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Abstract—To achieve national climate protection goals,
the decarbonisation of the transport sector is of primordial
importance. However, the development of electromobility is still
slowed down by high investment costs on one side and missing
suitability for daily usage on the other.

By means of wireless power transfer (WPT) through inductive
coupling, the user comfort during the charging process can
be increased significantly which leads to a wider adoption of
electric vehicles (EV). Unfortunately, the contactless charging
technology is still at an early stage of market maturity for
domestic application. As a consequence, it cannot compensate
the elevated capital costs by its additional benefits alone: On
the one hand, comfort gain does not represent an economically
determinable benefit and on the other, revenues from power
factor correction are irrelevant for domestic usage.

All the same, the additional investment costs for inductive
charging infrastructure can be amortised when taking fully
advantage of the EV flexibility and the prosumer’s local power
generation. The present paper' therefore aims to identify
necessary conditions for long-term profitability of residential
prosumers with inductive EV-charging infrastructure by means
of advanced energy simulations in Matlab/Simulink®. Primary
purpose of this study is a comprehensive presentation to what
extend wireless EV charging in home application can already
be cost-effective in order to further promote electromobility.

Keywords— inductive charging; WPT; electric vehicle; V2H;
photovoltaic; profitability; energy management; Matlab/Simulink®

I. INTRODUCTION

Inductive charging systems for electric vehicles are already
available on the market in a large variety - providing charging
powers from 3.3 to 7.2kW [1]. In the near future, charging
powers up to 11kW are expected. The necessary technology
is developed within the BiLawE project [2]. Nonetheless,
wireless power transfer for EVs is still unattractive for various
reasons. On the one hand, missing standardisation prevents EV
owners from charging producer-independently at any inductive
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charging station. Overcoming this deficit is the main objective
of the US-guideline SAE TIR J2954 [3] and the project STILLE
[4], where several automobile manufacturers and suppliers
work together among others to harmonise frequency bands and
coil dimensions to increase brand compatibility. On the other
hand, wireless power transfer for EVs is still not attractive
yet, as the price for the stationary part of the technology
is already very high [5]. Depending on the installation site,
such as private, semi-public or public areas, an inductive
charging infrastructure is twice or even thrice as expensive
as a conductive one [6].

Interestingly enough, financial competitiveness of inductive
charging infrastructure compared to cable-based systems is
claimed in [7] for the US market. Within the mentioned
research, the capital expenditures of both technologies are
broken down to the EV’s annual mileage by means of rough
estimate. However, the overly optimistic assumptions regard-
ing investment and operating costs are considered the greatest
deficiencies of [7]. Generally, there is a lack of reliable prof-
itability assessments in literature for inductive EV-charging
infrastructure. In contrast to this, evaluations concerning con-
ductive systems have been done in great numbers, although
they are often subjected to severe simplifications and regard
only short periods of time.

For example in both [8] and [9], energy saving potentials
for private households using V2H-flexibilities are calculated
by MILP-algorithms which take advantage of time-based
electricity rates in the first place. The first study comes to
the conclusion that the absolute annual savings are not high
enough to overcome the initial investment costs, even though
the economies represent around 50% of the customer’s bill.
The second study features a higher accuracy by additionally
considering local PV power production on one side and peri-
odical EV availability on the other. As a direct consequence of
the local power generation, considerable revenues are realised
under the given conditions.

Nevertheless, both studies are unrepresentative in so far that
(1) the mobility behaviour of the EV owner is assumed to
be identical each day, (2) the simulation period is too short



to account for long-term aspect such as seasonal effects,
degradation or price increase, (3) the simultaneity of local
power generation and consumption is not considered suffi-
ciently as would be the case with time-series simulation, (4)
the additional investment costs are only amortised by power
savings whereas fuel economies are neglected completely, (5)
no sensitivity analysis is carried out in order to assess the
results’ validity and (6) the outcomes are not transferable to
the German energy market.

