The obstacles are represented by arbitrary geometric
shapes in R3; the occupancy of the jth obstacle in the
workspace is denoted by Oj ⇢ W , and the union of all
obstacles is presented by O =

S
j Oj . The obstacle-free

space in the environment is defined as F = W \O.
Time is indicated by t 2 [0, tf], where tf is the total time

to reach the goal position and the function q(t) maps time
t to the joint position vector. The forward kinematics of the
robot with joint vector q(t), which represents the pose of the
end effector, is represented by f(q(t)). Considering the given
task, it is assumed that all compositions start from a given
initial position ps, defined as ps = f(q(0)), and terminate at
a given final position pg , defined as pg = f(q(tf)). An opti-
mal path is generated between ps and pg , which considers a
desired objective function and a set of possible intermediate
positions, defined as Pint = {f(q(t)) | q(t) 2 Qt}, where

Qt is the discrete set of intermediate joint values and
Pint ⇢ F .

The variable ⌘ indicates the cost-optimal module compo-
sition which fulfills the given task by considering a given
objective function g(·). It is described as

⌘ = argmin
k2K

gk(·), (1)

where K is the set of modules that can achieve the given
task, which is defined as

K = {k | 1  k  N ^ 8t 2 [0, tf] 9 qk(·) :
A(qk(t)) \O = ;
^ qk(t) 2 [qk,min, qk,max]

^ f(qk(t)) 2 Pint

^ f(qk(0)) = ps ^ f(qk(tf)) = pg}.

(2)

In the next section, we describe the solution concept for the
given problem statement.

III. PROPOSED METHOD

A large number of different possible compositions can
be generated by varying modules and by changing their
order. This large design space makes modular robot synthesis
complex and time-consuming. In our previous work [1], we
proposed a composition synthesis method for obtaining all
feasible compositions for a given task. That method mainly
generates all possible compositions using a brute-force al-
gorithm and aims to reduce the computation time by testing
feasibility with increasingly complex tests. First, it checks
only whether the compositions are feasible at the initial and
goal positions. Then, it checks whether a path exists for
each remaining composition. Finally, the task requirements
are considered and individual solutions for each composition
are found (see Fig. 1(a)). Moreover, we have also introduced
a method for efficiently obtaining the cost-optimal solution
while eliminating the cost-inefficient compositions during the
optimization process [12]. In contrast to our previous papers,
we propose a cost-optimal composition synthesis method for
modular robots using evolutionary algorithms instead of our
previous enumeration algorithm.

Throughout the paper, we assume that i) four different
types of modules are considered: bases, joints, links, and
end effectors; ii) all modules have only one input and only
one output port; and iii) there is only one base module and
one end effector module in the robot structure. We consider
1-DOF joint modules, y-DOF end effector modules where
y 2 N and 0-DOF link and base modules in the modular
robot structure. To restrict the search space, we use the
following pre-determined structure:

Base - Joint - Link - Joint - · · · - Link - End Effector.

In order to avoid iterating over all possible compositions
and to check whether a reachable path exists for each com-
position, we propose a GA-based synthesis algorithm in this
work. The schematic representation of the proposed method
is shown in Fig. 1(b). The method consists of three sequential

Pg

Ps

Pg

Ps

A. Generation of the set of intermediate points

C. Determination of the cost-optimal composition

Pg

Ps

Pg

Ps

Pint

0 1 00 1 1

1 0 10 0 0

0 0 01 1 0

1 1 10 0 1

0 1 00 1 1

.........

...

...............

A. Generation of all possible compositions

B. Hierarchical composition elimination method

Application of the two-level GA

Selection of the set of the best compositions

Ps

Elimination of unfeasible compositions only considering the initial
and goal positions

Ps

Elimination of unfeasible compositions considering whether there is
a path between the initial and the goal positions without considering
obstacle-related constraints

Pg

Pg

Ps

Pg

Elimination of unfeasible compositions considering whether there is
a collision-free path between the initial and the goal positions

Ps

 (a) (b)

 Enumeration Approach (previous approach) The Genetic Algorithm (GA) Approach (new approach)

Link
Modules

 B : Base Module (binary)

 J : Joint Module (binary)

 L : Link Module (binary)

 E : End Effector Module (binary)

B J JL L E

Joint
Modules

Base
Modules

End Effector
Modules

B. Determination of the set of the best compositions using GA
 Encoding of each robot composition with a chromosome

Fig. 1. The composition synthesis methods for modular robots: (a) the previously proposed feasible composition generation method in [1] and (b) the
proposed cost-optimal composition synthesis method.

steps: A) generation of a set of intermediate points along
the cost-optimal path from the initial position to the goal
position only considering the position of the end effector,
B) determination of the set of the best compositions using
GA considering additional task-related objectives which are
obtained in (A), and C) determination of the cost-optimal
composition considering the given objective function for the
selected compositions from (B).

