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INTRODUCTION

The subject of Computational Convexity draws its methods from discrete mathe-
matics and convex geometry, and many of its problems from operations research,
computer science, data analysis, physics, material science, and other applied ar-
eas. In essence, it is the study of the computational and algorithmic aspects of
high-dimensional convex sets (especially polytopes), with a view to applying the
knowledge gained to convex bodies that arise in other mathematical disciplines or
in the mathematical modeling of problems from outside mathematics.

The name Computational Convexity is of more recent origin, having first ap-
peared in print in 1989. However, results that retrospectively belong to this area go
back a long way. In particular, many of the basic ideas of Linear Programming have
an essentially geometric character and fit very well into the conception of Compu-
tational Convexity. The same is true of the subject of Polyhedral Combinatorics
and of the Algorithmic Theory of Polytopes and Convex Bodies.

The emphasis in Computational Convexity is on problems whose underlying
structure is the convex geometry of normed vector spaces of finite but generally
not restricted dimension, rather than of fixed dimension. This leads to closer con-
nections with the optimization problems that arise in a wide variety of disciplines.
Further, in the study of Computational Convexity, the underlying model of com-
putation is mainly the binary (Turing machine) model that is common in studies
of computational complexity. This requirement is imposed by prospective appli-
cations, particularly in mathematical programming. For the study of algorithmic
aspects of convex bodies that are not polytopes, the binary model is often aug-
mented by additional devices called “oracles.” Some cases of interest involve other
models of computation, but the present discussion focuses on aspects of computa-
tional convexity for which binary models seem most natural. Many of the results
stated in this chapter are qualitative, in the sense that they classify certain problems
as being solvable in polynomial time, or show that certain problems are NP-hard or
harder. Typically, the tasks remain to find optimal exact algorithms for the prob-
lems that are polynomially solvable, and to find useful approximation algorithms
or heuristics for those that are NP-hard. In many cases, the known algorithms,
even when they run in polynomial time, appear to be far from optimal from the
viewpoint of practical application. Hence, the qualitative complexity results should
in many cases be regarded as a guide to future efforts but not as final words on the
problems with which they deal.

Some of the important areas of computational convexity, such as linear and con-
vex programming, packing and covering, and geometric reconstructions, are covered
in other chapters of this Handbook. Hence, after some remarks on presentations
of polytopes in Section 36.1, the present discussion concentrates on the following
areas that are not covered elsewhere in the Handbook: 36.2, Algorithmic Theory
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of Convex Bodies; 36.3, Volume Computations; 36.4, Mixed Volumes; 36.5, Con-
tainment Problems; 36.6, Radii; 36.7, Constrained Clustering. There are various
other classes of problems in computational convexity that will not be covered e.g.
projections of polytopes [Fil90, BGK96], sections of polytopes [Fil92], Minkowski
addition of polytopes [GS93], geometric tomography [Gar95, GG94, GG97, GGH16]
or the Minkowski reconstruction of polytopes [GH99].

Because of the diversity of topics covered in this chapter, each section has a
separate bibliography.
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36.1 PRESENTATIONS OF POLYTOPES

A convex polytope P ⊂ Rn can be represented in terms of its vertices or in terms
of its facet inequalities. From a theoretical viewpoint, the two possibilities are
equivalent. However, as the dimension increases, the number of vertices can grow
exponentially in terms of the number of facets, and vice-versa, so that different
presentations may lead to different classifications concerning polynomial-time com-
putability or NP-hardness. (See Sections 15.1 and 26.3 of this Handbook.)

For algorithmic purposes it is usually not the polytope P as a geometric object
that is relevant, but rather its algebraic presentation. The discussion here is based
mainly on the binary or Turing machine model of computation, in which the size of
the input is defined as the length of the binary encoding needed to present the input
data to a Turing machine and the time-complexity of an algorithm is also defined
in terms of the operations of a Turing machine. Hence the algebraic presentation
of the objects at hand must be finite.

Among important special classes of polytopes, the zonotopes are particularly
interesting because they can be so compactly presented.

GLOSSARY

Convex body in Rn: A compact convex subset of Rn.

Kn: The family of all convex bodies in Rn.

Proper convex body in Rn: A convex body in Rn with nonempty interior.

Polytope: A convex body that has only finitely many extreme points.

Pn: The family of all convex polytopes in Rn.

n-polytope: Polytope of dimension n.

Face of a polytope P : P itself, the empty set, or the intersection of P with some
supporting hyperplane; fi(P ) is the number of i-dimensional faces of P .

Facet of an n-polytope P : Face of dimension n− 1.

Simple n-polytope: Each vertex is incident to precisely n edges or, equivalently,
to precisely n facets.

Simplicial polytope: A polytope in which each facet is a simplex.

V-presentation of a polytope P : A string (n,m; v1, . . . , vm), where n,m ∈ N
and v1, . . . , vm ∈ Rn such that P = conv{v1, . . . , vm}.
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H-presentation of a polytope P : A string (n,m;A, b), where n,m ∈ N, A is a
real m× n matrix, and b ∈ Rm such that P = {x ∈ Rn | Ax ≤ b}.

irredundant V- or H-presentation of a polytope P : A V- or H-presentation
(n,m; v1, . . . , vm) or (n,m;A, b) of P with the property that none of the points
v1, . . . , vm or none of the inequalities Ax ≤ b can be omitted without altering P ,
respectively.

V-polytope P : A string (n,m; v1, . . . , vm), where n,m ∈ N and v1, . . . , vm ∈ Qn.
P is usually identified with the geometric object conv{v1, . . . , vm}.

H-polytope P : A string (n,m;A, b), where n,m ∈ N, A is a rational m×n matrix,
b ∈ Qm, and the set {x ∈ Rn | Ax ≤ b} is bounded. P is usually identified with
this set.

Size of a V- or an H-polytope P : Number of binary digits needed to encode the
string (n,m; v1, . . . , vm) or (n,m;A, b), respectively.

Zonotope: The vector sum (Minkowski sum) of a finite number of line segments;
equivalently, a polytope of which each face has a center of symmetry.

S-presentation of a zonotope Z in Rn: A string (n,m; c; z1, . . . , zm), where
n,m ∈ N and c, z1, . . . , zm ∈ Rn, such that Z = c+

∑m
i=1[−1, 1]zi.

Parallelotope in Rn: A zonotope Z = c+
∑m
i=1[−1, 1]zi, with z1, . . . , zm linearly

independent.

S-zonotope Z in Rn: A string (n,m; c; z1, . . . , zm), where n,m ∈ N and c, z1, . . . ,
zm ∈ Qn. Z is usually identified with the geometric object c+

∑m
i=1[−1, 1]zi.

36.1.1 CONVERSION OF ONE PRESENTATION INTO THE OTHER

Note, first, that from a given V- orH-representation of a polytope P , an irredundant
V- or H-representation of P can be computed in polynomial time by means of linear
programming, respectively; see also Section 26.2.

The following results indicate the difficulties that may be expected in converting
the H-presentation of a polytope into a V-presentation or vice versa.

For H-presented n-polytopes with m facets, the maximum possible number of
vertices is

µ(m,n) =

(
m− b(n+ 1)/2c

m− n

)
+

(
m− b(n+ 2)/2c

m− n

)
,

and this is also the maximum possible number of facets for a V-presented n-polytope
with m vertices. The first maximum is attained within the family of simple n-
polytopes, the second within the family of simplicial n-polytopes.

When n is fixed, the number of vertices is bounded by a polynomial in the
number of facets, and vice-versa, and it is possible to pass from either sort of
presentation to the other in polynomial time. However, the degree of the polynomial
goes to infinity with n. A consequence of this is that when the dimension n is
permitted to vary in a problem concerning polytopes, the manner of presentation
is often influential in determining whether the problem can be solved in polynomial
time or is NP-hard. For the case of variable dimension, it is #P-hard even to
determine the number of facets of a given V-polytope, or to determine the number
of vertices of a given H-polytope, [Lin86].

For simple H-presented n-polytopes with m facets, the minimum possible num-
ber of vertices is (m− n)(n− 1) + 2. The large gap between this number and the
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above sum of binomial coefficients makes it clear that, from a practical standpoint,
the worst-case behavior of any conversion algorithm should be measured in terms
of both input size and output size. In this respect, the following problems seems
fundamental.