The present paper addresses those shortcomings by carrying
out multiple long-term time-series simulations of a V2H
energy network with non-fictive input data. To assess the
prosumer’s profitably accurately, the impacts of the following
parameters are analysed in more detail:

« orientation and size of the PV system,
« battery degradation,

« electric vehicle type,

o annual EV mileage and

o energy price development.

In doing so, the influence factors with the strongest leverage
effect on the prosumer’s profitability are identified which
permits a more focused R&D activity on one side and a
better knowledge of the technology’s ideal target group on the
other. Moreover, along with the comfort gain through wireless
charging, the evidence of its cost-effectiveness in specific use
cases will leverage e-mobility considerably.
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II. CASE STUDY DESCRIPTION
A. Case study

The prosumer’s profitability addressed in this paper is
analysed with the aid of a fictive vehicle-to-home energy
network. It consists of residential building with roof-integrated
solar panels, a wireless chargeable electric car and an induc-
tive charging infrastructure. As reference scenario serves a
conventional residence without decentralised power plant and
with a combustion engined vehicle. Both power architectures
are schematically illustrated in Figure 1. In terms of energy
management and associated revenue potentials, the following
power flows of the prosumer system are considered:

from PV plant to home in kW

from PV plant to grid in kW

from PV plant to electric vehicle in kW
from electric vehicle to home in kW
from grid to home in kW

from grid to electric vehicle in kW
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As seen in Figure 2, the paper includes vehicle-to-home ac-
tivity whenever economically reasonable but does not account

for vehicle-to-grid potentials due to economic reasons.

B. Scientific approach

The present study methodically divides into two parts:
(1) Time-series simulation: In order to provide scientifically
valid results, the research rests upon a long-term simulation of
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Fig. 1. Case study description: reference scenario (left) and examined case
study for residential prosumers (right)
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Fig. 2. Considered energy flows within the fictive V2H energy network

all above-listed energy flows. For this purpose, the prosumer’s
energy network and user behaviour are initially modelled in
Matlab/Simulink®. By means of time-series simulation, the
annual energy amount of each energetic pathway is determined
as the simultaneous occurrence of domestic energy generation
and consumption is taken into account. Beyond that, the sim-
ulation considers long-term effects such as technical progress,
seasonal aspects or degradation impacts due to its multi-year
character. To further enhance reliability, real load profiles and
weather data (both in quarter-hourly resolution) serve as input
signals.

(2) Economic assessment: Based upon the simulation results,
a profitability calculation is applied in Microsoft®Excel in
order to assess the prosumer’s revenue potentials. Thereby the
observation period has been set to 20 years in conformity
with the PV plant’s lifetime. To account for capital losses
in time, the calculation is based on the cash value method,
whereby future cash flows are discounted to the present day
according to the applied rate of interest. However, the long
observation period entails the need of thorough sensibility
analyses on one side and the necessity to replace out-dated
components on the other. Both matters are elucidated in the
following passage. In context of investment costs, it has to
be mentioned that only additional or reduced costs compared



TABLE I

SCENARIO DEFINITION AND BELONGING ASSUMPTIONS

Sensitivity Scenario Parameter Assumption
0) Baseline Scenario kme one-way commuting distance to place of employment 10km
kmg annual mileage EV 5873km/a
Np number of PV panels 14 x 255Wp
o azimuth PV system 180°
Epy annual PV generation 3958kWh/a
Ey annual household load 3088kWh/a
SC solar coverage of EV and household load during 1% year ~ 100%
EV electric vehicle type (1 = BMW i3) 1
dp annual PV degradation 1%/a
dp battery degradation (1 = on) 1
tp observation period profitability calculation 20a
Td, Tpi annual discount rate or respectively energy price increase 2%/a
Clelec electricity price 28.69ct/ kW h
Creed grid feed-in tariff 12.40ct/kWh
Cruel fuel price 1.30€ /1
A) Battery Degradation dy enabling battery degradation (1 = on, 0 = off) [1,0]
B) PV Orientation «a variation azimuth PV panels (180° = facing south) 180° vs. 90/270°
C) Electric Vehicle Type EV 1 = BMW i3, 2 = Renault Zoe, 3 = Nissan Leaf, 4 = Smart eD [1:1:4]
D) Commuting Distance | kmc variation annual mileage [10: 10 : 40]km
E) Number of PV-Arrays | Np variation number of PV panels [10:2:18]
F) Electricity Price Celec variation electricity price increase B:—1:-1]%/a
G) Fuel Price Cuyel variation fuel price increase B:—1:-1]%/a

to the reference scenario are regarded in order to avoid the
modelling of a second simulation environment. The following
financial revenue (+) and loss (-) sources are considered during
the profitability calculation:

