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Key points  

 Complete spectral modelling of gravity field implied by degree-2160 topography  

 Spatial and spectral gravity forward-modelling techniques to agree at 10 microgal level 

 First successful validation of new degree-2160 spherical harmonic Bouguer gravity maps  
 

Abstract  

Over the past years, spectral techniques have become a standard to model Earth’s global gravity 
field to 10 km scales, with the EGM2008 geopotential model being a prominent example. For some 
geophysical applications of EGM2008, particularly Bouguer gravity computation with spectral 
techniques, a topographic potential model of adequate resolution is required. However, current 
topographic potential models have not yet been successfully validated to degree-2160, and notable 
discrepancies between spectral modelling und Newtonian (numerical) integration well beyond the 
10 mGal-level have been reported. 

Here we accurately compute and validate gravity implied by a degree-2160 model of Earth’s 
topographic masses. Our experiments are based on two key strategies, both of which require 
advanced computational resources. First, we construct a spectrally complete model of the gravity 
field which is generated by the degree-2160 Earth topography model. This involves expansion of 



the topographic potential to the 15th integer power of the topography and modelling of short-scale 
gravity signals to ultra-high degree of 21,600, translating into unprecedented fine scales of 1 km. 
Second, we apply Newtonian integration in the space-domain with high spatial resolution to reduce 
discretisation errors. 

Our numerical study demonstrates excellent agreement (8 microgal RMS) between gravity from 
both forward modelling techniques, and provides insight into the convergence process associated 
with spectral modelling of gravity signals at very short scales (few km). As key conclusion, our 
work successfully validates the spectral-domain forward modelling technique for degree-2160 
topography, and increases the confidence in new high-resolution global Bouguer gravity maps. 
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1. Introduction 

The Bouguer gravity anomaly, i.e., observed gravity reduced for the gravitational attraction 
generated by the topographic masses, plays a key role in geophysical studies of interior mass 
variations associated with geological units [e.g., Jacoby and Smilde, 2009].  The gravitational 
attraction of the topographic masses (short: topographic gravity, also denoted as gravity effect or 
Bouguer reduction in the literature) is usually computed from digital terrain models via some form 
of Newton’s integral. Gravity computation techniques - commonly known as gravity forward 
modelling - can be grouped into two categories, namely spatial-domain and spectral-domain 
techniques [e.g., Nahvandchi, 1999; Kuhn and Seitz, 2005; Hirt and Kuhn, 2014]. In the first 
category, Newton’s integral is evaluated in the space domain, e.g., through numerical integration 
using elementary mass bodies [Kuhn et al., 2009; Grombein et al. 2016], fast fourier transform 
(FFT)-techniques [Forsberg, 1984], or quadrature-based methods [Hwang et al., 2003]. Classical 
[e.g., Hammer, 1939; Nowell, 1999] and modern [e.g., Tsoulis et al., 2009; Cella, 2015] terrain 
correction computations fall into this category, too. 

The second category comprises all methods that evaluate Newton’s integral in the spectral domain 
[e.g., Rummel et al., 1988; Balmino, 1994; Wieczorek and Phillips, 1998; Tenzer, 2005; Balmino 
et al., 2012; Gruber et al., 2014; Rexer et al., 2016]. This involves spherical-harmonic expansion 
of the topographic gravitational potential (short: topographic potential) into higher-order integer 
powers of the global topography and calculation of topographic gravity through synthesis 
techniques [e.g., Hirt and Kuhn, 2012]. 

While spatial-domain techniques are usually applied for the Bouguer reduction of local or regional 
gravity surveys [e.g., Jacoby and Smilde, 2009], spectral-domain techniques are particularly well-
suited for the computation of Bouguer gravity anomalies on a global scale. Due to their “global 
nature”, spectral techniques inherently deliver the gravitational attraction of the global topographic 
masses. This also includes the effect of remote masses that are neglected in conventional Bouguer 
gravity maps [cf. Kuhn et al., 2009].  



Global Bouguer gravity maps, obtained as difference of gravity effects from (a) a global 
gravitational model (GGM) and (b) a topographic potential model have become increasingly 
popular in the geoscience community: Bouguer maps have been constructed and used for Earth, 
e.g., based on the GOCE [Pail et al., 2011] gravity satellite mission data to harmonic degree ~280 
[cf. Rexer et al., 2015; Braitenberg et al., 2015], from the EGM2008 [Pavlis et al., 2008, 2012] 
model to degree 2190 [Claessens and Hirt, 2013] and with even higher resolution for the 
topographic gravity component to degree 10,800 in the context of UNESCO’s World Gravity Map 
[Bonvalot et al., 2012; Balmino et al., 2012].  For the Moon and the other terrestrial planets, 
Bouguer gravity maps were produced, too, see Watters et al. [2007] and Zuber et al. [2012].  

Opposed to planetary sciences [e.g., Wieczorek and Phillips, 1998], the construction of global 
Bouguer gravity maps based on spectral techniques is relatively new to Earth sciences. As such, it 
is important to carefully check and verify the modelling techniques involved for the Earth sciences 
user community to gain confidence in the new global Bouguer maps and to provide an advanced 
validation scheme for any planetary Bouguer gravity map. The necessity for validation of the 
spectral method has been recently acknowledged in the literature, e.g., Gruber et al. [2014].   

However, only few studies are actually concerned with the validation of topographic gravity from 
spectral-domain modelling with high resolution (degree-2160, equivalent to ~10 km resolution, or 
even finer): Wang et al. [2010] compared topographic gravity, as obtained from evaluation of 
Newton’s integral (1) in the spatial domain and (2) from spherical harmonic expansions of the 
topographic potential to degree 2700. They encountered notable discrepancies at the 10-30 mGal 
level over steep mountain slopes of Earth’s major mountain ranges, with a maximum disagreement 
at the ~60 mGal level in the Himalayas. Balmino et al. [2012] compared topographic gravity from 
the spatial and spectral method to ultra-high degree of 10,800 (~1 km resolution), yielding 
maximum differences of ~40 mGal and a root-mean-square (RMS) of ~2.3 mGal over parts of 
Northern Africa, which, however, increases in the Atlas mountain range to the ~10 mGal level.  

With the EGM2008 model expanded to its full ~10 km spatial resolution, gravity anomalies are 
known to an accuracy of ~1 to ~3 mGal over wide parts of the Earth’s surface [cf. Pavlis et al. 
2008, p.8]. For reliable interpretation of Bouguer gravity anomalies from EGM2008 (or other 
GGMs of similar precision), it is thus reasonable to require an uncertainty well below the 1 mGal-
level for the topographic gravity component that the Bouguer map relies on. Then, errors associated 
with the topographic gravity computation become negligible. However, the aforementioned 
validation results do not provide evidence for adequate accuracy of the topographic gravity 
component in global Bouguer gravity maps. 

