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SUMMARY

Breakdown of myelin sheaths is a pathological hall-
mark of several autoimmune diseases of the nervous
system. We employed autoantibody-mediated ani-
mal models of demyelinating diseases, including a
rat model of neuromyelitis optica (NMO), to target
myelin and found that myelin lamellae are broken
down into vesicular structures at the innermost re-
gion of the myelin sheath. We demonstrated that
myelin basic proteins (MBP), which form a polymer
in between themyelin membrane layers, are targeted
in these models. Elevation of intracellular Ca2+ levels
resulted in MBP network disassembly and myelin
vesiculation. We propose that the aberrant phase
transition of MBP molecules from their cohesive to
soluble and non-adhesive state is a mechanism trig-
gering myelin breakdown in NMO and possibly in
other demyelinating diseases.
INTRODUCTION

Myelin is the target of several autoimmune diseases, among

which multiple sclerosis (MS) is the most common (Popescu

and Lucchinetti, 2012). The primary target of the autoimmune

attack in MS is not known but thought to be localized on the sur-

face of the myelin sheath, fromwhere the damagemay spread in

a retrograde fashion to the oligodendrocyte cell body (‘‘outside

in’’). In addition, ‘‘inside-out’’ models of myelin damage in MS

have been suggested (Henderson et al., 2009; Traka et al., 2016).
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In neuromyelitis optica (NMO), another demyelinating disease,

humoral immune reaction against aquaporin-4 (AQP4) on astro-

cytic endfeet (Jarius et al., 2008; Lennon et al., 2005) induces

secondary oligodendrocyte cell death followed by myelin loss

(Wrzos et al., 2014). The damage in NMO is believed to spread

from the cell body to the myelin sheath in an inside-out fashion.

Although the primary autoimmune effectors are different, the

final result is, in both cases, the rapid breakdown of myelin

sheaths. The purpose of this study was twofold: to determine

the patterns ofmyelin fragmentation in different models ofmyelin

diseases, and to understand the molecular basis of myelin

degeneration.

Since myelin basic protein (MBP) is the only structural myelin

protein known to be absolutely required for generating compact

myelin sheaths, we hypothesized that it is also the key to our un-

derstanding of myelin degeneration. One defining feature of

MBP is its intrinsically disordered polypeptide chain with a

strong basic character (Musse et al., 2008). When MBP binds

to two opposing negatively charged cytoplasmic leaflets of the

myelin membrane, the positive charge in MBP is neutralized,

and self-assembly into a polymeric network is induced. This pro-

cess resembles a phase transition as it converts the soluble and

freely dispersed MBP molecules into a liquid-like condensed

state, thereby bringing together the cytoplasmic surfaces of

the myelin bilayer and generating the tightly compacted multila-

mellar membrane stacks (Aggarwal et al., 2013). Phase transi-

tions of proteins into condensed liquid states are emerging as

a universal process underlying cellular organization (Hyman

et al., 2014; Weber and Brangwynne, 2012). A challenge con-

fronting this field is to connect in vitro protein phase behavior

with in vivo processes. Here, we use models of demyelinating

diseases to target the myelin sheath directly or indirectly

and combined morphological and molecular analyses to
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Myelin Pathology in Focal Experi-

mental NMO Lesions Starts with Vesicula-

tion of Myelin at the Inner Tongue

(A) Representative images of cross-sections of

corpus callosum of Lewis rats injected with human

AQP4 antibody (Ab) and complement or PBS (Ctrl)

at indicated time points (scale bar, 500 nm).

(B) Myelin fragmentation profiles with representa-

tive images.

(C) Quantification of the myelin breakdown pat-

terns at the different time points post-injection

(1 hr, 18 hr, 5 days, and 7 days post-injection [p.i.]).

Bars represent mean with SEM (n = 3 animals,

>300 axons per animal; **p < 0.01, ***p < 0.001,

one-way ANOVA).