(+) fuel savings due to more favourable electricity prices from
utility grid and PV plant

(+) power savings due to self-consumption of solar power

(+) feed-in remuneration due to grid injection of solar power

(-) straight-line depreciation of capital costs from electric
vehicle, PV plant and inductive charging infrastructure

(-) operating costs from PV plant and inductive charging
infrastructure

The operating costs of electric vehicles are assumed to be com-
parable with those of combustion engined cars and therefore
neglected. Moreover, the German EEG reallocation charge is
not considered due to the minimum limit for small PV plants.

C. Scenario definition and general assumptions

To minimise modelling effort, only one power architec-
ture has been implemented in Simulink. However, due to
flexible model design and input parametrisation, the analy-
sis of different sensibility scenarios is feasible. The initial
parameter setting is referred to as Baseline Scenario whose
input initialisation is given in Table I above. Within every
additional sensitivity scenario A) to G) one parameter is
altered slightly compared to the baseline case in order to
evaluate the parameters’ impact on the simulation outcome.
Table I provides a brief overview of all examined sensitivity
scenarios, whereas Table II and III summarise all fundamental
assumptions regarding the underlying EV features and induc-
tive charging infrastructure characteristics.

TABLE II
ASSUMPTIONS ELECTRIC AND ICE-POWERED VEHICLES

Feature Renault | BMW | Nissan Smart

Zoe i3 Leaf eD
a) battery capacity in kWh
- gross (usable only 85%) 22 32 30 17.6
b) consumption in kWh/100km
- as specified by manufacturer 14.6 12.9 15 15.1
- on-road adjustment (+33%) 19.5 17.2 20 20.1
c) reference ICE vehicle Clio Cooper | Pulsar | forTwo
d) ICE consumption in l/100km 72 7.5 7.2 6.1
e) add. CAPEX EV in € 10 6,710 8,350 | 12,095 | 12,785
[) reacquisition and other:
- additional OPEX EV 0€/a
- operational lifetime EV/ICE 6 - 7 years
- reacquisition EV/ICE 7% and 14" year
- recovery values EV/ICE Ist 15/25%, 2" 20/25%, 3 25/25%
- cost reduction add. OPEX EV by -50% for each reacquisition
- techn. progress battery capacity by +25% for each reacquisition
- EV bonus of 4,000 € 1%t and 2" vehicle yes, 31 car no

TABLE III
ASSUMPTIONS INDUCTIVE CHARGING SYSTEM (11KW, PRIVATE AREA)

Category Assumption
a) investment costs including: > 4,750 €
- unidirectional charging infrastructure 3,400 €
- upgrade bidirectionality 250 €
- safety features 100 €
- forecast and intelligence unit 400 €
- assembling costs 600 €
b) reacquisition and other:

- operating costs 250 €/a
- operational lifetime / reacquisition after 10 years
- cost reduction reacquisition by -40%
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Fig. 4. Exemplary illustration of the adaptive PV power and load prognosis algorithm (@30kWp): Plain areas represent historical energy flows, while bar
graphs show the expected ones. Positive areas illustrate how the PV power is used, whereas negative ones indicate the source of additionally needed energy.

