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Abstract—In this paper, we propose a novel intelligent frame-
work based on Multi-agent systems (MAS) for proactive operation
of a charging infrastructure for electric vehicles.

I. INTRODUCTION

Renewable energies differ fundamentally from conventional
sources. Two aspects are in particular stark contrast. First,
renewables are intrinsically decentralized as they lend them-
selves more to a high number of small, diverse, distributed,
plants, whereas conventional, fossil or nuclear based, energies
generally require few, large, centralized, facilities. Second,
whereas conventional energies are essentially consumables,
which can be used whenever needed until the ultimately finite
stock is depleted, renewables are virtually unlimited, however
in turn volatile and fluctuating and have to be harvested and
used whenever available.

With the increasing fraction of renewables as primary
sources, these differences require a tectonic shift in the layout
and functionality of the energy provision and consumption
infrastructure, moving from few separate, centralized and
centrally controlled, demand-driven, systems regulated through
human interaction or physical feedback loops (electricity, gas,
fuels) towards complex, agile, multi-stakeholder, heterogeneous,
closely interacting, networks of energy providers, transformers,
storages, and consumers driven by supply and regulated through
IT-based data exchange and processing. For such networks,
which are coupled by IT rather than electro-mechanically and
thus can synergically entail any form of energy provision or
use (spanning all sectors including electricity, heat, cooling,
pressure, motion, mobility, efc.) as well as integrate with any IT
environment (ERPs, timetables, schedules, markets, forecasts),
we employ the term polyenergy networks.

Finding a cost-optimal provision of energy to individual
consumers—including but not limited to electric vehicles—
inside polyenergy networks constitutes a core challenge for
the general energy infrastructure. The information that can
be leveraged for optimization varies substantially between the
manifold constituents of a polyenergy network, in this case
particularly the individual vehicles (e. g., capacity, state of
health, power consumption, projected future use), charging
points (e. g., location, socket type, power provision, operator),
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power backbones (e. g., type of energy source, fraction of
renewables), and market models (e.g., time-cost-function,
stakeholders) effectively prohibiting a centralized, all-knowing,
approach.

Therefore we propose an intrinsically decentralized solution
based on autonomous agents that strictly implement the sub-
sidiary principle and individually leverage information wherever
available. The system manifests the envisioned cellular approach
[1] spanning all sectors of the general energy infrastructure and
avoiding centralized control in favor of a distributed intelligence,
thereby embracing the diversity of the individual contributors.

We contrast our approach against recent solutions with cen-
tralized control (e. g., virtual power plants [2], swarm batteries
[3]) that essentially emulate the properties of conventional, top-
down, single sector, solutions in order to carry them over into
the age of renewables. We argue that possible advantages of
centralized solutions cannot effectively be preserved due to the
differences in the very nature of renewables vs. conventional
energies outlined above [4]. Moreover, the security of sensitive
data exchanged in smart grid applications (see, e. g., [5]) is
much harder to guarantee in a centralized, single-point-of-
failure architecture (see [6] for the respective regulation and
legislation in Germany), whereas a distributed, thoroughly
decentralized, intelligence is inherently robust in case of failures
of any single constituent.

II. MULTI-AGENT SYSTEMS

Multi-agent systems (MAS) and agent based modeling
(ABM) [7]-[9] manifest closely similar construction principles
in software as the ones we identified for the cellular approach
to the energy infrastructure and already have been proposed
for energy networks (e. g., [10]). In particular:

(a) MAS are built for strict modularity. Each agent is
autonomous and can dynamically be added, altered, or
removed from a platform. Agents are therefore ideal
to model variable stakeholders inside an uninterrupted
market.

Agents encapsulate the low level hardware communication
layers and instead communicate with other agents on a
high level of abstraction via shared, semantically defined,
ontologies. This eliminates the need for one single,
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common, ubiquitous, hardware interface standard and
facilitates the integration of components from multiple
sectors.

Agents are equipped with internal decision making capabil-
ities which enable them to respond differently to the same
outside stimulus. The advantage is twofold: First, each
agent can take the particular properties and characteristics
of the managed device into account, thereby optimizing
its distinct contribution more accurately than a centralized
intelligence could. Second, with each constituent reacting
individually to the same outside stimulus, the overall
system is intrinsically less likely to tip or oscillate.

