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Abstract— We propose a real-time depth edge based RGB-D
SLAM system for dynamic environment. Qur visual odometry
method is based on frame-to-keyframe registration, where only
depth edge points are used. To reduce the influence of dynamic
objects, we propose a static weighting method for edge points
in the keyframe. Static weight indicates the likelihood of one
point being part of the static environment. This static weight is
added into the Intensity Assisted Iterative Closest Point (IAICP)
method to perform the registration task. Furthermore, our
method is integrated into a SLAM (Simultaneous Localization
and Mapping) system, where an efficient loop closure detection
strategy is used. Both our visual odometry method and SLAM
system are evaluated with challenging dynamic sequences from
the TUM RGB-D dataset. Compared to state-of-the-art methods
for dynamic environment, our method reduces the tracking
error significantly.

I. INTRODUCTION

For navigation purposes, Simultaneous Localization and
Mapping (SLAM) system is required in many robotic appli-
cations. In many SLAM systems, visual odometry estimation
plays a key role. It estimates the camera’s ego-motion by
comparing consecutive frames of image. Especially RGB-
D based visual odometry is extensively researched in last
years due to the emergence of low cost depth camera such as
Kinect [12][21][20][8][16][27]{22]. Using RGB-D data, 3D
ego-motion of camera can be obtained, whereas conventional
encoder based wheel odometry can only provide 2D motion.

To simplify the problem formulation, most state-of-the-
art visual odometry methods assume static environment.
However, dynamic objects, such as human, exist in many real
life environments. While small portion of dynamic objects
can be handled by viewing them as noise, large proportion of
dynamic objects violate the static environment assumption,
thus the usage of many existing visual odometry methods for
real applications is limited.

Current RGB-D visual odometry methods can be roughly
categorized into two groups. To handle dynamic objects,
different strategies are used for these two groups. The first
group is dense visual odometry [13][12][25][19]. These
methods formulate the task as an energy minimization
problem. The energy function is the sum over pixel-wise
intensity/depth difference between the target image and
warped source image. Then the camera’s 6 DOF motion is
iteratively optimized over this energy function. This form of
energy function strongly depends on the static environment
assumption. In a dynamic environment, even with the correct
motion, a dynamic object can cause large intensity/depth
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difference between the warped source frame and the target
frame. Therefore the energy function does not have the
minimum at the correct motion. To compensate dynamic
object, dynamic objects need to be found and excluded from
the optimization process. Wang et al. calculate dense optical
flow from RGB images, and dynamic objects are found
by clustering the image based on point trajectories [26].
The pixels of dynamic objects are then excluded for energy
function minimization. Their method improves the robust-
ness against dynamic object effectively, but the optical flow
estimation and clustering cannot be performed in real-time.
Sun et al. [24] use intensity difference image to identify the
boundary of dynamic objects. Then dense dynamic points are
segmented using the quantized depth image. Their method
achieves stable performance for highly dynamic scenes, but
segmentation takes half second per frame, which hinders the
real-time applicability. Kim et al. [15] propose to use depth
difference to multiple warped previous frames to calculate
a static background model. However, due to the aperture
problem, if the dynamic object moves parallel to the image
plane, only the boundary of dynamic object can be found
effectively using depth difference. Therefore the influence of
dynamic object cannot be totally removed.

The second group is correspondence based method
[21][10][9][6]. Correspondences are matched between the
source and target frames. Then the camera’s ego-motion
is estimated using closed-form solution from the corre-
spondences. The correspondence can be found by matching
keypoints (such as SIFT, SURF) [9], or for Iterative Clos-
est Point [2] based methods [21][11], correspondences are
densely established using a certain distance metric. Since
points from the static environment follow the same motion,
RANSAC regression is usually used to filter out dynamic
objects [14][17]. However, if there are more dynamic feature
points than static ones, RANSAC may result in a wrong
estimate of static feature points.

To compensate dynamic objects, all above mentioned
methods require a correspondence matching step, where
either dense or sparse correspondences are needed. While
accurate dense correspondences matching is time consuming
[26], fast approximation [15] suffers from the aperture prob-
lem. Accurate matching of 2D keypoints can be performed
in real-time [14][17]. However sparse 2D keypoints can be
distributed unevenly in the environment. If a dynamic object
has many texture, then the dynamic keypoints will outnumber
static keypoints, which may results in failure in RANSAC
regression. Therefore additional IMU sensor data are often
used to compensate this issue [14][17].

