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April 2018





TECHNISCHE UNIVERSITÄT MÜNCHEN
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Abstract

The field of systems biology strives for a holistic understanding of biological systems. A

common approach that contributes to this holistic understanding is the construction of

comprehensive, accurate differential equation models of the underlying biochemical pro-

cesses. The differential equations usually describe the temporal evolution of the abundance

of molecular species and depend on kinetic parameters such as reaction rates. These pa-

rameters have to be estimated from experimental data, which can be achieved by model-

constrained optimization. Comprehensive models often need to describe a large number

of molecular species and parameters to capture the complexity of the underlying biochem-

ical processes. Moreover, for an unbiased description, the effect of stochastic fluctuations

needs to be taken into account. These two requirements result in a high, often intractable,

computational cost for simulation and model-constrained optimization.

In this thesis, I developed scalable methods for simulation and model-constrained opti-

mization. Firstly, I formulated and developed methods for model-constrained optimization

problem, i.e., parameter estimation, for ordinary differential equation approximations to

the statistical moments of the solution of stochastic models. These approximations are

defined by the system size expansion and the moment-closure approximation. I applied

the developed methods to simulation examples and biological applications and was able to

obtain accurate parameter estimates – even if stochastic fluctuations are non-negligible.

Secondly, I developed and applied methods for parameter estimation that improve the

scalability with respect to the number of parameters by using adjoint sensitivity analysis.

Fourthly, I applied sparse solvers to reduce the computational cost of numerical simula-

tions by multiple orders of magnitude for models that describe a large number of molecular

species. Lastly, I formulated the parameter estimation problem for models with discrete

events that approximate fast timescales and developed methods that enable efficient pa-

rameter estimation by using forward sensitivity analysis.

I provide an efficient, easy-to-use implementation of all developed methods in the open-

source toolbox AMICI, which is employed by a growing number of researchers in a variety

of different projects. Moreover, I apply the methods to a series of simulation and real bio-

logical applications, including a model with over 1200 molecular species and over 4000 pa-

rameters. The parameter estimation for this large-scale model was previously intractable,

which underlines the importance and practical relevance of the developed methods. Tak-

ing all contributions together, they improve the efficiency and scalability of simulation and

model-constrained optimization for stochastic and deterministic differential equation mod-

els. This enables the consideration of more comprehensive models, which is an important

step towards a more holistic understanding of biological systems.
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Chapter 1

Introduction

In systems biology, differential equation models have become a standard tool for the anal-

ysis of biochemical reaction networks (Klipp et al., 2005). The model equations can be de-

rived from biological knowledge of the underlying biochemical processes (Kitano, 2002a,b)

and thus allow the systematic integration of prior knowledge. Such models are particularly

valuable as they can be used to predict the temporal evolution of latent variables as well

as derived quantities (Adlung et al., 2017; Buchholz et al., 2013). Moreover, they provide

executable formulations of biological hypothesis and therefore allow the direct verification

and falsification of these hypotheses (Hross et al., 2016; Hug et al., 2016; Intosalmi et al.,

2016; Molinelli et al., 2013; Schilling et al., 2009; Toni et al., 2012), thus deepening the

biological understanding. Furthermore, differential equation models have been applied

to derive model-based biomarkers (Eduati et al., 2017; Fey et al., 2015), that enable the

personalized design of targeted therapies in precision medicine.

In order to construct predictive models, model parameters have to be estimated from ex-

perimental data. This estimation task typically requires the repeated numerical solution to

the model equations. Consequently, parameter estimation is computationally demanding if

the required computation time for the numerical solution is high. For most applications, a

strongly simplified, deterministic description of the underlying biological processes, which

is computationally undemanding to simulate, is sufficient to construct predictive mod-

els (Kitano, 2002a; Maiwald et al., 2016; Snowden et al., 2017; Transtrum and Qiu, 2016).

Such simplified models can be obtained by lumping multi-step reactions together to one-

step reactions (Dano et al., 2006), by ignoring the influence of certain biological processes

and by ignoring the influence of stochastic fluctuations. Such simplifications yield small- to

medium-scale ordinary differential equation (ODE) models for which standard algorithms

implemented in established toolboxes often work out-of-the-box (Hoops et al., 2006; Raue

et al., 2015; Somogyi et al., 2015).

For systems that are studied in an isolated context, e.g., in a single cell line, the lumping

and ignoring of processes might be appropriate. Yet, these simplifications might not be

appropriate if a large number of different contexts is considered. For example, when

multiple cell lines or patients are considered, certain lumping or neglecting of reactions
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might not be appropriate for all cell lines or patients (Adlung et al., 2017; Santos et al.,

2007; Yao et al., 2016). Consequently, comprehensive descriptions are required when

building predictive models that generalize to a large number of different contexts. Such

predictive, generalizing models are particularly important for applications such as precision

medicine, where the model must accurately predict treatment outcomes for many different

patients. These comprehensive models can easily describe thousands of molecular species

involved in thousands of reactions with thousands of parameters. Most algorithms cannot

be applied at such a scale as they are prohibitively computationally expensive (Babtie

and Stumpf, 2017; Schillings et al., 2015). Furthermore, the stochasticity of reactions can

have substantial impact on the behavior of a systems (Ramaswamy et al., 2012). When

this is the case, using an ODE model that ignores stochasticity, is not an appropriate

simplification and might lead to a bias in the parameter estimates and thus possibly

also in the predictions. Yet, the numerical simulation for stochastic models is typically

computationally much more demanding than the simulation of ODE models. Therefore,

the application of stochastic models is currently limited to small-scale systems.

In my doctoral research, I developed scalable methods that render parameter estimation

for ODE models describing many molecular species and many parameters tractable. In

particular, I identified bottlenecks in the established numerical methods and developed

better scalable alternatives. Moreover, I evaluated how more accurate ODE approxima-

tions to stochastic models can be used to render scalable algorithms accessible – even if

the effect of stochastic fluctuations is non-negligible. In the next section, I first provide

an introductory overview of stochastic and ODEs models for biological systems and de-

scribe bottlenecks in parameter estimation for these model classes. In Section 1.2, I give

a brief overview of how I addressed these critical points in the course of my thesis work.

In Section 1.3, I outline the structure of the following chapters.

1.1 Parameter Estimation for Differential Equation Models

To build predictive models, the model parameters have to be estimated from experimental

data. The parameter estimation problem is usually formulated as a differential equation

constrained optimization problem. In this optimization problem, an objective function,

describing the distance between measurements and simulation, is minimized. The differen-

tial equation constraint is required, as the evaluation of the objective function requires the

solution to the model equations. In general, the objective function for ODE models (Raue

et al., 2013b) are different to those for stochastic models (Andreychenko et al., 2011;

Hasenauer et al., 2011). In both cases, the corresponding optimization problem is typi-
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cally non-convex and can possess multiple local minima. Consequently, the optimization

problem can only be reliably solved when global optimization methods, hybrid global-local

optimization methods or repeated local optimization methods are applied (Balsa-Canto

and Banga, 2011; Banga, 2008; Egea et al., 2007, 2014; Karr et al., 2015; Moles et al.,

2003; Raue et al., 2013b; Reinker et al., 2006; Rodriguez-Fernandez et al., 2006). The

efficiency of most of these methods can be improved by providing the gradient of the ob-

jective function to the optimization method (Griewank and Walther, 2008; Nocedal and

Wright, 2006; Raue et al., 2013b). Yet, the objective function and the objective function

gradient are typically not available in closed form, but have to be computed numerically.

For large-scale models the computational cost of computing the objective function and

it’s gradient is high, which makes parameter estimation computationally demanding. De-

pending on the class of the employed model and simulation algorithm, the computation

time will depend on different features of the underlying model (see Figure 1.1), which I

will discuss in detail in the following.

1.1.1 Stochastic and Deterministic Modeling Approaches

Due to the discreteness of molecular species and the stochasticity of the reactions they

are involved in, biochemical processes are usually described using continuous time Markov

chains (CTMCs) (Norris, 1998). This descriptions requires the assumption of a thermally

equilibrated and well-mixed environment and the assumption that biological processes are

memoryless. The CTMC describes the transition of the system between different states as

stochastic firing of different reactions. For every reaction, the propensity defines the rate

at which the reaction occurs. The stochastic simulation algorithm (SSA) (Gillespie, 1977)

provides exact simulations by randomly sampling the next occurring reaction as well as

the reaction time according to the reaction propensities. Consequently, the computational

cost of the algorithm is determined by the evaluation time of every propensity as well

as the sum of reaction propensities, which determines the time-stepping. Typically both

quantities increase with the number of modeled reactions. Moreover, due to the sampling

of the next reactions, the evaluation of the algorithm and thus also of the objective func-

tion is stochastic. As most local optimization schemes require deterministic evaluation of

objective function and gradient, it can be necessary to average over multiple realizations

of stochastic simulations. The averaging will reduce the stochasticity, but the repeating

of evaluations will further increase the computational cost.

The temporal evolution of the probability to be in a specific state at a specific time is

described by the Chemical Master Equation (CME) (Gillespie, 1992). The CME is a set

of coupled ODEs for every attainable state of the system. As the number of attainable
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states is often large and the propensities are often non-linear, closed form solutions are

rarely available. Furthermore, due to large or infinite number of states, a numerical

solution is often intractable. To circumvent these problems, the finite state projection

(FSP) (Munsky and Khammash, 2006), which approximates the solution by truncating

the equations to a reasonable number of states, can be employed. As the CME can be

deterministically evaluated, the approach is usually more efficient than the SSA as no

repeated evaluations are necessary (Neuert et al., 2013). However, the computational cost

increases exponentially with the number of modeled species.

Despite several improvements to the SSA (Anderson and Higham, 2012; Gillespie, 2001;

Menz et al., 2012; Ramaswamy et al., 2009; Rathinam et al., 2003; Sanft et al., 2011)

and the FSP algorithm (Kazeev et al., 2014; Mateescu et al., 2010; Sunkara and Hegland,

2010), the methods remain computationally demanding for models with many state vari-

ables. For larger models, approximative methods, which describe the temporal evolution

of statistical moments using ODEs, can be used. These include the system size expan-

sion (SSE) (Grima, 2010, 2011; van Kampen, 2007) and moment-closure approximation

(MA) (Ale et al., 2013; Engblom, 2006a; Gillespie, 2009; Lee et al., 2009). The accu-

racy of the approximations can theoretically be improved by including higher order terms.

Although the resulting number of differential equations increases exponentially with the

employed order, it only scales polynomially with the number of molecular species, where

the leading order is equal to the highest simulated moment order (Engblom, 2006b). As

the approximation schemes are deterministic, no repeated simulations are necessary. This

allows the numerical simulation of small- to medium-scale models when first or second

order approximations are employed.

The first order of the system size expansion of the mean is the Reaction Rate Equation

(RRE), which is commonly used throughout the systems biology community (Klipp et al.,

2005). The RREs are a coupled system of ODEs and can thus be solved deterministi-

cally and the number of equations depend linearly on the number of described molecular

species. This enables the numerical simulation of small- to large-scale models. Still, the

specific features of biological models require tailored algorithms, which I will discuss in

the following.

1.1.2 Numerics of Ordinary Differential Equations

The timescales of biochemical processes span multiple orders of magnitude (Shamir et al.,

2016). As comprehensive models often cover a large variety of different biological processes,

they are particularly prone to possess multiple timescales (Smallbone and Mendes, 2013).
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This results in the stiffness of corresponding ODEs. As the stiffness of the equations

typically depend on the choice of parameters, it is rarely possible to assess the stiffness a

priori. Consequently, it is always advisable to use implicit solvers, which can adequately

handle stiffness, for parameter inference (Gonnet et al., 2012). For most implicit solvers,

the computational complexity is determined by the cost of solving a linear problem defined

by the Jacobian of the right hand side of the ODE (see Section 2.3.1). The computation

time of standard direct solvers, such as LU decomposition, scales cubically with respect to

the number of state variables. For certain ODE classes, tailored solvers, that exploit the

structure of the Jacobian, have been used to reduce the computation time. For example,

for finite element discretizations of partial differential equations, banded solvers have been

developed (Thorson, 1979). Yet, it is unclear whether the Jacobians of ODE models of

biological systems generally possess such a banded structure.

When the separation between timescales is too strong, it can become numerically in-

tractable to simulate the system for reasonable time intervals. For such models, the

approximation of fast timescales by discrete events has been proposed (Le˜Novère, 2015;

McAdams and Shapiro, 1995). Besides fast biological processes, such processes can also be

used to model input profiles that are assumed to have immediate effect, such as bolus injec-

tions. Discrete events give rise to hybrid or switched systems which are frequently used in

engineering disciplines, such as circuit simulation and process control applications (Antsak-

lis et al., 1993; Lennartson et al., 1996; Liberzon and Morse, 1999). Sill, optimization in

the context of hybrid systems is generally considered to be challenging (Barton et al.,

1998).

1.1.3 Sensitivity Equations

Providing an accurate gradient to the objective function can improve the efficiency of most

optimization algorithms (Griewank and Walther, 2008; Nocedal and Wright, 2006; Raue

et al., 2013b). For differential equation constrained optimization problems, the gradient of

the objective function can be computed based on the parametric derivative of the solution

to the differential equation. These derivatives are often called the sensitivities of the

model. Several approaches to compute sensitivities for ODE models exist, including the

direct approach via forward sensitivity analysis (Dickinson and Gelinas, 1976; Kokotovic

and Heller, 1967) as well as finite differences (Milne-Thompson, 1933). For models with

parameter dependent discrete events, the forward sensitivity analysis requires updates at

all discontinuity points (Barton et al., 1998; Rozenvasser, 1967). The computational cost

of forward sensitivity analysis and finite differences scales linearly with the number of

parameters, which can be prohibitive for large-scale models as they can possess thousands
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of parameters. The alternative, adjoint approach, that computes the objective function

gradient via adjoint sensitivity analysis, has long been deemed to be computationally more

efficient for systems with many parameters (Kokotovic and Heller, 1967). The adjoint

approach is supposed to be more efficient when the number of parameters is high, as the

dependence of computation time on the number of parameters is theoretically negligible.

In other research fields, e.g., for partial differential equation constrained optimization

problems, adjoint sensitivity analysis (Hindmarsh et al., 2005) has been adopted in the

past decades. In contrast, in the systems biology community there are only isolated

applications of adjoint sensitivity analysis (Fujarewicz et al., 2005; Lu et al., 2008, 2012).

1.2 Overview and Contribution of this Thesis

The application of parameter estimation methods to comprehensive, large-scale models

requires efficient algorithms. In particular, the scaling with the number of modeled species

and model parameters is crucial. For ODE models as well as stochastic models key issues

are:

(i) The consideration of large-scale stochastic models is generally limited by the high

computational cost of exact numerical simulations. However, the statistical moments

of the solution can be approximated by ODEs. The approximation renders the

simulation time independent of the cumulative propensity, number of realizations

of stochastic simulations and number of molecules. Moreover, it also renders all

approaches for ODE models, which are outlined in the following, applicable. Yet,

the approximative solution can be biased. It is unclear if and how this bias affects

parameter estimation.

(ii) For ODE models the scalability with respect to parameters depends primarily on

how the gradient of the objective function is computed. Adjoint sensitivity analysis

has been proposed, but a general implementation is currently lacking. Moreover, a

rigorous evaluation of the concrete scaling of with respect to the number of param-

eters for biological models has not been carried out. Thus, the superiority of the

approach for this problem class remains unclear.

(iii) For ODE models the scalability with respect to the number of state variables depends

primarily on the choice of linear solvers. Tailored solvers that exploit the structure

of the Jacobian have been proposed for certain model classes, but no appropriate

solver has been established for models of biochemical reaction networks.
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(iv) Comprehensive models are prone to stiffness. This can be mitigated by the intro-

duction of discrete events. Yet, the support for sensitivity computation for models

with discrete events is poor in most state-of-the-art toolboxes.

I addressed these issues in the main contributions of my thesis. In the following, I provide

a brief descriptions of these contributions, while the corresponding articles are provided

in the Appendices A-D. These contributions resulted in scalable algorithms that enable

reliable parameter estimation for models with hundreds of state variables and thousands

of parameters.

• Assessment of the effect of approximation bias on parameter estimates.

To address issue (i) I assessed how the approximation order influences the error of

parameter estimates. I demonstrated that certain parameters can only be reliably

estimated when higher order approximations are used. Moreover, I showed that the

benefit from higher order approximation is most pronounced for an intermediate

strength of stochastic fluctuations. Furthermore, I showed that the identifiability

of parameters improves if higher order moment approximations are employed, even

when only population average data is available.

• Facilitation of scalable parameter estimation for models with many pa-

rameters. To address issue (ii) I developed and implemented an easy-to-use, effi-

cient algorithm for adjoint sensitivity analysis in the open-source toolbox AMICI. I

used this implementation to demonstrate that the computation of the gradient using

adjoint sensitivity analysis for models of biochemical reaction networks practically

does not depend on the number of parameters. Moreover, I showed that this results

in a reduction of computation time compared to forward sensitivity analysis already

for medium-scale models. Furthermore, I demonstrated that the achieved speedup

increases with respect to both the number of parameter and the number of state

variables.

• Facilitation of scalable parameter estimation for models with many state

variables. To address issue (iii) I demonstrated that the sparsity in the Jacobian

of models of biochemical reaction networks can be exploited by using solvers that

were designed for circuit simulation (Davis and Palamadai Natarajan, 2010) and

implemented an interface to these solvers in the open source toolbox AMICI. For a

model with over 1200 state variables, I was able to achieve a reduction in gradient

computation time of over 100 fold.



1.2. OVERVIEW AND CONTRIBUTION OF THIS THESIS 21

• Facilitation of sensitivity analysis for models with discrete events. To

address issue (iv) I implemented the previously derived update formulas for for-

ward sensitivities in the open source toolbox AMICI. I demonstrated that parameter

estimation using forward sensitivity analysis is more efficient compared to finite dif-

ferences. Moreover, I formulated and applied the parameter estimation problem for

events that were experimentally observed. By this, I enabled the consideration of

new data-types such as time-to-event data with ODE models, which is not possible

in any other software toolbox.

• Application of parameter estimation for models with many state variables

and many parameters. To underline the practical relevance of issues (ii) and

(iii) and the applicability of the corresponding developed methods, I applied the

methods to a model with over 1200 state variables and over 4000 parameters. I

demonstrated that the parameterized model outperforms all investigated statistical

models in the prediction of the drug response of different cancer cell lines. I validated

the predictions for response to combination treatment on additional experimental

data. This application is highly relevant for precision medicine and could at some

point improve personalized cancer treatments.

A detailed summary of all main contributions is provided in Chapter 3.

Other Contributions

In addition to the main contributions of this thesis, I had five side-projects which were

published in the following articles:

• F. Fröhlich, S. Hross, F.J. Theis, J. Hasenauer. Radial basis function approxi-

mations of Bayesian parameter posterior densities for uncertainty analy-

sis. Lecture Notes in Computer Science 8859:73-85 (2014).

In (Fröhlich et al., 2014a), we presented novel methods for analysis of Bayesian

posterior probability densities of parameter estimates using weighted sums of radial

basis functions. We employed lattice generation algorithms, adaptive interacting

particle sampling schemes as well as Markov chain based sampling schemes for the

generation of approximation nodes. We used several weighting scheme and com-

pare the computational efficiency of combinations of weighting and node generation

schemes on different application examples. Our analysis demonstrated that the novel

method can yield an expected l2 approximation error in marginals that is several
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orders of magnitude lower compared to Markov chain Monte Carlo based approxi-

mations. Consequently, the method may allow for a drastic reduction of the number

of model evaluations without a loss in accuracy, which facilitates the analysis of

uncertainty for problems with high computational complexity.

• F. Fröhlich, F.J. Theis, J. Hasenauer. Uncertainty analysis for non-identifiable

dynamical systems: Profile likelihoods, bootstrapping and more. Lecture

Notes in Computer Science 8859:61-72 (2014).

In (Fröhlich et al., 2014b), we analyzed and compared bootstrapping, profile like-

lihood, Fisher information matrix, and multi-start based approaches for frequentist

uncertainty analysis. The analysis was carried out on two models with structurally

non-identifiable parameters. We demonstrated that bootstrapping, multi-start opti-

mization, and Fisher information matrix based approaches produce deceptive results

for parameters which are structurally non-identifiable. We used geometric arguments

to provide a simple and intuitive explanation for the deceptive results. These results

are highly relevant as many research groups frequently use bootstrapping, Fisher

information matrix and multi-start based approaches without prior assessment of

the structural identifiability of parameters.

• A. Kazeroonian, F. Fröhlich, A. Raue, F.J. Theis, J. Hasenauer. CERENA:

ChEmical REaction Network Analyzer - A toolbox for the simulation and

analysis of stochastic chemical kinetics. PLoS ONE 11(1):e0146732 (2016).

In (Kazeroonian et al., 2016), we presented the CERENA toolbox which automatically

generates model equations for the moment-closure approximation and the system

size expansion from a specification of the underlying biochemical reaction network.

The automated generation of model equations is crucial to address issue (i) as the

methods have to be evaluated on several application examples. The CERENA toolbox

generates native C code for every model an uses simulation routines that were also

used in the AMICI toolbox. Thus CERENA employs the highly optimized simulation

routines as well as respective forward and adjoint sensitivity analysis routines devel-

oped in the scope of AMICI. Besides the routines for moment-closure approximation

and system size expansion, CERENA also implements algorithms to solve the Finite

State Projection as well as the stochastic simulation algorithm. The implemented

algorithms support multi-compartment models as well as time dependent propensi-

ties, which is not possible in most other state-of-the-art toolboxes. To complement

the simulation routines, CERENA also implement various visualization routines to

display simulation results. In the manuscript, we evaluated and analyzed the ap-

proximation error as well as the efficiency of the various implemented methods on a
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set of application examples. We found that for the moment-closure approximation,

the approximation on average decreases with respect to the order of the consid-

ered statistical moments. Moreover, we demonstrated that the computation time

for the moment-closure approximation and the system size expansion in CERENA is

over one order of magnitude lower than in other state-of-the-art toolboxes. CERENA

was essential for addressing issue (i) as all model equations were generated using the

toolbox.

• T. Ligon, F. Fröhlich, O. T. Chis, J. R. Banga, E. Balsa-Canto, J. Hasenauer.

GenSSI 2.0: Multi-experiment structural identifiability analyisis of SBML

models. Bioinformatics, btx735

In (?), we presented the second version of the GenSSI toolbox which can perform

identifiability analysis for ODE model parameters. GenSSI implements a generating

series approach to assess the structural parameter identifiability. In the updated

version of GenSSI we implemented support for newer versions of MATLAB, for the

Systems Biology Markup Language (SBML), for parameter and state transforma-

tions as well as for multiple experiments. Moreover, we improved the computational

efficency of the implemented algorithms and thus enabled the consideration of larger

models. Structural non-identifiability results in a singularity of parameter estima-

tion problem and should thus be assessed beforehand. Consequently, the algorithms

implemented in GenSSI are an important preprocessing step when addressing issues

(i)-(iv).

• P. Stapor, D. Weindl, B. Ballnus, S. Hug, C. Loos, A. Fiedler, S. Krause, S. Hross,

F. Fröhlich, J. Hasenauer. PESTO: Parameter EStimation TOolbox. Bioin-

formatics, btx676

In (Stapor et al., 2017), we presented the PESTO toolbox which can perform pa-

rameter estimation, uncertainty analysis and provides visualization routines for the

respective results. PESTO implements local, global, and hybrid local-global optimiza-

tion schemes for parameter estimation and frequentist and Bayesian methods for

uncertainty analysis. I used PESTO for parameter estimation and uncertainty analy-

sis in all contributions in this thesis. Consequently, the algorithms implemented in

PESTO were essential to address issues (i)-(iv).
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1.3 Outline

This is a cumulative dissertation based on the research that is published in my first-

author articles. In this thesis I summarize the respective mathematical background in

Chapter 2. In Section 2.1 and 2.2, I introduce modeling formalisms to derive ODE models

for biochemical processes. In Section 2.3, I discuss the optimization problem which allows

the estimation of parameters from experimental data for such models. Moreover, I discuss

how the gradient of the corresponding objective function to the optimization problem can

be computed efficiently. In Chapter 3, I provide a summary of all contributed articles.

In Chapter 4, I discuss possible extensions to the presented work. The full text of my

first-author articles is attached in the Appendices A-D.



Chapter 2

Methods

This thesis focuses on ODE models for biochemical reaction networks. In the following, I

will introduce the modeling formalism that gives rise to the respective ODE models. Sub-

sequently, I will introduce all methods for parameter estimation and uncertainty analysis

for ODE models that were used in my thesis work.

2.1 Modeling of Biochemical Reaction Networks

This thesis considers a set of dR reactions, involving M chemical species confined in a

reaction volume of size Ω. Denoting the set of reactants by (X1, ..., XM ), the rth reaction

can be written as
M∑
i=1

ν−irXi
kr(θ)−−−→

M∑
i=1

ν+
irXi.

Here kr(θ) : Rdθ → R is the reaction rate constant, which depends on the vector of

parameters θ = (θ1, . . . , θdθ). ν±ir are the integer stoichiometric coefficients and νir =

ν+
ir − ν−ir denotes the net change in molecules of the ith species due to firing of the rth

reaction.

In the following I will demonstrate how such a reaction formalism can be translated into

an ODE model

ẋ = f(t, x, θ), x(t0) = x0(θ);

on a finite time interval T = [t0, tf ] with initial condition x0(θ). For reaction rate equations

f will describe the temporal evolution of the average concentrations xi = ci = E[niΩ ] of the

ith species, where n = (n1, . . . , nM ) is the vector of molecule numbers. For the moment-

closure approximation and the system size expansion the vector x ∈ Rdx will also contain

higher order statistical moments of n or n
Ω and f will also describe the respective temporal

evolution of these higher order moments. Accordingly, the length dx of the vector x will

depend on the considered orders of statistical moments.
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2.1.1 Chemical Master Equation

Under well-mixed conditions the state of a biochemical reaction network can be charac-

terized by the corresponding vector of molecule numbers n (van Kampen, 2007). The

time-evolution of the probability P (t, n, θ) : T×RM ×Rdθ of observing the system in state

n at time t, then obeys the Chemical Master Equation (CME) (Gillespie, 1992)

Ṗ (t, n, θ) = Ω

dr∑
r=1

[
v̂r(n− νr, θ)P (t, n− νr, θ)− v̂r(n, θ)P (t, n, θ)

]
. (2.1)

Here, Ωv̂r(n, θ) denotes the microscopic propensity function, i.e., the probability per unit

time for reaction r to occur somewhere in the volume Ω.

The derivation of an analytical solution to the CME is usually intractable. For the numeri-

cal simulation of individual realizations, the Stochastic Simulation Algorithm (SSA) (Gille-

spie, 1977) can be used. The SSA computes individual realizations of the underlying

stochastic process. This is achieved by initializing the simulation at some specified initial

state n0. The probability distribution Pξ(ξ) of the time ξ until the next reaction is then

computed according to the cumulative propensity v̂0(n, θ) =
∑

r v̂r(n, θ):

Pξ(ξ) = exp(−v̂0(n, θ)ξ)v̂0(n, θ).

The reaction that happens is also determined by chance, where the probability Pr of the

rth reaction to happen is given by the fraction

Pr(r) =
v̂r(n, θ)

v̂0(n, θ)
.

Evidently, the length of the time-step ξ will decrease with an increasing cumulative propen-

sity v̂0(n, θ). This renders this approach problematic when models with a large number of

reactions or individual reactions with high propensities are considered (Rathinam et al.,

2003). Moreover, as previously discussed, multiple realizations of stochastic simulations

can be necessary, which further increases the computational cost. This often renders the

SSA computationally intractable.

Several more efficient approximation methods to solutions of the CME have been devel-

oped, including the Finite State Projection (Munsky and Khammash, 2006), the chemical

Langevin Equation (Gillespie, 2000) and the Fokker-Planck Equation (Risken, 1996). For

the purpose of this thesis, I focus on approximation methods for the statistical moments of

the concentrations µi = E[ni/Ω], and the corresponding covariances of the concentration
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fluctuations about them, Σij = E[(ni/Ω− µi) (nj/Ω− µj)].

2.1.2 Reaction Rate Equation

The most commonly used differential equation model to describe the mean concentration

c = µ in biochemical reaction networks are Reaction Rate Equations (RREs). Under the

assumption of the law of mass action, the RRE is defined by the reaction flux vr(c, θ) :

RM × Rdθ → R of the rth reaction

vr(c, θ) = kr(θ)

dx∏
i=1

cνiri ,

which denotes the rate law at which a reaction takes place, and the stoichiometric matrix

S = (νir)i=1,...,dx,r=1,...,dR
.

