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Abstract

This article tries to enhance traditional distribution paradigms for
modelling asset returns by considering an a-stable regime-switching model.
Our approach is to perform an empirical test of the a-stable regime-
switching model against other common methods in two settings: in risk
management and in portfolio selection. Our empirical study will show
that the model is better suited than Gaussian and Gaussian regime-
switching models to measure risk accurately. A portfolio optimization
case study for a traditional stocks and bonds investor is pursued. In this
study, the model leads to less risky and more diversified portfolios. In
particular, the model avoids outsized losses in times of crisis and thus
leads to a better (adjusted) Sharpe ratio and Omega.

Keywords: Markov switching, regime switching, stable distribution, risk
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1 Introduction

The dependence structure between asset prices plays a central role in the risk
management of complex portfolios. Since the introduction of Risk Metrics in
the early nineties, a constant covariance structure underlies many risk manage-
ment theories, both in the academic literature as well as in regulatory-driven
bank implementations. The advent of copulas signified a substantial enhance-
ment to our understanding of risk factors and it has given rise to theories and
practices where dependence structures of asset prices are unleashed from prior,
constraining Gaussian settings. Much of the success of the copula approach
is based on the ability of copulas to use well known distributions (such as
the gaussian) in settings where they do not normally apply. One such setting
which has not attracted much work is the multivariate a-stable, despite the
fact that when it was first introduced by [1], as a univariate distribution, it
displayed several interesting features.

This article is also shaped by the circumstances of the financial crisis, which
started in 2007, and its remarkable impact on asset prices. Not only did credit
default swap (CDS) spreads increase sharply and (later on) stock prices drop
enormously. Volatilities and correlations rose at the same time. Therefore one
could doubt whether assets follow the same statistical pattern over time. In-
deed the crisis boosts the idea that markets and assets have different regimes,
e.g. periods of time with statistical properties which are distinct from each
other. Thus, for modeling assets and markets, regime-switching models are
seen as one way to accommodate the observed shifts in market regimes. As
another consequence of the crisis, the assumption of a Gaussian distribution
in many financial models has been challenged by both practitioners and aca-
demics. Single stock return time series for example are subject to skewness and
excess kurtosis and thus are empirically not normally distributed. But when
portfolios of stocks are constructed, multivariate correlation effects add to tail
events over and beyond the individual tail characteristics of individual stock
distributions. Therefore, tail correlations are key. In this article we will try
to include both points in one model. On the one hand, we use a multivariate
a-stable distribution model, which has a powerful dependence structure, and
on the other hand we will use a regime-switching model. For simplicity we will
restrict the model to two regimes.

Regime-switching models explicitly take into account different state pro-
cess, which describes the market regimes, is an unobservable Markov chain.
This model is, in itself, able to capture kurtosis, skewness, autocorrelation,
and volatility clustering (cf. [2]). One of the first to use Markov switching
in an economic context was [3]. He used the model to explain shifts in the
growth rate of the gross national product and thus identified positive and
negative growth regimes. [4| focused on the regime shift in correlations be-
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tween equity markets. They employed Gaussian Markov-switching models
and found empirical evidence for the existence of a regime with high volatility
and high correlations and a regime with low volatility and low correlations.
[5] extend this finding using a two-state Gaussian Markov-switching model to
model volatility and correlation behaviour between different asset classes. In a
portfolio optimization case study, they show that the consideration of regime
switching in portfolio optimization leads to a better portfolio performance and
lower portfolio risk compared to a non-switching standard Normal distribution
model. [6] employ a Markov-switching model for the asset allocation of a fund
of hedge funds. An application to the credit market, in particular for the pric-
ing of collateralized debt obligations (CDO) can be found in [7]. [8] employ
a multivariate regime-switching approach for the estimation of Value-at-Risk.
[9] introduces a general regime-switching Lévy process model in continuous
time. He applies this univariate model to option pricing.

In this article, the regime switching is done between a-stable distributions,
introduced by [10]. This distribution was first employed in economics and fi-
nance by (|1, 11]) in his works about the distribution of incomes respectively
cotton prices. Since then, a lot of different articles and books have been writ-
ten about the a-stable distribution. See for example [12] and [13] for a study
of the model of a-stable distributions and its properties. [14] show applica-
tions in finance. ([15, 16]) give an overview about using the a-stable distri-
bution to financial data. ([17, 18]) deal with portfolio selection using a-stable
distributions. [19] present dynamic portfolio strategies and compare the fore-
casting power of different a-stable models for Value at Risk prediction. Some
authors also combine the stable distribution with generalized autoregressive
conditional heteroskedasticity (GARCH) or mixture models (cf. [15]). [15]
propose a mixed-stable model for describing the stagnation periods in baltic
stocks. But what is critical in our approach is that the a-stable distribution
be multivariate; its dependence structure has been shown to offer unique prop-
erties when used in a risk management framework in [20]. As a sample of its
characteristics, we note that the dependence structure is essentially modelled
by the spectral measure, a measure on the unit multidimensional sphere; when
one views the gaussian in this perspective, the corresponding measure would
be symmetric. a-stable distributions do not require the spectral measure to
be symmetric, which has interesting financial interpretations. When model-
ing financial data by an a-stable distribution, it is generally assumed that
1 < a < 2. This is in accord with most empirical estimates of financial asset
returns (|15, 16]).

Gaussian regime-switching models are not able to describe regime-dependent
fat tails. While a Gaussian regime-switching model can distinguish different
market regimes like calm and turbulent periods, it is not able to describe crises
adequately. Crisis periods can be regarded as the fat tails of the turbulent mar-
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ket regime. For example, the period from 2007 until 2009, referred to as the
financial crisis, can be regarded as a turbulent market phase with overall nega-
tive returns and high volatilities. During that period, the liquidity crisis in 2008
and the Lehman collapse lead to the most severe drops in asset prices. These
extreme events lead to stock price movements, which are typically described
best by a fat-tailed distribution. Hence, the liquidity crisis can be considered
as the fat tail of the financial crisis. This behaviour can be modelled by a
regime-switching model which employs fat-tailed distributions. Observations
of empirical data point in the same direction. [5] found in their paper that
returns in the turbulent regime are still subject to skewness and excess kurtosis
and thus are empirically not normally distributed. To sum up, the proposed
a-stable regime-switching model is capable to describe autocorrelation by em-
ploying different market regimes and regime-dependent tail behaviour by using
the a-stable distribution. To our best knowledge, no a-stable regime switch-
ing model has been proposed in a discrete-time multivariate setting, in a risk
management or asset management context.

This article makes the following contributions: We propose a univariate as
well as a multivariate two-state a-stable regime-switching model. We intend
to use the model in the risk management and asset management context. We
consider the univariate model to analyze return time series of a major stock
index, estimate the parameters of the model and detect the regimes using the
BaumWelch and Viterbi algorithms. Furthermore, we apply this model in a risk
management context. Using the multivariate model, we study an application in
portfolio selection. We compare different regime-switching and non-switching
models with and without fat tails. We show that an a-stable regime-switching
model is better suited to measure risk than the standard Gaussian approach.
In applications to the portfolio selection of stocks and bonds, we find that
the model leads to less risky and more diversified portfolios, compared to the
standard Gaussian and Gaussian switching counterpart. This leads to a better
(adjusted) Sharpe ratio and Omega. In addition to that, we found that the
model avoids huge drawdowns in times of crisis.