As MAS implement the subsidiary principle, information
can be kept as local as the decisions based thereupon.
This substantially reduces the volume of the information
communicated, putting less stress on the communication
links, increasing robustness in case of high latency or
communication failures, and massively facilitating the
protection of critical, private, information.

(©)

(@

While these aspects make MAS an obvious choice for
dynamic, multi-stakeholder, systems, we are aware that the
lack of central supervision and control gives raise to various
challenges. We will address these in the following sections.

III. TOWARDS AN INTEGRATED SYSTEM

In our proposal, the agents represent the various power
consumers and/or producers (for simplification dubbed “pro-
sumers”) such as individual charging stations, battery storages,
or electric vehicles, that constitute the endemic energy system.
Each agent is aware of the intrinsics (power, capacity, efc.)
of its assigned entity (local prosumer) and apprehends the
facts it needs for making decisions from its environment (e. g.,
charging station observes state of charge of vehicle) and from
other agents (e. g., charging station observes power output of
photovoltaics).

Moreover, agents are equipped with executable plans that are
triggered by periodic timeouts, internal schedules, or changes
in the state of the environment. Generally, such plans can
be stateless and therefore purely reactive, or they can take
internal states, internal and external history, or even projections
about future conditions into account, and on these grounds act
proactively.

The agents contribute by communicating their intent within
their singular capabilities (e.g., power or energy demand,
residual capacity, charging power, backfeed, efc.). Barring
any central supervisor that micromanages the individual com-
ponents, each agent needs to be able to express a level of
urgency of some kind for its own demands to receive the
appropriate priority with respect to available resources. For
this we introduced various mechanisms that we validate in
various combinations such as energy/power provision within
balanced ratios among the consumers and/or self set priority
levels attached to the demands. Whenever priorities are used,
provisions are in place to prevent exploitation and instead
motivate cooperative behavior. High priorities will come with
the penalty of higher cost, while low priority demands are

encouraged trough lower prices. Therefore, agents are motivated
to anticipate future needs, plan ahead, and ultimately contribute
to a balanced load on the resources.

The communication takes place within an self-organizing,
decentralized, market [11] (p. 40, 62 ff) that enables all
participating agents to trade power and energy between each
other, depending on own customer and trader relationships
without central instance.

IV. ScenArIO

To validate our approach we built a simulation, consisting of
a photovoltaics-array, a battery-storage system and two electric
vehicles connected to two charging points, all connected to
a common grid node providing power compensation over the
superior transmission grid operator.

A. Simulation

For simulating the physical infrastructure we make use of the
tool SimulationX that provides us with the necessary entities
via its GreenBuilding and GreenCity libraries (see fig. 1). With
these entities we were able to create an integrated micro-grid
with the photovoltaics array producing power on a simulated
summer day, the battery storage contributing to the grid within
its power and energy limits, the main grid node compensating
over- and underflows and both electric vehicles charging as
economically as possible.

SimulationX models its objects as sets of differential
equations that are numerically approximated in simulation
runs. To connect the single threaded SimulationX solver with
the concurrently running MAS we introduced three network
communication nodes that serve as connection between the
(simulated) physical world and the agents.

We use the first network node for observing the power
produced by the photovoltaics array, as well as the residual
load on the main grid node, the second for managing the battery
storage, and the third for both electric vehicles.

For every battery storage and electric vehicle we perceive
information about the maximum possible charging and dis-
charging power, the maximum possible energy to store, the
current state of charge and the maximum state of charge as
energy limit.

Alternatively, we could have used one single network node
for all five items or five network nodes one for each single item,
however our choice of combining some network nodes together
and separating others enables us to validate the flexibility of
the MAS approach when it comes to interface communication
between our software abstraction and the physical hardware
level.

Each network node is seen as a function call by Simula-
tionX. This implies the simulation being stopped during the
transmission of data, through each network module, until an
answer is received, one after another. It also means that we are
able to manage the power evolution of the simulation by the
output our MAS transmits on each network connection, which
is used for setting the power for charging or discharging for
the battery storage and both electric vehicles.
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Fig. 1. Our micro-grid scenario in SimulationX. Grid node in the center, photovoltaics array in the top left, battery storage in the bottom left, two electric
vehicles to the right. Three TCP/IP network communication nodes with various input and output connections as interfaces to our MAS.