The RRE ODE is then obtained by multyplying v(c, θ) with S:

ċ = S · v(c, θ), c(0) = c0(θ), (2.2)

where c0(θ) is the vector of initial conditions. The RRE is a deterministic description of

biochemical reaction networks which is a good approximation of the average concentration

for large volumes (Engblom, 2006a). In the limit of limΩ→∞, the RRE yields the (exact)

mean of the solution to the CME (2.1), under assumption of monostability (Grima, 2012;

van Kampen, 2007). Due to this relationship, the RRE can be called a macroscopic

description, while the CME is called a microscopic description. Therefore, the reaction

flux vr(c, θ), which may not always agree with the microscopic propensity function v̂r(n, θ),

is sometimes called the macroscopic rate function. In the next section, I will establish the

connection of the macroscopic RRE to the microscopic CME, by discussing two different

mesoscopic descriptions.

2.1.3 Moment-Closure Approximation

Evolution equations for the moments of the solution of the CME are obtained by differen-

tiating the definition of the moments with respect to time and substituting in the CME.
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For the mean and covariances, this yields:

µ̇i =
∑
n≥0

nṖ (t, n, θ)

Σ̇ij =
∑
n≥0

(n− µ)(n− µ)T Ṗ (t, n, θ)

According to Engblom (2006a), these evolution equations can also be written as

µ̇i =
∑
r

E[−νirv̂r(Ωµ, θ)]

Σ̇ij =
∑
r

E[(νirνjr − njνir + µjνir − niνjr + µiνjr)v̂r(Ωµ, θ)].

The expectations that involve the propensities can be computed by applying a Taylor

expansion. Yet, for systems involving non-linear propensities the equations for lower

order moments are typically coupled to higher-order moments resulting in an infinite

system of equations. A common procedure to break this hierarchy of moment equations is

to set higher than second order cumulants to zero (Engblom, 2006a), which is equivalent

to assuming that the third order cumulant is consistent with a Gaussian distribution.

Assuming at most bimolecular reactions, the resulting set of non-linear ODEs is called the

2MA and is given by

µ̇i =

dr∑
r=1

νir

v̂r(Ωµ, θ) +
1

2

M∑
s,l=1

∂2v̂r(Ωµ, θ)

∂µs∂µl
Σsl

 ,

Σ̇ij =

dr∑
r=1

M∑
s=1

(
νir
∂v̂r(Ωµ, θ)

∂µs
Σsj + νjr

∂v̂r(Ωµ, θ)

∂µs
Σsi

)

+
1

Ω

dr∑
r=1

νirνjr

v̂r(Ωµ, θ) +
M∑
s,l=1

1

2

∂2v̂r(Ωµ, θ)

∂µs∂µl
Σsl

 .

The 2MA is precise for unimolecular reactions and fairly accurate if the third order moment

is negligible (Engblom, 2006a). The latter is mostly the case for large reaction volume and

molecule numbers (Engblom, 2006a). For small volumes, higher-order moment-closure

approximations are more appropriate. Setting higher than third order cumulants zero,

yields the third order moment-closure approximation (3MA) (Engblom, 2006a; Lee et al.,

2009).

Several other choices for closures, such as the low dispersion closure (Hespanha, 2008),

the derivative-matching or log-normal closure (Singh and Hespanha, 2007) or the mean-
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field closure (Gandhi et al., 2000), exist. These closure schemes often make distribution

assumptions of P with respect to n, for which the validity is typically not clear a priori.

This shortcoming of the moment-closure approximation is sometimes criticized to be ”ad

hoc” (Grima, 2012), while the alternative systems size expansion is claimed to be ”sys-

tematic” (Grima, 2012; van Kampen, 2007). In the following, I will discuss the system

size expansion and it’s properties.

2.1.4 System Size Expansion

A different technique to approximate the moments of the CME is given by the system size

expansion (SSE) (Grima, 2010; van Kampen, 2007). The procedure allows the expansion

of the CME around the solution of the RRE (2.2). The RRE is given by

ċi =

dr∑
r=1

νirvr(c, θ).

Here vr(c, θ) = limΩ→∞ v̂r(Ωc, θ) is also called the macroscopic rate function. While the

RRE represents the leading order term of the SSE and yields the average concentrations

for large volumes Ω. The next term, the Linear Noise Approximation (LNA), describes the

fluctuations about these concentrations. The covariance of these fluctuations obeys (Elf

and Ehrenberg, 2003; van Kampen, 2007):

Σ̇ij =

dr∑
r=1

M∑
s=1

(
νir
∂vr(c, θ)

∂cs
Σsj + νjr

∂vr(c, θ)

∂cs
Σsi

)
+

1

Ω

dr∑
r=1

νirνjrvr(c, θ).

These results are exact for reaction networks comprising up to unimolecular reactions

and for a small subset of networks with bimolecular reactions (Grima, 2015). For most

networks involving bimolecular reactions, the SSE enables us to systematically correct the

mean concentrations of the RRE and the variance predictions of the LNA, by considering

higher order terms in the expansion. A more accurate estimate for the mean concentrations

than the RRE, is given by the Effective Mesoscopic Rate Equation (EMRE) (Grima, 2010),

and follows

µ̇i = ċi +

dr∑
r=1

νir

 M∑
s=1

∂vr(c, θ)

∂cs
(µs − cs) +

1

2

M∑
s,l=1

∂2vr(c, θ)

∂cs∂cl
Σsl −

1

2

M∑
s=1

cs
Ω

∂2vr(c, θ)

∂c2s

 .

Note that these equations yield a correction term of order Ω−1 to the RREs. Correspond-

ingly, expressions for the covariances about these more accurate concentrations can be

derived using the Inverse Omega Square (IOS) approximation, which corrects the LNA
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estimate to order Ω−2 (Grima, 2011). In contrast to RRE and LNA, EMRE and IOS do

not assume large volumes and hence these estimates are expected to be closer to the true

moments predicted by the CME.

The MA and the SSE only yield the exact statistical moments of the solution to the

CME in special cases (Grima, 2015). In all other cases, they yield approximations to the

statistical moments. The approximation error can usually not be computed exactly and

only rough error-bounds exist (Grima, 2012).

2.1.5 Models with Multiple Timescales

Biological systems can act on a variety of different timescales (Hasenauer et al., 2015;

Shamir et al., 2016). For example, the response time of signaling and metabolic processes

typically is in the order of seconds to minutes, while the response of gene regulation can

take hours to days. Coupling such models can be problematic, as the time stepping of

the numerical solver has to be adapted to the fastest timescales. Alternatively, changes

that occur on fastest timescales can be assumed to happen instantaneously, introducing

quasi-steady-states (Bowen et al., 1963) and discrete events. This allows time stepping

appropriate to the slower timescales, but requires the introduction of algebraic constraints

describing quasi-steady-states as well as discrete events. While it is often possible to

integrate the algebraic constraints into model equations by substitution, the discrete events

require special attention.

In this thesis we consider models with de different event types. The mth event type is

defined by a trigger function g(m)(t, x, θ) : T × Rdx × Rdθ 7→ R and update function

∆(m)(t, x, θ) : T × Rdx × Rdθ 7→ Rdx (Barton et al., 1998). The time point of the `th

occurrence τ
(m)
` of the jth event type is defined by the `th root of the trigger function g(m):

∀ `, j : g(m)(τ
(m)
` , x(τ

(m)
` , θ), θ) = 0 with t0 < τ

(m)
1 < τ

(m)
2 < . . . .

For Boolean trigger functions g(m), output values true can be mapped to positive values

and output values false can be mapped to negative values such that g(m) has a root at

every change of the Boolean value. The changes that are induced at every event occurrence

are defined by the update function ∆(m):

x(τ
(m)
`,+ , θ)− x(τ

(m)
` , θ) = ∆(m)(τ

(m)
` , x(τ

(m)
` , θ), θ), (2.3)

where τ
(m)
`,+ = limε→0 τ

(m)
` + ε, ε > 0. It is possible that different events occur simultane-

ously. In this thesis, I assume that the cumulative change in the states is equal to the sum
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over all triggered updates. The special case ∆(m) ≡ 0 can be used to treat discontinuities

in the vector field f or define events that only produce model outputs.

2.2 Parameter Estimation

For most biological processes the vector of parameters θ is unknown. For the model to

be predictive, θ has to be inferred from experimental data. This can be achieved by

minimizing an objective function J(θ), which defines the distance between simulation

results and experimental measurements. In the following, I will outline how the likelihood

function can be used to define an objective function according to a specific noise model.

2.2.1 Likelihood Function

Experimental techniques usually do not provide direct measurements of modeled quantities

x, but only of derived quantities y, which may depend linearly or non-linearly on x as well

as θ. This relationship can be described by an output map h(x, θ) : Rdx×Rdθ 7→ Rdy . This

output map defines the outputs (or observables) y(t, θ) : T× Rdθ → Rdy at time point t:

y(t, θ) = h(x(t, θ), θ). (2.4)

For non-linear output maps, the output map of lower order moments can depend on

higher order moments, that might not be modeled. In that case, closure schemes need

to be employed. For applications where RREs are employed, a zero cumulants closure,

replacing all higher order contributions, is generally used.

In this thesis I assume independent, normally distributed, additive measurement noise.

The time-resolved, noise corrupted measurements

ȳij = yi(tj , θ) + εij , εij
iid∼ N (0, σ2

ij(θ))

and measurement time points tj make up the experimental data D = {((ȳij)dyi=1, tj)}dtj=1.

The number of time points, at which measurements have been collected, is denoted by

dt. For RREs, ȳij should only contain the mean measurements over multiple stochastic

realizations, i.e., multiple single cells. The mean can be derived from bulk as well as

single cell experiments. For higher-order approximations, ȳij may also describe higher

order statistical moments, which can only be derived from single cell experiments. The

standard deviation σij(θ) can be modeled to be parameter dependent. The corresponding
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error

εij = εij,tech + εij,stat

decomposes into εij,tech ∼ N
(

0, σ2
ij,tech(θ)

)
, which describes the noise in the measurement

process itself, and εij,stat ∼ N
(

0, σ2
ij,stat

)
, which describes the uncertainty of the empirical

moment computed from the measured sample of single cells. Thus, σ2
ij(θ) is given by

σ2
ij(θ) = σ2

ij,tech(θ) + σ2
ij,stat.

Typically only the uncertainty of the measurement process is assumed to be parameter

dependent, as σij,stat can be explicitly computed. The magnitude of σij,stat decreases

with increasing sample size. Consequently, it can typically be safely ignored for bulk

measurements, but it is non-neglible for single cell measurements with low sample sizes.

This noise assumption yields the likelihood function

L(D|θ) =

dt∏
j=1

dy∏
i=1

1√
2πσ2

ij(θ)
exp

(
−1

2

(
ȳij − yi(tj , θ)

σij(θ)

)2
)

Due to the asymptotic normality of the empirical moment estimators (Hansen, 1982), the

distribution assumption for εij,stat is usually appropriate for sufficiently large sample sizes.

However, for covariances and other higher order moments, the independence assumption

might be violated and more appropriate noise models should be employed (Ruess and

Lygeros, 2015). Similarly, several assumptions on the distribution of εij,tech(θ) are reason-

able, and the choice should depend on the employed measurement process (Arriaga, 2008;

Reiter et al., 2011).

Besides time-resolved outputs y, it is also possible to consider event-resolved outputs z.

Based on the results in (Barton et al., 1998), I introduce the event-resolved outputs z

which describe measurements which are triggered by events and ordered accordingly. To

allow for arbitrary event-resolved outputs, I introduce the output function λ(t, x, θ)(m) :

T×Rdx ×Rdθ 7→ Rdz(m)
, which defines the event-resolved output for the `th occurrence of

the mth event type

z
(m)
` (θ) = λ(m)(τ

(m)
` , x(τ

(m)
` , θ), θ). (2.5)

To consider event-resolved data z̄ in addition to the time-resolved data ȳ, the measurement

data

D =

{{
tj , {ȳij}dyi=1

}dt
j=1

,
{
z̄

(m)
`q

}dz(m),dτ
(m),de

q=1,l=1,m=1

}
,
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can be extended by dz
(m) different outputs z̄

(m)
`q for the dτ

(m) occurrences of the mth out of

de different event types. For this thesis I also assume that the event-resolved experimental

data is corrupted by independent, identically normally distributed, additive noise:

z̄
(m)
`q = z

(m)
`q (θ) + ε

(m)
`q , ε

(m)
`q

iid∼ N (0, ω
(m)
`q

2
(θ)), (2.6)

with parameter dependent standard deviation ω
(m)
`q

2
(θ). This assumption yields the like-

lihood function

L(D|θ) =

dt∏
j=1

dy∏
i=1

1√
2πσ2

ij(θ)
exp

(
−1

2

(
ȳij − yi(tj , θ)

σij(θ)

)2
)

·
de∏
m=1

dz
(m)∏
q=1

dτ
(m)∏
`=1

1√
2πω

(m)
`q

2
(θ)

exp

−1

2

 z̄(m)
`q − z

(m)
`q (θ)

ω
(m)
`q (θ)

2 .

As for the time-resolved data, other noise distributions may be applicable and a decom-

position into different noise sources is possible.

The negative likelihood defines a distance between model simulation and experimental

measurements. To obtain parameter values with the best agreement between model sim-

ulation and experimental measurements, the negative likelihood needs to be minimized. I

will discuss this optimization problem in the following.

2.2.2 Parameter Estimation

The evaluation of the likelihood function L(D|θ) involves the computation of several prod-

ucts, which can be numerically unstable. Therefore, the negative log-likelihood

J(θ) = − log(L(D|θ)) =
1

2

dy∑
i=1

dt∑
l=1

(
ȳij − yi(tj , θ)

σij(θ)

)2

+ log
(
2πσ2

ij(θ)
)

+
1

2

de∑
m=1

dz
(m)∑
q=1

dτ
(m)∑
`=1

 z̄(m)
`q − z

(m)
`q (θ)

ω`q(θ)

2

+ log

(
2πω

(m)
`q

2
(θ)

) (2.7)

is often used as objective function for minimization. As the log is a strictly monoto-

neously increasing function, the minimization of J(θ) = − log(L(D|θ)) is equivalent to the

minimization of −L(D|θ). The corresponding minimization problem

θ∗ = arg min
θ∈Θ

J(θ), (2.8)
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over a suitable parameter domain Θ, yields the Maximum Likelihood estimate of the

parameters. Although this optimization problem is convex in yi(tj , θ), it is usually non-

convex in θ. Thus, the objective function J(θ) can possess multiple local minima and

appropriate optimization strategies must be used.

2.2.3 Optimization Methods

According to the infamous No Free Lunch Theorems for optimization (Wolpert and Macready,

1997), there exists no single optimization method that performs best on all classes of opti-

mization problems. For the class of biologically motivated ODE constrained optimization

problems such as (2.8), repeated, i.e., multi-start, local optimization has been shown to

perform well (Raue et al., 2013b). In multi-start local optimization, independent local

optimization runs are initialized at randomly sampled initial points in parameter space.

For this purpose, the interior-point (Byrd et al., 2000; Waltz et al., 2006) and trust-

region (Byrd et al., 1987; Sorensen, 1982) algorithms are suitable local, Newton-type

optimization schemes.

For box-constraints, i.e., when Θ is a hypercube, the interior-point algorithm augments

the objective function J(θ) by addition of a barrier function

−Γ

2dθ∑
r=1

log(ρr),

which regularizes the problem and implements parameter bounds defined by boundary

∂Θ of the parameter domain Θ. This introduces additional slack variables ρr, which

describe the distance to the parameter boundary ∂Θ and the weighting factor Γ, which

is successively reduced to 0 over the course of the optimization (Byrd et al., 2000; Waltz

et al., 2006).

Many interior-point implementations, such as the implementation in MATLAB routine

fmincon, internally also rely on a trust-region algorithm to compute the optimization

step. However, the trust-region algorithm can also be employed without the interior-

point regularization, when a reflective method (Coleman and Li, 1994) is used to enforce

parameter bounds. In the reflective method, steps that would result in values θ /∈ Θ are

reflected at the boundary ∂Θ.

In every step of the trust-region algorithm, the minimization problem is approximated by

a quadratic problem

min
s∈BD,ε(θ)

1

2
sT∇2J(θ)s+ sT∇J(θ), (2.9)
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where BD,ε(θ) = {s : ‖D(s− θ)‖2 ≤ ε} is the trust-region. The trust-region is an ellipsoid

with radius ε and diagonal scaling matrix D around the current parameter θ. If the

proposed step does not yield a decrease in the objective function, i.e., if J(θ + s) ≥ J(θ),

the trust-region radius ε is reduced and the quadratic problem (2.9) is solved again, until

a decrease is achieved.

The quadratic approximation (2.9) can also be used to compute a prediction Jpred for the

expected objective function value J(θ + s) after the update step. In every iteration, the

trust-region radius ε, can also be increased based on the ratio
Jpred
J(θ+s) .

As the trust-region algorithm uses the Hessian of the objective function ∇2J(θ), it belongs

to the class of Newton-type algorithms. When the Hessian is not available, approximate

methods such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm can be used,

which yields a quasi-Newton method. The BFGS algorithm iteratively computes approxi-

mations to the Hessian based on the dyadic product of the gradient ∇J(θ) of the objective

function. For independent, normally distributed measurement noise, as assumed in (2.7),

and known noise parameters σ and ω, the optimization problem (2.8) is of least squares

type. This structure can be exploited in algorithms such as NL2SOL (Dennis et al., 1981)

using a Gauss-Newton (Björck, 1996) or a Levenberg-Marquardt (Levenberg, 1944; Mar-

quardt, 1963; More, 1978) method, which both ignore second-order partial derivatives in

the Hessian. The respective approximations of the Hessian, coincide with the (damped)

Fisher information matrix (FIM) (Fisher, 1922) of the respective parameter estimate.

In general, the Hessian ∇2J(θ) is not guaranteed to be positive definite as problem (2.7)

can be – and often is – non-convex. In constrast, both the FIM and the BFGS approxima-

tion are always positivie semi-definite and can easily be regularized to be positive definite.

This leads to better convergence as Newton-type algorithms are known to be unstable if

positive definiteness is not guaranteed (Schraudolph, 2002). Therefore, the use of these

approximate methods might be advantageous – even if ∇2J(θ) is available.

Before I describe the different methods to compute the gradient ∇J(θ), I will shortly

discuss uncertainty analysis, where problems similar to (2.8) have to be solved. For these

problems, the same optimization methods can be applied.

2.2.4 Profile Likelihood based Uncertainty Analysis

Experimental data of biochemical processes is often scarce and noise corrupted, resulting

in non-identifiabilities and parameter uncertainties. Parameter identifiability is typically

assessed using structural and practical identifiability analysis (see (Chis et al., 2011; Raue



36 CHAPTER 2. METHODS

et al., 2009) and references therein). Structural identifiability analysis provides informa-

tion for the considered model topology and measured output, independent of a specific

dataset. In contrast, practical identifiability and uncertainty analysis provide information

about the uncertainty of parameter estimates for a given dataset. In general, parameter

uncertainties can be assessed using frequentist methods such as profile likelihoods (Mur-

phy and van der Vaart, 2000; Raue et al., 2013a) and Bayesian methods, which often rely

on sampling (Ballnus et al., 2017; Girolami and Calderhead, 2011; Kramer et al., 2010;

Wilkinson, 2007).

The profile likelihood of a parameter θi, denoted by PLi(θi), is given by the likelihood

maximized over the remaining parameters,

PLi(θi) = max
θj 6= i,θ∈Θ

L(θ).

Accordingly, profile likelihoods can be computed by solving a set of parameter constrained

optimization problems. This requires repeated local optimization. For this purpose the

optimization methods introduced in Subsection 2.2.3 are suitable.

Frequentist confidence intervals can be computed by comparing the profile likelihood

PL(θi) to the likelihood L(D|θ∗) at the Maximum Likelihood estimate θ∗ (Venzon and

Moolgavkar, 1988). For the models considered in this thesis, that contain structural non-

identifiabilities, profile likelihoods are the only viable frequentist technique for global un-

certainty analysis (Fröhlich et al., 2014b).

In contrast to this frequentist approach, Bayesian uncertainty analysis methods rely on

Bayes’ theorem,

p(θ|D) =
p(D|θ)p(θ)
p(D)

,

in which p(θ), p(D|θ)(= L(D|θ)), p(D) and p(θ|D) denote prior probability, likelihood,

evidence and posterior distribution respectively (Wilkinson, 2007). Effectively, the choice

of a particular prior p(θ) corresponds to the regularization of the negative log-posterior

J̃(θ) = − log(p(θ|D)). For example, a Gaussian prior corresponds to a Tikhonov (l2)

regularization, while a Laplacian prior corresponds to a l1 regularization.

To determine Bayesian credibility intervals of the parameters, methods such as Markov

chain Monte Carlo (MCMC) based sampling schemes (Hastings, 1970) can be applied. For

many applications, sampling is computationally more demanding than optimization and

profile computation, as a high number of function evaluations can be necessary. Similar to

optimization schemes, some MCMC schemes, such as the Metropolis adjusted Langevin
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algorithm (Roberts and Rosenthal, 1998), the Hamilton Monte Carlo method (Girolami

and Calderhead, 2011) or Riemann manifold Langevin method (Girolami and Calderhead,

2011) can also exploit the gradient of the posterior.

The evaluation of L(D|θ) and accordingly J(θ) requires the solution to the underlying

ODE model. Thus, the corresponding gradient depends on the derivates of the solution

to the differential equation with respect to the parameters θ. In the next section, I will

outline how these gradients can be computed efficiently.

2.3 Simulation and Sensitivity Analysis

For ODE constrained optimization problems, the computational cost of evaluating the

objective function is dominated by the numerical simulation. The objective function eval-

uation as well as the computation of the gradient of the objective function require the

numerical solution to an ODE. Consequently, efficient numerical methods to solve ODEs

are desirable. In the following, I will outline how these ODEs can be solved efficiently and

how the gradient can be computed as solution to one or multiple ODEs.

2.3.1 Numerical Simulation

As previously discussed, biochemical processes can act on multiple timescales. Conse-

quently, the corresponding model equations are often stiff (Resat et al., 2009). However,

the time-scale of processes is often not known a priori and thus encoded in parameter

values. Consequently, the model equations might be stiff in certain parameter regimes –

even if the real biological system does not involve multiple timescales (Jia et al., 2011).

Therefore, it is always advisable to use an implicit differential equation solver, which can

adequately handle stiff systems (Gonnet et al., 2012).

Implicit differential equations solvers include the fully implicit Runge-Kutta solver fam-

ily (Butcher, 1964), the Singly Diagonally Implicit Runge-Kutta solver family (Alexander,

1977) as well as the Rosenbrock solver family (Rosenbrock, 1963). Implicit methods gen-

erally compute the state variables at the next time step ξi+1 based on the state variables

at previous iterations x(ξi), x(ξi−1), x(ξi−2), . . . by solving an implicit equation

G(x(ξi+1), x(ξi), x(ξi−1), x(ξi−2), . . .) = 0,

where the function G depends on the choice of the method and on right hand side of the

differential equation f . For single step methods, such as Runge-Kutta type solvers, the
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function G will only depend on x(ξi), and not on previous values. For multi-step methods

the function G will depend on previous values of x. This thesis will consider the implicit

linear multi-step Backwards Differentiation Formula (BDF), implemented in the CVODES

solver (Serban and Hindmarsh, 2005). In every iteration i, the BDF solves an equation of

the form

hiβi,0ẋ(ξi) +

q∑
j=0

αi,jx(ξi−j) = 0,

where q is the (variable) order of the method, α and β are the coefficients that depend

on the method type, the order q, and the history of recent step sizes hi. The order q

and the step size hi will determine the local error of the numerical solution (Serban and

Hindmarsh, 2005).

This implicit equation is typically solved using a Newton’s method (Hindmarsh et al.,

2005; Zhang and Sandu, 2014). For the BDF, the function G depends on ẋ and thus on

f . Consequently, the Newton solver computes multiple solutions to linear systems defined

by the Jacobian ∇xf(t, x, θ) of the right hand side of the differential equation at every

integration step.

The computation time of the BDF method primarily depends on two factors: (i) the

evaluation time of the function f and the Jacobian ∇xf(t, x, θ), which usually scales

linearly with dx and (ii) the time to solve the linear systems defined by ∇xf(t, x, θ). The

matrix ∇xf(t, x, θ) is typically not symmetric and neither positive nor negative definite.

For such unstructured problems, LU decomposition, which factorizes ∇xf(t, x, θ) into a

lower-triangular matrix L and an upper-triangular matrix U , is the method of choice to

solve the linear system. After performing the decomposition, the solution to the linear

systems can be computed by matrix multiplication. When no additional structure of the

matrix is exploited, the computational complexity of matrix multiplication with state-of-

the-art algorithms increases at least with exponent 2.376 with respect to dx (Coppersmith

and Winograd, 1990) and thus dominates the computation time for sufficiently large dx.

For certain ODE model classes, specialized solvers exist. For finite element discretizations

of partial differential equations, the Jacobian can be brought into banded form, for which

specialized solvers that scale with the number of off-diagonals of the Jacobian have been

developed (Thorson, 1979). Unfortunately, ODE models of biochemical reaction networks

cannot generally be brought into a banded structure. For example, in polymerization

reactions that include dissociation of monomers, the monomer species will always be in-

fluenced by all other species and the number of off-diagonals in the Jacobian will be equal

to dx. Other frequently occurring motifs, such as feedback loops and single highly in-
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teractive species (Barabasi and Oltvai, 2004), will also increase the number of necessary

off-diagonals.

As alternative to banded solvers, sparse solvers have been introduced in the context of

circuit simulations (Davis and Palamadai Natarajan, 2010). For sparse solvers, the compu-

tation time depends on the number of non-zero entries. The method relies on an approxi-

mate minimum degree (AMD) ordering (Amestoy et al., 1996) which is a graph theoretical

approach that can be used to minimize the fill-in of the L and U decomposition. The al-

gorithm relies on the fact that matrix M ∈ Rdx×dx can be represented as directed graph

(V,E) with dx vertices V and number of non-zero entries nnz(M) edges E. For every

non-zero entry Mij , the corresponding graph includes a directed edge (i → j). The LU-

decomposition can be represented as operations on this graph, where the cumulative degree

of the vertices in the final graph corresponds to the fill in the L and U matrices (George

and Liu, 1981). The AMD algorithm uses an approximation of the resulting vertice degree

in combination with a greedy algorithm to compute a reordering of M to minimize the fill-

in in L and U . By reducing the fill-in in L and U , the computational cost of subsequently

necessary matrix multiplications can be reduced (Davis and Palamadai Natarajan, 2010).

As computing the AMD reordering is computationally inexpensive, the overall compu-

tational cost usually decreases. Currently, no formulas for the expected speedup or the

general scaling with respect to non-zero entries exist. For biochemical reaction networks,

the application of such a sparse solver seems reasonable (Gonnet et al., 2012). Typically,

most molecular species only interact with a handful of other species (Barabasi and Oltvai,

2004), resulting in few non-zero entries in the Jacobian.

Sparse numerical solvers can be used to compute the numerical solution of the model

ODE that are required for objective function evaluation. They can also be used to compute

objective function gradients as solution to one or more ODEs. Several of different gradient

computation approaches exist and in the following, I will discuss the three most common

approaches.

2.3.2 Finite Differences

A näive approximation to the gradient of the objective function (2.7) with respect to θk

can be obtained by finite differences:

dJ

dθk
≈ J(θ + a ek)− J(θ − b ek)

a+ b
,
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with a, b ≥ 0 and the kth unit vector ek. In practice, forward differences (a = ζ, b = 0),

backward differences (a = 0, b = ζ) and central differences (a = ζ, b = ζ), with ζ � 1,

are widely used. For the computation of forward finite differences, this yields a procedure

with three steps:

Step 1: The state trajectory x(t, θ) and output trajectory y(t, θ) are computed.

Step 2: The state trajectories x(t, θ(k)) and the output trajectories y(t, θ(k)) are computed

for the perturbed parameters θ(k) = θ + ζek for k = 1, . . . , dθ.

Step 3: The objective function gradient elements dJ
dθk

, are computed from the output

trajectory y(t, θ) and the perturbed output trajectory y(t, θ(k)) for k = 1, . . . , dθ.

In theory, forward and backward differences provide approximations of order ζ while cen-

tral differences provide more accurate approximations of order ζ2, provided that J is

sufficiently smooth. In practice, the optimal choice of a and b depends on the accuracy of

the numerical integration (Raue et al., 2013b). If the integration accuracy is high, an ac-

curate approximation of the gradient can be achieved using a, b� 1. For lower integration

accuracies, larger values of a and b usually yield better approximations. A good choice of

a and b is typically not clear a priori (see (Hanke and Scherzer, 2001) and the references

therein). Alternative methods based on complex numbers that circumvent the specifica-

tion of a and b have been proposed (Lyness and Moler, 1967; Squire and Trapp, 1998), but

no general-purpose implementations of such methods for ODEs have been established.