The paper is structured as follows. In Section 2 we give some properties of
the a-stable distribution. In Section 3 we present our model. The methods for
estimation are described in Section 3.2. Thereafter, we show the estimation
results and the detection of regimes for a major stock index. The model
is applied to risk measurement and portfolio selection in Sections 4 and 5.
Finally, we conclude.

2 Alpha-stable distributions

Following [13], an univariate a-stable distribution could be defined by its
characteristic function. Hence, a random variable X taking values on the
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real line (ie, X € R) has an a-stable distribution if there are parameters
0<a<20>0,—-1<p<1and p € R such that its characteristic function
has the form®:

o(t) = E[exp (itX)] = exp {—0“ [t (1 — ifsgn (t) tan %) + Z',ut} (1)

where sgn(t) is the usual signum function, ie, sgn (t) = 1if ¢ > 0, sgn (t) =0
if t =0, and sgn (t) = —1if t < 0.

The characteristic function in (1) uses four parameters. « is the index of
stability, § is the skewness parameter, u is the location parameter and o the
scale parameter. Thus, we will denote a-stable distributions by S, (e, 8, 1) and
write

X ~ Sa(0a67”)7

to indicate that X follows the a-stable distribution S, (o, 3, ).

The probability densities of a-stable random variables exist and are con-
tinuous, but apart from the Gaussian distribution (o = 2), the Cauchy distri-
bution (o = 1,8 = 0) and the Lévy distribution (aw = 1/2,8 = 1), they are
not known in closed form (cf. [12]). However, several approximation methods
exist (see [12, 21, 22, 23]).

The most important properties of the a-stable distribution are the stabil-
ity of summation and the generalized central limit theorem. The stability of
summation gives a statement about the distribution of the sum of an arbitrary
number of independent and identically distributed (i.i.d.) a-stable random
variables. If Xi,..., X, are i.i.d. S,(0, 3, 1) and o # 1, then?

Xl—i—---—l—Xninl/aXl—k,u(n—nl/a) (2)

The property above gives an important property of a-stable random variables:
The sum of i.i.d. a-stable random variables is again a-stable. Y . | X; is dis-
tributed by S,(co - n'/%, 3, -n). This result is usually called closure under
convolution or invariance under convolution. The class of a-stable random
variables is thus closed under convolution. This is an important property for
modeling financial data, as asset prices are the result of a sum of random move-
ments. For a = 2, (2) is the well-known closure under convolution property of
the Gaussian distribution.

For the a-stable distribution the generalized central limit theorem applies.
The generalized central limit theorem is a generalization of the central limit
theorem to the case that the finite variance assumption is dropped. Under

!The formula is valid only for a@ # 1. For our applications to financial data, which
exhibit an o > 1, this assumption is justified. For a = 1, a slightly different version applies:

o(t) =exp{—0c[t| (1 +iB2sgn (t)In|t]) +ipt}.
2For o = 1, the formula is a little bit different: X; +--- 4+ X, 4 nt/e X, + %O'/B’I’L In(n).
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this assumption, the a-stable distribution is the only limiting distribution of a
sum of i.i.d. random variables. This is a rather attractive property of the a-
stable distribution, as it gives a justification for modeling various phenomena
as a-stable random variables.

The tails of an a-stable random variable with 0 < a < 2 follow a power-
law?, ie, the upper tail probability is given by

P(X > z)~ Cyla,B,0)x™® (3)

as © — oo. Cyu(a,,0) is constant and only depends on «,  and o. Sim-
ilarly, the lower tail follows a power-law: P(X < —z) ~ Cj(«, 5,0)xz™*. In
this case, a slightly different constant Cj(a, 8, 0) is employed. The tail behav-
ior has some influence on the moments, too. For a-stable random variables
with 1 < a < 2 the second and all higher moments are not finite anymore.
However, the first moment is finite and the shift parameter p equals the first
moment, ie, E [X] = pu. For a < 1, even the first moment is not finite anymore.

Like in the univariate case, the characteristic function for an a-stable ran-
dom vector can be given explicitly. It defines a representation of a-stable
random vectors and provides the basis for further analysis of properties of the
multivariate a-stable distribution. The following expression of the character-
istic function involves an integration over the unit sphere in R?. The unit
sphere? in R? is defined as Sy := {s € R?: ||s|, = 1}. For example, S; is the
two point set {—1,1} and Sy is the unit circle. In the following, (-,-) denotes
the usual inner product, ie, for z,y € R4, (z,y) = Zizl TrYk-

Let 0 < @ < 2. Then X = (X1, Xs, ..., X,) is an a-stable random vector in
R? if and only if there exists a finite measure I' : Sq — Rso := {x € R : x > 0}
on the unit sphere Sy of R? and a vector p € R? such that the characteristic
function looks as follows:

p(t) = IE [exp(i (¢, X))] = exp(—1(t) +i{p, 1)) (4)
where

I(t) = | ¢a((t,s))dl(s) ()

Sq

3In the Gaussian case, ie, a = 2 the tail property has another form (cf. [24]):

. . T T o 32 2
AILII;OP(x <=A) = /\IEEOP(X >\ = /\lggo T exp (—A*/(40%))

4The norm in this definition is the Euclidean norm. This is the standard used in the
representation of the characteristic function of a-stable random vectors. However, it is
possible to use the unit sphere relative to any other norm for the representation of the
characteristic function (see [13], Proposition 2.3.8).
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and®
) = [ul* (1 = i tan(")sign(u)) (6)

The pair (T', p) is unique for 0 < a < 2. For a = 2, the characteristic function
is given by (4), but the representation is not unique (cf. [13], p. 76f).

Similar to the univariate case, a closed-form density is not available for mul-
tivariate a-stable random vectors. For the subclass of elliptically contoured
a-stable random vectors, ([25, 26]) derives a series expansion for density calcu-
lation. For the general case, a numerical density calculation has to be pursued.
[27] present a method to calculate two-dimensional a-stable densities by nu-
merically inverting the characteristic function.

