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Abstract 19 

In gravity forward modelling, the concept of Rock-Equivalent-Topography (RET) is often used 20 

to simplify the computation of gravity implied by rock, water, ice and other topographic 21 

masses.  In the RET concept topographic masses are compressed (approximated) into 22 

equivalent rock, allowing the use of a single constant mass-density value.  Many studies 23 

acknowledge the approximate character of the RET, but few have attempted yet to quantify 24 

and analyse the approximation errors in detail for various gravity field functionals and heights 25 

of computation points.  Here we provide an in-depth examination of approximation errors 26 

associated with the RET compression for the topographic gravitational potential and its first- 27 

and second-order derivatives.  Using the Earth2014 layered topography suite we apply 28 

Newtonian integration in the spatial domain in the variants (a) rigorous forward modelling of 29 

all mass bodies, (b) approximative modelling using RET. The differences among both variants, 30 

which reflect the RET approximation error, are formed and studied for an ensemble of 10 31 
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different gravity field functionals at three levels of altitude (on and 3 km above the Earth’s 32 

surface and at 250 km satellite height). 33 

The approximation errors are found to be largest at the Earth’s surface over RET compression 34 

areas (oceans, ice shields) and to increase for the first- and second-order derivatives. Relative 35 

errors, computed here as ratio between the range of differences between both variants relative 36 

to the range in signal, are at the level of 0.06-0.08 % for the potential, ~3-7% for the first-order 37 

derivatives at the Earth’s surface (~0.1 % at satellite altitude). For the second-order derivatives, 38 

relative errors are below 1% at satellite altitude, at the 10-20% level at 3 km and reach 39 

maximum values as large as ~20 to 110 % near the surface.  As such, the RET approximation 40 

errors may be acceptable for functionals computed far away from the Earth’s surface or studies 41 

focussing on the topographic potential only. However, for derivatives of the functionals 42 

computed near the Earth’s surface, the use of RET introduces very spurious errors, in some 43 

cases as large as the signal, rendering it useless for smoothing or reducing of field observation, 44 

thus rigorous mass modelling should be used for both spatial and spectral domain methods. 45 

Keywords: Rock-Equivalent Topography (RET); Topographic potential; First and second-46 

order derivatives; Spherical Approximation; Discretized Newtonian integration 47 

 48 

1  Introduction 49 

Approximation of the ‘real’ topography by Rock-Equivalent-Topography (RET) is a common 50 

concept used when modelling gravitational effects of the Earth’s topography (e.g. Lee and 51 

Kaula 1967, Balmino et al. 1973, Rummel et al. 1988, Wieczorek 2015) or when inferring 52 

geophysical parameters from relations between Earth’s topography and its gravity field (e.g. 53 

Lambeck 1976).  The RET concept replaces a mass distribution with varying density by a 54 

simplified distribution of equal mass and constant mass-density (e.g. RET reference density).  55 

While the RET concept can relate to any mass anomaly (e.g. topography, crust, mantle, etc.) it 56 

is usually referred to the Earth’s topography including oceans, ice sheets and lakes.  In this 57 

study we use the term RET but acknowledge that there is no consistent terminology and, 58 

amongst others, terms like Equivalent Rock Topography (e.g. Lee and Kaula 1967, Balmino et 59 

al. 1973), Equivalent Rock Height (e.g. Kuhn and Seitz 2005, Baran et al. 2006), and Rock 60 

Equivalent Heights (e.g. Makhloof and Ilk 2008a, Grombein et al. 2010, 2014b) are in use.   61 

 62 
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Underlining the importance of this study, a large number of studies have and continue to use 63 

the RET concept for simplified modelling of gravitational effects induced by the Earth’s 64 

topography (e.g. Chambat and Valette 2005, Kuhn and Seitz 2005, Kuhn et al. 2009, Grombein 65 

et al. 2010, Hirt and Kuhn 2012, Hirt 2013, Claessens and Hirt 2013, Hirt and Kuhn 2014, Hirt 66 

et al. 2014, Hirt et al. 2015, Forsberg and Jensen 2015, Hirt et al. 2016) and of isostatic 67 

compensation masses (e.g., Sünkel 1985, Rummel et al. 1988, Pavlis and Rapp 1990, Tsoulis 68 

1999, Heck and Wild 2005, Wild and Heck 2005, Makhloof and Ilk 2008a, 2008b, Göttl and 69 

Rummel 2009, Bagherbandi 2011, Tsoulis and Patlakis 2013, Grombein et al. 2014a, 2014b).  70 

For the construction of synthetic Earth gravity models, the RET concept is frequently used 71 

allowing  the synthetic model to be based on simplified mass sources (e.g. Haagmans 2000, 72 

Kuhn and Featherstone 2003, 2005, Claessens 2003, Baran et al. 2006, Tsoulis and Kuhn 2007, 73 

Fellner et al. 2012).  Spectral analysis of the Earth’s shape and induced gravitational field also 74 

benefits from  the RET concept (e.g. Lee and Kaula 1967, Balmino et al. 1973, Jekeli 1983, 75 

Rapp 1982, 1989, Balmino et al. 2012, Tsoulis and Patlakis 2013, Rexer and Hirt 2015).  Most 76 

of the studies listed above focus on global gravity field modelling where the RET concept is 77 

often used to smooth satellite-based gravity field observations.  However, some studies also 78 

use the RET concept for regional gravity field modelling on or close to the Earth’s surface with 79 

focus on (Bouguer) gravity anomalies or the provision of fill-in gravity information (e.g. Hirt 80 

2013, Forsberg and Jensen 2015).   81 

 82 

In geophysical applications the RET concept is often deployed to infer parameters of the solid 83 

Earth such as density variations (e.g. Arkani-Hamed 1970, Lambeck 1979, Matyska 1989), 84 

crustal thickness (e.g. van Hees 2000, Llubes et al. 2003, Zhang 2005, Petrov et al. 2016), 85 

elastic thickness of the lithosphere (e.g. Stark et al. 2003, Kirby and Swain 2008, Audet 2014, 86 

McKenzie 2010, McKenzie et al. 2015) and mantle convection (e.g. Cadek and Matyska 1990, 87 

1991).  In the geophysical literature, the RET concept is also known as bathymetric correction 88 

used in computations of Bouguer gravity anomalies at sea where ocean water is replaced by an 89 

equivalent rock layer (e.g. Sleep and Fujita 1997, Tsoulis 2001, Tziavos and Sideris 2013).   90 

 91 

Several studies have acknowledged the advantages and disadvantages of using the RET 92 

concept.  Most argue that the main advantage is the use of a single constant mass density for 93 

all masses, allowing for simplified modelling (e.g. Pavlis and Rapp 1990, Kuhn and 94 

Feathersone 2005, Kuhn and Seitz 2005, Tsoulis and Kuhn 2007, Göttl and Rummel 2009, 95 

Grombein et al. 2010, Hirt and Kuhn 2012, Hirt 2013, Hirt et al. 2014, Kalberg et al. 2015).  96 
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For example, Pavlis and Rapp (1990) note, when modelling gravitational effects, the use of a 97 

single constant mass density provides considerable save of computational resources. This is 98 

because time-consuming evaluation of Newton’s integral in both the space and frequency 99 

domains (e.g. Kuhn and Seitz 2005, Hirt and Kuhn 2014) has to be performed only once rather 100 

than as often as there are different mass anomalies.  Moreover, the use of a constant density 101 

allows for joint simplified modelling of both topographic and isostatic compensation masses 102 

for spherical harmonic representations of the induced gravitational field (e.g. Rummel et al. 103 