As goal of the present study, we present an advanced validation based on Hirt and Kuhn [2014] for 
the computation of Earth’s topographic gravity field with spectral techniques. As spherical 
harmonic model of the global topography, Curtin University’s Earth2012 product is used to degree-
2160, which is commensurate with the EGM2008 resolution (Sect. 2).  Our validation strategy 
relies on comparisons between spatial-domain (Sect. 3.1) and spectral-domain (Sect. 3.2) gravity 



forward modelling providing a comprehensive cross-check on the gravity computation procedures 
(Sect. 4).  

To facilitate the validation, we develop a largely complete spherical harmonic expansion of the 
topographic gravity field, as implied by a degree-2160 global topography. This involves expansion 
of the topographic potential to 15th integer power of the topography and modelling to ultra-high 
harmonic degree of ~21,600 being the 10th multiple of the input band-width. By way of 
background, degree-2160 modelling in past work never exceeded the 10th integer power and 
frequencies beyond the input band-width were not considered at all. As such, the gravity field of a 
degree-2160 (10 km resolution) topography is computed and its spectrum characterized with great 
completeness for the first time to unprecedented fine spatial scales of ~1 km in spherical harmonics 
(Sect. 5.1). Numerical comparisons between gravity from our new spherical harmonic expansion 
of the topographic potential to degree 21,600 against gravity from high-resolution Newtonian 
integration are presented and discussed in Sect. 5.2 and 5.3 for local and global test areas. Our 
comparisons are relevant for modern Bouguer gravity maps from EGM2008 and other such models 
(which incorporate newer or improved data, for instance based on the GOCE satellite mission) in 
general, and for spectral-domain gravity forward modelling to high resolution in particular (Sect. 
6 and 7). 

2. Data 

As model describing the global topographic masses, the spherical harmonic expansion of Curtin 
University’s rock-equivalent topography (RET) model RET2012 [e.g. Hirt, 2013] is used in this 
study, which is freely available via http://geodesy.curtin.edu.au/research/models/Earth2012/, file 
Earth2012.RET2012.SHCto2160.dat).  RET2012 represents Earth’s RET topography to harmonic 
degree and order 2160, which corresponds to 5 arc-min spatial resolution (half wavelength). Over 
land areas, the RET2012 model relies on data from (1) the Shuttle Radar Topography Mission 
(SRTM) version 4.1, cf. Jarvis et al. [2008], (2) SRTM30_PLUS (version 7) bathymetry [Becker 
et al., 2009] over the oceans and some of Earth’s major lakes, and (3) ETOPO1-derived ice sheet 
heights [Amante and Eakins 2009] over parts of Antarctica and Greenland. We acknowledge that 
newer topography models such as Earth2014 [Hirt and Rexer, 2015] have recently become 
available, relying on more up-to-date data sets over the oceans and ice-shields. However, to 
investigate the spectral characteristics of a degree-2160 topographic gravity field, and to validate 
the computational techniques for spectral forward modelling at 5 arc-min resolution, the chosen 
RET2012 topography model is considered as sufficient (also see below). 

3. Methods  

The spherical harmonic expansion of the RET2012 model is used as input topography mass model 
both in spatial-domain forward modelling (Newtonian integration) cf. Sect. 3.1 and in spectral 
forward modelling (Sect. 3.2). RET heights rely on the concept of equivalence between a given 
mass distribution represented by height and density and the mass distribution described by RET 
height and one constant reference density [Rummel et al., 1988; Kuhn and Seitz, 2005; Kuhn and 



Hirt, 2016]. The RET2012 model used here describes all topographic masses (ice, water, rock) 
with a single constant density value ߩோ௢௖௞ of topographic rock  (2670 kg m-3). This was 
accomplished by compressing ice masses (ߩூ௖௘ = 917 kg m-3) and water masses (ߩை௖௘௔௡ ൌ	1023 kg 
m-3, ߩ௅௔௞௘= 1000 kg m-3) into layers of equivalent topographic rock following the concept of 
Rummel et al. [1988]: 

ோா்ܪ ൌ ஻ா஽ܪ	 ൅	
ఘ

ఘೃ೚೎ೖ
Δܪ                (1) 

with ܪோா் the RET height, ߩோ௢௖௞ the mass-density of topographic rock and ߩ the mass-density of 
the mass anomaly (e.g. ice or water),	ܪ஻ா஽ bedrock height (lower bound) of the mass body and Δܪ 
the thickness of the mass body. 

As advantage of the  RET concept, it is possible to calculate implied gravity effects over land, 
ocean and ice sheets based on one single mass density, without the need to distinguish between 
different density values in forward modelling [Hirt and Kuhn, 2012]. Thus, some complexity 
associated with modelling the short-scale gravity fields of individual mass bodies (lakes, oceans, 
ice shields) is avoided and a clearer focus on the study and validation of the short-scale gravity 
field of the topographic masses is achieved. While a disadvantage of the RET compression relates 
to approximation errors because the geometry of mass anomalies (Eq. 1) is changed [Kuhn and 
Hirt, 2016] it is not considered a problem in this study when comparing gravity forward modelling 
techniques based on identical mass distributions.  

Ultra-short scale modelling of the ocean and ice masses through a mass-layer approach [e.g., 
Tenzer et al., 2010; Rexer et al. 2016] and the topographic potential in ellipsoidal instead of 
spherical approximation [e.g., Claessens and Hirt, 2013; Rexer et al., 2016] goes beyond the scope 
of the present paper. As an important benefit of choosing spherical approximation level over 
ellipsoidal approximation for this paper, the characteristics of the short-scale gravity field 
constituents can be studied for various harmonic bands, which is not possible when the modelling 
is based on ellipsoidal approximation (cf. Claessens and Hirt [2013]).  

Both in spatial and spectral forward modelling, the full expansion of the RET2012 topography 
model is used (i.e., harmonic degrees 0 to 2160), along with the same modelling parameters 
(reference radius	ܴ ൌ 6378137 m, mass-density	2670 =݇ܿ݋ܴߩ kg m-3 and gravitational constant ܩ ൌ

6.67384 ∙ 10ିଵଵ m3 kg-1 s-2). This is to ensure that the same mass model is consistently used in 
both forward modelling techniques. In both methods, RET2012 heights ܪ are synthesized using  

,ሺ߮ܪ ሻߣ ൌ 	 ෍ ෍൫ܥܪതതതത௡௠ cosሺ݉ߣሻ ൅ തതതത௡௠ܵܪ sinሺ݉ߣሻ൯ തܲ௡௠ሺsin߮ሻ
௡

௠ୀ଴

ଶ,ଵ଺଴

௡ୀ଴

 

  

                  (2) 

with ߮, -തതതത௡௠ሻ the fullyܵܪ,തതതത௡௠ܥܪ) ,denoting the geocentric coordinates of the computation point ߣ
normalized spherical harmonic coefficients of degree n and order m, and തܲ௡௠ሺsin߮ሻ	the fully-
normalized Associated Legendre Functions (ALFs). The methods applied are outlined in Sect. 3.1 
and 3.2 in a more general sense, while computational details are given in Sects. 4.1 and 4.2. 