With this setup we simulate a whole 24 hours within a few
seconds by scaling the simulation time, which would not be
possible in real world scenarios and enables us to launch a large
number of simulations validating multiple alternatives. Because
of the high simulation speed we have to set the time interval
between network communication acts to 60 virtual seconds, as
too narrow intervals would slow down the simulation speed
dramatically.

B. Multi-agent system

Our multi-agent system is intrinsically abstract, only com-
municating via ontologies. However, as physical and simulated
hardware or other software tools in fact are not abstract and
instead have diverse communication and interaction protocols
based on floating point and integer values, we need to break
our abstraction layer when it comes to interfaces between our
MAS and the real or simulated world.

For maintaining the abstraction layer within the homogeneous
multi-agent system we let additional interface-agents translate
between the specific device protocols, our ontologies, and agent
communication protocols (see fig. 2). In this manner, every
inner agent is able to exchange information and commands with
the outer, real, world without knowing the specific protocols.

In our simulation scenario, each of the five devices is
represented by a single agent, and each of the three network
nodes is connected to a single, delegated interface agent. The
five device-representing agents are then able to communicate
and trade with each other by their likes, and may exchange
information with the simulation over the three network interface
agents transparently.

For the technical implementation of our multi-agent system
we rely on the Foundation for Intelligent Physical Agents (FIPA
[12]) IEEE standard describing a complete MAS platform
including agent definitions, agent behaviors, ontology usage,
and communication protocols. Of the frameworks implementing
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Fig. 2. Homogeneous multi-agent system in the center representing our
simulated devices, here for engineering reasons extended by interface agents
for the network interface nodes transparently translating between inner agent
ontologies and simulated devices outside the MAS.

the FIPA standard, JADE [13], [14] is the most mature platform
in our eyes.

C. Agents

The FIPA-agents come with a large number of capabilities
(e. g., message transaction with ontology support, subscription
behavior for oberserving patterns, yellow pages service for
finding each other, various interaction protocols, such as
contract-net interaction protocol [15] for preventing resource
conflicts while trading) that can be reviewed at the FIPA
association [16].

With these features, our consumers are able to find the
producers currently available for requesting and ordering power
they need, and the producers are able to propose and sell power
they have. With the battery storage representing a prosumer,



it is able to trade power in both ways for maximizing its own
profit within the system.

Moreover, for optimizing costs, each agent sets the price
limits it is currently willing to pay for buying power, normally
depending on self-set priority levels. In our simulation, we
decided to set fixed price limits, so that we can simulate
different energy flows solely by adjusting the current price
limit for each agent participating on the decentralized market.

We already stated that SimulationX sees each network node
as a synchronous function call (see sec. IV-A), blocking the
entire simulation until an answer is received. However, in a
real-life situation—where the physical world keeps moving
on—we cannot assume a global synchronization with these
communication events and therefore we cannot allow the MAS
to depend on the pulse of the physics simulator. Similarly, the
agents must not influence the timing of each other. Every agent
lives in its own timeline and manages its environment but is not
controlled by it. This is why we use multiversion concurrency
control [17], [18] as one of the two! common solutions for
parallel computation synchronisation for our agents, as well as
for the simulation communication.

This means that whenever the simulation inputs new in-
formation towards its delegated agent inside the MAS, that
agent distributes the information towards its subscribing inner
agents and in turn immediately responds to the simulation
with the latest version of the current output value that the
simulation needs to continue its calculation. By these means, as
the trading inside the MAS is run asynchronously, the adaption
of the agents to the simulation, and vice-versa, is automatically
delayed by latencies that also happen in the real world. The
information loss through short-time deprecation that occurs
during communication latency is therefore faithfully simulated
when using multiversion concurrency control.

D. Decentralized Market

The core algorithm permitting our agents to trade power
with each other is ideally based on a decentralized market [11]
system. Within our adoption of a decentralized market, there
is no central database and no central mediator for the selling
process. Instead, each pair of customer (equals consumer) and
trader (equals producer) make their own and independent, direct
negotiation. Of course, prosumers may pair up with either
counterpart.