In this paper, we choose to use depth edges to find



correspondences. Depth edge contains the structure informa-
tion of the environment. It was shown that accurate visual
odometry can be estimated based on depth edge [3][4].
Depth edge points are sparsely present, therefore they can
be efficiently matched. Furthermore, the amount of depth
edge points is more balanced than 2D keypoints. We match
edge points between frames by using both geometric and
intensity distances [18]. Upon matched edge points, a novel
static weighting method is proposed to downweight dynamic
points for the visual odometry method. Furthermore, using
an efficient loop closure detection procedure, the visual
odometry method is fused into a pose graph based SLAM
system, resulting in a fast RGB-D SLAM system suitable for
dynamic environment.
The main contributions of this paper are:

« A novel efficient static weighting method is proposed
to reduce the influence of dynamic objects on pose
estimation. It calculates the likelihood of each keyframe
point being part of the static environment.

o The static weighting terms are integrated into the IAICP
method. This leads to a real-time RGB-D visual odom-
etry method for dynamic environment.

The effectiveness of our method against dynamic ob-
jects is tested on dynamic sequences from TUM RGB-
D dataset [23]. Our proposed RGB-D SLAM using static
point weighting outperforms previous methods [12][15][24]
in most sequences.

II. PRELIMINARIES

Given a 3D point p = (x,y,z,1)7 in homogeneous coor-
dinate relative to the camera, the image pixel coordinate
x = (u,v)T (u € [0,height — 1],v € [0,width — 1]) of p is
calculated with the camera projection function 7:
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where height and width are the pixel number in image’s x-
and y- direction, f, f, are the camera focal lengths and oy,
o, are the camera center coordinates.

Due to the ego-motion of the camera, a 3D point p in
the keyframe coordinate is rigidly transformed in the current
frame with the transformation matrix T/, € SE(3). The point’s
new coordinate in the current camera coordinate frame is
then:
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At time step ¢, an intensity image /; and an organized point
cloud P, with the resolution width X height are obtained,
where P (i) indicates the ith point in F;. Intensity value
of pixel x is a gray scale value [,(x) € [0,255], which
is converted from RGB values (0.299red + 0.587green +
0.114blue). The pixel x’s corresponding 3D point p is
indicated as P, (ind(x)), where ind() is the mapping from the
image coordinate to the point index in the organized point
cloud’s one-dimensional list:

ind(x) = ind((u,v)T) = v x width+u, 3)

Sec. IlII-C

Static weights

Estimated Transformation T};
estimation <€

Sec. llI-D
IAICP

Correspondence
matching

Keframe Edge Points

Keyframe Static Weights
{Pe()}ien, |

[<
ws(’L i€By weighting
>

Incremental
transformation
estimation

M\

Current Frame P, Edge Points of Current
Sectlll-B Frame {P;(i)}ieB,

| N Foreground depth A

edge extraction

Fig. 1.
To find out the image coordinate x of a point index i, the
inverse mapping is:

Overview of our visual odometry system.
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III. FOREGROUND EDGE BASED VISUAL
ODOMETRY

A. Overview

The overview of the proposed visual odometry method is
illustrated in Fig 1. For each incoming frame, foreground
edge points are first extracted, where only extracted edge
points are used for odometry estimation. Every Nth frame is
selected as a keyframe!. For each keyframe, static weights
for edge points are estimated. A static weight indicates
how likely one point belongs to the static environment.
Then the relative transformation from the keyframe to the
current frame is estimated using IAICP algorithm [18], where
static weights are combined in order to reduce the effect of
dynamic moving objects on the transformation estimation.
Finally, the static weights for the keyframe are updated based
on the estimated motion.

B. Foreground depth edge extraction

Depth edge points are points that have large depth dis-
continuity in their neighourhood. Two types of depth edge
points exist: foreground edge points and occluded edge
points. Foreground edge points present boundaries of objects,
which are in front of other objects. Occluded edge points are
from objects behind some other objects, they are caused by
occlusion of other objects infront of them. The foreground
edge points are stable to a moving camera, because they
capture the geometry of the objects. However occluded edge
points are sensitive to a moving camera, therefore they need
to be excluded for estimating camera trajectory.