3.1 Spatial domain forward modelling 

Our spatial domain forward modelling uses discretised Newtonian integration [e.g., Kuhn, 2000; 
Kuhn 2003; Kuhn et al., 2009], which follows exactly the same approach as employed in Hirt and 
Kuhn [2014]. In this approach the gravitational signal of a given mass distribution (e.g. topographic 
masses) is obtained by the gravitational effects generated through a series of regular shaped mass 
elements (e.g. point mass, rectangular prism or tesseroid) that discretize the mass distribution 
considered.  We discretize the global topographic masses (incl. bathymetry) by a series of spherical 
volume elements (e.g. tesseroids in spherical approximation) limited by surfaces of constant 
geographic longitude, latitude and spherical radius (cf. Figure 1 in Hirt and Kuhn [2014]). The 
tesseroids are further approximated by rectangular prisms with identical vertical extension.  The 
spatial extension of each prism is selected such that first-order mass equivalence is obtained 
according to e.g. Anderson [1976], Grüninger [1990], Heck and Seitz [2007].  The advantage of 
this approach is the possibility to employ closed analytical formulae for the gravitational effect of 
a rectangular prism.  We use the well-known analytical formulae provided by, e.g., Mader [1951], 
and Nagy et al. [2000] modified to a numerically more stable expression (cf. Kuhn [2000] and Heck 
and Seitz [2007]). 

 

Figure 1.   Principle of  the  spherical  terrain  correction  for  topographic masses.   At  the  computation point P  the 

gravitational attraction of the topographic masses  g  is derived through the gravitational attraction 
SHg  of the 

spherical shell with thickness HP and the spherical terrain correction obtained through the gravitational attraction 

RMg  of all masses residual to the spherical shell and characterized by the height difference HRM. 

The approximation error introduced through discretised Newtonian integration depends on how 
well the discretised mass distribution approximates the given mass distribution, which in turn 
depends on the shape and size (resolution) of the mass elements selected.  As pointed out in Hirt 
and Kuhn [2014], the use of rectangular prisms is approximate, when using spherical 
approximation, as adjoining prisms intersect towards the bottom and exhibit wedge-like gaps 
towards the top.  However, the approximation error can be largely reduced through the selection of 
small (both spatial and vertical extension) prisms in the near vicinity of the computation point.  
Similar to results obtained in Hirt and Kuhn [2014], this study demonstrates that the approximation 
error can be reduced to levels on the order of 2 μGal (RMS) as obtained by numerical comparison 
between space and spectral domain techniques (see section 4).  Further we use the concept of 



spherical terrain corrections (e.g. Kuhn et al. [2009]) to limit the vertical extension of prisms in the 
vicinity of the computation point.  Hereby the gravitational attraction of the global topographic 
masses is derived according to  

݃ߜ ൌ ௌு݃ߜ	 ൅	݃ߜோெ              (3) 

where SHg  is the gravitational attraction of a spherical shell (often termed Bouguer shell) and 
RMg  is the gravitational attraction of all masses residual to the shell (e.g. spherical terrain 

correction; cf Figure 1).  In this approach the vertical extension of the shell is selected so that no 

residual masses are present at the location of the computation point.  Only RMg  is derived through 

discretised Newtonian integration while SHg  is obtained through the analytical formula for the 

Bouguer shell (e.g. Vaniček et al. [2001]).   

3.2 Spectral domain forward modelling 

The topographic potential, as generated by the topographic mass model, is computed in the spectral 
domain with the forward modelling technique described in Hirt and Kuhn [2014]. Given the 
relation between topography and gravity is non-linear, the topographic potential is expressed as a 
series expansion of integer powers ݌ of the topography [e.g., Rummel et al. 1988; Wieczorek 2007; 
2015]. Although our topographic mass model is strictly band-limited (to spectral band of degrees 
0 to 2,160), it generates – in good approximation – a full-spectrum gravity field [Balmino 1994; 
Hirt and Kuhn, 2014] with spectral energy at spatial scales far beyond degree 2,160. Following 
Hirt and Kuhn [2014], any integer power ݌ of a band-limited topography expanded to degree ݊ 
delivers spectral constituents of the topographic potential up to degree ݌ ∙ ݊.  In our work, 
contributions of integer powers of ݌	 ∈ 	 ሾ1	15ሿ to the topographic potential are taken into account 
up to a spherical harmonic degree of ݊௠௔௫ ൌ21,600.  

The spectral method requires expansion of heights ܪ from the topography model onto a global grid 
[Eq. (2)]. Topographic height functions (THF) are formed as ܪ/ܴ and raised to integer power ݌ in 

the space domain, giving	ܪሺ௣ሻ 	ൌ 	 ሺܪ/ܴሻሺ௣ሻ. Harmonic analysis delivers the spherical harmonic 

coefficients  ܪ௡௠
ሺ௣ሻ 	ൌ ܥܪതതതത௡௠

ሺ௣ሻ, ܵܪതതതത௡௠
ሺ௣ሻ of the integer powers of the THFs. The sets of ܪ௡௠

ሺ௣ሻ –coefficients 
are used to calculate the coefficients of the topographic potential ௡ܸ௠ following (Chao and 
Rubincam [1989], Balmino [1994], Balmino et al. [2012],  Wieczorek [2007, 2015]) 

௡ܸ௠ ൌ 	
1

2݊ ൅ 1
ߩଷܴߨ4
ܯ

෍
∏ ሺ݊ ൅ 4 െ ݅ሻ௣
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௡௠ܪ
ሺ௣ሻ
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௣ୀଵ

 

 

                                     (4) 

with ௡ܸ௠ as short-hand for (ܸܥതതതത௡௠ ܸܵതതതത௡௠), ܯ ൌ 5.9725810 ∙ 10ଶସ kg as Earth’s mass including the 
atmosphere, and ݌௠௔௫ as maximum integer power of the series expansion. Next, the ௡ܸ௠ are used 
to compute gravity disturbances ݃ߜ (radial derivatives of the topographic potential) at the 
topographic surface, here represented by the RET2012 heights. This task is accomplished using the 
gradient approach for 3D spherical harmonic synthesis [Hirt and Kuhn, 2012]. In brief, the gradient 



approach is a numerically efficient approximation technique to compute dense grids of gravity 
disturbances at irregular surfaces [Hirt, 2012]. Grids of gravity disturbances and their higher-order 
radial derivatives are computed at some constant height ܪ௥௘௙ above the reference sphere of radius 

ܴ and continued to the computation point Pሺ߮, ,ߣ  using	ሻܪ) residing at the topography	ሻܪ

݃ߜ ሺ߮, ,ߣ ሻܪ ൎ 	 ෍
1
݇!
߲௞݃ߜ
௞ݎ߲

௞೘ೌೣ

௞ୀ଴

ቚ ௥ୀோାுೝ೐೑൫ܪ െ ௥௘௙൯ܪ
௞
 

 

                                     (5) 

where ݇ denotes the order of radial derivative	߲௞/݃ߜ	ݎ߲௞ of the gravity disturbance , ݇௠௔௫ the 
maximum order of the Taylor series expansion, and ݎ ൌ ܴ ൅  .௥௘௙  a constant radius of evaluationܪ

See Hirt and Kuhn [2012] for the equation of the ݇-th order radial derivative of ݃ߜ.  Field 
continuation with gradients has also been applied in Balmino et al. [2012], however, without using 
mean constant heights ܪ௥௘௙ which were shown in Hirt [2012] to accelerate the convergence of the 

continuation. 