See also Figures S1 and S2.
demonstrate that the vesicular disruption of the myelin sheath is

a common feature of myelin degeneration induced by the depo-

lymerization of MBP molecules.

RESULTS

Vesicular Myelin Degeneration in a Focal NMO Model
We and others have previously established a focal NMO model

(Saadoun et al., 2010; Wrzos et al., 2014), in which a human

NMO recombinant antibody (AQP4 Ab) (Bennett et al., 2009) is

stereotactically injected together with complement into the brain

of Lewis rats. A few hours after the injection, astrocyte cell death

is triggered, followed by loss of oligodendrocytes and secondary

demyelination. The pathology depends on the AQP4 antibody,

as complement alone (Figure S1A) or a control human antibody

with complement fails to induce lesions (Wrzos et al., 2014). To

characterize the ultrastructural features of myelin degeneration,

we injected 1 ml AQP4 Ab (2.5 mg/ml) with complement (15 U/ml)

or 1 ml PBS into the corpus callosum of Lewis rats and prepared

tissue sections 1 and 18 hr, as well as 5 and 7 days post-injec-

tion. To prevent fixation artifacts that frequently occur in myelin

in chemically fixed and dehydrated tissue (Möbius et al., 2010),

we performed electronmicroscopy (EM) on high-pressure frozen

tissue from focal NMO lesions. Since this method allows the
C

visualization of myelin ultrastructure

close to its native state, it enabled us to

detect early myelin degeneration profiles.

At 1 hr post-injection, myelin appeared

intact and was indistinguishable from

control lesions. However, when NMO le-

sions were analyzed 18 hr post-injection,

�80% of myelin sheaths showed patho-

logical features (Figure 1A–1C). Strikingly,

most of the fragmented myelin displayed

vesiculated membrane profiles at

the innermost layers of the sheath. At

18 hr post-injection, this fragmentation

pattern was observed in nearly �70% of

the sheaths. At 5 days post-injection,

the fraction of myelin with vesicula-

ted sheaths at the innermost layers
decreased, whereas sheaths with more advanced vesiculation

patterns, with only a few compact layers remaining, increased.

Furthermore, fully degenerated and vesiculated myelin sheaths

that were often not associated with axons any longer were

seen more frequently at 5 and 7 days post-injection. Thus, in

the focal NMO model, myelin breakdown appears to start at

the inner layers and progresses outward with time.

Fragmentation of the Myelin Sheath by Anti-MOG
Antibodies
In addition to AQP4 antibodies, anti-MOG antibodies have been

detected in a subgroup of patients with NMO, but also in child-

hood acute disseminated encephalomyelitis (Ikeda et al., 2015;

Pröbstel et al., 2011; Sato et al., 2014). Whereas antibodies

against AQP4 damage myelin via injury of astrocytes (Wrzos

et al., 2014), the binding of anti-MOG antibodies occurs directly

onto the surface of myelin sheaths. To analyze whether such a

direct attack on myelin sheaths induces distinct fragmentation

patterns, we performed stereotactic injections with a humanized

anti-MOG antibody (8-18C5) (Kuenzle et al., 2007; Linington

et al., 1988) and complement into the corpus callosum of Lewis

rats. As expected, anti-MOG antibodies induced a more rapid

fragmentation of myelin than anti-AQP4 antibodies (Figures

2A–2C). Since these lesions were almost entirely demyelinated
ell Reports 16, 314–322, July 12, 2016 315



Figure 2. Myelin Fragmentation Patterns in Anti-MOG Antibody-Injected Lewis Rats and Biozzi EAE

(A) Representative images of cross-sections ofMOGantibody (Ab) and complement (right) or PBS (Ctrl) injections (left) into the corpus callosum of adult Lewis rats

at 12 hr p.i. Scale bar in all images, 500 nm.

(B) Pattern of myelin breakdown detected after focal injection of MOG antibody and complement.

(C) Quantification of the different myelin fragmentation profiles depicted in (B) as percentage of total myelin sheaths at 1 hr, 8 hr or 12 hr p.i. of MOG anti-

body/complement or PBS (Ctrl).