OPEN PROBLEM 36.1.1

What is computational complexity of Polytope verification: Given an H-polytope
P and a V-polytope Q in Rn, decide whether P = Q.

The maximum number of j-dimensional faces of an n-dimensional zonotope
formed as the sum of m segments is

2

(
m

j

) n−1−j∑
k=0

(
m− 1− j

k

)
,

and hence, the number of vertices or of facets (or of faces of any dimension) of an
S-zonotope is not bounded by any polynomial in the size of the S-presentation.

In combinatorial optimization one is particularly interested in “perfect formu-
lations” of 0-1-polytopes in Rn associated with the underlying problems. A well-
studied example is that of the traveling salesman polytopes, the convex hull of the
incidence vectors of Hamiltonian cyles of the complete graph on the given number
of cities. Since formulations in the “natural space” of the application often have
an exponential number of inequalities one tries to find small extended formulations,
i.e., formulations with a polynomial number of inequalities, after allowing a poly-
nomial number of extra variables; see e.g. [CCZ13]. In effect, one is asking for a
polytope in higher (but not too high) dimension whose projection on Rn coincides
with the original polytope. For some “oracular” results (in the spirit of the next
section) see [BV08].

We end this section by mentioning two other ways of presenting polytopes.
A general result of Bröcker and Scheiderer (see [BCR98]) on semi-algebraic

sets implies that for each n-polytope P in Rn (no matter how complicated its facial
structure may be), there exists a system of n(n+ 1)/2 polynomial inequalities that
has P as its solution-set, and that n polynomial inequalities suffice to describe the
interior of P . More recently, Bröcker showed (see [AH11]) that for polytopes n
polynomial inequalities actually always suffice. [AH11] give a fully constructive
proof that any simple n-polytope can be described by n polynomial inequalities.

For a polytope P in Rn whose interior is known to contain the origin, [GKW95]
shows that the entire face-lattice of P can be reconstructed with the aid of at most

f0(P ) + (n− 1)f2n−1(P ) + (5n− 4)fn−1(P )

queries to the ray-oracle of P . In each such query, one specifies a ray issuing from
the origin and the oracle is required to tell where the ray hits the boundary of P .
Related results were obtained in [DEY90].

For more on oracles, see Section 36.2 of this Handbook.
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36.2 ALGORITHMIC THEORY OF CONVEX BODIES

Polytopes may be V-presented or H-presented. However, a different approach is
required to deal with convex bodies K that are not polytopes, since an enumeration
of all the extreme points of K or of its polar is not possible. A convenient way to
deal with the general situation is to assume that the convex body in question is
given by an algorithm (called an oracle) that answers certain sorts of questions
about the body. A small amount of a priori information about the body may be
known, but aside from this, all information about the specific convex body must be
obtained from the oracle, which functions as a “black box.” In other words, while it
is assumed that the oracle’s answers are always correct, nothing is assumed about
the manner in which it produces those answers. The algorithmic theory of convex
bodies was developed in [GLS88] with a view to proper (i.e., n-dimensional) convex
bodies in Rn. For many purposes, provisions can be made to deal meaningfully
with improper bodies as well, but that aspect is largely ignored in what follows.

GLOSSARY

Outer parallel body of a convex body K: K(ε) = K + εBn, where Bn is the
Euclidean unit ball in Rn.

Inner parallel body of a convex body K: K(−ε) = K \
(
(Rn \K) + εBn

)
.

Weak membership problem for a convex body K in Rn: Given y ∈ Qn, and a
rational number ε > 0, conclude with one of the following: report that y ∈ K(ε);
or report that y /∈ K(−ε).

Weak separation problem for a convex body K in Rn: Given a vector y ∈ Qn,
and a rational number ε > 0, conclude with one of the following: report that
y ∈ K(ε); or find a vector z ∈ Qn such that ‖ z ‖(∞)= 1 and zTx < zT y + ε for
every x ∈ K(−ε).

Weak (linear) optimization problem for a convex body K in Rn: Given a
vector c ∈ Qn and a rational number ε > 0, conclude with one of the following:
find a vector y ∈ Qn ∩K(ε) such that cTx ≤ cT y + ε for every x ∈ K(−ε); or
report that K(−ε) = ∅.

Circumscribed convex body K: A positive rational number R is given explicitly
such that K ⊂ RBn.

Well-bounded convex bodyK: Positive rational numbers r,R are given explicitly
such that K ⊂ RBn and K contains a ball of radius r.

Centered well-bounded convex body K: Positive rational numbers r,R and a
vector b ∈ Qn are given explicitly such that b+ rBn ⊂ K and K ⊂ RBn.

Weak membership oracle for a convex body K: Algorithm that solves the weak
membership problem for K.

Weak separation oracle forK: Algorithm that solves the weak separation prob-
lem for K.

Weak (linear) optimization oracle for K: Algorithm that solves the weak
(linear) optimization problem for K.
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The three problems above are very closely related in the sense that when the
classes of proper convex bodies are appropriately restricted to those that are cir-
cumscribed, well-bounded, or centered, and when input sizes are properly defined,
an algorithm that solves any one of the problems in polynomial time can be used
as a subroutine to solve the others in polynomial time also. The definition of in-
put size involves the size of ε, the dimension of K, the given a priori information
(size(r), size(R), and/or size(b)), and the input required by the oracle. The follow-
ing theorem of [GLS88] contains a list of the precise relationships among the three
basic oracles for proper convex bodies. The notation “(A; prop) →π B” indicates
the existence of an (oracle-) polynomial-time algorithm that solves problem B for
every proper convex body that is given by the oracle A and has all the properties
specified in prop. (prop= ∅ means that the statement holds for general proper
convex bodies.)

(Weak Membership; centered, well-bounded) →π Weak Separation;
(Weak Membership; centered, well-bounded) →π Weak Optimization;
(Weak Separation; ∅) →π Weak Membership;
(Weak Separation; circumscribed) →π Weak Optimization;
(Weak Optimization; ∅) →π Weak Membership;
(Weak Optimization; ∅) →π Weak Separation.

It should be emphasized that there are polynomial-time algorithms that, ac-
cepting as input a set P that is a proper V-polytope, a proper H-polytope, or a
proper S-zonotope, produce membership, separation, and optimization oracles for
P , and also compute a lower bound on the inradius of P , an upper bound on its
circumradius, and a “center” bP for P . This implies that if an algorithm performs
certain tasks for convex bodies given by some of the above (appropriately speci-
fied) oracles, then the same algorithm can also serve as a basis for procedures that
perform these tasks for V- or H-polytopes and for S-zonotopes. Hence the oracular
framework, in addition to being applicable to convex bodies that are not polytopes,
serves also to modularize the approach to algorithmic aspects of polytopes. On the
other hand, there are lower bounds on the performance of approximate algorithms
for the oracle model that do not carry over to the case of V- or H-polytopes or S-
zonotopes [BF87, BGK+01]. However, if in polyhedral combinatorics certain tasks
are known to be NP-hard then the above→π implications can be used to show that
certain other tasks are also hard. For instance, if the membership or the separation
problem for the traveling salesman polytopes could be solved in polynomial time
then optimization would also be tractable. Since the traveling salesman problem
is known to be NP-hard, so are the membership or the separation problem for the
traveling salesman polytopes. See [BV08] for approximations of convex bodies by
sets for which a polynomial-time membership oracle is available.
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36.3 VOLUME COMPUTATIONS

It may be fair to say that the modern study of volume computations began with
Kepler [Kep15] who derived the first cubature formula for measuring the capacities
of wine barrels, and that it was the task of volume computation that motivated the
general field of integration. The problem of computing or approximating volumes
of convex bodies is certainly one of the basic problems in mathematics.

GLOSSARY

In the following, G is a subgroup of the group of all affine automorphisms of Rn.

Dissection of an n-polytope P into n-polytopes P1, . . . , Pk: P = P1 ∪ · · · ∪ Pk,
where the polytopes Pi have pairwise disjoint interiors.

Polytopes P,Q ⊂ Rn are G-equidissectable: For some k there exist dissections
P1, . . . , Pk of P and Q1, . . . , Qk of Q, and elements g1, . . . , gk of G, such that
Pi = gi(Qi) for all i.