4. Computations 

Both forward modelling techniques were applied (i) locally over a test area in the Himalaya 
Mountains with 1 arc-min spatial resolution of the computation points and (ii) globally at reduced 
resolution of 5 arc-min. The first experiment, designed similar to that presented in Hirt and Kuhn 
[2014] but with increased spectral resolution provides a detailed local view on the agreement 
between the two methods, while the second experiment provides insight on a truly global scale, 
and therefore facilitates the validation of topographic gravity modelling around the globe. 

4.1 Newton integration 

For the discretized Newtonian integration approach (Sect. 3.1), topographic heights from the 
RET2012 topography have been synthesized (Eq. 2) with extremely high spatial resolution in the 
vicinity (near-zone) of the computation points (Table 1). For the local experiment, the topography 
is sampled at 5 arc-sec resolution (up to 0.5 degree distance around any computation point). With 
an oversampling of factor 60 (5 arc-sec sampling vs. 5 arc-min nominal resolution associated with 
a degree 2,160 expansion), the spherical harmonic topography is very well represented in the space 
domain. The topography was oversampled in order to minimize numerical integration errors 
associated with the discretisation of the topographic mass model (cf. Section 5). For the global 
experiment, the global topography is represented at 30 arc-sec resolution up to 3 degrees around 
the computation point, resulting in a lower oversampling factor of 10. Note that while the 
topography has been sampled with high spatial resolution (Table 1), the computation points are 
arranged on a 1 arc-min resolution grid (local experiment, 14,400 computation points) and 5 arc-
min (global experiment, ~9.33 million points).  

In order to accelerate the computation without compromising the accuracy, a number of coarser 
grid resolutions were used for source masses located more distant from a computation point. The 
use of such grid cascades is common practice (e.g., Forsberg [1984]) and permitted due to the 



quadratic attenuation of gravitational attraction with distance. The coarser resolutions and spatial 
extensions around a computation point were selected empirically so that the corresponding 

approximation error with respect to the next finer resolution always remained below 1 Gal.  
Coarser resolutions have been derived by arithmetically averaging finer resolutions to ensure mass 
equivalence between resolutions.  Table 1 details the spatial resolutions and extensions for the local 
experiment (6 grid cascades) and the global experiment (4 grid cascades), from highest resolution 
(near-zone) to lowest resolution (far-zone) for the remote topographic masses. 

Table. 1.  Details on Newtonian integration as applied in the local and global experiments: Spatial resolution, area of 

computation points, grid  resolutions  (data points), oversampling  factors and overall computation  times  for both 

experiments.  Spatial  extensions  for  each  grid  are  given  as  arc‐distances  along  parallels  and meridians.  Spatial 

resolutions of the grid cascades are selected so to seamlessly join, e.g. a coarser resolution is obtained as an integer 

multiple of the finer resolution.  

  Local experiment  Global experiment 

Input model  RET2012 topography in band 0 to 2,160 

Computation point resolution  1 arc‐min  5 arc‐min 

Computation area  2 deg x 2 deg  180 deg x 360 deg 

Number of computation points  120 x 120  2160 x 4320 

Data points (grid cascades)  5 arc‐sec (to 0.5 deg)  30 arc‐sec (to 3 deg) 

  10 arc‐sec (to 1 deg)  1 arc‐min (to 6 deg) 

  20 arc‐sec (to 3 deg)  3 arc‐min (to 20 deg) 

  1 arc‐min (to 10 deg)  15 arc‐min (far zone) 

  3 arc‐min (to 30 deg)   

  9 arc‐min (far zone)   

Oversampling factor (near‐zone)  60  10 

CPU‐hours  35  10,000 

 

Due to the very high computational burden for the global experiment, the space domain forward 
modelling has been performed on Western Australia’s supercomputer Magnus operated by the 
Pawsey Supercomputing Center.  Magnus is a Cray XC40 system hosting Xeon E5-2690V3 
“Haswell” processors running at 2.6 GHz, for a total of 35,712 cores, delivering in excess of 
1 PetaFLOP of computing power (see https://www.pawsey.org.au/).  For parallel computations 

the 5 arc minute resolution computation point grid over the test area has been divided into 10 × 

10 tiles each containing 14,400 computation points.  While the global calculation of gravity 
disturbances at 5 arc-min resolution required a total of ~10,000 CPU hours, the parallel processing 
of all tiles allowed the computation to be completed within less than 2 days.  

4.2 Spectral modelling 

For the spectral forward modelling, heights ܪ were synthesized from the RET2012 topographic 
mass model in spectral band of degrees	ሾ0	2,160ሿ. THFs were formed for each integer power ݌	 ∈

	ሾ1	15ሿ, and their SHCs 	ܪ௡௠
ሺ௣ሻ  derived through spherical harmonic analysis. For the harmonic 



analysis, we use Gauß-Legendre-Quadrature implemented in the SHTools package 
(http://shtools.ipgp.fr/). The SHTools were modified 1) with the Fukushima [2012] routines for 
stable computation of ALFs to ultra-high degree (beyond degree ~2,700) and 2) with OpenMP 
parallel directives for achieving moderate computation times, as described in detail in Rexer and 

Hirt [2015]. The contribution of the ܪ௡௠
ሺ௣ሻ to the topographic potential 	 ௡ܸ௠

ሺ௣ሻ  and (total) topographic 

potential ܸ ௡௠ ൌ ∑ ௡ܸ௠
ሺ௣ሻଵହ

௣ୀଵ   were computed with Eq. 4. Each set of ܪ௡௠
ሺ௣ሻ and ܸ ௡௠

ሺ௣ሻ SHCs is complete 

to ݊௠௔௫ ൌ 	21,600 and comprises ~233.3 million pairs of harmonic coefficients. 

In our study contributions up to the 15th power of the topography (݌௠௔௫ ൌ 15ሻ are taken into 
account. The necessary grid resolution ∆ݔ  for each spherical harmonic analysis can be determined 
by the integer power ݌, in order recover the spectral constituents of each THF without aliasing: 

ሻ݌ሺݔ∆ 	ൌ ଵି݌ 	 ∙ 		5	 arc-min     (6) 

For ݌ ൌ 1, the necessary grid resolution ∆ݔ is 5 arc-min (2,161 x 4,321 grid points), for ݌ ൌ  ݔ∆  ,2
= 2.5 arc-min (4,321 x 8641 points) and for ݌ ൌ ݔ∆ ,15 ൌ 	20 arc-sec (32,401 x 64,801 grid 
points). We fully recovered the SHCs of the THFs up to ݊௠௔௫ ൌ 21,600,  For ݌ ൐ 10, the THFs 
contain spectral energy beyond ݊௠௔௫ ൌ 21,600. However, coefficients of degree ൐ 	21,600  were 
not further taken into account here. From our numerical study, evidence is obtained that the signal 
power associated with ݊ ൐ 	21,600	is safely negligible (Sect. 5). 

