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Abstract—In this work, we present an approach to imitation
learning and flexible execution of dual-arm structured tasks. The
proposed framework exploits imitation learning and attentional
supervision to learn both a set of motion primitives and the
associated tasks structure. During the teaching phase, attentional
supervision allows the teacher to exploit attention manipulation,
like object and verbal cueing, to facilitate the demonstration. In
this phase, motion data are automatically segmented, annotated
and learned in a compact form for on-line motion generation.
During the execution phase, the learned task structure is ex-
ploited to synchronize left and right arm movements and to adapt
task execution to the operative context. The proposed approach
is demonstrated in a simulated kitchen scenario considering a
pizza preparation task.

I. INTRODUCTION

An effective robotic assistant needs to continuously learn
new tasks and to adapt task execution to different situations.
These tasks are usually structured in hierarchies of subtasks,
where each subtask is associated with a set of primitive
actions to be performed on some objects with a specific order.
Learning how to coordinate these complex activities is partic-
ularly challenging for humanoid robots. Indeed, analogously
to humans, humanoids have multiple redundant degrees-of-
freedom, which can be exploited to simultaneously perform
multiple subtasks and speed-up the task execution. A si-
multaneous execution of multiple movements, for instance
a different subtask for each arm, requires a certain level
of synchronization to avoid unsafe situations and to coher-
ently execute the task. In order to teach a robot how to
execute dual-arm structured tasks, we propose a framework
that combines attentional supervision [1]–[4] and learning
from demonstrations [5], [6] (see Figure 1). More specifically,
the proposed approach allows an automatic segmentation of
human demonstrations into motion primitives, while an atten-
tional system monitors the generated primitives and relates
them to a hierarchical task structure with the associated exe-
cution constraints. The attentional system allows the teacher
to exploit attention manipulation, like objects accessibility,
pointing gestures or verbal cueing, to facilitate and smoothly
influence the teaching process [7]. Attentional mechanisms
have been employed for robot teaching [8], [9] and imitation
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Fig. 1. Human demonstrations are supervised by an attentional system and
then exploited to learn how to execute dual-arm hierarchical tasks.

learning [10], however, in the proposed system these are fully
integrated within a supervisory attentional system paradigm
[1], [11]. In this setting, the attentional system not only
supports implicit human-robot communication during both
task teaching and execution, but also permits to represent and
track human demonstrations at different levels of abstraction,
from symbolic tasks/subtasks to physical motor commands.
Other related works focus on learning structured tasks by
demonstrations [12]–[16]. In [12] the authors present a system
that permits to segment, recognize and understand human bi-
manual demonstrations. Similarly, in [13], a graph structure to
represent bi-manual tasks is learned from human observations.
The main limitation of the aforementioned approaches is that
they rely on a set of predefined motion primitives. On the
other hand, the works by [17], [18] propose to learn bi-
manual motion primitives from human demonstrations, but
they do not consider the problem of sequencing and executing
the multiple actions involved in a structured task. Alternative
methods focus on learning a set of motion primitives from
multiple demonstrations while automatically organizing them
into graphs or automaton [19]–[21]. In contrast, we propose a
different approach where attentional supervision is deployed
to learn how to execute dual-arm structured tasks from a
single human demonstration. In this case, imitation learning
permits to learn low-level motion primitives relating them to
the associated tasks and subtasks. The proposed segmentation
and annotation of human demonstrations into basic primitives
does not require any manual data processing. During task



Fig. 2. The overall architecture for dual-arm task teaching and execution.
The attentional system supervises task execution and learning, while the Arm
Managers are responsible for activity segmentation, imitation learning, and
motion execution. The attentional system manages the execution of high-level
tasks (Attentional Executive System) and low-level sensorimotor processes
(Attentional Behavior-based System).

execution, the attentional system continuously monitors the
user and the robot activities to flexibly adapt action execution
and sequencing; in this setting, the human can continuously
interact with the robot switching to teaching sessions when
novel tasks have to be demonstrated. The rest of the paper
is organized as follows. Section II describes the proposed
architecture for teaching/execution of dual-arm tasks. Section
III details how human demonstrations are exploited to learn
structured tasks. Experiments in a kitchen scenario are pre-
sented in Section IV. Conclusions and further extensions are
presented in Section V.