III. SIMULATION ENVIRONMENT WITHIN SIMULINK

This sections describes the simplified power flow model in
more detail by emphasizing its capabilities and limits. The
aim is to heighten the method’s comprehensibility to permit a
proper assessment of the simulation results. As schematically
illustrated in Figure 3, the main components of the prosumer
energy network are individually modelled within Simulink.
In the following, the basic features of some components are
further explained:

a) data editing within Matlab environment:

A Matlab UI serves to initialise all boundary conditions and
relevant simulation parameters. With the aid of a setting
file, the different scenarios and their belonging data sets are
called and simulated in an automated fashion. Before entering
Simulink environment, the different time-series are subjected
to mathematical treatment which includes data cleansing,
signal processing and reshaping. To accelerate simulation
speed, the solar position for the area of Stuttgart is calculated
one year in advance using the SUNAE-algorithm extracted
from [11]. Based on this solar altitude and the TRY-weather
data of the German Meteorological Service [12], the solar
irradiation on the horizontal level is computed to serve as
input signal for the later Simulink model. The weather is
assumed to be identical each year.

b) PV system modelling:
In order to execute long-time simulations within a reasonable
period of time, the PV model is not based on electrical
components. The time-dependant PV power generation is
implemented in a simplified manner by assuming its linear
dependency from temperature and irradiation on the inclined
plane alone. For the sake of simplicity, the PV inverter has
not be modelled. However, to account for inverter, cable and
spoiling losses, the PV power is reduced according to the
module’s performance ratio of 86.5%. To represent aging
effects such as degradation, the PR is further reduced by
1% each year. The PV plant is made of a varying number
of mono-crystalline 255Wp modules inclined of 33° which
corresponds to the optimal inclination for the area of Stuttgart
according to [13]. The investment costs are assumed to be
1500€ /kWp with running costs of 2% initial CAPEX per year.

c¢) PV prognosis algorithm:
To anticipate the PV power production one day ahead,
two different forecast algorithms (for short- and long-term
prediction) are weighted and superposed according to the
forecast horizon. As long-term prediction method serves
the simple thesis that today’s weather is going be the
same as yesterday’s. The short-term prognosis, however,
is based on a forecast method applied in [14] which uses
historical data sets of the considered PV plant to foresee



its future power production. This approach rests upon the
assumption that for a short period of time the weather
condition ¢,, € RA (0 < ¢, < 1) remains constant, whereby
cw =~ 1 represents a bright sky and ¢,, =~ 0 a dense blanket
of clouds. By determining the weather condition of the last
time step (At = 15min) and by multiplying it with the
maximum PV power production of the last 10 days at the
time interval to come, the PV power production of the next
quarter-hour can be foreseen in high accuracy. In order to
minimise forecast errors, the power prediction is adaptive and
therefore adjusted every 15 minutes as can be seen in Figure 4.

d) building load:

The present research uses real load profiles of German
households (2014) which have kindly been provided by [15].
In contrast to standardised residential loads, those time-series
account for temporary and seasonal power peaks that render
energy simulation more realistic. The underlying annual
building load is about 3MWh/a which corresponds to a
typical 2-person-household in Germany. During the Baseline
Scenario, the annual EV and building load were chosen to be
equivalent to the annual PV power production. To foresee the
building load one day ahead, it is simply assumed that the
time-dependant load will be the same next day. This technique
may be improved for further simulations. In addition, it is
supposed that the annual household load remains constant
during the next 20 years due to the annihilation of efficiency
gains through the invention of new electronic devices.

e) mobility behaviour:
The EV availability at the residence is mainly derived from the
mobility behaviour of a commuter who is full-time employed
with core hours from 8:00 am to 5:00 pm. By statistical
variation of the departure resp. arrival time and by considering
12 public holidays, 29 vacation days (including 2 long-distance
journeys via plane) and 12 sickness days in addition, the busi-
ness mobility behaviour is reconstructed. The less predictable
leisure behaviour by weekday and daytime, however, is rebuilt
with the aid of a German mobility study [16]. As result, a
vector in quarterly-hour resolution is generated for the year
2014 (in order to match the building load) consisting of zeros
and ones only to indicate the EV’s availability at home. Within
scenario D), the travelling distance to the business location
is altered, whereas the leisure behaviour remains the same.
Moreover, further assumptions have been made:
e When at home, the EV is always aligned with the
stationary side of the inductive charging infrastructure.
o During long-distance journeys, the car remains at home
and is used as bidirectional stationary battery.
¢ In order to use forecast-based control, the EV schedule
and its anticipated travelling distance are known 24h
in advance. In practise, this can be realised by vehicle
management systems as introduced in [17].
o The EV’s charging performance is variable adjustable and
assigned by the central control unit within the infrastruc-
ture’s technical restrictions of 10kW (usable) in order to

avoid unnecessary peak loads.
o The mobility behaviour remains constant over 20 years.
o Seasonal EV energy consumption is not considered.