(D) Representative images of cross-sections of Biozzi EAE spinal cord lesions (first relapse). The left panel displays control area, whereas the right panel displays

border of demyelinated EAE lesion.

(E) Myelin breakdown profiles detected in EAE lesions.

(legend continued on next page)
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at 15 hr post-injection, we used earlier time points to detect

patterns of myelin fragmentation. At 8 hr post-injection, approx-

imately half of the myelin sheaths showed signs of injury.

Compared to lesions induced by anti-AQP4 antibodies, the frag-

mentation patterns induced by anti-MOG antibodies were more

heterogeneous. We observed myelin sheaths with split lamellae,

enlarged inner tongue, and vesicular disruption. Approximately

20% of the myelin sheaths were vesiculated at the innermost

layers of the myelin sheath. We also found a relatively high frac-

tion of myelin sheaths with focal splitting of the myelin lamellae.

In contrast to focal NMO using anti-AQP4 antibodies, there were

hardly any fully disrupted and vesiculated myelin sheaths visible

at any of the time points.

To analyze whether vesicular degeneration is also a feature of

experimental autoimmune encephalomyelitis (EAE), we induced

EAE in Biozzi mice, as these mice are characterized by a demy-

elinating antibody response following immunization with MOG

protein. The spinal cord of the diseased mice was dissected,

lesions were localized macroscopically, and samples were pro-

cessed by high-pressure freezing. The lesion-containing sam-

ples were analyzed at the borders of the lesions that were

actively demyelinating. Similar to the focal anti-MOG/comple-

ment injections, two major patterns of myelin fragmentation

were observed. We found both sheaths with signs of vesicular

disruption of the adaxonal region of the myelin sheath as well

as sheaths with focal splitting that in some cases resulted in

the formation of myelin outfoldings (Figures 2D–2F).

We also analyzed patterns of myelin breakdown in the cupri-

zone mouse model of demyelination. Myelin vesiculation at the

innermost membranes was observed in nearly �40% of the

sheaths after 3 weeks of cuprizone feeding (Figure S2). Thus,

the vesicular transformation of the innermost layers of myelin ap-

pears to be a common feature of myelin breakdown. However,

whereas this pattern represents the major form of myelin frag-

mentation in focal NMO, anti-MOG antibody-mediated myelin

damage results, additionally, in splitting and loosening of myelin

layers (Figure 2G).

Loss of MBP Triggers Vesicular Disruption of Myelin
SinceMBP is the only protein known to be required for myelin as-

sembly, we hypothesized that loss of MBP function may trigger

myelin disassembly.We performed cryo-immunoelectronmicro-

scopy on experimental focal NMO lesions to determine the local-

ization of MBP in the disrupted myelin sheaths. Strikingly, we

found that MBP was almost undetectable in the adaxonal space

of the myelin sheath containing the vesiculated and fragmented

membrane profiles but was readily stained in the still compacted

layers. To exclude poor antibody penetration as an underlying

cause, we stained sections with antibodies against PLP, another
(F) Quantification of percentage of all different fragmentation patterns in EAE lesio

animal; *p < 0.05, **p < 0.01, ***p < 0,001, one-way ANOVA).

(G) Schematic drawing of proposed model of myelin fragmentation. A normal my

microtubules in blue and neurofilaments in pink) is depicted. The cytoplasm-rich d

NMO model, first the inner tongue becomes enlarged before it collapses into s

outward until the whole myelin sheath is transformed into vesicular profiles. The lo

consisting of focal splitting and vesiculations with focal bulging.

See also Figures S1 and S2.
constituent of compacted myelin. We found robust staining of

PLP in both the compacted and the vesiculated areas of myelin.

Thus, MBP appears to be displaced from the inner vesiculated

membrane profiles of degenerating myelin, raising the possibility

that a release of MBP from the inner leaflet of the membrane

bilayer triggers myelin vesiculation (Figures 3A and 3B).