Gravity disturbances ݀݃ were obtained from the ௡ܸ௠
ሺ௣ሻ and ௡ܸ௠- SHCs through 3D-synthesis (Eq. 

[5]) at exactly the same computation points Pሺ߮, ,ߣ  ሻ used in the Newtonian integration, with theܪ
heights ܪ taken from the RET2012 topography model. Importantly, computation point heights ܪ 
are set to zero when	ܪ ൏ 	0, thus reside at the surface of the reference sphere (e.g., over the oceans). 
This is to avoid gravity syntheses inside the reference sphere. For the 3D-syntheses, the isGrafLab 
software by Bucha and Janák [2014] was used that incorporates the gradient continuation approach 
[Hirt, 2012] and the Fukushima [2012] routines for stable gravity synthesis to ultra-high degree. 
As an alternative to the Fukushima [2012] methods, the approach by Jekeli et al. [2007] and 
Balmino et al. [2012] could be used whereby insignificant terms in the synthesis are not evaluated 
in order to increase the computational efficiency. 

Prior to the 3D-synthesis, convergence tests were carried out in order to determine the required 
order of Taylor expansions ݇௠௔௫ in the 3D-synthesis. By comparing approximate ݀݃-values from 
various Taylor orders ݇௠௔௫ ∈ 	 ሾ1	20ሿ with exact values computed at selected 3D-locations without 
gradients at  Pሺ߮, ,ߣ  ;ሻ, the convergence of Eq. (5) was investigated [also see Hirt and Kuhn, 2012ܪ
Balmino et al., 2012; Bucha and Janák, 2014]. For the reference height ܪ௥௘௙ a value of 3000 m 

was used, keeping the distances ܪ െܪ௥௘௙ always smaller than 4000 m, considering the range of 

topographic heights from 0 to ~6680 m. As a result, the number of terms required for convergence 
of the Taylor series (Eq. 5) is much reduced (in comparison to using ݎ ൌ ܴ as radius of evaluation). 
For our test points (located at ܪ ൌ 0 above deep ocean trenches and at H = 6679.143	 m over the 

Himalayas), convergence (i.e. differences between approximate and exact g-values fall below the 



0.1 microGal threshold) was reached for ݇௠௔௫ 	ൌ 	15, the value of which is used in all syntheses 
in our study. Note that this value is about twice as large as for a topographic potential truncated to 
degree 2,160 [cf. Hirt and Kuhn, 2012], reflecting the influence of the short-scale gravity signals 
(in band [2,161 to 21,600]) on the gravity continuation with Eq. (5). 

Overall, for the spherical harmonic analyses, conversion of ܪ௡௠
ሺ௣ሻ to ௡ܸ௠

ሺ௣ሻ and subsequent spherical 
harmonic syntheses, an estimated ~5,000 CPU hours were required, which is about half of the CPU 
time used for the numerical integration (Sect. 4.1). 

5. Results 

5.1 Degree variances 

The dimensionless degree variances of the THFs 

ߪ
ு೙
ሺ೛ሻ

ଶ ൌ 	∑ ቀܥܪതതതത௡௠
ሺ௣ሻଶ ൅	ܵܪതതതത௡௠

ሺ௣ሻଶቁ௡
௠ୀ଴      (7) 

and of the (single) contributions to the topographic potential model   

ߪ
௏೙
ሺ೛ሻ
ଶ ൌ 	∑ ቀܸܥതതതത௡௠

ሺ௣ሻଶ ൅	ܸܵതതതത௡௠
ሺ௣ሻଶቁ௡

௠ୀ଴         (8) 

are shown in Fig. 2 and 3 as a function of the harmonic degree 	݊.  Both figures clearly show that 
raising the band-limited (to degree ݊	 ൌ 	2,160) THF ሺܪ/ܴሻ to integer power	݌ produces spectral 
energy to harmonic degree 	݌ ∙ ݊ [cf. Hirt and Kuhn, 2014, Fig 2. ibid]. While there is a pronounced 
drop in spectral energy near degree 	݌ ∙ ݊ for the low integer powers (say up to 5), the higher integer 
powers of the THF exhibit a rather smooth, continuous decay in energy over all of their spectrum 
that reaches the noise level at degree 	݌ ∙ ݊ (Fig. 2).  

Fig. 3 shows the contribution made by each of the THFs to the topographic potential (various 
colors) as well as the spectrum of the topographic potential as the sum of all contributions (black 
line). The spectrum of the topographic potential experiences a sharp drop of ~2 orders of magnitude 
(from 10-20 to 10-22) at degree ݊	 ൌ 	2,160, showing that the bulk of spectral energy of the potential 
is concentrated in the band-width ሾ0	2,160ሿ  of the input topography. The multiples of the input 
band-width are dominated by the higher-order integer powers, e.g., the second multiple, band 
ሾ2,161	4,320ሿ by ݌	 ∈ 	 ሾ2	5ሿ and the third multiple (band ሾ4,321	6,420ሿ)  by the contributions 
associated with  ݌	 ∈ 	 ሾ3	11ሿ.  In the fourth and fifth multiple (i.e., to 	ൌ 	10,800 ), all higher order-
powers to ݌	 ൎ 15 make quite comparable contributions to the topographic potential. For ݊	 ൐
	17,280 the spectrum is dominantly defined through the highest integer powers (݌	 ൌ 15ሻ 
considered here, suggesting that spectral modelling is not entirely complete in the highest degrees. 
Notwithstanding, global comparisons (Sect 4.3) will demonstrate that the level of completeness 
achieved here is good enough for accurate spectral gravity forward modelling. 

Fig. 3 shows that the spectral energy of the topographic potential experiences quite a slow decay 
beyond degree ݊	 ൌ 	2,160, from the level of 10-22 to 10-25 ሺ݊	 ൌ 	10,800ሻ.	 The spectral energy of 



the potential generated by our degree 2,160-topography falls below the 10-25-level around degree 
݊	 ൌ 	~10,800. In summary Fig. 3 demonstrates the importance of the higher-order integer powers 
for modelling of the topographic gravitational signals at short spatial scales, beyond the resolution 
of the input topography mass model. 

 

Figure 2. Degree variances of the first fifteen  integer powers p of the topographic height function (H/R) from the 

model RET2012 up to degree 2160. 

 

Figure 3. Degree variances of the first fifteen powers of the topographic potential from the model RET2012 up to 

degree 21,600 and total contribution (black line). 

 



5.2 Local experiment 

As the test area for the local experiment, a 2 x 2 degrees area in the Himalayas (27° to 29° 
geocentric latitude and 84° to 86° longitude) was selected. With a range in elevation of ~6700 m 
(in the degree-2160 RET2012 model), this area features rough topography, including the Mount 
Everest Summit as well as low-lying terrain (Fig. 4a). Fig. 4b shows gravity disturbances from 
spectral forward-modelling (computed here to ݊ ௠௔௫	 ൌ 	21,600 and ݌௠௔௫	 ൌ 	15 with Eqs. [4] and 
[5]) over the test area. From Fig. 4c, these are in excellent agreement with those from Newtonian 
integration (computed at 1 arc-min resolution from highest-resolution elevation grids, cf. Table 1, 
“local experiment” for details). The maximum value of the differences between the results of the 

two different approaches is ~15	Gal and the root-mean-square (RMS) is ~2	Gal (Fig. 4c). 