A. Generation of the set of intermediate points

The first step of the proposed algorithm is the generation
of a set of intermediate points between the initial and goal
positions considering the task requirements. To determine
these points, the shortest geometric path is generated only
taking the end effector’s position into account. Any geomet-
ric path planning technique can be used to find the shortest
path for which the end effector avoids collisions. In this
work, we use the Wavefront algorithm which is illustrated
in Fig. 2 to determine these points due to its simplicity [18].
Following the Wavefront algorithm, the 3D environment is
divided into cells with a certain cell size, and all cells are
initially numbered with 0. Then, cells containing obstacles

or the goal point are numbered with 1 or 2, respectively. The
rest of the cells are numbered considering the distance from
the goal position to each cell as in Fig. 2(a). Although we
implement the algorithm in 3D, it is shown in 2D in Fig. 2
for illustration purposes. The obtained paths follow values in
an increasing order which start from the goal position and
finish at the initial position. The yellow regions in Fig. 2(b)
show the set of intermediate points to be followed by the
end effector to fulfill the task with the shortest path.

Fig. 2. Implementation of the Wavefront algorithm: (a) numeration of
cells, (b) the set of intermediate points, and (c) the unfeasible points and
the optimal path obtained by the Wavefront algorithm.

B. Determining the set of the best compositions using GA

To determine the set of the best compositions considering
the task-related objectives, we use a GA since it is suitable
for our problem which is multidimensional, nonlinear, and
has a large search space. GAs are based on the concept of
chromosomes, which is the encoding of a solution to the
problem at hand. A chromosome is a sequence of genes

which store data about each module. The population size

is the number of chromosomes in one generation and the
generation size is the maximum number of iterations for the
GA. In our particular problem, chromosomes represent robot
compositions and they are represented in binary (genes are
0 and 1 as presented later in Sec. IV) as in Fig. 1(b). To
evaluate each individual chromosome, we apply three GA
operators (crossover, mutation, and selection) between one
generation and the following one [19]. Crossover is done
by selecting two parents to produce an offspring. Mutation

is a way to increase the diversity of a population since
new traits are introduced into the genome, thus allowing the
population to explore the large solution space. Selection is
used to improve exploitation by passing the best individuals
from one generation to the next one [20].

To decrease the search space, we implement the GA in two
levels. In the first level, we quickly remove compositions
which are not able to reach the initial and goal positions.
To do that, we apply a kinematic filter, a static torque-force
filter, and a collision filter as in [1]. In the second level of
the GA, compositions which are able to pass the previously
mentioned tests are evaluated based on the following criteria:

1) reachability (R) - the distance between the task point
and the base of the robot dd2b calculated by (3), where
li is the length of the ith module in the composition and
n is the number of DOFs.

R =

dd2b �
2nP
i=1

li

dd2b
(3)

2) linear distance (L) - the normalized distance between
the position of the end effector pe and the position of
the desired point pd.

L =
kpd � pek

kpdk
(4)

3) angular distance (A) - the normalized distance between
the orientation of the end effector re and the orientation
of the desired point rd.

A =
krd � rek

krdk (5)

4) dexterity (D) - the ability to move and apply forces
in arbitrary directions as easily as possible. It is ob-
tained by (6), where J is the Jacobian matrix and w
is the Yoshikawa manipulability index calculated by
w =

p
det(JJT) [21].

D =
1

1 + w
(6)

5) involved modules (I) - the measure of the mass and
structure complexity of the robot calculated by (7),
where li is the length of the ith module in the compo-
sition, ⇣ is the joint type which is 1 for prismatic joints
and 0 for revolute joints, le,i is the maximum limit of
the ith joint, and de2b is the distance between the end
effector and the base.

I =

Pn
i=1 li + ⇣ · le,i

de2b
(7)

6) joint value differences between the initial and goal

positions (V) - the sum of the differences between the
value of each joint

V =
nX

i=1

|qi(0)� qi(tf)|. (8)

The compositions with smaller V values are better
solutions for our particular problem.