The computational complexity of evaluating gradients using finite differences is affine linear

in the number of parameters. Forward and backward differences require in total dθ + 1

function evaluations. Central differences require in total 2dθ function evaluations. Asa

single simulation of a large-scale model is already time-consuming, the gradient calculation

using finite differences can be limiting.

2.3.3 Forward Sensitivity Analysis

State-of-the-art systems biology toolboxes, such as Data2Dynamics (Raue et al., 2015),

use forward sensitivity analysis for gradient evaluation. The gradient of the objective
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function (2.7) is given by

dJ

dθk
=

dy∑
i=1

N∑
j=1

(
ȳij − yi(tj , θ)

σ2
ij

)
syi,k(tj , θ)

+

de∑
m=1

dz
(m)∑
q=1

dτ
(m)∑
`=1

 z̄(m)
`q − z

(m)
`q (θ)

ω`q(θ)

 s
z
(m)
`q

k (θ)

+
∂J

∂θk
,

with syi,k(t, θ) : [t0, tN ] × Rdθ 7→ R denoting the sensitivity of time-resolved output yi at

time point t with respect to parameter θk and s
z
(m)
`,q

k (θ) : Rdθ 7→ R: denoting the sensitivity

of event-resolved output z
(m)
`,q . These two quantities can be computed by applying the

total derivative to the functions h and λ:

syi,k(tj , θ) =
∂hi
∂x

∣∣∣∣
x(t,θ),θ

sxk(tj , θ) +
∂hi
∂θk
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s
z
(m)
`,q

k (θ) =
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(m)
q

∂t

∣∣∣∣∣
τ
(m)
` ,x(τ
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` θ), θ)

+
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q

∂θk
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` ,x(τ
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` θ),θ

.

with sxk(t, θ) : [t0, tN ]× Rdθ 7→ Rdx denoting the sensitivity of the state x with respect to

θk. The state sensitivity to a specific parameter can be computed as solution to an ODE

system (Kokotovic and Heller, 1967):

ṡxk(t, θ) =
∂f

∂x

∣∣∣∣
x(t,θ),θ

sxk(t, θ) +
∂f

∂θk

∣∣∣∣
x(t,θ),θ

, sxk(t0, θ) =
∂x0

∂θk

∣∣∣∣
θ

.

Moreover, s
τ
(m)
`
k (θ) : Rdθ 7→ Rdx denotes the sensitivity of the event-time of the `th occur-

rence of the mth event type with respect to θk. The sensitivity s
τ
(m)
`
k (θ) can be computed

according to the implicit function theorem

s
τ
(m)
`
k (θ) =

∂τ
(m)
`

∂θk
= −

(
∂g(m)

∂t

)−1
∂g(m)

∂θk

∣∣∣∣∣∣
τ
(m)
`

,
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assuming that
(
∂g(m)

∂t

)
is non-zero. At the occurrence of every event the state sensitivities

sxk need to be updated according to the formula

sxk(τ
(m)
`,+ )− sxk(τ

(m)
` ) = −(ẋ(τ

(m)
`,+ )− ẋ(τ

(m)
` ))s

τ
(m)
`
k

+
∂∆(m)

∂x

(
sxk + ẋs

τ
(m)
`
k

)∣∣∣∣∣
τ
(m)
`

+
∂∆(m)

∂t
s
τ
(m)
`
k

∣∣∣∣∣
τ
(m)
`

+
∂∆(m)

∂θ

∣∣∣∣∣
τ
(m)
`

.

Forward sensitivity analysis consists of three steps:

Step 1: The state trajectory x(t, θ) and output trajectory y(t, θ) are computed.

Step 2: The state sensitivities sxk(t, θ) and the output sensitivities syk(t, θ) and s
z
(m)
`,q

k (θ) are

computed using the state trajectory x(t, θ) for k = 1, . . . , dθ.

Step 3: The objective function gradient elements dJ
dθk

, are computed from the output

sensitivities syk(t, θ) and s
z
(m)
`,q

k (θ) and the outputs y(t, θ) and z
(m)
` for k = 1, . . . , dθ.

Step 1 and 2 are often combined, which enables simultaneous error control and the reuse

of the Jacobian (Hindmarsh et al., 2005). The simultaneous error control allows for the

calculation of accurate and reliable gradients. The reuse of the Jacobian improves the

computational efficiency.

The number of state and output sensitivities increases linearly with the number of param-

eters. While this is unproblematic for small- and medium-sized models, solving forward

sensitivity equations for systems with several thousand state variable bears technical chal-

lenges. Code compilation can take multiple hours and requires more memory than what is

available on standard machines. Furthermore, while forward sensitivity analysis is usually

faster than finite differences, the complexity, in practice, still increases roughly linearly

with the number of parameters.

2.3.4 Adjoint Sensitivity Analysis

In the mathematics and engineering community, adjoint sensitivity analysis is frequently

used to compute the gradients of a functional with respect to the parameters if the func-

tional depends on the solution of a differential equation (Plessix, 2006). In these appli-

cations, measurements are continuous in time and J(θ) is assumed to be a functional of

the solution x(t) of a differential equation. However, this approach can also be applied to
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discrete-time measurements and in contrast to forward sensitivity analysis, adjoint sen-

sitivity analysis does not rely on the state sensitivities sxk(t), but on the adjoint state

p(t).

For discrete-time measurements – the usual case in systems and computational biology –

the adjoint state is piece-wise continuous in time and defined by a sequence of backward

differential equations. For t > tN , the adjoint state is zero, p(t) = 0. Starting from this

end value the trajectory of the adjoint state is calculated backwards in time, from the last

measurement t = tN to the initial time t = t0. At the measurement time points tN , . . . , t1,

the adjoint state is reinitialized as

p(tj) = lim
t→t+j

p(t) +
∂J

∂x
, (2.10)

which usually results in a discontinuity of p(t) at tj . Starting from the end value p(tj)

as defined in (2.10) the adjoint state evolves backwards in time until the next measure-

ment point tj−1 or the initial time t0 is reached. This evolution is governed by the time

dependent linear ODE

ṗ = −
(
∂f

∂x

)T
p. (2.11)

The repeated evaluation of (2.10) and (2.11) until t = t0 yields the trajectory of the

adjoint state. Given this trajectory, the gradient of the objective function with respect to

the individual parameters is

dJ

dθk
= −

∫ tN

t0

pT
∂f

∂θk
dt− p(t0)T

∂x0

∂θk
+
∂J

∂θk
. (2.12)

The calculation of the objective function gradient using adjoint sensitivity analysis consists

of three steps:

Step 1: The state trajectory x(t, θ) and output trajectory y(t, θ) are computed.

Step 2: The trajectory of the adjoint state p(t) is computed.

Step 3: The objective function gradient elements dJ
dθk

, k = 1, . . . , nθ, are computed from

the state trajectory x(t, θ), the adjoint state trajectory p(t) and the output trajectory

y(t, θ).

Step 1 and 2, which are usually the computationally intensive steps, are independent of

the parameter dimension. The complexity of Step 3 increases linearly with the number
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of parameters, yet the computation time required for this step is typically negligible.

Unfortunately, adjoint sensitivities are currently not applicable for systems with parameter

dependent discrete events as respective update formulas for the adjoint and quadrature

states are missing.



Chapter 3

Summary of Contributed Articles

In this chapter, I provide detailed summaries of all of four articles that constitute this

publication-based dissertation. I am the sole first author of all of these articles and was

in charge of their preparation. A detailed description of my contributions to each article

is provided below. All articles are peer-reviewed and published in international, well-

established journals and not used in any other publication-based dissertation. The articles

are sorted according to the issues (i) to (iv), listed in Section 1.2. The full text of all of

my main contributions follows in Appendices A-D.

(1) F. Fröhlich, P. Thomas, A. Kazeroonian, F.J. Theis, R. Grima, J. Hasenauer. Infer-

ence for stochastic chemical kinetics using moment equations and system

size expansion. PLoS Computational Biology 12(7):e1005030 (2016).

Quantitative mechanistic models are valuable tools for disentangling biochemical

pathways and for achieving a comprehensive understanding of biological systems.

However, to be quantitative, the parameters of these models have to be estimated

from experimental data. In the presence of significant stochastic fluctuations, this

is a challenging task as stochastic simulations are usually too time-consuming (see

Section 2.1.1) and a macroscopic description using RREs may not be accurate (see

Section 2.1.2). Mesoscopic moment-closure approximation and the system size ex-

pansion have been proposed for simulation as they can be evaluated more efficiently

than stochastic simulations but are more accurate than macroscopic rate equations

(see Section 2.1.3 and Section 2.1.4). However, these approximations were previ-

ously not used for parameter estimation and the effect of the approximation error

on parameter estimates was unknown.

In this article, I derived and implemented novel gradient-based parameter optimiza-

tion methods and uncertainty analysis methods for these mesoscopic descriptions, as

conceived by Philipp Thomas, Fabian Theis, Ramon Grima, Jan Hasenauer and me.

I considered a model of protein synthesis followed by enzymatic degradation, a model

of a trimerization reaction as well as a model Epo-induced JAK/STAT signaling. For

all models, I generated the model equations for the macroscopic and mesoscopic de-

scriptions, with support from Atefeh Kazeroonian and Philipp Thomas, using the
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MATLAB toolbox CERENA (Kazeroonian et al., 2016). To address issue (i), I per-

formed a first comprehensive assessment of the dependence of the simulation time

on the system volume, a proxy for the magnitude of stochastic fluctuations and cu-

mulative reaction propensity. This revealed that the simulation time for MA and

SSE does not depend on the system volume. Furthermore, I assessed how the ap-

proximation order influences the error of parameter estimates obtained using the

parameter estimation toolbox PESTO (Stapor et al., 2017). I evaluated the accuracy

of parameter estimates on simulated data for the model of protein synthesis followed

by enzymatic degradation and the model of a trimerization reactions as well as exper-

imental data for the model of Epo-induced JAK/STAT signaling with assistance of

Jan Hasenauer, Philipp Thomas and Ramon Grima. For the model of Epo-induced

JAK/STAT signaling I employed the profile likelihood approach to demonstrate

that moment-closure approximation and system size expansion can improve param-

eter identifiability in comparison to RRE – even if merely population-average data

are available. I validated the estimated parameter value with additional experimen-

tal data from previous studies. This result was a novel finding and underlined the

importance of considering stochastic formulation of the underlying biochemical re-

action network. Furthermore, the simulation examples revealed that the estimates

obtained using mesoscopic descriptions are more reliable than estimates obtained

using the RRE, for an intermediate volume regime, where the effect of stochastic

fluctuations is weak but non-negligible. I was able to relate the observed error in

parameter estimates to the approximation order of the system size expansion and

the moment-closure expansion as well as the variance of the employed empirical mo-

ment estimator and could thus explain the emergence of such an intermediate volume

regime. Moreover, I proposed methods to determine the regime boundaries based on

model selection and model rejection methods. These methods can also be used to

determine whether a stochastic description is necessary for a specific dataset. These

results illustrated that inference using moment-closure approximation and system

size expansion is feasible and possesses a high sensitivity.

In addition to the scientific contributions, I was the author in charge of the prepa-

ration of this publication. I wrote the first complete draft of the manuscript and

consolidated the draft with the other authors. The final manuscript includes contri-

butions from Jan Hasenauer, Philipp Thomas and Ramon Grima.

(2) F. Fröhlich, B. Kaltenbacher, F.J. Theis, J. Hasenauer. Scalable parameter es-

timation for genome-scale biochemical reaction networks. PLoS Computa-

tional Biology 13(1):e1005331 (2017).
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Mechanistic mathematical modeling of biochemical reaction networks using ODE

models has improved our understanding of small- and medium-scale biological pro-

cesses. While the same should in principle hold for large- and genome-scale processes,

the computational methods for the analysis of ODE models which describe hundreds

to thousands of biochemical species and reactions were missing. While individual

simulations were feasible, the estimation of the model parameters from experimental

data was computationally too intensive. Adjoint sensivitities have been proposed as

means of efficiently evaluating gradients for functionals where measurements are con-

tinuous, but were never evaluated for ODE models of biochemical reaction networks,

which are usually trained on time-discrete measurements (see Section 2.3.4).

In this article, I provided the first thorough evaluation of adjoint sensitivity analysis

for parameter estimation in large-scale biochemical reaction networks, as conceived

by Jan Hasenauer and me. I implemented the algorithms in the open-source toolbox

AMICI, which is used by a growing number of other researchers in various research

projects (Ballnus et al., 2017; Boiger et al., 2016; Loos et al., 2016, 2017; Maier

et al., 2017; Stapor et al., 2017). AMICI performs all necessary symbolic processing

of the differential equations to generate native C++ code that allows for highly ef-

ficient simulation and sensitivity analysis. To make the toolbox accessible to other

researchers, I implemented an easy-to-use mex-interface that renders the simula-

tion routines accessible from MATLAB. To compare the adjoint sensitivity analysis

approach for time-discrete measurement to state-of-the-art forward sensitivity and

finite difference methods used in systems and computational biology, I implemented

both in AMICI. To address issue (ii), I evaluated the performance of all methods on

seven published models of biochemical reaction networks with 116 to 1801 parame-

ters and 18 to 500 state variables with the assistance of Barbara Kaltenbacher and

Jan Hasenauer. The comparison revealed a reduction of the computational cost by

up to 334 fold and a superior scalability with the number of parameters for adjoint

sensitivity analysis for all but one of the considered models. These results suggest

that adjoint sensitivity analysis is generally favorable for most models with more

than 10 to 100 parameters. However, for specific models forward sensitivity analysis

may still be more efficient. The evaluation of the accuracy of the computed sensi-

tivities revealed that the numerical error in adjoint sensitivity analysis was as low

as for forward sensitivity analysis. For finite differences I observed a much higher

numerical error. The observed computational cost for adjoint sensitivity analysis is

effectively independent of the number of parameters, enabling the analysis of large-

and genome-scale models. The study of a comprehensive kinetic model of ErbB

signaling revealed that parameter estimation using adjoint sensitivity analysis re-
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quired a fraction of the computation time of established methods, which underlines

the practical relevance of the developed method. The study provides the first solid

evidence for the benefits of adjoint sensitivity analysis for biochemical reaction net-

works. The implementation I provided in AMICI is currently used in several research

projects by multiple research groups.

In addition to the scientific contributions, I was the author in charge of the prepa-

ration of this publication. I wrote the first complete draft of the manuscript and

consolidated the first draft with the other authors. The final manuscript includes

contributions from Barbara Kaltenbacher, Fabian Theis and Jan Hasenauer.

(3) F. Fröhlich, T. Kessler, D. Weindl, A. Shadrin, L. Schmiester, H. Hache, A. Mu-

radyan, M. Schütte, J. Lim, M. Heinig, F.J. Theis, H. Lehrach, C. Wierling, B.

Lange, and J. Hasenauer. Efficient parameterization of large-scale mechanis-

tic models enables drug response prediction for cancer cell lines. bioRxiv:

174094.

The effect of cancer drugs often affects multiple different pathways and substantially

varies across individuals. Thus large-scale mechanistic models are likely to be re-

quired for accurate predictions of drug efficacy. Several such large scale models have

been derived (Barrette et al., 2017; Chen et al., 2009), but parameter estimation

using experimental data was never performed due to the high computational cost.

Besides the large number of parameters, the large number of state variables also

poses a challenge for parameter estimation. Sparse solvers for the efficient simula-

tion of ODE models with many state variables have been developed in the context

of circuit simulation, but require a sparsity structure in the respective ODE model

(see Section 2.3.1). The applicability and efficiency of such sparse solvers for ODE

models of biochemical reaction networks was unclear.

In this article, I developed a novel framework of computational methods for the pa-

rameterization of large-scale quantitative mechanistic models and its application to

the prediction of drug response of cancer cell lines based on exome and transcriptome

sequencing data. The considered model describes several cancer-associated signaling

pathways and has in total over 1200 state variables and over 4000 parameters. I im-

plemented the model, which was constructed by our collaboration partners Thomas

Kessler, Alexey Shadrin, Hendrik Hache, Artur Muradyan, Moritz Schütte, Ji-Hyun

Lim, Hans Lehrach, Christoph Wierling and Bodo Lange at ALACRIS Theranostics

GmBH, in AMICI. To address issue (iii), I proposed the use of a sparse solver and

implemented an interface to the sparse solver KLU (Davis and Palamadai Natarajan,

2010) in AMICI. To achieve scalability with respect to the number of experimental
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conditions, I implemented a parallelization scheme in the MATAB toolbox PESTO.

I performed parameter estimation using the sparse solver and adjoint sensitivity

analysis implemented in AMICI and parallelization implemented in PESTO with as-

sistance of Daniel Weindl and Jan Hasenauer, as conceived by Christoph Wierling,

Fabian Theis, Jan Hasenauer, Thomas Kessler and me. Overall the developed frame-

work achieved an computational speedup of over 240.000 fold over state-of-the-art

methods. Only the combination of all three approaches enabled parameterization of

the model from experimental data, as the computational cost with state-of-the-art

approaches was in the order of hundreds of thousands of years.

The developed mechanistic model can be individualized to specific cell lines and

experiments by using values from exome and transcriptome sequencing as well as

drug concentrations in the right hand side of the ODE. This allowed the parame-

terization of the model from several thousand drug assays for cancer cell lines from

various tissues in the Cancer Cell Line Encyclopedia (Barretina et al., 2012). I

compared the prediction accuracy of the parameterized mechanistic model to sev-

eral statistical methods, including logistic regression approaches as well as a random

forest classifier, which were implemented and trained by Matthias Heinig. I found

that the mechanistic model outperforms all statistical approaches in terms of clas-

sification accuracy for in-tissue as well as out-of-tissue predictions. To analyse the

uncertainty of estimated parameters I performed uncertainty analysis based on the

Fisher Information Matrix, which suggested substantial uncertainty in the estimated

parameters. However, the comparison with proteomic data, which was carried out

by Leonard Schmiester, revealed that reliable prediction of molecular phenotypes

could still be achieved. Furthermore, I demonstrated that the mechanistic model

has the remarkable capacity of predicting outcome of combination treatments, even

when only trained on individual treatments, which is not possible with any of the

established statistical approaches. These results show that the scalable methods,

that were developed in this thesis, enable parameter estimation for ODE at un-

precedented scale. The application to a massive characterization of cancer cell lines

underlines the relevance of the developed methods to practical applications.

In addition to the scientific contributions, I was the author in charge of the prepa-

ration of this publication. I wrote the first complete draft of the manuscript and

consolidated the draft with the other authors. The final manuscript includes contri-

butions from Christoph Wierling, Daniel Weindl, Jan Hasenauer, Matthias Heinig

and Thomas Kessler.

(4) F. Fröhlich, F.J. Theis, J.O. Rädler, J. Hasenauer. Parameter estimation for dy-
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namical systems with discrete events and logical operations. Bioinformatics

33(7):1049-1056 (2017).

ODE models are frequently used to describe the dynamic behaviour of biochemical

processes. Such ODE models can be extended by events to describe the effect of

fast latent processes on the process dynamics (see Section 2.1.5). For some bio-

chemical processes, such as cell-death, the instant of time at which an event takes

places can be experimentally measured as event-resolved datapoint. However, no

formulation of the likelihood and of respective gradients existed. Thus, the con-

sideration of such event-resolved data was only possible with statistical methods,

but not with mechanistic ODE models. This prohibited a deeper understanding of

underlying biochemical mechanisms. Moreover, the support for ODE models with

discrete events was generally poor in state-of-the-art toolboxes, in particular with

respect to gradient calculation.

In this article, I described the sensitivity equations for differential equation mod-

els with discrete events. I derived and applied a novel mathematical framework

for parameter estimation using event-resolved experimental data by modeling event-

triggered observations. To address issue (iv), I implemented forward sensitivity

analysis for ODE models with events in the AMICI toolbox. I developed a model for

GFP expression after transfection together with Joachim Rädler, who also provided

experimental data for the model. Additionally I considered a model for spiking

neurons, for which I simulated data. Both models include discrete events. I imple-

mented both models in AMICI and performed parameter estimation using PESTO. For

the model for GFP expression, I demonstrated that the computational cost is 2.2

fold lower when using forward sensitivity analysis compared to finite differences. For

the model of spiking neurons, I showed that the computational cost is 3.9 fold lower

for forward sensitivity analysis compared to finite differences. Moreover, the repro-

ducibility of parameter estimates over multiple local optimizations runs was higher

or forward sensitivity analysis for the model of spiking neurons compared to finite

differences. For the model of spiking neurons, the parameters were only estimated

from event-resolved outputs, a novel approach, which I introduced in this thesis. In

the manuscript, I also introduced a novel regularization scheme which further im-

proves the reproducibility of parameter estimates across multiple optimization runs.

The regularization scheme is based on the final value of the event trigger function

for events that did occur not in the simulation during the experimentally observed

time-frame. The consideration of event-resolved data in the context of ODE mod-

els was previously not possible as the respective mathematical framework was not

established and the methods were not implemented in any other systems biology
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toolbox. Thus, the proposed approach enables the consideration of a new data-type

of event-resolved datapoints, which is relevant for many biological applications that

deal with time-to-event data such as recorded cell-death events.

In addition to the scientific contributions, I was the author in charge of the prepara-

tion of this publication. I had the idea for the mathematical framework to consider

event-resolved experimental data and the respective regularization scheme. I wrote

the first complete draft of the manuscript and consolidated the draft with the other

authors. The final manuscript includes contributions from Jan Hasenauer and Fabian

Theis.
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Chapter 4

Discussion and Outlook

4.1 Discussion

Small- to medium-scale ordinary differential equation models are widely used to describe

the temporal evolution of biological systems and established toolboxes exist for parame-

ter estimation and uncertainty analysis. Yet, these ordinary differential equation models

ignore the influence of stochastic fluctuations, which can lead to a bias in parameter es-

timates. Moreover, these small- to medium-scale models often ignore the complexity of

biological systems, which limits the predictive power of respective models. For many appli-

cations, such as precision medicine for complex diseases, predictive models with many pa-

rameters and many state-variables are necessary. Yet, many of the established algorithms

for parameter estimation and uncertainty analysis do not scale well with the number of

parameter and state variables and are not applicable to large-scale models, as they are

prohibitively computationally expensive. Furthermore, comprehensive models are prone

to pronounce stiffness which results in high computational complexity.

The computational cost of parameter estimation and uncertainty analysis primarily de-

pend on the computation time for numerical simulation of the model and corresponding

sensitivity equations. For stochastic models, computationally much cheaper mesoscopic

approximations such as the moment-closure approximation and the systems size expansion

have been introduced, but the effect of the approximation error on parameter estimation

was never evaluated. For deterministic models several approaches to reduce this com-

putation time, such as sparse solvers and adjoint sensitivities, have been proposed, but

were never rigorously implemented or evaluated for biological systems. Moreover, discrete

events have been proposed to mitigate stiffness, but sensitivity based parameter estimation

was never properly implemented or evaluated. To address these shortcomings, I studied

the respective approaches and provided an efficient implementation in the software toolbox

AMICI. Using this implementation, I studied the properties and performance of respective

approaches on several application examples.

Firstly, I demonstrated that mesoscopic MA and SSE descriptions can provide computa-
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tionally cheap, but accurate parameter estimates. Secondly, I demonstrated that adjoint

sensitivities can be used to compute objective function gradients almost independent of

the number of parameters. Thirdly, I demonstrated that adjoint sensitivity analysis can

be used together with a sparse linear solver and parallelization to enable the consideration

of large-scale ODE models. Lastly, I demonstrated how sensitivity equations for models

with discrete events can be used to efficiently compute parameter estimates.

My thesis work resulted in a careful selection of scalable algorithms for simulation of model

equations and corresponding sensitivity equations which enable the consideration of large-

scale models for parameter estimation and uncertainty analysis. All of these methods are

implemented in the software toolbox AMICI, which has already been used in many other

research projects (Ballnus et al., 2017; Boiger et al., 2016; Loos et al., 2016; Maier et al.,

2017). However several additional improvements to further reduce the simulation time for

certain problem classes are possible. Moreover, improvements in optimization algorithms

could further reduce the computation time. These possible extensions are discussed in the

following.

4.2 Adjoint Sensitivity Analysis for Models with Events

The timescales of biological processes typically do not depend on environmental settings

and usually generalize well. Consequently, the approximation of fast timescales via dis-

crete events is relevant for detailed large-scale models and could reduce the stiffness of

equations. This would be particularly useful, when coupling signaling models to gene

regulator networks.

However, adjoint sensitivity analysis currently cannot be applied to models with parame-

ter dependent events as respective update formulas for the adjoint state and quadrature

equations are missing. Consequently, large-scale models that approximate fast timescales

with discrete events currently remain intractable. For the discrete adjoint approach (Giles

et al., 2003) respective update formulas have already been derived (Zhang et al., 2017),

but do not directly extend to the continuous adjoint approach described in this thesis.

4.3 Stochastic Gradient Descent Optimization

In this thesis, I only considered parameter estimation using standard local optimizers

namely interior-point and trust-region methods. As previously discussed, these approaches
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require exact gradient information to perform well. The computation time of the exact gra-

dient scales linearly with the number of considered experimental conditions, as individual

numerical simulation of model and sensitivity equations are required for every experimen-

tal condition. This renders parameter estimation and uncertainty analysis intractable,

when considering massive datasets such as the Cancer Cell Line Encyclopedia (Barretina

et al., 2012), which include thousands to millions of experimental conditions.

In such settings, stochastic gradient descent could be a viable alternative, which have

already been successfully applied for optimization for deep learning and other machine

learning problems (Bottou, 2010; Sutskever et al., 2013). Stochastic gradient descent al-

gorithms such as Root Mean Square Propagation, Adaptive Moment Estimation (Kingma

and Ba, 2014) or the momentum method (Polyak, 1964) assume that the gradient informa-

tion in some of the datasets is to some extent redundant and exploits this by subsampling

the experimental conditions in every iteration. The complete dataset is considered over the

span of multiple iterations, which together form an epoch. Stochastic gradient descent can

easily be combined with adjoint sensitivity analysis, when applied to individual datasets,

which is possible at no additional cost. Consequently, this approach could improve the

scaling with respect to the number of considered experimental conditions. Furthermore,

the Stochastic Gradient Descent approach could be combined with trust-region or varia-

tional methods (Wibisono et al., 2016) for the step size computation to further accelerate

convergence speed.

4.4 Automatic Reconstruction of Large-Scale Models

The creation of comprehensive, genome-scale models remains challenging. For metabolic

models, community driven endeavors have yielded genome-scale models (Herrg̊ard et al.,

2008; Thiele et al., 2013). For signaling dynamics, comprehensive reconstructions endeav-

ors such as the Atlas of Cancer Signaling Network (Kuperstein et al., 2015) have been

initiated, but currently lack rate laws, so no ODE model can be constructed. Moreover,

several online resources that aggregate vast amounts of biological knowledge about inter-

actions such as openBEL (Fluck et al., 2014), Pathway Commons (Cerami et al., 2011)

or OmniPathDB (Turei et al., 2016) have been established. Complimentary, tools for the

automatic construction comprehensive ODE models from these resources are currently in

development (Gyori et al., 2017). However, the necessary level of detail at which such

large-scale comprehensive models should describe the biological model is not clear.

Standard, data-driven model reduction methods (Maiwald et al., 2016; Transtrum and Qiu,
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2016) could be used to assess the appropriate level of detail. However, these methods were

developed for small- to medium-scale models and are computationally highly demanding.

Even when combined with methods developed in this thesis, they are likely to be compu-

tationally intractable. As alternative to model reduction, model selection (Akaike, 1974;

Arlot and Celisse, 2010) on a set of candidate models could be performed. With the avail-

ability of massive datasets in public databases (Barretina et al., 2012; Li et al., 2017; Yang

et al., 2012), cross-validation methods can be employed. These cross-validation methods

are data-intensive, but only require parameter estimation for which scalable methods have

been developed in this thesis. Complimentary, automated model construction methods

allow the generation of large sets of candidate models at varying level of detail. This

would allow the data-driven identification of an optimal level of detail, which provides a

minimally detailed but predictive model. Comprehensive models constructed according

to this level of detail could be employed in a variety of systems biology applications and

would bring us a large step closer to a truly holistic understanding of biological systems.
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F. Fröhlich, S. Hross, F. J. Theis, and J. Hasenauer. Radial basis function approxima-

tion of Bayesian parameter posterior densities for uncertainty analysis. In P. Mendes,

J. O. Dada, and K. O. Smallbone, editors, Proc. 12th Int. Conf. Comp. Meth. Syst.

Biol., Lecture Notes in Bioinformatics, pages 73–85. Springer International Publishing

Switzerland, 2014a.
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tion for the CME from noisy binned snapshot data: Formulation as maximum likelihood

problem. Extended abstract at Conf. of Stoch. Syst. Biol., Monte Verita, Switzerland,

2011.