1988, Göttl and Rummel 2009).  However, this simplification comes at the expense of a change 104 

in mass distribution in both geometry and density of the topographic masses whenever the mass 105 

considered has a density different to the RET reference density. This is most notably the case 106 

for ocean water and ice (e.g. Tsoulis and Kuhn 2007).  In some instances, the approximation 107 

may be permitted when dealing with local topographic loads where mass equivalence 108 

guarantees equal loads.  However, because a change in mass distribution usually results in a 109 

change of the induced gravitational field, the RET concept introduces errors in gravity field 110 

modelling based on topographic mass models. 111 

 112 

Even though approximation errors associated with the RET concept are often acknowledged, 113 

their magnitude has rarely been quantified.  Grombein et al. (2010) has demonstrated the effect 114 

on gravity gradients at GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) 115 

flight altitude showing approximation errors to a maximum level of 24 mE (1E = 10-9s-2) over 116 

deep ocean areas, which is well above the GOCE measuring accuracy of 1-2 mE (for the 117 

diagonal components M11, M22, M33 and off-diagonal element M13, of the Eötvös tensor, e.g. 118 

Rummel at al. 2011) and an adequate level of accuracy of well below 1 mE for modelled gravity 119 

gradients effects from topographic masses.  Therefore, Grombein et al. (2010) recommend that 120 

a rigorous (separate) modelling of all mass distributions should be done in favor of the RET 121 

concept.  Some other studies now consider the more rigorous approach by separate modelling 122 

of all mass distributions involved (e.g. Eshagh 2009a, Tenzer et al. 2010, Balmino et al. 2012, 123 

Grombein et al. 2014a).   124 

 125 

The main aim of this study is to provide a rigorous and comprehensive quantification of 126 

approximation errors associated with the RET-concept based on comparisons with rigorous 127 

modelling of rock, ice and water mass bodies.  Apart from focusing on common RET 128 

applications in satellite gravity field modelling only this study also focuses on less common 129 

airborne and terrestrial applications so to provide a comprehensive insight into potential 130 
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approximation errors.  For this, approximation errors are investigated for commonly used 131 

gravitational functionals, the gravitational potential and its first- and second-order derivatives. 132 

Furthermore, each gravity functional is modelled at the most common observation or modelling 133 

locations, e.g., (i) at the Earth’s surface (or close to it; e.g. terrestrial), (ii) at an air plane flight 134 

height of 3 km (e.g. air-borne) and (iii) at a satellite flight height of 250 km (e.g. GOCE; space-135 

borne) accounting for the attenuation of gravity with height.   136 

 137 

2  Data and Methods 138 

2.1  Topography Data 139 

The topographic masses used in this study are based on the Earth2014 model suite (Hirt and 140 

Rexer 2015, http://ddfe.curtin.edu.au/gravitymodels/Earth2014/).  Here we use the Earth2014 141 

5 arc-minute topography grids representing the Earth’s surface heights HSUR (component 142 

“SUR2014” representing the interface between solid or liquid masses and air), bedrock heights 143 

HBED (component “BED2014”) and thickness of the major ice sheets over Greenland and 144 

Antarctica HICE (component “ICE2014”).  From these we derive five major mass bodies 145 

describing the Earth’s topography (cf. Figure 1) including (1) dry bedrock masses above Mean 146 

Sea Level (MSL), (2) ocean water masses, (3) ice sheet masses, (4) major lake water masses 147 

(Great Lakes, Caspian Sea and Lake Baikal), and (5) air masses below MSL (e.g. dry bedrock 148 

below MSL).  As such, in this study, the term ‘Earth’s topography’ refers to the envelope of 149 

all five mass bodies described above.   Note that the Earth2014 model suite also provides a pre-150 

computed RET-layer in planar approximation, which, however, is not used here (cf. Sect. 2.2). 151 

 152 

 153 

Figure 1:  Major terrain types characterizing the Earth topography in spherical approximation.  Terrain types are 154 

described by their respective heights above (positive)/below (negative) the MSL (e.g. mean sphere with radius R).  155 

 156 
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The mass bodies are described by their horizontal and vertical extensions and mass-density 157 

values.  While the horizontal extension is given by the extension of the gridded data (e.g. 5 arc-158 

minute by 5 arc-minute) the vertical extension is described by their respective heights above 159 

(positive)/below (negative) MSL.  The mass-density values used in this study are summarized 160 

in Table 1. 161 

Table 1:  Mass-density values used in this study. 162 

Mass Type 
Density Value 
[kg×m-3] 

RET 2670 

Bedrock 2670 

Ocean water 1030 

Lake water 1000 

Ice 927 

Air approx. 0 
 163 

2.2  The Rock-Equivalent-Topography Concept 164 

Following the principle of Balmino et al. (1973), Rock-Equivalent Topography (RET) is 165 

obtained by ‘compressing’ all mass anomalies above the bedrock into equivalent rock mass.  A 166 

general expression for the RET height is given by  167 

cBEDRET HHH              (1) 168 

where HBED is the height of the bedrock and Hc is the (effective) thickness of the mass body 169 

after compression into equivalent rock.  Note that the formulation is independent of the 170 

approximation level used for the height reference surface. Height values used in this notation 171 

are measured above (positive)/below (negative) a given reference surface (e.g. MSL).  The 172 

(effective) thickness Hc can be the result of either a single or multiple mass anomalies 173 

‘stacked’ onto each other.  For clarity here we present the RET concept using a single mass 174 

anomaly at a given location which, however can be easily extended to multiple mass anomalies 175 

if required (e.g. Claessens 2003, Hirt 2014, Hirt and Rexer 2015).  The determination of Hc 176 

is based on the principle of local mass equivalence – within the same mass column  – between 177 

anomalous masses of density  and compressed masses using the RET reference density 0. 178 

The latter is usually equal to the density of bedrock (e.g., mean density of the Earth’s upper 179 

crust).  Depending on the approximation level used (e.g. planar, spherical, elliptical, etc.) the 180 

determination of Hc will vary.  In planar approximation the well-known relation  181 
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 lowupc HHHH 
00 





            (2) 182 

is used, where the vertical extension (e.g. thickness H) of the anomalous mass is scaled by 183 

the ratio /0 of the respective densities involved (e.g. Balmino et al. 1973).  The anomalous 184 

masses are characterized by the heights of their respective upper and lower limits, Hup and Hlow 185 

where Hlow = HBED when dealing with a single mass anomaly (cf. Figure 2). 186 

 187 

 188 

Figure 2:  RET principle in spherical approximation for a single mass anomaly.  Left: Anomalous masses with 189 

density  located on top of bedrock masses.  The vertical extension of the anomalous masses is given by Hup and 190 

Hlow = HBED.  Right: RET masses with reference density 0 located on the mean sphere with radius R.  The vertical 191 

extension of the RET masses is given by HRET = HBED + Hc (cf. eq. 1). 192 

 193 

In this study we consistently employ spherical approximation for both the calculation of HRET 194 

and gravitational effects (cf. section 2.3).  This is different to many previous studies that 195 

frequently use planar approximation for the calculation of HRET but employ spherical 196 

approximation for the calculation of gravitational effects.  Claessens (2003) showed that 197 

maximum relative differences between planar and spherical HRET are below 0.1% for a 198 

maximum ocean depth of 11 km, thus could be considered to be negligible.  However, to ensure 199 

consistency with the calculation of gravitational effects we use HRET in spherical 200 

approximation.  At a given column (e.g. grid element), mass equivalence between the 201 

anomalous masses and the RET masses in spherical approximation satisfies the condition (e.g. 202 