7) obstacle proximity (O) - the minimum distance between
the obstacles and each robot component which is cal-
culated by (9), where dci2Oj

represents the distance
between the ith component and the jth obstacle, rOj

is the radius of the ith obstacle, rci is the radius of the
ith component, and s is the total number of obstacles in
the environment (for more details see [1]).

O = argmin
i21...2n, j21...s

�
dci2Oj � (rOj + rci)

�
(9)

The criteria R, L, A, D, and I are also considered in [6] and
O is modified from [6] to obtain less conservative distances.
One additional criterion, V , is added to these evaluation
functions to minimize and optimize differences between joint
angles. We combine all evaluation criteria to obtain the
objective function

g = w1 ·e�(k1·R+k2·L+k3·A+k4·D+k5·I+k6·V+k7· 1
1+O)+w2 ·P

(10)
where ki are the weighting values for each criteria, wi are
the weighting values of the objective function, and P is the
percentage of the intermediate points that a composition can
reach. The first part of the equation represents the method
proposed in [6]. Adding the second part of (10) enables
us to select the compositions considering the task-related
objectives. A set of the best individuals reached by the end
of the simulation are passed on to the next step as explained
in Sec. III-C.

C. Determination of the cost-optimal composition

After finding the set of the best compositions using the
GA, we aim at finding an individual collision-free path
between the initial and goal positions for each of them
considering the whole robot. To find an optimal path, any
path planning algorithms can be used. In this work, we
use two different algorithms: i) the Wavefront algorithm
and ii) the rapidly exploring random trees (RRTs) algorithm
[22]. The Wavefront algorithm is a deterministic approach
which always gives the same result; in contrast, the RRT
is a stochastic approach which gives different results for

each run. The reasons why we choose these algorithms are
i) they do not get stuck in local minima, ii) they are easy
to implement, and iii) they are computationally efficient for
the considered problem.

We implement the Wavefront algorithm in task space (as
in Sec. III-A) since the mapping of obstacles from task
space to C-space for each composition is complex and
computationally expensive, especially for high-DOF robots.
However, since path planning is done in task-space, some
regions cannot be reached by a composition. Red cells in
Fig. 2(c) show the unreachable and torque-violating points
which are numbered by 1. The final path goes from the goal
point to the initial point, following increasing numbers as
shown in Fig. 2(c).

We implement the RRT algorithm in C-space as a second
method and check collisions in task space. Based on the
method in [23], we generate two different trees: one of them
starts from qs and the other one starts from qg . A path is
generated when these two trees intersect. More details about
the implemented RRT algorithm can be found in [23].

After finding the cost-optimal solutions for each composi-
tion from both path planning methods, we compare all results
and select the composition with the minimum cost value as
in (1).

IV. NUMERICAL EXPERIMENTS

To demonstrate our synthesis algorithm, we have imple-
mented it in MATLAB R2016b running on an Intelr CoreTM

i5 processor with 1.6 GHz and 4 GB of memory. We use
one type of fixed base module (coded as 0), two types of
one-DOF joint modules (coded as 0 and 1), three types of
zero-DOF link modules (coded as 00, 01, and 10), and two
types of one-DOF end effector modules (coded as 0 and 1),
which are shown in Fig. 3. The properties of each module
are given in Tab. I. Throughout the simulations, we consider
the robot structure defined in Sec. III. The base module
is positioned at point pb = (0, 0, 0)T . In this example, we
only consider 6-DOF robots which means we consider 15552

Xin
Xout

Zin

Zout

Xout

Zout

Xin

Zin

Zout

Xout

Zout

Xout

Xin

Zin

Xin

Zin
Zout

Xout

Zout

Xout

Xin

Zin

 (a) (b) (c) (d) (e)

 (f) (g) (h)

Xin

Zin

Zout

Xout

Zout

Xout

Xin

Zin

α

α

Fig. 3. Basic modules used in this study: (a) base module; (b) rotational
joint module; (c) prismatic joint module; (d) rotational end effector module;
(e) prismatic end effector module; (f) ↵ = 90� link module, whose length
runs along the y direction of the previous coordinate system; (g) ↵ = 0�

link module and (h) ↵ = �90� link module, whose length runs along the
z direction of the previous coordinate system.