f) battery modelling:

By analogy with the PV model, the battery model is kept
simple as well. It bases on lithium-ion-technology and is
restricted to a linear charging and discharging behaviour
which can be presumed within a state of charge range of
10% < SOC < 95% (DOD = 85%). The model does
not account for self-discharge losses or other non-linearities
such as temperature or C-rate dependencies. The round-trip
efficiency is assumed to be n = 80% since no inverter and
battery management systems are modelled. Bidirectionality is
only permitted in case the state of charge exceeds 75% which
prevents stagnation during summer without interfering energy
flow priorities in general. Battery degradation is regarded as
described in the following passage.

g) battery degradation:

Concerning the ageing phenomena of batteries, a distinction
between cycle and calendrical degradation must be made. The
total aging effect can be obtained by superposing both effects
as seen in Figure 5. The cycle stability is often guaranteed by
manufactures to be at least 80% of the initial battery capacity
after 1000 cycles. The calendrical ageing effect, however,
is still the unknown factor due to missing long-term field
tests. As a consequence, there are only few reliable data on
this subject. To account for technical progress, the following
assumptions have been made for both cycle (@1000 full-
cycles) and calendrical (@10 years) degradation as further
illustrated in Figure 6:

e I EVin2017: 80% remaining capacity
e 2" EVin2023: 82.5% remaining capacity
e 39 EV in 2030: 85% remaining capacity

Both dependencies are consigned to so-called Look-up-
tables (LUT) within the Simulink environment.
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a) cycle stability prognosis
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Fig. 7. Impact of the EV availability on the energy flow priorities

h) central intelligence and control unit:
A central control unit processes predicted and present data
in order to charge the electric vehicle in an optimal manner.
By means of forecast-based control, the central intelligence
maximises self-consumption of the locally generated PV
power by simultaneously avoiding feed-in peaks in order
to heighten grid compatibility. Given the car’s presence at
home, the PV power peaks at midday are used to charge the
vehicle as shown in Figure 4. If the SOC is low, the total
excess PV power is stored into the battery according to the
vehicle’s availability on-site (see Figure 7). In case there
is not enough PV power but the car needs to leave soon
(with insufficient SOC), the EV is automatically charged
by grid at lower charging performances to avoid any harsh
power peaks. Based on economical decision-making, the
control unit prioritises the considered energy flows as follows?:

1) Pyop: Self-consumption of the solar power by the
household has the highest priority as the levelised costs of
electricity for the PV plant are inferior to the public grid
energy price.

Valuepay, = Costsgriqg — LCOE,,
= 419.69¢t/kWh

2) Pya, and P,2p: Beforehand, some preliminary consider-
ations. At first, both energy flows undergo a wireless power
transfer from the stationary side to the EV with 7,,,, = 90%,
then a charge-discharge-process with a round-trip efficiency
of Nyt = 90% and finally, a battery-to-wheel-transmission
of My = 90% or again, a wireless power transfer back to
the stationary side. Therefore, both energy flows suffer from
energy losses equal to 7,55 =~ 1 — (0.9)3. Levelised costs of
storage are not taken into consideration here, since the battery
costs are assigned to satisfy mobility needs in first place and
not power demands.

Valuepzy von = (Costsgriag — LCOEy,) - Mot
= 414.37ct/kWh
3) Ppa4: Compared to self-consumption, grid-injection is not
as profitable since the feed-in compensation is considerably
reduced by the levelised costs of PV power generation.

ey

(©))

Valuepsg = Revenuefeeq — LCOE,,
= +3.4ct/kWh

4) Pyop: As the public electricity price is regarded as reference
in this context, the grid supply of the household equals zero.