! Alternatively one can consider to select keyframe based on camera
motion. In highly dynamic environment, however, the visual content changes
drastically even when the camera does not move. In this case, there might
not be enough common visible points to estimate the relative pose, thus it
can fail to estimate camera motion.



Fig. 2. Foreground depth edge extraction and static weighting examples taken from fr3/walking” sequences. First row: the original RGB image. Second
row: foreground depth edge. Third row: static weighting result, where green indicates static and red indicates dynamic.

Foreground depth edge points play an important role for
iterative closest point method. As evidenced in [18] [3],
using foreground depth edge points can improve the accuracy
of registration result. Because by using depth edge points,
the probability of finding correct correspondence is higher
than using uniformly sampled points. Moreover, correct
correspondences are also needed for our static weighting
process (Section III-C).

Given the point cloud P, a set B; consisting of foreground
edge point indices is constructed. Firstly the depth differ-
ences {hi};‘zl between each point and its four neighbours
are computed:

hi = ey Py (ind (x)) — e Py (ind (x + 07)), (5)

where ez = (0,0,1,0)7 is used to extract depth value of

one point and the four offset vectors < 01,02,03,04 > are
< (0,0)T,(0,—-b)T,(,0)T,(=b,0)T >. An offset b > 1 is
used here, because a lot of depth difference between direct
neighours (b = 1) cannot be computed due to a lot of
NaN (Not a Number) value pixels that exist near the depth
discontinous area. On the other hand a larger b value causes
more points to be detected as depth edge, resulting in thicker
edges. Balancing between the NaN value avoidance effect
and the thickness of depth edge, we empirically set b = 4.
Then a point is considered as foreground edge points and
added into the edge point set B, = {B,,ind~'(x)}, if it fulfills
the following conditions:

max (hy, ho, h3,hy)
max(abs(hy —hy),abs(h3 — hy))

< egP, (ind (x))Tp,

> b (ind(x))z,. @

The first condition rejects occluded edge points, because
occluded points have a much larger depth than their neigh-
bours, where e, P, (ind(x))1, is the depth depended threshold.
With a very large 75, no occluded point can be rejected. If
Tp is too small, a lot of actual foreground edge points can
be also rejected due to slightly larger depth than neigbouring
pixels. The second condition checks whether a point can be
considered as edge point by checking the depth discontinuity
with a threshold eZ P (ind(x))ts. If 77 is too large, then no
edge points can be detected and if 7y is too small, almost
every point is detected as edge. In our experiments, 7, and
Ty are set as 0.015m and 0.04m respectively. In the second

row of Figure 2, some examples of foreground depth edge
extraction are illustrated.

C. Static weight estimation

Two types of points exist in the environment: points
from static object and points from dynamic moving object.
Due to the ego-motion of the camera, observed points are
constantly moving in the camera’s coordinate. Comparing
point clouds from two frames, static points are moved with
same rigid transformation, which is the inverse of camera’s
ego-motion, while dynamic points do not follow the same
rigid transformation due to their own movements.

We estimate the static weights for a source point cloud
Py by comparing it to a target point cloud Fg. The static
weight is only estimated for the foreground depth edge points
{Psrc(i) }ien,,.» Where By, is the set of edge point indices
(Section III-B). The static weight of P.(i) is denoted as
wi"'8 and it is estimated based on the Euclidean distance
between Py (i) and the corresponding point g (c(i)) in the
target cloud: d; = TtsﬁéPm(i) — Pg(c(i)) ||, where c(i) € Big
is the found correspondence point index in the target cloud
and T'%. is the estimated transformation that aligns the source
cloud to the target cloud. In case that ¢(i) is not found in
the vicinity of P, (i), we set d; to a large constant value D.

A static point Py (i) after transformation becomes
TE.%PS,C(i). Assuming that ¢(i) and T/8" are both correct,
TIS%PS,C(I') should be aligned perfectly on its corresponding
point Pig(c(i)). Therefore for a static point, d; should be
zero or a small value due to sensor noises. Taking advantage
of this characteristic, the static points can be distinguished
from the dynamic points based on the statistic over {d;}icp,,,-
Following [12], the static weight w;"*"*" is estimated based
on the Student’s t-distribution

sretgt Vo+1
W = Tl o) ™
op = 1.4826 Median{|d; — tp|} 4D 3

Vp is the degree of freedom of t-distribution, where a larger
. sretgt . . .