The sum of i.i.d. a-stable random vectors is again an a-stable random
vector. Thus, the closure under convolution holds for the multivariate a-
stable distribution, too. Moreover, any linear combination of the compo-
nents of an a-stable random vector is an a-stable random variable: Let X =
(X1, Xs,...,Xy) be an a-stable random vector in R?. Then any linear combi-
nation of the components of X of the type Y = 22:1 b Xy = (b, X), b € RY,
is an a-stable random variable with the same o parameter as X. Conversely,
let X be a random vector in R%. If all linear combinations Zzzl b, X, are
a-stable with a > 1, then X is an a-stable random vector in R

As the spectral measure is "essentially an infinite-dimensional data-structure"
(]28]), it is not as easy to deal with as a covariance matrix. Thus, an approxi-
mation is necessary. [28] represent the spectral measure as a sum of spherical
harmonics. Another way is to approximate the spectral measure by a discrete
spectral measure I’ with a finite number of point masses:

[(s) = Z 79s;(8) (7)

where 7; > 0 is the weight and d;, the point mass (Dirac delta) of point
s; € Sy4,7=1,...,L. Thus, I(t) in Equation (5) gets to

1) = 3" v ((t.5) % ®

For bivariate data, a good way to visualize the spectral measure are polar
plots. In Figure 1, such polar plots of discrete spectral measures are shown.
Three spectral measures are depicted. The first one shows an estimated spec-
tral measure of two bond indices. To get a rough impression about dependence
we add two other spectral measures. The first one shows the spectral measure

°For a = 1, tha (u) = |u| (1 + iFsign(u)In(|u])).



556 Andreas Reuss, Pablo Olivares, Luis Seco and Rudi Zagst

of two totally independent assets. In the case of independence, the weights
are located at the intersection of the unit sphere with the coordinate axis (cf.
[13], Example 2.3.5). The third plot shows a perfectly linear dependent pair
of assets with equal scale.

(a) Two bond indices (b) Independence (c¢) Perfect linear depen-
dence

Figure 1: Polar plots of bivariate discrete spectral measures

In general, the points s; can be chosen arbitrarily, for example to form a
triangular shape. However the goodness of fit of the approximation depends
on the choice of the points (cf. [29], Theorem 2.1). For estimation purposes
it seems reasonable to choose L uniformly spread points s; on the unit sphere

Sq. For d = 2 this would be s; = [cos(w@),sin(w@) ,j=1,...,L.

[30] show, that for any spectral measure, a discrete spectral measure can be
found, such that the corresponding densities are uniformly close. Thus, for
simplicity, we restrict ourselves to discrete spectral measures in the remainder
of this article.

Several methods for the estimation of the spectral measure have been pro-
posed. For example [28] use harmonical analysis, (|31, 32]) employ the so called
Rachev-Xin-Cheng method and [33] employs the discrete spectral measure ap-
proximation in (7). We use the latter in our estimation. The method works as
follows: One estimates I(t) in (8), either by using the empirical characteristic
function (ECF) or by McCulloch’s projection method (cf. [34]), calculates 1,
and then uses matrix inversion to obtain the weights ;.

A good overview about approximation, estimation and simulation of mul-
tivariate spectral measures is given in [29]. Regarding the choice of the point
masses, he suggests to use a multiple of four point masses for the bivariate case
in order to detect the case of independence. Moreover he states that a num-
ber of L. = 40 point masses is sufficient for most purposes, except for density
calculation.



Risk management and portfolio selection 557

3 Model

3.1 Alpha-stable regime switching

In this article, we will model asset returns by a discrete-time Markov-switching
model with N = 2 regimes. A generalization to N > 2 is straightforward. Each
regime will be modeled by an a-stable distribution. In the univariate setting,
we model the return as a random variable R; which depends on the state of
a non-observable homogeneous Markov chain Z; with state space E = {1, 2}.
The return series R; follows an a-stable distribution, ie,

Rt ~ SO‘Zt (UZta BZta :uZt)'

For a fixed value of Z;, az, € (0,2] represents the index of stability, 8z, €
[—1,1] is the skewness parameter, puz, € R is the location parameter and
0z, > 0 the scale parameter. All parameters depend on the state of the
Markov chain Z;. By restricting a to 2, one can model one or two regimes
with a Gaussian distribution. As both states could be set to a = 2, our model
includes the well-known two-state Gaussian Markov-switching model (as used
eg, in |5]) as an instance.

In a multivariate setting, we model the return as a random vector Ry
which depends on the state of a non-observable Markov chain Z; with state
space E = {1,2}. Conditionally to Z;, R, follows a multivariate a-stable
distribution,

Rt ~ SCMZt (FZt7 l"l'Zt>

where oz, is the index of stability, I'z, is the spectral measure and p, is
the location vector. By setting a to 2 in both regimes, the multivariate model
includes the multivariate Gaussian regime-switching model, too. However, in
that case it is difficult to directly relate the covariance matrix to the spectral
measure as the spectral measure is not unique for a = 2.

In both, the univariate and the multivariate model, the non-observable
state process is governed by the homogeneous Markov chain Z; with two states,
1 and 2. The transitions of the Markov chain are determined by the transition

matrix
p 1l-—p
pP= 9
(1—q q ) )

with the transition probabilities p = P(Z; = 1|Z,-1 = 1) and ¢ = P(Z; =
2|Z;_1 = 2). The initial distribution is denoted by @ = (1,1 — n) with n :=
P(Zy =1).

The proposed model allows for fat tails and skewness in general as well as
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in each regime. Using one regime with @ = 2 and one with o < 2 allows for
modelling a return distribution with normal tails in a calm regime and fat tails
in a turbulent regime. Via distinct spectral measures, the multivariate model
enables modelling a regime-dependent dependence structure of assets.

3.2 Parameter estimation

For time series estimation we will use discrete returns

X, — Xy
R ="
! X,

because of their linear additivity property, ie, portfolio returns are the simple
weighted sums of the asset returns. This keeps calculations involving the
portfolio returns simple.

For both the multivariate and the univariate model, we have to estimate
the parameters of the Markov chain Z; (the initial distribution 7 = (1,1 —n)
and the transition matrix P) first. They will be determined using a major
stock index, which serves as a market regime indicator for all asset classes.
We will use the MSCI World for this purpose, because it has a broad coverage
across sectors and geographic regions and thus can be considered as the most
representative index for the global capital markets. In addition to that, the
data for this major stock market index is available at high frequencies and for
long time periods. In Section 3.4, we estimate the parameters using daily data
and a long data history. However, for the portfolio selection in Section 5 we
employ data for other stock indices and bond indices which is only available
weekly. Thus, for the portfolio selection study we use the MSCI World index
with weekly datapoints for the detection of the regimes. As the regimes are
usually persistent over longer periods, the change of frequency is not a serious
issue.

The parameter vector 8y, = (o, ok, Bk, p) for each regime k € E of the
univariate model can be estimated at the same time as the Markov chain pa-
rameters. For the multivariate model we first perform the univariate estimation
to determine the parameters of the Markov chain. After that, the regimes can
be detected and the regime-dependent parameter set (ag, 'k, ) )ker can be
estimated.

We will use the BaumWelch algorithm (cf. [35]) to estimate the parameters
of the Markov chain and the parameter vector 8y for each regime k € E of
the univariate model. Next, Viterbis algorithm (cf. [36]) will be used to
detect the most likely sequence of states. The BaumWelch algorithm is a
maximum-likelihood algorithm. Therefore we have to estimate the parameters
of the a-stable distribution by a maximum-likelihood method. For this, we
need to evaluate the likelihood function respectively compute the density of
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an a-stable distribution several times. We use a fast Fourier transform (FFT)
method similar to the approaches in ([22, 23|) to calculate the density. To
keep computation time low, we do not use the Bergstrom expansion proposed
in [23]. In order to do the estimations, we implemented the above-mentioned
algorithms and methods in Matlab.