Polytopes P,Q ⊂ Rn are G-equicomplementable: There are polytopes P1, P2

and Q1, Q2 such that P2 is dissected into P and P1, Q2 is dissected into Q and
Q1, P1 and Q1 are G-equidissectable, and P2 and Q2 are G-equidissectable.

Decomposition of a set S: S = S1 ∪ · · · ∪ Sk, where the sets Si are pairwise
disjoint.

Sets S, T areG-equidecomposable: For some k there are decompositions S1, . . . ,
Sk of S and T1, . . . , Tk of T , and elements g1, . . . , gk of G, such that Si = gi(Ti)
for all i.
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Valuation on a family S of subsets of Rn: A functional ϕ : S → R with the
property that ϕ(S1) + ϕ(S2) = ϕ(S1 ∪ S2) + ϕ(S1 ∩ S2) whenever the sets
S1, S2, S1 ∪ S2, S1 ∩ S2 ∈ S.

G-invariant valuation ϕ: ϕ(S) = ϕ(g(S)) for all S ∈ S and g ∈ G.

Simple valuation ϕ: ϕ(S) = 0 whenever S ∈ S and S is contained in a hyper-
plane.

Monotone valuation ϕ: ϕ(S1) ≤ ϕ(S2) whenever S1, S2 ∈ S with S1 ⊂ S2.

Class P of H-polytopes is near-simplicial: There is a nonnegative integer σ
such that P =

⋃
n∈N PH(n, σ), where PH(n, σ) is the family of all n-dimensional

H-polytopes P in Rn such that each facet of P has at most n+ 1 + σ vertices.

Class P of V-polytopes is near-simple: There is a nonnegative integer τ such
that P =

⋃
n∈N PV(n, τ), where PV(n, τ) is the family of all n-dimensional V-

polytopes P in Rn such that each vertex of P is incident to at most n+ τ edges.

Class P of V-polytopes is near-parallelotopal: There is a nonnegative integer ζ
such that Z =

⋃
n∈NZS(n, ζ), where ZS(n, ζ) is the family of all S-zonotopes in

Rn that are represented as the sum of at most n+ ζ segments.

V: The functional that associates with a convex body K its volume.

H-Volume: For a given H-polytope P and a nonnegative rational ν, decide
whether V (P ) ≤ ν.

V-Volume, S-Volume: Similarly for V-polytopes and S-zonotopes.

λ-Approximation for some functional ρ: Given a positive integer n and a well-
bounded convex body K given by a weak separation oracle, determine a non
negative rational µ such that

ρ(K) ≤ (1 + λ)µ and µ ≤ (1 + λ)ρ(K).

Expected Volume Computation: Given a positive integer n, a centered well-
bounded convex body K in Rn given by a weak membership oracle, and positive
rationals β and ε. Determine a positive rational random variable µ such that

prob

{∣∣∣∣ µ

V (K)
− 1

∣∣∣∣ ≤ ε} ≥ 1− β.

36.3.1 CLASSICAL BACKGROUND, CHARACTERIZATIONS

The results in this subsection connect the subject matter of volume computation
with related “classical” problems. In the following, G is a group of affine automor-
phisms of Rn, as above, and D is the group of isometries.

(i) Two polytopes are G-equidissectable if and only if they are G-equicomple-
mentable.

(ii) Two polytopes P and Q are G-equidissectable if and only if ϕ(P ) = ϕ(Q) for
all G-invariant simple valuations on Pn.

(iii) Two plane polygons are of equal area if and only if they are D-equidissectable.
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(iv) If one agrees that an a-by-b rectangle should have area ab, and also agrees
that the area function should be a D-invariant simple valuation, it then fol-
lows from the preceding result that the area of any plane polygon P can
be determined (at least in theory) by finding a rectangle R to which P is
equidissectable. This provides a satisfyingly geometric theory of area that
does not require any limiting considerations. The third problem of Hilbert
[Hil00] asked, in effect, whether such a result extends to 3-polytopes. A nega-
tive answer was supplied by [Deh00], who showed that a regular tetrahedron
and a cube of the same volume are not D-equidissectable.

(v) If P and Q are n-polytopes in Rn, then for P and Q to be equidissectable
under the group of all isometries of Rn, it is necessary that f∗(P ) = f∗(Q) for
each additive real function f such that f(π) = 0, where f∗(P ) is the so-called
Dehn invariant of P associated with f . The condition is also sufficient for
equidissectability when n ≤ 4, but the matter of sufficiency is unsettled for
n ≥ 5.

(vi) Two plane polygons are of equal area if and only if they are D-equidecom-
posable.

(vii) In [Lac90], it was proved that any two plane polygons of equal area are equide-
composable under the group of translations. That paper also settled Tarski’s
old problem of “squaring the circle” by showing that a square and a cir-
cular disk of equal area are equidecomposable; there too, translations suffice.
On the other hand, a disk and a square cannot be scissors congruent ; i.e.,
there is no equidissection (with respect to rigid motions) into pieces that,
roughly speaking, could be cut out with a pair of scissors.

(viii) If X and Y are bounded subsets of Rn (with n ≥ 3), and each set has
nonempty interior, thenX and Y areD-equidecomposable. This is the famous
Banach-Tarski paradox.

(ix) Under the group of all volume-preserving affinites of Rn, two n-polytopes are
equidissectable if and only if they are of equal volume.

(x) If ϕ is a translation-invariant, nonnegative, simple valuation on Pn (resp.
Kn), then there exists a nonnegative real α such that ϕ = αV .

(xi) A translation-invariant valuation on Pn that is homogeneous of degree n is a
constant multiple of the volume.

(xii) A continuous, rigid-motion-invariant, simple valuation on Kn is a constant
multiple of the volume.

(xiii) A nonnegative simple valuation on Pn (resp. Kn) that is invariant under all
volume-preserving linear maps of Rn is a constant multiple of the volume.

36.3.2 SOME VOLUME FORMULAS

Since simplex volumes can be computed so easily, the most natural approach to the
problem of computing the volume of a polytope P is to produce a triangulation of
P (see Chapter 16). Then compute the volumes of the individual simplices and add
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them up to find the volume of P . (This uses the fact that the volume is a simple
valuation.) As a consequence, one sees that when the dimension n is fixed, the
volume of V-polytopes and of H-polytopes can be computed in polynomial time.

Another equally natural method is to dissect P into pyramids with common
apex over its facets. Since the volume of such a pyramid is just 1/n times the
product of its height and the (n−1)-volume of its base, the volume can be computed
recursively.

Another approach that has become a standard tool for many algorithmic ques-
tions in geometry is the sweep-plane technique. The general idea is to “sweep” a
hyperplane through a polytope P , keeping track of the changes that occur when the
hyperplane sweeps through a vertex. As applied to volume computation, this leads
to the volume formula given below that does not explicitly involve triangulations,
[BN83, Law91].

Suppose that (n,m;A, b) is an irredundant H-presentation of a simple polytope
P . Let b = (β1, . . . , βm)T and denote the row-vectors of A by aT1 , . . . , a

T
m. Let M =

{1, . . . ,m} and for each nonempty subset I of M , let AI denote the submatrix of A
formed by rows with indices in I and let bI denote the corresponding right-hand side.
Let F0(P ) denote the set of all vertices of the polytope P = {x ∈ Rn | Ax ≤ b}.
For each v ∈ F0(P ), there is a set I = Iv ⊂M of cardinality n such that AIv = bI
and AM\Iv ≤ bM\I . Since P is assumed to be simple and its H-presentation to be
irredundant, the set Iv is unique.

Let c ∈ Rn be such that 〈c, v1〉 6= 〈c, v2〉 for any pair of vertices v1, v2 that form
an edge of P . Then it turns out that

V (P ) =
1

n!

∑
v∈F0(P )

〈c, v〉n∏n
i=1 e

T
i A
−1
Iv
c|det(AIv )|

.

The ingredients of this volume formula are those that are computed in the
(dual) simplex algorithm. More precisely, 〈c, v〉 is just the value of the objective
function at the current basic feasible solution v, det(AIv ) is the determinant of the
current basis, and A−1Iv c is the vector of reduced costs, i.e., the (generally infeasible)
dual point that belongs to v.

For practical computations, this volume formula has to be combined with some
vertex enumeration technique. Its closeness to the simplex algorithm suggests the
use of a reverse search method [AF92], which is based on the simplex method with
Bland’s pivoting rule.