Vo results in steeper decrease of w; with increasing d;.

Notice that points without a valid correspondence in the close

neighbourhood (P.(i)4,—p) are not used for computing op.

In our experiments, Vy is empirically set to 10. The mean
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Fig. 3. Histogram of correspondence distance and pdf of t-distribution.
The pdf of t-distribution fits the actual data nicely.

value up is manually set to zero, because smaller distance
indicates a more static point. The variance op is estimated
using the median absolute deviation.

Figure 3 shows an example of the histogram of correspon-
dence distance and t-distribution. The chosen distribution
fits the actual experimental data nicely. A zero valued d;
indicates highest static likelihood, a small d; is caused by
sensor noises or discrete sampling of the environment, and a
large d; is caused by dynamic movement that differs from the
camera motion. The procedure to estimate the static weights
{wi"'¥" icp,,. is summarized in Algorithm 1.

In our visual odometry method, the static weights are only
estimated for keyframes, where keyframes are always set as
source frame. Assuming that the latest keyframe is P, with k
as the index of the keyframe, the static weight of keyframe
points are calculated by comparing the keyframe to two other
target frames: one is the previous keyframe P;_y, another one
is the latest frame at time step ¢: F;. The static weight for
the point P, (i) is defined as wg(i):

kk—N

ws(i) = awt N 4 (1— a)wt, 9)

1

where wf’kiN is computed by setting last keyframe P,_y
as the target cloud in Algorithm 1, and wf’t is computed
by setting the current frame P as target cloud. In our
experiments, ¢ is empirically set as:

t=k

e if
o= { 0.5N/(N+1t—k) otherwise (10)

If the keyframe is the current frame, the static weights are
initialized with wf‘k_N. With passage of time, more influence
from current frame is considered where the initialization term
wf’kiN and the update term wf’t are complementary to each
other.

The update term wf’t is used for two reasons. i) Previ-
ously static object can start moving after the keyframe has
been defined, where previously static points can convert to
dynamic points. If only the initialization term is used, the
new dynamic points can only be detected by the time of
the new keyframe k+ N. This would result in drift problem
in the time interval [k + 1,k+ N — 1]. ii) Due to occlusion
of foreground objects, the visible part of the environment
always changes. Newly occluded part from the keyframe
cannot find correct correspondences in the new frame P,
therefore newly occluded part should be avoided in the

transformation estimation process. Occluded points usually
have large distance to their falsely found correspondences,
thus by using wf"l, they can be efficiently downweighted.

The initialization term is important as well as the update
term. It is estimated by comparing the keyframe with last
keyframe. If only the update term is used, dynamic objects
with small velocity cannot be distinguished effectively. For
the time step k+ 1, dynamic points with small velocity is
not moved too far within one frame, the distance between
correspondences might land in the ”small noise” range of
static points. On the contrary, the initialization term is
calculated with a relative larger time difference N, thus the d;
for small velocity objects is larger and more distinguishable
from static points.

In the third row of Figure 2, some examples of estimated
static weights are illustrated. It shows that our method can
effectively downweight dynamic points for different cases,
including one person moving, two persons moving and part
of one person moving.

Algorithm 1 Static weighting for depth edge points

Input: - a source cloud P, and edge point set By,
- a target cloud Py
- corresponding point index for source cloud edge points {c(i)}icpye
- current transformation estimate T4
Output: - static weights: w!""®" for i € By
for i € B, do
Calculate distance d; between warped source point TiseP,.(i) and its corre-
sponding point P,y (c(i))

end for
Calculate variance op of {d;}icp,,. (eq. (8))
for i € B, do

Estimate static weight w;""*' (eq. (7))
end for

D. Intensity Assisted Iterative Closest Point

The pair-wise point cloud registration is performed using
Intensity Assisted Iterative Closest Point (IAICP) method
[18]. Compared to the conventional ICP method, the intensity
information of each point is also used for correspondence
matching and weighting.