Note, that the implementation of the BaumWelch algorithm is numerically
difficult. Multiplying variables between 0 and 1 leads to numerical underflow.
Thus, a scaling procedure has to be applied. We use the procedure outlined in
[37]. The implementation applies numerical optimization for doing the max-
imum likelihood estimation which is used in the BaumWelch algorithm. Se-
quential quadratic programming (SQP), a gradient-based technique, is used for
the (corresponding) nonlinear constraint optimization (Matlab function fmin-
con). The routine terminates when the change of the parameters between
two iterations falls below a certain tolerance level or a maximum number of
iterations is reached. In our implementation we set the tolerance to 10~% and
the maximum number of iterations to 40°. The routine is relatively insensitive
to start parameters, except for choosing a = 2, which results in « keeping that
value.

3.3 Simulation

The univariate a-stable Markov-switching model could be used to simulate a
sequence of returns. These simulations could then be used for risk management
or portfolio optimization purposes (see Sections 4 and 5). Given the set of
states E and the parameters for the Markov chain (P, ), the distribution
parameter vectors (ag, ok, Ok, k) ker for each regime k € E, and the number
of simulation steps (also called simulation time horizon) T, one can simulate
one trajectory of the model according to the following algorithm (cf. [37], p.
261):

1. Draw an initial state Z, according to the initial distribution vector 7.
2. Set t = 0.

3. Draw data points, ie, returns, according to the a-stable distribution
Sazt (02,82, 1tz,)- A simulation of a-stable distributions can be done
by the Chambers-Mallows-Stuck method (cf. [38, 39]).

6Tn our test runs of the implementation, the algorithm converges quickly, so with 40 runs
the estimation results are usually close to or below the tolerance of 107, The computation
of the algorithm might take a few minutes on a standard PC. Therefore, computation time is
an issue. Thus, limiting the number of iterations is a good instrument to balance convergence
and computation time. Note, that for the rebalancing in Section 5, we even use a maximum
number of iterations of 30. However, this is no problem, as the algorithm starts with the
previous estimates and estimates vary only little from one reallocation time to the next.
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4. Draw the new state Z;,; according to the transition probabilities at state
Zy;. This is determined by the row vector (P)g,, ie, the Z;-th row of the
transition matrix.

5. Set t =t + 1 and return to step 3 if t <T'. If t =T terminate.

A similar algorithm can be implemented for the multivariate model. There-
fore, one has to use the parameter set (o, Iy, tty, ) ke r instead of (a, o, Bk, k) keE
and use random vectors instead of random variables. A simulation method for
the simulation of a-stable random vectors with discrete spectral measures is
given in [29].

3.4 Detection of market regimes

We will now apply the univariate a-stable regime-switching model for the de-
tection of the different market regimes. Therefore we apply the estimation
approach to a stock index in order to estimate the parameters of the model
and the most likely state sequence. We have used the MSCI World Index.
The dataset consists of daily index levels since 19727. We will use the MSCI
World Index as reference index for detecting if the world is in a calm or a tur-
bulent state in our applications. The estimation results for the MSCI World
are shown below. The transition matrix was estimated as

. ~{0.9893 0.0107
MSCT =\ 0.0207 0.9793

The distribution parameters for daily returns in each regime were estimated
as shown in Table 1:

Zy « 4 B M
1 119731 0.0036 -0.1187 0.0006
1.7985 0.0073 -0.0406 -0.0003

Table 1: Distribution parameters of MSCI World for both regimes

The estimate for the initial distribution was (n,1 —n) = (0,1). As one
can see from the values of «, the estimation reveals a-stable behavior in both
regimes. Here, the state Z; = 1 is the calm regime which can be seen by
the positive location parameter (corresponds to an annual return of roughly
15 percent) and the moderate value for the scale parameter. In contrast to
that, the state Z, = 2 possesses a negative location parameter (corresponds

"We downloaded this dataset from Yahoo Finance. The data ranges from January 3rd,
1972 until June 11th, 2010.
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to an annual return of roughly -7 percent) and a scale parameter which is
twice the size of the calm regime’s scale parameter. Additionally, « is lower
for state Z; = 2 indicating heavier tails than the calm regime. For this reason,
we characterize state Z; = 2 as the crisis or turbulent regime. The skewness
factor is slightly negative for both regimes and the difference there is not to
pronounced.

In Figure 2, one can see the MSCI World stock index and the estimated
states. Periods where the crisis regime was detected are shaded in grey. One
could see, that the identification of crises works quite well. The model detects
the crash of 1987, the first Gulf war in 1990/91, the Russian crisis in 1998, the
burst of the Dot Com bubble and the recent financial crisis. Apart from that,
the model detects some phases in market upswing as crisis. This is mainly due
to increased volatility levels in that phases.
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Figure 2: The MSCI World and the estimated crisis regime (shaded in grey)

4 Risk measurement

As an application of our univariate model we want to calculate and analyze
risk measures like Value at Risk (VaR) and Conditional Value at Risk (CVaR)
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for a major stock index. We want to compare the risk measures under different
models®.

We begin with a definition of Value at Risk and Conditional Value at Risk
following [40]. For the continuous random variable X € R and ¢ € (0, 1), the
Value at Risk at confidence level 1 — ¢ is defined as

VaRy(X)=—inf(r e R: P(X < z) > q) (10)

The Conditional Value at Risk, also called Expected Shortfall (ES), for a con-
tinuous random variable? X on R and ¢ € (0, 1), is defined as:

CVaRy(X) = —E[X|X < —VaR,(X)] (11)

Note that CVaR is a coherent measure of risk (cf. [40, 41]) while VaR
is not. In the remainder of this section, we will give a comparison of risk
measures'? for different models. Our benchmark or proxy for the "true" risk
measure is the historical risk measure which is calculated by the realizations
of the entire time series, eg, the historical VaR is the empirical quantile of the
time series. At first we will compare risk measures under the a-stable model
with those under a Gaussian model. Both models are without taking into
account different regimes. After that we will look at Gaussian and a-stable
regime-switching models and compare those to the non-switching models. In
addition, we use a slightly modified version of the a-stable regime-switching
model. In this model, we fix the calm regime to o = 2, thus the calm regime is
modelled by a Gaussian distribution while the crisis regime is modelled by an
a-stable distribution without any constraint. As the estimated « for the calm
regime is close to 2 for the MSCI World (see Section 3.4), this modification is
reasonable. Thus, the comparison comprises the following models:

8VaR and CVaR are finite for the a-stable models we employ. VaR as a quantile function
is always finite, and CVaR is finite for @ > 1, which can be easily derived from the finiteness
of the first moment in the case a > 1. In our applications we only use a-stable distributions
with o > 1, so this restriction causes no problem.