To determine whether loss of MBP triggers myelin fragmenta-

tion, we studied high-pressure frozen optic nerves of shiverer

mice that lack MBP at postnatal day 10 (P10), P14, and P21 (Fig-

ures 3C–3E). As noted previously (Popko et al., 1987; Snaidero

et al., 2014), our high-resolution EM analyses of shiverer mice

showed that the majority of myelin sheaths have only up to

four layers of uncompacted wraps and a fraction of sheaths dis-

played vesicular membrane profiles. Interestingly, the fraction of

myelin sheaths with vesiculated membrane profiles increased

dramatically at P21 (�80% of the myelin sheaths), demon-

strating that MBP is required to maintain the physical stability

of the sheaths.

Epitope Unmasking in MBP during Myelin
Fragmentation
MBP can switch between two different functional states (Aggar-

wal et al., 2013). There is a soluble phase, in which MBP mole-

cules are freely dispersed in the cytoplasm with very little

secondary structure and rarely interacting with each other; and

a condensed phase, in which MBP molecules are concentrated

into a network at the interphase of two cytoplasmic membrane

surfaces. Thus, we hypothesized that such a transition may be

the underlying cause of myelin vesiculation. To recognize the

two different functional states of MBP molecules, we first

needed to design tools that allow their discrimination. We

hypothesized that domains that are engaged in molecular inter-

actions of MBP become unmasked, when MBP molecules are

depolymerized and converted into their dispersed phase.

We have previously shown that hydrophobic phenylalanine

residues are required for the polymerization of MBP (Aggarwal

et al., 2013). Since MBP network assembly requires molecular

interactions mediated by phenylalanine residues, their exposure

in myelin could be used as a measure of network disassembly.

Previously, an antibody (QD9) against human MBP residues

82–88 was shown to specifically stain areas of degenerated

myelin (Matsuo et al., 1997, 1998). Interestingly, this epitope is

localized adjacent to one of the double phenylalanine motifs

(F4,5 in the amphipathic helix amino acids 85–92) raising the

possibility that this antibody only recognizes theMBPmolecules,

when converted into their dispersed and dysfunctional state.

First, we confirmed by western blotting that QD9 recognizes

full-length monomeric and not a proteolytic fragment of MBP

(Figure S1B). In addition, we found that QD9 immuno-stained
n and control area. Bars display mean with SEM (n = 3 animals, >300 axons per

elin sheath with its compacted layers (in green) wrapped around an axon (with

omains of myelin at the outer and inner tongue are shown in orange. In the focal

mall vesicles at the inside of the myelin sheath. The vesiculation progresses

wer panel shows additional patterns observed in the anti-MOG antibody model
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Figure 3. Lack of MBP Leads to Myelin Vesiculation

(A) Adult Lewis rats were injected with human AQP4 antibody (Ab) and com-

plement or PBS (Ctrl) in the corpus callosum. The subcellular localization of

MBP (top) and PLP (bottom) was determined by cryoimmuno-electron mi-

croscopy at 18 hr p.i. (scale bar, 500 nm; gold size, 15 nm for MBP and 10 nm

for PLP). The vesicles at the inner tongue are enlarged in the white boxes.

(B) Quantification of the number of gold particles in compact myelin as

compared to gold particles in vesiculated myelin for MBP and PLP labeling.

Bars shownmean with SEM (n = 3 animals, >70 axons per animal; ***p < 0.001,

Student’s t test).

(C and D) Representative images of high-pressure frozen optic nerves of

wild-type and shiverer mice at P10, P14, and P21 (C) with magnification of a

vesiculated sheath in (D).

(E) Quantification of vesiculated membrane profiles. Bars shown mean with

SEM (n = 3 animals, >80 axons per animal; ***p < 0.001, Student’s t test).