Given a source frame < Py, I, > and a target frame
< P, 11t >, IAICP estimates the relative transformation that
aligns the source cloud Py, to the target cloud Fg. IAICP
is an iterative method, where the transformation matrix T*
is usually initialized with identity matrix or with a motion
prediction. In our experiments, T* is initialized with first
order motion prediction. Then the optimal transformation
value T* is searched iteratively, where the kth iteration can
be summarized as:

i) Search for each depth edge point Py (i)icp,, of the
source cloud a point in the target cloud as correspondence.
For P, (i), the index of the corresponding point index in the
target point cloud P, is denoted as c(i) € B;g, Where

c(i) = argmin T Pyre (i) = Prge () - (1D

J

ii) Compute the optimal incremental transformation Ty
that minimizes the sum of weighted Euclidean distance
between the established correspondences:

Ty = argmin ) W ()| TT"Prre (i) =P (@, (12)



where W (i) is a weighting term that indicates the quality
of correspondence. The equation is usually solved with a
closed-form solution [5] such as Singular Value Decompo-
sition [1]. In our method, not all edge points are used to
compute eq. (12), instead we randomly select 120 depth edge
points for each ICP iteration.

iii) Update T* as: T* <— T;T*.

In the following, we explain how to compute the weighting
term W (i) and how to get the correspondence index c(i).

1) Correspondence weighting: In practice, not every es-
tablished correspondence is determined correctly. The out-
liers badly influences the transformation estimation. To com-
pensate outliers, a weighting term W (i) for corresponding
pair < Pyc(i),Pigr(c(i)) >, is estimated. The weighting is
based on an intensity term wy(i), a geometric term wg(i)
and also the static weighting term wg(i) (Section II-C):

W (i) = wi(i)wg (i) ws(i)-

The static weighting term wg(i) is estimated as described in
Section III-C. The intensity term wy(i) is calculated based

13)

on intensity residual ri(l) :

P = L(ind =" (i) — I (ind " (c(i))),

. vi+1
vi+ (" =) /o)’

where v, degree of freedom of t-distribution, is set to 5,
um and o) are the median and deviation value of all
corresponding pairs. We followed [13] to use Student’s t-
distribution based weighting function?. The geometric term
we(i) is estimated similarly:

A9 = |T*P(i) — R (i),
_ vi+1
i+ (1 —p©@) /o0

i

14

15)

W(;(i)

Using the proposed weighting terms, outlying correspon-
dences with large intensity difference or having large geo-
metric distance are intuitively downweighted. Furthermore,
the static weight is responsible to downweight the influence
of dynamic object.

2) Correspondence matching: Taking advantage of the
organized point cloud, the search of matching point is
performed in the image coordinate. By warping the source
frame point Py, (i) with the current estimate of T*, the image
coordinate of the warped point is X' = 7(T*Py.(i)). Then
target depth edge points Py (j)jep, in the neighbourhood of
x are considered as candidate of correspondence for Py (i),
where neighbourhood N(x') is defined as a square around
image coordinate x'.

Having a query pair < Py (i), Pg(j) > to check, a score
function for this pair is given as:

s(i,j) = WI(IsrC(i”dq (i) — Itgt(indil ()

S U . (16)
WO (TP (i) — B ().

2According to [8], Student estimator achieves better result than Huber
estimator and Turkey estimator.

wi(-) (eq. (14)) and w((ffzo)(-) (eq. (15)) are weighting
functions derived from last ICP’s iteration, where ng =0) sets
the mean value to zero, because more closer point is more
probable to be true corresponding point.

Then the correspondence is taken as the point that maxi-
mizes the score function:

c(i) =

argmax
JE(BrgrNN(X'))

s(i, j)- 7)

IV. LOOP CLOSURE DETECTION

A pure visual odometry system suffers from drift problem,
because current absolute pose is obtained by accumulating
previous ego-motion estimates, which also accumulates the
estimation errors. To compensate the drift problem, we
integrated our method into a pose graph based SLAM system
[7] . In the pose graph, consecutive keyframes are connected
with a pose constraint, that is from the visual odometry
method. In addition to that, if a keyframe detects previously
seen environment, new constraints are added to previous
keyframes, thus the accumulated drift can be corrected using
graph optimization considering all constraints. We refer to [7]
for details about pose graph optimization. In the following,
our procedure of loop closure detection will be presented.