Valuegon = 0ct/kWh (@)

3

5) Py, In case the vehicle is fed directly by the public grid,
transmission losses have to be considered once again.

Valuego, = Costsgrig - (100 — nyor) 5)
— 775t /kWh

2underlying assumptions: Costsgrig = 28.69ct/kWh, LCOEp, =
9ct/kWh, Revenuefeeq = 12.4ct/kWh, nior = (90%)2 = 73%



IV. SCENARIO AND SENSITIVITY ANALYSIS

In the following, the prosumer’s revenue and expenditure
sources (as introduced in section II and simulated in course
of this study) are presented and discussed by illustrating
their dependencies from specific parameters. To begin with,
Figure 8 is presented where each sub-figure displays the
results of another sensitivity analysis. Within each stacked
bar chart, the ground line represents the financial situation of
the reference case. Therefore, all positive assets correspond to
annual savings whereas negative ones account for additional
expenditures compared to a conventional household with ICE-
powered vehicle. The over-all results, which add up all cash
flows to one single key indicator for each scenario, will be
summarised in Section V.

A. battery degradation

Battery degradation leads to a reduced usable capacity over
time, therefore older batteries attain their maximum state of
charge more quickly. When enabling this ageing effect, less
solar power is stored and consumed by the electric car which
directly lessens fuel savings as seen in Figure 8A). Otherwise,
more PV power is fed into the grid which increases feed-in
revenues. Since one kilowatt hour self-consumed PV energy
is more valuable than one kilowatt hour grid-injected energy,
cf. equations (2) and (3), fuel savings decrease faster than
feed-in compensation rises. Consequently, battery degradation
affects annual profits negatively. However, degradation has
only a relatively small impact on the prosumer’s profit under
the given conditions as the daily mileage is very low. Since
the sum of all annual cash flows is negative in both cases
(degradation on/off), no profits are generated compared to the
reference scenario.

B. PV-orientation

Within this sensitivity analysis it was examined to what
extent the more valuable self-consumption can be increased by
specifically exploiting the morning and evening sun with east-
west orientated PV arrays (evenly distributed). As a matter of
fact, the simultaneity of EV presence and PV power production
is slightly increased when changing the orientation to east-
west. Yet, this improvement is totally negated by a higher
over-all PV power production by south orientated panels. As
seen in Figure 8B), south exposure leads to significant higher
revenues per year and therefore should be preferred.

C. electric vehicle type

Preliminary considerations lead to the trivial conclusion
that high battery capacities, low EV energy consumptions and
modest investment costs favour the prosumer’s profitability.
Having a closer look on Table II once again, it becomes
apparent that especially the Renault Zoe and BMW i3 are
convincing in this regard. To what extent the car’s attributes in-
fluence the different revenue and expenditure sources is shown
in Figure 8C). At first sight, the minor investment costs of the
Renault Zoe pay off clearly since those expenditures do not
have to be compensated elsewhere. As further expected, the

BMW i3 generates the greatest savings due to its low energy
consumption. Furthermore, small battery capacities (Renault
Zoe and Smart eD) lead to higher grid injections and electricity
savings but entail further grid supply. As anticipated, the
additional investment costs for the battery are one of the most
negatively influencing parameters as the electric car needs to
be driven frequently to make up for them by fuel savings alone.

D. commuting distance

As can be seen in Figure 8D), the annual fuel savings
correlate strongly with an increase of the commuting distance.
Its influence on the prosumer’s profit can be considered
equivalent to the investment cost impact. This confirms the
general assumption according to which electric vehicles pay
off for frequent travellers only. Yet, it will be shown later
on that fuel savings particularly depend on the long-term
development of electricity and fuel prices. This is troublesome
insofar as both indices have not developed favourably to e-
mobility during the last few years in Germany.