For the trading process each customer is equipped with
a virtual basket for managing its orders, and each trader is
equipped with a virtual marketplace for managing its offers
and sells. All together, these represent the decentralized market
state.

1) Ontology: The current state of the baskets and market-
places as well as the communication between the trading agents
all rely on the following market ontology, that itself depends on
the ontology basics in JADE [19] (see Concept, Predicate,
AgentAction):

IThe other solution is enforcing mututal exclusion on resources, by, e. g.,
blocking locks.

(a) Every Concept, implemented as Data object, has a field
for an id that will be important for referencing purposes
between the decentralized states, when orders are sold,
and a field for a time that is important for overriding old
entries in states for multiversion concurrency control.
Need is a Data representing customer needs, with the
additional fields customer that is needed for traders to
manage multiple customer needs, power that states the
currently needed power, energy that indicates how much
energy still is needed, which also could be unlimited,
ratio giving a measure for the readyness to sharing
in cooperation with other consumers on low capacities
and priority that contains the self-set priority as a
sorting criteria for traders to whom they preferably sell
the capacities they have. The priority also can be set
to force which represents consumers that have to take
the power at any cost (e. g., light switched on manually,
electric vehicle in the urgent need of charge because of
imminent calendric event suddenly assigned).
(c) Offer is a Data representing trader offers, with the
additional fields trader that permits customers to manage
orders from different traders, power representing the
currently available power, energy indicating for how
much energy-usage this power could be reserved, which
may be unlimited, price for expressing the costs of this
power offer and reserved as internal state for managing
resource conflicts between totally available power, and the
currently proposed, offered power.

Request is an AgentAction a customer initializes with

a given Need, which is then sent to all available or

relevant traders. These each may respond with a duplicated

Request with a set Offer as result to the requested Need.

(e) Order is an AgentAction a customer initializes after
having received a relevant Offer back in a previous
Request. The Order has an additional field purchased
that only is set by the trader when the Order was
successful. Order can also be used for priority override
or ratio sharing purposes. Though it could be interpreted
as an order in these cases, the customer still is free to
accept or refuse it.

(f) Info is another simple AgentAction that enables traders
to notifying its customers about new Offers, such as more
power or lower price. It could initiate another trading
round, if relevant for the customer.

(b)

(d)

2) Direct Trading: The direct trading algorithm between
customers and traders relies on, but does not exactly implement,
the FIPA Contract-Net Interaction Protocol [15]. The original
contract-net protocol performs between single customers and
multiple traders, and requires synchronized locks for collecting
all awaited responses between transaction steps. This is not
applicable if traders may disappear (e. g., network connectivity
loss) and awaited responses never arrive. Though timeout
mechanisms allow to reestablish working conditions, the agent
and other dependent agents are inoperable until the timeouts
trigger. Moreover, with slow and unreliable mobile network



connections being used between agents in real-life situations,
timeouts are nearly impossible to adjust for both fast timeout
triggering for connectivity loss, and enough timeout for letting
slow communication go through.

Multiversion concurrency control, which we use for our
adaption of the contract-net protocol (see fig. 3), comes without
any synchronization locks and timeouts. This permits the agent
and the entire (partly-)dependent system to move on with
the last known state, while still being able to adapt to new
calculations when available. This way, we effectively averted
dead locks during the entire trading algorithm.
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Fig. 3. Our implementation of the contract-net protocol without synchronization
timeouts.

So when an agent, delegated for a consumer, receives the
current need of its assigned (real) consumer (that is, in our
scenario, transparently depicted by the interface agent connected
to the simulation), he first updates its current state of need,
and when the need changed (what it normally does, except
when the agent receives the exactly same need multiple times,
which unfortunately could happen in multiversion concurrency
control environments), he sends a Request action (the Call-
for-Proposal) with the current need to the producers currently
available for him.

Similar to the consumers, the producers receive their current
production (or to be precise, their possible sellable capacities)
and also update their state. When the production actually
changed from before, they notify the customers they already
know (previous or current ones) by an Info action about
the new Offer. If that Offer is in any case relevant for the
customer that received the Info (e. g., when it is cheaper than
previously made orders, or helps to fulfill unsatisfied needs),

the customer starts a Request action with its current need as
described above.