II. OVERVIEW OF THE PROPOSED FRAMEWORK

The proposed architecture for dual-arm task learning is
illustrated in Figure 2. The different blocks of the proposed
system are further described below.

A. Left and Right Arm Managers

At the control level, each arm of the robot is considered as a
separate entity that is independently monitored and controlled.
Indeed, arms synchronization is supervised and managed by
the attentional system at a higher control level of the frame-
work. The left/right Arm Manager (AM) handles several low-
level aspects of the human-robot interaction. In particular,
the AMs guarantee smooth transitions between teaching and
execution phases; they also monitor the state of the arms
with respect to the environment (arm-objects distance, action
learned or executed); finally the AMs provide the motion
data segmentation. Indeed, during a teaching session (see
Section III), each AM generates a set of basic (point-to-
point) motion primitives learned from human demonstrations.
Learned primitives are encoded into stable dynamical systems
(DSs), which allow compact representation and on-line motion
generation. Moreover, stable DSs always converge to a given
goal, and they can quickly react to eventual obstacles in the
scene [22]–[24].

B. Attentional System

The attentional system exploits a hierarchical task repre-
sentation to supervise and regulate the robot actions during
the teaching and execution phases. Following a Supervisory
Attentional System (SAS) approach [1], [2], actions control
depends on two main mechanisms: the contention scheduling
that regulates routinized activities allowing fast responses to
environmental changes, and the supervisory attentional system
that manages novel or complex activities and drives the system
towards task accomplishment. In this work, we rely on the at-
tentional system proposed by [3], [4]. The framework includes
a Long Term Memory (LTM), a Working Memory (WM) and
a set of sensorimotor processes (behaviors) (see Figure 2).
The LTM contains the behavioral repertoire available to the
system, including the denotations of hierarchically decom-
posed tasks and primitive actions (an instance can be found in
(3)). The WM maintains the executive state of the system,
which is represented by an annotated tree, whose nodes
and edges represent, respectively, processes/behaviors and
parental relations among sub-processes/sub-behaviors. These
nodes can be either concrete, representing real sensorimotor
processes, or abstract, which are for complex behaviors/tasks
to be hierarchically decomposed. In this setting, the tasks
and behaviors described by the LTM are to be allocated in
the WM in order to be regulated and executed. The overall
control cycle is managed by a special behavior (alive) that
continuously updates the WM by allocating and deallocating
hierarchical tasks/behaviors according to their denotations in
the LTM. Once allocated in WM, the nodes are endowed with
activation values that are regulated by top-down and bottom-
up attentional mechanisms. The bottom-up regulation is given
by a monitoring function g(σb, εb) = λb that depends on
behavior-specific stimuli σb and the behavioral state εb. In this
work, analogously to [4], we consider the distance of targets as
an estimation of behavioral accessibility. Behaviors are then
associated with task-relevant elements of the scene and the
stimulation σb is proportional to their proximity. This bottom-
up regulation is top-down modulated by a magnitude value
µb that summarizes the overall influence of the WM status
on the attentional state of behaviors. Top-down and bottom-up
influences are then combined in an emphasis value eb = µb/λb
representing the activation frequency for the behavior b. The
behavioral activation level is then exploited to regulate behav-
ioral competitions and conflicts. Indeed, multiple tasks can
be allocated in the WM at the same time, therefore several
behaviors can compete for the execution generating conflicts
and impasses [25]. Contentions among alternative behaviors
are solved exploiting the attentional activation: following a
winner-takes-all approach, the behaviors associated with the
higher emphasis are selected with the exclusive access to
mutually exclusive resources.

III. IMITATION LEARNING OF STRUCTURED TASKS

During the teaching phase, the human activities are acquired
through a motion capture system and on-line simulated in



a virtual environment. This imitation learning session is su-
pervised by the attentional system, which has to connect the
segmented training motions to the related tasks and subtasks.
The attentional system tracks and monitors both the human
and the robot task execution. This way, the low-level robotic
actions taught by the user through imitation are labeled by the
higher level tasks/subtasks managed by the attentional system.