J. Hasenauer, N. Jagiella, S. Hross, and F. J. Theis. Data-driven modelling of biological

multi-scale processes. Journal of Coupled Systems and Multiscale Dynamics, 3(2):101–

121, 2015.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applica-

tions. Biometrika, 51(1):97–109, 1970.

M. J. Herrg̊ard, N. Swainston, P. Dobson, W. B. Dunn, K. Y. Arga, M. Arvas, N. Blüthgen,
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Abstract
Quantitative mechanistic models are valuable tools for disentangling biochemical pathways

and for achieving a comprehensive understanding of biological systems. However, to be

quantitative the parameters of these models have to be estimated from experimental data.

In the presence of significant stochastic fluctuations this is a challenging task as stochastic

simulations are usually too time-consuming and a macroscopic description using reaction

rate equations (RREs) is no longer accurate. In this manuscript, we therefore consider

moment-closure approximation (MA) and the system size expansion (SSE), which approxi-

mate the statistical moments of stochastic processes and tend to be more precise than mac-

roscopic descriptions. We introduce gradient-based parameter optimization methods and

uncertainty analysis methods for MA and SSE. Efficiency and reliability of the methods are

assessed using simulation examples as well as by an application to data for Epo-induced

JAK/STAT signaling. The application revealed that even if merely population-average data

are available, MA and SSE improve parameter identifiability in comparison to RRE. Further-

more, the simulation examples revealed that the resulting estimates are more reliable for an

intermediate volume regime. In this regime the estimation error is reduced and we propose

methods to determine the regime boundaries. These results illustrate that inference using

MA and SSE is feasible and possesses a high sensitivity.

Author Summary

In this manuscript, we introduce efficient methods for parameter estimation for stochastic
processes. The stochasticity of chemical reactions can influence the average behavior of
the considered system. For some biological systems, a microscopic, stochastic description
is computationally intractable but a macroscopic, deterministic description too inaccurate.
This inaccuracy manifests itself in an error in parameter estimates, which impede the
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predictive power of the proposed model. Until now, no rigorous analysis on the magnitude
of the estimation error exists. We show by means of two simulation examples that using
mesoscopic descriptions based on the system size expansions and moment-closure
approximations can reduce this estimation error compared to inference using a macro-
scopic description. This reduction is most pronounced in an intermediate volume regime
where the influence of stochasticity on the average behavior is moderately strong. For the
JAK/STAT pathway where experimental data is available, we show that one parameter
that was not structurally identifiable when using a macroscopic description becomes struc-
turally identifiable when using a mesoscopic description for parameter estimation.

Introduction
On the single-cell level many biological processes are influenced by stochastic fluctuations [1–
3]. This stochasticity must be accounted for when constructing quantitative mechanistic models
for the behavior of cells. Traditionally, dynamics of stochastic biochemical processes are mod-
eled using the Chemical Master Equation (CME) [4]. The CME provides an accurate micro-
scopic description of stochastic chemical kinetics [5] and enables the prediction of the behavior
of biochemical reaction networks. To achieve high prediction accuracy, however, the parameters
of the CME have to be inferred from experimental data. This inference is challenging and the
development of new methods to perform efficient inference is the subject of current research.

In the literature, methods to perform statistical inference for single-cell time-lapse data [6–
13] and populations snapshot data [14–20] have been proposed. These methods use the Sto-
chastic Simulation Algorithm (SSA) [21], as well as various approximations of the CME such
as the Finite State Projection (FSP) [22], moment closure approximations (MA) [23] and the
linear-noise approximation (LNA) [24]. We next provide a brief discussion of these methods,
in particular their use to infer the parameters from experimental single-cell data—a visual sum-
mary of these methods and their properties is provided in Fig 1. In this manuscript we will
only consider population snapshot data and thus focus on the respective methods.

The parameters of stochastic processes are frequently inferred using Approximate Bayesian
Computing approaches [25]. These methods rely on exhaustive stochastic simulations and
accept parameter values if the differences between simulation and experimental data is suffi-
ciently small [7, 13, 19]. While many methods which exploit stochastic simulations are asymp-
totically exact, their computational efficiency suffers from the required number of simulations.
While SSA-based methods are asymptotically exact, appropriate stopping criteria and distance
measures are difficult to obtain [26]. Furthermore, the computational efficiency of Approximate
Bayesian Computing methods suffers from the tremendous number of required SSA runs.

Inference using FSP methods is usually more efficient than using the SSA [20]. The parame-
ter dependent probability distribution of the process is simulated and the likelihood of the data
under this distribution is evaluated (Fig 1b). This likelihood function is a multinomial proba-
bility distribution [15, 16] and efficient gradient-based optimization methods can be used [18].
The ODE systems might however be large and hence their simulation is intractable even when
using state-of-the-art sliding window [27] and tensor train approaches [12]. Even with tailored
methods [12, 27, 28], the simulation of many reaction networks remains computationally
intractable and hence FSP-based inference is still very limited.

To circumvent the computational complexity of evaluating the full probability distribution,
MA [29–32] and the SSE methods [24] have been introduced. Both classes of methods approxi-
mate the statistical moments of the stochastic process which is described by the CME:
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• The MA is based on the hierarchy of evolution equations for the statistical moments of the
CME solution. This hierarchy is truncated at an order N and the (N + 1)th order moments
usually contained in the remaining system are approximated by functions of the lower-order
moments. This approximation is based on an assumption of the distribution solution of the
CME [33–35]. The Nth order MA is in the following denoted by NMA.

• The SSE of the CME is a series expansion in the inverse volume of the compartment in which
the system is confined [24]. The leading order in the mean gives the reaction rate equations
(RRE) while the leading order in the variance gives the LNA. The consideration of additional
terms in the expansion gives the expected mesoscopic rate equation (EMRE) [36] (the first-
order correction to the RRE) and the inverse omega square (IOS) method [37] (the first-
order correction to the LNA).

Both MA and SSE approaches generate a system of coupled ordinary differential equations
(ODEs) for the approximate moments. It has been shown that the difference between MA and
SSE methods decreases with increasing volume and approaches the solution of the CME [23].
The accuracy of MA equations and the conditions under which they provide physically mean-
ingful results have recently been studied for several distribution choices [23, 33, 38].

Fig 1. Inferencemethods for stochastic processes. (a) Single-cell snapshot data collected using a high-throughput technique, such as flow
cytometry. (b) Empirical density functions for SSA runs (black—) and experimental data (blue—), the difference is used as distance measure in
Approximate Bayesian Computing. (c) Instantaneous probability distribution computed using FSP (black—) to evaluate the likelihood of the
observing the individual cells (blue ×). (d) Mean computed using MA/SSE (black—) as well as measured mean and its uncertainty (blue—). (e)
Summary of the properties of the displayed methods.

doi:10.1371/journal.pcbi.1005030.g001
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For statistical inference of parameters the LNA and 2MA have recently been used [10, 17,
18, 39, 40]. The comparison of the measured and simulated moments often provides good
parameter estimates [17, 18] and the corresponding estimation problems are tractable. Besides
reducing the computational complexity, MA and SSE approaches also enable the application of
techniques which were already established for deterministic models, e.g., structural identifiabil-
ity analysis [41]. Accordingly, the literature for the application of MA and SSE methods for
inference is promising, there is however plenty of room for improvement: (i) in none of the
studies have gradient-based optimization methods with sensitivity equations been employed,
even though they have been shown to be superior for a wide range of dynamical systems [42];
(ii) the estimation error of inferred parameter values is influenced by the fact that the MA and
LNA typically provide an approximation of the moments for chemical systems with at least
one bimolecular reaction (see [43] for more details on when the LNA is exact). Hence a system-
atic evaluation of estimation errors in the inferred parameter values, say as a function of the
compartment volume is direly needed so that one can decide which modeling approach is best
suited for a given compartment volume. (iii) it has been shown that EMRE and IOS yield more
accurate approximations to the CME than possible using the LNA and RRE [36, 43–45]
(although there are exceptions such as when the LNA is exact up to second-order moments
with the CME [43]). Similarly in the limit of large volumes, it has been shown that higher-
order MA equations are more accurate than lower-order ones [23]; for example the 3MA is
more accurate than the commonly used 2MA. However to-date the equations derived by con-
sidering the terms in the SSE beyond the LNA and the equations obtained using the 3MA have
not been used for inference.

In this manuscript, we will introduce an efficient gradient- and sensitivity-based method for
parameter estimation for population snapshot data using MA and SSE-based approaches. This
method is evaluated on experimental data available for the JAK/STAT signaling pathway
model, which is traditionally modeled using the RRE. For this model, we demonstrate that our
approach yields additional insight. Subsequent to this application part, we systematically evalu-
ate the estimation error for two biochemical networks, each with at least one bimolecular reac-
tion. We will provide a first quantification of the improvement achieved using the 3MA and
the SSE truncated beyond the next to leading-order term over the RREs, 2MA and LNA. Using
this evaluation, two simple approaches for the selection of the correct inference approach will
be proposed.

Methods
In the following we outline the considered modeling approaches, parameter estimation, uncer-
tainty analysis, model selection. The workflow is shown in Fig 2.

Chemical master equation
Consider a set of R reactions, involvingM chemical species confined in a reaction volume of
size O. Denoting the set of reactants by (X1, . . ., XM), the r

th reaction can be written as

XM
i¼1

n�ir Xi !
kr
XM
i¼1

nþir Xi:

Here kr is the reaction rate constant, n�ir are the integer stoichiometric coefficients, and we
denote by nir ¼ nþir � n�ir the change in molecules of the ith species in the rth reaction. Under
well-mixed conditions the state of this biochemical system is characterized by the correspond-
ing vector of molecule numbers n = (n1, . . ., nM). The time-evolution of the probability of
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observing the system in state n, then obeys the CME

dPðn; tÞ
dt

¼ O
XR
r¼1

f̂ rðn� nrÞPðn� nr; tÞ � f̂ rðnÞPðn; tÞ
h i

: ð1Þ

Here, νr denotes the stoichiometry (ν1r, . . ., νMr) of the r
th reaction and Of̂ rðnÞ is the propensity

function, i.e., the probability per unit time for reaction r to occur somewhere in the volume O.
Since the CME is often intractable for analytical solution, we here focus on approximation
methods for the mean concentrations μi = hni/Oi, and the corresponding covariances of the
concentration fluctuations about them, Sij = h(ni/O − μi)(nj/O − μj)i, which is outlined in the
following.

Moment-closure approximation
Equations for the moments are straightforwardly derived from the CME Eq (1). For systems
involving non-linear propensities, however, these equations are intractable because the equa-
tion for a certain moment is typically coupled to higher-order moments resulting in an infinite
system of equations. A common procedure to break this hierarchy of moment equations is to
neglect higher than second order cumulants [29]; this indeed is the same as assuming that the
third order cumulant is consistent with a Gaussian distribution. Assuming at most bimolecular
reactions, the result is a set of non-linear ODEs coupling mean and variance called the 2MA

Fig 2. Workflow for modeling, parameter estimation andmodel selection.User inputs are colored in blue, workflow outputs are colored in
orange. MATLAB toolboxes are indicated by gray boxes. The employed method/function/toolbox is indicated as oblique text in every box where
applicable.

doi:10.1371/journal.pcbi.1005030.g002
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and is given by

@mi

@t
¼

XR
r¼1

nir f̂ rðOmÞ þ
1

2

XM
s;l¼1

@2 f̂ rðOmÞ
@ms@ml

Ssl

 !
;

@Sij

@t
¼

XR
r¼1

XM
s¼1

nir
@ f̂ rðOmÞ

@ms

Ssj þ njr
@ f̂ rðOmÞ

@ms

Ssi

 !

þ 1

O

XR
r¼1

nirnjr f̂ rðOmÞ þ
XM
s;l¼1

@2 f̂ rðOmÞ
@ms@ml

Ssl

 !
:

The 2MA is precise for unimolecular reactions and fairly accurate if the third order moment is
negligible [29]. The latter is mostly the case for large reaction volume and molecule numbers
[29]. For small volumes higher-order moment equation must be used. Neglecting higher than
third order cumulants yields the 3rd order moment-closure approximation (3MA) that are out-
lined in Ref. [29, 30]. The simulation routines were generated using the CERENA toolbox [46].

System size expansion
A different technique to approximate the moments of the CME is given by the SSE. The proce-
dure allows us to expand the CME about the solution of the RREs which are valid for large
reaction volumes O and are given by

@�i

@t
¼
XR
r¼1

nirfrð�Þ :

Here fjð�Þ ¼ lim O!1 f̂jðO�Þ denotes the macroscopic rate function. While the RREs represent

the leading order term of the SSE and yield the average concentrations for large volumes O, the
next term, the LNA, describes the fluctuations about these concentrations. The covariance of
these fluctuations obeys [24, 47]:

@Sij

@t
¼
XR
r¼1

XM
s¼1

nir
@frð�Þ
@�s

Ssj þ njr
@frð�Þ
@�s

Ssi

� �
þ 1

O

XR
r¼1

nirnjrfrð�Þ:

These results are exact for reaction networks comprising up to unimolecular reactions and for
a small subset of networks with bimolecular reactions [43]. For most networks involving bimo-
lecular reactions, the SSE enables us to systematically correct the mean concentrations of the
RREs and the variance predictions of the LNA, by considering higher order terms in the expan-
sion. A more accurate estimate for the mean concentrations than the RREs is given by the
EMRE [36], and follows

@mi

@t
¼ @�i

@t
þ
XR
r¼1

nir
XM
s¼1

@frð�Þ
@�s

ðms � �sÞ þ
1

2

XM
s;l¼1

@2frð�Þ
@�s�l

Ssl �
1

2

XM
s¼1

�s

O
@2frð�Þ
@�2

s

 !
:

Note that these equations yield a correction term of order O−1 to the RREs. Correspondingly,
expressions for the covariances about these more accurate concentrations can be derived using
the IOS approximation, which corrects the LNA estimate to order O−2 [37]. In contrast to RRE
and LNA, EMRE and IOS do not assume large volumes and hence these estimates are expected
to be closer to the true moments predicted by the CME.

In what follows we shall collectively refer to the EMRE and IOS as higher-order SSEs, mean-
ing they are obtained using the SSE truncated to a higher-order than that giving the LNA. The
simulation routines were generated using the CERENA toolbox [46].
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Statistical model of experimental data
In this study we consider population average data as well as single-cell snapshot data. Popula-
tion average data could, among others, be obtained by Western blot and (bulk) mRNA
sequencing. Single-cell snapshot data could be obtained by flow and mass cytometry. Some sta-
tistical properties of these data types are introduced in the following.

Population average data. These data provide information about the mean μi(tk, θ) of mea-
sured quantities m̂ i;k at times tk,

m̂ i;k ¼ miðtk; yÞ þ �i;k;T :

These measurements are noise corrupted. The measurement noise �i, k, T is in the
following assumed to be independently and distributed with mean zero and variance s2

m̂ i;k ;T
,

�i;k;T � N ð0; s2
m̂ i;k ;T

Þ and true population mean μi(tk, θ).

Single-cell snapshot data. These data provide information about the measured quantities
yi at times tk for individual cells. The single cell measurements are given by

ŷðjÞ
i;k ¼ yðjÞi;k þ �i;k;T; j ¼ 1; . . . ;N ;

with yðjÞi;k denoting a sample from the cell population, yðjÞi;k � pðyijtk; yÞ with mean μi(tk, θ), vari-

ance Sii(tk, θ) and fourth order central moment Siiii(tk, θ). The technical noise is assumed to
depend on the replicate and therefore independent of j. From these samples mean and vari-
ances,

m̂ i;k ¼
1

N

XN
j¼1

ŷ ðjÞ
i;k and Ŝii;k ¼

1

N

XN
j

ŷ ðjÞ
i;k � m̂ i;k

� �2

;

as well as higher-order moments can be estimated. According to the central limit theorem,
these estimators are approximately normally distributed for N� 1. The estimator of the mean,
m̂ i;k, possesses the variance

s2
m̂ i;k

¼ E m̂ i;k � miðtk; yÞ
� �2h i

¼ E
1

N

XN
j¼1

yðjÞi;k � miðtk; yÞ
 !2" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ statistical uncertainty

þ E �2i;k;T

h i
|fflfflfflffl{zfflfflfflffl}

¼ technical noise

;

where the last reformulation exploits independence of yðjÞi;k and �
2
i;k;T. The first summand has the

value 1
N
Sii;k (see [17, 48]) and describe the statistical noise resulting from the finite number of

measured cells. As the sample size N grows, this variance contribution goes to zeros. In con-
trast, the second summand is the variance of the technical noise, s2

m̂ i;k ;T
, which is independent of

the sample size. This yields the overall variance

s2
m̂ i;k

¼ 1

N
Siiðtk; yÞ þ s2

m̂ i;k ;T
;

The estimator of the variance, Ŝ ii;k, possesses the variance

s2
Ŝ ii;k

¼ E Ŝ ii;k � Siiðtk; yÞ
� �2h i

¼ 1

N
Siiiiðtk; yÞ �

N � 3

N � 1
S2

iiðtk; yÞ
� �

;

which is independent of the technical noise. For a detailed derivation we refer the reader to the
supplement. Note that the estimates of mean and variance are potentially correlated if both are
computed from the same sample [48].
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The statistical description of population snapshot data also provides a framework for popu-
lation average data. Experimental techniques providing population average typically analyze
millions of single cells simultaneously. Accordingly, N is rather large, yielding the variance
s2
m̂ i;k

� s2
m̂ i;k ;T

.

Modeling of noise variance. The variance of mean and variance estimators, s2
m̂ i;k

and s2
Ŝ ii;k

depends on the statistical moments of the process and the variance of the technical noise. The
moments Sii(tk, θ) andSiiii(tk, θ) could be computed using higher-order MA and SSE. However,
this can be computationally intensive and subject to approximation errors. Instead, we used the

sample-based estimates of these statistical moments, Ŝ ii;k ¼ 1
N

PN
j ðŷðjÞ

i;k � m̂ i;kÞ2 and
Ŝiiii;k ¼ 1

N

PN
j ðŷðjÞ

i;k � m̂ i;kÞ4. These estimates are rather reliable (forN� 1) and are not influenced

by technical noise. Accordingly, the variance of the technical noise, s2
m̂ i;k ;T

, can either be obtained

by computing the statistics over multiple experimental replicates with large sample sizes (N� 1),
or by modeling them as a possibly parameter dependent function. For generality, we assume in
the following that the variances of the estimators are parameter dependent, s2

m̂ i;k
ðyÞ and s2

Ŝ ii;k
ðyÞ.

Parameter estimation
To infer the parameters of biochemical reaction networks we employ maximum likelihood and
Bayesian parameter estimation. Based upon the statistical model introduced above, the likeli-
hood function becomes

LðyÞ ¼
Y
i;k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

m̂ i;k
ðyÞ

q exp � 1

2

miðtk; yÞ � m̂ i;k

sm̂ i;k
ðyÞ

 !2 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð1Þ likelihood of measured means

�
Y
i;k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

Ŝ ii;k
ðyÞ

q exp � 1

2

Siiðtk; yÞ � Ŝ ii;k

sŜ ii;k
ðyÞ

 !2 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð2Þ likelihood of measured variances

:

The two contributions, (1) and (2), provide the likelihood of measured mean and measured
variance of the data, respectively. In the absence of information about the variance, part (2) is
set to one. To improve the numerical robustness and the convergence properties of optimizers,
instead of maximizing the likelihood, the negative log-likelihood

JðyÞ ¼ 1

2

X
k;i

log 2ps2
m̂ i;k
ðyÞ þ miðtk; yÞ � m̂ i;k

sm̂ i;k
ðyÞ

 !2 !

þ 1

2

X
k;i

log 2ps2
Ŝ ii;k

ðyÞ þ Siiðtk; yÞ � Ŝii;k

sŜ ii;k
ðyÞ

 !2 !

is minimized [42]. The corresponding minimization problem is

ŷ ¼ arg min
y2Y

JðyÞ ;

with plausible parameter domain Θ. The minimizer ŷ of J(θ) is the maximum likelihood esti-
mate. In practice, a further improvement is often achieved by optimizing the log-transformed
parameter ξ = log θ instead of θ [42].
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The optimization of the objective function has been implemented in MATLAB using our
in-house Parameter Estimation Toolbox (PESTO). PESTO uses a multi-start local optimization
scheme, an approach which has been shown to perform well for similar problems [42]. To
ensure a good coverage of the domain Θ [42], the starting points for the local solvers were gen-
erated using a latin hypercube sampling between the lower and upper bounds for the parame-
ters defined by Θ. In order to exploit gradient and curvature information in the local
optimization we made use of the trust-region-reflective algorithm [49, 50] implemented in the
MATLAB routine fmincon.m.

The gradient of the objective function with respect to parameter θl is given by

@J
@yl

¼
X
i;k

1

s2
m̂ i;k
ðyÞ 1� miðtk; yÞ � m̂ i;k

s2
m̂ i;k
ðyÞ

 !2 !
@s2

m̂ i;k

@yl







y

þ miðtk; yÞ � m̂ i;k

s2
m̂ i;k
ðyÞ

@mi

@yl






tk ;y

þ
X
i;k

1

s2
Ŝ ii;k

ðyÞ 1� Siðtk; yÞ � Ŝ ii;k

s2
m̂ i;k
ðyÞ

 !2 !
@s2

Ŝ i;k

@yl







y

þ Siiðtk; yÞ � Ŝ i;k

S2
m̂ i;k
ðyÞ

@Sii

@yl






tk ;y

;

in which @mi=@yl≔ðsml Þi and @Sii=@yl≔ðsSl Þi denote the sensitivity of mean and variance with
respect to the parameters. The governing equations for the sensitivities sml and s

S
l are derived by

differentiation of the evolution equations and subsequent reordering. For the 2MA the sensitiv-
ities are governed by:

@sml
@t

¼ @

@m
@m
@t

� �� �
sml þ

@

@S
@m
@t

� �� �
sSl þ

@

@yl

@m
@t

� �
;

@sSl
@t

¼ @

@m
@S
@t

� �� �
sml þ

@

@S
@S
@t

� �� �
sSl þ

@

@yl

@S
@t

� �
;

in which @μ/@t and @S/@t denote the right-hand side of the evolution equations for the 2MA.
For the EMRE the sensitivities are governed by:

@sFl
@t

¼ @

@F
@F
@t

� �� �
sFl þ @

@m
@F
@t

� �� �
sml þ

@

@S
@F
@t

� �� �
sSl þ

@

@yl

@F
@t

� �
;

@sml
@t

¼ @

@F
@m
@t

� �� �
sFl þ @

@m
@m
@t

� �� �
sml þ

@

@S
@m
@t

� �� �
sSl þ

@

@yl

@m
@t

� �
;

@sSl
@t

¼ @

@F
@S
@t

� �� �
sFl þ @

@m
@S
@t

� �� �
sml þ

@

@S
@S
@t

� �� �
sSl þ

@

@yl

@S
@t

� �
;

in which @sFl ¼ @F=@yl is the sensitivity of the solution of the reaction rate equation and @F/
@t, @μ/@t and @S/@t denote the right-hand side of the evolution equations for the EMRE. The
sensitivity equations for RRE, 3MA and IOS possess a similar structure as those for 2MA and
EMRE. In principle all the sensitivity equations can be obtained by rewriting the respective sys-
tems into systems of ODEs and using generic methods (see, e.g., [51]).

The gradient of the objective function was computed using forward sensitivity equations to
ensure robust and efficient evaluation [42]. In addition to gradient information, we supplied
fmincon.m with the Fisher-Information Matrix as approximation to the Hessian of the
objective function to accelerate the optimization. This approximation of the Hessian is equiva-
lent to the formulation in Levenberg-Marquardt [52] type optimization schemes. Parameter
and objective function tolerances were both set to 10−6. For every dataset, the multi-start
scheme was initialized at 50 initial values using a latin hypercube sampling. Convergence to a
local and supposedly global optimum was checked by ensuring that a minimum of 5 of the 50
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starts yielded the same minimal objective function value. If convergence was not observed, we
doubled the number of multi-starts until this criterion was met.

Uncertainty analysis
Experimental data of biochemical processes is often scarce and noise corrupted, resulting in
non-identifiabilities and parameter uncertainties. Parameter identifiability is typically assessed
using structural and practical identifiability analysis (see [41, 53] and references therein). Struc-
tural identifiability analysis provides information for the considered model topology and mea-
sured output, independent of a specific dataset. In contrast, practical identifiability and
uncertainty analysis provide information about the reliability of parameter estimates for a
given dataset. In this study we use profile likelihoods [54, 55] and Bayesian methods [56, 57] to
study practical identifiability and parameter uncertainties.

The profile likelihood of a parameter θi, denoted by PL(θi), is given by the likelihood maxi-
mized over the remaining parameters,

PLðyiÞ ¼ max
yj 6¼ i;y2Y

LðyÞ:

Accordingly, profile likelihoods can be computed by solving a set of constrained optimization
problems requiring repeated local optimization. In this study this task was carried out using
the toolbox PESTO. Frequentist confidence intervals can be computed by comparing the pro-

file likelihood PL(θi) to the likelihood LðŷÞ at the globally optimal parameter point ŷ [58]. As
the models considered here can contain structurally non-identifiable parameters, profile likeli-
hoods are the only viable frequentist technique for global uncertainty analysis [59].

Bayesian uncertainty analysis methods rely on Bayes’ theorem,

pðyjDÞ ¼ pðDjyÞpðyÞ
pðDÞ ;

in which p(θ), pðDjyÞð¼ LðyÞÞ, pðDÞ and pðyjDÞ denote prior probability, likelihood, evidence
and posterior distribution, respectively [56]. For determining Bayesian credibility intervals of
the parameters, we sampled from the posterior distribution using the efficient adaptive Markov
Chain Monte Carlo (MCMC) method delayed rejection adaptive metropolis [60]. From the
multivariate samples the respective univariate Bayesian confidence intervals were computed.
We collected a total of 105 samples after a burn-in period of 104. In accordance with the log-
transformed parameters used for optimization, a log-uniform prior over the parameter domain
Θ has been employed.

Model selection
For comparing competing model alternatives, we used Akaike’s Information Criterion (AIC),

AICl ¼ �2 logLðŷ lÞ þ 2ny;l :

The AIC of the l-th model depends on the maximum of the likelihood, ŷ l, and the number of esti-
mated parameters nθ, l. Therefore, the AIC accounts for the match of model and data as well as
for model complexity. The model with the lowest AIC value and index l� is selected. In order to
simplify the interpretation of individual AIC values, we employ Akaike weights [61] defined by

wAIC;l ¼
exp � 1

2
AICl � AICl�ð Þ� �P

l0 exp � 1
2
AICl0 � AICl�ð Þ� � :
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The AIC weight wAIC, l of the l-th model is related to its posterior probability [61].
Reliability of our results has been ensured by comparing these values to the Bayesian infor-

mation criterion (BIC) [62] and their corresponding BIC weights. As the number of parameters
of the different models (e.g., RRE, EMRE and 2MA) is very similar, the results of these model
selection criteria were comparable.

Model falsification
Model selection criteria provide information about the relative quality of competing models,
but not about their respective goodness-of-fit. The best model l� may still fail to adequately
describe the measured data. To assess whether a model fits the data appropriately, we consid-

ered the sum of squared residuals at the optimal parameter value ŷ [63],

w2ðŷÞ ¼
X
i;k

miðtk; ŷÞ � m̂ i;k

sm̂ i;k
ðŷÞ

 !2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔r2mi;k

þ
X
i;k

Siiðtk; ŷÞ � Ŝii;k

sŜ ii;k
ðŷÞ

 !2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔r2

Sii;k

:

The sum of squared residuals is a standard goodness-of-fit statistic and is equal to�2 logLðŷÞ
put to a negative constant. As for adequate models the residuals rμi, k and rSii, k

should be nor-
mally distributed with unit variance, the sum of squared residuals should be drawn from a χ2-
distribution [64]. The number of degrees of freedom of the χ2 distribution is the number of
data points minus number of parameters. Accordingly, the χ2-test can be used for model rejec-
tion [65, 66].

Results
In the following, we will illustrate how MA and SSE can be used to infer the parameters of sto-
chastic biochemical processes. We will outline how the results can be interpreted and tested,
and which novel insights can be gained even when only population-average data is available.
For this purpose, we study an example for which experimental data is available and two exam-
ples for which artificial data was generated using stochastic simulations. The application to
experimental data should substantiate the relevance of the developed methods in real-world
application whereas the application to simulation examples allows for a more detailed analysis
of the method properties.