9Note, that for general, in particular discrete, distributions a slightly more complicated
version applies (see [41]).

In our implementation we calculate the a-stable VaR with a quantile func-
tion. For this we used the Matlab program STBLINV by Mark Veillette, which nu-
merically inverts the cumulative distribution function. The code is available from
http://math.bu.edu/people/mveillet/. The a-stable CVaR was calculated using numerical
integration.
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N

SSRS

NNRS

NSRS

The Normal distribution model. This model assumes a Geo-
metric Brownian motion without switching. Thus returns are
normally distributed.

The a-stable model. This model assumes that returns follow
an a-stable distribution. Thus it takes fat tails explicitly into
account.

The a-stable regime-switching model. The model consists of a
two-state Markov-switching model with a-stable distributions
in each regime.

The Normal regime-switching model or Gaussian regime-
switching model. The model consists of a two-state Markov-
switching model with Normal distributions in each regime.
This model was used in [5].

The modified a-stable regime-switching model. The model
consists of a two-state Markov-switching model with one
regime governed by a Normal distribution (ie, an a-stable dis-
tribution with @ = 2) and the other regime governed by an
a-stable distribution.

The calculation of the risk measures for the regime-switching models (the
Gaussian Markov-switching model and the a-stable regime-switching model)
could not be done analytically. Therefore a simulation approach, as described
in Section 3.3, with 50’000 simulations will be pursued, ie, the risk measures
will be determined as the empirical risk measures of these simulations. Finally
we will look at the risk measures in the different regimes. Therefore we esti-
mated the regimes under each model as explained in Section 3.2 and split the
dataset accordingly in two subsets. Then we computed the risk measures for
each subset. We compare the risk measures for the MSCI World, using the
same dataset as in Section 3.4. The results can be seen in Table 2.

VaR CVaR
95%  97.5% 99% 9%5%  97.5% 99%

N
S

Historical | 1.24% 1.65% 2.25% | 1.96% 2.52% 3.49%

NNRS 1.29% 1.81% 2.48% | 1.99% 2.47% 3.02%
SSRS
NSRS 1.22% 1.63% 2.20% | 1.97% 2.55% 3.56%

1.36% 1.62% 1.93% | 1.711% 1.94% 2.21%
1.19% 1.62% 2.51% | 2.42% 3.47% 5.74%

1.28% 1.71% 2.42% | 2.18% 2.89% 4.22%

Table 2: Risk measures of the MSCI World for a 1 day holding period

It can be seen, that modeling returns with an a-stable distribution has
effects on both risk measures, the VaR and the CVaR. The effect however
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VaR CVaR
95%  97.5% 99% 95%  97.50%  99%
Calm Historical | 0.84% 1.02% 1.25% | 1.10% 1.28% 1.52%

Normal 0.82% 0.99% 1.19% | 1.05% 1.19% 1.37%
Stable 0.81% 0.99% 1.23% | 1.13% 1.37% 1.77%
Turbulent | Historical | 1.85% 2.43% 3.53% | 2.91% 3.73% 5.06%
Normal 2.09% 2.49% 2.95% | 2.62% 2.96% 3.37%
Stable 1.89% 2.41% 3.33% | 3.20% 4.28% 6.56%

Table 3: Risk measures of the MSCI World for the calm and turbulent state
for a 1 day holding period

depends on the confidence level. For small ¢ (eg, ¢ = 0.01) the a-stable model
S gives higher risk measures than the Gaussian model N. Thus we get more
conservative risk measures. Comparisons to the empirical risk measures show,
that the S model fits the data better than the N model. However, for small
and smallest values of ¢, the a-stable model overestimates the risk measures.
This is in particular the case for the CVaR.

Looking at the regime-switching models, we observe that the switching
models fit the historical risk measures much better than the non-switching
models. This is especially the case for the CVaR measure. Firstly, we com-
pare the a-stable regime-switching SSRS model with the well-known Gaus-
sian switching model NNRS. While the SSRS model fits the historical VaR
slightly better than NINRS model, it overestimates the CVaR. The NNNRS
model fits the CVaR better, yet underestimates it, especially for the 99% confi-
dence level. Looking at the results for the NSRS model, it turns out that this
modified model fits both the historical VaR and the historical CVaR rather
closely. In particular it has the best fit of all models considered for the 99%
confidence level for both VaR and CVaR.

When we split the data into a calm and a turbulent regime (cf. Figure 2),
we can detect that the risk measures under the a-stable distribution fit the
empirical risk measures in both regimes very well (see Table 3). The normal
distribution would underestimate the risk substantially, especially for the 99%
confidence level. In addition to that, the magnitude of this underestimation is
much higher in the turbulent regime.

One might ask if the difference in the risk measures calculated above is sig-
nificant. To answer this question we examined the distribution of the returns.
As the VaR and CVaR are functions of the distribution, significantly different
distributions will lead to different VaR and CVaR.

We did a Kolmogorov-Smirnov test (cf. [42]) on the historical returns of
the MSCI World. We tested the null hypothesis, that the distribution of the
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weekly returns of MSCI World are equal to the Gaussian respectively the a-
stable distribution. We did this test on the entire dataset and on the subsets
of the two regimes. The results are shown in Table 4.

a-stable Gaussian

Entire Dataset  P-Value 0.0521 | 1.7284E-39
Statistic 0.0135 0.0669

Calm State P-Value 0.2762 0.0122
Statistic 0.0121 0.0195

Turbulent State P-Value 0.9685 | 2.1462E-06
Statistic 0.0085 0.0455

Table 4: Kolmogorov-Smirnov test statistics on the returns of MSCI World

One can see, that Kolmogorov-Smirnov shows that with a confidence level
of five percent, the null hypothesis of a Gaussian distribution can be rejected.
This even holds when looking at the calm and turbulent state separately. Even
for a confidence level of one percent, the only case where the Gaussian distri-
bution cannot be rejected is the calm state. In contrast to that, the null
hypothesis of an a-stable distribution cannot be rejected on a five and one
percent level, neither for the entire dataset, nor for the calm and turbulent
periods. This emphasizes, that calculating risk measures based on an a-stable
regime switching model is a suitable approach.

5 Portfolio selection

Firstly, before we go on to the portfolio selection, we determine the joint distri-
bution of the portfolio returns. Let the asset return vector R, = (R 1, Rea, - - |
RM)T follow a multivariate a-stable distribution. The portfolio weights are
denoted by wiy,ws, - ,w, with w; > 0, Vi = 1,...,n and >,  w; = 1.
Then, the portfolio return R, = Z?Zl w; Ry ;, as a linear combination of the
components of Ry, is an a-stable random variable. Thus, the portfolio return
has the distribution of an univariate a-stable random variable with the same
parameter « as the asset returns. By incorporating the multivariate depen-
dence structure given through the spectral measure, we could determine the
distribution parameters of the portfolio return as shown in [13, Example 2.3.4].

As an application of the model, we will pursue a portfolio optimization
case study. Therefore, we will perform a portfolio selection based on risk and
return.