A. Human Motion Retargetting

In this work, we exploit an Xsens motion capturing suit
to collect task demonstrations from a human teacher. The
Xsens provides the position and the orientation of 11 body
parts, which are the sternum, the pelvis, the head, and the
shoulder, elbow, wrist and hand of the two arms. The data
from Xsens MVN can be read at 100Hz. The robot to
teach is RoDyMan, a 21 degrees-of-freedom (DoFs) humanoid
robot. RoDyMan has 2 DoFs in the torso, two 7 DoFs arms,
and 2 DoFs in the articulated head. The end-effectors are
equipped with two anthropomorphic hands in order to provide
enhanced dexterous manipulation skills. The robot has also
a mobile base, which is not used in our setup. During the
demonstration, the user can visualize the robot executing the
task in a simulated environment (V-Rep). For this purpose, the
human motions measured by the sensors have to be mapped
to the robot kinematics in order to be properly replicated.
The so-called motion retargetting problem is not trivial, since
human and robot have different kinematics. In this work,
the problem is addressed relying on Cartesian space variable
and simple geometrical considerations. Figure 3 shows the
reference frames for human and RoDyMan arms. The hand
position ph in the RoDyMan base frame is obtained using the
following equation

ph = ps +Rs

(
la

pe − ps

‖pe − ps‖
+ lfa

pw − pe

‖pw − pe‖

)
(1)

where la = 0.350m and lfa = 0.305m are the RoDyMan
arm and forearm length respectively. pe, pw are the vector
position of the elbow and wrist respectively provided by the
Xsens data, while ps = [0, 0.1081, 0.254]T m is the shoulder
position with respect to the base frame. Roughly speaking, the
position of each end-effector of the robot is calculated from the
position of the RoDyMan shoulder by summing two vectors
of length la and lfa respectively. These vectors are oriented as
the relative human arm and forearm obtained from the Xsens.
Notice that the positions provided by the Xsens depends to the
torso movement, then it is necessary to rotate the vectors by the
matrix Rs that represents the sternum orientation with respect
to the Xsens world frame. For the end-effectors orientation, we
simply use the hands orientation provided by the Xsens rotated
in order to maintain the coherence with the RoDyMan hand
frame. Therefore, the position of the two robots are scaled
taking into account the difference in link dimensions between
the robot and the human. The two computed homogeneous
transformation matrix representing the target pose of the robot
end-effectors are used in an inverse kinematics algorithm
in order to control the robot. This approach allows us to
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Fig. 3. Frames of the human and of the RoDyMan arms.

implement control policies using the redundancy of the robot
in order to achieve secondary goals. In details, the null-space
of the robot Jacobian matrix has been used to guarantee that:
i) the torso positions are bounded, ii) the shoulders maintain
a natural orientation, iii) the elbows are confined outside of a
sphere centered at the center of torso to avoid self-collisions.

B. Motion Primitives Segmentation and Learning

Human demonstrations are to be segmented into the basic
motion primitives that constitute the structured task. In our
framework, segments are generated at run time while the
user performs the task. Moreover, since our aim is to learn
manipulation tasks which involve actions and objects, we need
a segmentation strategy that is computationally inexpensive
(on-line performance) and provides a matching between ac-
tions and manipulated objects. We exploit object-arm distance
and human commands to rapidly and effectively segment
continuous data. Similarly to [26], each object is included in a
proximity region (a sphere of radius (we set r = 0.1m) around
the object). In this setting, a new segment is created when: 1)
one of the robot arms enters or leaves the proximity region, and
2) the human commands something (usually to open or close
the hand). As illustrated in Figure 4, during the demonstration
the attentional system links the generated segments, in the
form of symbols (strings), to the task structure associated to
each arm. At the same time, the Arm Managers exploit the
segmented data to learn a motion primitive for each symbolic
action. We consider two classes of primitive actions, namely,
Far-Object-Action (FOA) and Near-Object-Action (NOA). A
FOA does not contain any point inside the proximity region of
an object. FOAs consist of point-to-point motions ending at a
specific target, and are modeled as a linear Dynamical Systems
(DS). NOAs represent complex actions executed inside the
proximity region, and are modeled using Dynamic Movement



Fig. 4. Dual-arm action segmentation and hierarchical task decomposition. In the example, the robot has to pick-up tomato (pick(L,tomato)) and oil (pick(R,oil))
for the pizza-topping. The arm managers (down) perform action segmentations (S1, S2, S3, . . . ) and learn motion primitives, while the attentional system
(up) provides a duplicated representation of the preparePizza task for both arms connecting the generated segments to the task structure. The green and blue
labels represent, respectively, releasers and post-conditions.