Application to experimental data: The JAK/STAT signaling pathway
To evaluate MA and SSE based inference in a real-world application, we study the dynamics of
the Janus family of kinases (JAK)-signal transducer and activator of transcription (STAT) sig-
naling pathway [67]. Constitutive activation of STATs is related to the malignancy of many
tumors [68]. Moreover, Erythropoietin (Epo), the upstream activation factor of the JAK/STAT
signaling pathway, is administered as therapeutic agent for treatment of cancer related anaemia
[69]. This is the case although several adverse effects such as increased tumour progression and
thromboembolic events have been attributed to Epo [69, 70].

The core module of the JAK/STAT signaling pathway is composed of the Erythropoietin
receptor (EpoR) and the transcription factor STAT5. Upon phosphorylation, the Epo receptor
induces phosphorylation of STAT5 via the JAK2 kinase. Phosphorylated STAT5 (pSTAT) can
dimerize and the pSTAT dimer can translocate to the nucleus to activate the transcription of
target genes. The dimer dissociates and is exported to the cytoplasm after some delay, which is
described by a sequence of intermediate states. The biochemical reaction network is depicted
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in Fig 3(a). A more detailed description of the employed mathematical model is provided in S1
Supporting Information Section 1.2.

The JAK/STAT signaling pathway is a well studied system [53, 67]. For inference, we use
Western Blot data for the phosphorylated Epo receptor (pEpoR), the cytoplasmic phosphory-
lated STAT (pSTAT), and the cytoplasmic STAT (tSTAT). These Western Blots average con-
centrations in thousands of cells, thereby provide information about the population mean but
not about cell-to-cell variability. Due to the large cell numbers, statistic uncertainty can be
ignored (1

N
Siiðtk; yÞ ¼ 0). The technical noise of each measured species was estimated as addi-

tional log-scaled parameters (s2
m̂pSTAT;k ;T

¼ 10y15 ,s2
m̂ tSTAT;k ;T

¼ 10y16 ,s2
m̂pEpoR;k ;T

¼ 10y17). The data

have been recorded by Swameye et al. [67] and are depicted by the black stars in Fig 3(b).
Mesoscopic description of the JAK/STAT signaling. A RRE model for the JAK/STAT

signaling pathway has been introduced by Swameye et al. [67] and analyzed/extended in subse-
quent publications [53, 71]. Microscopic and mesoscopic descriptions of the process have not
been studied yet. Thus, it remains unclear which role stochasticity plays in this process and
how valid the RRE description is. To address this, we derived 2MA and EMRE models for the
process (S1 Code). As the JAK/STAT pathway involves two compartments, the cytoplasm and
the nucleus, we applied a simple extension of the MA and SSE to multiple compartments (see
SI for details). The extension essentially leads to a rescaling of propensities for reactions that
transport chemical species between compartments and ensures the correctness of parameter
estimates of the associated kinetic rates.

The 2MA and EMREmodels are studied along with the well-known RREmodel by Raue et al.
[53]. All three descriptions possess 5 mechanistic parameters: 4 kinetic parameters (p1, . . ., p4);
and the initial concentration of STAT5 in the cytoplasm ([STAT]0). For all descriptions, the
pEpoR concentration is modeled as a time-dependent cubic spline function with 5 parameters.
Furthermore, 7 nuisance parameters are used, i.e. scaling factors, noise variances. The number of
state variables for RRE, EMRE and 2MA are 8, 52 and 44, respectively. As the dimerization reac-
tion possesses a nonlinear propensity, the predictions for the mean of the underlying stochastic
process differ between the models. Moreover, the phosphorylation of STAT5 depends on the
pEpoR concentration which, as the concentration is modeled as a spline function, gives rise to a
time-dependent propensity.

Efficient multi-start local optimization makes parameter inference feasible. As param-
eter estimation for RRE was reported to be challenging [53, 55], we evaluated multi-start local
optimization for 2MA, EMRE and RRE using a large number of multi-starts (1000). Similar
to previous studies we used the trust-region-reflective method in the MATLAB routine
fmincon.m. To demonstrate the importance of accurate gradient calculation we compared
results obtained using forward sensitivity equations and finite difference approximations.
Forward sensitivities were computed using CVODES while finite differences were evaluated
with a step-size of 10−4. The results are illustrated in Fig 3(b)–3(f).

Optimization using finite differences does not work reliably for the three considered
descriptions. This can be attributed to poor accuracy in gradient computations. In regions
where the objective function gradient entries are small, for instance close to the optimum,
approximation errors caused by numerical integration of the ODE models can dominate over
actual entries and thus lead to poor search directions. This can lead to premature termination
of the optimization, if the objective function is locally ascending in the chosen search direction.
The lowest objective function value achieved for finite differences is greater than the value
obtained using forward sensitivities (Fig 3(a)). Moreover, no plateaus are observed [42]. This is
the case for the RRE as well as 2MA and EMRE model. Using forward sensitivity equations we
observed reproducible optimization results, substantiating that the global optimum is found. In
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Fig 3. Parameter inference using EMRE and 2MA for JAK/STAT signaling pathway. (a) Schematic of JAK/STAT signaling
pathway including biochemical reactions (!), biochemical species (gray elements) and observed outputs (blue boxes). Elements
introduced to capture the delayed export of pSTAT from the nucleus are indicates as light gray. For subplots (b)-(e): RRE (blue),
EMRE (green) and 2MA (red). (b) Experimental data (�), fitted mean (—) and estimated 2σ interval of the measurement noise (- -).
(c) Objective function values for the best 100 (out of 1000) multi-starts obtained using forward sensitivity analysis (FSE, *) and finite
differences (FD, °) for gradient calculation. Local optimization for RRE, EMRE and 2MA used the same initial parameter values. (d)
Zoom-in of the 40 best multi-starts. (e) Median (+) and 80% percentile interval of computation time per local optimizer run. (f)
Estimate of initial STAT concentration. Vertical lines mark the maximum likelihood estimates and the horizontal bars represent the
confidence(CIPL)/credibility(CIM) intervals corresponding to different significance levels (80%, 90%, 95% and 99%) computed using
profile likelihoods/MCMC samples. The reference value with 95% confidence intervals [71] is depicted by a black line and gray bar
respectively.

doi:10.1371/journal.pcbi.1005030.g003

Inference for Stochastic Chemical Kinetics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005030 July 22, 2016 13 / 28



addition to the superior convergence rate, the median computation times for one local optimi-
zation were consistently more than 10-fold faster using forward sensitivity analysis compared
to finite differences (Fig 3(e)). This finding supports previous findings for ODE models [42]
and underlines the importance of employing forward sensitivities as an efficient and robust
gradient computation scheme.

A comparison across models revealed that the fitting results for RRE and 2MA are visually
indistinguishable, while the EMRE differ slightly from both (Fig 3(b)). Furthermore, optimiza-
tion of the RRE was indeed computationally most efficient (Fig 3(e)). The computation times
for EMRE and 2MA were however only slightly higher. Interestingly, the minimal objective
function value was more frequently reached for the EMRE and MA compared to RRE (Fig 3
(d)). This indicates a larger region of attraction, reducing the number of required multi-starts
and the convergence of alternative global optimization methods. Our results verify the practical
feasibility of parameter inference using mesoscopic descriptions and potentially simpler objec-
tive function landscape.

Mesoscopic descriptions improve data exploitation. Optimization yielded the maximum
likelihood estimates for the parameters of the biochemical process. Due to limited and noise
corrupted data, these maximum likelihood estimates are often unreliable. We evaluated the
uncertainty of the parameters obtained using RRE, EMRE and 2MA via profile likelihood cal-
culation and Markov chain Monte-Carlo sampling. Profile likelihoods and marginal densities
are provided in Figure B in S1 Supporting Information.

Profiles and marginals indicate identifiability of the four kinetic parameters p1-p4. Confi-
dence intervals for these parameters are finite and agree for RRE, EMRE and 2MA. The initial
STAT concentration, [STAT]0, has been shown to be structurally non-identifiable when using
RRE [53]. This implied that independent of the amount of measurement data, the initial
STAT concentration cannot be inferred using the RRE. Accordingly, the RRE yielded flat pro-
files for the initial STAT concentration. This was different for EMRE and 2MA. For EMRE,
the lower bound of the 99% confidence and credibility intervals computed using profiles and
marginals is 8 	 10−3 nM for the initial STAT concentration. For 2MA, we found lower bounds
of 2 	 10−2 nM and 1 	 10−1 nM using profiles and marginals, respectively. This lower bound
could only be derived as the reaction propensities are nonlinear and the reaction volumes as
well as molecule numbers are finite. In this case the dynamics of the population mean are
affected by fluctuations, which are controlled by initial concentrations. This dependency
established structural identifiability and enabled us to exploit features of the data that could
not be used by the RRE.

This finding is in line with results reported in the literature, which suggested that stochasti-
city can be exploited to improve the identifiability of parameters [18, 40, 72, 73]. Yet, previous
analysis relied on using the process mean and variance for inference. The latter is only available
for single-cell measurements. We demonstrated that stochasticity can be exploited even if only
the process mean is available for inference. This renders stochastic inference attractive even if
single-cell data is not available.

Literature validates lower bound for previously structurally non-identifiable parame-
ter. To verify the lower bound for the initial STAT concentration derived using EMRE and
2MA, we screened additional literature. We found that Bachmann et al. [71] determined a
STAT concentration of 80 nM under similar experimental conditions. This value is within the
confidence/credibility bounds for both, EMRE and 2MA. While Bachman et al. [71] considered
a different cell types, their results provide a partial confirmation of our finding.

In summary, the study of the JAK/STAT signaling pathway using EMRE and 2MA demon-
strated the applicability of mesoscopic descriptions to real-world data. Using multi-start local
optimization with accurate gradients, model parameters can be inferred from experimental
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data. Frequentist and Bayesian uncertainty analysis revealed that MA and SSE can provide
additional insights, even if merely population-average data are available.

Application to artificial data: Trimerization and enzymatic degradation
To assess the properties and potential of inference using mesoscopic descriptions (MA and
SSE) in more detail, we study two processes: trimerization and enzymatic degradation. The use
of artificial data enabled us to: (i) assess the estimation error introduced by macroscopic and
mesoscopic descriptions; (ii) deduce a rule-of-thumb for the a priori selection of modeling
approaches; and (iii) develop methods for the a posteriori selection and verification of model-
ing approaches.

Model description and artificial data generation. In the remainder, we study the trimeri-
zation process and the enzymatic degradation process depicted in Fig 4(a) and 4(b). The icons
for the models introduced in Fig 4(a) and 4(b) will be used in the following figures to indicate
the model in the respective study.

The trimerization process describes the bursty synthesis of monomers and their subsequent
dimerization and trimerization [44]. Relevant biological applications of this model include

Fig 4. Reaction networks for comprehensive in silico evaluation of mesoscopic andmacroscopic approaches. (a) Schematic of the trimerization
process. (b) Schematic of the enzymatic degradation process. Arrows indicate reactions with the corresponding rate and reaction index next to them.
Observed states are outlined and labeled in blue. A gray arrow represents the direction of information flow.

doi:10.1371/journal.pcbi.1005030.g004
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receptor clustering and heat-shock factor trimerization [74, 75]. The trimerization process con-
sists of 6 reactions and possesses 7 parameters (6 kinetic parameters and the reaction volume).
Two reactions are bimolecular and hence have nonlinear propensities. Monomer, dimer and
trimer concentrations are assumed to be measurable.

The enzymatic degradation process is an extension of the well-known two-stage model of
gene expression [39, 76] and it has previously been studied in [77]. The enzymatic degradation
process describes transcription and translation as well as enzymatic degradation of the gene
product. It comprises several models of gene expression as special cases, e.g. [78–80]. The pro-
cess consists of 6 reactions and possesses 8 parameters (6 kinetic parameters, the initial concen-
tration of the enzyme and the reaction volume). The reaction resulting in the formation of the
protein-enzyme complex is bimolecular and hence its propensity is nonlinear. The measured
outputs are the mRNA, protein and complex concentrations.

A detailed mathematical description of trimerization and enzymatic degradation process is
provided in S1 Supporting Information, Section 1.2.

For trimerization and enzymatic degradation process artificial data are generated using the
SSA [21] with the parameter values in (Table B,D in S1 Supporting Information). A range of
volumes O is considered to facilitate a comprehensive analysis of stochastic effects on estima-
tion accuracy and to assess the regimes of validity for the different approximations. We consid-
ered realistic sample sizes in the range of Nk = 101−104, which are accessible by recent single-
cell technologies [81]. The results of the parameter inference of the trimerization and the enzy-
matic degradation process, which are depicted schematically in Fig 4, are presented in the
following.

Approximate descriptions result in estimation errors. Macroscopic and mesoscopic
descriptions provide only approximate estimates of the statistical moments of microscopic
processes. These approximation errors may result in erroneous parameter estimates. This
happens, for instance, when the approximation error can be partially or completely compen-
sated by changing the parameter values, as we have illustrated in Fig 5 for the trimerization
process. For small volumes, we find pronounced differences between the mean of the stochas-
tic process determined using SSA and the means predicted by the RRE, EMRE and 2MA (Fig
5(a)). We regarded the mean of the SSA runs as artificial data and optimized parameters of
RRE, EMRE and 2MA using the aforementioned multi-start local optimization with accurate
gradients. The optimized trajectories for RRE, EMRE and 2MA agree well with the mean of
the SSA runs as shown in Fig 5(b). This agreement is achieved for parameter values deviating
from the true parameter values used for the stochastic simulation. The objective function
landscapes of the individual models shown in Fig 5(c) indicate that the optimum of the objec-
tive function does generally not coincide with the true parameters. This pattern is reproduc-
ible and is caused by the error of the approximation methods resulting in erroneous, biased
parameter estimates.

Mesoscopic descriptions improve the estimation accuracy at intermediate volumes. As
the estimation error is caused by the approximation error of the statistical moments on which
the inference is based, a relation between the magnitude of the approximation error and the
estimation error is to be expected. Since mesoscopic descriptions (EMRE,2MA) tend to have
smaller approximation errors than macroscopic descriptions (RRE) [23, 29, 36], the former
are expected to lead to smaller estimation errors as we have have demonstrated in Fig 5(c).
We will now give a verification of these arguments. To assess the estimation error we gener-
ated 100 artificial datasets, each containing 105 cells for different volumes, and evaluated the
estimation accuracy of the parameter estimation. The workflow is illustrated in Figure C in S1
Supporting Information. For the inference we used MA and the SSE truncated to various
orders:

Inference for Stochastic Chemical Kinetics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005030 July 22, 2016 16 / 28



• data = {mean}! inference using RRE, EMRE and 2MA.

• data = {mean,variance}! inference using LNA, IOS and 3MA.

Medians and 80% symmetric percentile intervals of the squared estimation error,

error2 ¼kytrue � ŷk2
2;

were calculated and the results are shown in Fig 6 for both processes.
In accordance with our hypothesis, we found that mesoscopic descriptions using higher-

order SSEs and MAs tend to yield a lower estimation error compared to macroscopic descrip-
tions, here RRE and LNA. The difference between meso- and macroscopic descriptions is most
pronounced for intermediate volumes (101 μm3 − 103 μm3). As expected, for large volumes—
where micro-, meso- and macroscopic descriptions agree—all descriptions resulted in small
estimation errors. For small volumes, meso- and macroscopic descriptions depart from the
underlying process resulting in large estimation errors which render results meaningless. For
the enzymatic degradation process, higher-order MAs and SSEs sometimes yield higher esti-
mation errors than low-order MAs and SSEs. This might come surprising, but the approxima-
tion order is only informative about the approximation error in the large volume limit and

Fig 5. Approximation error introduces estimation error. (a) Mean monomer concentration in the trimerization
process forΩ = 6μm3 computed from 105 SSA trajectory realizations (black line). Approximate mean monomer
concentrations obtained using RRE, EMRE and 2MA (colored lines). (b) Mean monomer concentration for RRE,
EMRE and 2MA obtained after parameter estimation using the SSAmean as artificial dataset. (c) True (black ×)
and optimized parameter values (colored ×) for RRE, EMRE and 2MA. Contour lines of objective function are
colored. The opacity increases with increasing likelihood values.

doi:10.1371/journal.pcbi.1005030.g005
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does not allow conclusions for low volume regimes. Accordingly, the superiority of higher-
order approximations cannot be expected in low volume regimes.

In the medium- to high-volume regime we would expect an approximation order of O−1 for
RNA/LNA and O−2 for EMRE/IOS. Accordingly, in the absence of measurement noise, the
convergence order of the mean squared error should be (O−1)2 and (O−2)2 respectively. In fact,
the observed convergence rates agree with these theoretical rates which are indicated by dashed
gray lines in Fig 6. In the medium- to high-volume regime, the convergence rates are domi-
nated by the bias fraction of the mean squared error. However, for high volume regimes we
observe a convergence rate of approximately O−1 for EMRE/IOS. In this regime, the conver-
gence rate of the mean squared error is dominated by the variance of the parameter estimator.
Thus the convergence rate can be expected to be proportional to the variances of sample means
and variances s2

m̂ i;k
and s2

Ŝ ii;k
. For the considered setting the convergence rate seems to be domi-

nated by s2
m̂ i;k

¼ 1
N
Sii, which scales, according to the LNA, as 1

N
O�1. We expect that for higher

volumes, the convergence rate of RRE/LNA will also be limited by the estimation variance and

thus attune to 1
N
O�1. The decomposition of the mean squared error for the two models is pro-

vided in Figure E in S1 Supporting Information. Furthermore, this theoretical limit suggest
that an increase in the number of measured cells N should result in a shift of this variance limit
to lower values.

For the simulation examples, including variance information did not yield any consistent
reduction of the estimation error. This might come as a surprise as a previous study suggested
that the variance carries considerable amounts of information which when included can even
render previously non-identifiable parameters identifiable [39]. However, for the simulation
examples we considered a data-rich setting where all parameters are well identifiable and the
estimation error is mainly due to the approximation error of the description. In less data-rich
situations and in the presence of technical noise, we expect that including variance information
could also reduce the estimation error.

SSE and MAmethods achieved similar estimation accuracies for the trimerization and enzy-
matic degradation processes. However, optimization using SSE turned out to be

Fig 6. Quantification of volume dependence of estimation error.Medians (thick line) and symmetric 80% percentile based confidence intervals (thin
lines) of the errors for two representative parameters of (a) the trimerization process and (b) enzymatic degradation process. Results for different meso- and
macroscopic models are color-coded and panels show datasets computed from 105 single-cell measurements: (left) data = {mean}; and (right) data =
{mean,variance}. The estimated convergence order for the intermediate and high-volume regimes is indicated as gray dotted lines.

doi:10.1371/journal.pcbi.1005030.g006
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computationally more efficient than MA, as robust numerical integration of the respective dif-
ferential equations was less problematic, see Figure D in S1 Supporting Information. In the fol-
lowing we present the results for RRE, LNA, EMRE and IOS while the results for 2MA and
3MA are reported in Figure F-I in S1 Supporting Information.

Mesoscopic descriptions are beneficial for the analysis of high-throughput single-cell
data. As we have seen in the previous section, the sample size influences the estimation of
mean and variance, we studied its impact on the accuracy of inference with different models.
We determined the estimation errors for RRE, LNA, EMRE and IOS using 100 artificial data
sets of different sample sizes and volumes. This detailed analysis confirmed that RRE and LNA
generally yield larger estimation errors than EMRE and IOS. Interestingly, the regime of vol-
umes for which this is consistently observed increases with sample size as we show in Fig 7(a)
and 7(b, green area). In Fig 7(c) and 7(d) we verify that this relation holds not only on average
but also for individual datasets resulting in lower estimation errors. As expected, this is the case
for intermediate to large volumes. Only for small volumes, the approximation was unsatisfac-
tory and RRE and LNA were occasionally favored over EMRE and IOS methods.

Depending on the experimental devices, the number of single-cell recordings ranges from
tens to hundreds of thousands measured cells. High-content single-cell methods, such as

Fig 7. Quantification of sample size dependence of estimation error. (a,b) Ratio of the absolute estimation errors. Green indicates a lower estimation
error for EMRE and IOS while blue indicates a lower estimation error for RRE and LNA. (c,d) Frequency for lower estimation error for EMRE and IOS
compared to RRE and LNA. The color indicates the fraction of datasets for which EMRE and IOS yields a lower estimation error than RRE and LNA.

doi:10.1371/journal.pcbi.1005030.g007
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single-cell RNAseq and single-cell time-lapse microscopy, are mostly used to study tens to hun-
dreds of cells [82, 83]. High-throughput single-cell methods, flow and mass cytometry, enable
the assessment of thousands of cells but provide merely a smaller number of features [84]. Intu-
itively, the high-throughput single-cell methods reduce the sampling error as many cells are
recorded and can therefore be well characterized by moments. Hence higher-order SSEs are
particularly valuable for the analysis of high-throughput single-cell data. This simple rule-of-
thumb for the a priori selection of the modeling approach is also corroborated by our findings
for MA Figure F,G in S1 Supporting Information.

Model selection pinpoints regimes in which mesoscopic descriptions yield improved
approximation accuracy. Our results suggest that meso- and macroscopic descriptions are
only appropriate for inference in certain volume and sample size regimes. In practice, the
boundaries of these regimes remain unknown. To identify the most appropriate description in
a certain regime a posteriori, we propose the use of model selection methods.

We employed AIC to select the most appropriate among a set of candidate models given by
the macro- and mesoscopic descriptions of the processes. Fig 8 depicts the AIC weights—inter-
pretable as posterior probabilities—of EMRE and IOS for different volumes and sample sizes.
We find that EMRE and IOS are favored over RRE and LNA everywhere except in two regimes
that provide additional insights:

Fig 8. Analysis of model selection and rejection criteria. (a) and (b) Median AIC weight for EMRE and IOS at respective estimated parameters. A green
color indicates that the EMRE and IOS description is more probable and a blue color indicates the RRE and LNA description is more probable. (c) and (d)
area in which the models can on average be rejected based on a chi-square test to confidence level 0.01. The coloring indicates the method to which the
area corresponds.

doi:10.1371/journal.pcbi.1005030.g008
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• Regime I is classified by large volumes and low sample sizes. The AICs of RRE and EMRE as
well as LNA and IOS are comparable—AIC weights close to 0.5—as the models fit the limited
data fairly well. If the statistical power of the data is however increased by increasing the sam-
ple size, EMRE and IOS are favored as descriptions provided by RRE and LNA are no longer
sufficiently accurate. This indicates that the statistical power is simply not sufficient to reveal
the small differences in between EMRE/IOS and RRE/LNA.

• Regime II appears only for the inference of the enzymatic degradation model using data for
mean and variance. For volumes below 10 μm3, LNA is favored over IOS. The reason for this
is that the LNA leads to a physically meaningful description, i.e. positive variances for all vol-
umes, whereas the IOS leads to positive variances (which correct the LNA) for large enough
volumes but can potentially give rise to negative variances for small enough volumes. The lat-
ter is possible since terms in the SSE beyond the LNA, i.e., those involving third- and higher-
order derivatives, do not lead to a Fokker-Planck description which can imply negative values
of the approximated probability density function [37, 85]). Hence the LNA becomes favor-
able over the IOS for small volumes.

Accordingly, model selection favors the macroscopic description over the mesoscopic one
either when the statistical power is too limited to reject them (Regime I) or when they are
indeed more accurate (Regime II). Otherwise, mesoscopic descriptions based on higher-order
SSEs or MAs (Figure H,I in S1 Supporting Information) are selected.

The selection also resembles the results for the estimation error in Fig 7(a) and 7(b). The
critical volume for which the AIC weights depart from unity coincides with the upper bound of
the intermediate regime in which mesoscopic description provide lower estimation errors. Fur-
thermore, in Regime II IOS yields large estimation errors. In summary, this suggests that
model selection can be used (i) to decide whether a mesoscopic or a macroscopic description is
appropriate and (ii) to improve the quality of parameter estimates.

Model rejection criteria can reveal the necessity of a microscopic description. The supe-
riority of a model according to model selection criteria does not imply that the favored model
accurately represents the data. Specific applications may indeed require microscopic descrip-
tions to model experimental data. To check this, simulation and parameter estimation using
microscopic descriptions could be performed. While efficient algorithms have been developed,
such procedure is often time-consuming. We therefore considered model rejection to assess
the necessity of microscopic modeling without performing the microscopic analysis.

We computed the goodness-of-fit and employed a χ2-test with a confidence level of 0.01 for
model rejection. Fig 8(c) and 8(d) illustrates the regimes in which the meso-/macroscopic
descriptions have been rejected for at least 50% of the artificial datasets. We find that regions in
which higher-order SSEs are rejected are mostly contained in regions for which lower-order
SSEs are rejected.

As sample size increases higher-order SSEs and MAs are rejected for increasingly larger vol-
umes. This is plausible as the improved statistical power allows us to resolve smaller differences
between microscopic and the corresponding meso-/macroscopic descriptions. The statistical
power is determined by the number of samples and the statistical moments of the samples. If
the difference between approximative descriptions and the process is large, a small sample size
is sufficient to rule out a model, while a large number of samples is required to detect smaller
differences. As the difference between approximative descriptions and the process is volume-
dependent and process-specific, the regions in which the approximative description can be
rejected might possess a complex shape. For the enzymatic degradation model we find for
instance that for low sample sizes the RRE can merely be rejected for an intermediate volume
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regime but not for small or large volumes. The dependence on the number of samples supports
also the finding that for the analysis of high-throughput data accurate models need to be
employed.

The proposed approach based on model rejection reveals the need for a more accurate
description without performing the corresponding analysis. Accordingly, macroscopic models
such as RRE and LNA can be used to perform the initial analysis. Only if these models are
rejected using the χ2-test, mesoscopic descriptions need to be employed. In the same way also
the necessity of microscopic descriptions can be assessed without actually performing the cor-
responding time-consuming analysis.

In summary, the study of trimerization and enzymatic degradation model clearly revealed
that higher-order SSEs and MAs are generally more reliable. The increased computational
complexity is tractable and the investment becomes worthwhile for high-throughput data in
particular. Further improvement could be achieved by combining model selection criteria and
rejection criteria.

Discussion
Many biological processes exhibit stochastic fluctuations which are relevant for cells and
organisms [1–3]. Quantitative mechanistic models facilitate an understanding of the relevance
of these fluctuations to dynamics over various length scales. Despite significant progress, the
parameterization of such quantitative mechanistic models remains challenging. In this work,
we implemented sophisticated parameter estimation and uncertainty analysis methods relying
on mesoscopic descriptions of stochastic processes, namely higher-order SSEs and MAs.

We verified the developed methods using simulation examples. We found that for interme-
diate and large volumes, for which inference using microscopic descriptions is computationally
already demanding, our approximate methods provides reliable estimation results. The com-
putation time required for optimization was a fraction of the computation time required for
the stochastic simulation of the stochastic process (c.f. Figure A in S1 Supporting Information).
Compared to estimation methods using macroscopic descriptions, such as RRE or LNA [40], a
significantly decreased estimation error is observed for intermediate volumes. This intermedi-
ate regime increases with the number of single-cell measurements. Our parameter estimation
methods using higher-order SSEs and MAs are therefore especially suited for the data-driven
modeling of high-throughout data, such as flow and mass cytometry data.

As the unnecessary study of meso-/microscopic descriptions can be time-consuming, we
also considered model rejection approaches. We found that the application of such methods
can guide model refinement. The methods cannot however distinguish between inappropriate-
ness arising from meso- and microscopic descriptions due to an inaccurate knowledge of the
biochemical reaction network as both result in a disagreement of model and data. In addition,
for applications with multiple candidate models it is not guaranteed that model selection
results obtained for macroscopic descriptions will be reproduced for the corresponding meso-
scopic or microscopic descriptions. Thus model selection and model rejection methods should
always be combined. If the microscopic description of all candidate models were rejected using
the χ2-test, the set of candidates would not contain a model which accurately represents the
data and should be extended.

Beyond the study of artificial data, we employed the proposed methods to study experimen-
tal data for the JAK/STAT signaling pathway. This revealed that mesoscopic modeling can also
provide additional insights if merely population-average data are available. For processes with
non-linear reaction propensities, the mean encodes information about the volume and the
molecular numbers, respectively [29, 36]. This enabled the estimation of a lower bound for the
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initial STAT concentration, a parameter, which is structurally non-identifiable when macro-
scopic descriptions are employed. To assess the lower bound we implemented profile likeli-
hood calculations and MCMCmethods for higher-order SSEs and MAs. MCMCmethods for
MAs had already been proposed [10], the combination of Bayesian and frequentist methodol-
ogy is however known to provide more robust results [55, 86]. The derived lower bound for the
STAT concentration could be confirmed with literature data. The insight could be obtained for
a well-studied system and pinpoints the great potential of mesoscopic descriptions for data-
driven modeling.