 

Figure 4. Results of the local and global experiment over Himalaya test area: (a) topography at 1 arc‐min resolution; 

(b) gravity disturbances from the spectral method (ܰ௠௔௫	 = 21,600) at 1 arc‐min resolution (c) differences between 

gravity disturbances from spectral modelling and Newtonian integration (use of high‐resolution integration, cf. Table 

1) at 1 arc‐min resolution, (d) as before, but Newtonian integration at 5 arc‐min resolution and lower oversampling 

factor  (global  experiment).    The  comparison  between  panels  (c)  and  (d)  exemplifies  the  increased  level  of 

discretisation errors in the global experiment. Note the different color scales in panels (c) and (d).  Unit in km (a) and 

mGal (b‐d). 

For the spectral approach over the Himalaya test area, Fig. 5a gives a detailed breakdown of RMS 
signal strengths of gravity disturbances at the Earth’s surface for the single contributions ݌	 ∈
	ሾ1	15ሿ (vertical axis) and spectral windows, from band ሾ0	2,160ሿ to ሾ19440	21,600ሿ (horizontal 
axis). As expected, the largest contribution is made by the linear term (݌ ൌ 1, RMS = ~394 mGal). 
Integer powers ݌ ൌ 	2 to 5 contribute ~20, ~6, ~2 and ~1 mGal signals in band ሾ0	2,160ሿ.	 
Significant signals at the ~1mGal level are generated by the second multiple (band 
ሾ2,161	4320ሿ, ݌ ∈ 	 ሾ2	4ሿሻ, while the signal strengths associated with ݌ ൏ 7	and ݊ ൏ 	6420 reach 

0.1 mGal or more (yellow). RMS-contributions at the 10-Gal level (green) and 1-Gal level (light 



blue) are made by various multiples and integer powers, up to ݊ = ~12,960 and ݌ ൌ 15. Fig 5a also 
shows which spectral contributions are non-existent (white) or insignificant (dark blue) over our 
test area. 

 

Figure 5. Local experiment: (a) RMS (root‐mean‐square) signal strengths of gravity disturbances from the RET2012 

topography model evaluated at the Earth’s surface as a  function of the contribution p  (vertical axis) and spectral 

bands (multiples of 2,160 harmonic degrees n, horizontal axis) over the Himalaya test area, unit in mGal. (b) RMS of 

residuals  (= differences between gravity disturbances  from spectral modelling minus Newtonian  integration) as a 

function  of maximum  contribution   	௠௔௫݌ taken  into  account  and  harmonic  degree  n. Unit  in mGal,  number  of 

computation points is 14,400. 

Fig. 5b provides a detailed look at the agreement between gravity disturbances from Newtonian 
integration and spectral modelling, as a function of the maximum harmonic degree ݊௠௔௫	 and 
maximum integer power  ݌௠௔௫	 used in Eq. (4).  The RMS-values generally decrease the higher 
݊௠௔௫	and ݌௠௔௫	, with the ~1 mGal level reached for ݌௠௔௫	 ൌ 4 and ݊௠௔௫	 ൌ 	4320 and the best 

agreement (~2 Gal RMS level) reached for ݌௠௔௫	= 13 and	݊௠௔௫	 ൌ 	12,960. For higher powers 

and harmonic degrees considered in the modelling, the agreement remains at the ~2 Gal level (cf. 
Fig. 4b and 5b) over our local test area, suggesting that the residuals between both methods mostly 
reflect numerical integration errors. Importantly, Fig. 5b shows that the RMS of the gravity 
disturbance differences (between both methods) would stay at the 4 mGal-level (22 mGal 
maximum differences) if the gravity signals were modelled to ݊௠௔௫		 ൌ 	2,160 only. This 
emphasizes the importance of short-scale spectral modelling to ensure consistency with the 
Newtonian integration. 

5.3 Global experiment 

The global experiment provides insight into the agreement of gravity disturbances from both 
methods across the globe. Because of the large number of computation points (~9.3 million at 5 
arc-min resolution vs. 14,400 in the local experiment), the resolution of the near-zone topography 
in the numerical integration had to be lowered from 5 arc-sec to 30 arc-sec (Table 1). As a 
consequence, the oversampling of the degree-2160 topography is reduced from factor 60 down to 
10. Fig. 6 shows the global grid of gravity disturbances from Newtonian integration and Table 2 



reports the descriptive statistics of gravity disturbances from both methods, of the differences 
“spectral modelling minus Newtonian integration” and of the signal strengths associated with the 
input-band width  ሾ0	2,160ሿ and additional nine multiples.  Fig. 7 shows the global differences 
between gravity disturbances from spectral forward modelling (݌௠௔௫	 ൌ 15, 	݊௠௔௫	 ൌ
21,600, 	݇௠௔௫	 ൌ 15ሻ and Newtonian integration. From Table 2 and Fig. 7, the global statistics of 

both solutions are in very good agreement, with the differences being at the ~8 Gal level (RMS).  

 

Figure 6. Global experiment: Gravity disturbances at the Earth’s surface from Newtonian  integration at 5 arc‐min 

resolution. Unit in mGal, Mollweide projection. 

 

Figure 7: Global experiment: Differences between gravity disturbances from spectral modelling (ܰ௠௔௫ 	ൌ 21,600ሻ 
and Newtonian integration at 5 arc‐min resolution at Earth’s surface. Unit in mGal, Mollweide projection. 



Table 2. Descriptive statistics of gravity disturbances in various spectral bands. Gravity disturbances were evaluated 

at the RET2012 topographic surface (and at H=0 m over the oceans) at 5 arc‐min resolution globally.  Units in mGal. 

Result or spectral band Min Max Mean RMS 

Spectral (0 to 21600)  ‐837.5964  627.0566  ‐281.5447  348.5240 

Newtonian integration  ‐837.5661  627.0558  ‐281.5461  348.5233 

Spectral minus integration a  ‐1.2603  0.5211  ‐0.006  0.0083 

0  to  2160  ‐837.8613  627.3182  ‐281.5451  348.5248 

2161 to  4320  ‐30.5665  43.8098  0.0003  0.5137 

4321 to  6480  ‐12.9055  7.1085  0.0001  0.0405 

6481 to  8640  ‐8.5055  4.7439  0.0000  0.0144 

8641 to 10800  ‐3.2267  5.6946  0.0000  0.0083 

10801 to 12960  ‐2.3412  2.3242  ‐0.0000  0.0048 

12961 to 15120  ‐1.6076  0.7966  ‐0.0000  0.0020 

15121 to 17280  ‐0.2114  0.2774  0.0000  0.0005 

17281 to 19440  ‐0.0368  0.0412  0.0000  0.0001 

19441 to 21600  ‐0.0036  0.0032  0.0000  0.0000 
a cells closer than 1° to the poles excluded. 