Both possibilities may overlap or override each other through
quick succession, however this poses no synchronization or
consistency problem as of the multiversion concurrency control
concept stepping in. In both ways, the simulation or real world
is updated with the latest version as soon as available, as it
could not proceed with anything else other than the last known
state.

So in any case, more or less traders receive a Request with a
current need from a customer. Each trader now checks the given
need against its current power capacity available. If there is no
Offer at all or if other customers with higher self-set priority
currently occupy all available power, the trader responds to
the Request with a refuse. In this case, the customer has to
continue with its last valid state but could not satisfy new and
changed needs.

If the trader is able to fulfill some or all of the Need the
customer has, he creates a traceable Offer to propose, and
reserves that offered power from its current available capacity.
If the customer set a higher priority than existing customers
currently have, the unavailable power is removed from the
existing customer Orders and added to the current Request
with the higher priority. Existing Orders having changed raise
updates to the appropriate customers with the current Order
overriding the previously received one. As soon as the Need
of the customers changes again, or if the changed Offer is
unsatisfying, they naturally may start another trading round.

It is important to state that we do not override the priority
itself, or force previous customers to release their assigned
power immediately, as this would harm the subsidiary principle
that permits a customer to raise their priority again, instead of
releasing their power for making space to the higher priority
customer. Though a cooperating customer would immediately
release the power not assigned anymore, he is not forced but
probably would be penalized later with higher prices due to
this behavior.

Independently, the power being reassigned to the higher
priority customer can lead to tiny spikes in the residual load
of the grid, when that power is still used by the customer
with the lower priority. Normally, when the customer with the
lower priority is willing, that resource conflict resolves itself,
at the latest, within the subsequent trading round, but most of
the time immediately, as soon as the reduction is applied by
the customer. Else, other participants need to adapt again, for
resolving the assigned power resource conflict, as in real grids,
when participants are only behaving reactive to the frequency.

The same as with priorities can happen with ratios that only
would apply in equal priority situations, when the ratios of all
customers altogether represent the share of the power available
for the equal priority customers. This way, force level customers
override everything, priority levels override lower priorities
and equal or no priorities (which also are equal) share within
their ratios. If no priority or ratio is defined at all, first come
first serve principle is applied for power trading. We can see
these assignment levels in Figure 4.
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Fig. 4. Importance and override mechanics of the assignment algorithms for
low power situations.

Either way, the originally requesting customer got proposed
some amount of power in a traceable Offer that can be less
or equal to his current Need. That Offer is then checked
against self-set price limits and whether the offer is helping to
satisfy the current Need. If anything is not to the customers
satisfaction, he rejects the proposal and tries to request power
towards this trader again when its Needs change or when new
Offers from this trader are available. For the participating

trader, a reject permits to free the reserved resources again.

The same goes for all other traders offering something to a
customer Request.

In any case, when the Offer is in any way helpful and
acceptable, the customer accepts it. By this, the trader again
has the chance to send out a failure, if something unpredictable
happened in the power supply, or if the Offer accepted does
not fit to the Offer proposed before (e. g., customer changed
price to a lower value, which is not legit), but when everything
is still valid, the trader sells the reserved power by marking
it sold and informing the customer about it. That one now is
able to use the purchased power (e. g., for charging the electric
vehicle) and request Needs later again, when they changed (or
when the Offer changed), while still being aware that because
of other customers participating in the system, the power he
currently has assigned, might change in the future.

The most important special case is when a consumer does
not need any more power or energy. In this case, it starts another
trading round that is meant for notifying all traders currently
having sold or reserved capacity to free these resources for
others, as these resources would not be freed else way, because
of the multiversion concurrency control maintaining the last
state, until a new value or priority overrides it. After having
received the acknowledge for this last information as Propose
of zero capacity, the customer can be sure that his currently
assigned resources were freed and he can surely stop its load
then, too.

3) Proactiveness: By simply trading power depending on
availability and needs, we would not need a state when we
would only react on new signals, but we decided to have a
basket and marketplace state, as this permits us to proactively
shape the future by valuing previous decisions and by saving

current decisions for future trading rounds.