As a new keyframe P, is set, we check loop closure of
P, with 10 randomly selected previous keyframe P,.. A loop
closure is detected between P, and P, when three conditions
are fulfilled.

1) Geometric proximity: The two keyframes should not be
too far away from each other:

||transl(T1r<) H < Uistance (18)

where transl(T) extracts the translation vector from the trans-
formation matrix T, and the threshold T ;ygnce 1S set to 1.5m
in the experiments. This is because distanced keyframes have
lower probability of viewing same part of the environment.

ii) Common visible part: The two keyframes should have
common visible environment in view. A point from Py, P(i)
is also possibly visible in P,, if the warped point is still inside
the image border:

n(TiP (i) € {[0,width — 1] x [0, height —1]}.  (19)

For checking, 100 edge points are randomly selected from
By If less than 30% of points are visible, no loop closure
between P, and P, is defined.

iii) Forward backward consistency check: If the previous
two conditions are satisfied, the pair-wise registration is then
performed using above described IAICP method (Section
II-D). The registration is performed twice by setting P, as
source frame in one time and as target frame in the other
time. Two registration results T,ﬁ and T’f are compared for
consistency. The consistency check can be passed if:

([transl(T7T%))|| < Taistancenif s 20)
[[rotation(T; )| < Tangtenif -

where thresholds are set as Tyiganceniry = 0.02m and
TangleDiff = 3°.



If the keyframe pair < P, P, > fulfills all three conditions,
a new relative pose constraint T between them is added into
the pose graph, which means detection of a new loop closure.

V. EXPERIMENT

Our method is tested with TUM RGB-D dataset [23].
Many previous papers [12][13][18][8][27] evaluated their
methods on this dataset and achieved good results, however
the sequences containing dynamic objects were not often
used for evaluation. In these sequences, people move in the
environment, while the camera also moves with different
patterns (static, xyz, rpy and halfsphere). These sequences
are challenging due to the large proportion of dynamic parts
in the observation, where in extreme case more than half of
the image is occupied with dynamic object. Figure 2 shows
some example frames taken from the “walking” sequences.
To handle the high dynamic environment, previous meth-
ods require non real-time method to segment dynamic part
[24][26] or suffer from large drift [15].

For our experiments, the sitting”, “walking” sequences
from the TUM dataset are used. The sitting” sequences
are considered as low dynamic sequences and the “waling”
sequences are considered as high dynamic sequences. To
test the performance of our method in a normal static
environment, sequences captured in static environment are
also used for evaluation.

In the following, our visual odometry method and SLAM
system are evaluated and compared with previous methods
[13][15][24]. All the experiments are performed on a desktop
computer with Intel Core i7-4790K CPU (4GHz) and 16 GB
RAM. The visual odometry method only uses one CPU core,
and for SLAM system, another CPU core is used for loop
closure detection and map optimization.

A. Evaluation of visual odometry method

For the evaluation of visual odometry, Relative Pose Error
(RPE) metric is used. We firstly investigate the effectiveness
of our static weighting strategy and then compare our method
with previous other methods.

1) Effect of static weighting: To verify the effectiveness of
the proposed static weighting strategy, our visual odometry is
tested both with and without the static weight term wg(I) in
the TAICP part (eq. (13)). The comparison is shown in Table
I, where “Depth edge + IAICP” means our method without
static weighting. In "Depth edge + RANSAC + IAICP”, a
RANSAC based outlier rejection procedure is used, where
the RANSAC procedure uses 100 iterations and has a outlier
threshold of 1.5cm. The static weighting term improves the
visual odometry result in most of the sequences and works
better than the RANSAC based outlier rejection method. The
average improvement in terms of translational drift for low-
dynamic sequences is 8%, and for high-dynamic sequences,
the average improvement is 52%. This verifies that our
static weighting strategy effectively reduces the influence of
dynamic objects, especially for high-dynamic environments.

(b) with the initialization term

(a) without the initialization term
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Fig. 4.  Static weight of 401th frame (keyframe) in “fr3/walking_xyz”
sequence at time step t = 402. (a)(b) show the visualization of static weights
and (c)(d) show the histogram of static weights.