Rummel et al. 1988, eq. 13) 203 
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with the spherical radii Rup = R + Hup and Rlow = R + Hlow, representing the upper and lower 205 

limits of the mass anomaly, respectively (cf. Figure 2).  Based on Eq. (3) the height change of 206 

the compressed mass anomaly is given by (e.g. Kuhn and Seitz 2005) 207 

  lowlowlowupc RRRRH  3
333

0


.         (4) 208 

It is important to note that the formalism given in Eqs. (1) to (4) does not require discrimination 209 

between mass anomalies above and below MSL.  This implicitly ensures mass anomalies above 210 

and below MSL are modelled by the respective mass-density values  and  = 0   (see 211 

appendix A for numerical proof).  This is consistent with the definition of mass anomalies as 212 

differences to an idealized Earth’s upper crust having the constant density 0 and upper bound 213 

of a mean sphere with radius R. 214 

 215 

2.3  Forward Gravity Modelling 216 

We employ the principle of discretized Newtonian integration (e.g. Kuhn 2000, 2003, Kuhn et 217 

al. 2009, Hirt and Kuhn 2014) to derive the gravitational potential and its first- and second-218 

order derivatives induced by the topographic or RET masses.  This approach evaluates 219 

Newton’s integral through numerical integration by dividing (discretizing) the mass 220 

distribution into a set of regularly shaped mass elements (e.g. point mass, prisms or tesseroids) 221 

whose gravitational field can be computed analytically.  The gravitational effect of the 222 

complete mass distribution is then obtained through superposition of the individual 223 

gravitational effects (e.g., Blakely 1996).  For the gravitational potential this principle can be 224 

exemplified through the approximation of Newton’s integral by (e.g. Hirt and Kuhn 2014) 225 

 



N

n
n

N

n m n

n

M

V
l

dm
G

l

dm
GV

n 11
            (5) 226 

where the gravitational potential ,V  generated by the complete mass distribution M is 227 

obtained by the individual effects nV  of n = 1, …, N mass elements mn.  In Eq. (5), G is the 228 

universal gravitational constant, l and ln are the Euclidean distances to the running integration 229 

points dm and dmn, which denote infinitesimally small mass elements describing M and mn, 230 

respectively.  The sign of V  and nV  follow that of dm and dmn, respectively, e.g. positive 231 

for mass excess and negative for mass deficiencies.  Using the same principle we derive the 232 

first-order derivatives of the gravitational potential by 233 
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  



N

n
n

T
r VVggg

1

)()(,,  g            (6) 234 

where   denotes the gradient operator and rggg    , ,  are the vector components of 235 

gravitational vector g  given here in a local north oriented Cartesian coordinate system with 236 

its axis pointing towards north (e.g. increasing spherical latitude ), towards east (e.g. 237 

increasing spherical longitude ) and upwards (e.g. increasing geocentric radius r).  Here, the 238 

vector components  rggg    , ,  are defined positive for gravitational effects increasing in the 239 

opposite directions of the local north oriented Cartesian coordinate system, e.g. positive 240 

towards, west, south and downwards.  In the same coordinate system, the second-order 241 

derivatives of the gravitational potential are obtained by  242 


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

E          (7) 243 

where E  is the symmetric Eötvös tensor containing all gravity gradients (e.g. Moritz and 244 

Hofmann-Wellenhof 1993).  While E  is also called Marussi tensor (e.g. Hofmann-Wellenhof 245 

and Moritz 2005) we follow the notation in Moritz and Hofmann-Wellenhof (1993) which uses 246 

the former term to indicate the gradient tensor (e.g. Eq. 7) and the latter to express geometric 247 

properties of the gravity field (e.g. Eötvös tensor divided by gravity).  The Eötvös tensor 248 

contains only five independent components as the diagonal components satisfy the Laplace 249 

equation 0 rrVVV   . 250 

 251 

The approximation errors introduced by the mass discretization using Eqs. (5) to (7) depend on 252 

how well the individual mass elements approximate the original mass distribution (see section 253 

3.2 for uncertainty estimates).  In order to reduce the approximation errors caused by mass 254 

elements located in the near vicinity of the computation point we employ the principle of 255 

spherical terrain corrections (e.g. Kuhn et al. 2009) where only masses residual to a spherical 256 

shell are considered in the discretized Newtonian integration (cf. Figure 3).  Exemplified for 257 

the gravitational potential this approach is expressed by  258 

RMSH VVV                 (8) 259 
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where SHV  is the gravitational potential of the spherical shell and RMV  is the gravitational 260 

potential of all residual masses.  Importantly, the vertical dimension of the spherical shell is 261 

selected such that no residual masses are present at the location of the computation point.  This 262 

approach can be applied to any mass distribution (e.g. layer) with irregular top and bottom 263 

surfaces (cf. Figure 3).  264 

 265 

 266 

Figure 3:  Schematic illustration of the generalized concept of spherical terrain corrections for a mass distribution 267 

(layer) with variable top and bottom surface (thick solid line).  In this concept only masses that are residual to a 268 

spherical shell (dashed lines) are considered.  The spherical shell is selected so that no residual masses are present 269 

at the location of the computation point P.  Residual masses outside and inside the shell act as mass excess and 270 

deficiencies, respectively.   271 

 272 

For practical evaluation of Eqs. (5) to (7) we use as elementary mass elements spherical volume 273 

elements (also known as spherical tesseroids; e.g. Anderson 1976) approximated by rectangular 274 

prisms (cf. section 3.1).  Following the methodology by Grüninger (1990), Kuhn (2000) and 275 

Heck and Seitz (2007) the vertical extension of the prism is selected to be identical to the 276 

spherical tesseroid and the horizontal dimensions are obtained for first-order mass equivalence.  277 

In order to account for sphericity, the vertical centre line of a prism is aligned with the radial 278 

direction through the centre of the respective spherical tesseroid (e.g. Kuhn 2000, Heck and 279 

Seitz 2007).  Furthermore, the prism edges are aligned along the local north-south, east-west 280 

and radial directions (e.g. along a local north oriented Cartesian coordinate system).  In order 281 

to derive the gravitational potential and its first- and second-order derivatives we employ the 282 

analytical formulae for a rectangular prism provided by, e.g. Mader (1951), Nagy (1966), Nagy 283 

et al. (2000).  We acknowledge also the possibility to employ the tesseroid formulae introduced 284 
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by Heck and Seitz (2007) and optimized by Grombein et al. (2013) as an alternative 285 

computational approach (see also Deng et al. 2016).  286 
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3  Numerical Study 287 

3.1  General 288 

The goal of our numerical study is to carefully examine the Earth’s topographic potential and 289 

first- and second-order derivatives using (i) rigorous topographic and (ii) approximate RET 290 

mass modelling (cf. sections 2.1 and 2.2). Particular focus will be placed on the differences in 291 

the respective gravitational functional between the two methods.  292 

 293 

In the rigorous approach, each terrain type of the Earth2014 model suite (described in section 294 

2.1) was (individually) forward modelled using the discretized Newtonian integration approach 295 

(section 2.3) and superimposed to obtain the gravitational effects of the complete topographic 296 

masses defined by Earth2014 (hereafter called Earth2014 masses). As approximate technique, 297 

following the methodology in section 2.2, for each terrain type of Earth2014 the mass 298 

components were compressed into RET masses in spherical approximation (hereafter called 299 

RET2014 masses, which, however, must not be confused with the precomputed Earth2014 300 

RET-layer in planar approximation that is not utilized here), and forward modelled to yield the 301 

RET-induced gravitational effects.  Finally, differences between both calculations were formed 302 

and analyzed, directly reflecting the RET approximation effect (cf. sections 3.2 to 3.4).  303 