We already mentioned the first come first serve principle for
customers neither stating a priority or ratio that only works
in succeeding calls, when we only sell power not already
purchased by some other customer before. If we would not
value the current state that was updated during previous rounds,
traders would reassign their full power towards the current
customer every time, though other customers might use that
power already from before.

The same goes for priority overrides, as we only can override
with a higher priority when we know of the lower priorities
and of the capacity they might release. And with sharing ratio,
this is also true.

Therefore, by maintaining a state and by setting priorities
as well as by sharing depending on set and maybe changing
ratios, we are able to reach proactive behavior throughout the
whole system, because we can save decisions that can alter
future calculations.

4) Priority calculation: For setting and overriding priorities,
we valued the fact that no regular device likes being turned
on and off in high frequency. That is why we developed the
following decay formula as a centered bell-curve for decreasing
a set priority by time after being turned on (or increasing
after being turned off). This way, devices turned on override
priorities of devices already running for a longer time, that are
easier to turn off without damage at that time.

p(t) = po - e*(S(tfto))d 1

po is the original priority, in our case set by the fraction of
available to needed power, with the result that devices with
higher power assignment also have a higher priority for not
being turned off again too soon. When p, is negative, the
curve rises instead of decaying for situations, when the device
was turned off. s is the decay scale that permits us to stretch
the curve on the horizontal time axis for reducing the decay
speed over time, when a device is slower in turning on and off
without taking damage. ¢ is the time the device was turned on
or off, and it marks the starting point of curve. In combination
with ¢, as the variable, we are able to get the current priority
after the time ¢ since ¢o passed. d is the decay rate, in our case
set fixed to 4, that sets the strength of the decay in the curve.

This self-set priority, calculated by this formula, overrides
lower priorities of other customers inside the trader reassign-
ment routine. In case of the same priority (as after some time,
when the curve reached near 0, and is forcefully set to 0, as the
near-zero priority does not play any important role anymore),
depending on whether a ratio is set or not, the power and
energy reservations and assignments are shared or first come
first served.

5) Ratio calculation: For the ratio, each consumer, having
an energy capacity limit, calculates its ratio by the following
simple formula:

r=1——+ 2)
lmam

The ratio share r is calculated by dividing the current load
I(t) by the maximum possible load l,,,, and subtracting that



fraction from 1. This way, storages (like our battery storage
and our two electric vehicles) with a high load set a low ratio
share and vice versa. By the time, the ratio drops, when the

storage fills. Setting a fixed ratio (e. g., 0.5) is possible as well.

As no customer knows the ratios of the other customers, they
surely altogether add to a sum being less or more than one,
thus not being normalized. This is why the internal calculation
in the trader, that knows its customers with same priority and
different ratios, normalizes the different ratios towards a range
between zero and one for further calculation.

Moreover, when a customer set a ratio that would lead to a
power assignment higher than its needs, the difference between
the ratio that would exactly meet its needs and the current
ratio set too high is distributed on the other customers, so that

the free energy is redistributed and completely shared as well.

When there still is capacity left, that one can be used by lower
priorities in further trading rounds then, so that there only is
capacity left after all, when all customers are satisfied as good
as possible.

We want to remark that the recalculated ratio of the traders
is never told to the consumers that still set their own ratio
after the above formula, but depending on the recalculation
having taken place inside each trader, the offered power is
adapted, and the already sold power is rebalanced by updating
the consumers, with still letting them the choice to adapt or
not. This way, we always value the subsidiary principle by only
escalating what cannot be decided locally.

6) Offer creation: In summary, when a trader gets a new
Request with a need, depending on whether the own capacities
of power and energy are limited or not, either the full need is
satisfied or depending on the set priority or ratio, overridings
and reassignments of lower priorities as well as redistributions
of shared capacities are calculated and sent to the appropriate
customers (remember fig. 4).

This way, it is possible to fulfill more needs (concurrently and
one after another) in a managed way than when every customer
would just exhaust its full possibilities. So in our approach, we
are able to proactively charge multiple electric vehicles and
storages by various self-set and subsidiary importance levels
with only few left capacities.

V. SYSTEM OPERATION

For validating our approach, we launched several simulation
runs with different parameter settings concerning priority
overrides and ratio shares. This way, we were able to observe
the decentralized behavior of our agents in combination with
SimulationX sec. IV-C as substitute for a micro-grid.