1Tn this article we are analyzing long-only portfolios only. However this constraint could
be relaxed.
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The portfolio size n has a huge influence on computation time. In partic-
ular, in step 3, the computational complexity increases quickly with n, as one
needs to have a sufficient number of point masses for the estimation of the
spectral measure. For practical applications, we recommend that the portfolio
size should not exceed 5 indices or assets. Computations for the entire portfolio
optimization case study took several hours on a standard PC.

We conduct this case study on a stocks and bonds dataset comprising of
four indices which act as proxies for the respective asset class. This dataset!?
consists of stocks and government bonds from Europe and the USA. The in-
dices Eurostoxx50, S&P500, JPM US Gov., JPM Germany Gov. were used.
Data was available weekly ranging from 11,/01/1987 until 25/01/2009. Some
empirical statistics can be found in Table 5.

S&P500 EuroStoxx50 JPM US Govt. JPM GER Govt.
Mean p.a. 6.81% 6.14% 7.35% 6.28%
Standard Deviation p.a. | 17.86% 20.92% 5.09% 3.83%
Skewness -0.74 -0.56 -0.01 -0.19
Excess Kurtosis 6.37 6.32 3.67 1.80

Table 5: Descriptive statistics for stocks and bonds dataset in the period
11/01/1987 until 25/01/2009

Apparently one can see, that in the chosen time period, the returns of
stocks and bonds are of the same magnitude, but the stocks have a much
higher standard deviation and have fatter tails. The spectral measures show-
ing the dependence structure in different regimes can be found in Figure 3.
One can observe that within one asset class, the spectral measure in turbu-
lent periods is more concentrated than in the calm periods. This indicates a
higher dependence in turbulent periods. This is in line with the findings of
[5]. An interesting observation can be seen in Figure 3(b). The spectral mea-
sure indicates, that in turbulent periods stocks move downwards together, but
not upwards at the same time. Between stocks and bonds, the dependence is
rather low for both regimes.

To determine the regimes we use the MSCI World Index with the same
weekly frequency as the indices mentioned above. The estimated parameters
can be found in Table 6. The annualized mean returns corresponding to the lo-
cation parameter p are roughly 13 percent in regime Z; = 1 and approximately
-12 percent in regime Z; = 2. The transition matrix follows below.

12The dataset corresponds to the one used in Bernhart et al. (2009) and was obtained
from Reuters (S&P500 and EuroStoxx50), Bloomberg (bond indices) and Datastream (MSCI
World Local).
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(a) S&P500 vs. Eurostoxx50 - calm regime

(b) S&P500 vs.  Eurostoxx50 - turbulent
regime

(c) US Govt. Bonds vs. German Govt. Bonds
- calm regime
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0.9872 0.0128
Prrscr(weekty) = 0.0180 0.9820

Zy o o s H
1 | 1.8585 0.0084 -1.0000 0.0023
1.8572 0.0185 -0.5133 -0.0024

Table 6: Distribution parameters of MSCI World (weekly data, 1987 to 2009)
for both regimes

The portfolio case study was based on an initial portfolio value of 100’000
Euros. Cost of trading and taxes were not taken into account. The portfolio
optimization problem is given by:

max w’ pur — ARisk(w)

s.t. w >0 (12)

wll=1

In this problem, one maximizes an integrated risk-return function. In (12),
pr denotes the vector of expected returns, w denotes the vector of portfolio
weights, Risk(w) denotes a risk measure for the portfolio w and A > 0 is a
parameter, which reflects the risk aversion of the investor. By the constraint
w > 0, we assume short selling is prohibited, thus we show the implications for
long-only investors. The risk measure Risk(w) in these optimization problems
can be either the scale parameter o(w), VaR,(w) or CVaR,(w). Note that
the classical Markowitz’ mean-variance framework cannot be applied here as
the variance is not finite for a-stable distributions with o < 2. In analogy to
this classical model, one could do a mean-scale portfolio optimization. This
means setting Risk(w) = o(w). Thus the scale parameter of the portfolio is
used as risk measure. A detailed discussion of the mean-scale optimization can
be found in [18].

However, if one is interested in the risk in the tails, risk measures like VaR
or CVaR are more suitable because these risk measures take the (lower) tail
into account. However, using VaR leads to a non-linear optimization problem.
Moreover, when VaR is calculated from scenarios, eg, when simulations are
used, this risk measure might be difficult to optimize. In that case, VaR as a
function of the portfolio weights w is not convex and non-smooth (cf. [43]).
Thus, using VaR leads to problems with local optima.

In contrast to this, CVaR is a convex function of the portfolio weights
w, thus optimization should find the global optimum. ([44, 43|) show that
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using simulated scenarios, problem (12) can be solved by linear optimization
methods. Using simulated scenarios comes at the price of a small sampling
error. However, as [44] show, this error decreases with increasing sample size
and increases with increasing confidence level.

In order to show the implications of the multivariate model on portfolio
selection, we will conduct an out-of-sample portfolio optimization case study,
using Risk(w) = CVaR(w) with a confidence level of 95%. In this case study,
a portfolio of assets will be reallocated regularly, eg, every 12 weeks, according
to the solution of the optimization problem (12). We will use the five models
introduced in Section 4 to determine risk and return. The parameters of the
underlying Markov chain will be determined using a stock index, which serves
as a crisis indicator. As in Section 3.4, we will apply the MSCI world for
this purpose using weekly data from 11/01/1987 until 25/01/2009. Based on
the parameters of the Markov chain Z;, the most likely state sequence will
be determined by the Viterbi algorithm. The data will be split according to
the detected regimes. For each regime, the distribution parameters will be
estimated!® in dependence of the model considered (ie, assuming either an a-
stable or a Gaussian distribution). Based on these parameters, a simulation
study with 4000 runs will be carried out and then the portfolio optimization
will be conducted. The investment horizon is 52 weeks, ie, one year. The
portfolio optimization started on 05/01/1997 and a reallocation took place
every 12 weeks. In summary, the case study will be performed according to
the following steps:

1. Estimate regimes of indicator index MSCI World
2. Split data according to regimes
3. Estimate distribution parameters for each regime

4. Perform simulation according to model for the complete investment hori-
zon (52 weeks)

5. Use simulated scenarios for optimization and allocate portfolio accord-
ingly

6. Move forward in time to next rebalancing time (12 weeks)

7. Calculate realized portfolio return over current rebalancing period (12
weeks)

BFor the multivariate a-stable distribution a discrete spectral measure with 80 point
masses, which are uniformly spread around the unit sphere, is estimated.
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8. Repeat for every rebalancing time'

Note, that the non-switching models will only go through steps 3 to 8 of the
algorithm described above.