As it stands, the volume formula does not involve triangulation. However, when
interpreted in a polar setting, it is seen to involve the faces of the simplicial polytope
P ◦ that is the polar of P . Accordingly, generalization to nonsimple polytopes
involves polar triangulation. In fact, for general polytopes P , one may apply a
“lexicographic rule” for moving from one basis to another, but this amounts to a
particular triangulation of P ◦.

Another possibility for computing the volume of a polytope P is to study the
exponential integral

∫
P
e〈c,x〉dx, where c is an arbitrary vector of Rn; see [Bar93].

(Note that for c = 0, this integral just gives the volume of P .) Exponential integrals
satisfy certain relations that make it possible to compute the integrals efficiently in
some important cases. In particular, exponential sums can be used to obtain the
tractability result for near-simple V-polytopes stated in the next subsection.
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36.3.3 TRACTABILITY RESULTS

The volume of a polytope P can be computed in polynomial time in the following
cases:

(i) when the dimension is fixed and P is a V-polytope, an H-polytope, or an
S-zonotope;

(ii) when the dimension is part of the input and P is a near-simple V-polytope,
a near-simplicial H-polytope, or a near-parallelotopal S-zonotope.

36.3.4 INTRACTABILITY RESULTS

(i) Since the output can have super polynomial size [Law91] there is no polynomial-
space algorithm for exact computation of the volume of H-polytopes.

(ii) H-Volume is #P-hard even for the intersections of the unit cube with one
rational halfspace.

(iii) H-Volume is #P-hard in the strong sense. (This follows from the result of
[BW92] that the problem of computing the number of linear extensions of a
given partially ordered set O = ({1, . . . , n},≺) is #P-complete, in conjunction
with the fact that this number is equal to n!V (PO), where the set PO = {x =
(ξ1, . . . , ξn)T ∈ [0, 1]n | ξi ≤ ξj ⇐⇒ i ≺ j} is the order polytope of O
[Sta86].)

(iv) The problem of computing the volume of the convex hull of the regular V-
cross-polytope and an additional integer vector is #P-hard.

(v) S-Volume is #P-hard.

36.3.5 DETERMINISTIC APPROXIMATION

(i) There exists an oracle-polynomial-time algorithm that, for any convex body
K of Rn given by a weak optimization oracle, and for each ε > 0, finds
rationals µ1 and µ2 such that

µ1 ≤ V (K) ≤ µ2 and µ2 ≤ n!(1 + ε)nµ1.

(ii) Suppose that

λ(n) <

(
n

log n

)n/2
− 1 for all n ∈ N.

Then there exists no deterministic oracle-polynomial-time algorithm for λ-
Approximation of the volume [BF87].

[DV13] give better approximations at higher computational cost. More pre-
cisely, it is shown that there is a deterministic algorithm, that accepts as input
a well-bounded centrally symmetric convex body K given by a weak membership
oracle and an ε ∈ (0, 1], and computes a (1 + ε)n-approximation of V (K) in time
O(1/ε)O(n) and polynomial space. In view of the results of [BF87], this is optimal
up to the constant in the exponent.
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36.3.6 RANDOMIZED ALGORITHMS

[DFK89] proved that there is a randomized algorithm for Expected Volume
Computation that runs in time that is oracle-polynomial in n, 1/ε, and log(1/β).

The first step is a rounding procedure, using an algorithmic version of John’s
theorem; see Section 36.5.4. For the second step, one may therefore assume that
Bn ⊂ K ⊂ (n+ 1)

√
nBn. Now, let

k =

⌈
3

2
(n+ 1) log(n+ 1)

⌉
, and Ki = K ∩

(
1 +

1

n

)i
Bn for i = 0, . . . , k.

Then it suffices to estimate each ratio V (Ki)/V (Ki−1) up to a relative error of
order ε/(n log n) with error probability of order β/(n log n).

The main step of the algorithm of [DFK89] is based on a method for sampling
nearly uniformly from within certain convex bodies Ki. It superimposes a chess-
board grid of small cubes (say of edge length δ) on Ki, and performs a random
walk over the set Ci of cubes in this grid that intersect a suitable parallel body
Ki + αBn, where α is small. This walk is performed by moving through a facet
with probability 1/fn−1(Cn) = (2n)−1 if this move ends up in a cube of Ci, and
staying at the current cube if the move would lead outside of Ci. The random walk
gives a Markov chain that is irreducible (since the moves are connected), aperiodic,
and hence ergodic. But this implies that there is a unique stationary distribution,
the limit distribution of the chain, which is easily seen to be a uniform distribution.
Thus after a sufficiently large (but polynomially bounded) number of steps, the
current cube in the random walk can be used to sample nearly uniformly from Ci.
Having obtained such a uniformly sampled cube, one determines whether it belongs
to Ci−1 or to Ci \ Ci−1.

Now note that if νi is the number of cubes in Ci, then the number µi = νi/νi−1
is an estimate for the volume ratio V (Ki)/V (Ki−1). It is this number µi that can
now be “randomly approximated” using the approximation constructed above of a
uniform sampling over Ci. In fact, a cube C that is reached after sufficiently many
steps in the random walk will lie in Ci−1 with probability approximately 1/µi; hence
this probability can be approximated closely by repeated sampling.

This algorithm has been improved significantly by various authors. [LV06]
achieved a bound where (except for logarithmic factors) n enters only to the fourth
power—this is denoted by writing O∗(n4)—which is currently the best running
time in general. Recently, [CV16b] gave an O∗(n3) algorithm for convex bodies
K containing Bn and being “mostly contained” in O∗(

√
n)Bn, i.e., the expected

value of ‖X‖2 for a uniform random point X of K is O∗(n). Currently such a
“well-rounding” can, however, only be acieved in time O∗(n4), [LV06].

The remarkable improvements over the original O(n23) bound for the running
time of [DFK89] rely on better intial rounding of the convex body and on improved
sampling methods. In particular, the chain of bodies Ki (or equivalently their
characteristic functions) were replaced by more general distributions fi starting
with one that is highly concentrated around a point close to an incenter of K
(playing the role of K0) and ending with a near uniform distribution. (In analogy
to simulated annealing this process is called “cooling”.) [CV16b] use Gaussian

Preliminary version (December 16, 2016).



Chapter 36: Computational convexity 951

functions of the type

fi(x) =

e−
‖x‖2

2σ2
i for x ∈ K;

0 otherwise.

where the parameters σi are suitably adapted. The random walk then picks a
random point q from a ball of suitable radius centered at the previous point xj which
is accepted as the next point xj+1 with probability min{1, fi(q)/fi(xj)}. (This is
referred to as Gaussian sampling using the ball walk with Metropolis filter.) The
ratio of the integrals of fi+1 and fi is finally estimated by

1

k

k∑
j=1

fi+1(xj)

fi(xj)
.

With this kind of running time randomized volume computations is getting close
to being practical; see [CV16a] for some corresponding study.
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36.4 MIXED VOLUMES

The study of mixed volumes, the Brunn-Minkowski theory, forms the backbone of
classical convexity theory. It is also useful for applications in other areas, includ-
ing combinatorics and algebraic geometry. A relationship to solving systems of
polynomial equations is described at the end of this section.
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GLOSSARY

Mixed volume: Let K1, . . . ,Ks be convex bodies in Rn, and let ξ1, . . . , ξs be non-
negative reals. Then the function V

(∑s
i=1 ξiKi

)
is a homogeneous polynomial

of degree n in the variables ξ1, . . . , ξs, and can be written in the form

V

( s∑
i=1

ξiKi

)
=

s∑
i1=1

s∑
i2=1

· · ·
s∑

in=1

ξi1ξi2 · · · ξinV (Ki1 ,Ki2 , . . . ,Kin),

where the coefficients V (Ki1 ,Ki2 , . . . ,Kin) are invariant under permutations of
their argument. The coefficient V (Ki1 ,Ki2 , . . . ,Kin) is called the mixed volume
of the convex bodies Ki1 ,Ki2 , . . . ,Kin .

36.4.1 MAIN RESULTS

Mixed volumes are nonnegative, monotone, multilinear, and continuous valuations.