TABLE I
THE MODULE PARAMETERS INVOLVED IN SIMULATION (SEE FIG.3)

Length Diameter Max ⌧ Joint Limits
[m] [m] [Nm] [rad or m]

L1 0.75 0.2 - -
L2 0.75 0.2 - -
L3 0.75 0.2 - -
J1 0.25 0.2 80 [-⇡,⇡]
J2 0.25 0.2 75 [0,0.2]
EE1 0.2 0.2 75 [-⇡,⇡]
EE2 0.2 0.2 70 [0,0.1]

different robot compositions. The task is defined as carrying
a 5 kg payload from the initial position ps to the goal
position pg along the shortest path (which refers to the
variable g in (1)) without colliding with the obstacles in
the environment and without violating the joint limits. To
test our algorithm, we restrict the environment by a cube
of 7 m edge length and center it at pb. The obstacles are
defined as spheres and their radii are randomly generated
within ro = [0.05, 0.4]. We randomly generate 20 different
scenarios within the aforementioned environment limits, and
the number of the obstacles for each scenario varies between
1 to 6.

We use a step size of 0.1 for the Wavefront algorithm and
compute the inverse kinematics up to an accuracy such that
the end effector remains within the corresponding cell. Then,
we test population sizes and generation sizes while fixing
mutation rate, selection rate, and crossover rate as shown
in Tab. II (different values in group I and II are motivated
later) since the search space is huge. The population size and
the generation size are closely related and complement each
other in terms of the exploration and diversification of the
solutions. Experiments are done in order to determine the
optimal population size and generation size by comparing
the obtained best fitness value as well as the required
computation time. We test values for different scenarios and
all of them provide similar results. Outcomes of different
population sizes and generation sizes for scenario 1 are
illustrated in Fig. 4, which shows that the best fitness value
remains the same (see Fig. 4(b)) although the simulation time
increases (see Fig. 4(a)). Based on the results in Fig. 4, we
choose the population size as 100 and the generation size as
150 (see Tab. II).

During the execution of the GA, we use two groups of
values (see Tab. II). Initially, we use group I to prioritize the

TABLE II
THE GA PARAMETERS

Group I Group II

the population size 100
the generation size 150
the mutation rate 60% 30%
the selection rate 10% 10%
the crossover rate 30% 60%

 (a) (b)

Fig. 4. The simulation results for different population size and generation size: (a) simulation time and (b) the best fitness value for each simulation.

diversity of the population in the first few generations while
setting high mutation rate. This is so that the algorithm does
not get stuck in local minima. After a few generations we
use values of group II to give more importance to the best
individuals to increase exploitation.

While defining GA parameters, we give the same priority
to each criterion in the first part of (10) described in
Sec. III-B and set each ki as 1/7. We also give the same
priority w1 = 0.5 and w2 = 0.5 in (10) and consider the
best 20 individuals for each scenario which are reached in
the last generation of the GA and call it the set of the

best compositions. Then, paths are generated for the best
compositions using the methods detailed in Sec. III-C to
show that the effectiveness of the proposed algorithm is
independent of the used path planning method.

Simulation results for each scenario are given in Tab. III,
where the success ratio (sr) is the ratio of the number of
compositions that can find a feasible path to the number of
sets of the best compositions. Simulations show that 73%
of the compositions (on average) are able to find feasible
paths for the proposed method (PM) using the Wavefront
(WF) algorithm (see Tab. III). As mentioned before, we also
use a RRT algorithm where random points are generated in
C-space with a maximum step size of 0.1 in order to be
consistent with the WF algorithm, and the maximum number

of points is set to 100. Since RRT gives different results for
each run, we run the path planning algorithm 5 times per
composition and consider the average for each composition.

Simulations show that 96% of the set is able to find a
collision-free path on average (see Tab. III).

We compare our proposed method with the method in [6].
To make a fair comparison, we also select sets of the best

compositions obtained from the algorithm and implement
the same path planning methods with exactly the same
parameters. We compare the results obtained from the WF
algorithm and on average only 48% of the sets can find
collision-free paths. We also run the RRT algorithm and 91%
of the set is able to find a collision-free path on average. For
2 scenarios, the best compositions obtained from [6] cannot
find a solution since the robots collide with the obstacles in
the environment while performing the task. The simulations
show that although the computational time of [6] is shorter
than that of the proposed method, the best compositions only
considering the initial and goal positions are not the cost-
optimal composition when the full task is taken into account.