However, the use of mesoscopic descriptions also has certain drawbacks. It is for instance
not completely clear how practical and structural identifiability of the stochastic process
(described by the CME) and the approximative descriptions are related [18]. Furthermore, as
higher-order SSEs and MAs are merely approximations to data generating processes, the
resulting estimators are inconsistent. Hence, parameter estimates and confidence intervals can
be erroneous. In principle, this problem can be addressed using ideas developed in the fields of
model reduction [87, 88] or probabilistic numerical simulations [89, 90]. These methods
require upper bounds for the approximation error or the error distribution of vector field
approximation, respectively. Approximations for both might be obtained by using a sequence
of higher-order expansions. A rigorous treatment would yet require exact bounds, as available
for the FSP [22].

In this study we employed higher-order SSEs and MAs to approximate the moments of the
stochastic process for inference. A further improvement could be achieved by using hybrid
approaches, such as the method of conditional moments [91] or the conditional system size
expansion [92]. These approaches exploit a microscopic description of low-copy number spe-
cies and a mesoscopic description for medium- to high-copy number species. Complementa-
rily, higher-order SSEs and MAs could be used to enhance the accuracy of ODE constrained
mixture modeling [93]. This modeling and analysis method accounts for the subpopulation
structure but relies on simple macroscopic descriptions for the subpopulation dynamics. The
use of macroscopic descriptions could result in a reduction of the number of parameters and
an improved data exploitation.

Until now, the stochasticity of biological systems is often disregarded as its analysis is com-
putationally demanding. The emergence of measurement techniques such as single-cell fluo-
rescent microscopy [83, 94], flow and mass cytometry [84], single-cell qPCR [95] and single-
cell RNA-seq [82] renders the consideration of stochastic effects a necessity [96, 97]. The pre-
sented methods are computationally efficient and scalable. This will facilitate the quantitative
mechanistic modeling of complex cellular process es and the exploitation of cell-to-cell vari-
ability for biological discovery.

Supporting Information
S1 Supporting Information. Supplementary notes regarding modeling and computational
analysis. This document provides a detailed description of the biochemical reaction networks
and their parameters, system size expansion and moment approximation, as well as the param-
eter estimation and the uncertainty analysis results.
(PDF)

S1 Code. MATLAB code used for inference using SSE and MA. This zip-file contains the
MATLAB code for the simulation and application example presented in the paper. We provide
implementations of all models, parameter estimation and uncertainty analysis to allow every-
body to reproduce the results.
(ZIP)
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Abstract
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differ-

ential equation (ODE) models has improved our understanding of small- and medium-scale

biological processes. While the same should in principle hold for large- and genome-scale

processes, the computational methods for the analysis of ODE models which describe hun-

dreds or thousands of biochemical species and reactions are missing so far. While individual

simulations are feasible, the inference of the model parameters from experimental data is

computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for

parameter estimation in large scale biochemical reaction networks. We present the

approach for time-discrete measurement and compare it to state-of-the-art methods used in

systems and computational biology. Our comparison reveals a significantly improved

computational efficiency and a superior scalability of adjoint sensitivity analysis. The compu-

tational complexity is effectively independent of the number of parameters, enabling the

analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of

ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a

fraction of the computation time of established methods. The proposed method will facilitate

mechanistic modeling of genome-scale cellular processes, as required in the age of omics.

Author Summary

In this manuscript, we introduce a scalable method for parameter estimation for genome-

scale biochemical reaction networks. Mechanistic models for genome-scale biochemical

reaction networks describe the behavior of thousands of chemical species using thousands

of parameters. Standard methods for parameter estimation are usually computationally

intractable at these scales. Adjoint sensitivity based approaches have been suggested to

have superior scalability but any rigorous evaluation is lacking. We implement a

toolbox for adjoint sensitivity analysis for biochemical reaction network which also sup-

ports the import of SBML models. We show by means of a set of benchmark models that

adjoint sensitivity based approaches unequivocally outperform standard approaches for

large-scale models and that the achieved speedup increases with respect to both the
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number of parameters and the number of chemical species in the model. This demon-

strates the applicability of adjoint sensitivity based approaches to parameter estimation for

genome-scale mechanistic model. The MATLAB toolbox implementing the developed

methods is available from http://ICB-DCM.github.io/AMICI/.

Introduction

In the life sciences, the abundance of experimental data is rapidly increasing due to the advent

of novel measurement devices. Genome and transcriptome sequencing, proteomics and meta-

bolomics provide large datasets [1] at a steadily decreasing cost. While these genome-scale

datasets allow for a variety of novel insights [2, 3], a mechanistic understanding on the genome

scale is limited by the scalability of currently available computational methods.

For small- and medium-scale biochemical reaction networks mechanistic modeling con-

tributed greatly to the comprehension of biological systems [4]. Ordinary differential equation

(ODE) models are nowadays widely used and a variety of software tools are available for

model development, simulation and statistical inference [5–7]. Despite great advances during

the last decade, mechanistic modeling of biological systems using ODEs is still limited to pro-

cesses with a few dozens biochemical species and a few hundred parameters. For larger models

rigorous parameter inference is intractable. Hence, new algorithms are required for massive

and complex genomic datasets and the corresponding genome-scale models.

Mechanistic modeling of a genome-scale biochemical reaction network requires the formu-

lation of a mathematical model and the inference of its parameters, e.g. reaction rates, from

experimental data. The construction of genome-scale models is mostly based on prior knowl-

edge collected in databases such as KEGG [8], REACTOME [9] and STRING [10]. Based on

these databases a series of semi-automatic methods have been developed for the assembly of

the reaction graph [11–13] and the derivation of rate laws [14, 15]. As model construction is

challenging and as the information available in databases is limited, in general, a collection of

candidate models can be constructed to compensate flaws in individual models [16]. For all

these model candidates the parameters have to be estimated from experimental data, a chal-

lenging and usually ill-posed problem [17].

To determine maximum likelihood (ML) and maximum a posteriori (MAP) estimates for

model parameters, high-dimensional nonlinear and non-convex optimization problems have

to be solved. The non-convexity of the optimization problem poses challenges, such as local

minima, which have to be addressed by the selection of optimization methods. Commonly

used global optimization methods are multi-start local optimization [18], evolutionary and

genetic algorithms [19], particle swarm optimizers [20], simulated annealing [21] and hybrid

optimizers [22, 23] (see [18, 24–26] for a comprehensive survey). For ODE models with a few

hundred parameters and state variables multi-start local optimization methods [18] and

related hybrid methods [27] have proven to be successful. These optimization methods use the

gradient of the objective function to establish fast local convergence. While the convergence of

gradient based optimizers can be significantly improved by providing exact gradients (see e.g.

[18, 28, 29]), the gradient calculation is often the computationally most demanding step.

The gradient of the objective function is usually approximated by finite differences. As this

method is neither numerically robust nor computationally efficient, several parameter estima-

tion toolboxes employ forward sensitivity analysis. This decreases the numerical error and

computation time [18]. However, the dimension of the forward sensitivity equations increases

linearly with both the number of state variables and parameters, rendering its application for
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genome-scale models problematic. In other research fields such as mathematics and engineer-

ing, adjoint sensitivity analysis is used for parameter estimation in ordinary and partial differ-

ential equation models. Adjoint sensitivity analysis is known to be superior to the forward

sensitivity analysis when the number of parameters is large [30]. Adjoint sensitivity analysis

has been used for inference of biochemical reaction networks [31–33]. However, the methods

were never picked up by the systems and computational biology community, supposedly due

to the theoretical complexity of adjoint methods, a missing evaluation on a set of benchmark

models, and an absence of an easy-to-use toolbox.

In this manuscript, we provide an intuitive description of adjoint sensitivity analysis for

parameter estimation in genome-scale biochemical reaction networks. We describe the end

value problem for the adjoint state in the case of discrete-time measurement and provide an

user-friendly implementation to compute it numerically. The method is evaluated on seven

medium- to large-scale models. By using adjoint sensitivity analysis, the computation time for

calculating the objective function gradient becomes effectively independent of the number of

parameters with respect to which the gradient is evaluated. Furthermore, for large-scale mod-

els adjoint sensitivity analysis can be multiple orders of magnitude faster than other gradient

calculation methods used in systems biology. The reduction of the time for gradient evaluation

is reflected in the computation time of the optimization. This renders parameter estimation

for large-scale models feasible on standard computers, as we illustrate for a comprehensive

kinetic model of ErbB signaling.

Methods

In this section we introduce the model class and the corresponding estimation problem. Subse-

quently, gradient calculation using finite differences, forward sensitivity analysis and adjoint

sensitivity analysis is described and the theoretical complexity as well as some aspects of the

numerical implementation are discussed.

Mathematical model and experimental data

We consider ODE models for biochemical reaction networks,

_x ¼ f ðx; yÞ; xðt0Þ ¼ x0ðyÞ; ð1Þ

in which xðt; yÞ 2 Rnx is the concentration vector at time t and y 2 Rny denotes the parameter

vector. Parameters are usually kinetic constants, such as binding affinities as well as synthesis,

degradation and dimerization rates. The vector field f : Rnx � Rny 7!Rnx describes the tempo-

ral evolution of the concentration of the biochemical species. The mapping x0 : Rny 7!Rnx

provides the parameter dependent initial condition at time t0.

As available experimental techniques usually do not provide measurements of the concen-

tration of all biochemical species, we consider the output map h : Rnx � Rny 7!Rny . This

map models the measurement process, i.e. the dependence of the output (or observables)

yðt; yÞ 2 Rny at time point t on the state variables and the parameters,

yðt; yÞ ¼ hðxðt; yÞ; yÞ: ð2Þ

The i-th observable yi can be the concentration of a particular biochemical species (e.g. yi = xl)
as well as a function of several concentrations and parameters (e.g. yi = θm(xl1 + xl2)).

We consider discrete-time, noise corrupted measurements

�yij ¼ yiðtj; yÞ þ �ij; �ij � N ð0; s2

ijÞ; ð3Þ

Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
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yielding the experimental data D ¼ fðð�yijÞ
ny
i¼1; tjÞg

N
j¼1

. The number of time points at which mea-

surements have been collected is denoted by N.

Remark: For simplicity of notation we assume throughout the manuscript that the noise

variances, s2
ij, are known and that there are no missing values. However, the methods we will

present in the following as well as the respective implementations also work when this is not

the case. For details we refer to the S1 Supporting Information.

Maximum likelihood (ML) estimation

We estimate the unknown parameter θ from the experimental data D using ML estimation.

Parameters are estimated by minimizing the negative log-likelihood, an objective function

indicating the difference between experiment and simulation. In the case of independent, nor-

mally distributed measurement noise with known variances the objective function is given by

JðyÞ ¼
1

2

Xny

i¼1

XN

j¼1

�yij � yiðtj; yÞ
sij

 !2

; ð4Þ

where yi(tj, θ) is the value of the output computed from Eqs (1) and (2) for parameter value θ.

The minimization,

y
�
¼ arg min

y2Y
JðyÞ; ð5Þ

of this weighted least squares J yields the ML estimate of the parameters.

The optimization problem Eq (5) is in general nonlinear and non-convex. Thus, the objec-

tive function can possess multiple local minima and global optimization strategies need to be

used. For ODE models multi-start local optimization has been shown to perform well [18]. In

multi-start local optimization, independent local optimization runs are initialized at randomly

sampled initial points in parameter space. The individual local optimizations are run until the

stopping criteria are met and the results are collected. The collected results are visualized by

sorting them according to the final objective function value. This visualization reveals local

optima and the size of their basin of attraction. For details we refer to the survey by Raue et al.
[18]. In this study, initial points are generated using latin hypercube sampling and local opti-

mization is performed using the interior point and the trust-region-reflective algorithm imple-

mented in the MATLAB function fmincon.m. Gradients are computed using finite

differences, forward sensitivity analysis or adjoint sensitivity analysis.

Finite differences

A näive approximation to the gradient of the objective function with respect to θk is obtained

by finite differences,

@J
@yk
�

Jðyþ a ekÞ � Jðy � b ekÞ
aþ b

; ð6Þ

with a, b� 0 and the kth unit vector ek. In practice forward differences (a = �, b = 0), backward

differences (a = 0, b = �) and central differences (a = �, b = �) are widely used. For the computa-

tion of forward finite differences, this yields a procedure with three steps:

Step 1 The state trajectory x(t, θ) and output trajectory y(t, θ) are computed.

Step 2 The state trajectories x(t, θ(k)) and the output trajectories y(t, θ(k)) are computed for the

perturbed parameters θ(k) = θ + �ek for k = 1, . . ., nθ.

Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
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Step 3 The objective function gradient elements @J
@yk

, are computed from the output trajectory

y(t, θ) and the perturbed output trajectory y(t, θ(k)) for k = 1, . . ., nθ.

In theory, forward and backward differences provide approximations of order � while cen-

tral differences provide more accurate approximations of order �2, provided that J is suffi-

ciently smooth. In practice the optimal choice of a and b depends on the accuracy of the

numerical integration [18]. If the integration accuracy is high, an accurate approximation of

the gradient can be achieved using a, b� 1. For lower integration accuracies, larger values of

a and b usually yield better approximations. A good choice of a and b is typically not clear a
priori (cf. [34] and the references therein).

The computational complexity of evaluating gradients using finite differences is affine lin-

ear in the number of parameters. Forward and backward differences require in total nθ + 1

function evaluations. Central differences require in total 2nθ function evaluations. As already a

single simulation of a large-scale model is time-consuming, the gradient calculation using

finite differences can be limiting.

Forward sensitivity analysis

State-of-the-art systems biology toolboxes, such as the MATLAB toolbox Data2Dynamics [7],

use forward sensitivity analysis for gradient evaluation. The gradient of the objective function is

@J
@yk
¼
Xny

i¼1

XN

j¼1

�yij � yiðtj; yÞ
s2
ij

 !

syi;kðtjÞ; ð7Þ

with syi;kðtÞ : ½t0; tN � 7!R denoting the sensitivity of output yi at time point t with respect to

parameter θk. Governing equations for the sensitivities are obtained by differentiating Eqs (1)

and (2) with respect to θk and reordering the derivatives. This yields

_sxk ¼
@f
@x

sxk þ
@f
@yk

; sxkðt0Þ ¼
@x0

@yk

syi;k ¼
@hi

@x
sxk þ

@hi

@yk

ð8Þ

with sxkðtÞ : ½t0; tN � 7!R
nx denoting the sensitivity of the state x with respect to θk. Note that

here and in the following, the dependencies of f, h, x0 and their (partial) derivatives on t, x and θ
are not stated explicitly but have the to be assumed. For a more detailed presentation we refer

to the S1 Supporting Information Section 1.

Forward sensitivity analysis consists of three steps:

Step 1 The state trajectory x(t, θ) and output trajectory y(t, θ) are computed.

Step 2 The state sensitivities sxkðtÞ and the output sensitivities sykðtÞ are computed using the

state trajectory x(t, θ) for k = 1, . . ., nθ.

Step 3 The objective function gradient elements @J
@yk

, are computed from the output sensitivities

sykðtÞ and the output trajectory y(t, θ) for k = 1, . . ., nθ.

Step 1 and 2 are often combined, which enables simultaneous error control and the reuse of

the Jacobian [30]. The simultaneous error control allows for the calculation of accurate and

reliable gradients. The reuse of the Jacobian improves the computational efficiency.

The number of state and output sensitivities increases linearly with the number of parame-

ters. While this is unproblematic for small- and medium-sized models, solving forward

Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
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sensitivity equations for systems with several thousand state variable bears technical chal-

lenges. Code compilation can take multiple hours and require more memory than what is

available on standard machines. Furthermore, while forward sensitivity analysis is usually

faster than finite differences, in practice the complexity still increases roughly linearly with the

number of parameters.

Adjoint sensitivity analysis

In the numerics community, adjoint sensitivity analysis is frequently used to compute the gra-

dients of a functional with respect to the parameters if the function depends on the solution of

a differential equation [35]. In contrast to forward sensitivity analysis, adjoint sensitivity analy-

sis does not rely on the state sensitivities sxkðtÞ but on the adjoint state p(t).
The calculation of the objective function gradient using adjoint sensitivity analysis consists

of three steps:

Step 1 The state trajectory x(t, θ) and output trajectory y(t, θ) are computed.

Step 2 The trajectory of the adjoint state p(t) is computed.

Step 3 The objective function gradient elements @J
@yk

, k = 1, . . ., nθ, are computed from the state

trajectory x(t, θ), the adjoint state trajectory p(t) and the output trajectory y(t, θ).

Step 1 and 2, which are usually the computationally intensive steps, are independent of the

parameter dimension. The complexity of Step 3 increases linearly with the number of parame-

ters, yet the computation time required for this step is typically negligible.

The calculation of state and output trajectories (Step 1) is standard and does not require

special methods. The non-trivial element in adjoint sensitivity analysis is the calculation of the

adjoint state pðtÞ 2 Rnx (Step 2). For discrete-time measurements—the usual case in systems

and computational biology—the adjoint state is piece-wise continuous in time and defined by

a sequence of backward differential equations. For t> tN, the adjoint state is zero, p(t) = 0.

Starting from this end value the trajectory of the adjoint state is calculated backwards in time,

from the last measurement t = tN to the initial time t = t0. At the time points at which measure-

ments have been collected, tN, . . ., t1, the adjoint state is reinitialised as

pðtjÞ ¼ lim
t!tþj

pðtÞ þ
Xny

i¼1

@hi

@x

� �T �yij � yiðtjÞ
s2
ij

; ð9Þ

which usually results in a discontinuity of p(t) at tj. Starting from the end value p(tj) as defined

in Eq (9) the adjoint state evolves backwards in time until the next measurement point tj−1 or

the initial time t0 is reached. This evolution is governed by the time-dependent linear ODE

_p ¼ �
@f
@x

� �T

p: ð10Þ

The repeated evaluation of Eqs (9) and (10) until t = t0 yields the trajectory of the adjoint state.

Given this trajectory, the gradient of the objective function with respect to the individual

parameters is

@J
@yk
¼ �

Z tN

t0

pT
@f
@yk

dt �
X

i;j

@hi

@yk

�yij � yiðtjÞ
s2
ij

� pðt0Þ
T @x0

@yk
: ð11Þ

Accordingly, the availability of the adjoint state simplifies the calculation of the objective

Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
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function to nθ one-dimensional integration problems over short time intervals whose union is

the total time interval [t0, tN].

Algorithm 1: Gradient evaluation using adjoint sensitivity analysis

% State and output
Step 1 Computestate and outputtrajectories using Eqs (1) and (2).

% Adjointstate
Step 2.1 Set end valuefor adjointstate, 8t > tN: p(t) = 0.
for j = N to 1 do

Step 2.2 Computeend valuefor adjointstateaccordingto the jth measure-
ment using Eq (9).

Step 2.3 Computetrajectoryof adjointstateon time intervalt = (tj−1, tj]
by solvingEq (10).

end

% Objectivefunctiongradient
for k = 1 to nθ do

Step 3 Evaluationof the sensitivity @J/@θk usingEq (11).
end

Pseudo-code for the calculation of the adjoint state and the objective function gradient is

provided in Algorithm 1. We note that in order to use standard ODE solvers the end value

problem Eq (10) can be transformed in an initial value problem by applying the time transfor-

mation τ = tN − t. The derivation of the adjoint sensitivities for discrete-time measurements is

provided in the S1 Supporting Information Section 1.

The key difference of the adjoint compared to the forward sensitivity analysis is that the

derivatives of the state and the output trajectory with respect to the parameters are not explic-

itly calculated. Instead, the sensitivity of the objective function is directly computed. This

results in practice in a computation time of the gradient which is almost independent of the

number of parameters. A visual summary of the different sensitivity analysis methods is pro-

vided in Fig 1. Besides the procedures also the computational complexity is indicated.

Implementation

The implementation of adjoint sensitivity analysis is non-trivial and error-prone. To render

this method available to the systems and computational biology community, we imple-

mented the Advanced Matlab Interface for CVODES and IDAS (AMICI). This

toolbox allows for a simple symbolic definition of ODE models (1) and (2) as well as the

automatic generation of native C code for efficient numerical simulation. The compiled

binaries can be executed from MATLAB for the numerical evaluation of the model and the

objective function gradient. Internally, the SUNDIALS solvers suite is employed [30], which

offers a broad spectrum of state-of-the-art numerical integration of differential equations. In

addition to the standard functionality of SUNDIALS, our implementation allows for param-

eter and state dependent discontinuities. The toolbox and a detailed documentation can be

downloaded from http://ICB-DCM.github.io/AMICI/.

Results

In the following, we will illustrate the properties of adjoint sensitivity analysis for biochemical

reaction networks. For this purpose, we study several models provided in the BioPreDyn

benchmark suite [27] and from the curated branch of the Biomodels Database [37]. We com-

pare adjoint sensitivity analysis with forward sensitivity analysis and finite differences

Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
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regarding accuracy, computational efficiency and scalability for a set of medium- to large-scale

models.

Investigated models

For the comparison of different gradient calculation methods, we consider a set of standard

models from the Biomodels Database [37] and the BioPreDyn benchmark suite [27]. From the

biomodels database we considered models for the regulation of insulin signaling by oxidative

stress (BM1) [38], the sea urchin endomesoderm network (BM2) [39], and the ErbB sigaling

pathway (BM3) [40]. From BioPreDyn benchmark suite we considered models for central car-

bon metabolism in E. coli (B2) [41], enzymatic and transcriptional regulation of carbon metab-

olism in E. coli (B3) [42], metabolism of CHO cells (B4) [43], and signaling downstream of

EGF and TNF (B5) [44]. Genome-wide kinetic metabolic models of S. cerevisiae and E.coli
(B1) [45] contained in the BioPreDyn benchmark suite and the Biomodels Database [15, 45]

were disregarded due to previously reported numerical problems [27, 45]. The considered

models possess 18-500 state variable and 86-1801 parameters. A comprehensive summary

regarding the investigated models is provided in Table 1.

To obtain realistic simulation times for adjoint sensitivities realistic experimental data is

necessary (see S1 Supporting Information Section 3). For the BioPreDyn models we used the

data provided in the suite, for the ErbB signaling pathway we used the experimental data

Fig 1. Illustration of gradient calculation using finite differences, forward sensitivity analysis and adjoint sensitivity equations for a model of

mRNA transfection. (a) Sketch and mathematical formulation of the mathematical model of mRNA transfection presented by [36]. The intracellular

release of mRNA at time point tr is modeled using the Dirac delta distribution δ. (b) Illustration of finite differences, forward sensitivity analysis and adjoint

sensitivity analysis for the model of mRNA transfection: (top) Step 1: simulation of model; (middle) Step 2: intermediate step for gradient calculation; and

(bottom) Step 3: calculation of gradient from intermediate results. For all methods, Step 1 and 2 involve numerical simulation (the direction indicated by the

arrow) and are computationally demanding, while Step 3 is computationally negligible.

doi:10.1371/journal.pcbi.1005331.g001
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provided in the original publication and for the remaining models we generated synthetic data

using the nominal parameter provided in the SBML definition.

In the following, we will compare the performance of forward and adjoint sensitivities for

these models. As the model of ErbB signaling has the largest number of state variables and is of

high practical interest in the context of cancer research, we will analyze the scalability of finite

differences and forward and adjoint sensitivity analysis for this model in greater detail. More-

over, we will compare the computational efficiency of forward and adjoint sensitivity analysis

for parameter estimation for the model of ErbB signaling.

Scalability of gradient evaluation using adjoint sensitivity analysis

The evaluation of the objective function gradient is the computationally demanding step in

deterministic local optimization. For this reason, we compared the computation time for finite

differences, forward sensitivity analysis and adjoint sensitivity analysis and studied the scalabil-

ity of these approaches at the nominal parameter θ0 which was provided in the SBML defini-

tions of the investigated models.

For the comprehensive model of ErbB signaling we found that the computation times for

finite differences and forward sensitivity analysis behave similarly (Fig 2a). As predicted by the

theory, for both methods the computation time increased linearly with the number of parame-

ters. Still, forward sensitivities are computationally more efficient than finite differences, as

reported in previous studies [18].

Adjoint sensitivity analysis requires the solution to the adjoint problem, independent of the

number of parameters. For the considered model, solving the adjoint problem a single time

takes roughly 2-3-times longer than solving the forward problem. Accordingly, adjoint sensi-

tivity analysis with respect to a small number of parameter is disadvantageous. However,

adjoint sensitivity analysis scales better than forward sensitivity analysis and finite differences.

Indeed, the computation time for adjoint sensitivity analysis is almost independent of the

number of parameters. While computing the sensitivity with respect to a single parameter

takes on average 10.09 seconds, computing the sensitivity with respect to all 219 parameters

takes merely 14.32 seconds. We observe an average increase of 1.9 � 10−2 seconds per additional

parameter for adjoint sensitivity analysis which is significantly lower than the expected 3.24

seconds for forward sensitivity analysis and 4.72 seconds for finite differences. If the sensitivi-

ties with respect to more than 4 parameters are required, adjoint sensitivity analysis outper-

forms both forward sensitivity analysis and finite differences. For 219 parameters, adjoint

sensitivity analysis is 48-times faster than forward sensitivities and 72-times faster than finite

differences.

To ensure that the observed speedup is not unique to the model of ErbB signaling (BM3)

we also evaluated the speedup of adjoint sensitivity analysis over forward sensitivity analysis

Table 1. List of investigated models and their properties.

ID Parameters State Variables Model Type Time Points Data Points Ref

B2 116 18 Metabolic 51 110 [41]

B3 178 47 Metabolic/Gene Reg. 161 7567 [42]

B4 117 34 Metabolic 12 156 [43]

B5 86 26 Signaling 16 960 [44]

BM1 383 104 Signaling 10 120 [38]

BM2 1801 431 Gene Reg. 21 3780 [39]

BM3 219 500 Signaling 21 105 [40]

doi:10.1371/journal.pcbi.1005331.t001
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on models B2-5 and BM1-2. The results are presented in Fig 2b and 2c. We find that for all

models, but model B3, gradient calculation using adjoint sensitivity is computationally more

efficient than gradient calculation using forward sensitivities (speedup > 1). For model B3 the

backwards integration required a much higher number of integration steps (4 � 106) than the

forward integration (6 � 103), which results to a poor performance of the adjoint method. One

reason for this poor performance could be that, in contrast to other models, the right hand

side of the differential equation of model B3 consists almost exclusively of non-linear, non-

mass-action terms.

Excluding model B3 we find an polynomial increase in the speedup with respect to the

number of parameters nθ (Fig 2b), as predicted by theory. Moreover, we find that the product

Fig 2. Comparison of gradient computation times for finite differences and forward and adjoint sensitivity analysis.

(a) Scaling of computation time with respect to the number of parameters for the model of ErbB signaling (BM3). Computation

time for finite differences and forward sensitivity equations increases roughly linearly. Computation time for adjoint sensitivity

analysis is almost independent of the number of parameters but possesses a higher initial cost. Adjoint sensitivity analysis is 48

times faster than forward sensitivity analysis when considering all parameters. (b,c) Speedup when using adjoint sensitivity

analysis over forward sensitivity analysis for gradient computation evaluated for all investigated models compared against nθ
and nx � nθ. Regression curves (dashed lines) have been fitted to the results of all models excluding B3, which seems to be an

outlier. All computations were performed on a MacBook Pro with an 2.9 GHz Intel Core i7 processor.

doi:10.1371/journal.pcbi.1005331.g002
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nθ � nx, which corresponds to the size of the system of forward sensitivity equations, is an even

better predictor (R2 = 0.99) than nθ alone (R2 = 0.83). This suggest that adjoint sensitivity anal-

ysis is not only beneficial for systems with a large number of parameters, but can also be bene-

ficial for systems with a large number of state variables. As we are not aware of any similar

observations in the mathematics or engineering community, this could be due to the structure

of biological reaction networks.

Our results suggest that adjoint sensitivity analysis is an excellent candidate for parameter

estimation in large-scale models as it provides good scaling with respect to both, the number

of parameters and the number of state variables.

Accuracy and robustness of gradients computing adjoint sensitivity

analysis

Efficient local optimization requires accurate and robust gradient evaluation [18]. To assess

the accuracy of the gradient computed using adjoint sensitivity analysis, we compared this gra-

dient to the gradients computed via finite differences and forward sensitivity analysis. Fig 3

visualizes the results for the model of ErbB signaling (BM3) at the nominal parameter θ0 which

was provided in the SBML definition. The results are similar for other starting points.