They generalize the ordinary volume in that V (K) = V (

n︷ ︸︸ ︷
K, . . . ,K). If A is an affine

transformation, then V (A(K1), . . . , A(Kn)) = |det(A)|V (K1, . . . ,Kn).
Among the most famous inequalities in convexity theory is the Aleksandrov-

Fenchel inequality,

V (K1,K2,K3, . . . ,Kn)
2 ≥ V (K1,K1,K3, . . . ,Kn) V (K2,K2,K3, . . . ,Kn),

and its consequence, the Brunn-Minkowski theorem, which asserts that for each
λ ∈ [0, 1],

V
1
n ((1− λ)K0 + λK1) ≥ (1− λ)V

1
n (K0) + λV

1
n (K1).

OPEN PROBLEM 36.4.1

Provide a useful geometric characterization of the sequences (K1, . . . ,Kn) for which
equality holds in the Aleksandrov-Fenchel inequality.

36.4.2 TRACTABILITY RESULTS

When n is fixed, there is a polynomial-time algorithm whereby, given s (V- or H-)
polytopes P1, . . . , Ps in Rn, all the mixed volumes V (Pi1 , . . . , Pin) can be computed.

When the dimension is part of the input, it follows at least that mixed volume
computation is not harder than volume computation. In fact, computation (for V-
polytopes or S-zonotopes) or approximation (for H-polytopes) of any single mixed
volume is #P-easy.

There is a polynomial-time algorithm for approximating the mixed volume of
n convex bodies up to a simply exponential error, [Gur09].

36.4.3 INTRACTABILITY RESULTS

Since mixed volumes generalize the ordinary volume, it is clear that mixed volume
computation cannot be easier, in general, than volume computation. In addition,
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there are hardness results for mixed volumes that do not trivially depend on the
hardness of volume computations. One such result is described next.

As the term is used here, a box is a rectangular parallelotope with axis-aligned
edges. Since the vector sum of boxes V (Z1, . . . , Zn) is again a box, the volume
of the sum is easy to compute. Nevertheless, computation of the mixed volume
V (Z1, . . . , Zn) is hard; see [DGH98]. This is in interesting contrast to the fact that
the volume of a sum of segments (a zonotope) is hard to compute even though each
of the mixed volumes can be computed in polynomial time.

36.4.4 RANDOMIZED ALGORITHMS

Since the mixed volumes of convex bodies K1, . . . ,Ks are coefficients of the polyno-
mial ϕ(ξ1, . . . , ξs) = V (

∑s
i=1 ξiKi), it seems natural to estimate these coefficients

by combining an interpolation method with a randomized volume algorithm. How-
ever, there are significant obstacles to this approach, even for the case of two bodies.
First, for a general polynomial ϕ there is no way of obtaining relative estimates
of its coefficients from relative estimates of the values of ϕ. This can be over-
come in the case of two bodies by using the special structure of the polynomial
p(x) = V (K1 + xK2). However, even then the absolute values of the entries of
the “inversion” that is used to express the coefficients of the polynomial in terms
of its approximate values are not bounded by a polynomial, while the randomized
volume approximation algorithm is polynomial only in 1

τ but not in size(τ).
Suppose that ψ : N→ N is nondecreasing with

ψ(n) ≤ n and ψ(n) logψ(n) = o(log n).

Then there is a polynomial-time algorithm for the problem whose instance consists
of n, s ∈ N, m1, . . . ,ms ∈ N with m1 + m2 + · · ·+ ms = n and m1 ≥ n− ψ(n), of
well-bounded convex bodies K1, . . . ,Ks of Rn given by a weak membership oracle,
and of positive rational numbers ε and β, and whose output is a random variable
V̂m1,...,ms ∈ Q such that

prob

{
|V̂m1,...,ms − Vm1,...,ms |

Vm1,...,ms

≥ ε

}
≤ β,

where

Vm1,...,ms = V (

m1︷ ︸︸ ︷
K1, . . . ,K1, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks).

Note that the hypotheses above require that m1 is close to n, and hence that the
remaining mi’s are relatively small. A special feature of an interpolation method
as used for the proof of this result is that in order to compute a specific coefficient
of the polynomial under consideration, it computes essentially all previous coef-
ficients. Since there can be a polynomial-time algorithm for computing all such
mixed volumes only if ψ(n) ≤ log n, the above result is essentially best-possible for
any interpolation method.

OPEN PROBLEM 36.4.2 [DGH98]

Is there a polynomial-time randomized algorithm that, for any n, s ∈ N, m1, . . . ,ms ∈
N with m1 +m2 + · · ·+ms = n, well-bounded convex bodies K1, . . . ,Ks in Rn given
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by a weak membership oracle, and positive rationals ε and β, computes a random
variable V̂m1,...,ms ∈ Q such that prob{|V̂m1,...,ms − Vm1,...,ms |/Vm1,...,ms ≥ ε} ≤ β?

Even the case s = n, m1 = · · · = ms = 1 is open in general. See, however,
[Bar97] for some partial results and [Mal16] for performance bounds in terms of
geometric invariants.

AN APPLICATION

Let S1, S2, . . . , Sn be subsets of Zn, and consider a system F = (f1, . . . , fn) of
Laurent polynomials in n variables, such that the exponents of the monomials in
fi are in Si for all i = 1, . . . , n. For i = 1, . . . , n, let

fi(x) =
∑
q∈Si

c(i)q xq,

where fi ∈ C[x1, x
−1
1 , . . . , xn, x

−1
n ], and xq is an abbreviation for the monomial

xq11 · · ·xqnn ; x = (x1, . . . , xn) is the vector of indeterminates and q = (q1, . . . , qn) the
vector of exponents. Further, let C∗ = C \ {0}.

Now, if the coefficients c
(i)
q (q ∈ Si) are chosen “generically,” then the number

L(F ) of distinct common roots of the system F in (C∗)n depends only on the
Newton polytopes Pi = conv(Si) of the polynomials. More precisely,

L(F ) = n! · V (P1, P2, . . . , Pn).

In general, L(F ) ≤ n! · V (P1, P2, . . . , Pn). These connections can be utilized to
develop a numerical continuation method for computing the isolated solutions of
sparse polynomial systems; see [CLO98, DE05, Stu02]
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36.5 CONTAINMENT PROBLEMS

Typically, containment problems involve two fixed sequences, Γ and Ω, that are
given as follows: for each n ∈ N, let Cn denote a family of closed convex subsets
of Rn, and let ωn : Cn −→ R be a functional that is nonnegative and is monotone
with respect to inclusion. Then Γ = (Cn)n∈N and Ω = (ωn)n∈N.

GLOSSARY

(Γ,Ω)-Inbody: Accepts as input a positive integer n, a body K in Rn that is
given by an oracle or is an H-polytope, a V-polytope, or an S-zonotope, and a
positive rational λ. It answers the question of whether there is a C ∈ Cn such
that C ⊂ K and ωn(C) ≥ λ.

(Γ,Ω)-Circumbody is defined similarly for C ⊃ K.

j-simplex S bound to a polytope P : Each vertex of S is a vertex of P .

Largest j-simplex in a given polytope: One of maximum j-measure.

36.5.1 THE GENERAL CONTAINMENT PROBLEM

The general containment problem deals with the question of computing, approx-
imating, or measuring extremal bodies of a given class that are contained in or
contain a given convex body. The broad survey [GK94a] can (yet being somewhat
older) still be used as a starting point for getting acquainted with the subject and
its many applications. Here we want to minimize the overlap with other chapters,
and restrict the exposition to some selected examples. In particular we do not focus
on coresets (see AHV07), as they are covered in Chapter 48.
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The emphasis here will be on containment under homothety and affinity. For
some results on containment under similarity see [GK94a, Sec. 7]; see also [Fir15]
for numerical computations in the case of V-polytopes in H-polytopes.

36.5.2 OPTIMAL CONTAINMENT UNDER HOMOTHETY

The results on (Γ,Ω)-Inbody and (Γ,Ω)-Circumbody are summarized below for
the case in which each Cn is a fixed polytope,

Cn = {g(Cn) | g is a homothety},

and

ωn(g(Cn)) = ρ, when g(Cn) = a+ ρCn for some a ∈ Rn and ρ ≥ 0.

As an abbreviation, these specific problems are denoted by EHom-Inbody and EHom-
Circumbody, respectively, where E = (Cn)n∈N and a subscript (V or H) is used
to indicate the manner in which each Cn is presented.