 304 

In all practical computations the Earth2014 and RET2014 models were used at 5 arc-min 305 

resolution.  The globally distributed computation points were arranged at the center of each 5 306 

arc-minute grid element.  Three levels of computation heights were used:  307 

(1) on the Earth’s surface  308 

(2) 3 km above the Earth’s surface, and  309 

(3) at a constant height of 250 km above the height reference surface (e.g. mean sphere in 310 

spherical approximation) 311 

For the rigorous calculation, the Earth surface was represented by the Earth2014 component 312 

“SUR2014”. It provides topographic heights of (dry) bedrock above MSL, zero heights (H = 0 313 

m) over the oceans and lake heights over the major lakes. For land areas below MSL (e.g. parts 314 

of North Africa), H = 0 m was used too. In case of RET2014-based forward modelling, the 315 

Earth’s surface is approximated by HRET.  As such the computation point heights are set to HRET 316 

for RET2014 elevations greater than zero and HRET = 0 m elsewhere.  We acknowledge that an 317 

alternative approach could be the use of SUR2014 for both Earth2014- and RET2014-based 318 

forward modelling.  However, this leads to computation points often located well above the 319 
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RET2014 surface, e.g. most notably over ice covered areas.  This is why we did not consider 320 

this approach here.   321 

 322 

To reduce computation times the 5 arc-minute resolution was used to model masses only in the 323 

vicinity around each computation point (i.e., 20 arc degree extension in both longitude and 324 

latitude, cf. Table 2) and a 15 arc-minute resolution was used to account for the global effect 325 

of the more distant masses.  The 15 arc-minute resolution was obtained from the 5 arc-minute 326 

resolution by arithmetic averaging.  This is common practice (e.g. Forsberg 1984, Kuhn 2000) 327 

and permitted due to the attenuation of gravity with distance.  Table 2 details the spatial 328 

resolutions, extensions and mass elements used in this study. 329 

 330 

Table 2:  DEM resolutions, spatial extensions, and mass elements used for the discretised Newtonian integration.  331 

The spatial extensions are given as arc-distances along a parallel and meridian and define areas centred around 332 

each computation point.   333 

Resolution Extension Mass Element 

5 × 5 20 × 20 Prism 

15 × 15 Global Prism 

 334 

Due to the very high computational burden of our gravity forward modelling procedures, 335 

massive parallel computation was employed using Western Australia’s supercomputer Magnus 336 

operated by the Pawsey Supercomputing Center.  Magnus is a Cray XC40 system hosting 337 

Xeon E5-2690V3 “Haswell” processors running at 2.6 GHz, for a total of 35,712 cores, 338 

delivering in excess of 1 PetaFLOP of computing power (see https://www.pawsey.org.au/).  339 

For the computation the globally distributed computation points have been divided into 340 

20 × 20 degree tiles, containing 56,700 points each, which were computed in parallel.  341 

The calculation required about 34,000 CPU hours (~3.9 years) for the rigorous modelling 342 

of the topography using Earth2014 and about 16,000 CPU hours (~1.8 years) when using 343 

RET2014.  Using massive parallel computation allowed the processing of all tiles and 344 

functionals at the same time, thus the gravity forward modelling could effectively be 345 

performed in about one day.    346 
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3.2  Uncertainty Estimates 347 

To provide uncertainty estimates for the 10 gravitational functionals obtained from discretized 348 

Newtonian integration (cf. section 2.3) we test our computation procedure by calculating the 349 

gravitational functionals induced by a spherical shell.  The spherical shell has been selected 350 

with a mass density of 0 and thickness of 6 km, thus representing a somewhat extreme case 351 

for global topographic masses.   352 

 353 

Table 3:  Uncertainty estimates for the 10 gravitational functional obtained through comparison with the 354 

analytically derived values of a spherical shell with a mass density of 0 and thickness of 6 km.  RMS and RMSrel 355 
represent the root-mean-square values obtained from the globally distributed absolute and relative differences, 356 
respectively.  Absolute differences are obtained by subtracting the analytically derived values from that obtained 357 
via Newtonian integration.  Relative differences are obtained by dividing the absolute differences by the 358 
analytically derived values.  Potential values have the unit m2s-2, first-order derivatives have the unit mGal (1 359 
mGal = 1×10-5 ms-2) and the second-order derivatives have the unit Eötvös (1 E = 1×10-9 s-2).  Note some outliers 360 
within a band of 5 degrees around the poles have been removed. 361 

Functional On shell(1) 3 km above shell 250 km above shell 

 RMS RMSrel RMS RMSrel  RMS RMSrel 

V  1.178e-1 1.374e-6 1.179e-1 1.377e-6 1.151e-1 1.340e-6 

g  1.660e-1 n/a 1.660e-1 n/a 1.401e-2 n/a 

g  1.608e-6 n/a 1.208e-6 n/a 1.648e-6 n/a 

rg  1.462e-2 1.089e-5 1.462e-2 1.089e-5 4.703e-3 3.783e-6 

M  1.567e-1 7.452e-2 9.429e-4 4.491e-4 7.578e-5 4.045e-5 

M  1.733e-1 8.241e-2 9.649e-3 4.596e-3 2.806e-5 1.498e-5 

rrM  2.097e-1 4.986e-2 8.958e-2 2.133e-3 4.848e-5 1.294e-5 

M  3.860e-6 n/a 3.249e-7 n/a 3.023e-6 n/a 

rM  4.148e-1 n/a 1.062e-1 n/a 2.910e-5 n/a 

rM  3.756e-6 n/a 2.736e-7 n/a 1.151e-7 n/a 

(1)For gravitational potential and its first-order derivatives computation points are located on the spherical shell 362 

while they are 1 m above the spherical shell for the second-order derivatives. 363 

 364 

The calculation of the gravitational functionals has been performed for a global 5-arc-minute 365 

by 5-arc-minute grid at the three elevations listed in section 3.1.  Differences between the 366 

numerical calculation results and the analytically determined values (see e.g. Makhloof and Ilk 367 
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2008a) are taken as a measure for the uncertainty.  Based on a global distribution of the 368 

computation points, Table 3 lists the RMS values of these differences.  In addition Table 3 lists 369 

the RMS values for the relative differences (RMSrel in Table 3) where the (absolute) differences 370 

at each computation point have been divided by the analytically determined values. 371 

For computation points located either on or 3 km above the shell all RMS values of the 372 

differences are well below 1.0 m2s-21, 0.1 mGal (1 mGal = 1×10-5 ms-2) and 1 Eötvös (1 E = 373 

1×10-9 s-2), for the gravitational potential, first- and second-order derivatives, respectively.  374 

Except for the gravitational potential, the RMS values reduce by several orders of magnitude 375 

when evaluating 250 km above the shell.  Furthermore, all RMS values of the relative 376 

differences are significantly lower than the RMS values of the absolute differences.  It should 377 

be noted that the calculation of the second-order derivatives are not defined on interfaces of 378 

density discontinuity (e.g. at the Earth’s surface) but depend on the direction from which the 379 

interface is approached (e.g. Nagy et al. 2000, Makhloof and Ilk 2008a).  This is why we have 380 

selected the computation points to be located 1 m above the Earth’s surface, even though in 381 

this study we always approach the interface (e.g. prism face) from the ‘exterior’.   382 

Considering that all RMS values shown in Table 3 are significantly lower than the differences 383 

between the rigorous modelling of the Earth’s topography and compressed RET presented in 384 

sections 3.3 to 3.5 we are confident that these differences are due to RET approximation errors 385 

rather than discretization errors in the Newtonian integration.  Also note such test represents 386 

an extreme situation and actual results will have a much smaller uncertainty when using the 387 

concept of spherical terrain corrections, thus only residual masses are considered and the 388 

gravitational effect of the spherical shell is calculated analytically (e.g. Makhloof and Ilk 389 