Primitives (DMPs) [27]. DMPs represent the motion as a non-
linear DS:

ṗ = v (2a)
v̇ = K(g − p)−Dv −K(g − p0)s+Kf(s) (2b)
ṡ = −γs (2c)

where p and v are, respectively, the robot position and
velocity, and K and D are positive definite gain matrices.
The non-linear force f(·) allows to accurately follow the
demonstration. Starting from the initial position p0, the DMP
generates a smooth path towards the goal position g. The
clock signal s→ 0 deactivates the force term and guarantees
convergence to the goal. A separate DMP is used to generate
the orientation trajectory via Euler angles. Notice that the
adopted segmentation strategy returns a Cartesian trajectory
and the goal pose for each action. These data are sufficient to
train the DMPs without further human intervention.

C. Task Learning and Execution

During the teaching phase, the segments and primitives
generated from the human demonstration have to be connected
to the high-level task structure and stored in the system
repository (LTM). This process is managed by the attentional
system exploiting environmental regulations and task-based
constraints. In this setting, we assume that the abstract struc-
ture of the task to be learned is already represented in the LTM
and allocated in the WM. We provide tasks and subtasks with
a label that identifies which arm is involved in the represented
activity. For instance, considering a simple pouring task, the
activity can be hierarchically decomposed in the take and pour
subtasks, which are denoted in the LTM by the following

schemata:

schema(add(A,O),
〈(subtask(A, take,O), A.hand.free),
(subtask(A, pour,O), A.O.taken)〉,
O.used).

schema(subtask(A, take,O), 〈 〉, A.O.taken).
schema(subtask(A, pour,O), 〈 〉, O.used).

(3)

In this case, the variable O represents the target of the pouring,
while A is the arm involved in the action execution (left or
right). Schemata are also provided with preconditions and
postconditions: the take subtask is enabled when the hand of
the arm A is free, while the pour subtask is enabled when the
left/right hand holds the object. Moreover, the latter subtask
is finalized when the target-object O is used. Notice that,
if both arms are enabled to execute a task, two instances
of the related schema are allocated in WM with different
values for A. During the human demonstration, the attentional
system continuously monitors the environment and the task
structure exploiting top-down and bottom-up regulations to
enhance the activations of the subtasks which are accessible
(i.e. closer to the associated target objects) and task relevant
(i.e. stimulated by the task structure). When the left/right arm
manager recognizes a new action all the left/right labeled
subtasks compete to acquire the related segment (see Figure
4). In this process, the activation values are used to manage
the competition following a winner-takes-all approach, where
the most activated subtask acquires the segment. Furthermore,
we provide preconditions for the new segments as follows.
If the first segment attached to a subtask is a FOA, it is
always enabled (i.e. true precondition). If this is not the
case, each segment is enabled after the execution of the
previous one. These chaining constraints permit to keep the
segments ordered according to the sequence acquired during
the human demonstration. Instead, when a subtask starts with



a FOA segment it can be decoupled from the demonstrated
sequence. Indeed, this segment represents the beginning of a
new sequence, while the end-point of the previous segment is
not needed as a precondition. Notice that such subtasks can
be decoupled from the demonstrated sequence, in so enabling
tasks reuse and flexible execution in different contexts. During
the execution phase, all the enabled segments can compete for
the execution, while the attentional system is to flexibly adapt
the execution sequence to the operative context, exploiting
the task structure and the action facilitation induced by the
proximity of the salient elements in the scene. For instance, in
a dual arm scenario, segments can compete for the associated
arm (only one segment can be executed for each arm) and
the target objects (only one arm can handle a single object);
segments associated with different arms and objects can take
place in parallel, otherwise a conflict occurs and the most
activated segment is selected for the execution. This way, con-
tention scheduling is here exploited as an implicit coordination
mechanism during the execution of dual arm tasks.