Over land areas, gravity disturbances from both approaches are in 3.6 Gal RMS agreement 
(maximum difference 0.36 mGal), while the discrepancies are about three times higher over the 

oceans with 10 Gal RMS (maximum difference ~1.26 mGal), cf. Table 3 and Fig. 7.  In 
comparison between land and ocean areas, overall land topography is smoother than bathymetry, 
which is reflected through increased discrepancies between both methods, particularly along ocean 
trenches and sea-floor ridges (Fig. 7). 

In comparison to the extremely detailed numerical integration applied in our local experiment 
(Table 1), the RMS agreement over the 2 x 2 degrees Himalaya area deteriorates in our global 

computation from 2 Gal to 18Gal and maximum discrepancies increase from 0.02 mGal to 0.12 
mGal (compare Fig. 4c and 4d). The only parameter changed between the global and local 
experiments is the resolution of topography grids (Table 1), and thus the oversampling factor of 
the near-zone topography (factor 60 vs. 10). Hence, it is the discretisation error in the numerical 
integration associated with the reduced oversampling that is primarily reflected by the differences 
in Fig. 7. 

Table 2 (bottom part) reports the signal strengths of gravity disturbances in ten spectral bands of 
2,160 degrees width, from ሾ0	2160ሿ up to ሾ19,440	21,600ሿ. While the RMS as a measure for the 

average signal strength quickly drops, from ~0.5 mGal (ሾ2,161	4,320ሿ) below the ~1 Gal level 
(beyond degrees 15,120), there are gravity signal contributions with mGal-amplitudes present up 
to ultra-high degrees (say, 15,120). A comparison between Newtonian integration and spectral 
forward modelling with varying maximum harmonic degree 	݊௠௔௫	 ∈ 	 ሾ2,160		4,320	… 	21,600ሿ 
shows that modelling of these very short-scale gravity signals improves the (global) agreement 
with Newtonian integration up to degree ~17,280 (cf. Table 3). 



Table 3.  Statistics of gravity differences “spectral modelling minus Newtonian integration” over land areas (# 

3,130,130 cells) and ocean areas (# 6,114,670 cells), reported as a function of the maximum harmonic degree of the 

spectral model.  Cells closer than 1° to the poles excluded. Unit in mGal. 

Spectral band  Land cells  Ocean cells 

  Abs(max,min)  RMS  Abs(max,min)  RMS 

0 to 2160  38.7  0.721  29.6  0.359 

0 to 4320  8.7  0.061  2.7  0.022 

0 to 6480  5.1  0.019  0.8  0.012 

0 to 8640  5.8  0.011  0.5  0.011 

0 to 10800  1.8  0.008  0.7  0.0101 

0 to 12960  1.4  0.005  1.7  0.0099 

0 to 15120  0.36  0.0036  1.37  0.0099 

0 to 17280  0.36  0.0036  1.24  0.0099 

0 to 19440  0.36  0.0036  1.26  0.0099 

0 to 21600  0.36  0.0036  1.26  0.0099 

 

We inspected the convergence of the spectral solution over those areas where the largest differences 
w.r.t. the numerical integration were present. Over land areas, the spectral method exhibits very 
slow convergence over a region bounded by 24° to 28° geocentric latitude and 81 to 85° longitude. 
Fig. 8 details the convergence behaviour as a function of 	݊௠௔௫	 used in the spectral method (array 
of 4 x 2 panels) and draws a comparison with the topography over that region (right panel). 
Surprisingly, the largest differences do not coincide with highest or roughest topography, but occur 
in the vicinity, over smooth and low-lying terrain (compare gravity differences with topographic 
heights in Fig. 8).  Even for 	݊௠௔௫	= 10,800 and 12,960, the maximum differences between gravity 
from both methods exceed the 1 mGal level. The associated error patterns (a result of the truncation 
of the spectral model) bear resemblance with a “fan”, the amplitudes of which reduce with 
increasing		݊௠௔௫	. They finally disappear when the spectral modelling is extended to 	݊௠௔௫	 ൌ
	17,280 (cf. Fig. 8), leaving numerical integration errors of ~0.1-0.2 mGal amplitude as the 
governing source of discrepancies. 

Over the ocean areas, spuriously large gravity differences were detected near Kiribati (Oceania) at 
1°S latitude and 168°W longitude (Figure 9) above an ocean trench.  Over that area, the agreement 
between gravity from both methods is excellent for 	݊௠௔௫	 ∈ 	 ሾ4,320	6,480	8640ሿ (discrepancies 
are well below the mGal-level), but deteriorates for higher harmonic degrees. From Fig. 9, error 
patterns of ~1-2 mGal amplitude build up over the ocean trench when 	݊௠௔௫	 is extended to 10,800 
or higher (computation points in both methods are located at ܪ ൌ 0ሻ. We interpret this behaviour 
as divergence in spectral forward modelling, which emerges as the gravity modelling is extended 
to ultra-high degree, in our case beyond degree ~8,640 (also see histograms of differences in Fig. 
10). With ~1.70 mGal, the amplitude of the error pattern is largest for 	݊௠௔௫	 ൌ 12,960 (Fig. 9 and 
Table 3), but reduces to ~1.26 mGal for 	݊௠௔௫	 ൌ 	21,600. 



 

Figure  8.  Fan  effect  in  spectral  forward  modelling:  Gravity  differences  “spectral  method  minus  Newtonian 

integration“  as  a  function  of  the maximum  degree  ܰ௠௔௫	considered  in  the  spectral  modelling,  unit  in  mGal. 

Differences are shown for 8 different ܰ௠௔௫	(2160 to 17,280) over area bounded by 23 to 31° geocentric latitude and 
80  to 86°  longitude.   For comparison purposes,  topographic heights  (from  the degree‐2160 RET2012 model) are 

shown on the right side over the same area, unit in km. The figure shows an area of rather slow convergence near 

rugged topography. 

 

Figure 9. Divergence in spectral forward modelling: Gravity differences spectral method minus Newtonian integration 

as a function of the maximum degree ܰ ௠௔௫	considered in the spectral modelling, unit in mGal. Differences are shown 

for 8 different ܰ௠௔௫	(2160 to 17,280) over area bounded by ‐3 to 2° geocentric latitude and ‐171 to ‐166° longitude.  
For comparison purposes, bathymetric (RET) depths (from the degree‐2160 RET2012 model) are shown on the right 

side over the same area, unit in km. The figure shows an area of moderate divergence over deep bathymetry that is 

related to the multiples of the input‐bandwidth in the spectral method. 

The histograms of gravity differences (Fig. 10) and statistics (Table 3) clearly suggest that there 
are no areas of divergence over the world’s oceans when the spectral model is extended to 	݊௠௔௫	 ൌ
8640 (magnitude of all differences are always smaller than 0.5 mGal). For land areas, the best 
agreement between both methods is achieved for all	15,120		൑ 	݊௠௔௫	 ൑ 21,600. While the 



convergence is rather slow near rugged mountain areas (e.g., Fig. 8), there is no indication of 
divergence at all over land areas (Fig. 10, bottom row). 