See also Figure S1.
MBP when expressed in fibroblast or epithelial cell lines (Fig-

ure S2C). However, when primary cultures of oligodendrocytes

were stained with QD9, we observed very little labeling of MBP
318 Cell Reports 16, 314–322, July 12, 2016
(Figure S3), which is in contrast to the robust MBP staining

when using a polyclonal antibody against MBP (total MBP, sub-

sequently only termed MBP). Next, we treated primary cultures

of oligodendrocytes with ionomycin and sphingosine to antago-

nize the electrostatic interactions of MBP with lipids and to

release it from its membrane-bound state (Figure S3). We

observed rapid unmasking of the QD9 epitope, and quantifica-

tion of the integrated intensity revealed a dramatic increase in

the MBP/QD9 ratio. These results suggest that QD9 only detects

MBP when present in a non-physiological state.

This was further highlighted in cryosections of chronic active

MS lesions, in which we observed QD9 antibody staining at

lesion borders within areas containing CD68-positive macro-

phages (Figure S4). However, chronic inactive lesions did not

show any staining at all, and normal appearing white and gray

matter showed sporadically QD9-positive fibers as in control

cases. These data demonstrate that the QD9 antibody does

not stain all myelinated fibers, but only fibers in areas, where

myelin damage might be ongoing.

Calcium Switches the Functional States of MBP
Molecules in NMO
Since MBP is known to interact with phosphatidylinositol 4,5-bi-

sphosphate (PIP2) (Musse et al., 2008; Nawaz et al., 2009), we

tested whether increasing intracellular Ca2+ levels using ionomy-

cin loosens binding of MBP to PIP2. Indeed, we observed that

staining intensity of PIP2 increases in oligodendrocytes after

treatment with ionomycin (Figure S3). Thus, by increasing intra-

cellular Ca2+ levels in oligodendrocytes, the binding of MBP to

the cytoplasmic leaflet of the membrane bilayer weakens, and

the QD9 epitope becomes exposed.

To determinewhether a rise in intracellular Ca2+ levels can also

displaceMBP frommyelin, we treated acute brain sliceswith ion-

omycin. Ionomycin was added to the slices and QD9 and MBP

staining intensity determined 5, 15, and 30 min after the treat-

ment. As observed in cell culture, we detected amarked increase

in the ratio of MBP/QD9 staining intensity after Ca2+ elevation in

the area of the corpus callosum (Figure S3). As shown previously

in conventionally fixed samples (Schlaepfer, 1977), EM of high-

pressure frozen samples revealed a pattern of myelin fragmenta-

tion (Figure S3) that was indistinguishable from NMO lesions

consisting ofmyelin sheathswith vesicular fragmentation profiles

at the innermost layers of the myelin sheath.

Next, we determined the QD9 and MBP staining intensity in

the focal NMO model. When animals were analyzed 18 hr after

the injection, we observed a marked increase in the MBP/QD9

staining ratio in the focal NMO lesions (Figures 4A–4C). At this

time point, MBP staining intensity was similar in focal NMO

and control lesions, indicating that myelin sheaths were not yet

cleared away (Wrzos et al., 2014).

Since our results indicated that elevated intracellular Ca2+

levels are able to disassemble MBP molecular networks, we

asked whether this also occurs in focal NMO lesions.

We injected 1 ml AQP4 antibody with complement or 1 ml PBS

with complement into the corpus callosum of Lewis rats and pre-

pared acute slice cultures 12 hr after injection, at a time point

when astrocyte cell death had already occurred (Figures 4E

and 4F). To chelate Ca2+ ions, slice cultures were subsequently



Figure 4. Calcium Influx Triggers Epitope Unmasking in MBP in Early NMO Lesions

(A) Representative images of coronal sections of adult Lewis rat brains injected with human AQP4 antibody (Ab) and complement or PBS (Ctrl) in the contralateral

hemisphere for 1 hr or 18 hr p.i. stained for MBP in green and QD9 in red.

(B)Magnification of the red box in (A) and noprimary antibody control to indicate that there is no cross-reactivity with the antibody injected. Scale bar, 1mm (A andB).