There are polynomial-time algorithms for the following problems:

EHom
V -Inbody for V-polytopes P ; EHom

V -Circumbody for V-polytopes P ;

EHom
V -Inbody for H-polytopes P ; EHom

H -Circumbody for V-polytopes P ;

EHom
H -Inbody for H-polytopes P ; EHom

H -Circumbody for H-polytopes P .

These positive results are best possible in the sense that the cases not listed
above contain instances of NP-hard problems. In fact, the problem EHom

H -Inbody
is coNP-complete even when Cn is the standard unit H-cube while P is restricted
to the class of all affinely regular V-cross-polytopes centered at the origin. The
problem EHom

V -Circumbody is coNP-complete even when Cn is the standard V-
cross-polytope while P is restricted to the class of all H-parallelotopes centered at
the origin.

There are some results for bodies that are more general than polytopes. Sup-
pose that for each n ∈ N, Cn is a centrally symmetric body in Rn, and that there
exists a number µn whose size is bounded by a polynomial in n and an n-dimensional
S-parallelotope Z that is strictly inscribed in µnCn (i.e., the intersection of Z with
the boundary of µnCn consists of the vertex set of Z), the size of the presentation
being bounded by a polynomial in n. Then with E = (Cn)n∈N, (an appropriate
variant of) the problem EHom-Circumbody is NP-hard for the classes of all cen-
trally symmetric (n−1)-dimensional H-polytopes in Rn. With the aid of polarity,
similar results for EHom-Inbody can be obtained. A particularly important special
case is that of norm maximization, i.e., maximizing the Euclidean (or some other
norm) over a polytope.

Besides the obvious examples of unit balls of norms and polytopes, containment
problems have also been studied for spectrahedra which arise in convex algebraic
geometry [HN12] and generalize the class of polyhedra. [KTT13] extend known
complexity results to spectahedra. For instance, they show that deciding whether a
given V-polytope is contained in a given spectrahedron can be decided in polynomial
time, while deciding whether a spectrahedron is contained in a V-polytope is co-
NP-hard. As spectahedra arise as feasible regions of semidefinite programs they
also give semidefinite conditions to certify containment.
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36.5.3 OPTIMAL CONTAINMENT UNDER AFFINITY: SIMPLICES

This section focuses on the problem of finding a largest j-dimensional simplex in a
given n-dimensional polytope, where largest means of maximum j-measure.

When an n-polytope P has m vertices, it contains at most
(
m
j+1

)
bound j-

simplices. There is always a largest j-simplex that is bound, and hence there is a
finite algorithm for finding a largest j-simplex contained in P .

Each largest j-simplex in P contains at least two vertices of P . However, there
are polytopes P of arbitrarily large dimension, with an arbitrarily large number of
vertices, such that some of the largest n-simplices in P have only two vertices in the
vertex-set of P . Hence for j ≥ 2 it is not clear whether there is a finite algorithm for
producing a useful presentation of all the largest j-simplices in a given n-polytope.

The problem of finding a largest j-simplex in a V- or H-polytope can be solved
in polynomial time when the dimension n of the polytope is fixed. Further, for fixed
j, the volumes of all bound j-simplices in a given V-polytope can be computed in
polynomial time (even for varying n).

Suppose that the functions ψ : N → N and γ : N → N are both of order
Ω(n1/k) for some k ∈ N, and that 1 ≤ γ(n) ≤ n for each n ∈ N. Then the following
problem is NP-complete: Given n, λ ∈ N, and the vertex set V of an n-dimensional
V-polytope P ⊂ Rn with |V | ≤ n + ψ(n), and given j = γ(n), decide whether P
contains a j-simplex S such that (j!)2vol(S)2 ≥ λ. Note that the conditions for γ
are satisfied when γ(n) = max{1, n− µ} for a nonnegative integer constant µ, and
also when γ(n) = max{1, bµnc} for a fixed rational µ with 0 < µ ≤ 1.

A similar hardness result holds for H-polytopes. There the question is the
same, but the growth condition on the function γ is that 1 ≤ γ(n) ≤ n and that
there exists a function f : N → N, bounded by a polynomial in n, such that for
each n ∈ N, f(n)− γ(f(n)) = n. Note that such an f exists when the function γ is
constant, and also when γ(n) = bµnc for fixed rational µ with 0 < µ < 1.

Under the assumption that the function γ : N→ N is such that γ(n) = Ω(n1/k)
for some fixed k > 0, [Pac02] gives a unifying approach for proving the NP-hardness
of the problems, for which an instance consists of n ∈ N, an H-polytope or V-
polytope P in Rn, and a rational λ > 0, and the question is whether there exists
an γ(n)-simplex S ⊂ P with V2(S) ≥ λ.

The following conjecture is, however, still open.

CONJECTURE 36.5.1 [GKL95]

For each function γ : N → N with 1 ≤ γ(n) ≤ n, the problem of finding a largest
j-simplex in a given n-dimensional H-parallelotope P is NP-hard.

The “dual” problem of finding smallest simplices containing a given polytope P
seems even harder, since the relationship between a smallest such simplex and the
faces of P is much weaker. However, [Pac02] gives the following hardness results
for j-simplicial cylinders C which are cylinders of the form C = S + L, where S
is a j-simplex with 0 ∈ aff(S) and L = aff(S)⊥. Let again the function γ : N→ N
be such that γ(n) = Ω(n1/k) for some fixed k > 0. Then it is NP-hard to decide
whether for given n ∈ N, positive rational λ and an H-polytope or V-polytope P in
Rn there exist an γ(n)-simplicial cylinder C with P ⊂ C and V2(S) ≤ λ. Note that
the condition on γ particularly includes the case j = n, i.e., that of an ordinary
n-dimensional simplex.
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These results have been complemented in various ways. [Kou06] shows that
the decision problem related to finding a largest j-simplex in a given V-polytope
is W [1]-complete with respect to the parameter j. See e.g. [FG06] for background
information on parametrized complexity. Also deterministic approximation and non
approximability results have been given [BGK00a, Pac04, Kou06, DEFM15, Nik15]
showing in particular that the problem of finding a largest j-simplex in a given V-
polytope can on the one hand be approximated in polynomial time up to a factor of
ej/2+o(j); yet, on the other hand, there is a constant µ > 1 such that it is NP-hard
to appromimate within a factor of µj .

APPLICATIONS

Applications of this problem and its relatives include that of finding submatrices of
maximum determinant, and, in particular, the Hadamard determinant problem, of
finding optimal weighing designs, and bounding the growth of pivots in Gaussian
elimination with complete pivoting; see [GK94a], [Nik15].

36.5.4 OPTIMAL CONTAINMENT UNDER AFFINITY: ELLIPSOIDS

For an arbitrary proper body K in Rn, there is a unique ellipsoid E0 of maximum
volume contained in K, and it is concentric with the unique ellipsoid E of minimum
volume containing K. If a is the common center, then K ⊂ a + n(E0 − a), where
the factor n can be replaced by

√
n when K is centrally symmetric. E is called the

Löwner-John ellipsoid of K, and it plays an important role in the algorithmic
theory of convex bodies.

Algorithmic approximations of the Löwner-John ellipsoid can be obtained by
use of the ellipsoid method [GLS88]: There exists an oracle-polynomial-time algo-
rithm that, for any well-bounded body K of Rn given by a weak separation oracle,
finds a point a and a linear transformation A such that

a+A(Bn) ⊂ K ⊂ a+ (n+ 1)
√
nA(Bn).

Further, the dilatation factor (n + 1)
√
n can be replaced by

√
n(n+ 1) when K

is symmetric, by (n + 1) when K is an H-polytope, and by
√
n+ 1 when K is a

symmetric H-polytope.
[TKE88] and [KT93] give polynomial-time algorithms for approximating the

ellipsoid of maximum volume E0 that is contained in a given H-polytope. For each
rational γ < 1, there exists a polynomial-time algorithm that, given n,m ∈ N and
a1, . . . , am ∈ Qn, computes an ellipsoid E = a+A(Bn) such that

E ⊂ P = {x ∈ Rn | 〈aix〉 ≤ 1, for i = 1, . . . ,m} and
V (E)

V (E0)
≥ γ.