We also compare the proposed method with our previous
method in [1] and compare the total computation time.
To make a better comparison, we implement the same
path planning algorithms on the remaining compositions,
calculate the ratio of the simulation time for each scenario,
and show the ratio of the computation time denoted by tr
in Tab. III. Total simulation time for both path planning
methods are also given in Tab. III. The simulations show
that the proposed algorithm is computationally more efficient
in case there are multiple solutions for the given task. The
computational efficiency increases with with the number of

TABLE III
EXPERIMENTAL RESULTS FOR EACH SCENARIO

NR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PM
WF sr 0.75 0.24 0.24 1 - 0.75 0.65 0.55 0.95 0.8 0.85 1 0.9 1 0.62 0.7 0.64 0.63 1 0.6

tr 0,72 0.72 1.57 0.79 3.32 0.66 0.44 0.96 0.55 0.67 0.98 0.84 0.54 0.96 0.81 0.48 0.79 0.54 0.47 0.58

RRT sr 0.8 0.85 0.89 1 - 1 1 0.9 1 0.9 0.95 1 1 1 1 1 1 1 1 1
tr 0.85 0.9 0.81 1.05 3.37 0.79 0.29 0.81 0.48 0.66 0.47 0.4 0.37 0.91 0.54 0.78 0.69 0.65 0.28 0.37

[6]
WF sr 0.3 0.25 0.1 0.6 - 0.5 0.5 0.4 0.5 0.6 0.7 0.45 0.6 0.85 0.6 0.6 0.2 0.2 0.65 0.55

tr 0.29 0.38 0.72 0.36 2.94 0.51 0.41 0.33 0.3 0.39 0.51 0.32 0.39 0.47 0.35 0.19 0.35 0.37 0.4 0.4

RRT sr 0.75 0.8 0.85 1 - 1 1 0.8 0.8 0.85 0.95 1 0.9 1 0.8 1 0.9 1 1 0.85
tr 0.34 0.97 0.51 0.64 2.99 1.4 0.27 0.67 0.6 0.43 0.3 0.34 0.3 0.87 0.46 0.43 0.82 0.55 0.33 0.44

[1] WF t [h] 1.38 1.13 0.77 1.2 0.28 0.6 1.36 1.32 1.38 1.18 1 3.56 1.98 1.17 1.39 2.46 1.38 1.38 1.18 1.22
RRT t [h] 3.67 1.69 2.86 1.38 0.27 1.18 5.82 2.89 3.32 3.43 3.27 3.56 5.64 1.56 3.64 3.54 2.5 2.4 4.08 4.68

t=0 t=0.2 t=0.5 t=0.7 t=0.9 t=1

Fig. 5. Screen shots for the composition B/J1/L2/J1/L1/J1/L3/J1/L2/J1/L3/EE1 for the task defined as follows: p
s

= (1.51.52), p
g

= (�2� 1.20.6),
p
o,1 = (1.5,�1.3, 1.1), r

o,1 = 0.34 and p
o,2 = (�1.2, 2.1, 0.8), r

o,1 = 0.39 considering t
f

=1

feasible compositions of the initial and goal positions.

V. CONCLUSION

In this paper, we present a task-based optimal composi-
tion synthesis method for modular and reconfigurable robot
manipulators. To the best knowledge of the authors, none of
the evolutionary algorithm-based approaches presented in the
literature so far has considered task-related constraints in the
evaluation function. This idea enables the user to generate the
optimal composition of the modules in a time-efficient way,
making modular and reconfigurable robots a more promising
technology in the industrial environment. The comparisons
show that our method is more efficient than the current
method, which is based on eliminating compositions from the
brute-force algorithm in case there are many compositions
which can fulfill the task when only considering the initial
and goal positions. It also shows that compositions which
give the best fitness values only considering the initial and
the goal positions do not provide the cost-optimal solution
for the execution of the given task. The main advantages
of the proposed optimal composition synthesis algorithm
are i) it is applicable to all kinds of modules; ii) it only
generates cost-optimal obstacle-free paths for the set of the
best compositions, which makes it computationally efficient;
and iii) it provides a faster solution when compared to finding
assemblies by optimizing trajectories for each assembly
individually.

ACKNOWLEDGMENT

The research leading to these results has received
funding from the People Programme (Marie Curie Ac-
tions) of the European Unions Seventh Framework Pro-
gramme FP7/2007- 2013/ under REA grant agreement num-
ber 608022 and from the American University In Cairo,
Egypt.