IV. CASE STUDY

In this section, we illustrate the system at work in a dual-
arm robotic task to show that the proposed approach can be
effectively applied for incremental learning and execution of
structured tasks. Specifically, we consider a pizza topping task,
inspired by the pizza domain proposed by the RODYMAN
project. In this setting, the human operates in front of a table

cheese

pizza
basiloil

tomato

Fig. 5. Experimental setup.

where a set of real objects are disposed: the pizza, and four
bottles containing tomato, oil, grated cheese and basil (see
Figure 5, left). The environment is reproduced in simulation
(Figure 5, right), where the human operator is replaced with
the simulated humanoid robot. As detailed in Section III-A,
a motion capture suite is deployed for the human motion
recording and imitation. In this context, we consider two
instantiations of the topping-task for both the arms of the
robots. The experiment starts with two training sessions where
the human demonstrates the entire task execution using only
one arm per session. Both sessions last less then 4 minutes.
At the end of the sessions the robot is able to reproduce
the task with both arms. A subset of the learned segments
is illustrated in Figure 6. In this case the task add(tomato),
learned by the left arm, is associated with 7 segments (3
NOA) and 2 grasping actions. In order to assess the system

performance during the execution of the learned task, we
executed 10 repetition of the pizza topping by randomly
changing the position of the ingredients on the table. Notice
that no collision avoidance mechanisms are employed during
the task repetitions. Therefore, in order to avoid self collisions,
the executive space is divided in a left, right and central area.
The objects in the first two areas can be handled by only one
arm (left and right arm respectively), while the central area,
which contains the pizza, is shared. As a baseline for our tests,

TABLE I
RESULTS FOR TEN REPETITIONS OF THE PIZZA TASK.

Execution Time [s] Success
(mean ± std) Rate

Dual-arm 281.6 ± 13.83 1
Single-arm 332.4 ± 28.05 1

initially, we performed 5 task repetitions using only one arm
per time. In this setting, the objects are randomnly positioned
inside the left (3 times) or right (2 times) areas. Instead, in
the last 5 repetitions, the objects are randomly positioned in
all areas. In the second scenario, the robot can exploit the
right-arm and left-arm learned tasks in order to prepare the
pizza in a dual-arm setting. Snapshots of the dual-arm task
execution are shown in Figure 7. In Table I, we illustrate the
collected results. The executions have been always successful,
in particular, the dual-arm repetitions improve the systems
performances by 50.8 seconds (18.04%), suggesting that the
system is able to efficiently combine the single-handed learned
tasks, in so reducing the overall task execution time.

V. CONCLUSIONS AND FUTURE WORK

We presented an integrated framework for learning and ex-
ecuting structured multi-arm tasks. In the proposed approach,
the system can learn how to execute structured tasks from
human demonstrations. In this context, human demonstrations
are automatically segmented, while the generated segments
are associated to motion primitives, which are supervised by
an attentional system that associates them to a hierarchical
task structure. At the execution time, the learned tasks can be
exploited to sequence the task execution and to coordinate the
motion of multiple arms. The framework has been tested in a
kitchen scenario, where a humanoid robot is to prepare a pizza.
The collected results show that the robot can quickly learn and
robustly execute structured dual-arm activities that combine
pick, place, and object manipulation actions. In our future
research, we plan to incorporate a (self) collision avoidance
mechanism in the arm managers and to perform experiments
on the real robotic platform. Moreover, we are investigating
low-level synchronization techniques in order to allow learning
and execution of complex bi-manual tasks.
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mann, “Learning of planning models for dexterous manipulation based
on human demonstrations,” International Journal of Social Robotics,
vol. 4, no. 4, pp. 437–448, 2012.

[14] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, vol. 47, no. 2,
pp. 109–116, 2004.

[15] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zollner, “Incremental
learning of tasks from user demonstrations, past experiences, and vocal
comments,” IEEE Trans. on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 37, no. 2, pp. 322–332, 2007.

[16] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot Programming
by Demonstration,” in Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008, ch. 60, pp. 1371–1394.

[17] J. Umlauft, D. Sieber, and S. Hirche, “Dynamic movement primitives for
cooperative manipulation and synchronized motions,” in International
Conference on Robotics and Automation, 2014, pp. 766–771.
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