The running time of the algorithm is

O
(
m3.5 log

(
mR/(r log(1/γ))

)
log
(
nR/(r log(1/γ))

))
,

where the numbers r and R are, respectively, a lower bound on the inradius of P
and an upper bound on its circumradius.

It is not known whether a similar result holds for V-polytopes.
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As shown in [TKE88], an approximation of E0 of the kind given above leads to
the following inclusion:

a+A(Bn) ⊂ K ⊂ a+
n(1 + 3

√
1− γ)

γ
A(Bn).

Other important ellipsoids related to convex bodies K are the M-ellipsoids; see
e.g. [Pis89]. Intuitively an M-ellipsoid E is an ellipsoid with small covering number
with respect to K. More precisely, for two sets A,B let N(A;B) denote the number
of translates of B needed to cover A. Then every convex body K in Rn admits an
ellipsoid E for which N(K;E)N(E;K) is bounded by 2O(n), [Mil86]; this is best
possible up to the constant in the exponent. [DV13] give a deterministic algorithm
for computing an M-ellipsoid for a well-bounded convex body K in Rn given by a
weak membership oracle in time 2O(n). This is best possible up to the constant in
the exponent.
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36.6 RADII

The diameter, width, circumradius, and inradius of a convex body are classical func-
tionals that play an important role in convexity theory and in many applications.
For other applications, generalizations have been introduced. Here we focus on the
case that the underlying space is a Minkowski space (i.e., a finite-dimensional
normed space) M = (Rn, ‖ ‖). Let B denote its unit ball, j a positive integer,
and K a convex body. For some generalizations to the case of non symmetric “unit
balls” see [BK13, BK14].

GLOSSARY

Outer j-radius Rj(K) of K: Infimum of the positive numbers ρ such that the
space contains an (n−j)-flat F for which K ⊂ F + ρB.

j-ball of radius ρ: Set of the form (q + ρB) ∩ F = {x ∈ F | ‖x − q‖ ≤ ρ} for
some j-flat F in Rn and point q ∈ F .

Inner j-radius rj(K) of K: Maximum of the radii of the j-balls contained in K.

Diameter of K: 2r1(K).

Width of K: 2R1(K).

Inradius of K: rn(K).

Circumradius of K: Rn(K).
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Note that for a convex body K that is symmetric about the origin r1(K)
coincides with the norm-maximum maxx∈K ‖x‖ over K.

For the case of variable dimension (i.e., the dimension is part of the input),
Tables 36.6.1, 36.6.2, and 36.6.3 provide a rapid indication of the main complexity
results for the most important radii: r1, R1, rn, and Rn; and for the three most im-
portant `p spaces: Rn2 , Rn1 , and Rn∞. The designations P, NPC, and NPH indicate
respectively polynomial-time computability, NP-completeness, and NP-hardness.
The tables provide only a rough indication of results. They are imprecise in the
following respects: (i) the diameter and width are actually equal to 2r1 and 2R1

respectively; (ii) the results for Rn2 involve the square of the radius rather than the
radius itself; (iii) some of the P entries are based on polynomial-time approxima-
bility rather than polynomial-time computability; (iv) the designations NPC and
NPH do not refer to computability per se, but to the appropriately related deci-
sion problems involving the establishment of lower or upper bounds for the radii in
question.

TABLE 36.6.1 Complexity of radii in Rn2 .

Polytope H-polytopes V-polytopes
functional general symmetric general symmetric

Diameter r21 NPC NPC P P

Inradius r2n P P NPH NPC

Width R2
1 NPC P NPC NPC

Circumradius R2
n NPC NPC P P

TABLE 36.6.2 Complexity of radii in Rn1 .

Polytope H-polytopes V-polytopes
functional general symmetric general symmetric

Diameter r1 NPC NPC P P

Inradius rn P P P P

Width R1 P P P P

Circumradius Rn NPC NPC P P

TABLE 36.6.3 Complexity of radii in Rn∞.

Polytope H-polytopes V-polytopes
functional general symmetric general symmetric

Diameter r1 P P P P

Inradius rn P P NPC NPC

Width R1 NPC P NPC NPC

Circumradius Rn P P P P
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For inapproximability results in the Turing machine model see [BGK00b] and
[Bri02]; for sharp bounds on the approximation error of polynomial-time algorithms
in the oracle model see [BGK+01]. In view of the results in Section 36.3 on volume
computation where there is a sharp contrast between the performance of determin-
istic and randomized algorithms it may be worth noting that, generally, for radii
randomization does not help! This means that the same limitations on the error of
polynomial-time approximations that apply for deterministic algorithms also apply
for randomized algorithms, [BGK+01].

Parametrized complexity (see e.g. [FG06]) has been used in [KKW15] to ana-
lyze more sharply how the hardness of norm maximization and radius computation
depends on the dimension n. In particular, it is show that for p = 1 the problem
of maximizing the p-th power of the `p-norm over H-polytopes is fixed parameter
tractable but that for each p ∈ N \ {1} norm maximization is W [1]-hard.

APPLICATIONS

Applications of radii include conditioning in global optimization, sensitivity analy-
sis of linear programs, orthogonal minimax regression, computer graphics and com-
puter vision, chromosome classification, set separation, and design of membranes
and sieves; see [GK93b].
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36.7 CONSTRAINED CLUSTERING

Clustering has long been known as an instrumental part of data analytics. In in-
creasingly many applications additional constraints are imposed on the clusters, for
instance, bounding the cluster sizes. As has been observed in numerous fields, good
clusterings are closely related to geometric diagrams, i.e., various generalizations of
Voronoi diagrams. Applications of constrained clustering include the representation
of polycrystals (grain maps) in material science, [ABG+15], farmland consolidation,
[BBG14], facility and robot network design [Cor10], and electoral district design,
[BGK16].

As Voronoi diagrams are covered in great detail in Chapter 27, we will concen-
trate in the following on some geometric aspects of the relation between diagrams
and constrained clusterings.

GLOSSARY

Instance of a constrained clustering problem: (k,m, n,X, ω, κ−, κ+) (weakly
balanced) or (k,m, n,X, ω, κ) (strongly balanced), where k,m, n ∈ N, X =
{x1, . . . , xm} ⊂ Rn, ω : X → (0,∞), κ, κ−, κ+ : {1, . . . , k} → (0,∞), such that

κ− ≤ κ+ and
∑k
i=1 κ

−(i) ≤
∑m
j=1 ω(xj) ≤

∑k
i=1 κ

+(i) in the weakly balanced

case and
∑m
j=1 ω(xj) =

∑k
i=1 κ(i) in the strongly balanced case.

Of course, n is again the dimension of space, m is the number of points of the
given set X in Rn, and ω(x) specifies the weight of each point x ∈ X. The set
X has to be split (in a fractional or integer fashion that will be specified explic-
itly next) into clusters C1, . . . , Ck whose total weights lie in the given intervals
[κ−(i), κ+(i)] in the weakly balanced case or actually coincide with the prescibed
weight κ(i) in the strongly balanced case, respectively.

Balanced clustering C for an instance (k,m, n,X, ω, κ−, κ+), or (k,m, n,X, ω, κ):
C = {C1, . . . , Ck} with Ci = (ξi,1, . . . , ξi,m) ∈ [0, 1]m for i ∈ {1, . . . , k}, such

that
∑k
i=1 ξi,j = 1 for j ∈ {1, . . . ,m} and κ−(i) ≤

∑m
j=1 ω(xj)ξi,j ≤ κ+(i) for

i ∈ {1, . . . , k} in the weakly balanced case and
∑m
j=1 ω(xj)ξi,j = κ(i) in the

strongly balanced case. Ci is the ith cluster. Note that ξi,j is the fraction of xj
assigned to the cluster Ci.

Integer clustering C: Ci ∈ {0, 1}m for i ∈ {1, . . . , k}.
Constrained clustering problem: Given an instance of a constrained cluster-

ing problem, find a balanced (integer) clustering C which optimizes some given
objective function (examples of which will be given later).

Gravity vector of a given clustering C: g(C) = (g(C1)T , . . . , g(Ck)T )T , where
g(Ci) =

(∑m
j=1 ξi,jω(j)xj

)
/
(∑m

j=1 ξi,jω(j)
)

is the center of gravity of Ci for
i ∈ {1, . . . , k}.