A. Priority and ratio charging

For this paper, we exemplarily launched a combined run
with priority override being enabled, when batteries (storage
and both electric vehicles) started or stopped charging and with
ratio share enabled when priority levels were equal, and we
launched a run with priorities disabled, so that the ratio share
would be never overwritten by priority concerns.

The simulation was parameterized with fixed costs for
provided power loads, and with fixed cost limits for consumers.
This way, we could simulate cost-optimizing behavior, as the
agents tried to minimize costs for charging their power by
not exceeding their cost limits. In our runs, we set the grid
costs to 0.25 € per kWh (for the superior transmission grid
operator costs) and the photovoltaics costs to 0.07 € per kWh.
The battery storage and electric vehicles were set a cost limit
of 0.08 € per kWh, which restricted them to photovoltaics
consumption (so to local power consumption) only. Therefore,
these parameters also optimized the residual load on the main
grid node, as the batteries were not permitted to charge any
power from outside of their micro-grid over the superior
transmission grid operator because of their cost limits.

We initialized the battery storage in all scenarios with 50 %
charging state, the first electric vehicle with 60 % and the
second one with 20 %. Moreover, the battery storage was
limited at 1 kW peak loading power, the first electric vehicle
at 3 kW, and the second electric vehicle with 2 kW. These
settings were chosen purely randomly but they characterized
the simulation runs we launched.

Power in kW

Timeinh

Electric Vehicle 1

Photovoltaics Battery Storage Electric Vehicle 2

Fig. 5. Charging by ratio sharing on limited available power.

In Figure 5, we can see how the multiple agents charge by
sharing their ratio calculated from their specific charging state
(see sec. IV-DS5), as soon as the photovoltaics provides power.
We can see how the second electric vehicle, having the lowest
state of charge, is taking the greatest share of the available
power, in comparison to the other two batteries. Moreover, we
can also see the power limits of the battery storage and the
second electric vehicle, as well as the automatic rebalancing
taking place when these limits are reached, that adds the
difference between the requested and the limited power of
these consumers to the consumers still having capacities left
(the first electric vehicle here). Finally, at around 13:00 hours
in virtual time, the first electric vehicle is fully charged, and
the photovoltaics starts to feed the remaining power into the
main grid. This can be seen in Figure 7 in the Ratio curve. In
the end, except the second electric vehicle, all batteries could
be fully charged while never using power from the main grid.

In Figure 6, the exactly same simulation scenario with
unchanged parameters is managed by priority override (see
sec. IV-D4) with ratio share as fallback when priorities would
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Fig. 6. Charging by priority override on limited available power.

be equal. We can see how a battery that was assigned power—
which happens due to “first come, first turn on”—self-sets a
priority that decays according to formula (1), permitting other
agents to turn on and self-set a higher priority then later. This
is why the devices override each other one after another and
sometimes, when they both turn on at the same time, also
overlap within their assigned capacities for a short period of
time. In the end, except electric vehicle two, all batteries could
be charged again.

Note that, as already stated in Section IV-D2, during the
times of turning on and off, there is a chance of resource
conflicts (also called overlapping). This can be seen in Figure 7
in the short orange spikes matching the power curve turnovers
of Figure 6. This did not happen during ratio rebalancings,
as the difference between priority and ratio here is that the
self-set priority changes abruptly directly after having received
enough power for either turning on or off, and that the ratio is
calculated independently of the current power on status. These
abrupt changes in the residual load can be seen as spikes,
whereas gradual rebalancing cannot be seen.?

Power in kW
S dh b WN P, OoORNWSSO N

Time in h

Force Priority Ratio

Fig. 7. Residual Load on the main power grid node, additionally compared
with forced loading behavior.

In Figure 7, beside the residual loads corresponding to
Figure 5 and Figure 6, we also added a forced load residual
power curve. There, all three batterie agents were set to
forcefully load, no matter the price, no matter the source of the

2The spikes become shorter and ultimately negligible when the simulation
time approaches real time, reducing the relative communication delay.

power. The same would have happened when we set the price
limit over 0.25 € per kWh which would have permitted the
agents to load off the grid, which itself has virtually unlimited
power.