E. number of PV-arrays

Despite falling feed-in tariffs in Germany, PV systems
remain very cost-effective for private households since module
prices were steadily decreasing during the last 10 years. In
general, the greater the PV plant, the higher the savings.
Within this sensitivity analysis it was therefore examined to
what extend a larger PV plant compensates the additional
capital costs caused by electric car and inductive charging
infrastructure. As can be seen in Figure 8E), the operating
and investment costs increase linearly with greater solar sur-
faces. Fuel saving, however, tend to stagnate since PV self-
consumption does not rise endlessly with larger PV systems.
As a consequence, grid injections go up accordingly. Never-
theless, PV savings rise faster than the belonging expenditures,
therefore further PV panels improve the prosumer’s profit (but
not as strong as an increased commuting distance). Moreover,
it has to be mentioned that roof surface is limited in general.

FE. electricity price increase

In Germany, the electricity price for private households has
increased by 50% within the last 10 years, leading to the
controversy whether electric cars can maintain their fuel saving
advantage in future. But even though this advantage diminishes
with higher electricity prices, PV power becomes even more
valuable in this way. Since the latter is given more weight,
the prosumer’s profit increases with rising electricity prices as
illustrated in Figure 8F). Unfortunately, electricity prices seem
to stagnate at the time being.

G. fuel price increase

When it comes to fossil fuel prices, the indices have not
performed well either. The overexploitation of worldwide
oilfields has lead to a veritable fossil fuel boom. For an
accelerated development of e-mobility, however, an increasing
fossil fuel prise would be most favourable as shown in 8G).
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Fig. 8. Simulation results of the sensitivity analyses A) to G) as described in Table I
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Fig. 9. The prosumer’s profitability compared to the reference scenario according to the sensitivity analyses A) to G) as described in Table I

V. CONCLUSION

When accumulating all income and expenditure sources

of every single scenario depicted in Figure 8 and plotting
the outcomes into one final graphic, Figure 9 results. Again,
the zero line represents the financial circumstances of the
reference scenario. Therefore, each scenario whose circle is
above the dashed line is a economically viable one. To improve
comparability between the different sensibility analyses A) to
G), the baseline scenario is highlighted in addition - account-
ing for battery degradation, 14 south-orientated PV arrays, a
BMW i3 as electric car, a one-way commuting distance of
10km and a 2% energy price increase per year.
As can be seen at first sight, a prosumer with a currently avail-
able electric car (2016) and prototypical inductive charging
infrastructure does not draw any profits in general. However,
profitability can be reached under certain conditions:

(a) commuting distances of more than 30km one-way,

(b) energetically conscious driving style (exploiting recuper-
ation possibilities etc.) to maximise fuel savings through
lower EV energy consumption,

(c) availability of a large south orientated roof surface,

(d) long-term energy price increase,

(e) purchase of an EV with moderate additional investment
costs compared to an ICE-powered equivalent and

(f) claim of the German EV bonus up to 4,000€ .

The parameters with the largest leverage effect on the
prosumer’s profitability are (1) the daily driving distance, (2)
the electric vehicle type and its features, (3) the fuel price
development and (4) the orientation and size of the PV system.

In summary, it can be said that the underlying prosumer
with inductive charging infrastructure can only draw profits
from the whole V2H-network in case he performs high
driving mileages and has a long EV holding period. However,
its profitability is strongly dependant on the development of
external factors, such as energy prices and the development
of the car’s residual value. Down to the present day, both
factors are still subjected to great uncertainties.

Being no part of the present study, further research activities
might be pursued to assess the impact of the following factors:

o mobility behaviour: The prosumer’s profit is most likely
to improve for part-time employees or night-shift workers
since the car’s presence at home during sunshine hours
is heightened in this way.

e prognosis algorithms and forecast deviations: Optimised
forecast algorithms lead to higher self-consumption and
thus to lower grid supply. Whereas the applied prognosis
method for local PV power generation is already satisfac-
tory, the forecast model for household loads remains im-
provable. In addition, the impact of sudden disturbances
or forecast deviations on the prosumer’s profitability has
to be examined in more detail.

e variable electricity prices: By means of variable elec-
tricity prices, the profit margin of the V2H-network is
most likely to rise considerably as (1) energy storage at
PV peak times is rewarded and (2) energy consumption
(when supplied by public grid) in the evening is penalized
which heightens the motivation for bidirectional usage of
electric vehicles.
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