Now we will focus on the results of the portfolio optimization case study.
The optimization was undertaken for a low risk-averse investor, using a risk-
aversion factor of A\ = 0.25, which is very close to the number proposed in [5]
for a low risk averse investor. The development of the portfolio value for each
of the models can be seen in Figure 4. The portfolio weights over time for
the different models can be seen in Figure 5. To alleviate the interpretation
of the results by associating investment periods to dates in history, Table 10
shows some corresponding values. Table 7 contains the final portfolio values
and some risk and performance measures calculated from the realized portfolio
values respectively the week-on-week portfolio returns.
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Figure 4: The portfolio values of the different models over time for the Stocks
and Bonds dataset.

One can see, that the NNRS model has the highest portfolio value at the
end of the case study, thus it has the highest mean return. However, looking
at the picture in Figure 4, one can see huge differences in the variability of

14To be consistent to the previous decisions over time, we keep the classification of regimes
until the previous rebalancing time and only add the classification of regimes for the current
rebalancing period.
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the portfolio value. Hence one needs to take into account the different risks
of the strategies. Comparing the risk measures of the five models, which are
given in Table 7, one can see that the Gaussian models (N and NNRS) have
a much higher risk than all a-stable models, which is reflected in higher values
for standard deviation, VaR and CVaR. The numbers for the risk measures of
the a-stable models lie close together, however the NSRS model has a slightly
higher risk than the SSRS model. Looking at the maximum drawdown, one
can observe, that the drawdown of the N model is more than twice as high than
the figures of the other models. The a-stable model S has the least maximum
drawdown of all models. Another observation from the week-on-week returns
is that the kurtosis of all three switching models is lower than the kurtosis of
the non-switching models.

For combining both risk and return, portfolio managers tend to use the
Sharpe ratio (cf. [45]) as a measure. The NSRS model exhibits the highest
Sharpe ratio, having a Sharpe ratio of 0.74. However the data shows skewness
and kurtosis for all models. [46] pointed out that for returns with a high
skewness, the use of the Sharpe ratio is inappropriate. [47| propose to use
an adjusted Sharpe ratio, taking into account skewness and kurtosis. Using
this measure the NSRS model again dominates all other models. A better
performance measure which includes the entire distribution information, is the
Omega function, introduced by [48]. The values of the Omega function at the
threshold values 0% and 2% (the assumed target rate) confirm the ranking of
the Sharpe ratio, with the NSRS model leading the rank.

We want to examine, if the distributions of the returns generated by the
different models are significantly different from one another. Therefore, we per-
form a two-sample Kolmogorov-Smirnov test as we did in Chapter 4. The result
is displayed in Table 8. On a five percent confidence level, the Kolmogorov-
Smirnov test rejects the null hypothesis that N is from the same distribution
than any other model, except for the case of N compared to NNRS. It also
rejects the null hypothesis, that S and NINRS are from the same distribution.
On a ten percent confidence level, the Kolmogorov-Smirnov test also rejects
the null hypothesis that NNRS and SSRS as well as NNRS and NSRS are
from the same distribution. It thus leads to a separation into the group N and
NNRS on one side and S, NSRS, and SSRS on the other side coming from
significantly different distributions. To gain further inside, we additionally un-
dertake a two-sample Anderson-Darling test, see [49]. The result is displayed
in Table 9. On a five percent confidence level, the Anderson-Darling test shows
that one can reject the null hypothesis that N is from the same distribution
than any other model. Another finding of the Anderson-Darling test is the
fact, that the NINRS does not come from the same distribution than any
model involving the a-stable distribution, ie, S,NSRS,SSRS. Additionally,
on a one percent confidence level, the Anderson-Darling test cannot reject the
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Figure 5: Portfolio weights over time for the 5 different models for the Stocks
and Bonds dataset.
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null hypothesis that N and NNRS are from the same distribution. Thus, the
hypothesis tests show that the portfolio returns generated by the models based
on the a-stable distribution (S,NSRS,SSRS) can be distinguished from the
models based on the standard N as well as on the Gaussian switching model
NNRS.

Null Hypothesis P-Value | Statistic
N is from same distribution then S 0.0194 0.0859
N is from same distribution then NNRS 0.1058 0.0684
N is from same distribution then SSRS 0.0065 0.0954
N is from same distribution then NSRS 0.0065 0.0954
S is from same distribution then NNRS 0.0163 0.0874
S is from same distribution then SSRS 0.7944 0.0366
S is from same distribution then NSRS 0.2012 0.0604
NNRS is from same distribution then SSRS 0.0921 0.0700
NNRS is from same distribution then NSRS 0.0597 0.0747
SSRS is from same distribution then NSRS 0.8364 0.0350

Table 8: Kolmogorov-Smirnov test on the portfolio returns

Null Hypothesis P-Value | Statistic
N is from same distribution then S 0.0001 | 10.1857
N is from same distribution then NNRS 0.0172 3.1114
N is from same distribution then SSRS 0.0000 | 11.1556
N is from same distribution then NSRS 0.0000 | 12.2932
S is from same distribution then NNRS 0.0042 4.8503
S is from same distribution then SSRS 0.4535 | -0.4207
S is from same distribution then NSRS 0.2463 0.3298
NNRS is from same distribution then SSRS 0.0086 3.9454
NNRS is from same distribution then NSRS 0.0073 4.1506
SSRS is from same distribution then NSRS 0.5694 | -0.8017

Table 9: Anderson-Darling test on the portfolio returns

Regarding the portfolio weights, one can see, that the N model puts 100%
of the money in shares from December 1997 until November 2000 (investment
periods 50 to 200). The other models do not show this bold behaviour. While
they invest 100% at some periods, they never keep this allocation long, re-
verting to more balanced portfolios of stocks and bonds. All the models lower
the percentage of shares after the burst of the Dot Com bubble. After that,
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the behavior develops differently between switching and non-switching models.
While the non-switching models keep a rather constant but low percentage of
stocks in their portfolio all the time, the switching models reduce their percent-
age of stocks to zero in 2002 (investment periods 288 to 347), but then increase
their stock percentage to around 20% from 2003 until 2008 (investment peri-
ods 348 to 574). In 2008 (from investment period 575 on) they quickly reduce
the percentage of stocks to zero again as a reaction on the subprime and the
following financial crisis. Thus one could see a distinct switching behaviour in
the portfolio weights. Another pattern one could recognize is that the a-stable
model S has a higher diversification than the N model. Almost any time, the
S model invests in all four assets, while the Gaussian model often only uses two
or three assets. The same effect, but not so pronounced, is observable for the
SSRS and NSRS models compared to the NNRS model. Additionally, one
could observe that for all models the percentages of stocks in the bull market
from 2003 until 2008 are lower than in the Dot Com boom. This could proba-
bly be an effect of increasing data history. The models "learn" from the burst
of the Dot Com bubble, reflecting the negative returns experienced there. This
leads to generally lower portfolio weights of stocks after this bear market.