The comparison of the gradients obtained using finite differences and adjoint sensitivity

analysis revealed small discrepancies (Fig 3a). The median relative difference (as defined in

S1 Supporting Information Section 2) between finite differences and adjoint sensitivity anal-

ysis is 1.5 � 10−3. For parameters θk to which the objective function J was relatively insensitive,

@J/@θk< 10−2, there are much higher discrepancies, up to a relative error of 2.9 � 103.

Forward and adjoint sensitivity analysis yielded almost identical gradient elements over sev-

eral orders of magnitude (Fig 3b). This was expected as both forward and adjoint sensitivity

analysis exploit error-controlled numerical integration for the sensitivities. To assess numeri-

cal robustness of adjoint sensitivity analysis, we also compared the results obtained for high

and low integration accuracies (Fig 3c). For both comparisons we found the similar median

relative and maximum relative error, namely 2.6 � 10−6 and 9.3 � 10−4. This underlines the

Fig 3. Comparison of the gradients computed using adjoint sensitivity equations with gradients computed using finite differences and forward

sensitivity equations with default accuracies (absolute error < 10−16, relative error < 10−8). Each point represents the absolute value of one gradient

element. Points on the diagonal indicate a good agreement. (a) Forward finite differences with � = 10−3 vs. adjoint sensitivities. (b) Forward sensitivities vs.

adjoint sensitivities. (c) Adjoint sensitivities with high accuracies (absolute error < 10−32, relative error < 10−16) and default accuracies (absolute

error < 10−16, relative error < 10−8).

doi:10.1371/journal.pcbi.1005331.g003
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robustness of the sensitivitity based methods and ensures that differences observed in Fig 3a

indeed originate from the inaccuracy of finite differences.

Our results demonstrate that adjoint sensitivity analysis provides objective function gradi-

ents which are as accurate and robust as those obtained using forward sensitivity analysis.

Optimization of large-scale models using adjoint sensitivity analysis

As adjoint sensitivity analysis provides accurate gradients for a significantly reduced compu-

tational cost, this can boost the performance of a variety of optimization methods. Yet, in

contrast to forward sensitivity analysis, adjoint sensitivities do not yield sensitivities of

observables and it is thus not possible to approximate the Hessian of the objective function

via the Fisher Information Matrix [46]. This prohibits the use of possibly more efficient New-

ton-type algorithms which exploit second order information. Therefore, adjoint sensitivities

are limited to quasi-Newton type optimization algorithms, e.g. the Broyden-Fletcher-Gold-

farb-Shanno (BFGS) algorithm [47, 48], for which the Hessian is iteratively approximated

from the gradient during optimization. In principle, the exact calculation of the Hessian and

Hessian-Vector products is possible via second order forward and adjoint sensitivity analysis

[49, 50], which possess similar scaling properties as the first order methods. However, both

forward and adjoint approaches come at an additional cost and are thus not considered in

this study.

To assess whether the use of adjoint sensitivities for optimization is still viable, we com-

pared the performance of the interior point algorithm using adjoint sensitivity analysis with

the BFGS approximation of the Hessian to the performance of the trust-region reflective algo-

rithm using forward sensitivity analysis with Fisher Information Matrix as approximation of

the Hessian. For both algorithms we used the MATLAB implementation in fmincon.m. The

employed setup of the trust-region algorithm is equivalent to the use of lsqnonlin.mwhich

is the default optimization algorithm in the MATLAB toolbox Data2Dynamics [7], which was

employed to win several DREAM challenges. For the considered model the computation time

of forward sensitivities is comparable in Data2Dynamics and AMICI. Therefore, we expect

that Data2Dynamics would perform similar to the trust-region reflective algorithm coupled to

forward sensitivity analysis.

We evaluated the performance for the model of ErbB signaling based on 100 multi-starts

which were initialized at the same initial points for both optimization methods. For 41 out of

100 initial points the gradient could not be evaluated due numerical problems. These optimiza-

tion runs are omitted in all further analysis. To limit the expected computation to a bearable

amount we allowed a maximum of 10 iterations for the forward sensitivity approach and 500

iterations for the adjoint sensitivity approach. As the previously observed speedup in gradient

computation was roughly 48 fold, we expected this setup should yield similar computation

times for both approaches.

We found that for the considered number of iterations, both approaches perform similar in

terms of objective function value compared across iterations (Fig 4a and 4b). However, the

computational cost of one iteration was much cheaper for the optimizer using adjoint sensitiv-

ity analysis. Accordingly, given a fixed computation time the interior-point method using

adjoint sensitivities outperforms the trust-region method employing forward sensitivities and

the FIM (Fig 4c and 4d). In the allowed computation time, the interior point algorithm using

adjoint sensitivities could reduce the objective function by up to two orders of magnitude (Fig

4c). This was possible although many model parameters seem to be non-identifiable (see S1

Supporting Information Section 4), which can cause problems.
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To quantify the speedup of the optimization using adjoint sensitivity analysis over the

optimization using forward sensitivity analysis, we performed a pairwise comparison of

the minimal time required by the adjoint sensitivity approach to reach the final objective

function value of the forward sensitivity approach for the individual points (Fig 4e). The

median speedup achieved across all multi-starts was 54 (Fig 4f), which was similar to the 48

fold speedup achieved in the gradient computation. The availability of the Fisher Informa-

tion Matrix for forward sensitivities did not compensate for the significantly reduced com-

putation time achieved using adjoint sensitivity analysis. This could be due to the fact that

adjoint sensitivity based approach, being able to carry out many iterations in a short time-

frame, can build a reasonable approximation of the Hessian approximation relatively fast.

Fig 4. Comparison of optimization speed using forward and adjoint sensitivities for the model of ErbB signaling. For local optimization using

forward sensitivity analysis (trust-region method) and local optimization using adjoint sensitivity analysis (interior-point method) we quantified the

computation time across 100 local optimization runs with different initial conditions. For 41 out of 100 initial points the gradient could not be evaluated due

to numerical problems. These optimization runs are omitted in all further analysis. (a,c) Comparison of objective function value with respect to iteration

number and computation time. The hulls and medians computed for both methods are depicted as shaded areas and solid lines. (b,d) Pairwise

comparison of objective function value after 10 iterations and 5 hours for both methods. Each dot corresponds to one initial point for the optimization. The

coloring indicates which method performed better. (e) Pairwise comparison of the time required to reach the final objective function value achieved in the

forward approach. For the adjoint approach the equivalent time is the minimal time to reach the same objective function value. Each dot corresponds to

one initial point for the optimization. (f) Histogram of speedup by using adjoint sensitivity analysis over forward sensitivity analysis for individual initial

points, computed from (e). All computations were performed on a linux cluster. Runs with same initial conditions were carried out on the same computation

node.

doi:10.1371/journal.pcbi.1005331.g004
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In summary, this application demonstrates the applicability of adjoint sensitivity analysis

for parameter estimation in large-scale biochemical reaction networks. Possessing similar

accuracy as forward sensitivities, the scalability is improved which results in an increased opti-

mizer efficiency. For the model of ErbB signaling, optimization using adjoint sensitivity analy-

sis outperformed optimization using forward sensitivity analysis.

Discussion

Mechanistic mathematical modeling at the genome scale is an important step towards a

holistic understanding of biological processes. To enable modeling at this scale, scalable

computational methods are required which are applicable to networks with thousands of

compounds. In this manuscript, we present a gradient computation method which meets

this requirement and which renders parameter estimation for large-scale models signifi-

cantly more efficient. Adjoint sensitivity analysis, which is extensively used in other research

fields, is a powerful tool for estimating parameters of large-scale ODE models of biochemical

reaction networks.

Our study of several benchmark models with up to 500 state variables and up to 1801

parameters demonstrated that adjoint sensitivity analysis provides accurate gradients in a

computation time which is much lower than for established methods and effectively indepen-

dent of the number of parameters. To achieve this, the adjoint state is computed using a piece-

wise continuous backward differential equation. This backward differential equation has the

same dimension as the original model, yet the computation time required to solve it usually is

slightly larger. As a result, finite differences and forward sensitivity analysis might be more effi-

cient if the sensitivities with respect to a few parameters are required. The same holds for alter-

natives like complex-step derivative approximation techniques [51] and forward-mode

automatic differentiation [28, 52]. For systems with many parameters, adjoint sensitivity anal-

ysis is advantageous. A scalable alternative might be reverse-mode automatic differentiation

[28, 53], which remains to be evaluated for the considered class of problems.

For the model of ErbB signaling we could show that adjoint sensitivity based optimization

outperforms forward sensitivity based optimization, which is the standard in most systems

biology toolboxes. With the availability of the MATLAB toolbox AMICI the adjoint sensitivity

based approach becomes accessible for other researchers. AMICI allows for the fully auto-

mated generation of executables for adjoint or forward sensitivity analysis from symbolic

model definitions. This way, the toolbox is easy-to-use and can easily be integrated with exist-

ing toolboxes. Also other MATLAB toolboxes for computational modeling, e.g. AMIGO [6],

Data2Dynamics [7], MEIGO [54] and SBtoolbox2 [55] could be extended to exploit adjoint

sensitivity analysis. In addition to adjoint sensitivity analysis, these MATLAB toolboxes could

exploit forward sensitivity analysis available via AMICI, as AMICI yields computation times

comparable to those of tailored numerical methods such as odeSD [56] (S1 Supporting Infor-

mation Section 5) or Data2Dynamics [7]. Moreover AMICI comes with detailed documenta-

tion and is already now used by several research labs.

Our study of the model of ErbB signaling suggests that for the available data, a large number

of parameters remains non-identifiable. While novel technologies provide rich dataset, we

expect that non-identifiability will remain a problem. In particular if merely relative measure-

ments are available, as the case for many measurement techniques, additional unknown scal-

ing factors need to be introduced. These scaling factors are, in combination with initial

conditions and total abundances, often the source of practical and structural non-identifiabi-

lites [18]. Fortunately, for a broad range of biological questions, these information are not nec-

essary and also state-of-the-art methods optimization seem to work reasonably well in the

Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005331 January 23, 2017 14 / 18



presence of non-identifiabilities. For the considered model of EreB signaling, we were able to

achieve a significant decrease in the objective function value, despite the non-identifiability of

parameters. This demonstrates that gradient based optimization is still feasible for large-scale

problems. Yet, we believe that convergence of the optimizer could be improved by regularizing

the objective function by integrating prior knowledge, possibly in a Bayesian framework [57],

from databases such as SABIO-RK [58] or BRENDA [59].

Beyond the use in optimization, gradients computed using adjoint sensitivity analysis will

also facilitate the development of more efficient uncertainty analysis methods. Riemann mani-

fold Langevin and Hamiltonian Monte Carlo methods [60, 61] exploit the first and second

order local structure of the posterior distribution and profit from more efficient gradient eval-

uation. The same holds for novel emulator-based sampling procedures [62] and approaches

for posterior approximation [63]. By exploiting the proposed approach, rigorous Bayesian

parameter estimation for models with hundreds of parameters could become a standard tool

instead of an exception [64, 65].

In conclusion, adjoint sensitivity analysis will facilitate the development of large- and

genome-scale mechanistic models for cellular processes as well as other (multi-scale) biological

processes [66]. This will complement available statistical analysis methods for omics data [67]

by providing mechanistic insights and render a holistic understanding feasible.

Supporting Information

S1 Supporting Information. Supplementary notes regarding sensitivity analysis and addi-

tional numerical examples. This document provides a detailed derivation of forward and

adjoint sensitivity analysis and one additional numerical example for the comparision to the

MATLAB toolbox odeSD.

(PDF)

S1 Code. MATLAB code. This zip-file contains the MATLAB code for the simulation and

application examples presented in the paper. We provide implementations of all models,

parameter estimation to allow everybody to reproduce the results.

(ZIP)
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The response of cancer cells to drugs is determined by various factors, including the 
cells’ mutations and gene expression levels. These factors can be assessed using 
next-generation sequencing. Their integration with vast prior knowledge on signaling 
pathways is, however, limited by the availability of mathematical models and scalable 
computational methods. Here, we present a computational framework for the 
parameterization of large-scale mechanistic models and its application to the 
prediction of drug response of cancer cell lines from exome and transcriptome 
sequencing data. With this framework, we parameterized a mechanistic model 
describing major cancer-associated signaling pathways (>1200 species and >2600 
reactions) using drug response data. For the parameterized mechanistic model, we 
found a prediction accuracy, which exceeds that of the considered statistical 
approaches. Our results demonstrate for the first time the massive integration of 
heterogeneous datasets using large-scale mechanistic models, and how these 
models facilitate individualized predictions of drug response. We anticipate our 
parameterized model to be a starting point for the development of more 
comprehensive, curated models of signaling pathways, accounting for additional 
pathways and drugs.  

	

Introduction 

Personalized tumor therapy relies on our ability to predict the drug response of cancer cells 
from genomic data1. This requires the integration of genomic data with available prior 
knowledge, and its interpretation in the context of cancer-associated processes2. At the 
heart of this endeavor are statistical and mechanistic mathematical models3. In patient 
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stratification, statistical models are used to derive prognostic and predictive signatures of 
tumor subtypes4,5. Linear and nonlinear regression, machine learning methods and related 
approaches have been used to obtain such signatures6. Yet, purely statistical models do not 
provide mechanistic insights or information about actionable targets. High-quality 
mechanistic models of cancer signaling are thus of interest to researchers and clinicians in 
systems biology and systems medicine.	

Mechanistic models aim to quantitatively describe biological processes. Consequently, they 
facilitate the systematic integration of prior knowledge on signaling pathways, as well as the 
effect of somatic mutations and gene expression. These models have been used for the 
identification of drug targets7 as well as the development of prognostic signatures8,9. 
Furthermore, mechanistic modeling has facilitated the study of oncogene addiction10, 
synthetic-lethal phenotypes11 and many other relevant phenomena12.	

Various pathways have been modeled mechanistically using Ordinary Differential Equations 
(ODEs) of varying detail13. ERBB, MAPK and PI3K signaling attracted special attention as 
they are altered in many cancer types14 and targeted by many drugs15. Tailoring the models 
to individual pathways ensures manageability of the development effort, but neglects 
crosstalk. The Atlas of Cancer Signaling Network (ACSN) addresses this issue by covering 
a majority of molecular processes implicated in cancer16. However, like other pathway 
maps17,18, the ACSN lacks kinetic rate laws and rate constants, preventing numerical 
simulation and quantitative prediction. This might be addressed in the future by using 
comprehensive databases13,19,20 in combination with semi-automatic21–23 or automatic 
reconstruction methods8,24,25.	

After the construction of a mechanistic model, parameterization from experimental data is 
necessary to render the model predictive. Optimization methods achieve this by iteratively 
minimizing the objective function, i.e. the distance between model simulation and 
experimental data26,27. This requires repeated numerical simulations. As even for medium-
scale models millions of simulations are necessary, the computational burden is often 
immense28. Accordingly, parameterizing large-scale pathway models is often deemed 
intractable and has not been done in practice. A scalable method for parameterization of 
large-scale mechanistic models is therefore essential for the community as it enables the 
comprehensive integration of prior knowledge and experimental data.	

Here, we describe a large-scale mechanistic model of cancer signaling which is 
individualized using information about somatic mutations and gene expression levels. We 
introduce a computational framework for the parameterization of large-scale ODE models 
that reduces the computation time by multiple orders of magnitude compared to state-of-
the-art methods. We demonstrate the parameterization of the model from thousands of drug 
assays from over 100 human cancer cell lines and validate the predictive power of the 
model. Moreover, we show that the mechanistic model outperforms all investigated 
statistical models in terms of classification accuracy and generalizes to cancer cell lines 
originating from tissues not used for training. 
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Figure 1. Model structure and properties. (a) Sketch of modeled signaling pathways. The developed model describes the synthesis and 
protein-protein interactions for protein products of 108 genes and 36 activating mutations. The visualization depicts drugs (purple), 
selected molecular species (orange) and cell proliferation as phenotypic readout (yellow). (b) Distribution of modeled molecular species on 
compartments and functional classes (c) Comparison of complexity of the proposed model with curated models from the BioModels 
database13, Recon 2.236 and the ACSN16. 

Results 

Large-scale mechanistic model integrates knowledge of cancer signaling pathways 

To predict the drug response of cancer cell lines, we developed a mechanistic model 
integrating signaling modules reflecting the human ERBB, RAS and PI3K/AKT signaling 
pathways, as well as regulation of the transcription factors MYC and AP129 (Fig. 1a). This 
model describes synthesis, degradation, translocation, complex formation, phosphorylation 
and various other types of reactions for proteins and their functional variants 
(Supplementary Fig. 1). We assembled it manually using the web-based platform 
PyBioS30,31 and provide it as annotated Systems Biology Markup Language (SBML) file 
(Supplementary File 1). The model is based on curated information from 
ConsensusPathDB32, a meta-database integrating more than 20 public databases (e.g., 
DrugBank33, KEGG34 and Reactome35), and additional publications. 	

The model accounts for 108 genes and 36 activating mutations yielding a total of 1228 
molecular species in 4 cellular compartments (Fig. 1b) involved in 2686 reactions. The 
modeled mutations cover 7 of the 10 most frequent driver mutations reported by Rubio-
Perez et al.36 and account for 22.1% of driver mutations observed in patient samples36. The 
model describes the action of 7 different small molecule kinase inhibitors, of which 4 are 
FDA-approved. For 17 additional FDA-approved kinase inhibitors, one or more main targets 
are included in the model, but the action is currently not described. Thus, the model covers 
main targets for 27.3% of FDA-approved targeted cancer therapies.	

To quantify the scale of our model, we compared it to curated models available in the 
BioModels database13. The proposed model describes more biochemical species and  
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reactions than any other of the curated models (Fig. 1c). Two pathway maps, Recon 2.218 
and the ACSN, possess a similar size than our model. Yet these pathway maps do not 
provide kinetic rate laws and Recon 2.2 does not focus on cancer signaling. Hence, we 
conclude that the proposed model is one of the most extensive mechanistic models of 
cancer signaling.	

Most drug response assays provide information about the cell proliferation rate relative to 
the untreated condition. Cell proliferation of cancer cells is governed by a complex interplay 
of cellular signaling processes regulating e.g. the balance between pro-growth and (anti-) 
apoptotic signals in response to extracellular stimuli or presence of activating mutations 
within respective signal transduction cascades. A major function in regulation of cell 
proliferation has been attributed to transcription factor (TF) activation, e.g. of the MYC, AP1 
and FOXO transcription factors, and regulation of target gene expression in response to 
extracellular or oncogenic stimuli. In the current model we used the weighted sums of the 
simulated molecularly activated state of these TFs as a surrogate for proliferation (see 
Online Methods, Section Model Development). This semi-mechanistic description provides 
a simple model of down-stream regulatory processes.	

 

 

 

Figure 2. Individualization of the model with genomic and transcriptomic data. (a) Individualization of the generic mechanistic model 
for the two different cell lines: RERFLCAI (wild-type KRAS); and SW403 (wild-type and mutated KRAS). KRAS signaling model is 
illustrated from synthesis until complex formation. Degradation reactions are omitted. (b) Comparison of the occurrence frequency of 
mutations included in the model between the training/test set extracted from the Cancer Cell Line Encyclopedia and the InTOGen 
database by Rubio-Perez et al.36, which provides an extensive characterization of somatic mutations in human tumors.  
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Genomic data provides basis for individualization of the mechanistic model 

The mechanistic model provides a generic template for a subset of signaling processes in 
human cells. To obtain a model for a particular cancer cell line, we individualized the 
mechanistic model by incorporating gene expression levels as synthesis rates for proteins 
and their mutated functional variants (Fig. 2a). We assumed that all other kinetic parameters 
such as transport, binding and phosphorylation rates, only depend on the chemical 
properties of the involved biochemical species. Accordingly, these parameters differ 
between proteins and their functional variants, while they are assumed to be identical 
across cell lines. This enables the simultaneous consideration of multiple cell lines and 
drugs for the model parameterization, increasing the available training sample size. 
Furthermore, the assumption allows us to predict the drug response of new cell lines from 
information about gene expression levels and functional variants. 

In this study, we considered data for 120 human cancer cell lines from 5 tissues (breast, 
large-intestine, lung, pancreas and skin) provided in the Cancer Cell Line Encyclopedia 
(CCLE)37. We processed the included genetic characterization of cell lines in the untreated 
condition using a standardized bioinformatics pipeline (Online Methods, Section Data 
Processing). Of the modeled driver-mutations, 14 are present in more than one cell line 
(Fig. 2b).	

Scalable, parallel optimization method enables model parameterization 

The mechanistic model includes more than 4,100 unknown parameters, i.e. kinetic 
constants and weighting factors. To describe the available data and to predict future 
experiments, we parameterized the model using measured proliferation data from 120 cell 
lines treated with 7 different drugs at up to 9 concentrations provided in the CCLE. In total, 
this dataset provides more than 6,900 experimental conditions. To assess the prediction 
uncertainty, we performed 5-fold cross-validation with 5 pairs of training (80%; 96 cell lines) 
and test datasets (20%; 24 cell lines).  

To parameterize the model from the training data, we minimized the sum of squared 
residuals of measured and simulated relative proliferation. This non-linear and non-convex 

 

Figure 3. Parameterization of the mechanistic model. (a) Computation time for one evaluation of the objective function gradient, which 
determines the per-iteration time for a single local optimization step. For the non-parallelized evaluation, the time was computed based on 
representative samples (See Online Methods, Numerical Benchmark). The gradient evaluation time was dramatically reduced by using 
adjoint sensitivities, exploiting sparsity and parallelization. (b) Objective function traces for ten different local optimization runs for the first 
cross-validation set. Initial conditions for the local optimization runs are sampled from a latin hypercube. Although higher initial objective 
function values were observed, the corresponding axis was cropped at 104. The 5 best optimization runs are colored in red and used for 
subsequent analysis.  
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ODE-constrained optimization problem was solved using multi-start local optimization, an 
efficient and reliable approach that outperformed global optimization methods in several 
studies26,38. As the optimization problem is high dimensional, we first assessed the 
applicability of state-of-the-art methods, such as forward sensitivity analysis26. Therefore, 
we determined the computation time per gradient evaluation. This revealed that due to 
(i) the large-scale ODE model, (ii) the large number of parameters and (iii) the large number 
of experimental conditions, a single evaluation of the objective function gradient would 
require more than 5∙104 CPU hours (> 6 CPU years) (Fig. 3a). As the gradient has to be 
evaluated hundreds of times for a single optimization, available toolboxes were not 
applicable.	

To render parameterization tractable, we addressed challenges (i)-(iii). Firstly, we reduced 
the CPU time per model evaluation by using a sparse linear solver39 for ODE integration 
(0.5% non-zero entries in the Jacobian). Secondly, we implemented adjoint sensitivity 
analysis40 which improves scaling with the number of parameters. These two 
methodological advancements reduced the computation time over 37,000-fold (Fig. 3a).  

Thirdly, we established scalability with respect to the number of experimental conditions by 
parallelization on the level of cell lines (Fig. 3a). Using 8 cores (7 workers), we observed a 
6.4-fold acceleration. In total, our flexible and easily extendable parameterization framework 
reduced the expected wall time by over 240,000-fold.	

Using 400 cores and a trivial parallelization over local optimizations, our computational 
framework enabled the parameterization for all cross-validations in less than one week. In 
comparison, state-of-the-art approaches would have required hundreds of thousands of 
years. The local optimization achieved a substantial reduction of the sum of squared 
residuals within a few iterations and then the curve flattened out (Fig. 3b). The optimization 
was stopped early at 100 iterations to improve the prediction accuracy by avoiding 
overfitting41. To filter insufficient optimization runs and improve robustness, we used 
ensemble averaging (see Online Methods, Section Ensemble Averaging) over the 5 
optimization runs that achieved lowest objective function value in each cross-validation for 
all following analysis and prediction. 

Mechanistic model yields quantitative description of experimental data and 
generalizes to test data 

The parameterized model describes the drug dose-dependent proliferation of cell lines. To 
assess the combined quality of the model and the parameterization, we quantified the 
model-data mismatch. Our study of the parameterized model revealed a good agreement of 
measured data and model simulation and little variation in the prediction (Fig. 4a), despite 
large parameter uncertainties (Supplementary Fig. 2). For the highest drug concentration 
(8µM) of each dose response curve, the correlation of measured and simulated proliferation 
was r=0.82 (p<10-150) (Fig. 4b, for more concentrations see Supplementary Fig. 3).  

The agreement of measured and simulated proliferation is similar for all tissues but varies 
between drugs (Fig. 4c). Similarly, no dependence of the model-data mismatch on mutation 
status could be identified (Supplementary Fig. 4). Particularly good correlations were 
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achieved for selumetinib (r=0.93) and PD0325901 (r=0.88). Interestingly, CHIR-265 (r=0.52) 
and PLX4720 (r=0.78) have distinct correlation coefficients although they share B-RAFV600E 
as main target with similar affinity. Still, many cell lines respond to CHIR-265, but appear to 
be resistant against PLX4720. This suggests that the molecular understanding of the 
drug/target effects or the implementation in the model may be incomplete. For example, 
inhibition of VEGFR2 activation by CHIR-265 has been described42, but is not captured by 
the current version of the model. 

To evaluate the predictive power of the parameterized mechanistic model, we turned to the 
test sets of the cross-validation (see Fig. 5a left). We quantified (i) the correlation of 
measured and predicted proliferation as well as (ii) the classification accuracy for responder 
cell lines in terms of the area under the receiver-operating-characteristic (ROC) and the 
precision-recall (PR) curve. A cell line was considered a responder to a drug when the 
proliferation at the highest drug concentration was below 50% compared to the untreated 
control. Our analysis of the correlation revealed a good quantitative agreement of measured 
and predicted relative proliferation for the test set (r=0.55, p<10-8) (Fig. 5b), a lower 
correlation comparing to the training set data (r=0.82, p<10-150) (Fig. 5b). For the qualitative 
predictions, we found an average classification accuracy of 76.7±1.8% (area under 
ROC=0.767±0.018, area under PR=0.73±0.022) (Fig. 5c and Supplementary Figure 5).  

Mechanistic model outperforms established statistical models	

To provide a reference for the performance of the parameterized mechanistic model, we 
trained several well-established statistical models on the training set. The statistical models 
include a random forest43, sparse linear and nonlinear regression models44, as well as a 
network-constrained sparse regression model (with network derived from the mechanistic 
model)45. The training of all statistical models was performed using state-of-the-art 
toolboxes (see Online Methods, Section Statistical Analysis). The best statistical model 
achieved a classification accuracy of 67.8±2.9% on the test set (Fig. 5d), which is 8.9 

 

Figure 4. Analysis of fitting properties of the model. (a) Representative examples of model simulations for six combinations of drugs 
(x-label) and cell lines (bold text on bottom, left). The five plotted lines are the median fit for the five best optimization runs for every cross-
validation set. (b) Correlation of simulation and measured proliferation for the response at maximal concentration. For the simulation the 
ensemble prediction based on the median is shown. Smaller subplots show the correlation filtered for individual drugs. (c) Correlation 
statistics over cross-validations for individual drugs and tissues. 

0 20 40 60 80 100 120
data relative proliferation at 8μM [%]

0

20

40

60

80

100

120

m
od

el 
re

lat
ive

 p
ro

life
ra

tio
n 

at
 8

μM
 [%

]  all drugs r=0.82
b)

a)

c)Erlotinib: r=0.79 Lapatinib: r=0.79 Vandetanib: r=0.71

CHIR-265: r=0.52 Selumetinib: r=0.93PD0325901: r=0.88PLX4720: r=0.78
low

high

de
ns

ity

re
lat

ive
pr

oli
fe

ra
tio

n 
[%

]

0

50

100

102 104
CHIR-265 conc. [nM]

102 104 102 104
PD0325901 conc. [nM]

102 104
PLX4720 conc. [nM]

102 104
Erlotinib conc. [nM]

102 104
Selumetinib conc. [nM]

sk
in

tissuesdrugs

0.2

0.4

0.6

0.8

1

co
rre

lat
ion

 co
ef

fic
ien

t

Er
lot

ini
b

La
pa

tin
ib

Va
nd

et
an

ib
PL

X4
72

0
CH

IR
26

5
PD

03
25

90
1

Se
lum

et
ini

b
br

ea
st

lar
ge

 in
te

sti
ne lun
g

pa
nc

re
as

0

Lapatinib conc. [nM]

RERFLCAI HCC70 DV90SKMEL24 UACC62NCIH1048

resistant weak responder strong responder



	
	8	

percentage points lower than the classification accuracy of the mechanistic model 
(76.7±1.8%). In conclusion, the parameterized mechanistic model provides significantly 
(p<3.6∙10-2 according to Welch’s t-test) more accurate classification than all considered 
statistical models. 
 