2) Effect of static weight initialization: The static weight
initialization with previous keyframe is important as ex-
plained in Section III-C. To verify the importance of the
initialization, experiments are also performed by setting o
in eq. (9) to zero. An example case is illustrated in Figure
4, where a person is walking to the right. In this example,
static weights are estimated for the keyframe P, (k = 401).
At time step ¢t = 402, the person’s movement is not that
large between consecutive frames. Therefore if the weight
initialization is not applied, then some parts of the human
body are considered as a static part (green). If the initial
value is considered, which are obtained by comparing the
keyframe with last keyframe (t = 396), then the human body
is more distinguished as a dynamic object by leveraging a
larger distance during the 5 frames.

3) Comparison with previous methods: We compared our
result with Dense Visual Odometry (DVO) [13] method and
model-based dense-visual-odometry (BaMVO) [15] method.
DVO is a state-of-the-art RGB-D visual odometry method
for static environment, which can only handle small amount
dynamic objects. BaMVO is specially designed to handle
dynamic environment. The comparison results are shown
in Table I, our result outperforms in almost all dynamic
sequences. Even in the static environment sequences, our
visual odometry method still outperformed DVO, which
takes the static environment assumption. For the highly dy-
namic sequences, our method outperforms significantly. Our
method improves the visual odometry performance by 74.6%
compared to DVO, and by 58.2% compared to BaMVO.

The sources of improvements are twofold: firstly by using
sparse foreground depth edge points, correct correspondences
can be efficiently found, where a higher correct ratio results
in a more accurate transformation estimation; secondly, using
these correspondences, our static weighting strategy effec-
tively reduces the influence of dynamic objects. Compared
to our method, DVO takes the static environment assumption



TABLE I
VISUAL ODOMETRY RESULTS: TRANSLATIONAL DRIFT AND ROTATIONAL DRIFT ON TUM RGB-D DATASET

sequences RMSE of translational drift [m/s] RMSE of rotational drift [°/s]
DVO BaMVO  Depth edge Depth edge Our DVO BaMVO  Our method Depth edge Our
[13] [15]  +IAICP *RANSAC | ethod | [13] [15] ithout T RANSAC 1 thod
: - + IAICP etho : - withou + TAICP ctho
static fr2/desk 0.0296 0.0299 0.0174 0.0170 0.0173 1.3920 1.1167 0.7325 0.7145 0.7266
fr3/long-office 0.0231 0.0332 0.0200 0.0193 0.0168 1.5689 2.1583 0.9001 1.0683 0.8012
fr2/desk-person 0.0354 0.0352 0.0245 0.0189 0.0173 1.5368 1.2159 1.0389 0.8310 0.8213
low fr3/sitting-static 0.0157 0.0248 0.0198 0.0210 0.0231 0.6084 0.6977 0.5823 0.6220 0.7228
dynamic fr3/sitting-xyz 0.0453 0.0482 0.0256 0.0254 0.0219 1.4980 1.3885 0.9152 0.9791 0.8466
Y fr3/sitting-rpy 0.1735 0.1872 0.1058 0.1076 0.0843 6.0164 5.9834 5.2157 10.4392 5.6258
fr3/sitting-halfsphere 0.1005 0.0589 0.0624 0.0583 0.0389 4.6490 2.8804 2.5247 2.7427 1.8836
fr3/walking-static 0.3818 0.1339 0.1192 0.0496 0.0327 6.3502 2.0833 2.9475 1.3791 0.8085
high fr3/walking-xyz 0.4360 0.2326 0.1802 0.1482 0.0651 7.6669 4.3911 3.4778 3.8904 1.6442
dynamic fr3/walking-rpy 0.4038 0.3584 0.2855 0.3031 0.2252 7.0662 6.3398 5.5704 11.4640 5.6902
fr3/walking-halfsphere 0.2628 0.1738 0.2016 0.0799 0.0527 5.2179 4.2863 4.5076 4.5912 2.4048
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Fig. 5.
trajectories without the proposed static weighting term.

in their problem formulation and cannot perform normally
in highly dynamic sequences. In BaMVO, static weights
are calculated based on depth difference, where points on
the same image coordinate are simply approximated as
correspondence. This approximation might cause the aperture
problem for parallel dynamic motion to the image plane.