(C) Quantification of theMBP to QD9 signal intensity ratio of the AQP4 antibody lesion normalized to the control (PBS injection) (n = 3 animals, 3–5 regions of same

size per animal, ***p < 0.001, Student’s t-test).

(D) Adult Lewis rat brains were injected with 1 ml human AQP4 antibody or PBS and complement. After 12 hr p.i., the rats were sacrificed, and acute brain slices

were maintained for 2 hr in aCSF or aCSF supplemented with 25 mM EGTA. Sections were stained with DAPI in blue (upper panel), QD9 in yellow (middle panel),

and MBP in grey (lower panel). Scale bar, 1 mm. The lesion area marked by the red line was determined by GFAP staining.

(legend continued on next page)
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treated for 2 hr with EGTA, followed by staining with QD9 and

MBP antibodies. Notably, chelating Ca2+ ions was able to bring

down the ratio of MBP/QD9 staining intensity to control levels

(Figures 4D, 4G, and 4H), suggesting that elevated intracellular

Ca2+ levels are implicated in switching between the functional

states of MBP molecules in focal NMO.

DISCUSSION

Here, we took advantage of recent advances in high-pressure

freezing and freeze-substitution to improve tissue preservation

and to elucidate myelin pathology close to its native state. Using

different models of antibody-mediated demyelinating diseases,

we find that myelin lamellae are broken down into vesicular

structures at the innermost region of the myelin sheath. This

pattern was most pronounced in the focal NMO model, but

such fragmentation profiles were also observed in anti-MOG

antibody-mediated lesions and the cuprizone model, suggesting

that they represent a common pathological feature of degenerat-

ing myelin in diseases.

How does myelin break down in demyelinating diseases? We

propose that MBP loses its interaction with the myelin mem-

brane, which eventually, when the physical stabilization of

myelin lamellae is compromised, appears to result in myelin

vesiculation. Interestingly, this process appears to begin in

the adaxonal region of myelin. Using EM of high-pressure

frozen samples, the innermost tongue of the myelin sheath ap-

pears as a relatively large cytoplasm-rich compartment, which

faces the periaxonal space along its entire length. This

compartment is connected with small cytoplasm-rich channels

that run through the myelin sheath and connect it with the cell

body (Snaidero et al., 2014). Like a synapse, the innermost

tongue of myelin might be particularly vulnerable to metabolic

disturbances, possibly due to its high energy demand and its

long distance from the cell body (Simons et al., 2014). Such a

‘‘dying-back’’ pathology from the inner tongue to the oligoden-

drocytes cell body has been observed previously in the cupri-

zone model (Ludwin and Johnson, 1981).

Another major pathological feature only observed after inject-

ing anti-MOG antibody was the loosening and focal splitting of

the myelin layers. Such a loosing of the myelin compaction might

render myelin sheaths susceptible to the formation of myelin out-

foldings that can be removed by phagocytes in MS models that

combine a humoral anti-MOG response with cellular infiltration.

These results concur with previous analyses of the initial stages

of myelin destruction in MS lesions, where several patterns of

myelin destruction were described, including vesicular degener-

ation of myelin (Périer and Grégoire, 1965; Raine et al., 1999;

Genain et al., 1999; Stys, 2010). In addition, stripping of myelin

from axons by the invasion of microglia/macrophages into the
(E) Representative images of a GFAP staining (in green) in control and AQP4 Ab in

line. Scale bar, 200 mm.

(F) Quantification of GFAP signal intensity around the injection site and lesion siz

(G) Quantification of lesion area based on GFAP loss in (E).

(H) Quantification of MBP toQD9 integrated density ratio as normalized to the 12 h

the mean with SEM (n = 3 animals, *p < 0.05, **p < 0.01, ***p < 0.001, one-way A

See also Figures S1, S3, and S4.
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seemingly intact myelin sheath has also been observed (Yama-

saki et al., 2014).