 

Figure 10. Histograms of gravity disturbance differences “spectral forward modelling minus Newtonian integration”, 

reported for land areas (left column) and ocean areas (right column) for truncations ܰ ௠௔௫ ൌ 8,640 (top row), ܰ ௠௔௫ ൌ 
12,960 (middle) and ܰ௠௔௫ ൌ 21,600 (bottom row). Unit in mGal, class width 0.1 mGal in all cases.  

6. Discussion 

We have cross-validated topographic gravity - as implied by a degree-2160 topographic mass 
model - using two independent gravity forward modelling techniques. Our global validation 
experiment (Sect. 5.3) revealed an agreement between gravity from both methods over land areas 

at the ~4 Gal-level, with the maximum discrepancies always smaller than 0.5 mGal. Over the 



oceans, the RMS-agreement was found to be at the ~10 Gal level (RMS), with maximum 
discrepancies exceeding the 1 mGal threshold only for two cells near Kiribati (Fig. 10), close to a 
deep ocean trench. Given these discrepancies reduce to 0.5 mGal, when the spectral modelling is 
limited to	݊௠௔௫	 ൌ 8,640, it is reasonable to conclude that both methods are suitable for gravity 
modelling over the oceans too. Overall, the agreement can be considered very good, providing a 
satisfactory check on (a) the Newton integration with discretized mass-elements, and (b) the 
convergence of the spherical-harmonic series expansion of the topographic potential over most of 
the globe. 

The local validation experiment (Sec. 5.2) demonstrated that the aforementioned discrepancies are 
primarily due to discretisation errors of the mass model in the numerical integration. Higher 
oversampling of the mass model (near the computation points) would – without doubt – further 
improve the agreement with the spectral method and certainly reduce many of the ~0.2 mGal 
discrepancies over steep terrain (cf. evidence in Fig. 4c and 4d). This, however, is not required in 
view of most practical applications and little justifiable in view of the massive additional 
computational resources required compared to those already used (cf. Table 1). 

Contrary to our initial expectation, the area chosen for the local experiment (rugged topography 
including the Mount Everest) did not serve well as a worst-case scenario for modelling errors. It 
was only through the global experiment that areas of largest discrepancies could be detected and 
investigated (Figures 8 and 9). This demonstrates that largest modelling errors do not necessarily 
occur over areas of roughest topography, but – as in our example – over flat terrain near the high 
mountains, and over one (but not the deepest) of the ocean trenches. As important lesson learned, 
global validation experiments cannot be reliably substituted through – even thoughtfully selected 
– local test areas. 

Our numerical study has shown that the topographic gravity field – as generated by a degree-2160 
topographic mass model – reaches significant signal amplitudes at the 20 mGal level beyond degree 
2160, while its power is negligible beyond degree ~17,280. In terms of maximum signals, about 
~90% of this short-scale spectral energy is concentrated in the second multiple of the input band 
(degrees 2161-4320), another ~8 % in the third multiple, and the remainder beyond harmonic 
degree 6480. The consideration of these short-scale signals is important in any comparison against 
Newtonian integration. This is because the numerical integration inherently delivers spectrally 
complete gravity effects, and spectral consistency is mandatory for meaningful cross-comparisons 
between the two forward techniques [Hirt and Kuhn, 2014].   

As a side note, our numerical comparisons revealed the importance of the higher-order powers of 
the topographic height function up to integer power 13, when a complete gravity field model of a 
degree-2160 Earth topography is to be computed. This augments previous studies by Hirt and Kuhn 
[2014] who demonstrated the relevance of integer powers of 6 (for a gravity model to degree 2160 
generated by a degree-360 topography), and Chambat and Vallete [2005], who showed the 
significance of integer power 2 (using a degree 360 topography and comparisons against EGM96). 



The gravity field of Earth’s topography was forward-modelled in spherical approximation (i.e. 
Earth approximated as a mass-sphere and topography mapped onto the surface of that sphere) and 
not in the more advanced ellipsoidal approximation (i.e. forward modelling w.r.t. mass ellipsoid 
and no mapping). Given that the differences between topographic gravity from both levels of 
approximation are very small (for degree-2160 models: maximum difference less than 5 mGal, 
RMS about 1.2 mGal, cf. Claessens and Hirt [2013]), our study makes an indirect contribution 
towards the validation of topographic gravity modelling in ellipsoidal approximation too. 
Notwithstanding, a direct validation of topographic gravity modelling in ellipsoidal approximation 
is considered important and possible with a similar methodology. 

7. Conclusions 

As the key conclusion of this paper, all series expansions involved in the spectral forward 
modelling technique could be shown to sufficiently converge for a degree-2160 Earth topography 
model over most of Earth’s surface. As such, evidence is obtained that the spectral forward 
modelling technique is suitable for modelling of Earth’s topographic potential from degree-2160 
topographies in spherical harmonics, and, thus, accurate construction of global Bouguer gravity 
maps with 10 km resolution. The divergence effect detected near Kiribati occurred for ultra-high 
degrees, beyond degree 8,640 only, so is not a critical effect for Bouguer gravity maps that are 
band-limited to degree 2,160. 

With a maximum harmonic degree of 2,160 (~10 km in North-South direction), the spectral band-
width of our topography model was chosen commensurate with those of modern geopotential 
models such as EGM2008 [Pavlis et al., 2012] or models from the EIGEN initiative [Förste et al., 
2014]. In view of global Bouguer gravity maps from these GGMs, our study shows a more than 
adequate precision for the computation of the topographic gravity component. As a central 
outcome, large discrepancies of several 10s of mGal between topographic gravity computations, 
as reported in other studies [e.g., Yang et al., 2010], are not a concern for modern degree-2160 
Bouguer gravity maps (constructed with the methods described in our paper). There is little doubt 
that the discrepancies reported in Balmino et al. [2012] and Yang et al. [2010] are (at least partially) 
explained due to not modelling the short-scale gravity signals beyond the bandwidth of the input 
topography in the spectral method. 

Crucial to the success of the cross-validation was the expansion of the topographic potential into 
multiple integer powers of the topographic height function and, most importantly, explicit 
modelling of the short-scale signals much beyond the spectral resolution of the input topography 
model. Starting from a degree-2160 model of Earth’s topography, we modelled the contributions 
of its integer powers to the implied topographic potential to power 15 and short-scale gravitational 
signals to ultra-high degree of 21,600, yielding a very complete spectral model of the topographic 
potential generated by our band-limited topography. To our knowledge, a similarly high-resolution 
topographic gravity modelling effort has not been presented before. This may also be related to the 
significant computational expenses related to Newtonian integration and to spectral forward 



modelling, where multiple SHA to ultra-high degree were required to construct a widely complete 
spectral model of the implied gravity field. 

As future work, a detailed examination of the convergence and accuracy of the spectral forward 
method is required for degree-10800 topography, as already used in the context of UNESCO’s 
WGM2012 world gravity mapping [Bonvalot et al., 2012]. This, however, is deemed to be 
computationally extraordinarily challenging, given the necessities to model short-scale signals 
down to sub-km scales in spherical harmonics (or multiples of degree 10,800), and several higher-
order integer powers of the topographic mass model. 
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