The Force curve shows the first electric vehicle being fully
charged at around three o’clock in the morning, the battery
storage at around half past eight with the photovoltaics already
feeding, and the second electric vehicle finishing at around
half past two in the afternoon.

As we can see, a forced load would not change much
with respect to the balance sheet of supplied vs. consumed
energy, but the residual loads were much higher, which is more
expensive for the grid operators and therefore for the company
using the power. With our cost-optimizing agents working
according to ratio share and priority override principles, we
could reduce the power load on the main grid by several orders
of magnitude in this simple simulation already.

Of course, with forced load, the electric vehicles and the
battery storage were charged earlier, however without any
calendric events being set in our simulation, this early charging
was not necessary while only more expensive (for the company
itself and unnecessarily for the grid operator that, in order
to provide excess power on demand, finds himself in need
of transmission line extensions, investments in virtual power
plants, etc.).

In the figure, we can also see that the ratio distribution
was (however by coincidence) overall better than the priority
distribution in our two runs as it had no resource conflict spikes.
In its algorithmic implementation according to the subsidiary
principle, the only one to be able to share the power is the
distributing agent (as opposed to the consuming agents). In
comparison to that, the priority overriding algorithm, where
each agent self-sets its priority, was worse, because as seen in
Figure 6, the agent of the first electric vehicle with higher power
limit in comparison to the other two agents charged during
a time where there was not enough power for all batteries
available. If the battery with high limit would have charged
later and let the agents with lower limits come first, it could
have let the slower agents, that need more time to charge, grant
this time and charge later, when the photovoltaics would have
had more power than needed by the batteries.

Nevertheless, this decision was not possible at the time when
the first electric vehicle decided to set a high priority, because
no agent had a projection about the future power availability
development, and maybe the power at seven o’clock would
have been the maximum of that day (as it could have been,
e. g., on a very cloudy day). So, barring knowledge about the
future, our proactive approach optimized within its theoretical
limits.

VI. CoNCLUSION

To conclude, we have introduced a system which contributes
to the endemic energy infrastructure by individually optimizing
cost and energy flows through a decentralized, proactive, agent-
based, framework.



We also could show that an entirely decentralized, virtual,
market based on multi-agent systems in JADE according to
the FIPA standard is able to perform a cost-optimization
with stateful, proactive, plans, and various power distribution
algorithms, by simulating a simple scenario with SimulationX.

It was also possible to prove the decentralized system
approach to be fully able of locally producing and consuming
power in a cellular approach according to the subsidiary
principle, which effectively disproves the necessity for frequent
and pervasive grid operator interventions, transmission network
expansions, and for centralized virtual power plants, too.

VII. FUTURE WORK

Nevertheless, for even better cost-optimization, we need more
knowledge about the future, such as forecasts of prices and/or
renewable energy power source outputs, so that our agents
become able to deciding whether further waiting improves the
overall costs or not.

Moreover, further testing and expansion of the decentralized
algorithms are needed for evaluation the approach in other,
more comprehensive, simulations and real grid scenarios. We
are planning to roll-out our solution to a local micro-grid
already, with one main grid power node, various flexible and
inflexible consumers, and at least one charging station having
two charging points for electric vehicles.

Also, the legal rammifications about decentralized deci-
sions are not fully clear, especially because actions are not
deterministic in a parallel and independent calculation. The
data accumulation in a decentralized system is what probably
may not be compliant to management understandings of a
centralized documentation and ticket approach, but as we
already mentioned the dangers of central surveillance (see
sec. I), we see no benefit in emulating a cetralized approach
within the new reality of the endemic energy infrastructure and
instead recommend embracing its decentralized nature.

For most optimal cost simulation, real price models must
be implemented inside the agents for being able to announce
correct real-world costs needed for billing and taxes. For the
moment, we only proved that the trading depending on prices
itself works, no matter the source of the prices.

Additionally, user interfaces, mobile applications (e. g., for
setting calendric events that would change priority and ratio
needs), integration into enterprise resource planning (ERP)
environments in industrial settings, demand-side management
(DSM) integration in production enviroments, and monitoring
services for administration of the MAS and its interfaces (e. g.,
for exchanging agents and devices during system operation)
need to be provided.

We believe that our MAS based approach provides an ideal
structural core for a future, integrated, energy system.
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