 Following these positive results, we assessed the generalization error of the mechanistic 
model. We processed experimental data for 31 additional cell lines from 4 additional tissues 
(kidney, ovary, soft tissue and stomach) available in the CCLE database that were not part 
of the initial training set (see Fig. 5a right). For this independent dataset, the parameterized 
mechanistic model achieved a classification accuracy of 70.7±2.3% (Fig. 5e), which is 6 
percentage points lower than on the test set. Interestingly, the tested statistical models 
achieve a maximal classification accuracy of 62.1±3.1%, suggesting that our proposed 
parameterization framework for mechanistic models may achieve better generalization 
properties. 

Combination treatment outcomes predicted from single treatment measurements 

For an additional assessment, we predicted the outcome of combination treatments. We 
considered the dataset published by Friedman et al.46 reporting the response of cancer cell 
lines to individual drugs as well as to combinations of two drugs. The dataset includes 7 cell 
lines and 5 drugs (selumetinib, CHIR-265, erlotinib, lapatinib, PLX4720) contained in our 
training set. To establish a reference for the accuracy of the prediction, we assessed the 
agreement of the proliferation measurements by Friedman et al.46 and the measurements 
from the CCLE database. The comparison yielded a correlation of r=0.33. This weak 
correlation is likely due to differences in the experimental procedure and systematic bias in 
the proliferation measurements. These are known problems for similar pharmacogenetic 
studies47,48 and apparently limit the achievable correlation between the predictions of the 
parameterized model and the Friedman data. The predicted proliferation from the 
mechanistic model achieves comparable agreement with the Friedman data for both 
individual drug treatments (r=0.35) and combinatorial drug treatments (r=0.26) (Fig. 6). 
Accordingly, for the combinatorial drug treatments, the model achieved a correlation with 
the Friedman data only 20% lower than the agreement between the datasets 

 

Figure 5. Validation of model prediction for single-drug treatment. (a) Overview over CCLE datasets used to evaluate the 
classification accuracy: (i) test set for cell lines originating from the same tissues on which the model was trained; and (ii) independent test 
set using cell lines from different tissues. (b) Correlation coefficients between measured and predicted proliferation for 8µM drug 
concentration on all considered datasets. Error bars show the standard error (c) Representative receiver-operating-characteristic curve for 
the mechanistic model on the test set (d-e) Comparison of classification accuracy across all tested methods for test set and independent 
test set. For the Lasso approach the d defines up to which network distance interactions are considered. Error bars show the standard 
error. Stars indicate statistical significance (*: p<0.05; **: p<0.01;***: p<0.001). 
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(0.26/0.33=0.79 compared to 1). The correlation difference between single and combination 
treatment was not statistically significant. We conclude that the prediction accuracy for 
combinatorial treatments of the mechanistic model is reasonable, given the reproducibility of 
the proliferation data. 

Protein abundances predicted using mechanistic model 

For the estimation of the model parameters only proliferation measurements were 
employed. As expected, our assessment of model uncertainties revealed that this limits the 
prediction accuracy (Online Methods, Section Uncertainty Analysis). The analysis 
suggested a low reliability of parameter estimates (Supplementary Fig. 2a), a higher 
reliability of prediction for protein abundances (Supplementary Fig. 2b) and the highest 
reliability for the proliferation readout (Supplementary Fig. 2c). To determine the accuracy of 
the predicted protein abundances in the untreated condition, we compared them to the 
measurements contained in the MD Anderson Cell Line Project (MCLP)49. The MCLP 
provides normalized Reverse Phase Protein Array (RPPA) data for 33 proteins described by 
the mechanistic model in 68 of the cell lines considered for the parameterization. We 
implemented the same normalization for the simulation and considered all proteins that 
were measured in at least 10 of the considered cell lines. The mechanistic model achieved 
an average correlation of r=0.57±0.03 (Figure 6b). This is similar to the correlation between 
gene expression and RPPA data (Figure 6b). We conclude that the individualization of the 
model with cell-specific gene expression levels allows for a reasonable prediction of the 
protein levels, despite the dependence on a large number of kinetic parameters, such as 
degradation rates, that were not constrained by any molecular data. 

Discussion 

We generated a large-scale mechanistic model that integrates large amounts of prior 
knowledge and expands upon previous large-scale models16,18 by implementing kinetic rate 
laws, mutation variants of key regulators and possibilities for individualization. As the model 
can be individualized to particular cell lines and covers many relevant driver mutations, the 

 

Figure 6. Assessment of model prediction for combination treatment dataset. (a) Correlation coefficients of the mechanistic model 
and data interpolation on the single and drug combination measurements by Friedman et al.46 evaluated for cell lines contained in the 
training sets of the cross-validation. Error bars show the standard error. (b) Pearson correlation coefficients of the mechanistic model and 
gene expression levels (as reads per kilobase of transcript per Million mapped reads (RPKM)) values with proteomic data from the MD 
Anderson Cell Line Project49 (For details see Online Methods, Section Validation). For the mechanistic model the correlation was 
evaluated for cell lines contained in the training sets of the cross-validation. 
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model provides a valuable resource for analysis of various cancer types and drug 
treatments.	

To parameterize this model, we established a computational framework that provides 
scalability with respect to the number of parameters and number of state variables, and 
employs parallelization to handle the large number of experimental conditions. The final wall 
time requirement for all optimization runs (~4∙103 hours) was more than one order of 
magnitude lower than the wall time required for a single gradient evaluation using 
established methods (~6∙104 hours). This allowed, to the best of our knowledge for the first 
time, the parameterization of a large-scale mechanistic model from experimental data from 
over 100 cell lines, each under dozens of experimental conditions. The computational 
efficiency of the approach renders iterative rounds of optimization, hypothesis generation 
and model refinement of large-scale mechanistic models and multiple (heterogeneous 
datasets) feasible in a reasonable time frame. Our implementation of the methods is 
available as Supplementary File 1 and can be freely reused by other research groups. 

The assessment of the parameterized model revealed that the prediction of cell proliferation 
– a key readout to cancer therapy – is accurate for single drug treatments. Hence, the large-
scale mechanistic model we derived and parameterized can predict the drug response of 
cancer cell lines from sequencing data. This is in our opinion a result of combining extensive 
integration of prior knowledge on network structure and reaction kinetics parameterized with 
our scalable methods. We illustrated the broad capabilities of the mechanistic model by 
predicting protein abundances and the outcome of combination treatments from single 
treatment proliferation measurements, neither of which is possible with statistical models. 

Our analysis, however, also revealed limitations of the available datasets and the parameter 
estimates. Firstly, for combination treatments, the weak correlation of the available 
datasets37,46 limited the validation of our model and highlighted the need for accurate, 
reproducible phenotypic characterizations. Secondly, the parameterization of the model 
using only proliferation data resulted in large parameter uncertainty, which suggests that 
inclusion of proteomic and phosphoproteomic data in the training process will be necessary 
to render reliable predictions on the molecular level feasible. Thirdly, even more cell lines 
are necessary to capture the effect of driver mutations with low recurrence. However, as the 
model can be individualized to arbitrary cell lines and other experimental systems, it is 
particularly suited for the study of rare mutation patterns.	

The developed model is currently limited to cell lines but can be extended in several ways. 
The modeling of additional intracellular processes, cell-cell communication, cancer 
heterogeneity or pharmacokinetics might improve the prediction of patients’ response. To 
obtain a refined description, our model could be integrated with agent-based models for 
tumor growth28,50 or physiology-based pharmacokinetic models51. The resulting models 
could provide valuable tools for the identification of novel drug targets3, virtual clinical trials52 
and personalized medicine. The extensive mechanistic modeling of biological processes will 
therefore be an important area of future research. 	

 



	
	11	

 

 

Acknowledgements 

This work was supported by the German Research Foundation (DFG) through the Graduate 
School of Quantitative Biosciences Munich (QBM; F.F.), the European Union’s Horizon 
2020 research and innovation program (CanPathPro; Grant No. 686282; A.M., B.L., C.W., 
D.W., J.H., L.S. and M.S.), the German Federal Ministry of Education and Research 
(BMBF) within the SYS-Stomach project (Grant No. 01ZX1310B; J.H.) and the Postdoctoral 
Fellowship Program of the Helmholtz Zentrum München (J.H.). 

Author Contributions 

A.M. B.L., C.W., H.L. and T.K. designed the model. F.F. and J.H. designed the methods for 
numerical simulation, parameter optimization und uncertainty analysis. C.W., F.F., F.J.T., 
J.H., M.H. and T.K. designed the experiments. A.S., J.L., H.H., H.L., M.S. and T.K wrote 
and ran the code for model/data mapping and integrated and assembled model input data. 
D.W., F.F., J.H. and L.S. wrote and ran the code for the parameterization and assessment 
of the mechanistic model. M.H. wrote and ran the code for the parameterization and 
assessment of the statistical models. D.W., F.F., J.H., L.S. and M.H. analyzed output data. 
C.W., D.W., F.F., J.H., M.H. and T.K. wrote the manuscript. All authors discussed the 
results and implications and commented on the manuscript at all stages. 
 
 
Competing Interests 

Several of the authors are employees (A.M., B.L., C.W., J.L., M.S. and T.K.), former 
employees (A.S. H.H) and founders (H.L.) of Alacris Theranostics GmbH. This company did 
however not influence the interpretation of the data, or the data reported, or financially profit 
by the publication of the results. 

	 	



	
	12	

 
	 	

Supplementary Figure 1. Simplified overview of the model. The figure illustrates modeled interactions. Complex formation and 
phosphorylation as well as activation and repression are not discriminated here. Synthesis, translocation and degradation are omitted. All 
species are colored according to their function. 
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Supplementary Figure 2. Eigenvalues densities of the Fisher Information Matrix for parameters, state variables and proliferation 
readouts. Small eigenvalues correspond to large uncertainties of readout combinations defined by respective eigenvectors. One line for 
each of the best 5 optimization runs for each of the 5 cross validation is shown. All eigenvalues below 10-45 are not shown in the density 
plot but the corresponding fraction of eigenvalues is indicated in the barplot on the left.  
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Supplementary Figure 3. Correlation of model simulation and experimental data at all measured drug concentrations. The   
correlation for the drug concentrations from 250nM to 2530nM is higher than at 8000nM, which is likely due to an inflation of cell lines not 
responding to drugs (relative proliferation=1). For lower drug concentrations the correlation is lower than at 8000nM, which is due to the 
lower dynamic range of simulated and experimentally observed relative proliferation values. 
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Supplementary Figure 4. Overview of parameterization results. One column corresponds to an individual cell line. The cell lines are 
sorted according to the median over cross-validations of the maximal squared error at 8µM drug concentration shown in c). (a) Measured 
relative proliferation in response to the treatment with 8µM of the different drugs. (b) Gain-of-function mutations in the individual cell lines. 
Mutation status is summarized per gene and does not distinguish individual variants. (c) Boxplots of the maximal squared error at 8µM drug 
concentration over the 5 cross-validations. The squared error is evaluated for the median of the simulation from the 5 best optimization 
runs. The maximum is taken over all drugs. The boxplots are colored according to the tissue of origin of the cell lines.  
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Supplementary Figure 5. Receiver-operating-characteristic and precision-recall analysis for different datasets and classification 
thresholds. Every column corresponds to a dataset. Every row corresponds to a different value for the classification threshold. Colors 
indicate the 5 different cross-validations.  
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Online Methods 
Model Development 
The mechanistic model was developed using PyBioS30, a web-based platform for modeling 
of complex molecular systems. We exploited several features of PyBioS, including the 
modular formulation of large-scale models based on individual pathways and their 
interactions. For model development we employed information from ConsensusPathDB32. 
The information was manually curated and implemented in the model using a standard 
operating procedure (SOP). The SOP ensured the model quality and the compatibility of 
different pathway models. The model structure was refined several times by different 
experts to ensure highest standards. To validate the model structure a plethora of logical 
test was used, e.g. to certify that the known effects of growth factor stimulations are 
correctly captured. 	

The developed model is made publicly available as supplement to this manuscript. The 
model features an exhaustive annotation, including UniProt and Ensembl IDs. 
Phosphorylations are indicated in the name of the species by a preceding “P[$X;$Y;…]-“ 
where $X and $Y specify the phosphorylation site using a one letter amino acid code, 
followed by the amino acid number. Mutations are indicated in the name of the species by a 
preceding “MutAA[$Z]-“ where $Z specifies the mutation site using standard sequence 
variant nomenclature. Homodimers are indicated by a trailing “[2x]”.	

The SBML file encodes an ordinary differential equation (ODE) model of the form 

𝑑𝑥
𝑑𝑡 = 𝑆 ∙ 𝑣 𝑥,𝜃,𝑑, 𝑐 , 𝑥 0 = 𝑥!, 

with concentration vector x and its initial condition 𝑥!, stoichiometric matrix 𝑆 and flux vector 
𝑣. The parameter vector 𝜃 provides the reaction rates, e.g. binding affinities. The vector 𝑑 
provides the drug concentrations used for  simulation and the vector 𝑐  provides the 
expression levels for the gene products and respective variants for a particular cell line. To 
consider different drug treatments and cell lines, only 𝑑 and 𝑐 need to be changed. The 
parameter vector is generic and transferable. The SBML model provides a representative 
parameter estimate.  

In the SBML model the proliferation output variable is specified as an assignment rule. The 
proliferation output is computed as fraction of weighted sums of concentrations of active 
forms of transcription factors  

 𝑦!,! =
!!
!"#!

! !!,!,!
!"#

!! !!
!"#!!,!,!

!"#!
!

, 

in which 𝑥!,!,!
!"#   and 𝑥!,!,!

!"#    denote the concentrations of transcription factors, for a particular 
cell line and drug treatment combination, with a positive and negative influence on 
proliferation, respectively. The corresponding weights are denoted by 𝜔!

!"#and 𝜔!
!"#  and 

were estimated during model parameterization. The model captures the effect of N = 12 
transcription factors with positive influence: P[S63;S73]-JUN[2x], P[S252;S265]-
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FOSL1:P[S63;S73]-JUN, P[T69;T71]-ATF2:P[S63;S73]-JUN, P[S374;T325;T331]-
FOS:P[S63;S73]-JUN P[Y701]-STAT1[2x], P[Y705]-STAT3[2x], P[Y694]-STAT5A[2x], 
P[Y699]-STAT5B[2x], MAX-001:P[S62]-MYCN, MAX:P[S62]-MYC, P[S324;S383]-ELK1, 
and P[S133]-CREB1. Furthermore,  𝑀 = 4 transcription factors with negative influence were 
included: FOXO1, FOXO3, FOXO4 and FOXO6. In all cases only the species with nuclear 
localization were considered to be active. 

The model employs experimentally derived drug-target binding affinity (Kd) values for the 
drugs CHIR-265, erlotinib, lapatinib, PLX4720, selumetinib, sorafenib and vandetanib, which 
were obtained from Davis et al.53. For PD0325901 the model employs the inhibitory 
concentrations (IC50), which was measured in a cell-free assay by Barrett et al.54. 

We note that the model includes several components that were not used in the presented 
analysis. This includes the option to specify gene specific scaling constants to individually 
adjust synthesis rates. Furthermore, the small molecular kinase inhibitor sorafenib was 
modeled. However, as none of the considered cell lines responded to sorafenib and as 
sorafenib targets several components that are not captured by the model, the corresponding 
response data was not considered in this study. 

CCLE Data Processing 

We downloaded RNAseq BAM-files for 780 CCLE cell lines from the Cancer Genomics 
Hub (https://cghub.ucsc.edu/) in April 2014. The same data, including additional cell lines is 
now available for download in the Cancer Genomics Cloud (https://cgc.sbgenomics.com/). 
The gene expression values were normalized as Reads Per Kilobase of transcript per 
Million (RPKM) using gene models from Ensembl Release 73. Mutation data was 
downloaded from the CCLE data portal (https://portals.broadinstitute.org/ccle/data/, file 
CCLE_hybrid_capture1650_hg19_NoCommonSNPs_NoNeutralVariants_CDS_2012.05.07.
maf). RNA allele frequencies for the mutations were determined from the downloaded 
RNAseq BAM-files using SAMtools mpileup (http://www.htslib.org). Drug response data 
were downloaded from 
https://portals.broadinstitute.org/ccle/downloadFile/DefaultSystemRoot/exp_10/ds_27/CCLE
_NP24.2009_Drug_data_2015.02.24.csv?downloadff=true&fileId=20777. 

Of the 780 cell lines, for which we processed RPKM values, 123 originated from the tissues 
breast, large-intestine, lung, pancreas and skin which were considered in the training/test 
data-set and 31 originated from the tissues kidney, soft tissue, ovary and stomach which 
were considered for the independent test set. For the training/test data we considered 120 
of the 123 available cell lines to ensure equally sized training and test sets in all cross-
validations.  

To generate test and training datasets from the processed CCLE data, we performed 20-
80% splits on the cell-line level, which yielded 5 training sets with 96 cell lines and test sets 
with 24 cell lines. The split was performed such that the tissue distribution in the individual 
training sets is maximally similar. The number of experimental condition in the training sets 
varies from 5390 to 5403 due to incomplete data for individual cell lines.  
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Numerical Simulation and Gradient Evaluation 

The compilation and numerical simulation of the model was performed using the MATLAB 
toolbox AMICI40 (http://dx.doi.org/10.5281/zenodo.579891). AMICI employs the backward 
differentiation method implemented in the SUNDIALS solver package55. We used the KLU 
linear solver with AMD reordering and relative and absolute error tolerance 10-8. As the 
proliferation measurement was taken after 72 to 84 hours, we assumed that the state of the 
model reached a steady state. To find the steady state for the untreated condition of a cell 
line, the forward simulation was initialized with zero and run until the regularized maximal 
absolute relative derivative was smaller than 10-6, 

𝛿 = 𝑚𝑎𝑥
!

𝑆 ∙ 𝑣 𝑥,𝜃,𝑑, 𝑐 !

𝑥! + 10!!
10!!. 

For all treated conditions of a cell line, the forward simulation was initialized with the steady 
state of the corresponding untreated condition. 

The objective function gradient was computed using adjoint sensitivity analysis40. As the 
model only possesses a single model output, the proliferation 𝑦, we computed the sensitivity 
of this output. From this output sensitivity, we computed the objective function gradient and 
the Fisher Information Matrix (FIM). The FIM is not accessible when adjoint sensitivity 
analysis is used to directly compute the objective function gradient. 

The forward and backward simulation of experimental conditions was parallelized using the 
MATLAB command parfor, which implements OpenMP parallelization. As our cluster 
infrastructure features 8 core nodes, we parallelized each gradient computation over 8 
cores (1 master, 7 workers), thereby avoiding inter-node communication overhead. The 
different local optimizations were performed on different nodes. 

Numerical Benchmark 

To compare different methods for gradient evaluation, we assessed the computation time 
for a single gradient evaluation on the full training set. For sequential and parallel gradient 
evaluation using adjoint sensitivity analysis, we measured the computation time. As this 
would have been too time consuming for forward sensitivities, we first assured that the 
computation time for individual experimental conditions is comparable and then extrapolated 
to all experimental conditions. The computation time was evaluated on the training set of the 
first cross-validation for 10 randomly sampled parameter vectors. For the difference 
between forward and adjoint sensitivity analysis and sparse and dense solvers, we only 
evaluated the simulation time for the untreated condition of a single cell-line. The 
performance was evaluated based on 100 samples with a randomly drawn parameter vector 
and a randomly drawn cell-line. The computation time was then normalized such that the 
median for the sparse adjoint approach matched the computation time for the full training 
set. 
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Parameterization 

To estimate the model parameters 𝜃, we used the measurement data for the proliferation in 
the treated condition relative to the untreated condition, 𝑦!

!,! 𝑦!! , provided in the CCLE 
dataset. These data were fitted using a sum-of-squared-residuals objective function  

𝐽 𝜃 =
𝑦!
!,!

𝑦!
!,! −

𝑦!,! 𝜃
𝑦!,! 𝜃

!

!∈!!!∈!

, 

in which 𝑐 ∈ 𝐶 is cell-line specific and 𝑑 ∈ 𝐷!  denotes the drug treatment. This objective 
function is equivalent to the negative log-likelihood function under the assumption of 
additive independent and identically distributed standard normally distributed measurement 
noise. To minimize the objective function we used multi-start local optimization26 
implemented in the MATLAB toolbox PESTO	 (http://dx.doi.org/10.5281/zenodo.579890). 
Parameters were constrained to a [10-2,102] hypercube. For each local optimization run, 
parameters were drawn from this hypercube, followed by 100 optimization iterations of the 
MATLAB fmincon interior-point algorithm. The gradient of the objective function was 
computed from adjoint sensitivities and supplied to the interior-point algorithm. A high-
performance-computing-ready standalone executable was generated from the 
parameterization pipeline implemented in MATLAB using the MATLAB Compiler toolbox. 
For every cross-validation we performed 10 local optimization runs. As no communication 
was necessary between optimization runs, each could be submitted as a separate job to the 
cluster. In total we submitted 50 jobs using 8 cores each, resulting in a total parallelization 
over 400 cores.	

Ensemble Averaging 

We used ensemble averaging to reduce the effect of overfitting and the variance of 
predictors. For the mechanistic model we used an ensemble model based on five 
optimization runs that achieved the lowest objective function value. The parameter values 
from these optimization runs were then used to simulate the model individualized to cell 
lines from the test and independent test set. For quantitative predictions the median of the 
five simulations was used and for classification a majority vote was used. The ensemble 
averaging was solely based on results from the training set. The test and independent test 
set were only used for validation.  

Uncertainty Analysis 

We assessed the uncertainty of parameters using the eigenvalue spectrum of the Fisher 
Information Matrix (FIM). Small eigenvalues indicate large uncertainties in the direction of 
the respective eigenvector while large eigenvalues indicate small uncertainties. The 
eigenvalue spectrum was evaluated for the best 5 optimization runs for every cross-
validation. 

The FIM was computed by summing the dyadic product of adjoint sensitivities over all 
experimental conditions 
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𝐹𝐼𝑀! =
!

!! ! !
!!!,! !

!"
𝑦! 𝜃 − !!! !

!"
𝑦!,! 𝜃

!
!!!,! !

!"
𝑦! 𝜃 − !!! !

!"
𝑦!,! 𝜃!∈!!!∈! . 

As the number of experimental conditions (~5.400) exceeds the number of parameters 
(~4,100) the FIM could theoretically have full rank.  

For parameter derived readouts 𝑧, such as proliferation readouts as well as state variables, 
a similar quantification of the uncertainty is possible by considering a transformation 𝐹𝐼𝑀! of 
the FIM. The transformation is obtained by multiplication with the respective parameter 
derivatives 

𝐹𝐼𝑀! =
𝜕𝑧
𝜕𝜃 𝐹𝐼𝑀!

𝜕𝑧
𝜕𝜃

!

. 

For state variables the formula for steady state parameter derivatives were computed 
according to the implicit function theorem  

!"
!"
= − 𝑆 ∙ !"

!"

!!
𝑆 ∙ !"

!"
, 

assuming that the system is in steady state,  

𝑆 ∙ 𝑣 = 0. 

For the 𝐹𝐼𝑀! for state variables, we only considered state variables with non-zero simulated 
steady state. The state variables with steady state equal to zero correspond to molecular 
species that are not expressed.  

Statistical Methods 

For the comparison of model performances, we trained a series of statistical models for the 
prediction of response to treatment, based on the exact same training data sets, cross-
validation setup and test data sets that were used for the mechanistic model. Responder 
and non-responder cell lines were defined for each drug by applying the threshold 0.5 on 
the proliferation at the highest dose used for the drug (in addition results for thresholds 0.7 
and 0.9 were also obtained). The classification of cell lines into responders and non-
responders was evaluated for three sets of input variables: 1) mutation genotype data; 2) 
gene expression data; and 3) genotype and gene expression data. In addition we also 
provided the network topology as input to some of the classifiers. Model training was 
performed by nested cross-validation, where the outer 5-fold cross validation loop split the 
data into training set (80% of the data) and test set (20% of the data). For each classifier 
and each training set we estimated the model parameters by optimizing the classification 
performance in the inner cross validation loop splitting the training data again into training 
and validation sets with balanced class labels or by bootstrapping of the training data. 

We used the R implementations of the following classifiers: 1) logistic regression with 
LASSO penalty (glmnet package); 2) Random Forest (randomForest package); 3) graph 
regularized logistic regression (glmgraph package); and 4) logistic regression with LASSO 
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penalty on augmented data, including additional interaction terms. The interaction terms 
were defined based on the network topology used in the mechanistic model. The adjacency 
matrix was extracted from the Jacobian of the right hand side of the differential equation. 
For a pair of genes the Jacobian was reduced to rows or columns corresponding species 
that include the corresponding proteins in any form (phosphorylated, cleaved or bound). 
Two genes were defined to be adjacent when the corresponding submatrix of the Jacobian 
has at least one non-zero entry. We augmented the data set either with all pairwise 
interactions (product) between variables of the same type (genotype or gene expression) or 
interactions between genes that are connected by paths in the network not longer than 1, 2 
or 3 steps. The optimal parameter 𝜆 for LASSO models, 𝜆! and 𝜆!  for the graph regularized 
LASSO model were selected as the largest 𝜆 that produces an AUC ROC within one 
standard error of the maximum AUC ROC56 in a 8-fold inner cross validation. Random 
Forest classifiers were trained by selecting parameters that minimize the out of bag error43. 
We optimized over the number of variables randomly sampled as candidates for each split, 
the number of trees in the forest ranging from 50 to 500 and the maximum leaf node size 
criterion ranging from 1 to 1/3 of the data set. All classifiers were then applied to the test set 
and performance was assessed as the area under the ROC curve.	

Finally, we used the classifiers trained in each round of the cross validation and applied 
them to an independent test set. Performance was assessed as the area under the ROC 
curve and averaged over the five cross validation rounds. 

Validation  

Area Under the Curve: For the quantification of the classification accuracy for the 
mechanistic model we computed receiver-operating-characteristic (ROC) curves and 
precision-recall (PR) curves. For the data and model, a cell line was classified as responder 
to a drug when the measured/simulated relative proliferation at 8µM was smaller or equal to 
the specified threshold. For the data, this threshold was fixed to 0.5 and for the model the 
threshold was continuously varied between 0 and 1 and the precision, sensitivity and 
specificity was evaluated for every threshold value. From these evaluations the ROC and 
PR curves were constructed and the area under the curve was evaluated using a 
trapezoidal rule.  

Exactly the same split in training and test set was applied for all statistical models and the 
mechanistic model. For both approaches the test and independent test sets were never 
used for parameterization. For the statistical model the AUC was averaged over drugs and 
cross-validation as individual models were constructed for every drug. For the mechanistic 
model the AUC was averaged only over cross-validations as a single model for all drugs 
could be constructed. 

Combination Therapy: The data by Friedman et al.46 includes measurements for single and 
paired treatments at low and high concentrations for the drugs selumetinib, CHIR-265, 
erlotinib, lapatinib and PLX4720. For the paired treatment, the experiment was repeated 
twice and the average value was used for our analysis. As the treatment concentrations 
employed in the two studies did not agree, we interpolated measurements from the CCLE 
data to concentrations employed in the Friedman dataset. The interpolation was performed 
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in logarithmic concentration space but results were comparable for linear concentration 
space. For every cross validation we only considered the measurements from cell lines 
which were also contained in the training set. 

Proteomics Measurements: For the comparison of model prediction and RPPA data from 
the MD Anderson Cell Lines Project, we computed the median total protein concentrations 
for the 5 best optimization runs. To compute total protein concentrations, we computed the 
sum of concentrations of all protein and complex species that contain a specific protein, 
taking into account the individual stoichiometry. As the RPPA data in the MD Anderson Cell 
Lines Project are normalized, we also normalized the simulation data using the same 
procedure: 1) The simulated concentrations were log2 transformed; 2) The median 
concentration over all cell lines was subtracted for every protein and then the median of all 
concentrations was subtracted for every cell-line. While this procedure resembles the 
procedure described in the manuscript providing the data, we note that the model only 
captures a fraction of the proteins and the normalization might therefore be suboptimal. For 
the RPKM data, only a log2 transformation was applied. The correlation coefficients of 
normalized data and predictions were computed for all proteins that were measured in at 
least 10 cell lines. For every cross validation we only considered the measurements from 
cell lines which were also contained in the training set.  

The considered dataset only provides measurements for the untreated condition. However, 
the parameterization was performed based on relative proliferation values, which is 
computed based on the ratio of sums of active transcription factor concentrations in the 
model. Accordingly, the training data provides some information about the ratio of 
concentrations in treated and untreated condition, but little information about absolute 
concentrations in the treated and untreated condition. 
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nauer. Parameter estimation for dynamical systems with discrete events and

logical operations. Bioinformatics 33(7):1049-1056 (2017). is not provided here, but
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