Our visual odometry method is performed on VGA image
resolution (640 x 480) and requires only one CPU thread.
The average computation time per frame is 22ms. Compared
to our method, DVO requires 32ms per frame (320 x 240
resolution, i7-2600 CPU with 3.40GHz) and BaMVO re-
quires 42ms per frame (320 x 240 resolution, Intel i7 CPU
with 3.3GHz). The computation time of our method is
less because no dense operation is needed as in DVO and
BaMVO, both static weighting and transformation estimation
are only performed on sparse depth edge points. The real-
time performance makes our method suitable for on-line
applications.

B. Evaluation of SLAM system

Finally we evaluated our SLAM system that includes
loop closure detection and map optimization. For evaluating
SLAM system, Absolute Trajectory Error (ATE) [23] metric

x[m]

Examples of estimated trajectories from our SLAM system. (a) Estimated trajectories with the proposed static weighting term. (b) Estimated

is used. The estimated trajectories are compared to ground
truth, and some examples are shown in Figure 5. In the
first row of Figure 5, the trajectories are estimated using
our proposed weighting term, and in the second row of
Figure 5, the trajectories are estimated without the proposed
weighting term. It is notable that for the low-dynamic se-
quence “fr2desk_with_person” the improvement with static
weighting is small, and for high-dynamic sequences the
trajectory error is reduced greatly.

Our SLAM system is compared to a non real-time method
[24], which is a recent state-of-the-art RGB-D SLAM
method for dynamic environment. In [24], dense dynamic
object segmentation is performed for each frame, which takes
half second per frame. The authors segment dynamic objects
from each frame, and directly use the segmented frames
as input for DVO-SLAM system [12]. The comparison is
shown in Table II. The first column shows the sequence name
from the TUM Dataset, where both low-dynamic sitting”
sequences and high-dynamic “walking” sequences are used
for comparison. Our SLAM system works better in most of
the sequences. The improvement for low-dynamic sequences
is 15.2%, and the improvement for high-dynamic sequences
is more notable with 24.7%.



TABLE I

SLAM RESULTS: RMSE OF ABSOLUTE TRAJECTORY ERROR [M]
Motion Remvoal+

sequence DVO SLAM [24] Our SLAM system

RMsg  Standard - pygp  standard

deviation deviation
fr3/walking_halfsphere ~ 0.1252 0.0903 0.0489 0.7266
fr3/walking_rpy 0.1333 0.0839 0.1791 0.1161
fr3/walking_static 0.0656 0.0536 0.0261 0.0122
fr3/walking_xyz 0.0932 0.0534 0.0601 0.0330
fr3/sitting _halfsphere 0.0470 0.0249 0.0432 0.0246
fr3/sitting_xyz 0.0482 0.0282 0.0397 0.0206
fr2/desk_with_person 0.0596 0.0239 0.0484 0.0237

The average computation time for our SLAM system
takes ca. 45ms per frame, including visual odometry esti-
mation, loop closure detection and pose graph optimization.
Compared to this, the method from [24] cannot be applied
for real-time application, since their segmentation procedure
alone already takes half second per frame.

VI. CONCLUSION

We proposed a real-time RGB-D visual odometry method
that can handle highly dynamic environment such as the
“walking” sequences from TUM Dataset [23]. The method
uses foreground depth edge point to compute pair-wise
point cloud registration. A robust static weighting strategy
is proposed based on depth edge correspondences distance.
Fusing the static weighting strategy into the intensity assisted
ICP [18], our visual odometry system handles dynamic en-
vironment robustly. Furthermore, loop closure detection and
map optimization are integrated, resulting a real-time SLAM
system suitable for dynamic environment. Our method is
evaluated on the dynamic sequences from TUM Dataset [23].
Compared to state-of-the-art real-time method [15], in terms
of translational drift per second, our method improves the
visual odometry accuracy by 58% in challenging “walk-
ing” sequences. The performance of our SLAM system is
also proven using the TUM Dataset, which shows better
performance than recent non real-time method [24]. In our
method, the static weighting is only applied to foreground
depth edges. Therefore our visual odometry method requires
geometry rich environments, where a lot of depth edges exist.
In future work, we want to investigate how to efficiently
propagate the sparsely estimated static weights to the entire
image, such that denser information can be used for regis-

tration.
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