How does MBP lose its membrane association in degenerat-

ing myelin in NMO? We propose that a primary attack on the

AQP4-rich astroglial endfeet spills over to oligodendrocytes by

the release of unknown toxic mediators from astrocytes that

raise intracellular oligodendroglial Ca2+. Since the innermost

tongue of the myelin sheath is connected via small cytoplasm-

rich areas to the oligodendrocyte cell body, damage to the cell

soma would lead to high intracellular Ca2+ and rapidly spread

into the myelin sheaths. Such an increase in Ca2+ could affect

the binding of MBP to the headgroups of PIP2 and phosphatidyl-

serine in the lipid bilayer. Thus, the elevation of Ca2+ in myelin

may trigger MBP network depolymerization and thereby induce

rapid myelin vesiculation. Genetically encoded calcium sensors

should be used in future studies to record the spatiotemporal

pattern of calcium changes in myelin in models of NMO. In sum-

mary, we propose that MBP molecules function as a ‘‘switch-

able’’ glue and that the transition from the cohesive protein

meshwork back into the single soluble components is key to

the pathogenesis of myelin disorders.

EXPERIMENTAL PROCEDURES

All experiments were performed in accordance with the German animal wel-

fare law and local regulations for animal experiments. The animals were kept

in 12h light dark-cycles and bred in the animal facility of the Max Planck Insti-

tute of Experimental Medicine and the University Medical Center Göttingen.

Stereotactic Injection of Lewis Rats

Stereotactic injection of anti-MOG (8-18C5) or anti-AQP4 antibody (rAB-53)

was carried out in adult Lewis rats obtained from Harlan. The rats were anaes-

thetized using an intraperitoneal (i.p.) injection of ketamine/xylazine and

mounted in a stereotactic device. After drilling a fine hole through the skull

1 mm caudal to the bregma and 2 mm lateral to the sagittal suture, the glass

capillary was inserted 3 mm deep to target the corpus callosum. The rats

were then injected with 1 ml of antibody solution (2.5 mg/ml) with complement

(15 U/ml) (Sigma-Aldrich) over a 5-min period. As a control, 1 ml of PBS was

injected in the ipsilateral site of the brain. Monastral blue (Sigma-Aldrich)

was added for lesion identification. After injection, the glass capillary was care-

fully withdrawn, and the injection site was sealed by suture.

Electron Microscopy

Animals used for EM studies were terminated by cervical dislocation, and the

brain was removed quickly. The brain was then cut into 200 mm sections with

the help of the Leica vibratome VT1200S. From these sections, the region of

interest was cryofixed in 20% poly(vinyl-pyrrolidinone) (Sigma-Aldrich) using

the high-pressure freezer Leica HPM100 (Leica). The tissue was then freeze-

substituted using the Leica AFS II as described previously (Möbius et al.,

2010; Snaidero et al., 2014) and Epon embedded. The Epon-embedded tissue

was cut with the Leica Ultracut S ultramicrotome into 0.5-mmsemithin sections

or in ultrathin sections of 50 nm thickness that were contrasted with 4% ura-

nylacetate (SPI-Chem) (Möbius et al., 2010). Electron micrographs were ob-

tained using the electron microscopes Zeiss EM900 or LEO EM912AB (Zeiss)
jected rats. The loss of staining or astrocyte fragmentation is marked by the red

e.

r p.i. time point for control and EGTA treated acute brain sections. Graphs show

NOVA).



equipped with a wide-angle dual speed 2k-CCD-camera or on-axis 2k CCD-

camera, respectively (TRS) using ImageSP or ITEM (Olympus) software.

For quantification, at least 300 myelin sheaths that were cross-sectioned

completely without artifacts and could be classified without doubt were

counted. The myelin sheath was scored in one of the following categories:

intact, split (more than half of the axon diameter), with enlarged inner tongue,

vesiculated, or degenerated. The percentage of the fragmentation profile was

calculated.

A full description of the experimental procedures used in this study can be

found in in Supplemental Experimental Procedures.
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