To further analyze the difference between the different models we look at
the behavior of the different strategies in times of crisis. This is particularly
interesting because regime-switching models were developed to explicitly take
into account times of crisis. In order to answer this question we (heuristically)
separated the data into different time periods. The periods are chosen in a
way to separate crisis or bear market phases from normal market phases. In
the observed time frame from 1997 until 2009, we recognized three different
crises:

1. The Russian crisis in 1998
2. The Dot-Com bust from 2000 until 2003

3. The recent financial crisis starting from 2007

Investment Period 1 50 100 150 200
Date in History 05/01/997  14/12/1997 29/11/1998 14/11/1999 29,/10,/2000
Investment Period 250 300 350 400 450
Date in History 14/10/2001 29/09/2002 14/09/2003 29/08/2004 14/08/2005
Investment Period 500 550 600 630

Date in History 30/07/2006 15/07/2007 29/06/2008 25/01/2009

Table 10: Investment periods and the corresponding dates in history

Thus, the dataset was split in six phases, three bull market phases and
the three crisis phases above. Then we calculated the period returns during
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the different phases as the return between the portfolio value at the start of
the period and the portfolio value at period end!®. The results can be seen in
Table 11.

Bull Russian Bull Dot Com Bull Financial
market Crisis market Bust market Crisis
Period Start 05/01/1997 26/07/1998 11/10/1998 17/09/2000 30/03/2003 18/11/2007
Period End 26,/07/1998 11/10/1998 17/09,/2000 30,/03/2003 18/11/2007 25/01/2009
N 42.74% -18.74% 60.50% -14.10% 27.87% 1.52%
S 22.24% -3.83% 12.65% 2.11% 20.61% 7.60%
NNRS 32.01% -2.55% 4.82% 7.95% 30.08% 12.89%
SSRS 15.29% -1.28% 3.86% 14.28% 25.10% 10.28%
NSRS 15.29% 3.79% 0.10% 14.66% 27.83% 12.80%
MSCI World 45.54% -20.23% 55.20% -44.64% 84.55% -44.59%

Table 11: Analysis of period return for different time periods for the Stocks
and Bonds dataset.

One can see that the switching models perform better in crisis periods
than the non-switching models. For example, during the Dot Com Bust the N
strategy lost roughly 14 percent, while the a-stable switching models SSRS
and NSRS earned roughly 14 percent. Another interesting insight from this
analysis is the fact that S performs better than N in all crises. Analyzing the
switching models in more detail, one can see, that the NSRS model performed
better or equal in crisis times than the NINRS model. Note, that our dataset
covers the recent financial crisis only until 2009.

The picture looks differently in boom times. In these times, the N strategy
outperforms the other strategies to a great extent (with the exception of the
2003-2008 boom, where NNRS is better). This is due to the full stock invest-
ment in the N portfolio (and comes as well with a higher drawdown risk). In
addition, among the switching models NINRS performs better than SSRS and
NSRS in boom times. Especially in bull market period between 11/10/1998
and 17/09/2000 the NSRS model has a performance of almost zero. However,
this is due to the preceding crisis, in which this model performed best among
all models because of the highest percentage of bonds in the portfolio. In the
following bull market the model keeps this rather high portion of the portfolio
in bonds. However bonds performed poorly in this bull market phase.

In addition to the return figures, we have calculated the maximum draw-
down for these six phases. They can be found in Table 12. Looking at the
drawdowns, the two-digit percentage drawdowns of the N model in the Russia
crisis and Dot Com Bust periods catches the eye, while all other models main-
tain a drawdown of below 10% in these periods. Thus, the N model is always
worst in crisis periods. The SSRS model seems to have the lowest drawdown

15Period returns were not annualized. Note, that periods have different length. However,
the comparison of models is only undertaken within one period and not between different
periods.
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Bull Russian Bull Dot Com Bull Financial
market Crisis market Bust market Crisis

Period Start 05/01/1997 26,/07/1998 11/10/1998 17/09,/2000 30/03/2003 18/11/2007

Period End 26/07/1998 11/10/1998 17/09/2000 30/03/2003 18/11/2007 25/01/2009
N 5.70% 18.26% 11.50% 19.96% 6.06% 5.44%
S 1.92% 2.72% 7.44% 5.04% 5.11% 3.83%
NNRS 4.72% 2.96% 10.88% 4.91% 7.05% 4.74%
SSRS 2.49% 1.90% 7.06% 4.91% 5.25% 4.43%
NSRS 2.03% 2.16% 8.78% 4.91% 6.06% 4.41%
MSCI World 9.97% 17.71% 8.01% 62.69% 10.28% 58.34%

Table 12: Analysis of maximum drawdown for different time periods for the
Stocks and Bonds dataset.

in most periods. Among the switching models the a-stable switching models
SSRS and NSRS have a lower or equal maximum drawdown than the NNRS
model in crisis periods.

6 Conclusion

The goal of this paper was to enhance the current Gaussian distribution
paradigm in finance by two points: First, the usage of a distribution which
captures fat tails and skewness. Second, the consideration of different "states
of the world", ie, distinct market phases. Moreover, we wanted to show the
implications of these enhancements on risk and asset management.

Regarding the first point, we presented the a-stable distribution in the
univariate and the multivariate case. The second point was taken into account
by presenting regime-switching models. We combined both points to an a-
stable regime-switching model and applied this model to risk measurement
and portfolio selection.

Using a-stable models in risk measurement, we observed a better apprecia-
tion of risk. However, the a-stable non-switching model tends to overestimate
risk, especially when using the CVaR as risk measure, while the Gaussian
non-switching and switching models underestimate the true risk, especially
in turbulent market phases. Using a-stable regime-switching models tempers
this overestimation and leads to good approximations of the empirical risk.
Thus, employing a-stable regime-switching models leads to a more accurate
risk measurement than using the Gaussian distribution.

A better outcome in terms of risk can also be seen when employing the a-
stable model for portfolio selection. In an out-of-sample portfolio optimization
case study we observed that a-stable models lead to less risky investment
strategies. The explicit consideration of tail events leads to more diversified
portfolios and the avoidance of big drawdowns. Thus, the model leads to better
results in risk-adjusted performance measures like Sharpe ratio or Omega.

The main advantage of a-stable switching models is the behavior in crisis
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phases. In these phases the a-stable switching models perform better than the
a-stable non-switching model and a Gaussian switching model.

However, the higher focus of the a-stable regime-switching models on lim-
iting the downside risk comes at the price of a lower return. In boom times,
the Gaussian model outperforms both, a-stable and switching models. In
addition, among the switching models the Gaussian regime-switching model
performs better than its a-stable counterparts in boom times. The a-stable
switching models are more "cautious", thus investing less and later in risky
assets in a bull market.

Several extensions might be useful and are subject to further research: For
a better distinction between turbulent and bear market phases, one could try
to split the crisis state into two further regimes, one regime having positive
location parameter and the other having a negative one. This results essentially
in a three-state MSM. However as the crisis regime is only a subset of the entire
set, a further split would require a large dataset for a sound state detection.
In addition to that, identifiability problems might occur. Another way of
improving the results in the calm regimes could be a regime-dependent risk
aversion factor A, allowing for a more aggressive portfolio allocation in bull
markets. Moreover, a calibration which results in the same initial portfolio,
instead of the same risk aversion parameters, for each model could be another
enhancement.
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