(2008a).   390 

3.3  Topographic Potential 391 

We computed the Earth’s topographic potential based on the topographic masses given by the 392 

Earth2014 model and corresponding RET2014 masses using discretized Newtonian 393 

integration.  The computations have been performed on the Earth’s surface, 3 km above the 394 

Earth’s surface and at a constant height of 250 km.  As the results for the topographic potential 395 

for Earth2014 and RET2014 are very similar we only show that of Earth2014 in Figure 4 (upper 396 

row), and the differences between the rigorous and approximate computation (Figure 4, lower 397 

row).  Further we only show the results on the Earth’s surface and at the height of 250 km as 398 

that for 3 km above the Earth’s surface is very similar to that on the Earth’s surface.  The 399 
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corresponding statistical values for Earth2014, RET2014 and differences are listed in Table 4.  400 

The topographic potential is dominated by the large mass deficit of the ocean masses causing 401 

large negative values over deep ocean basins, most notably the Pacific Ocean, and a strongly 402 

negative global mean value of about -19,544 m2s-2 at the surface (cf. Table 4).  The strong 403 

negative values are reduced over areas with considerable masses above MSL representing a 404 

mass surplus, most notably over the Himalaya.  Due to the relatively slow attenuation of the 405 

gravitational potential with distance its spatial distribution is rather smooth and closely related 406 

for the three elevation levels considered.   407 

 408 

Figure 4:  Top:  Topographic potential of Earth2014 evaluated on the Earth’s surface (top left) and at the constant 409 

height of 250 km (top right).  Bottom:  Difference between topographic potential of Earth2014 and RET2014 for 410 

the corresponding elevations in the top plots.  Units in m2s-2. 411 

Differences between the topographic potential generated by the Earth2014 and corresponding 412 

RET2014 masses are displayed in Figure 4 (lower row).  For all three elevations considered 413 

larger differences are present over deep ocean and ice covered areas with maximum values 414 

over deep ocean trenches (e.g. Mariana Trench) for computation points located either on or 3 415 

km above the Earth’s surface.  This immediately shows the effect of the RET2014 masses 416 

considerably changing (compressing) the topographic masses over ocean and ice covered areas.  417 

On a global scale the impact of major lakes and areas of dry bedrock below MSL have only a 418 

very small impact on the gravitational potential and are not visible in Figure 4, though can 419 

become important for local modelling (Tenzer et al. 2016). 420 
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Table 4:  Statistical values for the topographic potential of Earth2014 (VTop), RET2014 (VRET) and differences 421 

(VTop-RET) evaluate on the Earth’s surface (index S), 3 km above the Earth’s surface (index 3km) and at the 422 

constant height of 250 km (index 250km).  Units in m2s-2.  Relative difference represents the range in differences 423 

in relation to the range in signal. 424 

Functional Min Max Mean Stdv Relative 

VTop,S -26,667.603 -9,289.620 -19,544.552 3,819.626 n/a 

VRET,S -26,669.720 -9,288.413 -19,554.026 3,820.198 n/a 

VTop-RET,S -3.981 9.512 -0.526 1.266 0.078% 

VTop,3km -26,649.500 -9,304.530 -19,536.041 3,814.817 n/a 

VRET,3km -26,651.617 -9,303.324 -19,535.516 3,815.387 n/a 

VTop-RET,3km -3.758 8.356 -0.525 1.246 0.070% 

VTop,250km -25,305.252 -10,223.340 -18,859.787 3,485.500 n/a 

VRET,250km -25,306.497 -10,222.245 -18,859.235 3,458.941 n/a 

VTop-RET,250km -4.610 3.818 -0.552 0.808 0.056% 

 425 

Maximum differences reach values of almost 10 m2s-2 for computation points located on the 426 

Earth’s surface and 5 m2s-2 at the height of 250 km, which correspond to effects on the geoid 427 

height of ~1 m and ~0.5 m, respectively.  In relation to the magnitude of the global signal the 428 

differences are relatively small as can be seen by comparison of the range in signal and range 429 

of differences.  As a measure to describe global relative differences we use the percentage value 430 

taken up by the range in differences in relation to the range in signal (cf. Table 4), which 431 

provides a global measure on the relative importance of the differences or the suitability of 432 

replacing rigorous topographic by RET masses.  For the topographic potential the global 433 

relative differences remain below 0.1 % for all three elevations considered, thus it could be 434 

argued that the RET compression may be acceptable for some global studies relying on the 435 

gravitational potential. 436 

 437 

While it is expected that differences are largest over areas where the Earth2014 masses have 438 

been compressed to RET2014 masses, it is interesting to note that there is also some impact 439 

(largely as a bias) over areas with dry bedrock above MSL where the Earth2014 and RET2014 440 

masses are identical.  For all three elevation cases, the impact can reach more than 1 m2s-2 (e.g. 441 

> 0.1 m geoid height change) at locations over land several thousand kilometers away from the 442 

coastline.  Given that the gravitational potential at some location is generated by the 443 

accumulated gravitation of all masses around the globe, the cause of this bias-like effect 444 

becomes evident. 445 
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3.4  First-Order Derivatives of the Topographic Potential 446 

First-order derivatives of the topographic potential (cf. section 3.3) representing the vector 447 

components rggg    , ,  have been computed using discretized Newtonian integration and 448 

are shown in Figure 5 for Earth2014.  Due to the same reason as for the topographic 449 

gravitational potential we only show the results for Earth2014 masses on the Earth’s surface 450 

and at the height of 250 km in Figure 5.  Representing the gravitational acceleration in north-451 

south and east-west directions, the vector components g  and g , respectively, show high 452 

magnitudes at places with considerable elevation changes in north-south and east-west 453 

directions.   454 

 455 

Figure 5:  First-order derivatives of the topographic potential of Earth2014 evaluated on the Earth’s surface 456 

(left column) and at the constant height of 250 km (right column).  From top to bottom the figures in each 457 

column represent rggg    , , .  Units in mGal (1 mGal = 1×10-5 ms-2).  458 
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 459 

Figure 6:  Differences of the first-order derivatives of the topographic potential between Earth2014 (cf. Figure 5) 460 

and RET2014 evaluated on the Earth’s surface (left column) and at the constant height of 250 km (right column).  461 

From top to bottom the figures in each column represent rggg   , ,  .  Units in mGal (1 mGal = 1×10-5 ms-462 

2). 463 

  464 
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Table 5:  Statistical values for the first-order derivatives of the topographic potential of Earth2014 (gTop), 465 

RET2014 (gRET) and differences (gTop-RET) evaluated on the Earth’s surface (index S), 3 km above the Earth’s 466 

surface (index 3km) and at the constant height of 250 km (index 250km). Units in mGal (10-5 ms-2).  Relative 467 

difference represents the range in differences in relation to the range in signal. 468 