Gravity body for a given instance (k,m, n,X, ω, κ−, κ+), or (k,m, n,X, ω, κ): Q =
conv{g(C) | C is a balanced clustering}.
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Support supp(Ci) of a cluster Ci: supp(Ci) = {xj ∈ X | ξi,j > 0}.
Support multi-graph G(C) of a clustering C: vertices: C1, . . . , Ck; edges: {Ci, Cl}

for every j for which xj ∈ supp(Ci)∩ supp(Cl); label of an edge {Ci, Cl}: xj . A
cycle in G(C) is colored if not all of its labels coincide. G(C) is c-cycle-free if
it does not contain any colored cycle.

Given F = {ϕ1, . . . , ϕk} with functions ϕi : Rn → R for i ∈ {1, . . . , k}; F-diagram
P: P = {P1, . . . , Pk} with Pi = {x ∈ Rn | ϕi(x) ≤ ϕl(x) ∀l ∈ {1, . . . , k}} for
all i.

An F-diagram P is feasible for a clustering C: supp(Ci) ⊂ Pi for all i.

An F-diagram P supports a clustering C: supp(Ci) = Pi ∩X for all i.

An F-diagram P is strongly feasible for a clustering C: P supports C and G(C)
is c-cycle-free.

(D, h,S,M)-diagram: F-diagram for the functions ϕi(x) := h(di(si, x)) − µi,
where D = (d1, . . . , dk) is a k-tuple of metrics (or more general distance mea-
sures) in Rn, h : [0,∞)→ [0,∞) is monotonically increasing, S = {s1, . . . , sk} ⊂
Rn, and M = (µ1, . . . , µk)T ∈ Rk. The vectors si are called sites. If the
metrics di are all identical, the resulting diagram is isotropic, otherwise it is
anisotropic.

Centroidal: A (D, h,S,M)-diagram that supports a balanced clustering C is
centroidal if the sites si coincide with the centers of gravity g(Ci) of the clusters.

IMPORTANT SPECIAL CASES

Additively weighted Voronoi diagram: d1, . . . , dk = ‖ . ‖(2), h = id, i.e.,
ϕi(x) = ‖x− si‖(2) − µi for all i.

Power diagram: d1, . . . , dk = ‖ . ‖(2), h = (.)2, i.e., ϕi(x) = ‖x− si‖2(2) − µi for
all i.

Anisotropic additively weighted Voronoi diagram (with ellipsoidal norms):
For i = 1, . . . , k each di is induced by an ellipsoidal norm ‖ . ‖Mi

, i.e., ‖x‖Mi
=√

xTMix for a symmetric positive definite matrix Mi, h = id, i.e., ϕi(x) =
‖x− si‖Mi

− µi.
Anisotropic power diagram (with ellipsoidal norms): For i = 1, . . . , k each di

is induced by an ellipsoidal norm ‖ . ‖Mi , h = (.)2, i.e., ϕi(x) = ‖x− si‖2Mi
− µi.

Anisotropic additively weighted Voronoi diagrams have been used by [LS03] and
[CG11] for mesh generation. Anisotropic power diagrams were used in [ABG+15]
for the reconstruction of polycrystals from information about grain volumes, centers
and moments. In [CCD14] districts are designed so as to balance the workload of
service vehicles. The effect of different diagrams for electoral district design is
studied in [BGK16].

BASIC FACTS

In general, an F-diagram P does not constitute a dissection of Rn. If, however, D
is a family of metrics induced by strictly convex norms, h : R→ R is injective, and
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S = {s1, . . . , sk} ⊂ Rn is such that si 6= sl for i 6= l, then the (D, h,S,M)-diagram
P = {P1, . . . , Pk} has the property that int(Pi) ∩ int(Pl) = ∅ whenever i 6= l.

Given an instance of a constrained clustering problem and any choice of metrics
D, functions h and sites S, and let C∗ be a minimizer of

k∑
i=1

m∑
j=1

ξi,j · ω(j) · ϕi(xj).

Then there exists a choice of the additive parameter tupleM, such that the corre-
sponding (D, h,S,M)-diagram supports C∗; see [BGK16].

Thus, D, h,S can be regarded as structural parameters whileM is the feasibility
parameter. Typically, D and h are defined by requirements on the clusters for a
given specific application. Optimization over S can be done with respect to different
criteria. Natural choices involve the total variances or the inter cluster distance. For
any choice of structural parameters, the feasibility parameter M is then provided
by the dual variables of a certain linear program; see [BG12], [CCD16], [BGK16].

Unless the weights are all the same, this approach does not automatically yield
integral assignments in general but may require subsequent rounding. However, the
number of fractionally assigned points can be controlled to be at most k − 1.

POWER DIAGRAMS AND GRAVITY BODIES

Power diagrams constitute cell-decompositions of space into polyhedra. As it turns
out all relevant power diagrams in Rn can be encoded in a certain convex body in
Rnk. So, we are dealing with the power cells

Pi = {x ∈ Rn | ‖x− si‖2(2) − µi ≤ ‖x− sl‖
2
(2) − µl ∀l ∈ {1, . . . , k}}.

For given sites si, the inequalities for x are in fact linear. Hence Pi is a polyhedron
and thus, particularly, convex. The relation of power diagrams to least-square
clustering, i.e., clusterings minimizing the objective function

k∑
i=1

m∑
j=1

ξi,j · ω(xj) · ‖xj − si‖2(2),

has been studied in [BHR92, AHA98, BG12]; see also [BGK16].
In the strongly balanced case, the gravity body Q is a polytope. Its vertices

are precisely the gravity vectors of all strongly balanced clusterings that admit a
strongly feasible power diagram. In the weakly balanced case, Q does in general
have more than finitely many extreme points. However, each extreme point is still
the gravity vector of a clustering that admits a strongly feasible power diagram,
[BG12].

CENTROIDAL POWER DIAGRAMS AND CLUSTERING BODIES

A quite natural (and in spite of the NP-hardness of the problem practically efficient)
approach was introduced in [BG04] for the problem of consolidation of farmland. It
models optimal balanced clustering as a convex maximization problem that involves
two norms, a norm ‖ . ‖ on Rn and a second norm ‖ . ‖� on Rk(k−1)/2. ‖ . ‖�
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is required to be monotone, i.e., ‖x‖� ≤ ‖y‖� whenever x, y ∈ Rk(k−1)/2 with
0 ≤ x ≤ y. A balanced clustering is desired that maximizes∥∥∥(‖c1 − c2‖, ‖c1 − c3‖, . . . , ‖ck−1 − ck‖)T∥∥∥

�

where ci is a suitable approximation of the center g(Ci) which actually coincides
with g(Ci) in the strongly balanced case. In this model, intuitively, a feasible
clustering is optimal, if the corresponding “inexact” centers of gravity ci are pushed
apart as far as possible.

This model leads to the study of clustering bodies

C =
{
z = (zT1 , . . . , z

T
k )T ∈ Rkn |

∥∥∥(‖z1 − z2‖, . . . , ‖zk−1 − zk‖)T∥∥∥
�
≤ 1
}

in Rkn. Note that these sets live in Rkn rather than in the typically much higher
dimensional space Rkm of the optimization problem. Further, note that C has a
non-trivial lineality space ls(C) since a translation applied to all component vectors
leaves it invariant. Of course, C and C ∩ ls(C) can be regarded as the unit ball of a
seminorm or norm, respectively. Hence we are, in effect dealing with the problem
of (semi-) norm maximization over polytopes (as in Sections 36.5 and 36.6). In
particular, in the strongly balanced case, centroidal power diagrams correspond to
the local maxima of the ellipoidal function ψ : Rkn → [0,∞) defined by ψ(z) =∑k
i=1 κi‖zi‖2(2) for z = (zT1 , . . . , z

T
k )T ∈ Rkn; see [BG12] for additional results.

As it turns out, clustering bodies provide a rich class of sets which include poly-
topal and smooth bodies but also “mixtures.” For some choices of norms one can
find permutahedral substructures. [BG10] gives tight bounds for the approxima-
bility of such clustering bodies by polyhedra with only polynomially many facets.
The proposed algorithm then solves a linear program in Rkm for each facet of such
an approximating polyhedron. In spite of the NP-hardness of the general balanced
clustering problem one obtains good approximate solutions very efficiently, [BG04];
see also [BBG14].
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