REFERENCES

[1] E. Icer, A. Giusti, and M. Althoff, “A task-driven algorithm for con-
figuration synthesis of modular robots,” in Proc. IEEE International

Conference on Robotics and Automation, 2016, pp. 5203–5209.
[2] I. Chen and J. Burdick, “Determining task optimal modular robot

assembly configurations,” in Proc. IEEE International Conference on

Robotics and Automation, vol. 1. IEEE, 1995, pp. 132–137.
[3] S. Farritor, S. Dubowsky, N. Rutman, and J. Cole, “A systems-

level modular design approach to field robotics,” in Proc. IEEE

International Conference on Robotics and Automation (ICRA), 1996,
pp. 2890–2895.

[4] C. J. Paredis and P. Khosla, “Synthesis methodology for task based
reconfiguration of modular manipulator systems,” in Proc. of the 6th

International Symposium on Robotics Research, ISRR, 1993.
[5] O. Chocron and P. Bidaud, “Evolutionary algorithms in kinematic de-

sign of robotic systems,” in Proc. IEEE/RSJ International Conference

on Intelligent Robots and Systems, vol. 2, 1997, pp. 1111–1117.
[6] O. Chocron and P. Bidaud, “Genetic design of 3d modular manip-

ulators,” in Proc. IEEE International Conference on Robotics and

Automation, 1997, pp. 223–228.
[7] Q. Li and J. Zhao, “A universal approach for configuration synthesis

of reconfigurable robots based on fault tolerant indices,” Industrial

Robot: An International Journal, vol. 39, no. 1, pp. 69–78, 2012.
[8] Z. M. Bi and W. Zhang, “Concurrent optimal design of modular

robotic configuration,” Journal of Robotic systems, vol. 18, no. 2, pp.
77–87, 2001.

[9] W. Gao, H. Wang, Y. Jiang, and X. Pan, “Task-based configuration
synthesis for modular robot,” in Proc. International Conference on

Mechatronics and Automation (ICMA), 2012, pp. 789–794.
[10] J. Kim and P. K. Khosla, “Design of space shuttle tile servicing

robot: an application of task based kinematic design,” in Proc. IEEE

International Conference on Robotics and Automation, 1993, pp. 867–
874.

[11] S. Tabandeh, C. Clark, and W. Melek, “Task-based configuration opti-
mization of modular and reconfigurable robots using a multi-solution
inverse kinematics solver,” in International Conference on Change-

able, Agile, Reconfigurable and Virtual Production, Toronto/Canada,
2007.

[12] E. Icer and M. Althoff, “Cost-optimal composition synthesis for
modular robots,” in Proc. IEEE Multi-Conference on Systems and

Control, 2016, pp. 1408–1413.
[13] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[14] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The International Journal of Robotics Research, vol. 1, no. 5,
pp. 90–98, 1986.

[15] G. Mesesan, E. Icer, and M. Althoff, “Hierarchical genetic path planner
for highly redundant manipulators,” in Proc. of the Workshop on Task

Planning for Intelligent Robots in Service and Manufacturing, 2015.
[16] J. Yu and P. Müller, “An on-line cartesian space obstacle avoidance

scheme for robot arms,” Mathematics and Computers in Simulation,
vol. 41, no. 5, pp. 627–637, 1996.

[17] A. Shkolnik and R. Tedrake, “Path planning in 1000+ dimensions
using a task-space Voronoi bias,” in Proc. IEEE International Con-

ference on Robotics and Automation, 2009, pp. 2061–2067.
[18] H. M. Choset, Principles of robot motion: theory, algorithms, and

implementation. MIT press, 2005.
[19] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine

learning,” Machine learning, vol. 3, no. 2, pp. 95–99, 1988.
[20] S. Rylander and G. B., “Optimal population size and the genetic

algorithm,” Population, vol. 100, no. 400, p. 900, 2002.
[21] T. Yoshikawa, Foundations of robotics: analysis and control. MIT

press, 1990.
[22] S. M. LaValle, Planning algorithms. Cambridge University Press,

2006.
[23] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach

to single-query path planning,” in Robotics and Automation, 2000.

Proceedings. ICRA’00. IEEE International Conference on, vol. 2.
IEEE, 2000, pp. 995–1001.