Functional Min Max Mean Stdv Relative 

STopg ,
  

STopg ,
  

STop
rg ,  

SRETg ,
  

SRETg ,
  

SRET
rg ,  

SRETTopg ,   

SRETTopg ,   

SRETTop
rg ,  

-852.664 

-847.543 

-798.309 

-852.659 

-847.786 

-831.766 

-20.868 

-23.382 

-37.210 

531.460 

699.056 

627.183 

533.620 

712.766 

627.223 

22.189 

21.555 

58.407 

-10.256 

0.242e-2 

-283.843 

-10.246 

0.232e-3 

-283.828 

-0.101e-1 

0.219e-2 

-0.157e-1 

131.097 

114.375 

204.191 

131.236 

114.559 

204.505 

0.731 

1.069 

1.993 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

3.111% 

2.906% 

6.708% 
kmTopg 3,

  

kmTopg 3,
  

kmTop
rg 3,  

kmRETg 3,
  

kmRETg 3,
  

kmRET
rg 3,  

kmRETTopg 3,   

kmRETTopg 3,   

kmRETTop
rg 3,  

-838.465 

-833.413 

-770.359 

-838.460 

-834.031 

-796.849 

-17.125 

-19.209 

-24.045 

515.293 

666.735 

596.400 

518.836 

681.797 

596.440 

19.472 

17.144 

27.782 

-10.289 

0.288e-2 

-283.563 

-10.276 

0.224e-3 

-283.541 

-0.129e-1 

0.266e-2 

-0.226e-1 

130.422 

113.603 

202.899 

130.604 

113.797 

203.166 

0.824 

0.920 

1.365 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

2.703% 

2.423% 

3.792% 
kmTopg 250,

  

kmTopg 250,
  

kmTop
rg 250,  

kmRETg 250,
  

kmRETg 250,
  

kmRET
rg 250,  

kmRETTopg 250,   

kmRETTopg 250,   
kmRETTop

rg 250,  

-337.302 

-297.739 

-524.667 

-337.204 

-297.940 

-524.855 

-0.388 

-0.473 

-0.300 

248.399 

279.416 

300.110 

248.592 

279.847 

300.150 

0.408 

0.354 

0.446 

-13.211 

-0.294e-5 

-264.658 

-13.208 

-0.278e-5 

-264.648 

-0.309e-2 

-0.159e-6 

0.990e-2 

95.433 

82.576 

154.115 

95.475 

82.612 

154.169 

0.744 

0.696e-1 

0.106 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

0.136% 

0.143% 

0.090% 

 469 
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The vector component rg  instead is dominated by large negative values over the ocean areas 470 

and positive values over areas with high elevations above MSL (e.g. Himalaya).  The latter 471 

component is the classical topographic correction in spherical approximation used to derive 472 

complete Bouguer gravity anomalies (e.g. Kuhn et al. 2009).  Like the topographic potential 473 

also rg  is dominated by the mass deficiency of the oceans introducing a large negative bias 474 

(cf. Table 5) visible by largely negative values over continental areas (except areas with very 475 

high elevations).   476 

 477 

Differences between the first-order derivatives of the topographic potential generated by the 478 

Earth2014 and RET2014 masses are displayed in Figure 6.  These are mostly present over 479 

ocean and ice covered areas with maximum magnitudes on the Earth’s surface of about 20 480 

mGal for g  and g  and almost 60 mGal for rg  (cf. Table 5).  In relation to the signal the 481 

range of the differences takes up 3.1%, 2.9% and 6.7% when compared to the range of   gg  ,  482 

and rg , respectively, thus demonstrate a considerable difference when using RET instead of 483 

rigorous topographic masses.  Similar results are obtained at an elevation of 3 km, though with 484 

slightly reduced values (cf. Table 5).  At the elevation of 250 km differences are considerably 485 

smaller with maximum magnitudes around 0.4 mGgal for all vector components    gg  ,  and 486 

rg .  The relative significance of the differences is also smaller and takes up values around 487 

0.1% when comparing the range of the differences to that of   gg  ,  and rg .  As for the 488 

topographic potential also the first-order derivatives exhibit larger differences over areas of dry 489 

bedrock above MSL where Earth2014 and RET2014 masses are identical. For computation 490 

points on or 3 km above the Earth’s surface these differences are mostly confined to coastal 491 

areas (e.g. impact from the compressed ocean masses) with differences below 1 Gal well 492 

inside a continent.  However, when evaluating at an elevation of 250 km (cf. Figure 6) there is 493 

considerable influence introducing biases of almost 100 Gal well inside a continent and even 494 

higher biases closer to the coastline. 495 

 496 

3.5  Second-Order Derivatives of the Topographic Potential 497 

Relevant to satellite gradiometry such as the GOCE mission (Rummel et al. 2011), airborne 498 

gradiometry (Douch et al. 2015), or torsion balance measurements (Völgyesi 2001), we also 499 

computed the second-order derivatives of the Earth’s topographic potential based on the 500 

topographic masses given by Earth2014 and RET2014 masses using discretized Newtonian 501 
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integration.  The nine second-order derivatives are the elements of the symmetric Eötvös tensor 502 

of which five elements are independent of each other as the condition rrVVV     503 

holds (cf. section 2.3).  Here we calculate the three diagonal components V , V , rrV  504 

and the three off-diagonal component V , rV , rV .  We consider three levels of 505 

elevation. The computation points were elevated by 1 m above the Earth’s surface (this is in 506 

contrast to Sect. 3.3 and 3.4), 3 km above the Earth’s surface and at the constant height of 250 507 

km above the reference sphere.  As the second-order derivatives are not defined on interfaces 508 

of density discontinuity we do not evaluate directly on the Earth’s surface but 1 m above it so 509 

to avoid possible singularities (cf. 3.2).   510 

 511 

The second-order derivatives are illustrated in Figures 7 and 8 for Earth2014.  Again we only 512 

display the results for Earth2014 masses as that for RET2014 masses are very similar.  The 513 

diagonal components V  and V  represent the gravity gradients in north-south and east-514 

west directions, respectively, and as such show larger values at places with considerable height 515 

changes in north-south and east-west directions, respectively.  The diagonal component rrV  516 

represents the gravity gradient in radial direction and shows larger values over places with high 517 

elevations, most notably over the Himalaya and Andes (cf. Figure 7).  The remaining three off-518 

diagonal components V , rV , and rV  are the ‘cross’ gravity gradients where rV , and 519 

rV  are somewhat dominated by the derivative in the horizontal directions, respectively, and 520 

V  partly cancels (see much reduced signal in Figure 8 and Table 6).  Based on the diagonal 521 

components V , V  and rrV  we have tested the Laplace equation 522 

0 rrVVV   , which is satisfied in this study at the 10-10 E level (min/max: 7×10-523 

10 E; mean: 3.2×10-14 E; RMS: 1.3×10-10 E) for Earth2014 when evaluating 1 m above the 524 

Earth’s surface.  Very similar levels of agreement are obtained when evaluating either 3 km 525 

above the Earth’s surface or at an elevation of 250km. 526 

  527 
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 528 

Figure 7:  Second-order derivatives (diagonal elements of the Eötvös tensor) of the topographic potential of 529 

Earth2014 evaluated on the Earth’s surface (left column) and at the constant height of 250 km (right column).  530 

From top to bottom the figures represent rrVVV    , , .  Units in Eötvös (1 E = 1×10-9 s-2).   531 
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 532 

Figure 8:  Second derivatives of the topographic potential (off-diagonal elements of the Eötvös tensor) of 533 

Earth2014 evaluated on the Earth’s surface (left column) and at the constant height of 250 km (right column).  534 

From top to bottom the figures represent rr VVV    , , .  Units in Eötvös (1 E = 1×10-9 s-2).   535 
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 536 

Figure 9:  Difference between the second-order derivatives of the topographic potential (diagonal elements of the 537 

Eötvös tensor) of Earth2014 and RET2014 evaluated on the Earth’s surface (left column) and at the constant 538 

height of 250 km (right column). From top to bottom the figures represent rrVVV   , ,  .  Units in Eötvös 539 

(1 E = 1×10-9 s-2).  540 
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 541 

Figure 10:  Difference between the second-order derivatives of the topographic potential (diagonal elements of 542 

the Eötvös tensor) of Earth2014 and RET2014 evaluated on the Earth’s surface (left column) and at the constant 543 

height of 250 km (right column).  From top to bottom the figures represent rr VVV    , , .  Units in Eötvös 544 

(1 E = 1×10-9 s-2). 545 

  546 
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Table 6:  Statistical values for the second-order derivatives of the topographic potential of Earth2014 (VTop), 547 
RET2014 (VRET) and differences (VTop-RET) evaluated 1 m above the Earth’s surface (left part), 3 km above the 548 
Earth’s surface (middle part) and at the constant height of 250 km (right part). Units in Eötvös (1E = 10-9 s-2).  549 
Relative difference represents the range of differences in relation to the range in signal. 550 

 1 m above the Earth’s surface 3 km above the Earth’s surface 

Functional Min Max Mean Stdv Rel. Min Max Mean Stdv Rel. 
TopV  
TopV  
Top
rrV  
TopV  
Top
rV  

Top
rV  

-256.940 

-441.100 

-518.868 

-85.475 

-104.681 

-294.080 

220.888 

520.047 

491.892 

84.391 

100.045 

279.252 

0.440 

0.436 

-0.877 

0.272e-3 

0.031 

-0.015 

11.604 

13.695 

20.559 

4.944 

5.516 

8.352 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

-166.158 

-179.855 

-236.131 

-79.351 

-129.686 

-148.971 

190.693 

232.671 

302.660 

74.630 

108.387 

178.479 

0.498 

0.447 

-0.945 

0.821e-3 

0.149 

0.170e-3 

8.335 

8.252 

13.492 

4.092 

7.229 

8.221 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

RETV  
RETV  
RET

rrV  
RETV  
RET
rV  
RET
rV  

-256.938 

-401.555 

-433.208 

-86.091 

-85.504 

-174.828 

220.888 

464.933 

491.891 

85.538 

84.730 

201.348 

0.446 

0.383 

-0.829 

-0.176e-4 

0.032 

0.639e-4 

12.288 

14.402 

21.703 

5.039 

4.309 

6.338 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

-166.490 

-184.690 

-236.131 

-79.351 

-133.278 

-149.892 

190.693 

232.671 

305.834 

74.798 

113.845 

194.949 

0.508 

0.460 

-0.968 

0.913e-3 

0.149 

0.135e-4 

8.974 

8.834 

14.477 

4.322 

7.350 

8.701 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

RETTopV    
RETTopV    
RETTop

rrV   
RETTopV    
RETTop

rV    
RETTop

rV    

-52.798 

-144.220 

-218.725 

-18.292 

-48.042 

-330.537 

46.295 

219.643 

145.405 

16.330 

59.345 

299.937 

-0.005 

0.053 

-0.048 

0.290e-3 

-0.002 

-0.015 

1.958 

2.793 

3.815 

0.638 

1.973 

5.270 

20.74% 

37.86% 

36.02% 

20.38% 

52.45% 

109.97% 

-27.983 

-54.182 

-40.005 

-9.004 

-14.620 

-33.608 

24.704 

26.555 

68.793 

7.823 

11.883 

32.986 

-0.010 

-0.013 

0.022 

-0.912e-4 

0.003 

0.156e-3 

1.159 

1.109 

1.844 

0.401 

0.506 

0.994 

14.76% 

19.57% 

20.19% 

10.93% 

11.13% 

20.34% 

 551 
Functional Constant height of 250 km 
TopV  
TopV  
Top
rrV  
TopV  
Top
rV  

Top
rV  

-5.403 

-6.550 

-4.632 

-3.402 

-6.761 

-7.625 

3.244 

3.159 

7.052 

1.829 

4.701 

4.586 

0.399 

0.309 

-0.709 

-0.625e-7 

0.082 

-0.207 

0.980 

0.951 

1.699 

0.422 

1.135 

1.004 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

RETV  
RETV  
RET

rrV  
RETV  
RET
rV  
RET
rV  

-5.403 

-6.555 

-4.653 

-3.406 

-6.760 

-7.639 

3.255 

3.172 

7.055 

1.837 

4.709 

4.607 

0.399 

0.310 

-0.709 

0.470e-8 

0.082 

0.289e-7 

0.981 

0.952 

1.701 

0.423 

1.136 

1.006 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

RETTopV    
RETTopV    
RETTop

rrV   
RETTopV    
RETTop

rV    
RETTop

rV    

-0.020 

-0.020 

-0.021 

-0.008(*) 

-0.022 

-0.027(*) 

0.016 

0.019 

0.025 

0.015 

0.019 

0.052 

0.148e-4 

-0.648e-4 

0.501e-4 

-0.672e-7 

-0.740e-4 

-0.236e-6 

0.002 

0.002 

0.004 

0.001 

0.003 

0.003 

0.41% 

0.40% 

0.39% 

0.44% 

0.36% 

0.65% 

(*)Some outliers close to 

the poles have been 

removed. 
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Like for the first-order derivatives, differences between the second-order derivatives of the 552 

topographic potential generated by Earth2014 and RET2014 masses are mostly present over 553 

ocean and ice covered areas (cf. Figures 9 and 10).  When evaluating 1 m above the Earth’s 554 

surface differences can reach several hundred Eötvös which are as large as the signal itself (cf. 555 

Table 6).  This is verified by the percentages of the ranges in differences in relation to the 556 

ranges of the signal with values between 20% for V  and over 100% for rV . Thus in this 557 

case RET2014 masses should clearly not be used as an approximation for the actual 558 

topographic masses.  This is not surprising considering the second-order derivatives strongly 559 

amplify higher frequencies of the topographic potential.  Differences over continental areas are 560 

rather small instead, thus there is minimal influence from the compressed ocean masses.  561 

Differences are still at a considerable level albeit reduced, when evaluating at an elevation of 562 

3 km above the Earth’s surface.  In this case the percentage values of the relative differences 563 

range between 11% and 20% (cf. Table 6).  564 

 565 

At an elevation of 250 km both signal and differences are becoming increasingly smaller, which 566 

is due to the attenuation of the second-order derivative with the cubed distance.  In this case 567 

the signal reaches maximum levels of less than 10 E, which is consistent with estimates in 568 

Wild-Pfeiffer (2008) and Eshagh (2009b).  Maximum differences are now over two orders of 569 

magnitude smaller than the signal as demonstrated by the percentage values ranging between 570 

0.35% and 0.65% (cf. Table 6).  Again, these values are consistent with those presented in 571 

Grombein et al. (2010) with minor differences being likely due to the use of different 572 

topography data.  Furthermore, there is considerable influence on continental areas when 573 

evaluating at the elevation of 250 km introducing biases of several mE in coastal areas (cf. 574 

Figures 9 and 10) but reduce significantly for locations further away from the coast to levels 575 

below 0.01 – 0.1 mE. 576 

 577 

4 Discussion and Conclusions 578 

Comparison between Earth2014 topographic and RET2014 masses revealed considerable 579 

differences when used to derive the gravitational potential and its first- and second-order 580 

derivatives.  This holds for various elevation levels for the computation points with 581 

computations performed on the Earth’s surface, 3 km above the Earth’s surface and at a 582 

constant height of 250 km.  Differences were derived and analyzed for the combinations of the 583 

gravitational functional and elevations levels. As expected, larger differences occur mostly 584 



29 
 

over ocean and ice covered areas where the RET concept considerably changes (compresses) 585 

the topographic masses.  Interestingly, also considerable differences over continental areas with 586 

bedrock above MSL are present most notably for computation points at the height of 250 km.  587 

Here the influence of mostly the compression of ocean masses has a considerable impact on 588 

continental areas mostly along the global coast lines but also reaching far inland.   589 

 590 

While this study provides a comprehensive look at RET approximation errors for the most 591 

commonly used gravitational functionals and evaluation locations earlier studies have focused 592 

on specific functionals and/or locations only.  Considering all combinations of gravitational 593 

functional and elevation levels, the relative importance of differences in relation to the signal 594 

– as measured by the percentage of the range in differences in relation to the range in signal – 595 

is increasing with ascending order of derivative and decreasing with elevation.  As such, the 596 

best relative agreement is obtained for the gravitational potential at an elevation of 250 km with 597 

a percentage value of 0.06% while the largest relative errors are obtained for the second-order 598 

derivatives evaluated 1 m above the Earth’s surface where the range in differences are at the 599 

same level as the range in signal with a maximum percentage value of 109.97%.  In the latter 600 

case the second-order derivatives of the gravitational potential derived from the Earth2014 and 601 

RET2014 masses have little in common when evaluated over the oceans or ice covered areas.  602 

In this case it is paramount to use the more rigorous approach of properly accounting for all 603 

topographic masses rather than compressing them to RET masses.  604 

 605 

When considering the required accuracy level of gravitational functional or obtainable level of 606 

accuracy of observations, in all cases maximum differences are well beyond reasonable levels, 607 

thus the replacement of topographic masses by RET masses would not be suitable.  For the 608 

gravitational potential maximum differences range between -3.981 m2s-2 and 9.512 m2s-2 when 609 

evaluated on the Earth’s surface, between -3.758 m2s-2 and 8.356 m2s-2 when evaluated 3 km 610 

above the Earth’s surface and between -4.610 m2s-2 and 3.818 m2s-2 at an elevation of 250 km.  611 

These differences translate into geoid height changes in the range of 0.3 m up to almost 1 m.  612 

These maximum modelling errors are unacceptably large when considering a common geoid 613 

height accuracy at the cm-level or better.   614 

 615 

In case of the first-order derivatives maximum differences in the three gravity components 616 

range between about -20 mGal and almost 60 mGal.  Considering a common observation 617 

accuracy of relative gravimeters of about 0.01 mGal to 0.1 mGal, this level of maximum 618 
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differences would not be acceptable.  This also holds for a targeted accuracy of about 1 mGal 619 

for marine gravimetry observations (Motao 1995), e.g., maximum differences are present over 620 

the oceans.  Similarly large maximum differences are present when evaluating at an elevation 621 

of 3 km above the Earth’s surface.  Again this level is too large when considering a targeted 622 

accuracy of about 1 mGal of airborne gravimetry observations.  When evaluating at an 623 

elevation of 250 km the maximum differences in the first-order derivatives are at the level of 624 

almost 0.5 mGal.   625 

 626 

Finally, for the second derivatives, maximum differences close to the Earth’s surface are at the 627 

level of several hundred Eötvös, which is at the same level as the signal and totally 628 

unacceptable when considering an achievable accuracy of about 1 E, e.g. using a torsion 629 

balance (Völgyesi 2001). As such, the use of the RET approximation renders a topographic 630 

potential model useless for smoothing or reducing observations of gravity or vertical deflection 631 

gradients. 632 

 633 

When evaluating at an elevation of 3 km above the Earth’s surface maximum differences 634 

decrease to a level of several 10 E (up to a maximum of almost 70 E).  While maximum 635 

differences considerably drop to a level of about 20 mE (up to a maximum of 52 mE) when 636 

evaluating at a height of 250 km.  However, they are still considered too large when compared 637 

to a GOCE observation accuracy of about 1-2 mE (Rummel et. al 2011) as has been shown by 638 

Grombein at al. (2010). 639 

 640 

While the RET concept might be suitable when dealing with distant masses only, e.g. small 641 

differences over continental areas, due care must be exercised when modelling in coastal areas 642 

and areas extending several hundred kilometers inland.  Even though over these areas 643 

topographic and RET masses are identical, the compression of ocean and ice masses can have 644 

considerable impact.  A more detailed study is required in these areas to see the full impact, 645 

which is beyond the scope of this study.  Further, a more detailed study is required when using 646 

RET masses only to model more distant masses (e.g. Makhloof and Ilk 2008b) while using the 647 

rigorous approach for masses in the vicinity of the computation point.  In this case it can be 648 

expected that maximum differences are much smaller than that present in this study. 649 

 650 

As a central conclusion of our study, the RET approximation in topographic gravity modelling 651 

cannot be considered acceptable for most of the first- and second-order derivatives of the 652 
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gravity functionals at all elevation levels considered.  Therefore, the rigorous calculation of the 653 

gravitational potential and its first- and second-order derivatives by properly considering all 654 

individual mass components – without compression – should be used. This finding holds for 655 

gravity field modelling both in the spatial domain (Kuhn et al. 2009) and the spectral domain 656 

(e.g., Hirt and Kuhn 2012, 2014; Claessens and Hirt 2013, Tenzer et al. 2016).  657 

Considering the ever-increasing computational resources, combined with the availability of 658 

parallel computing, the additional computational burden for the rigorous calculation even at 659 

global scale with high resolution is becoming less of a constraint.  This has been successfully 660 

demonstrated by this study, based on many calculation runs at a global 5 arc-minute resolution 661 

requiring a total of about 50,000 CPU hours (approx. 5.7 years).  We acknowledge that the 662 

computation time can considerably vary depending on the computation platform and degree of 663 

optimization used. 664 
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 672 

Appendix A 673 

In order to analytically prove that the RET concept formulated in section 2.2 holds for both 674 

masses above and below MSL we first show the derivation for ocean water masses located 675 

exclusively below MSL and then for ice masses that can be located partly above and partly 676 

below MSL (cf. Figure A1).  With respect to an upper crust with the mean density 0, the ocean 677 

water masses are considered as mass deficiencies with the density difference OCN = 0  OCN 678 

where OCN is the density of ocean water.  In this case mass equivalence between anomalous 679 

ocean water masses and compressed RET masses is expressed by the condition (cf. Eq. 3) 680 

    3333
0 lowupOCNclowup RRHRR         (A1) 681 

which can be re-arranged to  682 

    3333
0 lowupOCNlowclow RRRHR         (A2) 683 
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by introducing OCN = 0  OCN.  Solving Eq. A2 for cH , measured above the bedrock, 684 

results into 685 

  lowlowlowup
OCN

c RRRRH  3
333

0


,    (A3) 686 

which is identical to the general formula derived in section 2.2 for the general RET concept 687 

(cf. Eq. 4).  688 

 689 

When considering ice masses, in general, we are dealing with anomalous masses above and 690 

below MSL with the respective mass densities ICE and ICE = 0  ICE (cf. Figure A1).  As 691 

mass anomalies above and below MSL represent mass excess (positive) and deficiency 692 

(negative), respectively, the height HRET describing the RET masses (cf. Figure A1) is obtained 693 

by the mass equivalence between the difference in anomalous ice masses above and below 694 

MSL and compressed RET masses expressed by the condition  695 

      333333
0 lowICEupICERET RRRRRHR         (A4) 696 

which can be re-arranged to  697 

    3333
0 lowupICElowRET RRRHR         (A5) 698 

by introducing ICE = 0  ICE.  Solving Eq. A5 for HRET, measured above/below MSL, results 699 

into 700 

  RRRRH lowlowup
ICE

RET  3 333

0


.    (A6) 701 

Based on HRET the height of all compressed masses (above and below MSL) cH , measured 702 

above the bedrock is obtained by 703 

  lowlowlowup
ICE

lowRETc RRRRHHH  3 333

0


,    (A7) 704 

which again is identical to the general formula given by Eq. (4).  Similarly, the RET height can 705 

be obtained for lake water masses, which also can be located above and below MSL. 706 

 707 
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 708 

Figure A1:  RET principle in spherical approximation for ocean water masses (left) and ice masses (right).   709 

 710 
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